EVALUATION OF THE LATERAL RESPONSE OF MICROPILES VIA FULL SCALE LOAD TESTING

by

Michael Rotimi Babalola

A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Infrastructure and Environmental Systems

Charlotte

2011

Approved by:

Dr. J. Brian Anderson

Dr. Vincent O. Ogunro

Dr. Shen-En Chen

Dr. David T. Young

Dr. John A. Diemer

Dr. Howie Fang

Michael Rotimi Babalola
ALL RIGHT RESERVED

ABSTRACT
MICHAEL ROTIMI BABALOLA.
Evaluation of the lateral response of micropiles via full scale load testing. (Under the direction of DR. J. BRIAN ANDERSON)

Micropiles are a relatively new deep foundation technology in the United States. As an alternative to driven piles or drilled shafts, micropiles can provide substantial support while minimizing cost, environmental impact, and harmful construction vibrations. In order to implement micropiles for new construction on bridges with unsupported lengths, a better understanding of the performance of micropile constituent materials and the structural performance of single micropiles and micropile groups is required.

This research addressed the behavior of micropiles under lateral loads. In this configuration, micropiles would be subjected to lateral loads. Thus, there was a need to evaluate the behavior of micropiles as bridge bent foundations with respect to joints between micropile sections and embedment or plunge in rock.

The objectives of this study were to demonstrate the lateral performance of micropiles in single and group configurations, determine the effect of casing plunge into rock on lateral resistance of micropiles, determine the effect of casing joints on the lateral resistance of micropile, determine the behavior of jointed micropile sections, and evaluate the durability of micropile casings and jointed sections.

These objectives were investigated using a three pronged approach of numerical modeling, full scale field lateral load tests, and laboratory testing. Sixteen sacrificial micropiles were installed in order to perform six lateral load tests. Rock plunge depths of
$1,2,5$ and 10 feet were investigated. Fourteen of the 16 piles comprised two or three sections. A cap was cast around four of the micropiles to create a bent that was load tested against a group of reaction piles. In addition, nine jointed micropile specimens were fabricated and tested in the laboratory under four- point flexure. Numerical models were developed to predict the behavior of the load tests. Subsequently, the results of the field and lab tests were used to calibrate the model for DOT use. A long term study of the impact of corrosion on micropile sections is submitted for future implementation.

The main findings of this study include:
a) The casing joint has a large impact on the lateral capacity of micropiles. In cases where the micropiles were sufficiently embedded in rock, rather than yielding there was an abrupt failure at the casing joint. This occurrence was observed in the load tests.
b) In this study, two feet of embedment for micropiles was sufficient to carry lateral loads greater than 30 kips. Embedment at 5 and 10 feet produced similar results to 2 feet. One foot of embedment does not appear to be sufficient based upon results of the field tests and numerical models.
c) Based on field and laboratory tests, the strength of the micropiles with respect to the joints in bending moment was approximately 115 kips*ft.
d) Micropiles of 10.75 in . diameter, 0.50 in . wall thickness carried significant lateral load with little deflection. However, the failure mode is brittle, as the piles tested failed abruptly with little lateral displacement.
e) Reduction of the section area at threaded joint by 60% to 70% results in a reasonably accurate model for the behavior of the casing joint using FBMultiPier computer program.

DEDICATION

My Beloved Wife
My Son
My Daughter
And
In Loving Memory of My Beloved Mother Mrs. A. A. Babalola

ACKNOWLEDGMENT

I am especially grateful to my advisor, mentor and friend, Dr. J. Brian Anderson for his guidance and relentless encouragement during this study. Over the years, I benefited from his extensive knowledge and experience in geotechnical engineering and deep foundation. I extend my appreciation to all my committee members: Drs. Vincent O. Ogunro, She-En Chen, David T. Young, John A. Diemer and Howie Fang for their time and contributions.

I would like to express my sincerest gratitude to Neill Belk, David Legrand, Angela Simms and Irvin Lanier for their support during field and lab tests. Also to Mr. Mike Moss, my deepest gratitude for the time and effort you provided.

The project would not have been possible without the support of engineers from the North Carolina Department of Transportation Geotechnical Engineering Unit: Njoroge Wainaina, John Pilipchuk, John Fargher, Dean Hardister, Clint Little, Brad Wright, and Charles Gove.

Skyline Steel, LB Foster, C\&M Manufacturing, CEMEX, and Nicholson Construction generously donated materials and assistance to the project. The project was made possible by a research grant from the North Carolina Department of Transportation (NCDOT) and monies from FHWA through Innovative Bridge Research and Development Program (IBRD).

I am indebted to my beloved wife Eunice Babalola and my children Tijesuni Babalola and Toluwalase Babalola for their love, support and daily prayers without which this day will not come. To my father, far in Nigeria, thanks. To my mother
who was transformed to glory, I am forever grateful for your love and an example you left for us, your children. Finally, thanks to God for His blessing.

TABLE OF CONTENTS

LIST OF TABLES xiv
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xxii
CHAPTER 1: INTRODUCTION 1
1.1 Problem Statement 4
1.2 Research Objectives 4
1.3 Scope of Work 5
CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 8
2.1 Background 8
2.2 Types of Deep Foundation 10
2.2.1 Driven Foundations 10
2.2.2 Drilled Foundations 10
2.2.3 Micropile 11
2.3 Theoretical Behavior of Deep Foundations under Lateral Loads 16
2.4 Lateral Load Testing 18
2.5 Corrosion Behavior of Steel and Predication 19
2.6 Models 22
2.6.1 Broms Semi Empirical Method 22
2.6.2 Beam on an Elastic Foundation Method 23
2.6.3 p-y Method 25
2.6.4 Theory of Elasticity 27
2.6.5 Finite Element Method 29
2.6.6 Characteristic Load Method 32
2.6.7 Naval Facilities Engineering Command (NAVFAC) Method 33
2.7 Selected Computer Program Implementations 33
2.7.1 LPILE/(COM624P) 33
2.7.2 FB-MultiPier 34
2.8 Micropile Lateral Load Tests 36
2.9 Other Deep Foundation Lateral Load Tests Case Studies 39
2.9.1 $\quad 1-\mathrm{g}$ Model Tests 39
2.9.2 Centrifuge Tests 41
2.9.3 Selected Full-Scale Lateral Load Test Case Studies 43
2.10 Four Point Bending Tests on Beams for Structural Properties 49
2.11 Corrosion on Highway Structures Case Studies 51
2.12 Gaps in the Literatures 54
CHAPTER 3: PRELIMINARIES 56
3.1 Project Information 56
3.2 Site Geology 58
3.3 Modeling for Lateral Loading 59
3.4 Preliminary Numerical Micropile Load Test Models 63
3.5 Sensitivity Analysis 71
3.5.1 Sensitivity Effect of Steel Yield Stress 72
3.5.2 Sensitivity Effect of Friction Angle 73
3.5.3 Sensitivity Effect of Subgrade Modulus 74
3.5.4 Sensitivity Effect of Threaded Joint 76
3.5.5 Sensitivity Effect of Grout Compressive Strength 77
3.5.6 Sensitivity Effect of Grout Modulus 78
3.6 Discussion of Sensitivity Analysis 86
3.7 Preliminary Laboratory Load Tests Models 87
CHAPTER 4: FIELD LOAD TESTING PROGRAM 91
4.1 Background 91
4.2 Test Micropiles 96
4.3 Instrumentation and Apparatus 97
4.3.1 Loading Frame 97
4.3.2 Jacks and Hydraulic Pump 99
4.3.3 Load Cells and Pressure Gage 99
4.3.4 Potentiometer 100
4.3.5 Slope Inclinometer 101
4.3.6 Strain Gages 103
4.3.7 Data Acquisition 103
4.4 Single Micropile Load Tests 107
4.4.1 Test "A" Pull 1.0 ft . Embedment Against 1.0 ft 107
Embedment
4.4.2 Test "B" Pull 2.0 ft . Embedment Against 2.0 ft 108 Embedment
4.4.3 Test "E" Pull 5.0 ft . Embedment Against 5.0 ft 112 Embedment
4.4.4 Test "F" Pull 10.0 ft . Embedment Against 10.0 ft 114
Embedment
4.4.5 Test " I " Pull 10.0 ft . Embedment Against 10.0 ft 118
Embedment not to failure.
4.5 Micropile Group Lateral Load Tests 122
4.6 Discussion of Load Test Results 134
CHAPTER 5: LABORTARY LOAD TESTING AND CORROSION 136
5.1 Purpose of Laboratory Tests 136
5.2 Four-Point Bending Test for Non-segmented Steel Pipe 137
5.3 Structural Experimental Setup Test 138
5.3.1 Micropile Section Fabrication 139
5.3.2 Instrumentation and Apparatus 140
5.3.3 Load Frame and Hydraulic Jack 141
5.3.4 Potentiometers 141
5.3.5 Scale Tape 142
5.3.6 Strain Gages 143
5.3.7 Data Acquisition 144
5.4 Bending Tests on Grouted Micropiles 144
5.5 Discussion of Bending Test Results 160
5.6 Corrosion Testing Plan 163
CHAPTER 6: MODEL CALIBRATION 165
6.1 Introduction 165
6.2 Modeling 166
6.2.1 Load Test I 166
6.2.2 Load Test F 167
6.2.3 Load Test E 167
6.2.4 Load Test B 167
6.2.5 Load Test A 167
6.2.6 Load Test X 168
6.3 Discussion 168
CHAPTER 7: RESEARCH SUMMARY, CONCLUSIONS, CONTRIBUTIONS 176 AND RECOMMENDATIONS
7.1 Research Summary 176
7.2 Conclusions 177
7.3 Contributions 178
7.4 Limitations 180
7.5 Design Application 180
7.6 Recommendations 181
REFERENCES 182
APPENDIX A: LATERAL LOAD TEST B 189
APPENDIX B: LATERAL LOAD TEST E 202
APPENDIX C: LATERAL LOAD TEST F 211
APPENDIX D: LATERAL LOAD TEST I 219
APPENDIX E: LATERAL LOAD TEST X 234
APPENDIX F: LABORATORY BENDING TESTS 274
APPENDIX G: STEEL AND GROUT TESTING RESULTS 284

LIST OF TABLES

TABLE 3.1: Varying yield stress of the steel casing 72
TABLE 3.2: Effect of steel yield stress 73
TABLE 3.3: Varying friction angle 73
TABLE 3.4: Effect of friction angle 74
TABLE 3.5: Varying subgrade modulus 75
TABLE 3.6 a \& b: Effect of subgrade modulus 75
TABLE 3.7: Varying the joint thickness 77
TABLE 3.8: Effect of joint thickness 77
TABLE 3.9: Varying grout compressive strength 78
TABLE 3.10: Effect of grout compressive strength 78
TABLE 3.11: Varying grout modulus 79
TABLE 3.12: Effect of grout modulus 79
TABLE 4.1: Field test micropile properties 96
TABLE 4.2: Schedule of lateral pull tests on identical micropiles 97
TABLE 4.3: Schedule of field load tests 107
TABLE 4.4: Results of single pile tests to failure except load test I 135
TABLE 5.1: Schedule of bending tests on identical micropiles 138
TABLE 5.2: Laboratory test micropile properties 139
TABLE 5.3: Summary of deflection test results 153
TABLE 5.4: Apparent flexural rigidity for the nine deflection tests from lab tests 154
TABLE 5.5: Summary of two methods for average flexural rigidity 155
TABLE 5.6: Flexural rigidity based on the applied load 156
$\begin{array}{ll}\text { TABLE 5.7: Results of bending moment for pile 1-5 } & 160\end{array}$
TABLE 5.8: Average stiffness of the composite pile from lab tests 162
$\begin{array}{ll}\text { TABLE 5.9: Lab bending stresses } & 163\end{array}$
TABLE 5.10: Baseline properties of micropile 164
TABLE 5.11: Summaries of durability and material tests 164
TABLE 6.1: Summary of both field and lab test results 165
TABLE 7.1: Detail research objectives 176

LIST OF FIGURES

FIGURE 1.1: Foundation types and classifications (Sabatini et al. 2005).
FIGURE 1.2: Deep foundation load carrying method (End Bearing and Skin Friction) 3 (O'Neill and Reese 1999).

FIGURE 2.1: Examples of laterally loaded piles (Long and Carroll 2005).
FIGURE 2.2: Detail of a typical high capacity micropile (Bruce and Cadden 2005) 12
FIGURE 2.3: Typical micropile threaded joint
$\begin{array}{ll}\text { FIGURE 2.4: Typical micropile during construction } & 14\end{array}$
FIGURE 2.5: Micropile classification system based on grouting (Sabatini et al 2005) 15
FIGURE 2.6: Deflections and forces in a long foundation subjected to lateral loads 17 (Matlock and Reese, 1960)

FIGURE 2.7: Lateral load testing arrangement (ASTM D3966-07) 20
FIGURE 2.8: Beam/Spring model applied to deep foundations 26
FIGURE 2.9: Definition of p and y as related to the response of a pile to lateral 27 loading (Reese and Wang 2006)

FIGURE 3.1: Map showing general location of B4012 57
FIGURE 3.2: Photo of the bridge alignment along the road 57
FIGURE 3.3: Site view of the old bridge. 58
FIGURE 3.4: Soil profile for the western end bent of B-4012 Ashe 59 County North Carolina.

FIGURE 3.5: Single pile interaction spring models 61
FIGURE 3.6: Modeling of Pile a) continuum model and b) spring model 62
FIGURE 3.7: Grouted micropile installed section 65
FIGURE 3.8: Pile group soil-structure interaction model 65
FIGURE 3.9: Single pile soil-structure interaction models 66

FIGURE 3.10: FB-MultiPier models for single pile
FIGURE 3.11: FB-Multipier models for individual micropile and micropile bent
FIGURE 3.12: Preliminary displacement-depth, bending moment-depth, and top 69 displacement of a typical micropile

FIGURE 3.13: Preliminary displacement-depth, bending moment-depth, and top 70 Displacement of a typical micropile from a 4 pile bent
$\begin{array}{ll}\text { FIGURE 3.14: Effect of steel yield stress } & 80\end{array}$
FIGURE 3.15: Effect of friction angle 81
$\begin{array}{ll}\text { FIGURE 3.16: Effect of subgrade modulus } & 82\end{array}$
FIGURE 3.17: Effect of joint wall thickness 83
FIGURE 3.18: Effect of grout compressive strength 84
FIGURE 3.19: Effect of grout modulus 85
$\begin{array}{ll}\text { FIGURE 3.20: Idealized four point loading diagram } & 88\end{array}$
FIGURE 3.21: Theoretical four point bending behavior for an integral section 90
FIGURE 4.1: Proposed construction layout 92
FIGURE 4.2: Proposed micropile load test layout 93
FIGURE 4.3: As-built layout 94
FIGURE 4.4: Actual micropile load test layout 95
FIGURE 4.5: Load testing frame 98
FIGURE 4.6: Enerpac jacks and pump 99
FIGURE 4.7: Omega load cell and Entran pressure transducer 100
FIGURE 4.8: SP1 string potentiometer by Celseco 101
FIGURE 4.9: Geokon 6000 probe with 603 readout box and QC casing by 102 Slope Indicator

FIGURE 4.10: Geokon model 4911 sister bar strain meter 103
FIGURE 4.11: Instrumentation cages 105
FIGURE 4.12: Photograph of cast micropile with instrumentation cage 106
$\begin{array}{ll}\text { FIGURE 4.13: CR1000 datalogger } & 106\end{array}$
FIGURE 4.14: Load test "A" micropiles 1 and 13108
FIGURE 4.15: Load test B micropiles 2 and 14109
FIGURE 4.16: Inclinometer deflections for load test B 110
FIGURE 4.17: Top load deflections for load test B 110
FIGURE 4.18: Failure of pile $14 \quad 111$
FIGURE 4.19: Load test E micropiles 3 and $15 \quad 112$
FIGURE 4.20: Inclinometer deflection for load test E 113
FIGURE 4.21: Top load deflections for load test E 113
FIGURE 4.22: Failure of pile $15 \quad 114$
FIGURE 4.23: Load test F micropiles 4 and $16 \quad 115$
FIGURE 4.24: Inclinometer deflections for load test F 116
FIGURE 4.25: Top load deflections for load test F 116
FIGURE 4.26: Failure of pile $16 \quad 117$
FIGURE 4.27: Load test I micropiles 10 and 11119
FIGURE 4.28: Inclinometer deflections for load test I 120
FIGURE 4.29: Top load deflections for load test I based on a) inclinometer and b) 120 potentiometer measurements

FIGURE 4.30: Bending moment profiles from stain gages for test I
FIGURE 4.31: Calculated bending moment plot from inclinometer data and strain gages for load test I.
FIGURE 4.32: Plan view cap group 123
FIGURE 4.33: Elevation view of cap showing placement of potentiometers 123
FIGURE 4.34: Micropile group cap structural detail 124
FIGURE 4.35: Micropile group cap structural section detail 125
FIGURE 4.36: Section A showing micropile \#8 126
FIGURE 4.37: Section B showing micropile \#7 127
FIGURE 4.38: Section C showing micropile \#6 128
FIGURE 4.39: Section D showing micropile \#5 129
FIGURE 4.40: Pile grout in testing in progress 130
FIGURE 4.41: Lateral deflection versus depth curves for micropiles during 131 group load test
FIGURE 4.42: Pile top and cap centerline displacements based on a) inclinometer 132and b) Potentiometer measurements
FIGURE 4.43: Bending moment versus depth (below ground surface) curves 133
FIGURE 5.1: Theoretical maximum bending and deflection plots for non-segmented 137steel pipe
FIGURE 5.2: Dimensions and setup for structural micropile test 139
FIGURE 5.3: Grouting micropile specimens 140
FIGURE 5.4: Loading head, testing setup, and jack with pressure transducer 142
FIGURE 5.5: Photograph of potentiometer locations 143
FIGURE 5.6: Measuring casing twist using scale tape 143
FIGURE 5.7: Typical strain gage setup 144
FIGURE 5.8: Micropile 1 deflection profile 145
FIGURE 5.9: Micropile 2 deflection profile 145
FIGURE 5.10: Micropile 3 deflection profile 146

FIGURE 5.11: Micropile 4 deflection profile 146
FIGURE 5.12: Micropile 5 deflection profile 147
FIGURE 5.13: Micropile 6 deflection profile 147
FIGURE 5.14: Micropile 7 deflection profile 148
FIGURE 5.15: Micropile 8 deflection profile 148
FIGURE 5.16: Micropile 9 deflection profile 149
FIGURE 5.17: Micropile 1 point deflection profile 149
FIGURE 5.18: Micropile 3 point deflection profile 150
$\begin{array}{ll}\text { FIGURE 5.19: Micropile } 4 \text { point deflection profile } & 150\end{array}$
FIGURE 5.20: Micropile 5 point deflection profile 151
FIGURE 5.21: Micropile 6 point deflection profile 151
FIGURE 5.22: Micropile 7 point location deflection profile 152
FIGURE 5.23: Micropile 8 point deflection profile 152
FIGURE 5.24: Micropile 9 point deflection profile 153
FIGURE 5.25: Plots of the pile flexural rigidity reaction 156
FIGURE 5.26: Micropile 1 bending moment profile 157
FIGURE 5.27: Micropile 2 bending moment profile 158
FIGURE 5.28: Micropile 3 bending moment profile 158
FIGURE 5.29: Micropile 4 bending moment profile 159
FIGURE 5.30: Micropile 5 bending moment profile 159
FIGURE 5.31: Joint bending moment from strain gages for piles 1-5 160
FIGURE 5.32: Failure mode of one of the tested micropile 161
FIGURE 6.1: Calibrated model for load test I piles 10 and 11170

FIGURE 6.2: Calibrated model for load test F pile 16
FIGURE 6.3: Calibrated model for load test E piles 3 and 15172
FIGURE 6.4: Calibrated model for load test B piles 2 and 14173
FIGURE 6.5: Calibrated model for load test A pile $1 \quad 174$
FIGURE 6.6: Calibrated model for load test X, piles 5, 6, 7, and $8 \quad 175$

LIST OF ABBREVIATIONS

ACI	American Concrete Institute
ASTM	American Society for Testing and Materials
CLM	Characteristic Load Methods
C_{u}	Undrained shear strength of clay
d	Width or diameter of pile
E	Modulus of elasticity
E_{p}	Modulus of elasticity of pile
$\mathrm{E}_{\text {s }}$	Modulus of soil reaction
ε_{c}	Compressive strain
ε_{t}	Tensile strain
FEM	Finite element method
GF	Gage factor
GFRP	Glass fiber reinforced polymer
I	Moment of inertia
IBRD	Innovative Bridge Research and Development
I_{p}	Moment of inertia of pile
k_{h}	Coefficient of lateral subgrade reaction
L	Length
LMT	Linear motion transducer
M	Bending moment
MSL	Mean sea level
NAVFAC	Naval Facilities Engineering Command

NCDOT	North Carolina Department of Transportation
OD	Outer diameter
P	Lateral soil resistance
RQD	Rock quality designation
S	Slope
UNCC	University of North Carolina at Charlotte
V	Shear force
y	Lateral deflection
z	Depth below ground surface
Z	Section modulus
κ	Curvature
Δ	Deflection
σ	Stress of beam section
Ψ	Cumulative deviations

CHAPTER 1: INTRODUCTION

Structures such as buildings and bridges are divided into two main components, namely substructure and superstructure. Superstructure is defined as all structure above the bearing elevation and substructure consists of everything below the superstructure. Therefore, substructure incorporates all foundation elements such as columns, wall piers, and foundations. Foundations are generally either shallow foundations or deep foundations, or a combination of the two, as shown in figure 1.1.

Figure 1.1: Foundation types and classifications (Sabatini et al. 2005)
Shallow foundations are located just below the lowest part of the superstructure they support while deep foundations extend considerably deep into the earth, with respect to their width (at a minimum of 5 to 1). In the case of shallow foundations, the means of support is usually a footing, which is often simply an enlargement of the base of the column, the wall that it supports, or a mat (raft) foundation, on which a number of columns are supported by single slab. Satisfactory performance of a shallow foundation
is characterized by (1) safety against overall shear failure of the supporting soil and (2) resistance to excessive displacement, or settlement.

Often times, the soil upon which a structure is to be built has insufficient bearing capacity and/or will produce excessive settlement under design loads. One alternative is the use of a deep foundation. Deep foundations are relatively long and slender members that are driven vertically into soil in the case of a pile, or cast in place as a drilled shaft. A pile is often driven either until it rests on a hard, impenetrable layer of soil or rock, or to a specified depth. Drilled shafts are installed by excavating a vertical hole in the soil and/ or rock, then backfilling the hole with reinforced concrete. End bearing foundations, where the load of the structure is primarily transmitted axially through the foundation to the impenetrable layer, are common in the western part of North Carolina. When the foundation cannot be extended to a hard stratum of soil or rock due to its depth, the load of the structure is borne primarily by side friction between the pile or shaft and soil. Such a deep foundation carries its load through skin friction which is common in the eastern part of North Carolina. Figure 1.2 shows how both piles and drilled shafts support loads through side friction and end bearing.

Single deep foundations that support signs or light-posts and pile groups that support bridge piers or offshore construction operations are constantly subjected to significant natural lateral loads (such as wind loads and wave action). Accordingly, deep foundations most be designed to carry these lateral loads. Lateral loading of a single deep foundation is a problem of soil-structure interaction, in which foundation deflection depends on the soil response and soil response depends on foundation deflection (Reese and Wang 1993). Therefore the lateral load capacity is determined by considering three
failure mechanisms: (1) structural failure of pile due to yielding of the pile material 2) shear failure of the confining soil due to yielding of the soil, and (3) the pile becoming dysfunctional due to excessive lateral deflection.

Figure 1.2: Deep foundation load carrying methods (end bearing and skin friction) (O’Neill and Reese 1999)

Micropiles are a relatively new deep foundation technology in the United States. As an alternative to other deep foundations, micropiles can provide substantial support while minimizing cost, environmental impact, and harmful construction vibrations. Micropiles, first used in Italy in the 1950s, are constructed by removing a column of soil using an auger and filling the hole to create a structural column, insitu. Micropile is a small-diameter (typically less than 12 in), drilled and grouted non-displacement pile that may be reinforced. Micropiles are installed in segments that are connected together by
threaded joints in the casing. Since micropiles are smaller, the size and amount of equipment needed for their installation is commensurately less than for typical deep foundations. This research will focus primarily on the lateral capacity of micropiles.

1.1 Problem Statement

Building on the success of micropile in retrofit projects, NCDOT proposes using micropiles for bridge replacements and new construction. Although literature and experience exist on micropile applications, there were aspects of micropile behavior that needed to be evaluated to provide confidence for engineers. While axial behavior was well documented in the literature, there is the need to document the performance of micropiles and micropile groups under lateral loads. This aspect of micropile behavior is not well understood and needs attention.

The goal of this project was to evaluate and demonstrate lateral load behavior of micropiles sufficiently enough to allow their use for in interior bents where shallow rock is present. Traditionally, micropiles have not been used for this application because a design criteria has not been established for obtaining micropile fixity in rock, while also considering the effect of threaded joints on lateral deflection, and moment capacity.

1.2 Research Objectives

Micropiles are often installed using casing sections assembled with threaded joints. The question remains how these joints impact the lateral load response of micropiles. In addition, whether by design or specification, the depth micropile casing extends into rock may be overly conservative or overdesigned. Therefore, the following objectives were pursued:

1) Demonstrate the lateral performance of micropiles and a group.
2) Determine the effect of casing plunge into rock on lateral resistance of micropiles.
3) Determine the effect of casing joints on the lateral resistance of micropiles.
4) Determine the behavior of jointed micropile sections.
5) Evaluate the durability of micropile casings and jointed sections.

1.3 Scope of work

The following tasks were completed in order to meet the research objectives:
A. Literature Review - A comprehensive review examined material from published journals, geotechnical load test reports, conference proceedings, and test standards. Additional literature was gathered including documentation on field load and laboratory tests on micropile materials conducted by different agencies. Case histories of micropile lateral load tests were included as well.
B. Preliminary Numerical Modeling - In order to design the test micropiles and load test apparatus for this project, representative load configurations were simulated to predict the required capacity of load frames, load cells, displacement sensors and hydraulic jacks. The impact of the threaded joints was accounted for in the computer software FB-Multipier using multiple and segmented pile models. A sensitivity analysis was carried out to account for the effect of each parameter on the micropiles.
C. Field Testing Program-The goals of the field tests were to demonstrate and document micropile behavior under realistic boundary conditions and the true soil-structure interface. The field test program included lateral load tests on micropiles constructed specifically for this project. A sacrificial group of 16 micropiles was constructed using Innovative Bridge

Research and Development (IBRD) funds in conjunction with a bridge replacement in Western North Carolina. These piles were load tested as individual piles as well as a group.
D. Single Pile Field Lateral Load Tests- Lateral load tests were performed in accordance with ASTM D3966 and micropile specific guidelines from Sabatini et al. (2005). Tests were performed by pulling together pairs of micropiles using all thread bars and center-hole jacks. The displacements of the pile tops were monitored using potentiometers. Piles were instrumented with either inclinometer casings or rebar cages with sister bar vibrating wire strain gages to measure displacement and strain concurrent with load and displacement. The top load was determined using load cells.
E. Pile Group Test-Four piles were load tested together as a bent. The piles were spaced more than ten diameters center-to-center and cast together in a concrete cap. The displacement of the pile cap was monitored using potentiometers. Piles were instrumented with both inclinometer casings and rebar cages with vibrating wire strain gages to measure displacement and strain concurrent with load and displacement. The load was applied to the pile cap using prestressing cables and two center-hole jacks.
F. Laboratory Micropile Testing-Two segment micropiles were fabricated for laboratory testing. Skyline Steel Corporation, CEMEX, and Nicholson Construction donated materials and construction support for the research. A total of 54 linear feet of micropile was fabricated in the lab. Micropiles
cast in the lab were grouted with standard Portland Type I cement, mixed with high shear mixer, and tested after curing for 28 days. Selected micropiles were instrumented with strain gages similar to those used in the field load tests. Potentiometers were used to monitor vertical displacement. Nine bending tests were conducted for this research.
G. Corrosion Testing-In addition to the structural tests, durability testing was commenced to determine the performance of the micropiles in typical environments. Due to the long term nature of the corrosion tests, this report documents only the strategy of the tests. The corrosion study will continue well beyond the duration of this research project. Marked and labeled micropile casings have been and will be placed in secure field locations that are accessible to NCDOT, UNCC, and Auburn University personnel for many years. Periodically, specimen mass and thickness will be measured.
H. Results and Interpretation - The collected data set includes the measured force, ground-line and 12 inches above ground-line deflections, deflected shape with depth and bending strain for micropiles from each load test conducted.
I. Calibration of Models - The results of scope items D, E, and F above were used to refine and calibrate FB-Multipier models used in the simulations for item B.

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1 Background

Structures can be supported by a variety of foundations. The selection of the foundation system is generally based upon several factors such as loads to be imposed, site subsurface materials, special needs (high axial loads, high lateral capacity), environmental site conditions and cost. Piles and drilled shafts are structural members used to transfer loads to deep strata through skin friction and end bearing. Lateral loads on deep foundations are derived from earth pressures, braking forces, wind pressures, current forces from flowing water, centrifugal forces from moving vehicles, wave forces, earthquakes, and impact loads from barges or other vessels. Even if none of the above sources of lateral loading are present, an analysis may be necessary to investigate the lateral deflection and bending moment that would result from the eccentric application of axial loads. Figure 2.1 shows examples of lateral loads. Three criteria must be satisfied in the design of deep foundations subjected to lateral forces and moments: 1) the soil should not be stressed beyond its ultimate capacity, 2) deflections should be within acceptable limits, and 3) the structural integrity of the foundation system must be assured.

Lateral load tests of piles and drilled shafts are sometimes performed to establish the load-movement-rotation behavior of full-sized deep foundations by quantifying load transfer relationships. This is accomplished by measuring combinations of load, deflection and rotation at the pile head, bending moments (strain) along the pile length, and slope/displacement with depth using an inclinometer.

Figure 2.1: Examples of laterally loaded piles (Long and Carroll 2005)

2.2 Types of Deep Foundation

Deep foundations are divided into two major categories, according to their method of installation. The first category consists of driven foundations (H-piles, pipe piles, precast concrete and wood), which displace and disturb the soil, and the second category consists of drilled foundations (drilled pier, augered cast piles and micropiles), that are installed without soil displacement.

2.2.1 Driven Foundations

Piles are long and slender members which transfer the load to deeper soil or rock of high bearing capacity avoiding shallow soil of low bearing capacity. The main types of materials used for piles are wood, steel and concrete. There are two basic types of pile foundations, namely displacement and non-displacement piles. Displacement piles are driven or vibrated into the ground thereby displacing the soil laterally during installation.

Prestressed square concrete piles, and closed ended pipe piles are displacement piles used as friction piles, end bearing piles or combination of the two. H-Piles and open ended pipe piles are non-displacement piles. Although these non-displacement piles actually do displace some material, the volume or amount displaced is substantially less than that of displacement piles. Non-displacement piles are often used where a large number of piles are needed in a small area such as end bent of a bridge.

2.2.2 Drilled Foundations

Drilled shafts are cylindrical, cast-in-place deep foundations that are constructed by placing fluid concrete in a drilled hole. Drilled shafts are constructed in diameters ranging from 18 inches to 12 feet or more to provide deep foundations for buildings, bridges, highway signage and retaining walls. They are typically used for bridges and
large structures, where large loads and lateral resistance are major factors. Drilled shafts as deep foundations, distribute loads to deeper and more competent soils and/or rock by means of skin friction, end bearing or a combination of both.

Auger cast piles are a drilled foundation in which the pile is drilled and cast in one continuous process. As the auger is drilling into the ground, the flights of the auger are filled with soil, providing lateral support and maintaining the stability of the hole. When the auger is withdrawn from the hole, concrete or sand/cement grout is placed by pumping the concrete/grout mix through the hollow center of the auger pipe to the base of the auger. Simultaneous pumping of the grout or concrete and withdrawal of the auger provides continuous support of the hole. Reinforcing bars or small cages are placed into the hole filled with fluid concrete/grout immediately after withdrawal of the auger.

2.2.3 Micropiles

Micropiles are thick steel casings that are often drilled and grouted into place. Micropiles are a relatively new deep foundation technology in the United States. Micropiles, first used in Italy in the 1950s, are similar to drilled shafts in that an auger is used to remove a column of soil that will be backfilled to create a structural column. In contrast, micropiles are smaller diameter members (usually 12 inches (300 mm) or less) filled with grout (not concrete) and reinforced with an external casing, a single large diameter rebar, or a combination of the two. Since micropiles are smaller, the size and amount of equipment needed for their installation is commensurately less than for typical drilled shafts. Following recent developments in the United States, micropiles have evolved into high-capacity load bearing elements. Presently, some micropiles are designed for ultimate load carrying capacities exceeding 500 tons (Armour et al. 2000).

Figure 2.2 shows a typical high capacity micropile and Figure 2.3 shows a typical micropile pipe showing the threaded joint. Micropiles are currently used in two general application areas: (1) structural support and (2) in-situ reinforcement.

Figure 2.2: Detail of a typical high capacity micropile. (Bruce and Cadden 2005)

Micropiles have specific advantages compared to more conventional support systems. In general, micropiles may be feasible under the following project-specific constraints (Sabatini et al. 2005):

- Project has restricted access or is located in remote area;
- High load capacity in both tension and compression;
- Ability to install where elevated groundwater or caving soil conditions (karst and non-karst forming) are present;
- Tested to verify load carrying capacities;
- Required support system needs to be in closed pile proximity to existing structures;
- Ground and drilling conditions are difficult;
- Pile driving would result in soil liquefaction;
- Vibration or noise needs to be minimized;
- Hazardous or contaminated spoil material will be generated during construction and
- Adaptation of support system to existing structures is required.

Figure 2.3: A Typical micropile threaded joint
The modern micropile installation process begins with drilling through soil into the bedrock or hard bearing stratum using a specialized drill rig. The micropile drill is removed, leaving micropiles in the rock socket, and reinforcement bars are lowered into the micropile steel casings. Grout is pumped or pressure-fed into the casings, the piles are lifted to the mouth of the sockets to allow bonding to piles. Finally, the micropile tops are cut to elevation and capped for foundation rebar. Micropiles may be load tested subsequently to prove the design. Micropiles can be installed in areas of particularly difficult, variable, or unpredictable geologic conditions such as ground with cobbles and boulders, fills with buried utilities and miscellaneous debris, and irregular lenses of
competent and weak materials. Soft clays, running sands and high groundwater not conducive to conventional drilled shaft systems cause minimal impacts to micropile installation. It is important to assess the cost of using micropiles based on the physical, environmental and subsurface factors. For example, micropiles are commonly the preferred foundation choice in the challenging urban areas that feature mixed fills, nearby buildings and difficult access. Figure 2.4 shows a typical a micropile under construction.

Figure 2.4: Typical micropile construction
Micropile classifications are based primarily on the method of placement and pressure under which grouting is performed during micropile construction. The classifications are described below and shown schematically in Figure 2.5.

- Type A: Grout flows under gravity. These are non-pressurized and use sand-cement "mortars" or neat cement grouts.
- Type B: Grout is injected as temporary drill casing or auger is withdrawn. Pressurized once at low pressure (44-145 psi).
- Type C: Grout is gravity placed, allowed to set for $15-25 \mathrm{~min}$, and then a second batch of grout is injected at moderate pressure through a sleeved grout pipe.
- Type D: Grout is gravity placed and allowed to harden. When primary grout has hardened, more grout is injected through a sleeved port grout pipe. A movable packer is used so that specific horizon may be treated several times if necessary. High pressure is used (290-1160psi) (Sabatini et al. 2005).

Figure 2.5 Micropile classification system based on grouting (Sabatini et al 2005)
"The construction of a micropile involves a succession of processes, the most significant of which are drilling, placing the reinforcement if needed and grouting. The drilling method is selected with the objective of causing minimal disturbance or upheaval to the ground and structure while being the most efficient, economic and reliable means of penetration. Seven methods of drilling which are common for pile with diameters less than 12 in . and can drilled to a depth of 200 ft . are briefly discussed below.

1. Single-Tube Advancement: Toe of the drill casing is fitted with an open crown or bit and the casing is advanced into the ground by rotation of the drill
head. Water flush is pumped continuously through the casing, which washes debris out and away from the crown.
2. Rotary Duplex: Simultaneous rotation and advancement of the combined drill and casing string. The flushing fluid pumped through the central drill rod to exit from the flushing ports of the drill bit.
3. Rotary Percussive Duplex (Concentric): This is the same as rotary duplex, except casing and rods percussed as well as rotated.
4. Rotary Percussive Duplex (Eccentric): This is the same as rotary duplex, except eccentric bit on rod cuts oversized hole to ease casing advance.
5. Double Head Duplex: This is the same as rotary duplex and rotary percussive concentric duplex, except casing and rod may rotate in opposite directions.
6. Hollow-Stem Auger: These are continuous flight auger systems with a central hollow core similar to those used in auger-cast piling. The pile is installed by purely rotary heads. After the hole has been drilled to the required depth, the cap is knocked off or blown off by grout pressure.
7. Sonic: Sonic drilling is a dual cased drilling system that employs high frequency mechanical vibration to take continuous core samples of overburden and most bedrock formations, and to advance casing into the ground" (Sabatini et al 2005).

2.3 Theoretical Behavior of Deep Foundations under Lateral Loads

The design of piles against lateral loads is usually governed by the maximum tolerable deflection (Poulos and Davis 1980). Lateral deflections of single piles depend on the lateral load, flexural rigidity (EI) of the pile, and the soil resistance to lateral movement which is characterized by soil strength and stiffness. In other words, the lateral loading of a single deep foundation is a soil-structure interaction problem - the deflection of the pile depends on the reaction in the soil and the reaction in the soil depends on the deflection of the pile (Reese and Wang 1993). Design typically depends on the deflection and bending moment in a deep foundation. The bending moment dictates the section of the foundation, and the deflection is used in the evaluation of serviceability of the supported structure. Figure 2.6 shows the relationship among lateral deflection, slope, moment and shear in a deep foundation, and the lateral soil reaction, all as a function of depth that result from applied shear and/or moment.

Figure 2.6: Deflections and forces in a long foundation subjected to lateral loads (Matlock and Reese, 1960)

Changes in each of these parameters with depth can be defined by the principles of structural mechanics:

$$
\begin{align*}
& S=\frac{d y}{d z} \tag{2.1}\\
& M=E I \frac{d S}{d z}=E I \frac{d^{2} y}{d z^{2}} \tag{2.2}\\
& V=\frac{d M}{d z}=E I \frac{d^{3} y}{d z^{3}} \tag{2.3}\\
& p=\frac{d V}{d z}=E I \frac{d^{4} y}{d z^{4}} \tag{2.4}
\end{align*}
$$

Where:

$$
\begin{aligned}
& S=\text { slope of foundation } \\
& M=\text { bending moment in foundation } \\
& V=\text { shear force in foundation }
\end{aligned}
$$

$p=$ lateral soil resistance per unit length of the foundation
$E=$ modulus of elasticity of foundation
$I=$ moment of inertia of foundation in the direction of bending
$y=$ lateral deflection
$z=$ depth below ground surface.

2.4 Lateral Load Testing

In determining the lateral load capacity of deep foundations, the most accurate method is static lateral load testing (ASTM D3966-07). Load tests could be at field-scale or lab-scale. The primary purpose of lateral load testing is to verify the lateral load transfer relationship used in the design or to verify load deflection behavior of the foundation. Three possible lateral load test setups are shown in Figure 2.7.

A common method of testing a deep foundation under lateral load is to use another similar deep foundation as the reaction. Most often, lateral loads are applied by a hydraulic jack acting against a reaction system or by a hydraulic jack acting between two deep foundations. The primary means of measuring the load applied to the deep foundation should be a calibrated load cell along with the jack load determined from jack pressure measurements. Lateral displacement of the head is measured using dial gages, scales, potentiometers, or linear variable differential transformers (LVDTs) that measure movement between the foundation head and an independently supported reference beam. Lateral deflection measurements versus depth can be accomplished by installing an inclinometer casing on or in the test foundation and recording inclinometer readings after application or removal of a load increment.

2.5 Corrosion Behavior of Steel and Prediction

Steel piles have been used underground for many years to transmit loads to deeper soil layers or to resist lateral pressures. Pipe and H-piles are used as load-bearing foundations. Considerable concern exists that steel foundation members may corrode in specific soil environments. The corrosion of underground structures is a very widespread problem. Corrosion of the steel on both sub and super structures will result in the reduction of both the axial and the lateral capacity of the structure.

A general definition of corrosion is the degradation of a material through environmental interaction (Beavers and Durr 1998). The fundamental cause of the deterioration of steel piling underground is soil corrosion. The corrosion rate of steel piles in soil is influenced by a number of corrosion related parameters. These include soil minimum resistivity, pH , chloride content, sulfate content, sulfide ion content, soil moisture, and oxygen content within the soil. Measurement of these parameters can give an indication of the corrosivity of a soil.

Figure 2.7: Lateral load testing arrangement (ASTM D3966-07)
Corrosion of metals is an electrochemical process involving oxidation (anodic) and reduction (cathodic) reactions on metal surfaces. For metals in soil or water, corrosion is typically a result of contact with soluble salts found in the soil or water. This process requires moisture to form solutions of the soluble salts. Factors that influence the rate and amount of corrosion include the amount of moisture, the conductivity of the
solution (soil and/or water), the hydrogen activity of the solution (pH), and the oxygen concentration (aeration). Other factors such as soil organic content, soil porosity, and texture indirectly affect corrosion of metals in soil by affecting the other factors listed above.

Measurement of these parameters can give an indication of the corrosivity of a soil. Unfortunately, because of the number of factors involved and the complex nature of their interaction, actual corrosion rates of driven steel piles cannot be determined by measuring these parameters. Instead, an estimate of the potential for corrosion can be made by comparing site conditions and soil corrosion parameters at a proposed site with historical information at similar sites. In general, the corrosion behavior of structural steel in soil can be divided into two categories, corrosion in disturbed soil and corrosion in undisturbed soil.

When steel piles are used in corrosive soil or corrosive water, special corrosion protection considerations for the steel may be needed. The extent of corrosion protection for steel piles will depend on the subsurface geology, the location of the groundwater table, and the depth to which the soil has been disturbed. Corrosion protection mitigation may include the need for sacrificial metal (corrosion allowance) or the use of protective coatings and/or cathodic protection.

There are four basic methods for Corrosion Control \& Corrosion Protection Romanoff, M. (1962).

1. Material Resistant to Corrosion: There are no materials that are immune to corrosion in all environments. Materials must be matched to the environment that they will encounter in service.
2. Protective Coating: Protective coatings are the most widely used corrosion control technique. Essentially, protective coatings are a means for separating the surfaces that are susceptible to corrosion from the factors in the environment which cause corrosion to occur.
3. Cathodic Protection: Cathodic protection can be effectively applied to control corrosion of surfaces that are immersed in water or exposed to soil.
4. Corrosion Inhibitors: Modifying the operating environment. Using a selective backfill around a buried structure.

2.6 Models

There are several approaches available for modeling the interaction of deep foundations subjected to external loading. Specifically, when considering lateral loads, there are four categories, semi empirical, beam on and elastic foundation, elastic theory, and finite element.

2.6.1 Broms Semi Empirical Method

Broms (1964a, 1964b and 1965) separated the lateral analysis of loaded piles embedded in cohesive soils and in cohesionless soils. This method was presented in three papers published in 1964 and 1965. The ultimate lateral load on a pile can be computed by use of simple equations or graphs. The method is based upon the following concepts:

1. Failure occurs in short piles by unlimited rotation of the pile or unlimited movement through the soil, and
2. Failure occurs in long piles or piles of intermediate length by the development of one or more plastic hinges in the pile section.

In the three papers, Broms shows the procedures for the prediction of laterally loaded piles under working loads and the ultimate lateral resistance. Broms method is easily implemented by hand solution, but its limitations make the use of a more sophisticated solution more attractive.

2.6.2 Beam on an Elastic Foundation Method

This approach, also called the Winkler approach (Hsiung and Chen 1997), is the oldest method of predicting pile deflections and bending moments in deep foundations. The approach characterizes the soil as a series of unconnected linearly-elastic springs with stiffness E_{s}, expressed in unit of force per length squared $\left(\mathrm{FL}^{-2}\right)$. The pressure p and the deflection y at a point are related through a stiffness E_{s}, the modulus of soil reaction defined as:

$$
\begin{equation*}
E_{s}=\frac{-p}{y} \tag{2.5}
\end{equation*}
$$

Where:
p is the lateral soil reaction per unit length of the pile, and y is the lateral deflection of the pile (Matlock and Reese, 1960).

The negative sign in the equation above shows the direction of soil reaction is opposite to the pile deflection. Another term is the modulus or coefficient of horizontal subgrade reaction, k_{h} which has the units of force/length ${ }^{3}$ (Terzaghi 1955). The previous equation can be rewritten as:

$$
\begin{equation*}
E_{s}=k_{h} d \tag{2.6}
\end{equation*}
$$

Where:
d is the width or diameter of the pile and
k_{h} is the horizontal subgrade reaction modulus.

In cohesionless soils and normally consolidated clays, the modulus of horizontal subgrade reaction increases linearly with depth. For over consolidated clays, 0.3the horizontal subgrade reaction is usually assumed to remain constant with increasing depth. The determination of the soil modulus E_{s} is generally carried out by full scale lateral-load testing, plate load testing, or empirical correlation with other soil properties.

The Winkler beam/spring model is based on the assumption that the soil supporting the beam acts as a system of discrete springs as shown in Figure 2.8. The beam is a function of springs and the applied load. The collective constant is referred to as the subgrade reaction modulus. The governing equation for the deflection of a laterally loaded pile using the subgrade reaction theory is expressed as:

$$
\begin{equation*}
E_{p} I_{p} \frac{d^{4} y}{d x^{4}}+k_{h} d y=0 \tag{2.7}
\end{equation*}
$$

Where:
E_{p} is the modulus of elasticity of the pile,
I_{p} is the moment of inertia of the pile section,
y is pile deflection;
x is the depth in the soil,
d is width or diameter of pile and
k_{h} is the subgrade reaction modulus.
McClelland and Focht (1958, as referenced in Coduto, 1994) used the same beam/spring model in the design of laterally loaded deep foundation as shown in Figure 3.1. The method is also known as the p-y method. The primary shortcomings to the original subgrade reaction approach are:

1. The axial load effect on the foundation is ignored,
2. The soil model used in the technique is discontinuous,
3. The modulus of subgrade reaction is not intrinsic property of the soil, but depends on pile characteristics and the magnitude of deflection, and
4. The subgrade reaction method is a semi-empirical approach.

For real soils, the relationship between soil pressure p and deflection y is nonlinear, with the soil pressure reaching a limiting value when the deflection is sufficiently large. Several approaches have been developed to account for this nonlinearity. Reese and Matlock (1956) argue that the adoption of a linearly increasing modulus of subgrade reaction with depth takes some account of soil yield and nonlinearity, as values of the secant modulus near the top of the pile are likely to be very small, but will increase with depth because of both a higher soil strength and lower levels of deflection.

2.6.3 p-y Method

Broms analysis dealt with the pile lateral behavior under two extreme loading conditions: service loads (i.e. up to one third to one half of the ultimate load), and the ultimate loads (i.e. ultimate lateral capacity). A method is needed to account for the different observed pile behavior under lateral loads and enable the prediction of its deflection at the nonlinear load-deflection zone. To address this issue, nonlinear elasticity methods were developed in which applications of elastic solutions for equivalent soil properties were used in an iterative procedure, ending when displacement compatibility between soil and piles is achieved. The method is referred to as the "p-y curves", where p is the soil pressure per unit length of pile and y is the pile deflection.

Figure 2.8: Beam/Spring model applied to deep foundations
The p-y curve method is the most versatile tool currently available. This method was developed by Reese and Matlock at the University of Texas at Austin. The p-y curve represents the soil resistance at a particular depth and is defined in terms of soil resistance per unit length versus deflection. The p-y method uses a series of nonlinear springs to model the soil-structure interaction. It models the foundation using a two-dimensional finite difference analysis. The soil resistance will typically rise quickly under small deformations to a maximum where it remains constant or decreases with further deformation. The physical definition of the soil resistance p is given in Figure 2.9. Figure 2.9a shows a profile of a pile that has been installed. The assumption is that the pile has been installed without bending so that the initial soil stresses at the depth X_{i} are uniformly distributed as shown in Figure 2.9b. If the pile is loaded laterally so that a pile
deflection, Y_{i} occurs at the depth, X_{i} the soil stresses will become unbalanced as shown in Figure 3.3c. The three factors that have the most influence on the p-y curves are the soil properties, the pile diameter and the nature of loading (Reese and Wang, 2006). The p-y curves are strongly responsive to the nature of loading.

Figure 2.9: Definition of p and y as related to the response of a pile to lateral loading (Reese and Wang 2006)

2.6.4 Theory of Elasticity

Poulos (1971a) presented the first systematic approach for analyzing the behavior of laterally loaded piles and pile groups using the theory of elasticity. Soil is represented as an elastic continuum, the method is applicable for analyzing batter piles, pile groups of any shape and dimension, layered systems and systems in which the soil modulus varies
with depth. The Poulos (1971a) method assumed soil to be an ideal, homogeneous, isotropic, semi-infinite elastic material, having a Young's modulus E_{s} and Poisson's ratio v_{s}, which are not affected by the presence of the pile. Poulos assumed the pile to be a thin rectangular vertical strip of width d , length L , and also constant flexural rigidity $\mathrm{E}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}$. In the case of a circular pile, the width d, is taken as the diameter of the circular pile. The pile is divided into $\mathrm{n}+1$ elements and each element is acted upon by a uniform horizontal stress p which is assumed constant across the width or diameter of the pile. Poulos found that the accuracy of the solution depends on the number of elements into which the pile is divided. The horizontal displacements of the soil and the pile are equal along the pile if elastic conditions prevail. The soil displacements for all the points along the pile are expressed as:

$$
\begin{equation*}
\{y\}=\frac{d}{E_{s}}[I]\{p\} \tag{2.8}
\end{equation*}
$$

Where $\{y\}$ is the column vector of horizontal soil displacements, $\{p\}$ is the column vector of horizontal loading between soil and pile and [I] is the $\mathrm{n}+1$ by $\mathrm{n}+1$ matrix of soil-displacement-influence factors determined by integrating Mindlin's equation using boundary element analysis (Poulos and Davis 1980).

Poulos (1971a) considered both unrestrained and restrained pile head cases. The major variables influencing pile behavior are the length-to-diameter ratio and the pileflexibility factor K_{R} which is defined as:

$$
\begin{equation*}
K_{R}=\frac{E_{p} I_{p}}{E_{s} L^{4}} \tag{2.9}
\end{equation*}
$$

where K_{R} is a dimensionless measure of the flexibility of the pile relative to the soil with a limiting value of ∞ for an infinitely rigid pile and zero for an infinitely long pile, " E_{p} " is
the Young's Modulus of pile, " I_{p} " is the moment of inertia of pile section, " E_{s} " is the Young's Modulus of soil and "L" is the embedded pile length. For unrestrained pile, the horizontal displacement is evaluated as:

$$
\begin{equation*}
y_{o}=I_{h} \frac{P}{E_{s} L}+I_{m} \frac{M}{E_{s} L^{2}} \tag{2.10}
\end{equation*}
$$

where I_{h} is the displacement influence factor for horizontal load only acting, at the ground surface, I_{m} is the displacement influence factor for moment only, acting at the ground surface, P is the applied horizontal load, M is applied moment, E_{s} is the Young Modulus of the soil and L is the embedded pile length. In the case of a restrained pile, the horizontal displacement is evaluated as:

$$
\begin{equation*}
y_{o}=I_{f} \frac{P}{E_{s} L} \tag{2.11}
\end{equation*}
$$

where I_{f} is the displacement influence factor for a restrained pile subjected to horizontal load. The assumption that the soil modulus E_{s} remains constant with depth is not realistic in the case of piles in sand. The variations in deflection and bending moment along the piles were not considered. The piles must be of constant cross-section, and the pile-head restraints must be either fully-fixed (no rotation) or fully free (no bending moment). The soil must be assumed to be elastic, and have constant and uniform properties with depth.

2.6.5 Finite Element Method

The Finite Element Method (FEM) was first developed in 1943 by R. Courant, who utilized the Ritz method of numerical analysis and minimization of variational calculus to obtain approximate solutions to vibration systems (Grandin 1991). The finite element method is widely used in structural analysis. The method is also used in a wide range of physical problems including heat transfer, seepage, flow of fluids, and electrical
and magnetic potential (Zienkiewicz 1977). The finite element method is a numerical technique for finding approximate solutions of partial differential equations as well as of integral equations. FEM uses a complex system of points called nodes which make a grid called a mesh. In order to perform the finite element calculations, the geometry has to be divided into elements. Nodes are assigned at a certain density throughout the material depending on the anticipated stress levels of a particular area.

In essence, the analysis of a structure by finite element method is an application of the displacement method. In frames, trusses, and grids, the elements are bars connected at the nodes; these elements are considered to be one-dimensional. Twodimensional or three-dimensional finite elements are used in the analysis of walls, slabs, shells, and mass structures. The finite elements can have many shapes with nodes at the corners or on the sides (Bathe 1982). The application of the displacement method can be found in any structural analysis text book such as Ghali and Neville (1997).

The finite difference method (FDM) was first developed by A. Thom in 1920s under the title "the method of square" to solve nonlinear hydrodynamic equations (Morton and Mayers 2005). The finite difference techniques are based upon the approximations that permit replacing differential equations by finite difference equations. These finite difference approximations are algebraic in form, and the solutions are related to grid points. Finite difference solution basically involves three steps:

1. Dividing the solution into a grid of nodes.
2. Approximating the given differential equation by finite difference equivalence that relates the solutions to grid points.
3. Solving the difference equations subject to the prescribed boundary conditions and/or initial conditions.

The finite element method can be used to model pile-soil-pile interaction by considering the soil as a three-dimensional continuum. These methods include the establishment of detailed three dimensional finite element models which incorporate nonlinear properties of piles and the soil within which they are embedded. Such models may also include the so called boundary element method which can perhaps better represent the soil-pile interaction characteristics. The finite element method by nature includes the ability to apply any combination of axial, torsion and lateral loads; the capability of considering the nonlinear behavior of structure and soil; and the potential to model pile-soil-pile-structure interaction.

Pressley and Poulos (1986) analyzed a group of piles using finite element method with elastic-perfectly plastic soil model. Muqtadir and Desai (1986) also studied the behavior of a pile group with nonlinear elastic soil model. Brown and Shie (1990) and Trochanis el al. (1991) also studied the behavior of a single pile group of piles with elastic plastic soil using a 3D finite element analysis. And Zhang and Small (2000) analyzed capped pile groups subjected to both horizontal and vertical loads. From the above tests and studies carried out, it's demonstrated that finite element method can capture the essential aspects of behavior of a pile. ABAQUS Inc. (1978), ADINA R\&D Inc. (1986), ANSYS (1970), and LS-DYNA (1987) are commercially available finite element programs. The most widely used finite difference code for geotechnical analysis is FLAC (Itasca 2011).

2.6.6 Characteristic Load Method

Duncan et al. (1994) presented the characteristic-load method (CLM), following the earlier work of Evans and Duncan (1982). A series of solutions were made with nonlinear p-y curves for a range of soils and for a range of pile-head conditions. The results were analyzed with the view of obtaining simple equations that could be used for rapid prediction of the response of piles under lateral loading. Dimensionless variables were employed in the prediction equations. The characteristic load method (CLM) can be used to determine the following:

1. Ground-line deflections due to lateral load for free-head conditions (fixedhead and flag-pole conditions)
2. Ground-line deflections due to moments applied at the ground line
3. Maximum moments for the conditions 1,2 and 3 and
4. The location of the point of maximum moments along the pile.

The soil may be either clay or sand, both limited to uniform strength with depth. The prediction equations have the general form for clay and the equation is:

$$
\begin{equation*}
P_{c}=7.34 b^{2}\left(E_{p} R_{i}\right)\left\{\frac{c_{u}}{E_{p} R_{i}}\right\}^{0.68} \tag{2.12}
\end{equation*}
$$

Where
$\mathrm{P}_{\mathrm{c}}=$ characteristic load
$b=$ diameter of pile
$E_{p}=$ modulus of elasticity of material of pile
$R_{i}=$ ratio of moment of inertia of the pile to that of a solid pile of the same diameter and
$\mathrm{C}_{\mathrm{u}}=$ undrained shear strength of clay.

2.6.7 Naval Facilities Engineering Command (NAVFAC) Method

The method is from NAVFAC (1986) and based on Reese and Matlock (1956). The method uses the linear elastic coefficient of subgrade reaction and assumes that the lateral load does not exceed $1 / 3$ of the ultimate lateral load capacity. The NAVFAC method states that the coefficient of subgrade reaction increases linearly with depth in granular soil and normally to slightly overconsolidated cohesive soils. In the case of overconsolidated hard cohesive soil, the coefficient of lateral subgrade reaction varies between 35 to 70 times the undrained shear strength. The equation for computing the coefficient of lateral subgrade reaction is:

$$
\begin{equation*}
K_{h}=\frac{f * z}{D} \tag{2.13}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{h}}=\text { coefficient of lateral subgrade reaction } \\
& \mathrm{f}=\text { coefficient of variation of lateral subgrade reaction } \\
& \mathrm{z}=\text { depth, and } \\
& \mathrm{D}=\text { width or diameter of loaded area. }
\end{aligned}
$$

2.7 Selected Computer Program Implementations

The p-y approach has been implemented in two separate computer programs that are commonly used by highway departments throughout the United States. Both packages are supported by the Federal Highway Administration.

2.7.1 LPILE/ (COM624P)

Com624P was developed by Shih-tower Wang and Lymon C Reese (1993) at University of Texas for the Federal Highway Administration. Over the years, Com624P has been updated into the 32 bit program LPILE (Reese et al. 2004).The computer
program models a single foundation under lateral loading. LPILE divides the member into a maximum of 300 segments and solves the differential equation suggested previously by finite differences method. The soil is modeled by a maximum of nine layers using one or more p-y curves: Sand Reese, Sand API, Liquefiable Sand, Silt, Soft Clay below the Water Table, Stiff Clay below the Water Table with free water, Stiff Clay above the Water Table without free water, Strong Rock, or Weak Rock.

Originally, COM624P modeled pile as a linear elastic beam. The latest release of LPILE (6.0) is capable of modeling nonlinear behavior. For a linear structure, the inputs are the length, width or diameter, cross sectional area, moment of inertia, and modulus of elasticity. If using COM624P or earlier versions of LPILE, there is no provision for prestressed or reinforced sections, thus the user must calculate the cracking moments by hand and compare them to those generated during loading in order to determine if a nonlinear failure has occurred.

To begin the solution, Com624 imposes the loading conditions at the top of the pile and assumes the pile length is such that the boundary conditions of zero shear and moment exist at the tip. The differential equation is solved for the displacements along the pile. Since the soil is considered non-linear, an iterative approach is taken where the soil modulus is varied. When the displacements calculated between two iterations are within a specified tolerance, the program terminates and records the displacements, moments, and shears for that load case.

2.7.2 FB-MultiPier

FB-MultiPier(2010), known previously as Florida Pier or FB-Pier, is a non-linear, hybrid finite element soil-structure interaction program under continual development at
the University of Florida by the Florida Bridge Software Institute (BSI). In simple terms, FB-MultiPier models a single pile as sixteen 2-node finite elements and each element has 6 degree of freedom per node. The soil reaction is provided much in the same way as LPILE with load transfer curves applied at the nodes. The program is a complete bridge foundation and pier analysis program. FB-MultiPier can analyze many types of structures including prestressed concrete piles, drilled shafts, H-piles, pipe piles, and various concrete sections, both reinforced and/or prestressed, generally used for bridges. The possible types of loading on these structures include combined axial, lateral, and torsion components on the piles/shafts, pile cap, and pier. The structural model includes both linear and non-linear (concrete cracking, steel yielding) capabilities, as well as biaxial interaction diagrams for all sections (BSI, 2010).

FB-MultiPier uses an iterative solution method to find the stiffness of the soil and pile for a computed set of displacements. The program uses a secant approach which assembles a stiffness matrix and solves for sets of displacements. Convergence is achieved when the system is in static equilibrium and is determined by comparison of the magnitude of the highest out-of-balance nodal force and the tolerance defined in the input file. The system is in static equilibrium and the program terminates when the highest out-of-balance force is lower than the tolerance.

FB-MultiPier uses axial (t-z, Q-z), lateral (p-y), and torsional (T- θ) pile-soil interaction. Sand (O’Neill), Sand (Reese), Clay (O’Neill), Clay API, Soft Clay Below the Water Table, Stiff Clay with Free Water, Stiff Clay without Free Water, and Limestone are the available lateral (p-y) models. The experienced user has the option of entering a customized set of $10 \mathrm{p}-\mathrm{y}$ curve points if none of the default curves are suitable.

The axial model consists of two parts; the first is the skin friction portion. The available skin friction models are Driven Pile, Driven Pile in Sand API, Driven Pile in Clay API, Drilled Shaft in Sand, Drilled Shaft in Clay, Drilled Shaft in Limestone, and Drilled Shaft in Intermediate Geomaterial. As with the lateral model, the user can also enter a set of $10 \mathrm{t}-\mathrm{z}$ curve points if the default models are not sufficient. The remaining piece of the axial soil model is the end bearing. The program supplies four tip models: Driven Pile, Driven Pile in Sand API, Driven Pile in Clay API, Drilled Shaft in Sand, Drilled Shaft in Clay, and Drilled Shaft in Intermediate Geomaterial. The user can also input a set of $10 \mathrm{Q}-\mathrm{z}$ curve points to model the tip if the above models are insufficient. Currently, the hyperbolic model is the only torsional model available.

2.8 Micropile Lateral Load Tests

Since micropiles are almost exclusively used for axial support which comes from skin friction applications, the literature is limited on the subject of micropile lateral load tests. Thus it is important to examine the case histories that do exist to provide a sound basis for the load tests for this study.

Long et al. (2004), at the University of Illinois, conducted research on field micropile response. Tests were conducted on micropiles with diameter of 9.63 inches, wall thickness of 0.55 in , length approximately 50 linear feet, and yield strength of the steel casing of 147 ksi . The test site was located along Interstate 57 about four miles north of the Illinois-Missouri state line. The primary reasons of the tests were to investigate the lateral load behavior of micropiles, to compare the measured lateral behavior with behavior predicted using LPILE, and to determine the structural behavior of the grouted micropile sections.

The subsurface investigation consisted of sampling, visual classification, standard penetration (SPT), water content, and unconfined compressive strength testing. The soil profile consistently showed medium clay overlaying sand. The unconfined compressive strength for the soil varied from 1400 psf near the ground surface to about 2200 psf at around 11 ft . below the ground surface. The strength then decreased to 800 psf at the bottom of the clay layer. The standard penetration tests (SPT) for the sand layer, increased with depth from 8 to 35 blows per foot.

Micropiles were originally tested in axial compression, axial tension, or served as reaction piling. The lateral load test program was conducted after axial load test were completed. Micropiles at the test site were constructed in two stages, an upper section with micropile casing and the lower uncased section with a centered high-strength bar only. The high-strength bar extended the full length of the micropile.

Twelve micropiles were installed at the test site. The deflection of each pile was measured with two dial gauges, one mounted above the other along the length of each pile head. Seven strain gages were used to measure the strain along each pile. The lateral load was applied by pulling two piles together. Plots of lateral load versus displacement and lateral load versus slope were shown in the report. In most cases, the micropile displacements measured in the field test at a given load were in reasonably good agreement with the displacement predicted using LPILE. Most of the tests were limited by the travel of the loading jacks.

Laboratory structural tests in this study (Long 2004) were conducted on a 10 ft . long section of micropile filled with grout. The pile was allowed to cure at the test site for 28 days. The pile was brought into the laboratory and tested in four point bending. The
pile showed linear behavior up to 212.5 kips applied load. The modulus of rigidity of 5.0 x $10^{6} \mathrm{in}^{2}$-kip was obtained from the linear part of the plot. The moment versus curvature relationship for the linear part of the loading curve yielded a modulus of rigidity of 5.28 x $10^{6} \mathrm{in}^{2}$-kip.

The load-displacement relationships measured in the field were in general agreement with load-displacement relationships predicted using LPILE. When differences occurred, Long (2004) gave the following reasons: soil strength in the field was lower than strength used in LPILE, bending stiffness/strength in the field was lower than assumed in LPILE, and the p-y curves for micropiles may need to be adjusted. Moreover, two tests terminated prematurely due to rotation of the threaded joints.

Richards and Rothbauer (2004) reported the results of lateral load tests on eight projects that utilized 9.6 in. diameter micropiles. The paper compared the lateral test results to predictions using LPILE, NAVFAC, and the Characteristic Load Methods (CLM). The intent was to demonstrate that micropiles and micropile groups can be designed to support lateral loads. The points of lateral loads applications above the ground surface varied from 0.5 to 1 ft .

In each test, two piles were loaded simultaneously using a hand pumped hydraulic jack. Two dial gages were placed at fixed elevations near the top of the pile and at the point of applied load to measure the pile deflection and rotation. The deflections reported in the research were calculated at the ground surface by extrapolating the two dial gage readings.

The conclusions show the micropiles deflected less than predicted due to typical conservatism in the assigned soil parameters or neglecting passive surcharge due to the
top of the pile being below ground surface. The analysis of the micropiles for lateral load was sensitive to the soil properties in the upper 10 to 20 feet of micropile.

Tarquinio et al. (2004) reported an analysis of deep foundation alternates in the design and construction of State Route 22, section A02-Lewistown bypass located in Pennsylvania. The value engineering analysis included driven and pre-drilled H -piles and micropiles. The initial design was driven and predrilled H-pile of axial compression capacity is 100 kips total 511 numbers as against 7.0 in . diameter micropile with an axial compression capacity of 200 kips total 295 micropiles.

For this project, a total of seven axial and lateral load tests were conducted to confirm the value of the engineering design and any construction issue. The results of the tests show the displacement vs. applied load graph crosses the failure criterion for micropile bonded in carbonaceous shale. For the micropile bonded in limestone, the displacement vs. applied load graph did not cross the failure criterion. This shows that the compressive strength and the quantity of the rock was also important in the axial and lateral capacity of the micropile.

2.9 Other Deep Foundation Lateral Load Test Case Studies

The purpose of this section is to provide a review of case histories of deep foundation lateral load tests under realistic boundary conditions and the true soilstructure interface.

2.9.1 1-g Model Tests

1-g model tests are test carried out in a small scale under controlled laboratory conditions making them relatively inexpensive. In 1-g model testing, the actual soil-pile system is not modeled using appropriate similitude laws for both soil and pile to
correctly simulate the actual field conditions. Similarity between a model and a fullsized object implies that the model can be used to predict the performance of the fullsized object. Such a model is said to be mechanically similar to the full-sized object.

Complete mechanical similarity requires geometric and dynamic similarity. Geometric similarity means that the model is true to scale in length, area, and volume. Dynamic similarity means that the ratios of all types of forces are equal. These forces result from inertia, gravity, viscosity, elasticity, surface tension, and pressure.

Materials such as aluminum, mild steel and wood dowels are used to represent piles in model tests. For these tests, sand was by far the most common soil used for the tests. Piles were held in place as soil was placed around them. Techniques for installing soil included tamping, pluviation, raining, dropping, flooding and boiling. The primary shortcomings of $1-\mathrm{g}$ model testing are scaling and edge effects. Scaling limits the applicability of model tests in simulating the performance of prototypes due to similitude incompatibility. Soil pressure distributions, soil particle movement and atrest stress levels are all factors influenced by scaling. The significance of edge effects comes in to play if the size of the testing container is too small; the zone of influence may extend beyond the size of the container.

Davisson and Salley (1970) conducted 1-g model tests in conjunction with the Arkansas River Navigation Project on vertical and battered fixed-headed piles fabricated from 0.5 -inch-O.D. aluminum tubing. The purpose of the test was to develop criteria for design of pile foundations in sand specifically for the locks and dams of the Arkansas River Navigation Project. The sand used was dry, fine, and fairly uniform with about 7\% passing the No. 200 sieve. The lateral tests were divided into four model groups; A
through D. Test A investigated the distribution of the subgrade modulus with respect to depth and to investigate the distribution of cyclic loading on single piles. Test series B compared the behavior of a pile group containing vertical and batter piles. Test C included two scale model lock walls, each consisting of three lock wall monoliths placed opposite each other at a distance of 110 ft . In test D , three scaled monoliths of a typical dam section supported on batter piles were tested. Davisson and Salley examined a variety of pile spacing and determined that group effects decreased the effective value of the coefficient of subgrade reaction, n_{h}, and increased the relative stiffness factor, T . Normalized T values of 1.25 at 4D spacing and 1.30 at 3D spacing were measured. In general it was observed that cyclic loading caused deflections to approximately double.

Cox et al. (1984) reported a study in which tests on 58 single piles and 41 pile groups were performed. The studies were made to investigate the efficiencies of pile groups under lateral loading. The piles were one inch diameter open-ended tubes, with penetrations of two, four, six or eight diameters. Tests were performed on single piles and on 3 and 5 pile groups with clear spacings of $0.5,1,2,3$, and 5 diameters in side-byside or in-line arrangements. The piles were embedded in soft clay with a moisture content of 59% and undrained shear strength of 42 psf . The study concluded that group effects were negligible when side-by-side spacing exceeds 3 times the diameter and inline spacing exceeds 8 times the diameter.

2.9.2 Centrifuge Tests

Centrifuge modeling is often used to study soil-structure interaction. The purpose of centrifuge testing is to reproduce the stress-strain response observed in the field in reduced (model) scale. Centrifuge modeling relies on the principles of similitude and
increased gravitational forces to obtain stresses in smaller models that would be comparable to those occurring in full-scale prototypes. Centrifuge testing is a means of overcoming scaling effects inherent in 1-g model testing. The advantage of centrifuge modeling lies in the ability of the centrifuge to reproduce prototype stress-strain conditions in a reduced scale model (Mcvay et al. 1995). Schofield (1980) provides detailed centrifuge testing principles.

Barton (1984) performed one of the first centrifuge tests on model pile groups consisting of 2,3 and 6 piles at various spacing and orientations with respect to the loading direction. Piles were installed in two rows. The study showed that the first row (lead row) carried 60% of the applied lateral loads and the second row (trail row) carried the remaining 40% of the applied lateral load at a pile spacing of two diameters.

Selby and Poulos (1984) conducted laboratory tests on model single piles and pile groups in sand. The main objectives of the tests were to examine the shielding effect in laterally loaded pile groups. The model piles were made of aluminum alloy tubes of 0.63 in. diameter, 0.05 in . wall thickness with each length of about 20 in . Load tests were performed in the centrifuge on model pile groups consisting of $2,3,4,5$ and 9 piles at various spacing. The results of these tests showed that the leading piles may carry significantly higher moments and shears than central or trailing piles, because of a shielding effect caused by soil movements in active pressure zones.

McVay et al. (1995) conducted centrifuge tests on single piles and 3×3 pile groups at three-diameter and five-diameter spacing. The piles were driven and laterally loaded without stopping the centrifuge. The prototype piles were 17 in diameter and 42.5 ft long in medium loose and medium dense sand. The test results support that the group
efficiency was independent of soil density. The results of the tests show a group efficiency of about 0.74 for 3D spacing and 0.94 for 5D spacing.

McVay et al. (1996) conducted centrifuge tests on driven in-flight fixed-head plumb and battered 3×3 pile groups, at 3D and 5D spacing. The prototype piles were 17 in diameter and 42.5 ft . long in medium loose and medium dense sand. A total of 24 tests were conducted with varying pile spacing, relative density of sand, inclination of the piles and loading direction.

2.9.3 Selected Full-Scale Lateral Load Test Case Studies

Gill (1968) presented the results of lateral load tests carried out at Hamilton Air Force Base and Naval Civil Engineering Laboratory in two papers. In Gill (1968), the San Francisco Bay pile tests were performed to study the horizontal load-displacement characteristics of natural soil deposits and to associate these characteristics with the behavior of laterally loaded piles. 4.5, 8.6, 12.8 and 16 in diameter open ended pipe piles were driven in both the dry area and flooded area. In the flooded area, no tests were carried out until the shear strength of the soil stabilized. Each pile was sufficiently embedded to insure flexible rather than rigid behavior. Lateral loads were applied 30 in . above the ground surface so that the loading consisted of both a horizontal load and a bending moment. Displacement and slope at ground surface were measured versus load. The horizontal displacements determined experimentally and the theoretically for all pile sizes were in fairly close agreement.

Singh and Verma (1973) reported the results of lateral load tests on single piles and pile groups; of mild steel pipes, 2.5 in outside diameter and 16.5 ft . long. The group consisted of four piles arranged in a square pattern at three diameters center to center
spacing with a rigidly welded pile cap. The pile groups and single piles were subjected to incremental lateral load applied at ground surface. The horizontal deflection and rotation of the cap at ground level were measured. Plots showed the pile group with pile spacing of three diameters offers less resistance to deflection compared to a single pile under similar conditions of loading. The results also showed that with an increase of deflection, the resistance of both single piles and pile groups decreased, with the resistance of groups decreasing faster than that of the single piles.

Cox et al. (1974) conducted lateral load tests on two 24 in diameter steel pipe piles with a wall thickness of 0.75 in., driven into sand. One pile was subjected to cyclic loads and the other was loaded statically. The piles penetrated to a depth of 69 ft . into clean fine sand to silty fine sand below water. The friction angle of the sand was 39° (Reese et al., 1974) and the buoyant unit weight was 66 pcf . The lateral load was applied at 1 ft . above the ground surface. The calculated values of lateral loads using the Characteristic Load Method which uses dimensional analysis to characterize the nonlinear behavior of laterally loaded piles by means of relationships among dimensionless variables were compared to measured values for lateral load. The results showed that the calculated deflections were about 10% higher than the measured values. The calculated maximum bending moments agreed quite well with the measured values for maximum bending moments.

Reese et al. (1975) conducted lateral load tests on two 24 in . and one 6 in . diameter pipe piles driven into stiff clay. The piles were instrumented to measure bending moments. On both the 6 and 24 in piles, short-term and cyclic loads were applied and the water table was maintained a few inches above the ground surface. The two 24 in . piles
were placed horizontally and connected at the ends to create simple beam supports, the two were then jacked apart with hydraulic ram and a load cell in series. The 6 in. pile was connected to a 24 in. pile by tension straps, and a jack was placed between the piles to push the piles apart. The results of the tests were analyzed to obtain the families of curves showing the soil resistance p as a function of pile deflection y . In the case of the 24 in . piles, the comparison between the computed and the measured p-y curves showed excellent agreement. While there was also a reasonable agreement for maximum bending moment for the 6 in. pile, the deflection at ground-line was poor.

Reese and Nyman (1978, as referenced in Reese and VanImpe, 2001) reported the results of an instrumented drilled shaft installed in vuggy limestone in the Florida Keys. The test was performed to gain information for the design of foundations for highway bridges. The drilled shaft diameter was 4 ft . and penetrated about 43.7 ft . into the limestone. A maximum lateral load of 150 kips was applied to drilled shaft at about 11.5 ft . above the limestone elevation. The maximum deflection at the point of load application was about 0.71 in , and about 0.02 in at the top of the rock. Although the load versus deflection curve was nonlinear, there was no indication of rock failure.

The Mechanical Research Department, Ontario, Canada, in an effort to examine the foundation behavior of rigid piers, carried out a full scale tests on two instrumented 5.0ft. diameter drilled shafts. The test results, analyzed and reported by Ismael and Klym (1978), were used to determine the accuracy with which the elastic method and the p-y method could predict the pier is lateral response. Lateral loads were applied to the piers at the ground surface. Displacement readings were taken after each 10 kip load increment. At 40 kips, the load was cycled. The incremental load was increased from 20 kips to a
maximum of 160 kips. The elastic solution was unable to model the true non-linear behavior of the pier and the p-y method only provided a conservative estimate.

Brown et al. (1987) reported the results of cyclic lateral load tests on a largescale pile group and a single pile. The piles consisted of nine 10.75 in . diameter 0.365 in. thick steel-pipe piles in a closely-spaced arrangement. The piles were installed closeended in a 3 by 3 arrangement with spacing of 3-pile diameter centers to a depth of 43 ft . The results showed greater deflection under the load of piles in group than that of a single pile under a load equal to the average load per pile. Also, the bending moments in the piles in the group were greater than those for the single pile.

Brown et al. (1988) reported the results of a large-scale group of steel pipe piles and an isolated single pile subjected to two-way cyclic lateral loading. The tests were carried out in a submerged firm to dense sand that was placed and compacted around the piles. The pile group consisted of nine 10.75 in . diameter 0.365 in . thick steel pipe piles, arranged in a 3 by 3 group and spaced at three times the diameter. The ultimate objectives of the test were to compare the response of the piles in the group with the response of the single pile and measure the variation in soil resistance within the group. The piles were instrumented to measure the distribution of load to each pile, bending stresses along the length, and the slope at the top for comparison.

Several conclusions that were presented in the report are, the deflections of the piles in the group were significantly greater than that of the single pile under equal average load; the reduced efficiency of the pile group was due to the effect of shadowing; and the piles in the leading row had similar bending moment with the single
pile under the same load per pile. Due to the two-way cyclic loading, significant densification occurred in the sand.

Caltrans (Speer 1992 as referenced in Reese and Vanimpe, 2001) performed lateral load tests on two 7.4 ft . diameter drilled shafts. Shaft A, penetrated 41 ft . into the rock, and shaft B penetrated about 45 ft . into the rock. Both drilled shafts were tested simultaneously. Load was applied incrementally at 4.6 ft . above the ground line for shaft A and 4.1 ft . for shaft B . The load test results showed that shaft A apparently had a structural weakness, so only shaft B was used in developing the recommendations for $\mathrm{p}-\mathrm{y}$ curves. Groundline deflection of 0.7 in . was measured at a 1,800 kips lateral load, but the deflection increased to about 2.0 inches at a lateral load of about 2,010 kips.

Ruesta and Townsend (1997) reported full-scale lateral load tests on a single pile and pile group consisting of $16(4 \times 4)$ prestressed 30 in . square concrete piles 54 ft long at the Roosevelt Bridge in Stuart, Florida. The objectives of the test were to provide a better understanding of the lateral resistance of closely spaced (3 diameters) driven piles in a group and whether it could be numerically related to the behavior of a single isolated pile through p-y multipliers, evaluate techniques for determining p-y curves based on in situ tests, verify the latest version of the program FLPIER and provide a general guideline for future load tests and lateral load design recommendations. The test program consisted of a single isolated 30 in . square pile and two 16 pile groups with three diameter spacing. From the lateral load tests, it was concluded that the average pile group response was softer than the single pile response, the p-y multipliers worked well to account for the group effect, and the maximum bending moments for the leading row were higher than the trailing rows.

Rollins et al. (2005a and b) reported the results of lateral load tests performed on a full-scale pile group and single pile in liquefied and preliquefied sand. The studies show the effect of liquefaction as the piles were loaded laterally. In the test before liquefaction, the objective was to evaluate pile-soil-pile interaction effects and improve the understanding of pile group behavior. The test pile was a 12.75 in . outside diameter steel pipe with a 0.375 in . wall thickness driven open ended to a depth of 37.7 ft . below the excavated ground surface. The pile group was arranged at 3 by 3 at 3.3 diameters spacing. The piles were driven into a soil profile of loose to medium dense sand underlain by clay and were instrumented to measure the distribution of load to the top of each pile, bending stresses along the length of each pile, and the slope at the top of each pile for comparison. Pre-liquefaction results showed a reduction in lateral resistance for the pile group relative to the single pile due to the group interaction effects. In addition, outer piles in the row carried about 20-40\% greater lateral load than the middle pile in each row. This shows that lateral resistance was a function of position within the row. In contrast to pre-liquefaction tests, group interaction effects were insignificant after liquefaction. The lateral resistance of each pile in the group was similar and about the same as for the single pile.

Rollins et al. (2008) carried out lateral static and Stat NAMIC load tests on two 8.5 ft . diameter drilled shafts at the Cooper River Bridge site in Charleston, South Carolina after liquefying the soil to a depth of 42 ft . using controlled blasting. The intent was to determine the impact of soil liquefaction (similar to that from an earthquake) on the lateral response of the drilled shafts. The interpreted static load-deflection curve indicates that the liquefied sand provided significant lateral resistance and that the
reasonable estimate of response could be obtained using a p-y curve for liquefied sand $(\mathrm{Dr} \approx 50 \%)$ developed by Rollins et al (2005) which include diameter effects.

2.10 Four Point Bending Tests on Beams for Structural Properties

The purpose of this section is to provide a review of case histories of four point bending tests carried out in the laboratory and setup on structural elements.

Zhu et al. (2006) carried out a four-point bending test on precast concrete-filled fiber-reinforced polymer (FRP) tubes (CFFT) in a laboratory set up. A total of five spliced beams 7 ft . long were tested. Each specimen was loaded in four-point bending with 6 ft . span length and a constant moment region of 2 ft . in the middle.

Nakamura et al. (2004) carried out four-point bending tests on steel pipes filled with light mortar having different compressive strength, steel pipes filled with concrete having different compressive strengths and unfilled steel pipes. The steel pipe models were 2 ft . in diameter and had wall thicknesses of 0.31 in .

The test specimens were simply supported with a span of 15 ft . and loaded at 5 ft . in from each end supports. The steel pipes were reinforced by diaphragms at the end supports and the loading points. The longitudinal strains of the specimens during loading were measured by using strain gages. For the unfilled steel pipes, the strain gages were located outside the steel pipes and for the filled steel pipes; the gages were inside the steel pipe.

The results of the bending tests show that the concrete filled models had 1.8 times higher bending strength than the steel pipe. In the case of the steel pipe filled with ultralight mortar, with the mortar compressive strength less than 145 psi the bending strength was the same as the steel pipe without any fill. However when the compressive
strength of the mortar was above 725 psi , the ductility was significantly improved and the ultimate strain was more than double that of the steel pipe. The tests show that the bending strength of the steel pipes can be controlled by the mechanical properties of the filled materials.

Fam et al. (2003) reported full-scale laboratory, construction and field tests of a new precast composite pile used for the substructure of Route 40 Highway Bridge over the Nottoway River in Virginia. The composite piles consisted of concrete-filled glass fiber reinforced polymer (GFRP), 24.6 in. diameter and 0.21 in . wall thickness.

The tubes were filled with 4800 psi concrete. The typical pile was a 16.4 ft . long and the distance of the two applied loads was 4.9 ft . from the center. The specimens were instrumented to measure the midspan deflection, and the extreme fiber strains at the tension and compression sides within the constant moment zone.

Naguib and Mirmiran (2002) carried out experimental and analytical investigation of the flexural creep behavior of concrete-filled fiber reinforced polymer tubes. Four identical 7 ft . long, 6 in. diameter and 0.6 in. tube wall thickness concrete-filled fiber reinforced polymer tubes (CFFT) were made for the tests. The instrumentation for the tests included both deflection and also top and bottom longitudinal strain gages at the midspan of the beams

Fam and Rizkalla (2002) reported the results of flexural behavior of concretefilled fiber-reinforced polymer circular tubes. A total of 20 beams were fabricated and tested for bending using four-point loading. Electrical strain gages and displacement transducers were used to measure the strain in axial direction within the constant moment zone along the depth of the beam. Strain gages were also used to measure circumferential
strains. A linear motion transducer (LMT) at the mid-span was used to measure the deflection. And, dial gages were attached at the ends to measure any end slip between the tube and the concrete.

Sherman (1976) reported the results of three- point bending tests on circular steel tubes. The tests were carried out to determine the moment redistribution capabilities of round tubes, and to determine if plastic design principles could be applied to tubes subjected to flexure. All the circular steel tubes tested had an outside diameter of 10.75 in. with varying wall thicknesses and yield strengths. The steel pipes were tested as cantilever and simple span under three point load tests. Strain gages were placed at 2.5 in . center to center spacing top and bottom on the outsides of the steel pipes. The deflections were measured with a 0.001 in . dial indicator. Bending moment at the ends of the tubes were measured with a purpose- built end- fixture transducer.

2.11 Corrosion on Highway Structures Case Studies

The purpose of this section is to provide a review of case histories of corrosion effects on structures. Corrosion of steel and concrete on both substructures and superstructures may result in the reduction of the strength and capacity to withstand the design load of those structures. According to the National Bridge Inventory Database, the total number of bridges in the United States is approximately 600,000, of which half were built between 1950 and 1994. The materials of construction for these bridges are concrete, steel, timber, masonry, timber/steel/concrete combinations, and aluminum.

Andersen (1956) indicates that corrosion was not a serious problem when the piles were completely below ground-water level, but it must be guarded against where sea water is present, where ground water has high salinity content, or where the piles are
subject to alternate wetting or drying. Hool and Kinne (1943) stated that the amount of corrosion on steel pipe piles in the ground was negligible.

Mason and Ogle (1932, as referenced in Andersen, 1956) inspected a large number of steel pile foundations in bridge structures in Nebraska. They found little, if any corrosion at depths greater than 18 in. below the stream bed or ground water level. The report estimated that the decrease in section due to corrosion had not been more than one percent in twenty years, except in an area where the soils are saline. The loss of section within the saline area was about 2 to 2.5 percent.

A $12 \times 65 \mathrm{H}$-Pile driven to a depth of about 122 ft . in a swamp near the river side toe of the west approach ramp to the Airline Highway Bridge across Bonnet Carre Spillway in New Orleans was pulled out for corrosion assessment after 17 years. Examination after cleaning showed no measurable corrosion. Mill scale was intact over almost the entire surface except for the 3 ft . section in the zone of typical water table fluctuation.

Decker et al. (2008) carried out a study to evaluate the corrosion rate for an abandoned pile foundation on I-15 through the Salt Lake Valley in Utah. A total of 20 piles were extracted after service lives of 34 to 38 years. From each of the five sites, measurement of the soil index properties, pH , resistivity, cation/anion concentrations and water table were recorded. Corrosion behavior at individual sites was reported.

At the 2100 South site, three steel pipe piles were of diameter 12 in . and wall thickness of 0.19 in . filled with concrete and reinforcement limited to the top. The soil consisted of both silt and clay with occasional sand. The water table was above the pile cap. The chloride and sulfate in the soil were all above the FHWA corrosive limit as
reported by Elias and Christopher (1997) and the resistivity was below 394 ohm-in. The results of the analysis show an average loss of 2% and a maximum section loss of 4% over 36 years of pile embedment in the soil at this location.

At the South Temple site, four spiral-welded steel pipe piles of diameter 12 in . and wall thickness of 0.19 in . filled with concrete and reinforcement limited to the top. The soil consisted of both silt and clay with one sand layer. The water table was about 3 ft . below the pile cap. The four piles were exposed to the soil-water environment for about 38 years. The results of the analysis showed an average loss of 5% and a maximum section loss of 12% after 38 years of pile embedment in the soil-water environment.

At the 2nd South site, three corrugated steel pipe piles of diameter 12 in . and wall thickness of 0.065 in were filled with reinforced concrete. The soil consisted entirely of sand with a high water table. Because of the soil and the water table, only 6 ft . of the steel pipe pile was cut out before the saturated sand collapsed into the excavation. The corrosion rates for these corrugated steel pipe piles were severe to moderate with respect to the percent of section loss, with a maximum section loss of 29% and an average of 13 $\%$.

At the $6^{\text {th }}$ South site, four corrugated steel pipe piles were removed from the site. The pipe piles were filled with reinforced concrete and step-tapered with depth. The first segment was 18 in . in diameter; the second segment was 16 in . in diameter and the last segment was 14 in . in diameter. The segment wall thickness ranged between 0.045 to 0.055 in. The corrugated pipe piles were removed after about 34 years of soil-water environment exposure. The corrosion rates for these steel pipe piles were severe to
moderate with respect to the percent of section loss, with a maximum of 51% and average of 14%.

At the $118^{\text {th }}$ South site, two steel pipe piles were removed from the site. The steel pipe piles were 12.5 in . diameter, wall thickness of 0.25 in . and filled with concrete with reinforcement limited to the top. The piles were driven at a 1:4 batter. The piles were removed for corrosion analysis after 37 years of soil-water environment exposure. The corrosion rates for these steel pipe piles were moderate to severe with an average section loss of about 8% in fill material, 13% in the native soil and a maximum section loss of 28 \% near the water table fluctuation zone.

The thickness loss versus tensile capacity loss analysis was carried out on 12 specimens from the steel pile in all the sites. Axial tension tests were conducted on these specimens. The thickness losses on these specimens are within the range of 5 and 29%.From the results of the test, the average thickness loss was about 13.3% whereas the average loss in tensile load capacity was 10.7%. The tension tests indicate that the loss often sile capacity was directly related to the loss of thickness.
2.12 Gaps in the Literatures

From the literature reviewed, five significant gaps were identified:

1) There is limited available information about the performance of micropile joints both in the laboratory and field. The single study by Long et al. (2004) provides a starting point.
2) No researchers have considered the impact of rock embedment on lateral load deflection behavior of micropiles.
3) While piles and drilled shafts have been load tested at full scale as single foundations or groups, there are no instances of loads testing a micropile bent at full scale.
4) No cases in the literature exist where micropile load tests were used to validate models in analysis software such as FB-MultiPier.
5) While there are significant literatures on pile corrosion available, none of that literature considered a micropile section that has a threaded joint. The objectives and scope of work presented previously in this dissertation support filling these gaps in the literature.

CHAPTER 3: PRELIMINARIES

3.1 Project Information

The project site was located in the narrow, generally flat, alluvial valley of the northwesterly flowing North Fork New River in the Northwestern part of North Carolina just northwest of Boone, NC. The floodplain was approximately 200 to 300 feet wide in the vicinity of the existing bridge. The ground surface elevations along SR 1118 were approximately 3120 feet mean sea level (MSL). Ground surface elevations in the floodplain were approximately 3114 feet MSL and the elevation of the riverbed was approximately 3111 feet MSL. The topography northeast and southwest of the existing bridge, outside of the floodplain, rose steeply to over 3600 feet MSL. Overhead and underground utilities were present at the project site along both sides of SR 1118. The utilities included power, cable, phone and fiber optic lines. The vicinity map is shown in Figure 3.1.

The original bridge was single span, i.e. no piers, and the end bents were founded on timber piles as shown in Figures 3.2 and 3.3. The replacement bridge was longer due to a much larger hydraulic opening based on scour and would require two interior bents along with two end bents. The geometry of the new bridge consisted of three spans with spanning arrangement of $1 @ 30 \mathrm{ft}$., $1 @ 58 \mathrm{ft}$. and $1 @ 27 \mathrm{ft}$. with a skew of 135°.

Foundations considered for the replacement bridge included drilled shafts, steel pipe piles installed with excavation, and micropiles. The decision to proceed with micropiles was made by the NCDOT based upon cost and environmental impact. The pile
sections chosen for the bridge design were 10.75 in . OD casings with wall thickness of 0.5 in . The contractor chose to use duplex drilling for installation. The micropile design followed the current NCDOT specification of 10 ft . of casing penetration (plunge) into rock with an additional 5 feet of bond into the rock. The contractor chose to not use a central bar and instead extended the casing the full length of the pile.

Figure 3.1: Map showing general location of B4012

Figure 3.2: Photo of the bridge alignment along the road

Figure 3.3: Site view of the old bridge.

3.2 Site Geology

The bridge is located within the Blue Ridge Belt of the Blue Ridge Physiographic Province. The 1985 Geologic Map of North Carolina, compiled by the North Carolina Geological Survey, indicates that biotite granitic gneiss underlies the project area. The Blue Ridge Belt materials consist of residual soil, weathered rock and crystalline rock beneath alluvial materials.

The subsurface materials at the bridge site can be divided into five major geologic strata. These strata are from top down, embankment fill, alluvium, residual soil, weathered rock and crystalline rock. The roadway embankment fill consists of 2.5 to 7.0 feet thick of loose to dense, dry to moist, clayey, silty, fine to coarse sand, with trace to little gravel and trace wood fragments, and silty, fine to coarse sandy, gravel with trace organic debris. The alluvium is about 1.5 to 4.2 feet thick and consists of very loose to medium dense, moist to wet, silty, fine to coarse sand, with trace roots, wood fragments and gravel, and silty, fine to coarse sandy and gravel. The residual soil is about 1.1 to 4.5 feet thick, and consists of loose to very dense, dry to moist, micaceous, clayey, silty, fine
to coarse sand with relict rock fabric and trace biotite gneiss rock fragments. The weathered rock consisted of about 1.0 to over 5.0 feet thick, and consists of severely weathered, very closely fractured, soft to medium hard, biotite gneiss. The crystalline biotite gneiss consists of an upper section of moderately severe to slightly weathered, very closely to closely fractured, medium hard to hard, biotite gneiss, and a lower section of slightly weathered to fresh, closely to widely fractured, hard to very hard, biotite gneiss. The soil profile is shown in Figure 3.4.

Figure 3.4: Soil profile for the western end bent of B-4012 Ashe County North Carolina

3.3 Modeling for Lateral Loading

The soil-structure interaction for deep foundations is characterized with near field (single pile) and far field (group) behavior. Individual pile soil-structure interaction is characterized with the nonlinear springs shown in Figure 3.5.

FB-MultiPier is a nonlinear finite-element analysis program designed for analyzing bridge interior bent structures composed of nonlinear interior bent columns and
caps supported on a linear pile cap and nonlinear piles/shafts with nonlinear soil. This analysis program couples nonlinear structural finite-element analysis with nonlinear static soil models for axial, lateral, and torsional soil behavior to provide a robust system of analysis for coupled bridge interior bent structures and foundation systems.

In contrast to a general finite element program, FB-MultiPier performs the generation of the finite-element model internally, given the geometric definition of the structure and foundation system as input parameters. Piles and drilled shafts always consist of 16 finite elements as shown in Figures 3.6b and 3.9. A section builder facilitates the integration of foundation structural properties into the finite element model. FB-MultiPier consists of an analysis program that is coupled with graphical pre-processor and post-processors. These programs allow the user of FB-MultiPier to view the structure while generating the model and to view the resulting deflections, bi-axial and uni-axial interaction diagrams, and internal forces in a graphical environment.

Figure 3.5: Single pile interaction spring models (Drawing not to scale)
The continuum model makes use of solid elements to define both the pile and the soil within the soil structure interaction system, as well as providing interaction between the two through surface definitions. The model as shown in Figure 3.6a considers shear coupling within the soil layers, surface friction at the interface, confinement effects due to soil self-weight deformations, and a precise evaluation of the boundary conditions.

The FB-Multipier replaces the soil with spring and divides the continuum into 16 elements as shown in Figure 3.6b. The soil stiffness properties are calculated at certain intervals and are represented by springs located at each selected point as shown in Figure 3.6b. The model considers only the load-displacement characteristics of the soil through the use of spring elements, and deformation characteristics of the shaft/pile through the use of beam elements.

Figure 3.6: Modeling of Pile a) continuum model and b) spring model

3.4 Preliminary Numerical Micropile Load Test Models

It was necessary to know the load-moment-deflection behavior of the field micropiles. FB-MultiPier (BSI 2010) was used to simulate representative load configurations to predict the needed capacity of load frames, displacement sensors, load cells, and hydraulic jacks. This step included the different scenarios of micropile length and rock plunge. Soil and rock property correlations and estimates were based upon borings made at the site and estimated rock parameters. Figure 3.9 shows the soil elevation, rock elevation and the properties of the grouted micropiles and Figure 3.7 is the cross section. Figure 3.8 shows the group representation for the field load test, the soil-structure interaction is characterized with the nonlinear springs.

There was between 5 and 10 feet of overburden soil with an average estimated friction angle of 35 degrees, unit weight of 110 pcf and modulus of subgrade reaction of 25 pci. The rock had an estimated unconfined strength of 29 ksi. The p-y curves by Reese et al. (1974) were used for the overburden soil, while curves developed by McVay and Niraula (2004) were used for the rock. Multiple section micropile models accounted for the impact of the threaded joints. Soil and rock property correlations and estimates were based upon borings made at the site and estimated rock parameters.

Key to these simulations was the feature in FB-MultiPier to model deep foundations as segments. In this case, the micropiles were represented by one of two models. The first model was for the 6.3 ft . unmachined portion of the micropile casing. The second model represented the casing joint which includes the 0.2 ft . portion of the adjoining piles that are machine threaded. The estimated properties of the micropile materials were $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4000$ psi and $\mathrm{E}_{\mathrm{c}}=2000 \mathrm{ksi}$ for the grout and $\mathrm{f}_{\mathrm{y}}=80 \mathrm{ksi}$ and $\mathrm{E}_{\mathrm{s}}=$

30000 ksi for the casings. In order to initially account for the impact of the casing joint, the thickness of the steel was reduced in the joint segments to 0.2 in . A simple model was devised with three casing sections and two joints. The soil profile was 10 ft . of general soil underlain by hard rock with the top of the micropile 2 ft . above the ground surface. A graphic of the load test model is provided in Figure 3.10. Results of this model show that the upper joint begins to fail at a lateral load of approximately 26.6 kip. The lower joint yield at 28 kips. Additional lateral loading causes the model to become unstable. The load deflection, pile head and bending moment profiles are shown in Figure 3.12 for a single pile.

The analysis was extended to a micropile bent. The bent was composed of 4 micropiles with the same material properties and dimensions as the single pile analyzed previously. The micropiles were spaced at 10 feet center to center. The cap was modeled as a solid concrete member that was $408 " \times 33 " \times 30 "$. The tops of the micropiles were assumed to be at the center of the pile cap. In order to prevent rotation and simulate the likely field load testing setup, the loads were applied at two locations as shown in Figure 3.11. Figures 3.10 and 3.11 show the micropile and micropile bent models and loading. The load deflection, pile head and bending moment profiles are shown in Figures 3.12 and 3.13.

Figure 3.7: Grouted micropile installed section

Figure 3.8: Pile grout soil-structure interaction model

Figure 3.9: Single pile soil-structure interaction models.

Figure 3.10: FB-MultiPier models for single micropile

Figure 3.11: FB-MultiPier models for micropile bent

[^0]
Figure 3.13 Preliminary displacement-depth, bending moment-depth, and top displacement of a typical micropile from a 4 pile bent

3.5 Sensitivity Analysis

One of the objectives of the research program was to develop a model with the ability to predict the behavior of micropiles under lateral load. It is helpful to understand the sensitivity of the micropile moment and deflection to six parameters (steel yield stress, friction angle, subgrade, grout modulus, joint thickness and grout compressive strength) with respect to the applied lateral loads. Sensitivity analysis was used to validate a model, warn of unrealistic model behavior, and also point out important assumptions if any. The analyses formulate model structure, simplify a model, suggest new experiments, suggest accuracy for calculating parameters, and adjust numerical values of parameters. The threaded casing joints were analyzed to show the effect the joint will have on both the deflection and the bending resistance of the jointed micropiles. According to the Micropile Design and Construction Reference Manual (Sabatini et al., 2005), a conservative method assumes that the threaded joint is equivalent to 50% of the casing section thickness. This value is used in this report as a baseline for the joint reduction analysis. The software used in the research for modeling these parametric effects on bridge substructures was FB-MultiPier. The numerical results can be highly sensitive to small changes in the parameter values. The parameters required for micropile modeling in FB-MultiPier are:

1) Micropile steel yield stress,
2) Soil friction angle,
3) Soil subgrade modulus,
4) Micropile joint wall thickness,
5) Micropile grout compressive strength,
6) Micropile grout modulus,

3.5.1 Sensitivity Effect of Steel Yield Stress

Yield strength of steel is the amount of stress at which plastic deformation becomes noticeable and significant. Yield strength is a very important value for use in engineering structural design. If we are designing a component that must support a force during use, we must be sure that the component does not plastically deform. We must therefore select a material that has high yield strength, or we must make the component large enough so that the applied force produces a stress that is below the yield strength. For this section of the research, we are considering variation of the steel yield strength of 80 ksi, 115 ksi and 150 ksi. Table 3.1 shows the parameters used for the analysis. The plots in Figure 3.14 show the effect of yield strength as the lateral loads are increased. Table 3.2 shows the deflections and the moments at each applied laterals. The results of the analysis shows that the higher the steel yield stress the greater the lateral load the pile can carry. The deflection and the moment are about the same but the lateral load is higher with 115 ksi and also higher with 150 ksi .

TABLE 3.1: Varying yield stress of the steel casing

	Parameter Values		
Materials	\square	\square	\square
		\square	
Joint thickness (in)	0.25	0.25	0.25
Yield Stress, (ksi)	115	150	80
Steel Modulus (ksi)	30000	30000	30000
Grout Strength (psi)	4000	4000	4000
Grout Modulus, (ksi)	2000	2000	2000
Friction Angle	35^{0}	35^{0}	35^{0}
Total unit weight, (pcf)	110	110	110
Subgrade, (pci)	25	25	25
Rock Strength,(psf)	417600	417600	417600

Table 3.2: Effect of steel yield stress

Steel						
Casing Yield (ksi)	80		115		150	
Load (kips)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)
10	0.6	62.18	0.6	62.18	0.6	62.18
20	1.27	130.24	1.27	130.24	1.27	130.24
30	2.02	204.02	1.98	204.01	1.98	204.01
38	-	-	2.58	266.7	-	-
40	-	-	-	-	2.73	282.4

3.5.2 Sensitivity Effect of Friction Angle

The ultimate soil capacity is the greatest lateral load the soil can sustain regardless of the lateral deflection. Table 3.3 shows the parameters used for the analysis. The plots in Figures 3.15 show the effect of friction angle as the lateral loads are increased. Table 3.4 shows a better picture of the result. From Figure 3.15, the deflection of the pile for each of the friction angles are the same up to about 15 kips lateral load. As the lateral load increases, the effects of the friction angle starts showing on both the deflection and the moment effect. The effect shows as the friction angle increases the deflection and the moment decreases. The result shows a difference of between 6-13 \% in both the moment and lateral deflection capacity as the friction angle increases.

TABLE 3.3: Varying friction angle

Materials	Parameter Values		
	\square	\square	\square
Joint thickness (in)	0.25	0.25	0.25
Yield Stress, (ksi)	115	115	115
Steel Modulus (ksi)	30000	30000	30000
Grout Strength (psi)	4000	4000	4000
Grout Modulus, (ksi)	2000	2000	2000

TABLE 3.3: (cont'd)
Materials
Parameter Values

	\square	\square	\square
Friction Angle	35^{0}	40^{0}	50^{0}
Total unit weight,(pcf)	110	110	110
Subgrade, (pci)	25	25	25
Rock Strength,(psf)	417600	417600	417600

TABLE 3.4 Effect of friction angle

Friction Angle	35		40		50	
Load (kips)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)
10	0.6	62.18	0.6	62.05	0.6	62.02
20	1.27	130.24	1.23	125.24	1.22	123.63
30	1.98	204.01	1.92	194.61	1.85	185.07
38	2.59	266.7	2.49	252.72	-	-
40	-	-	-	-	2.5	247.57

3.5.3 Sensitivity Effect of Subgrade Modulus

Subgrade modulus is the stiffness of subgrade soils in either the compacted condition or the natural state. It is the measure of strength-deformation properties of soil. It is known that the modulus of subgrade reaction is not a soil constant but is a function of the contact pressure and settlement. It depends on foundation loads, foundation size and stratification of the subsoil. The modulus of subgrade reaction is not a unique property of the soil, but depends on pile characteristics and the magnitude of deflection.

Table 3.5 shows the parameters used for the analyses. The plot in Figure 3.16 shows the effect of modulus of subgrade as the lateral loads are increased. Table 3.6 shows a better picture of the result.

TABLE 3.5: Varying subgrade modulus

	Parameter Values			
Materials	\square	\square	\square	\square
Joint thickness (in)	0.25	0.25	0.25	0.25
Yield Stress, (ksi)	115	115	115	115
Steel Modulus (ksi)	30000	30000	30000	30000
Grout Strength (psi)	4000	4000	4000	4000
Grout Modulus, (ksi)	2000	2000	2000	2000
Friction Angle	35°	35°	35°	35^{0}
Total unit weight, (pcf)	110	110	110	110
Subgrade, (pci)	25	150	250	350
Rock Strength,(psf)	417600	417600	417600	417600

Table 3.6a: Effect of subgrade modulus

Subgrade modulus (pci)	25			150		
Load (kips)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)		
10	0.64	59.6	0.57	55.96		
20	1.39	128.17	1.25	126.29		
30	2.21	203.56	1.97	201.6		
32	2.41	219.18	-	-		
38	-	-	2.57	263.77		

Table 3.6b: Effect of subgrade modulus

Subgrade modulus (pci)					
	250			350	
Load (kips)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)	
10	0.56	55.42	0.56	55.03	
20	1.25	126.01	1.25	125.93	
30	1.97	201.49	1.97	201.47	
32	-	-	-	-	
38	2.57	263.78	2.57	264.29	

While keeping all other parameters constant as shown in Table 3.5, the results show that the variation of the subgrade modulus does appreciably affect both the lateral displacement and the moment of the pile up to 150 pci. The result also shows the load carrying capacity increases from 32 kips to 38 kips before the pile fails. Using the 30 kips lateral load in comparing the effect, for the deflection, a decrease of about 11% as the subgrade changes from 25 pci to 150 pci , thereafter; the deflection effect is not visible. Within the same range, the moment effect is about 1%.

3.5.4 Sensitivity Effect of Threaded Joint

Micropiles are connected through a threaded joint of both male and female as shown in Figure 2.3. The threads have some reduction in the wall thickness (real or virtual for modeling sake) at the location. The sensitivity of the area reduction are evaluated with the help of FB-MultiPier computer program.

Table 3.7 shows the parameters used for the analysis. The plot in Figures 3.17 shows the effect of joint wall thickness as the lateral loads are increased. Table 3.8 shows a better picture of the result. Table 3.2 shows the deflections and the moments at each applied laterals. While keeping all other parameters constant as shown in Table 3.7, the results show that the variation of the joint thickness has great effect on the applied lateral, horizontal displacement and moment capacity.

The results of the analysis show that the higher the joint thickness the greater the lateral load, deflection and the moment capacity. The results show a difference of between 18-24 \% in the case of the lateral displacement. Moment capacities are about the same under the same load. And the load capacity is between $10-20 \%$ as the joint thickness changes.

TABLE 3.7: Varying the joint thickness

	Parameter Values		
Materials	\square	\square	\square
Joint thickness (in)	0.2	0.3	0.4
Yield Stress, (ksi)	115	115	115
Steel Modulus (ksi)	30000	30000	30000
Grout Strength (psi)	4000	4000	4000
Grout Modulus, (ksi)	2000	2000	2000
Friction Angle	35°	35^{0}	35^{0}
Total unit weight, (pcf)	110	110	110
Subgrade, (pci)	25	25	25
Rock Strength,(psf)	417600	417600	417600

Table 3.8: Effect of joint wall thickness

Joint thickness (in)	0.2				0.3	
Load (kips)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)
10	0.65	59.53	0.59	60.99	0.57	61.84
20	1.40	128.07	1.27	129.12	1.20	129.82
30	2.24	203.47	2.00	203.99	1.88	204.26
40	-	-	2.76	282.65	2.59	283.03
50	-	-	-	-	3.40	362.90

3.5.5 Sensitivity Effect of Grout Compressive Strength

ACI defines grout as a mixture of cementitious material and water, with or without aggregate, proportioned to produce a pourable consistency without segregation of constituents. Grout may also contain fly ash, slag, and liquid admixture. Table 3.9 shows the parameters used for the analysis. The plots in Figure 3.18 show the effect of grout compressive strength as the lateral loads are increased. Table 3.10 shows a better picture of the result. The results show a difference of between 3-4.5 \% in both the moment and
lateral deflection capacity as the grout compressive strength increases from 1000psi to 4000 psi.

TABLE 3.9: Varying grout compressive strength

	Parameter Values		
Materials	\square	\square	\square
	\square		
Joint thickness (in)	0.25	0.25	0.25
Yield Stress, (ksi)	115	115	115
Steel Modulus (ksi)	30000	30000	30000
Grout Strength (psi)	1000	2500	4000
Grout Modulus, (ksi)	2000	2000	2000
Friction Angle	35°	35°	35°
Total unit weight, (pcf)	110	110	110
Subgrade, (pci)	25	25	25
Rock Strength,(psf)	417600	417600	417600

Table 3.10: Effect of grout compressive strength

Grout strength (psi)	1000		2500		4000	
Load (kips)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)
10	0.65	59.35	0.65	59.57	0.64	59.60
20	1.43	127.85	1.4	128.09	1.39	128.17
30	2.3	203.09	2.24	203.46	2.21	203.56
31	-		2.34	221.24	-	-
32	-		-		2.4	219.18

3.5.6 Sensitivity Effect of Grout Modulus

The physical measure of a material to deform under load is called modulus of elasticity. It is the ratio of stress to the strain of the material or combination of materials as is the case of grouted micropiles. Table 3.11 shows the parameters used for the analysis. The plots in Figure 3.19 show the effect of grout compressive strength as the
lateral loads are increased. Table 3.12 shows a better picture of the result. The results show a difference of between 2-4 \% in both the moment and lateral deflection capacity as the grout modulus increases from 500 ksi to 2000 ksi .

TABLE 3.11: Varying grout modulus

TABLE 3.11: Varying grout modulus			
Parameter Values			
Materials	\square	\square	\square
Joint thickness (in)	0.25	0.25	0.25
Yield Stress, (ksi)	115	150	80
Steel Modulus (ksi)	30000	30000	30000
Grout Strength (psi)	4000	4000	4000
Grout Modulus, (ksi)	500	1000	2000
Friction Angle	35^{0}	35^{0}	35^{0}
Total unit weight, (pcf)	110	110	110
Subgrade, (pci)	25	25	25
Rock Strength,(psf)	417600	417600	417600

Table 3.12: Effect of grout modulus

Grout modulus (ksi)	500		1250		2000	
Load (kips)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)	Deflection (in)	Max. moment (kips*ft)
10	0.69	58.51	0.66	59.12	0.64	59.60
20	1.46	127.42	1.42	127.84	1.39	128.17
30	2.31	202.99	2.25	203.34	2.21	203.56
32	-		2.46	218.94	2.4	219.18

FIGURE 3.14 Effect of steel yield stress

Hinf

(sdiy) peoา ןеләฆеา

FIGURE 3.16: Effect of Subgrade modulus

FIGURE 3.17: Effect joint wall thickness

(4) ylea

FIGURE 3.18: Effect grout compressive strength

3.6 Discussion of Sensitivity Analysis

Six parameter studies were performed to investigate the influence of different parameters on the micropile and joint behavior. The parameters studied were steel yield stress, joint wall thickness, friction angle, subgrade, grout modulus and the compressive strength of the grout.

From the sensitivity analysis carried out and as shown in results in Figures 3.15, 3.16 and 3.17 , the friction angle, subgrade modulus and the joint thickness have the greatest effect compared to others parameters on the lateral deflection, moment and the lateral load carrying of the piles, as shown in Figures 3.14, 3.18 and 3.19.

In the case of the steel yield stress effect, the deflection, as shown in Figure 3.14, has a linear shape with f_{y} of 150 ksi having a higher lateral failure load as compared to f_{y} of 115 ksi and f_{y} of 80 ksi . The same effect occurred in the cases of the compressive strength of the grout and the grout modulus.

The effect of the wall thickness reduction on the deflection of the pile was shown in Figure 3.17 and Table 3.8. The wall thickness was reduced linearly by 20%, for 0.40 in wall thickness, the failure load was 50 kips with a maximum deflection of 3.4 in . and maximum moment of $364 \mathrm{kips} * \mathrm{ft}$. With another 20% reduction in the wall thickness, the failure load reduces to 40 kips with a maximum deflection of 2.76 in . and maximum moment of 260 kips*ft. When the joint wall thickness was reduced to 0.2 in (60%), the failure load was reduced to 30 kips with a maximum deflection of 2.24 in . and maximum moment of $204 \mathrm{kips} * \mathrm{ft}$.

3.7 Preliminary Laboratory Load Tests Models

Similar to the field testing program, prediction of the laboratory test behavior was a necessary step in planning and executing the research program. Structural analysis of a simply supported beam was used to predict the deflection and the bending moment behavior of the pile. Predictions require the calculations of the bending moment and the deflection of the section under increasing load conditions. Deflections of beams depend on the stiffness of the material and the dimensions of the beams as well as the more obvious applied loads and supports. As an illustration of this process, consider the case of "four-point-bending" shown in Figure 3.22. For the four point flexural test, the specimen lies on a span and stress is uniformly distributed between the loading noses. In order to analyze the behavior of the micropile in pure bending, a fundamental formula was used to determine deflections based on beam curvature. This is given by the expression:

$$
\begin{equation*}
\kappa=\frac{1}{R}=\frac{M}{E I}=\frac{d^{2} y}{d x^{2}} \tag{3.1}
\end{equation*}
$$

Where:
$\kappa=$ curvature
$R=$ the radius of the shape of the curved beam at a distance x from the origin
$\mathrm{E}=$ the elastic modulus of the beam material (micropile)
$\mathrm{I}=$ moment of inertia of the micropile's cross-section
$\mathrm{M}=$ bending moment of the section, distance x from a fixed reference point
$\mathrm{y}=$ vertical deflection at the section distance x from the reference point
The load was applied as shown in Figure 3.20; the reaction forces at each of the ends are equal to half the applied load. The deflections from elastic curve relations are based on the following assumptions:

1. The square of the slope of the beam is assumed to be negligible compared to unity.
2. The beam deflection due to shear stresses is negligible (i.e., plane sections remain plane).
3. The value of elastic modulus and moment of inertia remain constant for any interval along the beam.

Figure 3.20: Idealized four point loading diagram
For simple beam with two equal concentrated loads symmetrically placed, the displacements of the section are expressed as:

$$
\begin{align*}
& \Delta=\frac{P x\left(3 L a-3 a^{2}-x^{2}\right)}{6 E I} \quad \text { for } 0 \leq \mathrm{x} \leq \mathrm{a} \tag{3.2}\\
& \Delta(x)=\frac{P a\left(3 x L-3 x^{2}-a^{2}\right)}{6 E I} \quad \text { for } \mathrm{a} \leq \mathrm{x} \leq(\mathrm{L}-\mathrm{a}) \tag{3.3}\\
& \Delta(x)=\frac{P(L-x)\left(3 a^{2}-3 L a+L^{2}+x^{2}-2 L x\right)}{6 E I} \quad \text { for }(\mathrm{L}-\mathrm{a}) \leq \mathrm{x} \leq \mathrm{L} \tag{3.4}
\end{align*}
$$

$$
\begin{equation*}
\Delta(\max)=\frac{P a\left(3 L^{2}-4 a^{2}\right)}{24 E I} \quad \text { at center }(\mathrm{L} / 2) \tag{3.5}
\end{equation*}
$$

In the case of the moment, the moments of the section are expressed as:

$$
\begin{array}{ll}
M_{(\max)}=P * a & \text { (between the loads) } \\
M_{x}=P * x & \text { for } 0 \leq \mathrm{x} \leq \mathrm{a} \\
M_{x}=P * a & \text { for } \mathrm{a} \leq \mathrm{x} \leq(\mathrm{L}-\mathrm{a}) \\
M_{x}=P *(L-x) & \text { for }(\mathrm{L}-\mathrm{a}) \leq \mathrm{x} \leq \mathrm{L} \tag{3.9}
\end{array}
$$

The Maximum stress for the section is expressed as:

$$
\begin{equation*}
\sigma_{\max }=\left|M_{(\max)}\right| \frac{C}{I}=\left|\frac{P a}{Z}\right| \tag{3.10}
\end{equation*}
$$

Where
$\Delta=$ the deflection in inches,
$\mathrm{P}=$ point load in kips,
$\mathrm{L}=$ length of the pile in feet,
$x=$ location of the moment or deflection, in feet
$\mathrm{a}=$ location of the loads
$\mathrm{M}=$ moment at any location
$\sigma=$ stress of the beam section
$\mathrm{Z}=$ section modulus of the beam
$I=$ moment of inertia of the section
$\mathrm{EI}=$ flexural rigidity of the micropile and grout section.
The above equations 3.2 to 3.10 are used to calculate the deflection and bending moment for each of the applied loads. Figure 3.21 shows the bending moments and deflections for
arbitrary loads. The results shown would be for an integral section, thus are an upper bound approximation.

Figure 3.21: Theoretical four point bending behavior for an integral section

CHAPTER 4: FIELD LOAD TESTING PROGRAM

4.1 Background

NCDOT secured funding for the use of micropiles on new bridge foundations through the FHWA Innovative Bridge Research and Deployment Program (IBRD). The funding was used to install micropiles specifically for lateral load testing. When the project was envisioned, and the corresponding bridge project was let, a schedule of micropiles was proposed. The testing arrangement was designed after careful consideration of previous research, existing conditions, available funds, and research objectives. The general strategy for the test setup was to provide a means to apply concentrated load at the top of the pile while measuring force, deflection, and bending moment. Sixteen micropiles would be constructed to perform 9 lateral load tests including a group load test with a cast concrete cap. The original drawing from the bridge plans is Figure 4.1 and the corresponding load test plan is Figure 4.2.

When construction began in August of 2009, several impediments to constructing the piles in the proposed configuration appeared. The three primary obstacles were the position of the new bridge and other infrastructure, the proximity of right of way to the new construction, and overhead utilities. The original $4 x 4$ plan was eventually split into three groups: $2 \times 2,2 \times 2$, and 4×2. An as- built mock plan of the load test groupings is shown in Figure 4.3. This change necessitated the reconfiguration of most and elimination of three of the proposed load tests. For simplicity, the pile numbering was kept the same. As construction method was up to the contractor, full depth casing was
used rather than central bars for all piles installed at the site. The amended load test plan is shown in Figure 4.4.

Figure 4.1: Proposed construction layout

Figure 4.2: Proposed micropile load test layout

Figure 4.3: As-built layout

Figure 4.4: Actual micropile load test layout

4.2 Test Micropiles

The micropiles were installed by Wurster Engineering using a duplex drilling rig manufactured by Klemm. The contractor was allowed to choose the design to meet the performance specification. Therefore, in order to simplify the construction, a full depth casing was used in lieu of a central reinforcing bar in all piles installed for the bridge and load tests.

Installing piles to prescribed depths accounting for the rock was somewhat of a challenge. The contractor was instructed to socket the piles into rock based upon the plan and schedule shown in Figures 4.3 and 4.4, respectively. Therefore even though the pile load tests were between two piles with the same socket depth, the pile load points may vary by as much as a foot, due to the perceived rock depth.

All micropiles were composed of 6.5 ft . segments, 10.75 in . diameter, and 0.5 in . wall thickness. Since casing plunge into rock was a specification, and the rock layer was inconsistent, the number of casings needed to construct the piles was variable. However, every effort to make the new test pairs as similar as possible was made. Table 4.1 shows the field tested micropile properties and Table 4.2 lists the piles and their general attributes.

Table 4.1: Field test micropile properties

	Out to out diameter (in)	In to in diameter (in)	Wall thickness (in)	Thread length (in)	Thread shape	Thread depth (in)	Thread connection
Micropile Properties	10.75	9.75	0.5	2.5	V shape thread	0.122	Left hand

4.3 Instrumentation and Apparatus

The behavior of the micropiles was measured by creating boundary conditions that could be either controlled or measured. This included devising load systems and instrumentation to measure load, strain, and displacement in a similar fashion to the systems used by Long et al. (2004), Rollins and Sparks (2002), and Rollins et al. (2005) following ASTM D3966.

TABLE 4.2 Schedule of lateral pull tests on identical micropiles

			Length to				
	Number of Casings	Total Length (ft.)	Diameter Ratio (L/D)	Plunge in Rock (ft.)	Pile Top Above Ground Surface (ft.)	Pile Top Above Load Point (ft).	Top of Inclinometer Casing Above Pile Top (ft.)
1	1	6.5	7.3	1	2.9	2.7	0.0
2	2	13	14.5	2	4.4	2.1	2.0
3	2	13	14.5	5	3.8	1.8	1.8
4	3	19.5	21.8	10	2.7	1.7	0.5
5	3	19.5	21.8	10	1.7	0.4	0.5
6	3	19.5	21.8	10	2.3	1.0	0.5
7	3	19.5	21.8	10	2.4	1.2	0.5
8	3	19.5	21.8	10	2.2	0.9	0.5
9	3	19.5	21.8	10	--	--	--
10	3	19.5	21.8	10	1.8	1.7	0.3
11	3	19.5	21.8	10	1.5	1.3	0.7
12	3	19.5	21.8	10	--	--	--
13	1	6.5	7.3	1	1.6	1.4	0.0
14	2	13	14.5	2	4.5	2.0	2.0
15	2	13	14.5	5	4.0	1.8	2.0
16	3	19.5	21.8	10	3.7	2.4	0.7

4.3.1 Loading Frame

A simple load frame was constructed to simultaneously load two single piles by pulling them together. Two key aspects of the design of this frame were economy and portability. The initial design was based heavily upon that presented by Long et al (2004). Load tests A and B were conducted using the first version of the frame.

Problems with the frame resulted in failure of the frame before the completion of load test B. The load frame was then returned to the shop for redesign. The final reaction system consisted of two steel channels that were pulled together using high strength steel all-thread bars. Two "jaws" were manufactured to centralize the load on the pile tops. These jaws had a small amount of articulation against the channels to allow pile top rotation during large deflections. Figure 4.5 displays a drawing and photograph of the load frame used for loading the single piles.

Figure 4.5: Load testing frame
Instead of a loading frame, the group test was performed by pulling a four micropile group with a cast concrete cap against a four micropile group with a steel
reaction beam. The same actuators and instrumentation that were used in the single pile tests were used for the group.

4.3.2 Jacks and Hydraulic Pump

Preliminary analysis predicted up to five inches of deflection at the pile tops before failure. The capacity required to perform the group load test was on the order of 50 kips at two locations (100 kips total). In addition, an early decision was made to perform the load tests by pulling, not pushing, so center-hole double acting jacks were required. Therefore, two identical Enerpac \#RRH-301060 kip long stroke hydraulic center-hole jacks were used to pull the all thread bars. The jacks were connected to an Enerpac ZU4 Class ZU4408JB pump fitted with a manifold and valves to provide equal pressure to both jacks. The center-hole jacks and hydraulic pump are shown in Figure 4.6.

Figure 4.6: Enerpac jacks and pump

4.3.3 Load Cells and Pressure Gage

Load cells were used to measure the force applied to the single pile load frame as well as the pile bent at the cap. The predicted capacity required was just above 50 kips for each load cell. Due to cost limitations and delivery issues, 50 kip load cells were selected with the assumption there would be some overload capacity available. Two

Omega LCHD-50K load cells were used for the testing. A redundant measurement for the load cells was made using a pressure transducer in line with the hydraulic jacks. The pressure transducer was manufactured by Entran model number EPO W31 10KP with a maximum capacity of 10,000 psi. The load cell and pressure transducer are shown in Figure 4.7.

Figure 4.7: Omega load cell and Entran pressure transducer

4.3.4 Potentiometer

Displacements of the pile heads were monitored using Celesco SP1-25 string potentiometers, like the photos shown in Figure 4.8. The body or reel housings were attached to a fixed wood reference frame that was erected between the test piles during each load test. A pair of threaded eyes was attached by drilling and tapping each pile at the measurement locations. Filament was used to connect the threaded eyes to the potentiometer strings. Examination of the potentiometer data for load tests B, E, and F revealed some interference that was not anticipated. These measurements have been considered suspect for those tests and discarded. The potentiometer results for Tests I and X did not show the same interference.

Figure 4.8: SP1string potentiometer by Celesco

4.3.5 Slope Inclinometer

Inclinometer measurements were used to determine pile deflection and rotation with depth for selected load increments for all micropiles except 9 and 12. In addition, the inclinometer provided a redundant measurement with the potentiometers at the pile heads. Inclinometer casings were installed in all micropiles. The inclinometer casings were placed in the micropiles after pressure grouting. A centralizer made from a slotted PVC pipe that was heated and deformed into a Chinese lantern shape was used to position the inclinometer casings in the center of the micropiles. The inclinometer casing was filled with water prior to grouting to overcome buoyancy so the casing did not float out of the pile. The primary measuring axis of the inclinometer casings was aligned with the direction of the load and pile movement.

The inclinometer probe used in this study was a model 6000 manufactured by Geokon. Measurements were made across the A-A axis and doubled for precision. The casings were model QC manufactured by Slope Indicator. Data for each survey was stored using a GK 603 readout box. Reduction of the inclinometer data was handled using a spreadsheet developed by the PI. The inclinometer, readout, and casing used for the test are shown in Figure 4.9.

Figure 4.9: Geokon 6000 probe with 603 readout box and QC casing by Slope Indicator
Bending moments were computed based upon the inclinometer measurements. Bear in mind that this required a double derivative of the displacement. The bending moment (M) in each of the micropiles was computed from the inclinometer data based on the method published by Ooi and Ramsey (2003). Changes in incremental deviations (Δ) from the initial values are written as:

$$
\begin{align*}
& \Delta_{A}=I D_{A}-I D_{A i} \tag{4.1}\\
& \Delta_{B}=I D_{B}-I D_{B i} \tag{4.2}\\
& \Delta_{C}=I D_{C}-I D_{C i} \tag{4.3}\\
& \text { Deflection }=\left(0.0003 * \Delta^{*} L\right) \tag{4.4}\\
& \text { Curvature }(\kappa)=\frac{\psi_{A}-\left(2 * \psi_{B}\right)+\psi_{C}}{L^{2}} \tag{4.5}\\
& \psi_{A}=\Delta_{A}, \tag{4.6}\\
& \psi_{B}=\psi_{A}+\Delta_{B} \tag{4.7}\\
& \psi_{C}=\psi_{B}+\Delta_{C} \tag{4.8}\\
& \text { Bending Moment }(M)=E I^{*} \kappa \tag{4.9}\\
& \text { EI }=(E I)_{\text {micropile section }}+(E I)_{\text {grout }} \tag{4.10}
\end{align*}
$$

Where
$\Delta=$ change in inclinometer reading
$\mathrm{i}=$ initial value
$\kappa=$ curvature $\left(\mathrm{ft}^{-1}\right)$
$\psi=$ cumulative deviations
$\mathrm{L}=$ distance between readings (2 ft)
$\mathrm{E}=$ Young's modulus of the specified material and
$I=$ moment of inertia of the specified material.

4.3.6 Strain Gages

Installing strain gages in a micropile section that was installed using duplex drilling proved to be a challenge. It was not possible to install the gages on the piles themselves. Therefore, the micropiles were instrumented much like a drilled shaft using sister bars. The micropiles for test I and the micropiles in the bent were outfitted with Geokon model 4911 vibrating wire sister bar strain gages, shown in Figure 4.10, at 2.5 ft . intervals of depth to measure strain concurrent with load and displacement. These rebar strain meters were embedded in concrete or, in this case, grout.

Figure 4.10: Geokon model 4911 sister bar strain meter

The strain gages, measured both tensile strain $(+)$ and compressive strain $(-)$ as the load was applied. The output of the strain gages reading was frequency which was converted to strain using the following equations.

$$
\begin{align*}
& \text { Digit }=0.001 *(\text { frequency })^{2} \tag{4.11}\\
& \text { Raw Strain }=4.062 * \text { digit } \tag{4.12}\\
& \text { Apparent Strain }=\text { Raw Strain } * \text { Gage Factor } \tag{4.13}
\end{align*}
$$

The difference in the tensile and compression strains divided by the distance between the strain gages is the curvature.

$$
\begin{equation*}
\kappa=\frac{\left(\varepsilon_{T}-\varepsilon_{C}\right)}{h} \tag{4.14}
\end{equation*}
$$

The curvature was then used to calculate the bending moment versus depth curves based on the formula:

$$
\begin{equation*}
M=G F * \frac{E I\left(\varepsilon_{T}-\varepsilon_{C}\right)}{h}=\kappa * E I * G F \tag{4.15}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \varepsilon_{\mathrm{T}}=\text { tensile strain }(+) \\
& \varepsilon_{\mathrm{C}}=\text { compressive strain }(-) \\
& \mathrm{h}=\text { horizontal distance between gages spaced at equal but opposite } \\
& \text { distances from the neutral axis } \\
& \mathrm{EI}=(\mathrm{EI}) \text { micropile section }+(\mathrm{EI}) \text { grout infill } \\
& \mathrm{GF}=\text { the gage factor for each of the strain gage, } \\
& \mathrm{E}=\text { Young's modulus of the specified material and } \\
& \mathrm{I}=\text { moment of inertia of the specified material. }
\end{aligned}
$$

The rebar strain meters were overlapped and tied together with wire ties to make a continuous string of seven gages spaced at 2.5 foot intervals. The resulting strings were 20 feet long. These gage strings were wire tied to the centralizers that were attached to the inclinometer casings. The intent was to push the strain gages to the grout/casing interface, such that bending moments measured would be close to those in the casing. Photographs of an assembled cage are shown in Figure 4.11.The cages were placed inside the micropiles after pressure grouting as shown in Figure 4.12. The winch on the drill rig was used to raise the casing vertical. The tight fit of the centralizers made it necessary for two people to push the cage into the piles. Friction between the centralizers and the casings along with the weight of the gages held them in place. The gage strings were oriented with the direction of loading/pile movement.

Figure 4.11: Instrumentation cages

Figure 4.12: Photograph of cast micropile with Instrumentation cage.

4.3.7 Data Acquisition

Data for the load test was acquired and stored using a Campbell Scientific CR1000 Datalogger, like the one shown in Figure 4.13. The CR1000 datalogger is a selfcontained data acquisition system that contains a microprocessor and storage such that it can function without being connected to a computer. The CR1000 has 16 channels (8 differential) that can measure a maximum of ± 5 volts, but can be expanded using multiplexers. There is 4 MB of data storage onboard that can be expanded using a compact flash card to capacities on the order of gigabytes.

Figure 4.13: CR1000 datalogger
The load cells, potentiometers, and pressure sensor were all analog sensors connected directly to the CR1000. All sensors were powered using external power supplies. The load cells and pressure cell were excited at 10 volts. The potentiometers
were powered at 5 volts. The vibrating wire strain gages were connected through a 16 channel multiplexer model $\mathrm{AM} 16 / 32$ to a module that provided the vibrating wire frequency, AVW200. The AVW200 sent the vibrating wire signal, determined the resonant frequency, and controlled the multiplexer. Thus, the output was a data stream that was connected to the CR1000 through one of two RS232 type COM ports.

During the single pile load tests, a single datalogger was used to record output from the load cells, potentiometer, and backup pressure gage. During load tests I and X two synchronized dataloggers were used to read the analog and vibrating wire measurements, respectively.

4.4 Single Micropile Load Tests

Presented in this section is the summary of the results and plots of the single micropile lateral load tests. Table 4.3 contains the schedule followed for the load tests.

TABLE 4.3 Schedule of field load tests

	Load Test	Piles	Number of Casings	Rock Plunge (ft.)	Strain Gages
$11 / 16 / 09$	A	$1 \& 13$	1	1	No
$11 / 24 / 09$	B	$2 \& 14$	2	2	No
$11 / 24 / 09$	E	$3 \& 15$	2	5	No
$11 / 24 / 09$	F	$4 \& 16$	3	10	No
$11 / 25 / 09$	I	$10 \& 11$	3	10	Yes
$12 / 10 / 09$	X	$5,6,7,8$	3	10	Yes

4.4.1 Test "A" Pull 1.0 ft . Embedment Against 1.0 ft . Embedment.

When these test piles were installed, the result was a single 6.5 ft . casing that was embedded about 1.0 ft . into what was thought to be rock at the time as shown in Figure 4.14. There were also issues with the initial load test that required a retest of these piles.

Regardless, these piles immediately rotated in the socket and failed progressively, unable to maintain load for any amount of time. No graphical results were reported.

Figure 4.14: Load test "A" micropiles 1 and 13

4.4.2: Test "B" Pull 2.0 ft . Embedment Against 2.0 ft . Embedment.

These test piles consisted of two 6.5 ft . micropile casings. The tips of these piles were embedded 2.0 ft . into the underlying rock. These piles were initially tested, but problems with the load frame prevented load to failure. A sketch of the test configuration is shown in Figure 4.15. This test was repeated after reconfiguring the load frame. Figures 4.16 show the load displacement response with depth for both piles 2 and 14 and Figure 4.17 show the top displacement response with load for both pile 2 and 14.There was excessive lateral displacement of pile 14 until structural failure around 30 kips. Figure 4.18a and b shows photographs of the failure pile 14.

Figure 4.15: Load test B micropiles 2 and 14

Figure 4.16: Inclinometer deflections for load test B.

Figure 4.17: Top load deflections for load test B.

(a)

(b)

Figure 4.18: Failure of pile 14

4.4.3 Test "E" Pull 5.0 ft . Embedment Against 5.0 ft . Embedment.

Pile for test E consisted of two 6.5 ft . micropile casings. The tips of these piles were embedded 5 ft . into the underlying rock, as shown in Figure 4.19. The load test was conducted without incident. The load deflection response is shown in Figures 4.20 and 4.21.The load test ended with an abrupt failure of pile 15 . Figure 4.22 contains photographs of pile 15 after the test was completed.

Figure 4.19: Load test E micropiles 3 and 15

Figure 4.20: Inclinometer deflections for load test E.

Figure 4.21: Top load deflections for load test E .

Figure 4.22: Failure of pile 15
4.4.4 Test "F" Pull 10.0 ft. Embedment Against 10.0 ft. Embedment.

Three 6.5 ft . casing sections were used to construct test piles for load test F. The tips of these piles were embedded 10 ft . into the underlying rock. The test setup is shown
in Figure 4.23.The load test ended with an abrupt failure of pile 16. This is evidenced in Figures 4.24 and 4.25 that show the load deflection response. Pile 16 was exhumed posttest to verify failure at the joint as shown in Figure 4.26.

Figure 4.23: Load test F micropiles 4 and 16

Figure 4.24: Inclinometer deflections for load test F.

Figure 4.25: Top load deflections for load test F.

(a)

(b)

Figure 4.26: Failure of pile 16
4.4.5 Test "I" Pull 10.0 ft . Embedment Against 10.0 ft . Embedment not to Failure.

These test piles consisted of three 6.5 ft . micropile casings. The tips of these piles were embedded 10.0 ft . into the underlying rock. Figure 4.27 shows plan and elevation views of the load test. The piles were not tested to failure by design, such that they could be used for reaction piles for the group test. The bending moments of the piles at each of the corresponding strain gage locations were calculated from the strain gages using equation 4.15. The response is similar to the initial loads of test F . The goal was to document the load moment response of single micropiles using the sister bar strain gages instead of welding strain gages to the pile segments. The load deflection responses along with the measured bending moments are shown in Figures 4.28, 4.29 and 4.30. Figure 4.31in the combined plot for both the strain gages and the inclinometer data. The measured moment response shown in Figure 4.30looked reasonable when compared to the profile and magnitude determined from the FB-MultiPier simulations.

Figure 4.27: Load test I micropiles 10 and 11

Figure 4.28: Inclinometer deflections for load test I.

Figure 4.29: Top load deflections for load test I based on a) inclinometer and b) potentiometer measurements.

Figure 4.30: Bending moment profiles from stain gages for test I.

Bending Moment (kips*ft)

Bending Moment (kips*ft)

Figure 4.31: Calculated bending moment plot from inclinometer data and strain gages for load test I.

4.5 Micropile Group Lateral Load Tests

The initial lateral load test on the micropile bent began on 12/1/2009 at about 3:30 pm after five hours of preparation. As documented previously in Figures 4.3 and 4.4, micropiles number $9-12$ are the reaction piles and 5-8 are the test micropiles. The overburden soil on the north side of the pile bent was removed down to the rockline to simulate scour for the interior bent of a typical bridge. The lateral force was applied at the center of the cap using two prestressing cables that were passed through PVC pipes cast through the pile cap. A stiffened beam was placed behind the reaction micropiles and anchor plates were used to distribute the reaction force at prestressing chucks placed on the cables. On the pile cap side, jacks pushed against the load cells with prestressing chucks. About two hours into the test, at a load of $40 \mathrm{kips}, 5: 25 \mathrm{pm}$, the reaction system began to fail. Testing was stopped in order to address the problem.

A week later, a pair of deep beams was supplied by the general contractor to provide additional reaction. Two 2 ft . long micropiles sections were also acquired to stub up piles 10 and 11.The second attempt at the group test began on 12/10/2009 at about 12:45 pm. The load was applied in 10 kip increments and maintained for a period of about 10 minutes for each load increment to allow for creep. Inclinometer tests for each of the piles in the group were performed at 2 ft . intervals for every other loading increment. Figures 4.32 through 4.39 show drawings of the pile and instrumentation setup for the group load test and Figure 4.40 shows a photograph of the test in progress. The test was stopped when the reaction micropiles and prestressing cable yielded, therefore exceeding the stroke of the loading hydraulic jacks.

Figure 4.32: Plan view cap group

Figure 4.33: Elevation view of cap showing placement of potentiometers

Figure 4.34: Micropile group cap structural detailed

MICROPILE DETAIL

Figure 4.35: Micropile group cap structural section detailed

Figure 4.36: Section A showing micropile \#8

Figure 4.37: Section B showing micropile \#7

Figure 4.38: Section C showing micropile \#6

Figure 4.39: Section D showing micropile \#5

Figure 4.40: Pile group testing in progress.
Figure 4.41 shows horizontal displacement versus depth (below top of pile) curves for the micropiles in the bent calculated from the inclinometer measurements. Figure 4.42 shows the deflection near the load point at the centerline of the cap based on both inclinometer and potentiometer measurements. Pile 5 was not included since the first inclinometer point was below the pile cap due to a construction defect. The bending moment profiles for several load steps are shown in Figure 4.43.

Figure 4.41: Lateral deflection versus depth curves for micropiles during group load test

Figure 4.42: Pile top and cap centerline displacements based on a) inclinometer and b) potentiometer measurements

4.6 Discussion of Load Test Results

By design, tests B, E, and F were carried out to failure of the micropile section. In term of load and deflection and response, most of the displacement appeared to occur above the casing joint. The rockline was only a factor for test A , where the pile rotated in the socket. The top load deflection response tracked with the inclinometers showed fairly linear response. The unfortunate consequence of the poor potentiometer data was that the exact displacements at failure were not available. However, in tests B and E, the final inclinometer test was conducted just before the failure load was applied. In test F , the response was extrapolated to get a linear approximation of the failure load and deflection. These tests all ended with an abrupt failure of the upper casing joint. When comparing these load tests to the original FB-MultiPier model, the tests failed in a rather brittle fashion, while the FB-MultiPier model showed more ductile behavior, yielding before failure. The failure loads and top deflections are summarized in Table 4.4.

Load test I was similar to load test F except the piles were instrumented with strain gages, and the test was not conducted to failure, as the piles would be part of the reaction for the group load test. The test was halted at about 35 kips since the others failed at around 40 kips. The peak bending moment measured in piles 10 and 11 was about $79.11 \mathrm{kips} * \mathrm{ft}$ and $67.12 \mathrm{kips} * \mathrm{ft}$ respectively. The original FB-MultiPier predictions failed at right around 27 kips , and even then the bending moment in the piles was nearly 170 kips*ft. with a top displacement of nearly 4 in.

To further compare the results of the single pile models, the inclinometer measurements were used to calculate bending moment profiles. The solution had limitations; however, this provides a way to assess the bending moment in the sections
that had no strain gages. Figure 4.31 establishes the relationship by comparing the calculated bending moment profiles to those measured with strain gages for test I. The comparison appears reasonable at lower load levels but may not predict well at higher loads. As well, the point of maximum bending moment is forced deeper in the pile, looking somewhat like the results from the original FB-MultiPier models.

In terms of the group performance, the piles moved as a unit almost identically. In all likelihood, the piles were nearing the point of yielding. What does not show in the results is that the reaction system was also yielding at around 117 kips of lateral load.

TABLE 4.4: Results of single pile tests to failure except load test I

Pile	Load Test	Pile Length (ft.)	Rock Plunge (ft.)	Peak Load (kips)	Deflection at Peak Load (in)	Bending Moment $\left(\mathrm{kips}^{* f t)}\right.$
2	B	13	2^{\prime}	50	1.5	-
14	B	13	2^{\prime}	50	1.7	-
3	E	13	5^{\prime}	40	1.45	-
15	E	13	5^{\prime}	40	1.85	-
4	F	19.5	10^{\prime}	40	1.1	-
16	F	19.5	10^{\prime}	40	1.45	-
10	I	19.5	10^{\prime}	35	0.70	79.11
11	I	19.5	10^{\prime}	35	0.73	67.12

It is hypothesized as well that ground freezing may have played a role in the limited deflections seen in the group test. Since the load test was conducted on a day when the temperature was below zero, and the soil in front of the piles had been excavated previously, there is a good chance that soils may have been far stiffer due to freezing.

CHAPTER 5: LABORATORY LOAD TESTING AND CORROSION

Presented in this chapter are the laboratory test layouts, instrumentation, procedures, and observations of the load tests for composite micropiles specimens. The bending test essentially measures a metal's ductility. Ductility defines how easily a metal can bend without breaking. The higher the ductility of a metal, the more it can bend without breaking or becoming deformed from its original shape. This is important because certain metals must handle pressure without snapping yet still be ductile enough to bend slightly and not lose their support or shape. Copper and steel are two metals that have a high ductility and do well under pressure.

5.1 Purpose of Laboratory Tests

The goals of the laboratory tests were: (1) to document the material/system behavior of micropiles in a controlled environment, (2) moment capacity of the joints, (3) failure mode of the composite members, (4) the magnitude of the deflection, (5) flexural rigidity of the composite member, and (6) to document the ductility of the composite piles. The advantage of the laboratory tests is that they were designed and performed after the results of the field load tests were known. One issue left unresolved by the field tests was the unknown behavior of the joints as the piles were embedded in overburden. In addition, several of the key load tests were not performed to failure, therefore quantifying the bending moment at failure in the lab tests would complement the load test results from the field campaign.

Along with the strength tests, a program of corrosion tests was commenced in the lab. Since the long term performance of micropiles is impacted by the durability of the steel casings, the program will be a long term study on the impacts of corrosion on casing integrity.

5.2 Four-Point Bending Test for Non-segmented Steel Pipe

For a prismatic member (constant cross section), the maximum normal stress occurs at the maximum moment. For micropile casings used in the lab, the yield stress from coupon tests was 150 ksi . Assuming the casings were continuous pipes, nonsegmented, the maximum moment and deflection under the four point bending test are shown in Figure 5.1.

Figure 5.1: Theoretical maximum bending and deflection plots for non-segmented steel pipe.

5.3 Structural Experimental Setup Test

The testing program was designed after consideration of previous research, safety, available funds and materials, and the remaining research objectives. The initial design was based heavily upon that presented by Long and Carroll (2005). The micropile casings were loaded as beams in four-point flexure. During the tests, strain, deflection and load were monitored along with visual documentation of casing twist. The test piles were 6.0 ft . micropiles, consisting of two 3 ft . segments joined with a threaded joint. A drawing of the testing plan is shown in Figure 5.2.The micropiles were filled with grout that was mixed with a high shear mixer and cured in the lab for 28 days. The cross section of the micropile steel casings was the same as the field micropiles: 10.75 in. external diameter and wall thickness of 0.50 in . The yield strength of the micropile steel casing was 80 ksi and the ultimate strength of grout after 28 days was 4000 psi. Nine simply supported micropiles, designated as 1 through 9 were load tested. Table 5.1 lists the micropiles and their general attributes and Table 5.2 shows the lab tested micropile properties.

TABLE 5.1 Schedule of bending tests on identical micropiles

	Number of Casings	Total Length (ft.)	Inside Instrumentation
1	2	6.0	Strain Gages
2	2	6.0	Strain Gages
3	2	6.0	Strain Gages
4	2	6.0	Strain Gages
5	2	6.0	Strain Gages
6	2	6.0	None
7	2	6.0	None
8	2	6.0	None
9	2	6.0	None

Figure 5.2: Dimensions and setup for structural micropile test
Table 5.2: Laboratory test micropile properties

	Out to out diameter (in)	In to in diameter (in)	Wall thickness (in)	Thread length (in)	Thread shape	Thread depth (in)	Thread connection
Micropile Properties	10.75	9.75	0.5	2.5	V shape thread	0.122	Right hand

5.3.1 Micropile Section Fabrication.

Skyline Steel donated 96 linear feet of micropile casing for the research. The casing was shipped in 1 , 2 , or 3 foot sections with one or both ends threaded. While a variety of sizes were available, it was decided to use 18 of the 3 ft . sections to make 9
micropiles with a joint in the center (about half of the steel supplied). The remaining sections would be used for the corrosion study, as they were shorter and thus lighter and easier to handle. The micropile sections were joined in the laboratory by threading them together and tightening them using a large set of chain tongs. All 9 casings were stood vertical and strain gages were placed in the appropriate piles in preparation for grouting. CEMEX donated a pallet of Type I cement for grouting the piles. A high shear mixer was supplied by Nicholson Construction to insure that the grout in the lab tests was similar to the grout in the field tests. The micropiles were allowed to cure for 28 days before load testing. Figure 5.3 shows the micropile specimens being grouted.

Figure 5.3: Grouting micropile specimens

5.3.2 Instrumentation and Apparatus.

The behavior of the micropiles was measured by creating boundary conditions that could either be controlled or measured. This included devising load systems and instrumentation to measure load, strain, and displacement in a similar fashion to the
systems used by Long et al. (2004) and following ASTM E290-09. All micropiles were instrumented to measure load and deflection. Vibrating wire strain gages were installed in select piles to determine bending moment.

5.3.3 Load Frame and Hydraulic Jack.

A load frame was erected in the UNC Charlotte structures lab in order to load the micropiles as simply supported members in four point flexure. The vertical load was applied at the third points using a single 250 ton jack, RSS2503 by Power team. A 609163S model pump was used to supply hydraulic pressure. Force was measured using a pressure transducer manufactured by Entran, model number EPO W31 10KP.The measured hydraulic pressure was multiplied by the jack plunger area. The jack, load frame, and hydraulic pump with pressure transducer are shown in Figure 6.4.

5.3.4 Potentiometers.

As with the field load tests, cable extension potentiometers were used to monitor micropile deflection. The potentiometers used in the laboratory were PT100 series manufactured by Celesco. For test 1 only, the potentiometers were located at the joint and then 12 in. on either side. For tests $2-9$, the potentiometers were located 6 inches and 18 inches on either side of the joint. Figure 5.5 shows the arrangement of four potentiometers used in the majority of the tests.

Figure 5.4: Loading head, testing setup, and jack with pressure transducer

5.3.5 Scale Tape

Since one of the questions raised was whether or not the micropile casings would twist or "unscrew" during loading, tape scales were attached to the mating edges of the casing joints. This is shown in Figure 5.6.

Figure 5.5: Photograph of potentiometer locations.

Figure 5.6: Measuring casing twist using scale tape

5.3.6 Strain Gages.

The same vibrating wire strain gages that were used for the field tests were installed in the micropiles for flexure testing. Figure 6.7 shows the eight strain gage assembly before and after insertion into the micropile casing. Due to the limited quantity of gages, five of the micropiles were instrumented with eight strain gages each. The
remaining four micropiles were considered for redundant testing and received no gages. Micropiles designated 1-5 have gages while 6-9 are ungaged.

Figure 5.7: Typical strain gage setup.

5.3.7 Data Acquisition

Two separate data acquisition systems were used to monitor the strain gages and analog sensors. To operate the strain gages the same Campbell Scientific CR1000 datalogger that was used in the field was used in the lab. The analog sensors were connected to a National Instruments data acquisition card. The sensors were powered using external power supplies.

5.4 Bending Tests on Grouted Micropiles.

If couples are applied to the ends of the beam and no forces act on the beam, then the bending is termed pure bending. In the case of the loading as shown in Figure 6.2, the portion of the beam between the two applied downward forces which is the location of the joint is subject to pure bending. All load tests were conducted in a similar fashion. The only deviations were for test 1 that included position of the potentiometers as well as the use of an end restraint. The deflection profiles of each of the tests are shown in Figures 5.8 to 5.16 and the potentiometer localized deflections are shown in Figures 5.17
to 5.24 . Besides strength, serviceability was also a concern. Table 5.3 shows the maximum deflection and the applied maximum load for all the nine tests conducted.

Figure 5.8: Micropile 1 deflection profile

Figure 5.9: Micropile 2 deflection profile

Figure 5.10: Micropile 3 deflection profile

Figure 5.11: Micropile 4 deflection profile

Figure 5.12: Micropile 5 deflection profile

Figure 5.13: Micropile 6 deflection profile

Figure 5.14: Micropile 7 deflection profile

Figure 5.15: Micropile 8 deflection profile

Figure 5.16: Micropile 9 deflection profile

Figure 5.17: Micropile 1 point deflection profile

Figure 5.18: Micropile 3 point deflection profile

Figure 5.19: Micropile 4 point deflection profile

Figure 5.20: Micropile 5 point deflection profile

Figure 5.21: Micropile 6 point deflection profile

Figure 5.22: Micropile 7 point deflection profile

Figure 5.23: Micropile 8 point deflection profile

Figure 5.24: Micropile 9 point deflection profile
Table 5.3: Summary of deflection test results

Date	Pile	Number of Casings	$\begin{aligned} & \text { Strain } \\ & \text { Gages } \end{aligned}$	Casing Unscrew at Failure (in)	Deflection at Maximum Load (in)	Theoretical Deflection at Maximum Load (in)	Maximum Applied Force (kips)
9/10/10	1	2	Yes	0.120	0.458	0.164	300
9/14/10	2	2	Yes	0.120	0.330	0.165	303
9/14/10	3	2	Yes	0.120	0.340	0.147	270
9/15/10	4	2	Yes	0.120	0.387	0.161	295
9/10/10	5	2	Yes	0.120	0.325	0.147	269
9/16/10	6	2	No	0.120	0.390	0.165	302
9/16/10	7	2	No	0.120	0.320	0.128	235
9/16/10	8	2	No	0.120	0.368	0.153	280
9/15/10	9	2	No	0.120	0.387	0.153	280

To check the properties of micropile, it was essential to properly evaluate the flexural rigidity (EI). The apparent flexural rigidity, $\left(\mathrm{EI}_{\mathrm{a}}\right)$, of the micropile composite was
determined based on Equation 3.5. The back calculated apparent flexural rigidities $\left(\mathrm{EI}_{\mathrm{a}}\right)$ based on the maximum deflection for the micropile sections are shown in Table 5.4.

Table 5.4: Apparent flexural rigidity for the nine deflection tests from lab

Deflection at Maximum Load (in)	Maximum Applied Force (kips)	Flexural Rigidity (EI) (kips-ft $\left.{ }^{2}\right)$
0.458	300	35964.79
0.330	303	50413.92
0.340	270	43602.02
0.387	295	41853.60
0.325	269	44769.71
0.390	302	42517.15
0.320	235	40321.78
0.368	280	41776.50
0.387	280	39725.45

The value of the flexural rigidity for the overall micropile with grout was found as the sum of the individual rigidities for each member in the cross-section by using the equation 5.1.
$(E I)_{\text {micropile composite }}=\sum(E I)_{\text {micropile steel }}+\sum(E I)_{\text {grout section }}$
Young's modulus (E) of the steel casing is 432000 ksf ,
Moment of the inertia of the steel casing is $0.01022 \mathrm{ft}^{4}$

$$
(E I)_{\text {micropile steel }}=(4320000 \mathrm{ksf}) *\left(0.01022 \mathrm{ft}^{4}\right)=44166.7 \mathrm{kips} * \mathrm{ft}^{2}
$$

Young's modulus (E) of the grout is 288000 ksf ,
Moment of the inertia of grout section is $0.02141 \mathrm{ft}^{4}$

$$
\begin{aligned}
& (E I)_{\text {micropile steel }}=(288000 \mathrm{ksf}) *\left(0.02141 \mathrm{ft}^{4}\right)=6166.67 \mathrm{kips}^{*} \mathrm{ft}^{2} \\
& (E I)_{\text {micropile composite }}=\sum(E I)_{\text {micropile steel }}+\sum(E I)_{\text {grout section }} \\
& 44166.7 \mathrm{kips}^{*} \mathrm{ft}^{2}+6166.67 \mathrm{kips}^{*} \mathrm{ft}^{2} \\
& 50333.37 \mathrm{kips}^{*} \mathrm{ft}^{2}
\end{aligned}
$$

The average value obtained for the flexural rigidity from the deflection test in the lab was 42327.2 kips* ft^{2}, the computed value from the micropile section was 50333.3 kips* ft^{2}. The difference between the lab and the composite section value was about 8006.1 kips* $\mathrm{ft}^{2}(16 \%$.). Table 5.5 shows the summary of the three methods used to determine flexural rigidity for the micropile composite section. The differences in values as shown in Table 5.5 show the effect of the joint with respect to the flexural rigidity.

Table 5.5: Summary of two methods for average flexural rigidity

average flexural rigidity		
the of	Laboratory	
the		
individual	deflection	
using	using	
equation	equation	
5.1	3.5	

Flexural
$\begin{array}{lll}\text { Rigidity } & 50333.37 \quad 42327.22\end{array}$
(EI)
kips*ft ${ }^{2}$

Figure 5.25: Plots of the pile flexural rigidity reaction
Table 5.6: Flexural rigidity based on the applied load
Flexural Rigidity (kips* ft^{2})

Applied Load (kips)	Pile \#3	Pile \#4	Pile \#5	Pile \#6	Pile \#7	Pile \#8	Pile \#9
0	0	0	0	0	0	0	0
50	31686.2	36178	36883.5	35950.6	32060.2	35704	38542.6
100	36549.2	40048.6	40874.5	37491.8	36116.6	40050	38698.3
150	40230.1	42760.7	43698.1	39643.6	38591.1	40033	41084.4
200	42835	44903	45616.6	41993.5	40301.5	42234	43137.2
235	-	-	-	-	40321.7	-	-

Table 5.6: (cont'd)

Flexural Rigidity (kips* $\left.\mathrm{ft}^{2}\right)$							
Applied Load (kips)	Pile \#3	Pile \#4	Pile \#5	Pile \#6	Pile \#7	Pile \#8	Pile \#9
250	44490.2	46473.6	47254.5	43694.3	-	43524	43529.2
269	-	-	46106.4	-	-	-	-
275	44310.4	-	-	-	-	-	-
280	-	-	-	-	-	42135	42517.9
295	-	44638.5	-	-	-	-	-
300	-	-	-	43683.2	-	-	-

As shown in Table 5.1, micropiles 1 to 5 were instrumented with strain gages to measure the strain as the piles were tested to failure. Equation 4.15 and the average flexural rigidity of $42,327.2$ kips* ft^{2} were used to calculate the bending moment for each of the micropiles load tested. The results of the individual tests in the form of bending moment along the micropiles and the joint bending moment are shown in Figures 5.25 to 5.30 and Table 5.6.

Figure 5.26: Micropile 1 bending moment profile

Figure 5.27: Micropile 2 bending moment profile

Applied load
$\rightarrow-50 \mathrm{kips}$
$\rightarrow-100 \mathrm{kips}$
$\rightarrow-150 \mathrm{kips}$
$\rightarrow-200 \mathrm{kips}$
$\square-250 \mathrm{kips}$
$\triangle 278 \mathrm{kips}$
(Failure load)

Figure 5.28: Micropile 3 bending moment profile

Figure 5.29: Micropile 4 bending moment profile

Figure 5.30: Micropile 5 bending moment profile

Table 5.7 Results of bending moment for piles 1-5

	Theoretical Maximum Maximum Applied Force (kips)	Laboratory Moment at
Maximum Moad Lkips*ft.)	Joint Measured Bending Moment (kips*ft.)	
300	262.50	113.90
303	265.13	107.30
270	236.25	76.50
295	258.13	119.12
269	235.38	113.90

Figure 5.31: Joint bending moments from strain gages for piles 1-5

5.5 Discussion of Bending Test Results.

The primary results of the laboratory tests are shown in Tables 5.2 to 5.6. The best of three of the test results shown in Table 5.7 gives the average failure bending moment of 115.64 kips*ft. There was no significant casing rotation beyond 0.12 in for all
of the piles tested. The slopes of the curves showed in Figures 5.17 to 5.24 represent the average stiffness of the composite piles and Table 5.8 shows the final results. The joint bending moment versus load plots in Figure 5.31 show linear increase of moment up to about 225 kips before decline and failure. Figure 5.32 shows a typical failure mode of a micropile tested in the laboratory.

From the nine tests conducted in the laboratory, the average deflection is 0.367 in . The calculated mid-span maximum deflection for an integral section shown in section 3.6 Figure 3.30 is 0.164 . The large difference is due to the joint. The laboratory mid-span deflection is 2.24 times more than the calculated deflection and the mid-span moment is 2.37 times more than the calculated moment.

Figure 5.32: Failure mode of one of the tested micropile
Vertical deflections at the potentiometer locations and the applied load are shown in Figures 5.17 through 5.24. In these tests, the applied load increased linearly with the vertical deflection until the micropile failed at the joint. After the failure of the joint as shown in Figure 5.31, the micropile moment dropped to almost zero as shown in Figure 5.30 .

Nakamura et al. (2004) as stated in the literature review section reported the bending tests on mortar filled steel pipes without joints. The result of the plots of the deflection versus the applied load had almost the same curve shape as a steel pipe under bending test and same ductility. The contribution of the mortar was small as compared with a steel pipe with no mortar.

TABLE 5.8 Average Stiffness of the composite pile from lab tests			
Test \#	Load (kips)	Max. Deflection (ft)	Stiffness (kips/ft)
1	300	0.038	7860.26
2	303	0.028	11018.18
3	270	0.028	9529.41
4	295	0.032	9147.29
5	269	0.027	9932.31
6	302	0.033	9292.31
7	235	0.027	8812.5
8	280	0.031	9130.43
9	280	0.032	8682.17
Average Stiffness (kips/ft)	$=$	9267.21	

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment. Table 5.7 shows the maximum moment for the micropiles 1 to 5 , that is the micropiles with strain gages. The formula for determining the maximum bending stress for a solid circular section is:

$$
\begin{align*}
& \sigma_{\max }=\frac{32 \times M}{\pi \times D^{3}} \tag{5.2}\\
& \sigma_{\text {Allow }} \geq \sigma_{\text {Beam }} \tag{5.3}
\end{align*}
$$

Where

$$
\mathrm{M}=\text { maximum bending moment }
$$

$\mathrm{D}=$ outer diameter of the section.

Table 5.9 shows the analysis of the bending stress for the micropile for the lab tests. Results show that the bending stresses are much lower than the allowable stress of 150 ksi. Considering the theoretical four point bending behavior of an integral section, the maximum bending moment under an applied load of 300 kips is 262.5 kips-ft. Using equation 5.3, the bending stress is 25.82 ksi . From this result, it shows that a nonsegmented pipe of the same properties will not fail at an applied load of 300 kips.

TABLE 5.9: Lab bending stresses

Lab Test \#	Lab Max. Moment (kips-ft)	Lab Micropile Bending Stress (ksi)
1	113.9	11.21
2	107.3	10.56
3	76.5	7.53
4	119.12	11.72
5	113.9	11.21

5.6 Corrosion Testing Plan

In addition to the structural tests, durability testing was commenced to determine the performance of the micropiles in typical environments. Due to the long term nature of the corrosion tests, this report documents only the strategy of the tests. The corrosion study will continue well beyond the duration of this research project.

Marked and labeled micropile casings have been and will be placed in secure field locations that are accessible to NCDOT, UNCC, and Auburn University personnel for many years. Periodically, specimen mass and thickness will be measured. The primary corrosion tests will be carried out for period of three years. At an interval of approximately three months the micropiles will be measured to determine any changes in the cross-sectional area.

In addition to nondestructive measurements, structural tests will be conducted on weathering specimens. The first three micropiles will be tested after one year, the second set after two years, and the final trio will be tested at the end of the third year. The results will be compared to determine any loss in structural strength due to corrosion. The final corrosion result will be published separately. Table 5.10 shows the location, number and baseline properties of the micropiles. Table5.11 contains the schedule for corrosion testing.

TABLE 5.10: Baseline properties of the micropile

Number	Location	Properties
3	Auburn University NGES Mountain location where subject to deicing salt	diameter $=10.75 \mathrm{in}$ wall thickness 0.5 in Piedmont location, typical climate
fy $=150 \mathrm{ksi}$		
3		

TABLE 5.11: Summaries of durability and material tests

Durability Tests			
	First Year (Three months interval)	Second Year (Three months interval)	Third Year(Three months interval)
Mass and thickness measurement	1st 2nd 3rd	4th 1st 2nd 3rd 4th Material	1st 2nd 3rd 4th
Micropile Testing	First test after 12 months	Second test after 12 months	Third test after 12 months

CHAPTER 6: MODEL CALIBRATION

6.1 Introduction

One of the objectives of the research was to develop a model with the ability to predict the behavior of micropiles under lateral load. The software available for modeling bridge substructures was FB-Multiplier. The focus of this section was the calibration of the FB-Multiplier model. The original model in Chapter 3 used soil parameters that were based on SPT tests and idealized parameters for the micropile sections as a baseline for the analysis. For the calibration, the actual section properties were used. The strengths and Young's Modulus of both the steel ($\mathrm{f}_{\mathrm{y}}=115 \mathrm{ksi}, \mathrm{E}_{\mathrm{s}}=$ $30,000 \mathrm{ksi})$ and grout ($\left.\mathrm{f}_{\mathrm{c}} \mathrm{c} 4 \mathrm{ksi}, \mathrm{E}_{\mathrm{g}}=2000 \mathrm{ksi}\right)$ were known. Summary of both the field and the laboratory test results area shown in Table 6.1. The flexural rigidity valued obtain in the lab test was used to calculate the bending moment for each of the field and lab test.

Table 6.1: Summary of both field and lab test results

| Test | Average
 Deflection
 (in) | Average
 applied load
 for single pile
 to failure
 (kips) | Bending
 Moment
 $(\mathrm{kips-ft})$ | Computed
 Flexural | Computed
 Rigidity
 (kips * $\left.\mathrm{ft}^{2}\right)$ |
| :---: | :---: | :--- | :---: | :---: | :---: | | Bending
 Stress
 (ksi1) |
| :---: |
| Field |

[^1]
6.2 Modeling

6.2.1 Load Test "I"

Load test I was the starting point for model calibration. Since the strain profile was measured along the length of the pile, it serves as the best case to initiate the calibration. Piles 10 and 11 were almost nearly identically installed; therefore a single model was used.

When comparing the results of the field tests to the predictions, it was evident that the soil resistance was under predicted by a fair amount. Recall that while the micropile sections were 10.75 in diameter with a wall thickness of 0.5 in . In order to model the joint, the thickness was reduced to 0.2 in for a 0.2 ft section of pile between two full sections. Based on the shape of the measured bending moment curves compared to the predictions from Chapter 3, there appears to be more soil resistance to carry the bending moment. Thus, the logical place to adjust the parameters for a better match was the soil, specifically the p-y curve parameters. The rock compressive strength was held constant at 29 ksi using the McVay and Niraula (2004) model. The overburden soil was adjusted.

The three parameters required for the Reese et al. (1974) sand model were friction angle, unit weight, and subgrade modulus. Since the unit weight doesn't have a large impact, the two parameters that were adjusted were the friction angle, \varnothing, and subgrade modulus, k. The parameters were increased progressively until the model load test matched the deflection and bending moment profiles along with the displacement at the load point from the field load test. After multiple iterations, the final soil parameters
were increased to $\emptyset=50^{\circ}, \gamma=110 \mathrm{pcf}$, and $\mathrm{k}=350 \mathrm{pci}$. The matching results are shown in Figure 6.5.

6.2.2 Load Test "F"

The piles in load test F were almost identical to those in Load test I, except there were no strain gages. Load test F was carried out until failure of pile \#16. Thus, the soil model developed for load test I was used in the model for load test F to failure. Use of the soil model for load test I produced a very good match for the initial loading of the piles, but did not capture the failure mode well. There was some evidence that suggests the upper joint in pile 16 was weaker than the others. Thus, the joint model was adjusted slightly to improve the match. The casing joint thickness was adjusted down to 0.14 in . The resulting model is shown in Figure 6.6.

6.2.3 Load Test "E"

Load test E was simulated using the soil, pile, and joint models now fully developed. The match was not great, but this was likely due to the reloading of these piles due to issues with the load frame. The resulting model for this load test is shown in Figure 6.7.

6.2.4 Load Test "B"

Again, using the fully developed model with the full 0.2 in joint, load test B was simulated. The model matches exactly. The results are shown in Figure 6.8.

6.2.5 Load Test "A"

An attempt was made to simulate load test A. Since there was no measurable data, the goal was to determine if the one foot embedment was truly the reason of such poor performance. The model piles carry upwards of 40 kips of lateral force but it also
appear that the pile rotates in the rock socket monolithically, which was the behavior noted in the field. For comparison, the result of this model is shown in Figure 6.9.

6.2.6 Load Test "X"

With the structural model developed, a model for the group load test that was created for Chapter 4 was modified to match the true field conditions. Of course in this case, the soil was removed in front of the piles prior to load testing to simulate scour. The prediction is shown in Figure 6.10

The response of the group appears to be much stiffer than the prediction shows. There could be several explanations, but likely the closest would be the residual effects of soil around the piles above the rockline. Limited access brought on by right of way and construction issues made the excavation of the soil difficult at best. The contractor was able to remove the soil in front of the piles, but not around them. Furthermore, there was still grout around several of the piles after the excavation. As mention previously, the freezing temperatures experienced before and during the load test may have had an impact on the soil response as well.

6.3 Discussion

Having known the yield stress of the micropile, the diameter, the pile wall thickness, the compressive strength of the grout the modulus of the steel and the grout, the model was remarkably easy to calibrate. The micropiles on this project are pressure grouted. Using the measured parameters for the section and the amended soil model provided a good match in many of the load tests. The question might be raised concerning the magnitude of the soil properties used to affect the match. One possible explanation is the impact of grout on the surrounding soils. Since grout return is used as
a mechanism to verify grouting the socket, the soil is more or less improved around the pile. There is a possibility that this could have been the source of the high friction angle and subgrade modulus. On the other hand, the SPT characterization may have been less than ideal for these soil types. Anderson and Townsend (2001) show the poor reliability of SPT parameters for lateral loading analysis.

Figure 6.2: Calibrated model for load test F pile 16

Figure 6.3: Calibrated model for load test E piles 3 and 15

Figure 6.4: Calibrated model for load test B piles 2 and 14

Figure 6.5: Calibrated model for load test A pile 1

Figure 6.6: Calibrated model for load test X piles 5, 6, 7, and 8

CHAPTER 7: RESEARCH SUMMARY, CONCLUSIONS, CONTRIBUTIONS AND RECOMMENDATIONS.

7.1 Research Summary

A research program was conducted in order to gain insight on the behavior of micropiles for bridge bent applications. Of interest was how micropiles behave with respect to the number and location of threaded joint sand embedment of casing in rock. The program consisted of preliminary simulations and predictions, extensive field lateral load and laboratory testing programs, and calibration of a numerical model.

In order to confidently establish the feasibility of using micropiles as a bridge bent configuration structures, information and performance data was gathered in critical areas of structural behavior and performance, including soil-pile load transfer interactions. The overall objective of this research project was to establish the feasibility of using micropiles in bridge substructures. Table 7.1 outlines the five detailed objectives of the project and indicates how each objective was met.

TABLE 7.1: Detail research objectives

Objective	Evidence of objective completion
Demonstrate the lateral performance of micropiles in single and group configurations	An experimental study was designed and implemented to investigate the lateral capacity of micropiles in both single and group configurations.

TABLE 7.1: (cont'd)

Determine the effect of casing plunge into rock on lateral resistance of micropiles.

Determine the effect of casing joints on lateral resistance of micropiles Determine the behavior of jointed micropile sections

Evaluate the durability of micropile casings and jointed sections

An experimental study was designed and implemented to investigate the effect of casing plunge into rock. The embedment into rock investigated were $1 \mathrm{ft}, 2 \mathrm{ft} 5 \mathrm{ft}$ and 10 ft .

The study investigated the effects of joints, documented the deflection and moment capacity of the joints.

The study documented the failure mode of the joint under moment application.

The study was commenced by placing micropile casing under typical environment to evaluate the corrosion rate and it structural effect.

7.2 Conclusions

Based on the data, analyses, and results presented in this dissertation, the following conclusions have been developed regarding the lateral response of micropiles based on full-scale load testing:

1) The casing joint has a large impact on the lateral capacity of micropiles. In cases where the micropiles were sufficiently embedded in rock, rather than yielding of the micropile, there was an abrupt failure at the casing joint. This was observed in all of the load tests.
2) Two feet of embedment for micropiles in this study was sufficient to carry lateral load. Embedment at 5 and 10 feet produced similar results to those for 2 feet. One foot of embedment does not appear to be sufficient based upon results of the field tests and numerical models. If the pile design is
controlled by lateral load, the finding shows a 2 ft embedment into good rock give a potential lateral capacity of 50 kips per pile.
3) The moment of inertia of the micropile section was determined at failure, the load deflection response up to failure was linear. The change in linearity take place after the pile section fails.
4) The strength of the micropile for a 10.75 in diameter and 0.5 in wall thickness with respect to the joints from field and laboratory tests was around 115 kips*ft in moment capacity.
5) Another major documented contribution is, micropiles of 10.75 in diameter and 0.5 in wall thickness size can carry significant lateral load with little deflection. However, the failure mode is brittle, as the test-piles failed abruptly with little lateral displacement.
6) Reduction of the section area at threaded joint by 60% to 70% results in a reasonably accurate model for the behavior of the casing joint as predicated by computer software, FB-MultiPier. The contribution shows the important of flexural rigidity in the design of a composite structural member.
7) Grout return used to verify grouting the socket does lead to improvement of the soil around the piles, thereby increasing the lateral resistance or capacity of the pile.

7.3 Contributions

Based on the analysis of the data connected in both the field and the laboratory tests on micropile with respect to joint action, and the gaps fond in the literatures that we reviewed, the following are the contributions to both science and knowledge:

1) The result of the research shows that an embedment of 2 ft in high quantity rock give a lateral capacity of 50 kips .
2) Another major documented contribution is, micropiles of 10.75 in diameter and 0.5 in wall thickness size can carry significant lateral load with little deflection. However, the failure mode is brittle, as the test-piles failed abruptly with little lateral displacement. The abrupt failure of the joint is a major contribution to the threaded joint effect of micropile as a structural member.
3) FB-MultiPier software was used to validate models for segmented micropile.
4) Micropiles can be effectively use as a groups in an interior bent configuration.
5) From the laboratory bending tests, the apparent yield stress for this section (10.7diameter, 0.5 in wall thickness and f_{y} of 115 ksi) due to the joint is 11.4 ksi which is only 10% of the 115 ksi from the coupon test.
6) The tests in the laboratory shows minimum casing twisting of 0.12 in .
7) Due to the joints, the flexural rigidity for the segmented section is 16% less than a non-segmented section.
8) The segmented pipe section has both the maximum moment and deflection of more than two times the non-segmented pipe section.
9) The low value in the bending stress of about 10% of the steel yield stress of the micropile section used in both test shows the magnitude effect the joint has on the lateral capacity of the section.
10) Changing the yield of the steel, deflection will not change; yield strength of steel is not part of deflection calculation.
11) The threads are putting stress on each other. The yield of the joint is happening at a fraction of the section strength. The average value got from the lab test was about 11.4 ksi .

7.4 Limitations

Research studies on deep foundations are often restricted financial limitations of the project. It is not cost effective to construct multiple sections (size and length) to assess all possibilities. In addition, most projects such as this one must be coupled with construction activities and are constrained by the budgets of those projects.

This study focused on 10.75 in diameter 0.5 in. thick micropiles. No other sizes were used in any part of this work. While the author believes the results can be adapted to other micropile sizes, the user is cautioned to verify material properties and behaviors before applying these results directly.

7.5 Design Applications

The results of this work prove micropiles are economically feasible foundations that can carry significant lateral loads when properly embedded in rock. As mentioned before, the study focused on a single pile size (10.75 in outer diameter with 0.5 in wall thickness). Based on the results of this study, the following issues need to be considered in overcoming the casing joint failure in the use of micropiles as a non-displacement pile in deep foundations applications:

1) The micropile interior bent configuration should be a short column not a long column.
2) The micropile should be embedded in high quantity rock not weak rock.
3) In the design of a larger lateral and moment capacity, an inner casing of a lesser diameter without joint micropile can be inserted to brace up the joint before grout. The braced joint section should be above the rock elevation. The finding in the research shows that the joint in the rock as zero deflection.

7.6 Recommendations

Based on the findings from this investigation, the following recommendations are made for future work on micropile:

1) It would be beneficial at the least, to perform a lateral load test with the other sizes to verify or recalibrate the models.
2) Evaluation of the applied torque from the drill rig used to install the piles on the joints.
3) Full-scale field and laboratory testing of reinforce joints for higher lateral and moment capacity.
4) The effect of a lower rock quality designation (RQD) on micropile embedment.
5) Verification of the impact of ground freezing on the lateral and moment capacity of micropiles with respect to joints and rock embedment.

REFERENCES

Anderson, J. B. and Townsend, F. C. (2001). "SPT and CPT testing for evaluating lateral loading of deep foundations", J. of Geotechnical and Geoenvironmental Engr., ASCE, Vol. 127, No. 11, 920-925.

ABAQUS Inc. (1978) http://www.simulia.com/products/abaqus_fea.html
ADINA R\&D Inc. (1986) http://www.adina.com/index.shtml
Andersen Paul (1956), Substructure Analysis and Design. The Ronald Press, New York.
ANSYS (1970) http://www.ansys.com/About+ANSYS
Andersen Paul (1956), Substructure Analysis and Design. The Ronald Press, New York.Armour, T., Groneck, P., Keeley, J., and Sharma, S., (2000). "Micropile Design and Construction Guidelines Implementation Manual", Federal Highway Administration, Report No.FHWA-SA-97-070.

ASTM (2007). "Standard Test Methods for Deep Foundations Under Lateral Load" D3966-07.

ASTM E290-09 (2007). "Standard Test Methods for bent testing of material for Ductility
Barton, Y. O. (1984). "Response of pile groups to lateral loading in the centrifuge."
Proceeding of a Symposium on the Application of Centrifuge Modeling to Geotechnical Design, A.A. Balkema, Rotterdam, The Netherlands.

Bathe, K. J. (1982). "Finite element analysis in engineering analysis". Prentice-Hall, New Jersey.

Beaver, J. A. and Durr, C. L. (1998). "Corrosion of steel piling in nonmarine application". NCHRP Report 408.

Broms, B., (1964a) "Lateral Resistance of Pile in Cohesionless Soils" Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. SM3, 123-156.

Broms, B., (1964b) "Lateral Resistance of Pile in Cohesive Soils" Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. SM2, 27-63.

Broms, B., (1965) "Design of Laterally Loaded Piles" Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. SM3, 79-99.

Brown D. A. and Shie C. F. (1990). "Three dimensional finite element model of laterally loaded piles."Computers and geotechnics, 10, 59-79.

Brown, D. A., Morrison, C., and Reese, L. C. (1988). "Lateral load behavior of pile group in sand." ASCE Journal of Geotechnical Engineering, 114(11), 1261-1276.

Brown, D. A., Reese, L. C., and O'Neill, M. W. (1987). "Cyclic lateral loading of a large scale pile group."ASCE Journal of Geotechnical Engineering, 113(11), 1326-1343

Bruce D.A. and Cadden, A. W., (2005). "Practical advice for foundation design micropiles for structural support" Contemporary Issues in Foundation Engineering, ASCE GSP No. 131.

Coduto, D. P. (1994). Foundation Design: Principles and Practices. Prentice Hall, Inc., New Jersey.

Cox, W. R., Dixon, D. A., and Murphy, B. S. (1984). "Lateral-load tests on 25.4-mm (1in.) diameter piles in very soft clay in side-by-side and in-line groups." Laterally Loaded Deep Foundations: Analysis and Performance, ASTM STP 835, 122-139

Cox, W. R., Reese, L. C. , Grubbs, B. R. (1974), "field Testing of Laterally Loaded Piles in Sand", Proceedings of the sixth Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2079.

Davisson, M. T., and Salley, J. R. (1970)."Model study of laterally loaded piles."ASCE Journal of the Soil Mechanics and Foundations Division, 96(SM5), 1605-1627.

Decker, Jeramy B., Rollins Kyle M., and Ellsworth Jared C., (2008), "Corrosion Rate Evaluation and Prediction for Piles Based on Long-Term Field Performance."ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 3, 341-351.

Duncan, J. M. Evans, Jr., L. T. and Ooi, P. S. K. (1994)."Lateral Load Analysis of Single Piles and Drilled Shafts," ASCE journal of Geotechnical Engineering, Vol 120, No. 5, 1018-1033.

Elias, V., and Christopher, B. R. (1997). "Mechanically stabilized earth walls and reinforced soil slopes, design and construction guidelines." FHWA-SA-96-071, Federal Highway Administration, Washington, D. C. , 72-79.

Ensoft, Inc. (2007) LPILE Plus 3 for Windows-A program for the analysis of piles and drilled shafts under lateral loads, (http://www.ensoft.com).

Evans, L. T. Jr., and Duncan, J. M. (1982)."Simplified analysis of laterally loaded piles," Rep. No.UCB/GT/82-04, University of California, Berkeley, California.

Fam A, Pando M, Filz G, Rizkalla S (2003), "Precast piles for Route 40 bridge in Virginia using concrete filled FRP tubes", PCI JOURNAL Volume: 48 Issue: 3, 3245.

Fam, A., and Rizkalla, S., (2002) "Flexural Behavior of Concrete-Filled Fiber-Reinforced Polymer Circular Tubes," Journal of Composites for Construction, ASCE, V.6, No. 2, 123-132.

Florida Bridge Software Institute (2010). FB Multipier user's manual (http://bsiweb.ce.ufl.edu/).

Focht, J. A. and Koch, K. J. (1973), "Rational Analysis of the Lateral Performance of Offshore pile groups", Fifth annual offshore Technology Conference, Houston Texas, 701-708.

Ghali, A and Neville, A. M. (1997), "Structural analysis- A unified classical and matrix approach". E \& FN Spon London and New York.

Gill, H. L. (1968), "Soil Behavior Around Laterally Loaded Piles" Technical Report R571, Naval Civil Engineering Laboratory Port Hueneme, California.

Grandin Hartley, Jr. (1991), "Fundamentals of the finite element method". Waveland press, Inc.

Hetenyi, M. (1946).Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, Michigan.

Hsiung Yun-mei and Chen Ya-ling (1997) "Simplified Method for Analyzing Laterally Loaded Single Piles in Clays." ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 11, 1018-1029.

Ismael, N. F. , Klym, T W. (1978), "Behavior of Rigid Piers in Layered Cohesive Soil", Journal of the Geotechnical Engineering Division, Proceedings ASCE, Gt8, Paper No. 13969.

Itasca (2011), FLAC, http://www.itascacg.com/flac/index.php.
Long J., Carroll N, (2005). Results of Bending Tests on Micropiles Sections", submitted to Hayward Baker.

Long, J., Maniaci, M., Menzes, G., and Ball, R., (2004). "Results of Lateral Load Tests on Micropiles", Proceedings, GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, J.P. Turner and P.W. Mayne eds., ASCE GSP. No. 124, 122-133.

LS-DYNA (1987) http://www.lstc.com/iProfile.htm
Matlock, H., and Reese, L. C. (1960)."Generalized solutions for laterally loaded piles." ASCE Journal of Soil Mechanics and Foundations Division, 86(SM5), 63-91.

McClelland, B. and J. A. Focht Jr. (1958)."Soil modulus for laterally loaded piles" Transactions, ASCE, Vol. 123, 1049-1063.

McVay, M.C. and Niraula L., (2004). "Development of p-y curves for large diameter piles/drilled shafts in limestone for FBPier" Florida DOT BC 355, RPWO \#59.

McVay, M. C ,Shang, T.I., and Casper, R. (1996) "Centrifuge testing of fixed-head laterally loaded battered and plumb piles group in sand" Journal of Geotechnical Engineering, ASCE, 19(1), 41-50.

McVay, M., Casper, R. and Shang, T.I. (1995). "Lateral response of three-row groups in loose to dense sands at 3D and 5D spacing", Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 5, 436-441.

Morton, K. W. and Mayers, D. F. (2005). "Numerical solution of partial differential equations". Cambridge University press.

Muqtadir A. and Desai C. S. (1986)." Three dimensional analysis of a pile group foundation." International journal for numerical and analytical method in geomechanics, 10, 41-58.

Nakamura Shun-ichi, Hosaka Tetsuya and Nishiumi Kenji, (2004) "Bending behavior of Steel Pipe Girders Filled with Ultralight Mortar," Journal of Bridge Engineering, ASCE, Vol 9, No. 3, 297-303.

Naguib, W., and Mirmiran, A., (2002) "Flexural Creep Tests and Modeling of ConcreteFilled Fiber Reinforced Polymer Tubes," Journal of Composites for Construction, V. 6, No. 4, 272-279.

NAVFAC (1986) Foundations and Earth Structures, Design Manual 7.02, Revalidated by Change 1 September 1986, Naval Facilities Engineering Command.

O’Neil, M.W. and Reese, L.C. (1999). "Drilled Shafts: Construction Procedures and Design Methods", FHWA Publication No. FHWA-IF-99-025, Federal Highway Administration, Washington, D.C

Ooi, P. S., and Ramsey, T. L., (2003) "Curvature and Bending Moment from Inclinometer Data. "International Journal Geomechanics, Vol. 3, No 1, ASCE, 64-74.

Pressley J. S. and Poulos H. G. (1986)."Finite element analysis of mechanisms of pile group behavior."International journal for numerical and analytical method in geomechanics, 10, 213-221.

Poulos, H. G. (1980). "Comparisons between theoretical and observed behavior of pile foundations." Australia-New Zealand Conference on Geomechanics, 95-104.

Poulos, H. G., and Davis, E. H. (1980).Pile Foundation Analysis and Design, John Wiley and Sons, New York.

Poulos, H. G. (1971a). "Behavior of laterally loaded piles: Part I-single piles." ASCE Journal of the Soil Mechanics and Foundations Division, 97(SM5), 711-731.

Poulos, H. G. (1971b). "Behavior of laterally loaded piles: Part II - group piles." ASCE Journal of the Soil Mechanics and Foundations Division, 97(SM5), 733-751.

Reese, L.C. and Wang Shin-Tower (2006)."Verification of computer program LPile as a valid tool for design of a single pile under lateral loading".

Reese, L.C. and Vanimpe W. F. (2001). Single piles and pile groups under lateral loading. A. A. Balkema Publishers, New York.

Reese, L. C., and Wang, S. T. (1997). "LPILE Plus 3.0 Technical manual of documentation of computer program." Ensoft, Inc., Austin, Texas.

Reese, L. C., and Wang, S. (1993). 'Com624P-Laterally loaded pile analysis program for the microcomputer, version 2.0'', U.S. DOT Publication No. FHWA-SA-91-048, Washington, D.C.

Reese, L.C. (1984). "Hand book on design and construction of piles and drilled shafts under lateral load", FHWA-IP-84-11.

Reese, L. C., Cox, W. R., and Koop, F. D. (1975). 'Field testing and analysis of laterally loaded piles in stiff clay’’, Proc., 7th Offshore Technology Conf., Paper No. OTC 2312, 672-690.

Reese, L.C., Cox, W.R., and Koop, F.D. (1974). "Analysis of laterally loaded piles in sand", Proceedings, Fifth Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. 2080, 473-484.

Reese, L.C. and Matlock, H. (1956). "Non-dimensional solutions for laterally loaded piles with soil pile modulus assumed proportional to depth" Proc. $8^{\text {th }}$ Texas Conference on Soil Mechanics and Found Engineering, Austin, 1-41.

Richards, T.D. and Rothbauer, M.J., (2004). "Lateral Loads on Pin Piles (Micropiles)", Proceedings, GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, J.P. Turner and P.W. Mayne eds., ASCE GSP 124, 158-174.

Rollins, K.M., Bowles, S., Hales, L.J., and Ashford, S.A. (2008). "Static and Dynamic Lateral Load Tests in Liquefied Sand for the Cooper River Bridge, Charleston, South Carolina", Proc. 6th National Seismic Conference on Bridges, Charleston, South Carolina, Federal Highway Administration.

Rollins, K.M., Gerber, T.M., Lane, J.D., and Ashford, S.A. (2005). "Lateral resistance of a full scale pile group in liquefied sand" J. of Geotechnical and Geoenvironmental Engr., ASCE, Vol. 131, No. 1, 115-125.

Rollins, K. M., and Sparks, A. (2002). "Lateral resistance of full-scale pile cap with gravel backfill" J. of Geotechnical and Geoenvironmental Engr., ASCE, Vol. 128 No.9, 711-723.
Rollins, K.M., Peterson, K.T., and Weaver, T.J. (1998). "Lateral Load Behavior of a FullScale Pile Group in Clay", J. of Geotechnical and Geoenvironmental Engrg., ASCE, Vol. 124, No. 6, 468-478.

Romanoff, M. (1962)."Corrosion of steel piling in soil." NBS Monograph No. 58, National Bureau of Standards, U.S. Dept. of Commerce, Washington, D. C.

Ruesta, P. F., and Townsend, F. C. (1997). 'Evaluation of laterally loaded pile group at Roosevelt Bridge'", Journal of Geotechnical and Geoenvironmental Engineering., 123(12), 1153-1161

Sabatini, P.J., Tanyu, B., Armour, T., Groneck, P., and Keeley, J., (2005)."Micropile Design and Construction", FHWA-NHI-05-039.

Selbey, A. G., and Poulos, H. G. (1984), "Lateral Load tests on model pile group", Geomechanics interaction Fourth Australia-New Zealand Conference on Gemechanics, 154-158.
Sherman, D. R. (1976), "Tests of Circular Steel Tubes in Bending", Journal of Structural Engineering, Vol 102, No. 11, 2181-2194.

Shih-Tower Wang and Lymon L. Reese (1993). "COM624P- Laterally loaded pile analysis program for the microcomputer, version 2.0". FHWA-SA-91-048.

Singh, A., and Prakash, S. (1971). "Model pile group subjected to cyclic lateral load." Soils and Foundations, 11(2), 51-60.

Singh, A., and Verna, R. K. (1973) "Lateral Resistance of a field model of pile group in sand and its comparison with a laboratory model", Indian Geotechnical Journal Vol. 3 Pages 113-127.

Tarquinio, Fred S., Kartofilis Dino, and Kutschke Walter (2004)."An Alternative Foundation Solution State Route 22, Section A02-Lewistown Bypass, The geo-Institute Conference on Geotechnical Engineering for Transportation Projects, Los Angeles, California.

Terzaghi, K. (1955). "Evaluation of coefficient of subgrade reaction."Geotechniques, 5(4), 297-326.

Trochanis A. M., Bilak J. and Christiano (1991)."Three dimensional nonlinear study of piles."Journal of geotechnical engineering, ASCE, 117(3), 429-447.

Zhang H. H. and Small J. C. (2000). "Analysis of capped pile groups subjected to horizontal and vertical loads." Computers and Geotechniques, 26, 1-21.

Zhu Zhenyu, Ahmad Iftekhar and Mirmiran Amir, (2006),"Splicing of Precast ConcreteFilled FRP Tubes", Journal of Composites for Construction, Vol. 10 No. 4, 345-356.

Zienkiewicz, O. C. (1977). "The finite element method". McGraw-hill, London.

APPENDIX A: LATERAL LOAD TEST B

TABLE A.1: Inclinometer measurements for pile 2
PROJECT:ASHE MICROPILE LATERAL LOAD TESTING
MICROPILE NO: 2
DATE: 11/24/09
TIME:

	Baseline		
Depth (ft)	A+	A-	Diff. (A)
14	-258	176	-434
12	-208	165	-373
10	-209	169	-378
8	-200	163	-363
6	-188	146	-334
4	-146	111	-257
2	-139	32	-171

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
5 kips						
14	-257	175	-432	2	0.0012	0.0012
12	-203	166	-369	4	0.0024	0.0036
10	-206	166	-372	6	0.0036	0.0072
8	-183	152	-335	28	0.0168	0.024
6	-170	128	-298	36	0.0216	0.0456
4	-125	90	-215	42	0.0252	0.0708
2	-111	83	-194	-23	-0.0138	0.057

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
14	-258	175	-433	1	0.0006	0.0006
12	-206	165	-371	2	0.0012	0.0018
10	-200	161	-361	17	0.0102	0.012
8	-176	136	-312	51	0.0306	0.0426
6	-148	105	-253	81	0.0486	0.0912
4	-100	65	-165	92	0.0552	0.1464
2	-83	63	-146	25	0.015	0.1614

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
15 kips						
14	-258	175	-433	1	0.0006	0.0006
12	-204	164	-368	5	0.003	0.0036
10	-189	151	-340	38	0.0228	0.0264
8	-147	109	-256	107	0.0642	0.0906
6	-108	65	-173	161	0.0966	0.1872
4	-57	21	-78	179	0.1074	0.2946
2	-59	2	-61	110	0.066	0.3606

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
14	-259	175	-434	0	0	0
12	-203	162	-365	8	0.0048	0.0048
10	-181	141	-322	56	0.0336	0.0384
8	-127	88	-215	148	0.0888	0.1272
6	-76	35	-111	223	0.1338	0.261
4	-18	-31	13	270	0.162	0.423
2	43	-31	74	245	0.147	0.57

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 kips						
14	-259	176	-435	-1	-0.0006	-0.0006
12	-190	151	-341	32	0.0192	0.0186
10	-127	89	-216	162	0.0972	0.1158
8	14	-53	67	430	0.258	0.3738
6	112	-154	266	600	0.36	0.7338
4	175	-210	385	642	0.3852	1.119
2	169	-215	384	555	0.333	1.452

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
50 kips						
14	-260	176	-436	-2	-0.0012	-0.0012
12	-181	141	-322	51	0.0306	0.0294
10	-94	53	-147	231	0.1386	0.168
8	87	-124	211	574	0.3444	0.5124
6	205	-247	452	786	0.4716	0.984
4	273	-309	582	839	0.5034	1.4874
2	276	-312	588	759	0.4554	1.9428

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
14	-259	175	-434	0	0	0
12	-180	139	-319	54	0.0324	0.0324
10	-104	65	-169	209	0.1254	0.1578
8	39	-79	118	481	0.2886	0.4464
6	126	-166	292	626	0.3756	0.822
4	180	-214	394	651	0.3906	1.2126
2	187	-241	428	599	0.3594	1.572

TABLE A.2: Inclinometer measurements for pile 14 PROJECT:ASHE MICROPILE LATERAL LOAD TESTING MICROPILE NO: 14
DATE: 11/24/09
TIME:

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
14	207	-292	499
12	247	-287	534
10	216	-258	474
8	209	-247	456
6	267	-317	584
4	405	-436	841
2	435	-465	900

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
5 kips						
14	210	-292	502	3	0.0018	0.0018
12	249	-288	537	3	0.0018	0.0036
10	220	-252	472	-2	-0.0012	0.0024
8	217	-256	473	17	0.0102	0.0126
6	287	-335	622	38	0.0228	0.0354
4	427	-456	883	42	0.0252	0.0606
2	459	-504	963	63	0.0378	0.0984

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
14	205	-292	497	-2	-0.0012	-0.0012
12	251	-289	540	6	0.0036	0.0024
10	229	-268	497	23	0.0138	0.0162
8	239	-274	513	57	0.0342	0.0504
6	312	-360	672	88	0.0528	0.1032
4	456	-484	940	99	0.0594	0.1626
2	476	-519	995	95	0.057	0.2196

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
15 kips						
14	205	-292	497	-2	-0.0012	-0.0012
12	257	-293	550	16	0.0096	0.0084
10	245	-279	524	50	0.03	0.0384
8	270	-307	577	121	0.0726	0.111
6	360	-406	766	182	0.1092	0.2202
4	503	-533	1036	195	0.117	0.3372
2	536	-576	1112	212	0.1272	0.4644

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
14	205	-291	496	-3	-0.0018	-0.0018
12	254	-295	549	15	0.009	0.0072
10	248	-289	537	63	0.0378	0.045
8	293	-331	624	168	0.1008	0.1458
6	392	-440	832	248	0.1488	0.2946
4	539	-570	1109	268	0.1608	0.4554
2	573	-613	1186	286	0.1716	0.627

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
30 kips						
14	209	-291	500	1	0.0006	0.0006
12	263	-303	566	32	0.0192	0.0198
10	279	-320	599	125	0.075	0.0948
8	360	-397	757	301	0.1806	0.2754
6	481	-532	1013	429	0.2574	0.5328
4	637	-665	1302	461	0.2766	0.8094
2	670	-684	1354	454	0.2724	1.0818

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 kips						
14	209	-292	501	2	0.0012	0.0012
12	273	-312	585	51	0.0306	0.0318
10	320	-360	680	206	0.1236	0.1554
8	444	-481	925	469	0.2814	0.4368
6	595	-643	1238	654	0.3924	0.8292
4	754	-782	1536	695	0.417	1.2462
2	788	-816	1604	704	0.4224	1.6686

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
50 kips						
14	204	-291	495	-4	-0.0024	-0.0024
12	285	-325	610	76	0.0456	0.0432
10	361	-402	763	289	0.1734	0.2166
8	543	-572	1115	659	0.3954	0.612
6	718	-765	1483	899	0.5394	1.1514
4	881	-908	1789	948	0.5688	1.7202
2	908	-963	1871	971	0.5826	2.3028

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
14	204	-292	496	-3	-0.0018	-0.0018
12	274	-314	588	54	0.0324	0.0306
10	296	-324	620	146	0.0876	0.1182
8	860	-899	1759	1303	0.7818	0.9
6	1095	-1142	2237	1653	0.9918	1.8918
4	1246	-1280	2526	1685	1.011	2.9028
2	1251	-1290	2541	1641	0.9846	3.8874

TABLE A.3: Load measurements for load test B TIMESTAMP RECORD LoadA LoadB Total

11/24/2009 18:01	0	278.4	168.1	446.5
11/24/2009 18:02	1	278.4	224.1	502.5
11/24/2009 18:02	2	278.4	168.1	446.5
11/24/2009 18:03	3	278.4	168.1	446.5
11/24/2009 18:03	4	1286.2	1176.6	2462.8
11/24/2009 18:04	5	1230.2	1176.6	2406.8
11/24/2009 18:04	6	1174.2	1176.6	2350.8
11/24/2009 18:05	7	1174.2	1176.6	2350.8
11/24/2009 18:05	8	1174.2	1120.6	2294.8
11/24/2009 18:06	9	1174.2	1120.6	2294.8
11/24/2009 18:06	10	1174.2	1120.6	2294.8
11/24/2009 18:07	11	1174.2	1120.6	2294.8
11/24/2009 18:07	12	1174.2	1120.6	2294.8
11/24/2009 18:08	13	1174.2	1120.6	2294.8
11/24/2009 18:08	14	1118.2	1120.6	2238.8
11/24/2009 18:09	15	1118.2	1176.6	2294.8
11/24/2009 18:09	16	1118.2	1176.6	2294.8
11/24/2009 18:10	17	1118.2	1176.6	2294.8
11/24/2009 18:10	18	1118.2	1176.6	2294.8
11/24/2009 18:11	19	1118.2	1120.6	2238.8
11/24/2009 18:11	20	1118.2	1120.6	2238.8
11/24/2009 18:12	21	1118.2	1120.6	2238.8
11/24/2009 18:12	22	1118.2	1120.6	2238.8
11/24/2009 18:13	23	1118.2	1120.6	2238.8
11/24/2009 18:13	24	1118.2	1120.6	2238.8
11/24/2009 18:14	25	2741.9	2633.4	5375.3
11/24/2009 18:14	26	2685.9	2633.4	5319.3
11/24/2009 18:15	27	2629.9	2577.4	5207.3
11/24/2009 18:15	28	2629.9	2521.3	5151.3
11/24/2009 18:16	29	2629.9	2521.3	5151.3
11/24/2009 18:16	30	2573.9	2521.3	5095.3
11/24/2009 18:17	31	2573.9	2465.3	5039.2
11/24/2009 18:17	32	2517.9	2465.3	4983.2
11/24/2009 18:18	33	2517.9	2465.3	4983.2
11/24/2009 18:18	34	2517.9	2465.3	4983.2
11/24/2009 18:19	35	2517.9	2465.3	4983.2
11/24/2009 18:19	36	2517.9	2409.3	4927.2
11/24/2009 18:20	37	2517.9	2409.3	4927.2
11/24/2009 18:20	38	2517.9	2409.3	4927.2
11/24/2009 18:21	39	2517.9	2409.3	4927.2
11/24/2009 18:21	40	2517.9	2409.3	4927.2
11/24/2009 18:22	41	2517.9	2409.3	4927.2
11/24/2009 18:22	42	2517.9	2409.3	4927.2
11/24/2009 18:23	43	2517.9	2409.3	4927.2
11/24/2009 18:23	44	2517.9	2409.3	4927.2

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoad lbs
11/24/2009 18:24	45	2462.0	2409.3	4871.2
11/24/2009 18:24	46	4533.5	4426.3	8959.9
11/24/2009 18:25	47	4925.5	4762.5	9688.0
11/24/2009 18:25	48	4813.5	4650.5	9463.9
11/24/2009 18:26	49	4757.5	4650.5	9407.9
11/24/2009 18:26	50	4757.5	4538.4	9295.9
11/24/2009 18:27	51	4701.5	4538.4	9239.9
11/24/2009 18:27	52	4701.5	4538.4	9239.9
11/24/2009 18:28	53	4701.5	4538.4	9239.9
11/24/2009 18:28	54	4645.5	4538.4	9183.9
11/24/2009 18:29	55	4645.5	4538.4	9183.9
11/24/2009 18:29	56	4645.5	4482.4	9127.9
11/24/2009 18:30	57	4645.5	4482.4	9127.9
11/24/2009 18:30	58	4645.5	4482.4	9127.9
11/24/2009 18:31	59	4589.5	4482.4	9071.9
11/24/2009 18:31	60	4533.5	4482.4	9015.9
11/24/2009 18:32	61	4533.5	4482.4	9015.9
11/24/2009 18:32	62	4533.5	4426.3	8959.9
11/24/2009 18:33	63	4533.5	4426.3	8959.9
11/24/2009 18:33	64	4533.5	4426.3	8959.9
11/24/2009 18:34	65	4533.5	4426.3	8959.9
11/24/2009 18:34	66	4533.5	4426.3	8959.9
11/24/2009 18:35	67	6269.2	6219.3	12488.5
11/24/2009 18:35	68	6101.2	6051.2	12152.4
11/24/2009 18:36	69	6101.2	5995.2	12096.4
11/24/2009 18:36	70	6101.2	5939.1	12040.4
11/24/2009 18:37	71	5989.2	5939.1	11928.4
11/24/2009 18:37	72	5989.2	5939.1	11928.4
11/24/2009 18:38	73	5989.2	5883.1	11872.3
11/24/2009 18:38	74	5989.2	5883.1	11872.3
11/24/2009 18:39	75	5989.2	5883.1	11872.3
11/24/2009 18:39	76	5989.2	5827.1	11816.3
11/24/2009 18:40	77	5989.2	5827.1	11816.3
11/24/2009 18:40	78	5989.2	5827.1	11816.3
11/24/2009 18:41	79	5933.3	5827.1	11760.3
11/24/2009 18:41	80	5989.2	5827.1	11816.3
11/24/2009 18:42	81	5989.2	5827.1	11816.3
11/24/2009 18:42	82	5989.2	5827.1	11816.3
11/24/2009 18:43	83	5989.2	5827.1	11816.3
11/24/2009 18:43	84	5989.2	5827.1	11816.3
11/24/2009 18:44	85	5933.3	5827.1	11760.3
11/24/2009 18:44	86	5933.3	5827.1	11760.3
11/24/2009 18:45	87	8004.8	7900.2	15905.0
11/24/2009 18:45	88	7836.9	7732.1	15568.9
11/24/2009 18:46	89	7724.9	7620.0	15344.9

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoad lbs
11/24/2009 18:46	90	7724.9	7620.0	15344.9
11/24/2009 18:47	91	7668.9	7620.0	15288.9
11/24/2009 18:47	92	7668.9	7564.0	15232.9
11/24/2009 18:48	93	7668.9	7564.0	15232.9
11/24/2009 18:48	94	7612.9	7564.0	15176.9
11/24/2009 18:49	95	7556.9	7507.9	15064.9
11/24/2009 18:49	96	7556.9	7507.9	15064.9
11/24/2009 18:50	97	7612.9	7507.9	15120.9
11/24/2009 18:50	98	7556.9	7507.9	15064.9
11/24/2009 18:51	99	7556.9	7507.9	15064.9
11/24/2009 18:51	100	7556.9	7507.9	15064.9
11/24/2009 18:52	101	7556.9	7507.9	15064.9
11/24/2009 18:52	102	7556.9	7507.9	15064.9
11/24/2009 18:53	103	7556.9	7507.9	15064.9
11/24/2009 18:53	104	7556.9	7451.9	15008.8
11/24/2009 18:54	105	7556.9	7451.9	15008.8
11/24/2009 18:54	106	7556.9	7451.9	15008.8
11/24/2009 18:55	107	8396.8	8292.4	16689.1
11/24/2009 18:55	108	8788.7	8628.5	17417.2
11/24/2009 18:56	109	8732.7	8628.5	17361.2
11/24/2009 18:56	110	8620.7	8516.5	17137.2
11/24/2009 18:57	111	8620.7	8516.5	17137.2
11/24/2009 18:57	112	8620.7	8516.5	17137.2
11/24/2009 18:58	113	8620.7	8460.4	17081.2
11/24/2009 18:58	114	8620.7	8460.4	17081.2
11/24/2009 18:59	115	8620.7	8460.4	17081.2
11/24/2009 18:59	116	8564.7	8404.4	16969.1
11/24/2009 19:00	117	8564.7	8404.4	16969.1
11/24/2009 19:00	118	8564.7	8404.4	16969.1
11/24/2009 19:01	119	8564.7	8404.4	16969.1
11/24/2009 19:01	120	8564.7	8404.4	16969.1
11/24/2009 19:02	121	8564.7	8404.4	16969.1
11/24/2009 19:02	122	8564.7	8404.4	16969.1
11/24/2009 19:03	123	8564.7	8404.4	16969.1
11/24/2009 19:03	124	8564.7	8404.4	16969.1
11/24/2009 19:04	125	8564.7	8404.4	16969.1
11/24/2009 19:04	126	8508.7	8404.4	16913.1
11/24/2009 19:05	127	8508.7	8404.4	16913.1
11/24/2009 19:05	128	9964.4	9861.2	19825.6
11/24/2009 19:06	129	9852.5	9749.1	19601.6
11/24/2009 19:06	130	9796.5	9637.1	19433.5
11/24/2009 19:07	131	9796.5	9637.1	19433.5
11/24/2009 19:07	132	9796.5	9637.1	19433.5
11/24/2009 19:08	133	9684.5	9581.0	19265.5
11/24/2009 19:08	134	9684.5	9581.0	19265.5

TIMESTAMP	RECORD \#	LoadA lbs	LoadB Ibs	TotalLoad lbs
11/24/2009 19:09	135	9684.5	9525.0	19209.5
11/24/2009 19:09	136	9684.5	9525.0	19209.5
11/24/2009 19:10	137	9684.5	9581.0	19265.5
11/24/2009 19:10	138	9684.5	9581.0	19265.5
11/24/2009 19:11	139	9684.5	9525.0	19209.5
11/24/2009 19:11	140	9684.5	9469.0	19153.5
11/24/2009 19:12	141	9628.5	9469.0	19097.5
11/24/2009 19:12	142	9628.5	9469.0	19097.5
11/24/2009 19:13	143	9628.5	9469.0	19097.5
11/24/2009 19:13	144	9628.5	9469.0	19097.5
11/24/2009 19:14	145	9628.5	9469.0	19097.5
11/24/2009 19:14	146	9628.5	9525.0	19153.5
11/24/2009 19:15	147	9572.5	9412.9	18985.5
11/24/2009 19:15	148	11476.1	11374.0	22850.1
11/24/2009 19:16	149	11196.2	11093.8	22290.0
11/24/2009 19:16	150	11084.2	10981.8	22066.0
11/24/2009 19:17	151	11028.2	10981.8	22010.0
11/24/2009 19:17	152	11028.2	10869.7	21897.9
11/24/2009 19:18	153	10972.2	10869.7	21841.9
11/24/2009 19:18	154	10972.2	10869.7	21841.9
11/24/2009 19:19	155	10972.2	10813.7	21785.9
11/24/2009 19:19	156	10916.2	10869.7	21785.9
11/24/2009 19:20	157	10860.3	10813.7	21673.9
11/24/2009 19:20	158	10860.3	10757.6	21617.9
11/24/2009 19:21	159	10916.2	10813.7	21729.9
11/24/2009 19:21	160	10860.3	10757.6	21617.9
11/24/2009 19:22	161	10860.3	10757.6	21617.9
11/24/2009 19:22	162	10860.3	10757.6	21617.9
11/24/2009 19:23	163	10860.3	10757.6	21617.9
11/24/2009 19:23	164	10804.3	10701.6	21505.9
11/24/2009 19:24	165	10804.3	10701.6	21505.9
11/24/2009 19:24	166	10804.3	10701.6	21505.9
11/24/2009 19:25	167	10804.3	10701.6	21505.9
11/24/2009 19:25	168	10804.3	10701.6	21505.9
11/24/2009 19:26	169	12483.9	12382.5	24866.4
11/24/2009 19:26	170	12316.0	12158.4	24474.3
11/24/2009 19:27	171	12204.0	12158.4	24362.4
11/24/2009 19:27	172	12204.0	12102.3	24306.3
11/24/2009 19:28	173	12204.0	12046.3	24250.3
11/24/2009 19:28	174	12092.0	11990.3	24082.3
11/24/2009 19:29	175	12092.0	11990.3	24082.3
11/24/2009 19:29	176	12092.0	11990.3	24082.3
11/24/2009 19:30	177	12092.0	11990.3	24082.3
11/24/2009 19:30	178	12092.0	11990.3	24082.3
11/24/2009 19:31	179	12036.0	11990.3	24026.3

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoad lbs
11/24/2009 19:31	180	12036.0	11934.3	23970.3
11/24/2009 19:32	181	11980.0	11934.3	23914.3
11/24/2009 19:32	182	11980.0	11878.2	23858.3
11/24/2009 19:33	183	11980.0	11878.2	23858.3
11/24/2009 19:33	184	11980.0	11878.2	23858.3
11/24/2009 19:34	185	11980.0	11878.2	23858.3
11/24/2009 19:34	186	11980.0	11878.2	23858.3
11/24/2009 19:35	187	11980.0	11878.2	23858.3
11/24/2009 19:35	188	11980.0	11878.2	23858.3
11/24/2009 19:36	189	11980.0	11934.3	23914.3
11/24/2009 19:36	190	15059.4	14903.8	29963.2
11/24/2009 19:37	191	14499.5	14343.5	28843.0
11/24/2009 19:37	192	14387.5	14175.4	28563.0
11/24/2009 19:38	193	14275.6	14119.4	28395.0
11/24/2009 19:38	194	14275.6	14063.4	28338.9
11/24/2009 19:39	195	14219.6	14063.4	28283.0
11/24/2009 19:39	196	14163.6	14063.4	28227.0
11/24/2009 19:40	197	14163.6	14007.3	28170.9
11/24/2009 19:40	198	14163.6	13951.3	28114.9
11/24/2009 19:41	199	14107.6	13951.3	28058.9
11/24/2009 19:41	200	14107.6	13951.3	28058.9
11/24/2009 19:42	201	14107.6	13895.3	28002.9
11/24/2009 19:42	202	14107.6	13895.3	28002.9
11/24/2009 19:43	203	14107.6	13895.3	28002.9
11/24/2009 19:43	204	14107.6	13895.3	28002.9
11/24/2009 19:44	205	14107.6	13895.3	28002.9
11/24/2009 19:44	206	14107.6	13895.3	28002.9
11/24/2009 19:45	207	14051.6	13895.3	27946.9
11/24/2009 19:45	208	13995.6	13895.3	27890.9
11/24/2009 19:46	209	13995.6	13895.3	27890.9
11/24/2009 19:46	210	15731.3	15576.2	31307.4
11/24/2009 19:47	211	17466.9	17313.1	34780.0
11/24/2009 19:47	212	17243.0	17089.0	34331.9
11/24/2009 19:48	213	17131.0	16976.9	34107.9
11/24/2009 19:48	214	17075.0	16920.9	33995.9
11/24/2009 19:49	215	17019.0	16920.9	33939.9
11/24/2009 19:49	216	17019.0	16808.8	33827.8
11/24/2009 19:50	217	16907.0	16808.8	33715.8
11/24/2009 19:50	218	16907.0	16808.8	33715.8
11/24/2009 19:51	219	16907.0	16752.8	33659.8
11/24/2009 19:51	220	16850.8	16752.6	33603.4
11/24/2009 19:52	221	16850.8	16696.5	33547.3
11/24/2009 19:52	222	16850.9	16696.6	33547.4
11/24/2009 19:53	223	16794.9	16640.5	33435.4
11/24/2009 19:53	224	16794.9	16640.6	33435.5

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoad lbs
11/24/2009 19:54	225	16794.9	16640.6	33435.5
11/24/2009 19:54	226	16794.9	16640.6	33435.5
11/24/2009 19:55	227	16738.9	16640.6	33379.6
11/24/2009 19:55	228	16738.9	16640.6	33379.6
11/24/2009 19:56	229	16739.0	16640.6	33379.6
11/24/2009 19:56	230	16683.0	16584.6	33267.6
11/24/2009 19:57	231	19818.4	19554.2	39372.5
11/24/2009 19:57	232	20154.3	20002.4	40156.7
11/24/2009 19:58	233	19874.4	19778.3	39652.7
11/24/2009 19:58	234	19762.4	19666.2	39428.6
11/24/2009 19:59	23	19706.4	19554.2	39260.6
11/24/2009 19:59	236	19650.4	19498.2	39148.6
11/24/2009 20:00	237	19594.4	19442.1	39036.6
11/24/2009	23	19538.5	19386.1	38924.6
11/24/2009 20:01	239	19482.5	19386.1	38868.6
11/24/2009 20:01	24	19482.5	19330.1	38812.6
11/24/2009 20:02	241	19426.5	19330.1	38756.6
11/24/2009 20:02	242	19426.5	19274.1	38700.6
11	24	19370.5	19274.1	38644.6
11/24/2009 20:03	244	19370.5	19218.1	38588.6
11/24/2009 20:04	24	19370.5	19218.1	38588.6
11/24/2009 20:04	246	19371.2	19162.7	38533.8
11/24/2009 20:05	247	19315.2	19162.7	38477.8
11/24/2009 20:05	248	19315.1	19162.5	38477.6
11/24/2009 20:06	249	19315.1	19162.5	38477.6
11/24/2009 20:06	250	19315.3	19162.8	38478.2
11/24/2009 20:07	251	19315.3	19106.8	38422.1
11/24/2009 20:07	252	22842.6	22636.6	45479.2
11/24/2009 20:08	253	22450.7	22244.4	44695.0
11/24/2009 20:08	254	22282.5	22076.1	44358.7
11/24/2009 20:09	255	22226.5	21964.1	44190.6
11/24/2009 20:09	256	22170.4	21964.0	44134.4
11/24/2009 20:10	257	22114.4	21851.9	43966.4
11/24/2009 20:10	258	22058.5	21851.9	43910.4
11/24/2009 20:11	259	22002.4	21851.8	43854.2
11/24/2009 20:11	260	21946.4	21739.8	43686.1
11/24/2009 20:12	261	21946.3	21739.7	43686.0
11/24/2009 20:12	262	21890.3	21739.7	43630.0
11/24/2009 20:13	263	21890.3	21683.6	43573.9
11/24/2009 20:13	264	21890.3	21683.6	43573.9
11/24/2009 20:14	265	21834.2	21627.5	43461.7
11/24/2009 20:14	266	21834.2	21627.5	43461.7
11/24/2009 20:15	267	21834.2	21627.5	43461.7
11/24/2009 20:15	268	21778.2	21571.5	43349.6
11/24/2009 20:16	269	21778.2	21571.4	43349.6

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoad lbs
11/24/2009 20:16	270	21778.2	21571.4	43349.6
11/24/2009 20:17	271	21778.1	21571.4	43349.5
11/24/2009 20:17	272	24857.5	24653.0	49510.6
11/24/2009 20:18	273	24801.5	24541.0	49342.5
11/24/2009 20:18	274	24577.6	24372.9	48950.4
11/24/2009 20:19	275	24465.6	24260.8	48726.4
11/24/2009 20:19	276	24353.6	24148.7	48502.3
11/24/2009 20:20	277	24241.6	24092.7	48334.3
11/24/2009 20:20	278	24185.6	24036.6	48222.3
11/24/2009 20:21	27	24185.6	23980.6	48166.2
11/24/2009 20:21	28	24130.4	23925.4	48055.8
11/24/2009 20:22	281	24074.4	23925.4	47999.8
11/24/2009 20:22	282	24074.3	23869.2	47943.5
11/24/2009 20:23	283	24074.3	23869.2	47943.5
11/24/2009 20:23	28	24018.1	23869.0	47887.2
11/24/2009 20:24	28	23962.2	23813.0	47775.2
11/24/2009 20:24	286	23962.5	23757.4	47719.9
11/24/2009 20:25	287	23962.5	23757.4	47719.9
11/24/2009 20:25	288	23962.3	23757.2	47719.5
11/24/2009 20:26	289	23962.3	23757.2	47719.5
11/24/2009 20:26	29	23962.3	23757.2	47719.5
11/24/2009 20:27	291	23850.2	23701.0	47551.2
11/24/2009 20:27	292	23850.2	23645.0	47495.2
11/24/2009 20:28	293	13212.5	13055.5	26268.0
11/24/2009 20:28	294	13212.5	13111.6	26324.1
11/24/2009 20:29	295	13212.2	13111.3	26323.4
11/24/2009 20:29	296	13212.2	13055.2	26267.4
11/24/2009 20:30	297	13212.1	13055.1	26267.2
11/24/2009 20:30	298	13212.1	13055.1	26267.2
11/24/2009 20:31	299	13211.8	13054.9	26266.7
11/24/2009 20:31	300	13211.8	13054.9	26266.7
11/24/2009 20:32	301	7501.0	7395.9	14896.9
11/24/2009 20:32	302	12316.0	12046.4	24362.4
11/24/2009 20:33	303	110.4	56.0	166.5
11/24/2009 20:33	304	110.4	0.0	110.4
11/24/2009 20:34	305	110.4	0.0	110.4
11/24/2009 20:34	306	110.4	0.0	110.4
11/24/2009 20:35	307	85997.3	111218.5	197215.8

APPENDIX B: LATERAL LOAD TEST E

TABLE B.1: Inclinometer measurements for pile 3
ASHE MICROPILE LATERAL LOAD TESTING
MICROPILE NO: 3
DATE: 11/16/09
TIME:

	Baseline		
Depth (ft)	A+	A-	Diff. (A)
14	-31	-71	40
12	28	-67	95
10	25	-66	91
8	8	-47	55
6	4	-50	54
4	30	-62	92
2	-15	-31	16

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
14	69	-154	223	183	0.1098	0.1098
12	83	-123	206	111	0.0666	0.1764
10	106	-143	249	158	0.0948	0.2712
8	147	-185	332	277	0.1662	0.4374
6	154	-195	349	295	0.177	0.6144
4	181	-214	395	303	0.1818	0.7962
2	193	-232	425	409	0.2454	1.0416

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
14	68	-153	221	181	-0.1086	-0.1086
12	85	-125	210	115	0.069	-0.0396
10	129	-168	297	206	0.1236	0.084
8	203	-241	444	389	0.2334	0.3174
6	230	-276	506	452	0.2712	0.5886
4	267	-299	566	474	0.2844	0.873
2	268	-312	580	564	0.3384	1.2114

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
30 kips						
14	68	-152	220	180	0.108	0.108
12	89	-128	217	122	0.0732	0.1812
10	162	-200	362	271	0.1626	0.3438
8	272	-311	583	528	0.3168	0.6606
6	331	-373	704	650	0.39	1.0506
4	371	-403	774	682	0.4092	1.4598
2	385	-425	810	794	0.4764	1.9362

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 Kips						
14	67	-152	219	179	0.1074	0.1074
12	93	-133	226	131	0.0786	0.186
10	197	-240	437	346	0.2076	0.3936
8	346	-383	729	674	0.4044	0.798
6	432	-473	905	851	0.5106	1.3086
4	476	-507	983	891	0.5346	1.8432
2	489	-522	1011	995	0.597	2.4402

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
14	64	-151	215	175	0.105	0.105
12	91	-132	223	128	0.0768	0.1818
10	157	-195	352	261	0.1566	0.3384
8	241	-277	518	463	0.2778	0.6162
6	279	-321	600	546	0.3276	0.9438
4	310	-345	655	563	0.3378	1.2816
2	314	-357	671	655	0.393	1.6746

TABLE B.2: Inclinometer measurements for pile 15
PROJECT:ASHE MICROPILE LATERAL LOAD TESTING MICROPILE NO: 15
DATE: DATE :11/24/09
TIME:

	Baseline		
Depth (ft)	A+	A-	Diff. (A)
14	-14	-31	17
12	-12	28	-40
10	-10	25	-35
8	-8	8	-16
6	-6	4	-10
4	-4	30	-34
2	-2	-15	13

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
14	-32	-72	40	23	0.0138	0.0138
12	29	-68	97	137	0.0822	0.096
10	31	-74	105	140	0.084	0.18
8	55	-90	145	161	0.0966	0.2766
6	77	-118	195	205	0.123	0.3996
4	100	-135	235	269	0.1614	0.561
2	79	-121	200	187	0.1122	0.6732

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
14	-31	-73	42	25	0.015	0.015
12	31	-68	99	139	0.0834	0.0984
10	39	-79	118	153	0.0918	0.1902
8	95	-131	226	242	0.1452	0.3354
6	143	-180	323	333	0.1998	0.5352
4	175	-205	380	414	0.2484	0.7836
2	145	-198	343	330	0.198	0.9816

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
30 kips						
14	-33	-73	40	23	0.0138	0.0138
12	30	-69	99	139	0.0834	0.0972
10	47	-89	136	171	0.1026	0.1998
8	153	-191	344	360	0.216	0.4158
6	228	-269	497	507	0.3042	0.72
4	272	-304	576	610	0.366	1.086
2	251	-277	528	515	0.309	1.395

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 kips						
14	-30	-72	42	25	0.015	0.015
12	31	-70	101	141	0.0846	0.0996
10	55	-99	154	189	0.1134	0.213
8	223	-260	483	499	0.2994	0.5124
6	336	-375	711	721	0.4326	0.945
4	387	-418	805	839	0.5034	1.4484
2	357	-395	752	739	0.4434	1.8918

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
14	-31	-70	39	22	-0.0132	-0.0132
12	30	-68	98	138	0.0828	0.0696
10	25	-65	90	125	0.075	0.1446
8	976	-1013	1989	2005	1.203	1.3476
6	1220	-1258	2478	2488	1.4928	2.8404
4	1253	-1284	2537	2571	1.5426	4.383
2	1215	-1261	2476	2463	1.4778	5.8608

TABLE A.3: Load measurements for load test E

TIMESTAMP	RECORD \#	LoadA Ibs	LoadB lbs	Total lbs
11/24/2009 10:20	0	614.3	560.3	1174.6
11/24/2009 10:21	1	614.3	560.3	1174.6
11/24/2009 10:21	2	614.3	560.3	1174.6
11/24/2009 10:22	3	614.3	560.3	1174.6
11/24/2009 10:22	4	2406.0	2297.2	4703.2
11/24/2009 10:23	5	2518.0	2409.3	4927.2
11/24/2009 10:23	6	2517.9	2409.3	4927.2
11/24/2009 10:24	7	2462.0	2409.3	4871.2
11/24/2009 10:24	8	2517.9	2409.3	4927.2
11/24/2009 10:25	9	2517.9	2409.3	4927.2
11/24/2009 10:25	10	2462.0	2409.3	4871.2
11/24/2009 10:26	11	2462.0	2353.2	4815.2
11/24/2009 10:26	12	2462.0	2353.2	4815.2
11/24/2009 10:27	13	2462.0	2353.2	4815.2
11/24/2009 10:27	14	2462.0	2409.3	4871.2
11/24/2009 10:28	15	2462.0	2353.2	4815.2
11/24/2009 10:28	16	2462.0	2353.2	4815.2
11/24/2009 10:29	17	2461.9	2353.2	4815.2
11/24/2009 10:29	18	2461.9	2353.2	4815.2
11/24/2009 10:30	19	2461.9	2353.2	4815.2
11/24/2009 10:30	20	2461.9	2353.2	4815.2
11/24/2009 10:31	21	2461.9	2353.2	4815.2
11/24/2009 10:31	22	2461.9	2353.2	4815.2
11/24/2009 10:32	23	2461.9	2353.2	4815.2
11/24/2009 10:32	24	2406.0	2353.2	4759.2
11/24/2009 10:33	25	5149.4	4930.6	10080.0
11/24/2009 10:33	26	5037.4	4874.6	9912.0
11/24/2009 10:34	27	5037.4	4818.5	9856.0
11/24/2009 10:34	28	5037.4	4818.5	9856.0
11/24/2009 10:35	29	4981.4	4818.5	9800.0
11/24/2009 10:35	30	4981.4	4818.5	9800.0
11/24/2009 10:36	31	4981.4	4818.5	9800.0
11/24/2009 10:36	32	4981.4	4818.5	9800.0
11/24/2009 10:37	33	4981.4	4818.5	9800.0
11/24/2009 10:37	34	4981.4	4818.5	9800.0
11/24/2009 10:38	35	4981.4	4818.5	9800.0
11/24/2009 10:38	36	4981.4	4818.5	9800.0
11/24/2009 10:39	37	4981.4	4818.5	9800.0
11/24/2009 10:39	38	4981.4	4818.5	9800.0
11/24/2009 10:40	39	4981.4	4818.5	9800.0
11/24/2009 10:40	40	4925.5	4818.5	9744.0
11/24/2009 10:41	41	4981.4	4762.5	9744.0
11/24/2009 10:41	42	4981.4	4762.5	9744.0
11/24/2009 10:42	43	4925.5	4762.5	9688.0
11/24/2009 10:42	44	4925.5	4762.5	9688.0

TIMESTAMP	RECORD \#	Load lbs	LoadB lbs	Total lbs
11/24/2009 10:43	45	4925.5	4818.5	9744
11/24/2009 10:43	46	4925.5	4818.5	9744
11/24/2009 10:44	47	4981.4	4818.5	9800
11/24/2009 10:44	48	4981.4	4818.5	9800.0
11/24/2009 10:45	49	4981.4	4818.5	980
11/24/2009 10:45	50	4981.4	4818.5	9800
11/24/2009 10:46	51	4981.4	4818.5	980
11/24/2009 10:46	52	4925.5	4818.5	9744
11/24/2009 10:47	53	7724.9	7451.9	15176
11/24/2009 10:47	54	7612.9	7339.9	495
11/24/2009 10:48	55	7612.9	7339.9	14952.8
11/24/2009 10:48	56	7500.9	7283.8	1478
11/24/2009 10:49	57	7501.0	7283.8	14784.8
11/24/2009 10:49	58	7501.0	7283.8	14784.8
11/24/2009 10:50	59	7501.0	7283.8	1478
11/24/2009 10:50	60	7501.0	7283.8	14784.
11/24/2009 10:51	61	7501.0	7283.8	1478
11/24/2009 10:51	62	7445.0	7283.8	14728.8
11/24/2009 10:52	63	7501.0	7227.8	14728.8
11/24/2009 10:52	64	7501.0	7227.8	14728
11/24/2009 10:53	65	7501.0	7227.8	14728.
11/24/2009 10:53	66	7501.0	7283.8	1478
11/24/2009 10:54	67	7501.0	7283.8	14784.8
11/24/2009 10:54	68	7501.0	7283.8	14784.8
11/24/2009 10:55	69	7501.0	7283.8	14784
11/24/2009 10:55	70	7501.0	7227.8	14728
11/24/2009 10:56	71	7501.0	7283.8	1478
11/24/2009 10:56	72	7501.0	7227.8	14728.
11/24/2009 10:57	73	7501.0	7227.8	14728.8
11/24/2009 10:57	74	10244.4	9917.2	20161.
11/24/2009 10:58	75	10076.4	9805.2	19881.6
11/24/2009 10:58	76	10020.5	9805.2	19825.6
11/24/2009 10:59	77	9964.5	9749.1	19713.
11/24/2009 10:59	78	9964.5	9749.1	19713.6
11/24/2009 11:00	79	9964.5	9693.1	19657.6
11/24/2009 11:00	80	9964.5	9693.1	19657.6
11/24/2009 11:01	81	9908.5	9693.1	19601.6
11/24/2009 11:01	82	9908.5	9693.1	19601.6
11/24/2009 11:02	83	9908.5	9637.1	19545.6
11/24/2009 11:02	84	9908.5	9693.1	19601.
11/24/2009 11:03	85	9908.5	9693.1	19601.6
11/24/2009 11:03	86	9908.5	9637.1	19545.6
11/24/2009 11:04	87	9852.1	9636.8	19488.9
11/24/2009 11:04	88	9852.1	9636.8	19488.9
11/24/2009 11:05	89	9851.9	9636.5	19488.

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	Tota lbs
11/24/2009 11:05	90	9851.9	9636.5	19488.4
11/24/2009 11:06	91	9851.6	9636.3	. 9
11/24/2009 11:06	92	9851.6	9636.3	9487.9
11/24/2009 11:07	93	9851.5	9580.1	9431.6
11/24/2009 11:07	94	9851.5	9580.1	19431.6
11/24/2009 11:08	95	12594.7	12493.4	25088.0
11/24/2009 11:08	96	12482.5	12325.1	6
11/24/2009 11:09	97	12426.5	12269.1	24695.6
11/24/2009 11:09	98	12370.8	12269.4	24640.2
11/24/2009 11:10	99	12370.8	12213.3	24584.2
11/24/2009 11:10	100	12371.1	12213.6	24584.6
11	101	12315.1	12213.6	24528.6
11/24/2009 11:11	102	12314.8	12213.3	24528.2
11/24/2009 11:12	103	12314.8	12213.3	24528.2
11/24/2009 11:12	104	12315.1	12157.5	24472.6
11/24/2009 11:13	105	12315.1	12157.5	24472.6
11/24/2009 11:13	106	12258.8	12157.3	24416.1
11/24/2009 11:14	107	12258.8	12157.3	24416.1
11/24/2009 11:14	108	12314.6	12101.1	24415.7
11/24/2009 11:15	109	12258.7	12157.1	24415.8
11/24/2009 11:15	110	12258.5	12157.0	24415.5
11/24/2009 11:16	111	12258.5	12157.0	24415.5
11/24/2009 11:16	112	12258.5	12100.9	24359.4
11/24/2009 11:17	113	12258.4	12100.8	24359.2
11/24/2009 11:17	114	12258.4	12100.8	24359.2
11/24/2009 11:18	115	12258.3	12100.7	24359.0
11/24/2009 11:18	116	15225.3	15013.9	30239
11/24/2009 11:19	117	15057.2	14845.7	29902.9
11/24/2009 11:19	118	14945.3	14789.7	29735.0
11/24/2009 11:20	119	14945.2	14789.6	29734.8
11/24/2009 11:20	120	14889.2	14733.6	29622.8
11/24/2009 11:21	121	14889.2	14733.5	29622.7
11/24/2009 11:21	122	14889.2	14677.5	29566.7
11/24/2009 11:22	123	14833.1	14677.5	29510.6
11/24/2009 11:22	124	14833.1	14677.5	29510.6
11/24/2009 11:23	125	14833.1	14677.4	29510.5
11/24/2009 11:23	126	14833.1	14621.4	29454.5
11/24/2009 11:24	127	14833.1	14621.4	29454.5
11/24/2009 11:24	128	14777.1	14621.4	29398.5
11/24/2009 11:25	129	14777.	14621.4	29398.5
11/24/2009 11:25	130	14777.1	14621.3	29398.4
11/24/2009 11:26	131	14777.1	14565.3	29342.4
11/24/2009 11:26	132	14721.1	14565.3	29286.4
11/24/2009 11:27	133	14777.0	14621.3	29398.4
11/24/2009 11:27	134	14721.0	14621.3	29342.4

TIMESTAMP	RECO \#	LoadA lbs	LoadB Ibs	Tota lbs
11/24/2009 11:28	135	14721.0	14565.3	29286.3
11/24/2009 11:28	136	14721.0	14565.3	29286.3
11/24/2009 11:29	137	17464.0	17310.3	34774.3
11/24/2009 11:29	138	17687.9	17478.3	35166.3
11/24/2009 11:30	13	17632.0	17422.3	. 3
11/24/2009 11:30	140	17575.4	17365.7	349
11/24/2009 11:31	141	17519.4	17365.7	34885.1
11/24/2009 11:31	142	17519.5	17365.8	34885.3
11/24/2009 11:32	143	17519.5	17309.8	34829.3
11/24/2009 11:32	144	1746	17309.8	34773.3
11/24/2009 11:33	145	17463.6	17253.9	34717.5
11/24/2009 11:33	6	17463.6	17253.9	5
11/24/2009 11:34	147	17463	17253.9	34717.6
11/24/2009 11:34	148	17463.7	17197.9	34661.6
11/24/2009 11:35	149	17407.8	17198.0	34605.7
11/24/2009 11:35	150	17407.8	17198.0	34605.7
11/24/2009 11:36	15	1735	17198.0	34549.8
11/24/2009 11:36	152	17407	17198.0	34
11/24/2009 11:37	153	17351.9	17142.0	34493.9
11/24/2009 11:37	15	17295.9	17	34437.9
11/24/2009 11:38	155	17295.9	17142.0	34438.0
11/24/2009 11:38	156	17295.9	17142.0	34438.0
11/24/2009 11:39	157	17240.0	17142.1	34382.0
11/24/2009 11:39	158	19815.0	19606.9	39422.0
11/24/2009 11:40	159	20038.9	19831.0	3986
11/24/2009 11:40	160	19983.	19775.0	39758.0
11/24/2009 11:41	161	19983.0	19719.0	39702.0
11/24/2009 11:41	162	19927.0	19719.0	39646.0
11/24/2009 11:42	163	19927	19719.0	39646.0
11/24/2009 11:42	164	19926.7	19718.8	39645
11/24/2009 11:43	16	19926.7	19662.7	39589.
11/24/2009 11:43	166	19814.9	19662.8	39477.7
11/24/2009 11:44	167	19870.8	19662.8	39533.6
11/24/2009 11:44	168	19870.9	19662.9	39533.7
11/24/2009 11:45	169	19814.9	19662.9	39477.8
11/24/2009 11:45	170	19815.0	19662.9	39477.8
11/24/2009 11:46	171	19815.0	19662.9	39477.8
11/24/2009 11:46	172	19815.3	19663.2	39478.5
11/24/2009 11:47	173	19815.3	19663.2	39478.5
11/24/2009 11:47	174	19814.6	19606.5	39421.0
11/24/2009 11:48	175	19814.6	19606.5	39421.0
11/24/2009 11:48	176	19814.6	19606.5	39421.0
11/24/2009 11:49	177	19758.0	19605.9	39364.0
11/24/2009 11:49	178	19758.0	19605.9	39364.0
11/24/2009 11:50	179	21604.7	21398.0	43002.7

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	Total Ibs
11/24/2009 11:50	180	11473.3	11427.2	22900.5
11/24/2009 11:51	181	9010.2	9018.4	18028.6
11/24/2009 11:51	182	8674.3	8682.3	17356.6
11/24/2009 11:52	183	8618.5	8570.4	17189.0
11/24/2009 11:52	184	8562.6	8570.4	17133.0
11/24/2009 11:53	185	8562.4	8514.2	17076.6
11/24/2009 11:53	186	8562.4	8458.2	17020.6
11/24/2009 11:54	187	8450.3	8458.1	16908.4
11/24/2009 11:54	188	8450.3	8458.1	16908.4
11/24/2009 11:55	189	8450.5	8458.3	16908.8
11/24/2009 11:55	190	8450.5	8458.3	16908.8
11/24/2009 11:56	191	8394.5	8402.3	16796.8
11/24/2009 11:56	192	8394.4	8402.1	16796.6
11/24/2009 11:57	193	8394.4	8402.1	16796.6
11/24/2009 11:57	194	8394.3	8402.0	16796.3
11/24/2009 11:58	195	8394.3	8402.0	16796.3
11/24/2009 11:58	196	8394.2	8345.9	16740.1
11/24/2009 11:59	197	7442.7	7393.7	14836.4
11/24/2009 11:59	198	54.3	56.0	110.3
11/24/2009 12:00	199	54.3	56.0	110.3
11/24/2009 12:00	200	54.3	56.0	110.3
11/24/2009 12:01	201	54.3	56.0	110.3
11/24/2009 12:01	202	54.3	56.0	110.3
11/24/2009 12:02	203	54.3	56.0	110.3

APPENDIX C: LATERAL LOAD TEST F

TABLE C.1: Inclinometer measurements for pile 4 PROJECT:ASHE MICROPILE LATERAL LOAD TESTING MICROPILE NO: 4
DATE:
TIME:

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	-309	272	-581
16	-289	245	-534
14	-254	228	-482
12	-274	230	-504
10	-307	265	-572
8	-333	297	-630
6	-391	343	-734
4	-421	385	-806
2	-483	436	-919

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
18	-310	269	-579	2	0.0012	0.0012
16	-288	245	-533	1	0.0006	0.0018
14	-254	219	-473	9	0.0054	0.0072
12	-270	232	-502	2	0.0012	0.0084
10	-306	270	-576	-4	-0.0024	0.006
8	-328	298	-626	4	0.0024	0.0084
6	-364	316	-680	54	0.0324	0.0408
4	-376	353	-729	77	0.0462	0.087
2	-436	382	-818	101	0.0606	0.1476

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
18	-309	270	-579	2	0.0012	0.0012
16	-289	245	-534	0	0	0.0012
14	-254	221	-475	7	0.0042	0.0054
12	-273	232	-505	-1	-0.0006	0.0048
10	-303	263	-566	6	0.0036	0.0084
8	-306	269	-575	55	0.033	0.0414
6	-311	263	-574	160	0.096	0.1374
4	-304	268	-572	234	0.1404	0.2778
2	-357	313	-670	249	0.1494	0.4272

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
30 kips						
18	-309	269	-578	3	0.0018	0.0018
16	-290	246	-536	-2	-0.0012	0.0006
14	-253	223	-476	6	0.0036	0.0042
12	-274	231	-505	-1	-0.0006	0.0036
10	-303	260	-563	9	0.0054	0.009
8	-276	258	-534	96	0.0576	0.0666
6	-251	199	-450	284	0.1704	0.237
4	-224	183	-407	399	0.2394	0.4764
2	-268	223	-491	428	0.2568	0.7332

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
18	-310	270	-580	1	0.0006	0.0006
16	-289	246	-535	-1	-0.0006	0
14	-253	221	-474	8	0.0048	0.0048
12	-269	230	-499	5	0.003	0.0078
10	-290	251	-541	31	0.0186	0.0264
8	-268	230	-498	132	0.0792	0.1056
6	-256	205	-461	273	0.1638	0.2694
4	-249	214	-463	343	0.2058	0.4752
2	-302	242	-544	375	0.225	0.7002

TABLE C.2: Inclinometer measurements for pile 16
PROJECT:ASHE MICROPILE LATERAL LOAD TESTING
MICROPILE NO: 16
DATE: 11/24/09
TIME:

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	246	-284	530
16	252	-292	544
14	286	-321	607
12	269	-308	577
10	269	-310	579
8	280	-317	597
6	269	-314	583
4	290	-321	611
2	355	-334	689

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
18	242	-284	526	-4	-0.0024	-0.0024
16	252	-292	544	0	0	-0.0024
14	290	-322	612	5	0.003	0.0006
12	262	-307	569	-8	-0.0048	-0.0042
10	262	-309	571	-8	-0.0048	-0.009
8	308	-344	652	55	0.033	0.024
6	329	-375	704	121	0.0726	0.0966
4	362	-393	755	144	0.0864	0.183
2	375	-416	791	102	0.0612	0.2442

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
18	247	-284	531	1	0.0006	0.0006
16	251	-293	544	0	0	0.0006
14	284	-322	606	-1	-0.0006	0
12	268	-309	577	0	0	0
10	281	-321	602	23	0.0138	0.0138
8	354	-391	745	148	0.0888	0.1026
6	424	-470	894	311	0.1866	0.2892
4	479	-511	990	379	0.2274	0.5166
2	492	-532	1024	335	0.201	0.7176

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
30 kips						
18	246	-284	530	0	0	0
16	242	-293	535	-9	-0.0054	-0.0054
14	285	-322	607	0	0	-0.0054
12	268	-307	575	-2	-0.0012	-0.0066
10	309	-332	641	62	0.0372	0.0306
8	404	-439	843	246	0.1476	0.1782
6	529	-572	1101	518	0.3108	0.489
4	580	-629	1209	598	0.3588	0.8478
2	613	-652	1265	576	0.3456	1.1934

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
18	246	-288	534	4	0.0024	0.0024
16	252	-292	544	0	0	0.0024
14	284	-321	605	-2	-0.0012	0.0012
12	270	-309	579	2	0.0012	0.0024
10	293	-336	629	50	0.03	0.0324
8	411	-455	866	269	0.1614	0.1938
6	1071	-1115	2186	1603	0.9618	1.1556
4	1111	-1145	2256	1645	0.987	2.1426
2	1124	-1168	2292	1603	0.9618	3.1044

TABLE C.3: Load measurements for load test F

TIMESTAMP	$\begin{aligned} & \text { RECORD } \\ & \# \end{aligned}$	LoadA lbs	LoadB lbs	Total lbs
11/24/2009 14:33		334.1573	224.0451	558.2024
11/24/2009 14:33	1	334.1573	224.0451	558.2024
11/24/2009 14:34	2	334.1573	224.0451	558.2024
11/24/2009 14:34		446.0869	336.0626	782.1494
11/24/2009 14:35	4	2516.969	2520.469	5037.438
11/24/2009 14:35	5	2516.973	2464.463	4981.437
11/24/2009 14:36	6	2461.003	2464.463	4925.466
11/24/2009 14:36		2461.007	2408.456	4869.463
11/24/2009 14:37	8	2461.007	2408.456	4869.463
11/24/2009 14:37	9	2405.04	2408.458	4813.499
11/24/2009 14:38	10	2405.04	2408.458	4813.499
11/24/2009 14:38	11	2405.043	2408.46	4813.503
11/24/2009 14:39	12	2405.043	2408.46	4813.503
11/24/2009 14:39	13	2405.044	2352.451	4757.496
11/24/2009 14:40	14	2349.074	2352.451	4701.526
11/24/2009 14:40	15	2349.076	2352.452	4701.528
11/24/2009 14:41	16	2405.046	2352.452	4757.498
11/24/2009 14:41	17	2405.047	2352.453	4757.5
11/24/2009 14:42	18	2405.047	2296.443	4701.489
11/24/2009 14:42	19	2405.047	2296.443	4701.489
11/24/2009 14:43	20	2349.078	2296.443	4645.521
11/24/2009 14:43	21	2349.078	2296.443	4645.521
11/24/2009 14:44	22	2349.079	2296.444	4645.523
11/24/2009 14:44	23	2349.079	2352.455	4701.534
11/24/2009 14:45	24	2349.079	2352.456	4701.535
11/24/2009 14:45	25	5035.648	5040.976	10076.63
11/24/2009 14:46	26	4923.709	4872.945	9796.654
11/24/2009 14:46	27	4923.709	4872.945	9796.654
11/24/2009 14:47	28	4867.739	4816.935	9684.674
11/24/2009 14:47	29	4867.739	4760.923	9628.662
11/24/2009 14:48	30	4811.77	4760.924	9572.693
11/24/2009 14:48	31	4811.77	4760.924	9572.693
11/24/2009 14:49	32	4755.8	4760.924	9516.725
11/24/2009 14:49	33	4755.8	4760.924	9516.725
11/24/2009 14:50	34	4755.8	4760.924	9516.725
11/24/2009 14:50	35	4811.84	4704.978	9516.817
11/24/2009 14:51	36	4755.869	4704.978	9460.847
11/24/2009 14:51	37	4699.885	4704.965	9404.85
11/24/2009 14:52	38	4755.855	4648.953	9404.809
11/24/2009 14:52	39	4755.775	4648.88	9404.656
11/24/2009 14:53	40	4755.775	4648.88	9404.656
11/24/2009 14:53	41	4699.811	4648.885	9348.695
11/24/2009 14:54	42	4699.811	4648.885	9348.695
11/24/2009 14:54	43	4699.815	4592.878	9292.693
11/24/2009 14:55	44	4699.815	4592.878	9292.693

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	Total lbs
11/24/2009 14:55	45	4867.729	4816.924	9684.652
11/24/2009 14:56	46	7498.323	7393.419	14891.74
11/24/2009 14:56	47	7386.386	7281.4	14667.79
11/24/2009 14:57	48	7330.416	7281.4	14611.82
11/24/2009 14:57	49	7330.419	7225.393	14555.81
11/24/2009 14:58	50	7274.449	7169.382	14443.83
11/24/2009 14:58	51	7274.449	7225.393	14499.84
11/24/2009 14:59	52	7218.481	7113.374	14331.86
11/24/2009 14:59	53	7218.481	7113.374	14331.86
11/24/2009 15:00	54	7218.483	7113.375	14331.86
11/24/2009 15:00	55	7218.483	7113.375	14331.86
11/24/2009 15:01	56	7218.485	7113.377	14331.86
11/24/2009 15:01	57	7162.516	7113.377	14275.89
11/24/2009 15:02	58	7162.518	7113.379	14275.9
11/24/2009 15:02	59	7162.518	7057.369	14219.89
11/24/2009 15:03	60	7106.649	7057.465	14164.12
11/24/2009 15:03	61	7106.649	7057.465	14164.12
11/24/2009 15:04	62	7106.527	7057.35	14163.88
11/24/2009 15:04	63	7106.527	7057.35	14163.88
11/24/2009 15:05	64	7106.532	7057.354	14163.89
11/24/2009 15:05	65	7106.532	6945.333	14051.87
11/24/2009 15:06	66	7106.532	6945.333	14051.87
11/24/2009 15:06	67	9961.012	9913.906	19874.92
11/24/2009 15:07	68	10072.95	9913.906	19986.86
11/24/2009 15:07	69	9961.016	9857.9	19818.92
11/24/2009 15:08	70	9905.046	9801.89	19706.94
11/24/2009 15:08	71	9905.049	9745.882	19650.93
11/24/2009 15:09	72	9793.108	9745.882	19538.99
11/24/2009 15:09	73	9848.943	9689.742	19538.69
11/24/2009 15:10	74	9792.974	9745.753	19538.73
11/24/2009 15:10	75	9792.866	9689.639	19482.5
11/24/2009 15:11	76	9736.897	9633.63	19370.53
11/24/2009 15:11	77	9736.947	9633.678	19370.63
11/24/2009 15:12	78	9736.947	9633.678	19370.63
11/24/2009 15:12	79	9736.988	9633.716	19370.7
11/24/2009 15:13	80	9736.988	9633.716	19370.7
11/24/2009 15:13	81	9681.188	9633.879	19315.07
11/24/2009 15:14	82	9681.188	9633.879	19315.07
11/24/2009 15:14	83	9681.188	9577.867	19259.05
11/24/2009 15:15	84	9625.08	9521.727	19146.81
11/24/2009 15:15	85	9625.08	9521.727	19146.81
11/24/2009 15:16	86	9625.106	9521.751	19146.86
11/24/2009 15:16	87	9625.106	9521.751	19146.86
11/24/2009 15:17	88	12479.41	12378.13	24857.54
11/24/2009 15:17	89	12423.44	12322.12	24745.57

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	Total lbs
11/24/2009 15:18	90	12311.56	12210.16	24521.72
11/24/2009 15:18	91	12255.59	12154.15	24409.74
11/24/2009 15:19	92	12199.5	12098.02	24297.51
11/24/2009 15:19	93	12199.5	12042.01	24241.5
11/24/2009 15:20	94	12143.42	12041.91	24185.34
11/24/2009 15:20	95	12143.42	12041.91	24185.34
11/24/2009 15:21	96	12143.34	12041.83	24185.18
11/24/2009 15:21	97	12087.38	11985.82	24073.2
11/24/2009 15:22	98	12031.41	11985.82	24017.23
11/24/2009 15:22	99	12031.34	11985.76	24017.11
11/24/2009 15:23	100	12031.34	11985.76	24017.11
11/24/2009 15:23	101	12031.29	11985.71	24017.01
11/24/2009 15:24	10	12031.29	11929.71	61
11/24/2009 15:24	103	12031.59	11929.99	23961.58
11/24/2009 15:25	104	11975.62	11929.99	23905.61
11/24/2009 15:25	105	11975.52	11873.88	23849.41
11/24/2009 15:26	106	11975.52	11873.88	23849.41
11/24/2009 15:26	10	11975.78	11874.13	23849.91
11/24/2009 15:27	108	11975.78	11874.13	23849.91
11/24/2009 15:27	109	14606.59	14562.86	29169.44
11/24/2009 15:28	110	14942.41	14842.91	29785.32
11/24/2009 15:28	111	14774.49	14674.87	29449.36
11/24/2009 15:29	11	14662.55	14618.86	29281.41
11/24/2009 15:29	113	14662.75	14563.04	29225.8
11/24/2009 15:30	11	14606.78	14563.04	29169.82
11/24/2009 15:30	115	14606.78	14451.02	29057.8
11/24/2009 15:31	116	14550.97	14451.17	29002.14
11/24/2009 15:31	117	14550.97	14451.17	29002.14
11/24/2009 15:32	118	14495.12	14451.3	28946.42
11/24/2009 15:32	119	14495.12	14451.3	28946.42
11/24/2009 15:33	120	14495.02	14395.19	28890.21
11/24/2009 15:33	121	14495.02	14395.19	28890.21
11/24/2009 15:34	122	14494.94	14395.11	28890.05
11/24/2009 15:34	123	14494.94	14395.11	28890.05
11/24/2009 15:35	124	14438.91	14395.05	28833.96
11/24/2009 15:35	125	14438.91	14339.04	28777.95
11/24/2009 15:36	126	14438.86	14282.98	28721.83
11/24/2009 15:36	127	14382.88	14282.98	28665.86
11/24/2009 15:37	128	14383.04	14283.13	28666.18
11/24/2009 15:37	129	14383.04	14283.13	28666.18
11/24/2009 15:38	130	14383.04	14283.13	28666.18
11/24/2009 15:38	131	17629.31	17531.76	35161.07
11/24/2009 15:39	132	17181.54	17083.66	34265.2
11/24/2009 15:39	133	17069.76	16971.8	34041.56
11/24/2009 15:40	134	17013.79	16971.8	33985.59

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	Total Ibs
11/24/2009 15:40	135	16957.72	16859.67	33817.39
11/24/2009 15:41	136	16901.75	16859.67	33761.42
11/24/2009 15:41	137	16901.66	16859.59	33761.26
11/24/2009 15:42	138	16845.69	16803.58	33649.27
11/24/2009 15:42	139	16845.63	16747.51	33593.14
11/24/2009 15:43	140	16789.66	16747.51	33537.16
11/24/2009 15:43	141	16789.37	16747.23	33536.6
11/24/2009 15:44	142	16789.37	16691.22	33480.59
11/24/2009 15:44	143	16733.64	16691.45	33425.09
11/24/2009 15:45	144	16733.64	16691.45	33425.09
11/24/2009 15:45	145	16733.83	16691.64	33425.47
11/24/2009 15:46	146	16733.83	16691.64	33425.47
11/24/2009 15:46	147	16677.86	16691.64	33369.5
11/24/2009 15:47	148	16677.78	16691.56	33369.34
11/24/2009 15:47	149	16677.78	16691.56	33369.34
11/24/2009 15:48	150	16677.72	16579.47	33257.19
11/24/2009 15:48	151	16677.72	16579.47	33257.19
11/24/2009 15:49	152	19868.01	19772.08	39640.09
11/24/2009 15:49	153	7666.35	7673.584	15339.93
11/24/2009 15:50	154	7722.41	7729.682	15452.09
11/24/2009 15:50	155	7722.41	7729.682	15452.09
11/24/2009 15:51	156	7722.481	7729.75	15452.23
11/24/2009 15:51	157	7722.481	7729.75	15452.23
11/24/2009 15:52	158	7722.431	7729.701	15452.13
11/24/2009 15:52	159	7722.431	7729.701	15452.13
11/24/2009 15:53	160	7722.279	7729.556	15451.84
11/24/2009 15:53	161	7722.279	7729.556	15451.84
11/24/2009 15:54	162	7722.279	7729.556	15451.84
11/24/2009 15:54	163	7722.158	7729.44	15451.6
11/24/2009 15:55	164	7722.158	7785.451	15507.61
11/24/2009 15:55	165	7722.171	7785.462	15507.63
11/24/2009 15:56	166	7722.171	7785.462	15507.63
11/24/2009 15:56	167	7722.29	7785.579	15507.87
11/24/2009 15:57	168	5707.346	5545.125	11252.47
11/24/2009 15:57	169	110.281	56.01203	166.293

APPENDIX D: LATERAL LOAD TEST I

TABLE D.1: Inclinometer measurements for pile 10 PROJECT:ASHE MICROPILE LATERAL LOAD TESTING
MICROPILE NO: 10
DATE: 11/25/09
TIME:

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	184	-222	406
16	190	-229	419
14	200	-235	435
12	192	-232	424
10	226	-256	482
8	243	-283	526
6	211	-251	462
4	171	-206	377
2	122	-166	288

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
17.75	184	-223	407	1	0.0006	0.0006
15.75	191	-230	421	2	0.0012	0.0018
13.75	197	-235	432	-3	-0.0018	0
11.75	193	-233	426	2	0.0012	0.0012
9.75	222	-259	481	-1	-0.0006	0.0006
7.75	252	-291	543	17	0.0102	0.0108
5.75	232	-274	506	44	0.0264	0.0372
3.75	205	-243	448	71	0.0426	0.0798
1.75	165	-238	403	115	0.069	0.1488

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
17.75	185	-222	407	1	0.0006	0.0006
15.75	193	-229	422	3	0.0018	0.0024
13.75	198	-234	432	-3	-0.0018	0.0006
11.75	191	-231	422	-2	-0.0012	-0.0006
9.75	226	-260	486	4	0.0024	0.0018
7.75	267	-304	571	45	0.027	0.0288
5.75	277	-315	592	130	0.078	0.1068
3.75	265	-303	568	191	0.1146	0.2214
1.75	224	-274	498	210	0.126	0.3474

Depth (ft)	A+	A-	Diff.(A)	Change	Increment	Total
30 kips						
17.75	185	-223	408	2	0.0012	0.0012
15.75	192	-229	421	2	0.0012	0.0024
13.75	197	-233	430	-5	-0.003	-0.0006
11.75	192	-233	425	1	0.0006	0
9.75	232	-263	495	13	0.0078	0.0078
7.75	276	-326	602	76	0.0456	0.0534
5.75	340	-382	722	260	0.156	0.2094
3.75	351	-392	743	366	0.2196	0.429
1.75	328	-409	737	449	0.2694	0.6984

TABLE D.2: Inclinometer measurements for pile 11 PROJECT:ASHE MICROPILE LATERAL LOAD TESTING MICROPILE NO: 11
DATE: 11/25/09
TIME:

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	-98	61	-159
16	-101	61	-162
14	-61	26	-87
12	-66	23	-89
10	-49	6	-55
8	-58	20	-78
6	-81	41	-122
4	-57	21	-78
2	-60	15	-75

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
10 kips						
17.333	-99	61	-160	-1	-0.0006	-0.0006
15.333	-105	62	-167	-5	-0.003	-0.0036
13.333	-61	28	-89	-2	-0.0012	-0.0048
11.333	-64	25	-89	0	0	-0.0048
9.333	-50	6	-56	-1	-0.0006	-0.0054
7.333	-53	15	-68	10	0.006	0.0006
5.333	-65	24	-89	33	0.0198	0.0204
3.333	-14	-33	19	97	0.0582	0.0786
1.333	3	-55	58	133	0.0798	0.1584

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
17.333	-103	61	-164	-5	-0.003	-0.003
15.333	-102	61	-163	-1	-0.0006	-0.0036
13.333	-61	25	-86	1	0.0006	-0.003
11.333	-66	25	-91	-2	-0.0012	-0.0042
9.333	-49	4	-53	2	0.0012	-0.003
7.333	-39	-14	-25	53	0.0318	0.0288
5.333	-18	-33	15	137	0.0822	0.111
3.333	64	-97	161	239	0.1434	0.2544
1.333	78	-117	195	270	0.162	0.4164

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
30 kips						
17.333	-99	61	-160	-1	-0.0006	-0.0006
15.333	-102	62	-164	-2	-0.0012	-0.0018
13.333	-62	27	-89	-2	-0.0012	-0.003
11.333	-66	35	-101	-12	-0.0072	-0.0102
9.333	-47	-22	-25	30	0.018	0.0078
7.333	-17	-38	21	99	0.0594	0.0672
5.333	54	-95	149	271	0.1626	0.2298
3.333	142	-166	308	386	0.2316	0.4614
1.333	162	-202	364	439	0.2634	0.7248

TABLE D.3: Load and displacement measurements for load test I

MP	$\begin{aligned} & \text { RECORD } \\ & \text { \# } \end{aligned}$							
/2009 1		0169.5143	56.	225.8891	20.64579	21.70	0.4	21.41968
11/25/2009 11:07		169.5143	56.37	225.8891	20.64579	21.70345	20.49618	15
11/25/2009 11:08		2141.198	2085.8	422	20.6	21.67985	20.	21.38708
11/25/2009 11:08		2704.536	2705.987	5410.523	20.62435	21.65807	93	21.36715
11/25/2009 11:08		270	2593.15	5297.583	463	21.66018	20.46202	
11/25/2009 11:08		27	2593.15	52	20.62463	21.65836	20.46202	21.36563
11/25/2009 11:09		2704	25	5297	20.62463	21.65836	20.46383	21.36926
11/25/2009 11:09		2648.101	2593.15	52	20.62463	21.65836	20.46202	21.36744
11/25/2009 11:09		2591.7	259	5184.919	20.62463	21.65836	20.4602	2
11/25/2009 11:09		1.69	2593.08	51	20.62485	21.65859	20.46042	21.36405
11/25/2009 11:10		102591.69	259	5184.771	85	678	42	21.36405
11/25/2009 11:10	11	112591.69	2536.	5128	20.62485	21	20.46042	21.36405
11/25/2009 11:10		22591.69	2480.338	28	485	21.65859	42	21.36405
11/25/2009 11:10		2591.627	2480.28	5071.91	20.62075	21.6	20.	21.36351
11/25/2009 11:11		142591.627	2480.28	5071.	20.61718	21.65079	20.	21.36351
11/25/2009 11:11		2591.627	2480.284	5071.911	.61	21.65	20.4581	21.3617
11/25/2009 11:11	16	62591.627	2480.28	5071.911	20.61718	79	20.4581	21.3617
11/25/2009 11:11		72591.576	2480.	5071	20.61746	21.65108	20.45475	1.3
11/25/2009 11:12	18	82591.576	2480.241	50	20.61746	21.64927	20.45294	21.35656
11/25/2009 11:12		2591.576	2480.241	5071.817	. 6	21.64382	20.45294	21.35837
11/25/2009 11:12	20	202591.576	880	5071.817	20.61	21.	20.45294	21.35656
11/25/2009 11:12		2591.536	2480.207	507	20.6145	21	20.45177	21.35534
11/25/2009 11:13		222591	2480.207	5071.742	20.6145	21.64259	20.45177	21.35534
11/25/2009 11:13		232591.536	2480.2	5071.742	20.6145	21.63533	20.45177	21
11/25/2009 11:13		2425	2480.207	5071.742	20.59485	21.61354	20.45721	21.36802
11/25/2009 11:13		2591.536	2480.207	5071.742	20.59485	21.61354	20.45902	21.
11/25/2009 11:14		26	2480.213	5071.757	20.59531	21.61403	20.45767	21.36307
11/25/2009 11:14		272591.544	2480.213	5071.757	20.5	21.61221	20.45586	21.36307
11/25/2009 11:14		282591.544	2480.213	5071.757	20.59531	21.61221	20.45767	21.36307
11/25/2009 11:14		2591.544	2480.213	5071.757	20.59531	21.60858	20.45404	1.36307
11/25/2009 11:15		30	2480.269	5071.877	20.59428	21.6075	20.45121	21.362
11/25/2009 11:15		312591.609	2480.269	5071.877	20.59428	21.60568	20.45121	. 36
11/25/2009 11:15		32259	2480.269	507	20.59071	21.60568	20.45121	21.36019
11/25/2009 11:15	33	332591.609	2480.269	5071.877	20.59249	21.6	20.45121	21.36019
11/25/2009 11:16		342591.562	2480.229	5071.79	20.58879	21.	20.45108	21.35644
11/25/2009 11:16	35	352591.562	2480.229	5071.79	20.59058	21.6055	20	21.35644
11/25/2009 11:16		362591.562	2480.229	5071.79	20.5905	21.603	20.45108	21.3
11/25/2009 11:16	37	372535.234	2480.229	5015.462	20.58879	21.60555	20.4	21.35644
11/25/2009 11:17		382535.234	2480.229	5015.462	20.58879	21.60555	20.4510	21.3
11/25/2009 11:17	39	392535.294	2480.281	5015.574	20.58691	21.60545	20.4	21.3
11/25/2009 11:17		402591.623	2480.281	5071.903	20.58691	21.60363	20.44736	21.35452
11/25/2009 11:17		12591.623	2480.281	5071.903	20.5869	21.60545	20.44736	21.3
11/25/2009 11:18	42	2591.623	2480.281	5071.903	20.58691	21.60182	20.44555	21.35452
11/25/2009 11:18	43	34281.573	4171.451	8453.023	20.58038	21.59158	20.41535	21.30807
1/25/2009 11:18	44	5295.51	5186.12	10481.	0.54	21.548	0.38	21.27547

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoa lbs	Pot in	PotB in	PotC in	PotD in
11/25/2009 11:18	45	5182.854	5073.386	10256.24	20.5375	21.54801	20.38634	21.27547
11/25/2009 11:19	46	5070.193	4960.644	10030.84	20.5375	21.54801	20.38634	21.27547
11/25/2009 11:19	47	5070.083	4960.543	10030.63	20.53729	21.54598	20.38614	21.27164
11/25/2009 11:19	48	5070.083	4960.543	10030.63	20.53729	21.54598	20.38433	21.26982
11/25/2009	49	5070.083	4960.543	10030.63	20.53729	21.5478	20.38614	21.27526
11/25/2009 11:20	50	5070.083	4960.543	10030.63	20.53729	21.5478	20.38614	21.26982
11/25/2009 11:20	51	5013.667	4904.093	9917.76	20.53783	21.54654	20.38667	21.27219
11/25/2009	52	4	4847.724	9805.064	20.53783	21.54836	20.38667	74
11/25/2009 11:20	53	4957.34	4847.724	9805.064	20.53783	21.5411	20.38486	21.27219
11/25/2009 11:21	54	4957.34	4847.724	9805.064	20.53783	21.5411	20.38486	38
11/25/2009 11:21	55	4957.34	4847.724	9805.064	20.53783	21.53928	20.38486	21.26857
11/25/2009 11:2	56	4957.449	4847.825	9805.274	20.53111	21.53428	20.38528	21.27082
11/25/2009 1	57	4957.449	4847.825	9805.274	20.53469	21.53428	1	26
11/25/2009 11:22	58	4957.449	4847.825	9805.274	20.53469	21.53428	20.3871	21.27626
11/25/2009 11:22	59	4957.449	4847.82	9805.274	20.53826	21.53973	72	07
11/25/2009 11:22	60	4957.537	4847.906	9805.443	20.5379	21.53573	20.39037	21.27589
11/25/2009 11:22	61	4957.537	4847.906	9805.443	20.5379	21.53754	20.39218	21.27589
11/25/2009 11:23	62	4957.537	484	9805.443	20.5379	21.53573	38675	89
11/25/2009 11:23	63	4957.537	4847.906	9805.443	20.5379	21.53573	20.38675	21.27589
11/25/2009 11:23	64	4957.429	4847.807	9805.235	20.53692	21.53833	20.38577	21.27487
11/25/2009 11:23	65	4957.429	4847.80	9805.235	20.53514	21	20.38577	87
11/25/2009 11:24	66	4957.429	4847.807	9805.235	20.53514	21.53833	20.38758	21.27487
11/25/2009 11:24	67	4901.1	4847.807	9748.906	20.53514	21.53288	20.39302	21.2803
11/25/2009 11:24	68	4901.191	4847.891	9749.082	20.53326	21.53461	20.39112	21.28021
11/25/2009 11:24	69	4901.191	4847.891	9749.082	20.53683	21.53279	20.39293	21.28021
11/25/2009 11:	70	4844.861	4847.89	9692.752	20.53148	21.53279	20.38931	21.2784
11/25/2009 11:25	71	4844.861	4847.891	9692.752	20.53505	21.53279	20.39293	21.27116
11/25/2009 11:25	72	4844.861	4847.891	9692.752	20.53505	21.53279	20.39293	21.27297
11/25/2009 11:2	73	4844.758	4791.424	9636.182	20.53389	21.53345	20.39174	1
11/25/2009 11:26	74	4844.758	4847.794	9692.552	20.53032	21.53164	20.38631	21.26818
11/25/2009 11:26	75	4844.758	4791.424	9636.182	20.53032	21.52982	20.38631	21.26818
11/25/2009 11:26	76	4844.758	4791.424	9636.182	20.52853	21.52982	20.38631	21.26818
11/25/2009 11:26	77	4844.675	4734.979	9579.654	20.53012	21.53143	20.38611	21.26798
11/25/2009 11:27	78	4844.675	4734.979	9579.654	20.53012	21.53325	20.38611	21.26798
11/25/2009 11:27	79	4844.675	4734.979	9579.654	20.53369	21.53325	20.38792	21.2716
11/25/2009 11:27	80	4844.675	4734.979	9579.654	20.53191	21.53325	20.38611	21.26798
11/25/2009 11:27	81	4844.855	4735.144	9580	20.53066	21.53381	20.38665	21.26855
11/25/2009 11:28	82	4844.855	4735.144	9580	20.53066	21.53018	20.38665	21.26855
11/25/2009 11:28	83	4844.855	4735.144	9580	20.53066	21.53018	20.38665	21.26855
11/25/2009 11:28	84	4844.855	4735.144	9580	20.52887	21.53018	20.38484	21.26673
11/25/2009 11:28	85	6647.369	6538.97	13186.34	20.50608	21.49614	20.34357	21.2219
11/25/2009 11:29	86	7548.642	7440.896	14989.54	20.45962	21.43623	20.29825	21.16756
11/25/2009 11:29	87	7435.982	7328.156	14764.14	20.45962	21.43623	20.29825	21.16756
11/25/2009 11:29	88	7435.982	7328.156	14764.14	20.45783	21.4326	20.30006	21.16756
11/25/2009 11:29	89	7435.982	7328.156	14764.14	20.45962	21.43442	20.30006	21.16937
11/25/2009 11:30	90	7323.182	7271.651	14594.83	20.45996	21.43296	20.30041	21.17154
11/25/2009 11:30	91	7323.182	7215.281	14538.46	20.45818	21.43296	20.29859	21.16791

STAMP	RECORD \#	Load lbs	Load lbs			$\begin{aligned} & \text { Pot } \\ & \text { in } \end{aligned}$		PotD in
30	92	7323.182	7215.28	14538	20.4	21.4	20.2	
11/25/2009 11:30	93	7323.182	7215.281	14538.46	20.45996	21.43296	20.29678	21.16791
11/25/2009 11:31	94	7323.3	7215.41	1453	20.458	21.43325	20.	21.1682
11/25/2009 11:31	95	7323.327	7215.419	14538.75	20.45309		20.29343	39
11/25/2009 11:31	96	726	7215.419	14482.42	20	21.43325	20.29343	21.16639
11/25/2009 11:31	97	7266.998	7215.419	14482.42	20.45309	21	20.29343	21.16276
11/25/2009 11:32	98	210	7215.528	14426.31	20.45331	21.43167	20.29365	21.16118
11/25/2009 11:32	99	7210.783	7215.528	14426.31	20.45331	21	20.29365	21.16299
11/25/2009 11:32	100	7210.78	59.1	14369.9	20.	21.42804	20.29183	21.16118
11/25/2009 11:32	101	721	7159.157	14369.94	20.45331	21.42985	20.29546	21.16118
11/25/2009 11:33	102	7210	7102.786	14313.57	20.45331	21.42804	20.29365	21.16299
11/25/2009 11:33	103	7210	7102.872	14313.75	20	21.43004	20.29382	21.16317
11/25/2009 11:33	104	721	7102.872	14313.75	20.45349	21.42822	20.29382	21.16498
11/25/2009 11:33	105	7210.875	7102.872	143	20.45349	21.43004	20.29382	21.16317
11/25/2009 11:34	106	721	7102.872	14313.75	20.45349	21.43185	20.29382	21.16317
11/25/2009 11:34	107	7211.052	7103.039	14314.09	63	21.43382	20.29396	
11/25/2009 11:3	108	7211	7103.039	14314.09	20.45363	21.43018	20.29396	21.16513
11/25/2009 11:34	109	72	7103.039	14314.09	20.45363	21.43382	20.29396	
11/25/2009 11:35	110	7211.05	7103.039	14	20.45363	01	20.29214	21.16332
11/25/2009 11:35	111	7211.09	7103.075	14314.16	20.45374	21.42849	20.29226	21.16162
11/25/2009 11:35	112	7211.09	7103.075	14314.16	20.45374	21.42849	20.	21.16162
11/25/2009 11:35	113	7211.09	710	14314.16	20	21.42849	20.28863	21.16162
11/25/2009 11:36	114	1.09	7103.075	143	20.44123	21	20.2	21.16343
11/25/2009 11:36	115	7210.865	7102.863	14	20	21.4195	20.29235	21.16172
11/25/2009 11:36	116	7210.865	7102.863	14313.73	20.4395	21.4195	20.29416	21.16172
11/25/2009 11:3	117	7210	02.	1431	20.43954	21.4195	20.29235	2
11/25/2009 11:37	118	7210.865	7102.863	14313.73	20.44132	21.4195	20.29235	21.16172
11/25/2009 11:37	119	7210	7102.863	14313.73	32	21.4195	20.29235	2
11/25/2009 11:37	120	7210.941	7102.935	14313.88	20.43961	21.41958	20.29423	21.16179
11/25/2009 11:37	121	72	7102.935	14313.88	20.44139	21.41958	20.29423	21.16179
11/25/2009 11:38	122	7154.609	7102.935	142	139	21.41595	20.	
11/25/2009 11:38	123	7154.609	7102.935	14257.54	20.4396	21.41232	20.	21.16722
11/25/2009 11:38	124	7154.669	22.991	14257.66	20.43966	21.41238	20.2961	
11/25/2009 11:38	125	7154.669	7102.991	1425	20.4396	21.4123	20.2	21.
11/25/2009 11:39	126	7098.337	991	14	20.43966	21.41238	20.29429	1.16366
11/25/2009 11:39	127	10027	9921.638	19949.24	20.36282	21.31797	20.2	21.6
11/25/2009 11:39	128	10027.81	9921.837	19949.65	20.34321	21.2	20.1	21.05321
11/25/2009 11:39	129	9915	9809.08	19724.23	20.3	21.2	20.19644	21.0514
11/25/2009 11:40	130	9858.811	9809.089	19667.9	20.345	. 2907	20.1	21.04596
11/25/2009 11:4	131	9802.477	9696.34	19498.82	20.34321	21.288	20.18	21.03872
11/25/2009 11:40	132	9802.502	9696.364	19498.87	20.34325	. 289	20.1855	1.03875
11/25/2009 11:40	133	9802.502	9696.36	19498.87	20.33967	21.2890	20.18559	21.03875
11/25/2009 11:41	134	9689.836	9639.989	19329.82	20.33967	21.28901	20.18378	21.03875
11/25/2009 11:41	135	9689.836	9639.989	19329.82	20.33967	21.2890	20.18378	21.03875
11/25/2009 11:41	136	9689.836	9583.615	19273.45	20.3361	21.28175	20.18741	21.03875
11/25/2009 11:41	137	9689.854	9583.634	19273.49	20.3397	21.2890	20.19287	21.04603
11/25/2009 11:42	138	9689.854	9583.634	19273.4	20.	21.28904	20.19	21.0

MP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoad lbs	in	$\begin{aligned} & \text { PotB } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { PotC } \\ & \text { in } \end{aligned}$	PotD in
11/25/2009 11:42	139	9689.854	9583.634	19273.49	20.33792	21.28177	20.18562	21.03697
11/25/2009 11:42	140	9689.854	9583.634	19273.49	20.33434	21.28177	20.18562	21.03516
11/25/2009 1	1	9689.869	9583.648	19273.52	20.33437	21.2818	20.18565	21.03156
11/25/2009 11:43	142	9633.536	9583.648	19217.18	20.33437	21.2818	20.18565	21.03156
11/25/2009 11:43	143	9633.536	9583.648	19217.18	20.33615	21.2818	20.18565	21.037
11/25/2009 1	144	9577.203	9583.648	19160.85	20.33437	21.2818	20.18565	81
11/25/2009 11:43	145	9577.215	9583.66	19160.88	20.33975	21.28908	20.19292	21.04426
11/25/2009 11:44	146	9577.215	9527.285	19104.5	20.34689	21.29271	20.19835	21.04789
11/25/2009 1	147	9577.215	9470.911	19048.13	20.34689	21.29453	20.19654	89
11/25/2009 11:44	148	9577.215	9470.911	19048.13	20.34689	21.29271	20.19473	21.04789
11/25/2009 11:44	149	9577.224	9470.921	19048.14	20.34155	21.2891	20.19474	21.04609
11/25/2009 11:	150	9577.224	9470.921	19048.14	20.33976	21.2891	20.19293	28
11/25/2009 11:45	151	9577.224	9470.921	19048.14	20.33976	21.2891	20.19112	21.04247
11/25/2009 11:45	152	9577.224	9470.921	19048	20.33797	21.28728	20.19112	84
11/25/2009 11:45	153	9577.224	9470.921	19048.14	20.33976	21.2891	20.19112	84
11/25/2009 11:46	154	9577.367	9471.058	19048.43	20.33978	21.2873	20.18569	21.03886
11/25/2009 11:46	155	9521.033	9471.058	18992.09	20.33978	21.28366	20.18569	21.03886
11/25/2009 11:46	156	9464.698	9471.058	18935.76	20.33799	21.28366	20.18569	705
11/25/2009 11:46	157	9464.698	9471.058	18935.76	20.3362	21.28185	20.18569	21.03705
11/25/2009 11:	158	9464.347	9470.717	18935.06	20.33264	21.28005	20.18389	62
11/25/2009 11:47	159	9464.347	9470.71	18935.06	20.33264	21.28186	20.18026	43
11/25/2009 11:47	160	9464.347	9470.717	18935.06	20.33264	21.28005	20.18208	21.03343
11/25/2009 11:47	161	9464.347	9470.717	18935.06	20.33264	21.27641	20.18026	62
11/25/2009 11:48	162	9464.53	9470.895	18935.43	20.33264	21.28005	20.18027	21.03163
11/25/2009 11:48	163	9464.53	9470.895	18935.43	20.33979	21.28913	20.18571	21.03888
11/25/2009 11:48	16	9464.53	9470.895	18935.43	20.34336	21.28913	20.19296	21.04612
11/25/2009 11:48	165	9464.53	9414.52	18879.05	20.34336	21.29276	20.19296	21.04612
11/25/2009 11:49	166	9464.53	9358.146	18822.68	20.33979	21.28913	20.18752	21.03888
11/25/2009 11:49	167	9464.543	9358.158	18822.7	20.33732	21.28478	20.18503	21.03817
11/25/2009 11:49	168	9464.543	9358.158	18822.7	20.33553	21.28297	20.18503	21.03817
11/25/2009 11:49	169	11267.22	11162.14	22429.36	20.31945	21.25937	20.14152	20.99107
11/25/2009 11:50	170	12731.89	12571.5	25303.39	20.23189	21.15225	20.06175	20.9005
11/25/2009 11:50	171	12394.07	12289.8	24683.88	20.22488	21.15059	20.06189	20.89702
11/25/2009 11:50	172	12337.74	12233.43	24571.17	20.22488	21.14332	20.06008	20.8934
11/25/2009 11:50	173	12281.41	12177.06	24458.46	20.22488	21.13969	20.06189	20.89521
11/25/2009 11:51	174	12281.41	12177.06	24458.46	20.22488	21.13969	20.06189	20.89702
11/25/2009 11:51	175	12168.71	12120.66	24289.38	20.22321	21.13799	20.06019	20.89351
11/25/2009 11:51	176	12168.71	12064.29	24233	20.21428	21.12892	20.06201	20.89351
11/25/2009 11:51	177	12168.71	12064.29	24233	20.21785	21.12892	20.06382	20.89895
11/25/2009 11:52	178	12168.71	12064.29	24233	20.22321	21.13618	20.06926	20.90438
11/25/2009 11:52	179	12168.69	12064.27	24232.96	20.2233	21.13628	20.06754	20.90086
11/25/2009 11:52	180	12056.03	12064.27	24120.29	20.21973	21.13083	20.06391	20.90086
11/25/2009 11:52	181	12056.03	12064.27	24120.29	20.21794	21.13264	20.06391	20.90086
11/25/2009 11:53	182	12056.03	12007.89	24063.92	20.21973	21.13083	20.06028	20.89904
11/25/2009 11:53	183	12056.03	11951.52	24007.54	20.21616	21.12901	20.06028	20.89723
11/25/2009 11:53	184	12056.18	11951.67	24007.85	20.21265	21.12909	20.05673	20.89369
11/25/2009 11:53	185	12056.18	11951.67	24007.85	20.21265	21.12909	20.05492	20.89369

TIMESTAMP	RECORD \#	LoadA Ibs	LoadB lbs	TotalLoad lbs	in	Pot in	PotC in	PotD in
11/25/2009 11:54	186	12056.18	11951.67	24007.85	20.21265	21.12909	20.05492	20.89369
11/25/2009 11:54	187	12056.18	11951.67	24007.85	20.21087	21.12909	20.05673	20.89369
11/25/2009 11:	18	12056.3	11951.79	24008.09	20.2145	21.12915	20.05679	20.89375
11/25/2009 11:54	18	11999.97	11951.79	23951.75	20.21093	21.12552	20.05679	20.89375
11/25/2009 11:55	190	11943.63	11951.79	23895.42	20.21093	21.12734	20.05498	20.89375
11/25/2009 11:5	19	11943.63	11951.79	23895.42	20.21093	21.12552	20.05498	20.89193
11/25/2009 11	192	11943.56	11895.34	23838.91	20.21276	21.1292	20.05502	38
11/25/2009 11:55	193	11943.56	11895.34	23838.91	20.21276	21.1292	20.05502	20.8938
11/25/2009 11:56	19	11943.56	11895.34	23838.91	20.21276	21.1292	20.05502	20.8938
11/25/2009 11:56	195	11943.56	11895.34	23838.91	20.21633	21.1292	20.05865	38
11/25/2009 11:56	196	11943.51	11838.91	23782.42	20.21101	21.12742	20.05506	20.89384
11/25/2009 11:56	197	11943.51	11838.91	23782.42	20.2128	21.12742	20.05506	20.89384
11/25/2009 1	198	11943.51	11838.91	23782.42	20.21101	21.12742	20.05506	20.89384
11/25/2009 11:57	199	11943.51	11838.91	23782.42	20.21101	21.12561	20.05506	20.89384
11/25/2009 11:57	200	11943.51	11838.91	23782.42	20.21101	21.12379	20.05506	20.89202
11/25/2009 11:57	20	11943.46	11838.87	23782.33	20.	21.12382	20.04965	43
11/25/2009 11:58	20	11943.46	11838.87	23782.33	20.20925	21.12382	20.05146	20.88843
11/25/2009 11:58	203	11943.46	11838.87	23782.33	20.21104	21.12201	20.05146	20.88662
11/25/2009 11:58	20	11943.46	11838.87	23782.33	20.21104	21.12564	20.05509	86
11/25/2009 11:58	20	11943.43	11838.83	23782.26	20.21106	21.12748	0.0533	20.89389
11/25/2009 11:59	206	11943.43	11838.83	23782.26	20.21106	21.12567	20.0533	20.89208
11/25/2009 11:5	207	11943.43	11838.83	23782.26	20.21821	21.12385	20.05511	20.89389
11/25/2009 11:59	20	11943.43	11838.83	23782.26	20.21821	21.12385	20.05511	89
11/25/2009 11:59	209	11943.4	11838.81	23782.21	20.21287	21.12205	20.05513	20.89391
11/25/2009 12:00	210	11887.06	11838.81	23725.87	20.21108	21.12205	20.05513	20.8921
11/25/2009 12:00	21	11830.73	11838.81	23669.54	20.21108	21.11842	20.04969	20.88847
11/25/2009 12:00	21	15154.46	14995.82	30150.28	20.10565	20.99133	19.9391	20.75623
11/25/2009 12:00	213	15098.09	14995.79	30093.89	20.08243	20.9623	19.91736	20.73632
11/25/2009 12:01	214	15154.43	14995.79	30150.22	20.07528	20.95504	19.91011	20.72907
11/25/2009 12:01	21	15041.76	14939.42	29981.18	20.07528	20.95685	19.91011	20.72726
11/25/2009 12:01	216	14985.42	14883.04	29868.47	20.06813	20.94777	19.91011	20.72726
11/25/2009 12:01	217	14872.76	14826.67	29699.43	20.06635	20.94777	19.91011	20.72726
11/25/2009 12:02	218	14872.94	14770.47	29643.42	20.06815	20.94961	19.91193	20.72909
11/25/2009 12:02	219	14872.94	14770.47	29643.42	20.06815	20.94779	19.91012	20.72909
11/25/2009 12:02	220	14816.61	14714.1	29530.7	20.05921	20.93327	19.91556	20.73271
11/25/2009 12:02	221	14760.27	14657.72	29417.99	20.05921	20.93508	19.91737	20.73452
11/25/2009 12:03	222	14760.21	14657.66	29417.88	20.06101	20.93509	19.91738	20.73272
11/25/2009 12:03	223	14760.21	14657.66	29417.88	20.06101	20.93328	19.91557	20.73272
11/25/2009 12:03	224	14760.21	14657.66	29417.88	20.05744	20.93328	19.91376	20.7291
11/25/2009 12:03	225	14703.88	14657.66	29361.54	20.05744	20.93328	19.91194	20.72729
11/25/2009 12:04	226	14647.7	14657.82	29305.52	20.06102	20.93328	19.91376	20.73454
11/25/2009 12:04	227	14647.7	14601.44	29249.14	20.06102	20.93873	19.91739	20.73454
11/25/2009 12:04	228	14647.7	14601.44	29249.14	20.06102	20.94055	19.91739	20.73454
11/25/2009 12:04	229	14647.7	14545.07	29192.77	20.06638	20.94055	19.92102	20.73998
11/25/2009 12:05	230	14647.7	14545.07	29192.77	20.06817	20.94055	19.92102	20.74179
11/25/2009 12:05	231	14647.62	14544.99	29192.61	20.06817	20.94055	19.9174	20.73455
11/25/2009 12:05	232	14647.62	14544.99	29192.61	20.06817	20.94055	19.91558	20.73455

TIMESTAMP	RECORD	LoadA	LoadB	TotalLoad PotA	PotB	PotC	PotD	
	$\#$	lbs	lbs	lbs	in	in	in	in

11/25/2009 12:05 11/25/2009 12:06 11/25/2009 12:06 11/25/2009 12:06 11/25/2009 12:06 11/25/2009 12:07 11/25/2009 12:07 11/25/2009 12:07 11/25/2009 12:07 11/25/2009 12:08 11/25/2009 12:08 11/25/2009 12:08 11/25/2009 12:08 11/25/2009 12:09 11/25/2009 12:09 11/25/2009 12:09 11/25/2009 12:09 11/25/2009 12:10 11/25/2009 12:10 11/25/2009 12:10 11/25/2009 12:10 11/25/2009 12:11 11/25/2009 12:11 11/25/2009 12:11 11/25/2009 12:11 11/25/2009 12:12 11/25/2009 12:12 11/25/2009 12:12 11/25/2009 12:12 11/25/2009 12:13 11/25/2009 12:13 11/25/2009 12:13 11/25/2009 12:13 11/25/2009 12:14 11/25/2009 12:14 11/25/2009 12:14 11/25/2009 12:14 11/25/2009 12:15 11/25/2009 12:15 11/25/2009 12:15 11/25/2009 12:15 11/25/2009 12:16 11/25/2009 12:16 11/25/2009 12:16 11/25/2009 12:16 11/25/2009 12:17 11/25/2009 12:17
$\begin{array}{lllllllll}234 & 14647.62 & 14544.99 & 29192.61 & 20.0646 & 20.94055 & 19.9174 & 20.73093\end{array}$ $\begin{array}{llllllllll}235 & 14535.09 & 14545.13 & 29080.22 & 20.06281 & 20.93874 & 19.91015 & 20.73093\end{array}$ $\begin{array}{llllllllll}236 & 14535.09 & 14545.13 & 29080.22 & 20.06103 & 20.93693 & 19.91196 & 20.72912\end{array}$ $\begin{array}{lllllllll}237 & 14535.09 & 14545.13 & 29080.22 & 20.06103 & 20.93511 & 19.91015 & 20.72731\end{array}$ $\begin{array}{lllllllll}238 & 14535.09 & 14545.13 & 29080.22 & 20.06103 & 20.93329 & 19.91015 & 20.72731\end{array}$ $\begin{array}{lllllllll}239 & 14535.21 & 14488.86 & 29024.07 & 20.05924 & 20.9333 & 19.91015 & 20.7255\end{array}$ $\begin{array}{lllllllll}240 & 14535.21 & 14432.48 & 28967.69 & 20.05567 & 20.9333 & 19.91015 & 20.7255\end{array}$ $\begin{array}{lllllllll}241 & 14535.21 & 14432.48 & 28967.69 & 20.05746 & 20.93148 & 19.91015 & 20.72188\end{array}$ $\begin{array}{lllllllll}242 & 14535.21 & 14432.48 & 28967.69 & 20.05924 & 20.9333 & 19.91015 & 20.72731\end{array}$ $\begin{array}{llllllllll}243 & 14535.09 & 14432.38 & 28967.47 & 20.06104 & 20.93693 & 19.91015 & 20.72731\end{array}$ $\begin{array}{llllllllll}244 & 14535.09 & 14432.38 & 28967.47 & 20.0664 & 20.94056 & 19.91741 & 20.73094\end{array}$ $\begin{array}{llllllllll}245 & 14535.09 & 14432.38 & 28967.47 & 20.06282 & 20.94056 & 19.91559 & 20.73275\end{array}$ $\begin{array}{llllllllll}246 & 14535.09 & 14432.38 & 28967.47 & 20.06818 & 20.94056 & 19.91559 & 20.73275\end{array}$ $\begin{array}{llllllllll}247 & 14535.09 & 14432.38 & 28967.47 & 20.0664 & 20.94056 & 19.91559 & 20.73094\end{array}$ $\begin{array}{lllllllll}248 & 14535.21 & 14432.48 & 28967.69 & 20.06283 & 20.94057 & 19.9156 & 20.73094\end{array}$ $\begin{array}{lllllllll}249 & 14535.21 & 14432.48 & 28967.69 & 20.06283 & 20.93875 & 19.91378 & 20.72913\end{array}$ $\begin{array}{lllllllll}250 & 14535.21 & 14432.48 & 28967.69 & 20.0664 & 20.94057 & 19.9156 & 20.73275\end{array}$ $\begin{array}{lllllllllll}251 & 14478.87 & 14432.48 & 28911.36 & 20.06283 & 20.94057 & 19.91197 & 20.73094\end{array}$ $\begin{array}{llllllllll}252 & 14478.96 & 14432.57 & 28911.53 & 20.06819 & 20.94057 & 19.91741 & 20.73457\end{array}$ $\begin{array}{llllllllll}253 & 14478.96 & 14432.57 & 28911.53 & 20.06819 & 20.94057 & 19.9156 & 20.73457\end{array}$ $\begin{array}{llllllllll}254 & 14478.96 & 14432.57 & 28911.53 & 20.06819 & 20.94057 & 19.91741 & 20.73457\end{array}$ $\begin{array}{llllllllll}255 & 14478.96 & 14432.57 & 28911.53 & 20.0664 & 20.94057 & 19.91741 & 20.73457\end{array}$ $\begin{array}{lllllllll}256 & 16506.92 & 16349.25 & 32856.17 & 20.03245 & 20.90426 & 19.8739 & 20.6766\end{array}$ $\begin{array}{llllllllll}257 & 17464.63 & 17251.28 & 34715.91 & 19.96812 & 20.82801 & 19.82495 & 20.62407\end{array}$ $\begin{array}{lllllllll}258 & 17577.3 & 17364.04 & 34941.34 & 19.93953 & 20.79533 & 19.80138 & 20.58965\end{array}$ $\begin{array}{llllllllll}259 & 17351.96 & 17138.53 & 34490.48 & 19.93953 & 20.79533 & 19.79776 & 20.58602\end{array}$ $\begin{array}{lllllllll}260 & 17239.16 & 17082.03 & 34321.19 & 19.93953 & 20.79351 & 19.79413 & 20.58602\end{array}$ $\begin{array}{lllllllll}261 & 17126.49 & 17025.65 & 34152.14 & 19.93953 & 20.78806 & 19.79413 & 20.5824\end{array}$
$\begin{array}{lllllllllll}262 & 17126.49 & 17025.65 & 34152.14 & 19.93595 & 20.78806 & 19.79413 & 20.58059\end{array}$
$\begin{array}{lllllllll}263 & 17013.82 & 16912.9 & 33926.72 & 19.93416 & 20.78806 & 19.79413 & 20.5824\end{array}$
$\begin{array}{lllllllll}264 & 17013.82 & 16912.9 & 33926.72 & 19.92523 & 20.77899 & 19.79232 & 20.57878\end{array}$
$\begin{array}{llllllll}265 & 17013.72 & 16912.81 & 33926.53 & 19.9288 & 20.7808 & 19.79413 & 20.5824\end{array}$
$\begin{array}{llllllll}266 & 16901.05 & 16912.81 & 33813.86 & 19.9288 & 20.7808 & 19.79413 & 20.58421\end{array}$
$\begin{array}{lllllllll}267 & 16901.05 & 16800.05 & 33701.11 & 19.92702 & 20.7808 & 19.79413 & 20.5824\end{array}$
$\begin{array}{lllllllll}268 & 16901.05 & 16800.05 & 33701.11 & 19.92523 & 20.7808 & 19.78688 & 20.58059\end{array}$
$\begin{array}{llllllll}269 & 16901.21 & 16800.21 & 33701.42 & 19.92523 & 20.77899 & 19.78688 & 20.57516\end{array}$
$\begin{array}{llllllllll}270 & 16901.21 & 16800.21 & 33701.42 & 19.92344 & 20.77354 & 19.78507 & 20.57334\end{array}$
$\begin{array}{lllllllll}271 & 16901.21 & 16800.21 & 33701.42 & 19.92523 & 20.77899 & 19.78688 & 20.57516\end{array}$
$\begin{array}{llllllllll}272 & 16844.87 & 16800.21 & 33645.08 & 19.92523 & 20.77717 & 19.78507 & 20.57516\end{array}$
$\begin{array}{lllllllll}273 & 16788.43 & 16800.1 & 33588.53 & 19.92523 & 20.77536 & 19.78507 & 20.57516\end{array}$
$\begin{array}{lllllllll}274 & 16788.43 & 16743.72 & 33532.15 & 19.92523 & 20.77536 & 19.78507 & 20.57334\end{array}$
$\begin{array}{lllllllll}275 & 16788.43 & 16687.35 & 33475.77 & 19.92523 & 20.7808 & 19.78688 & 20.57697\end{array}$
$\begin{array}{lllllllll}276 & 16788.43 & 16687.35 & 33475.77 & 19.92523 & 20.7808 & 19.78688 & 20.57516\end{array}$
$\begin{array}{lllllllll}277 & 16788.34 & 16687.26 & 33475.6 & 19.92702 & 20.7808 & 19.78688 & 20.57516\end{array}$
$\begin{array}{lllllllll}278 & 16788.34 & 16687.26 & 33475.6 & 19.92344 & 20.77354 & 19.78688 & 20.57516\end{array}$
$\begin{array}{llllllllllll}279 & 16788.34 & 16687.26 & 33475.6 & 19.92344 & 20.77172 & 19.78688 & 20.57697\end{array}$

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	TotalLoad lbs	$\operatorname{Pot} A$ in	PotB in	PotC in	$\begin{aligned} & \text { PotD } \\ & \text { in } \end{aligned}$
11/25/2009 12:17	280	16788.34	16687.26	33475.6	19.91987	20.77172	19.78688	20.57516
11/25/2009 12:17	281	16788.34	16687.26	33475.6	19.91808	20.76991	19.78507	20.57334
11/25/2009 12:18	282	16732.17	16687.42	33419.59	19.91808	20.76628	19.78507	20.57516
11/25/2009 12:18	283	16732.17	16687.42	33419.59	19.91272	20.75902	19.7615	20.56066
11/25/2009 12:18	284	16675.83	16687.42	33363.26	19.91093	20.75902	19.75787	20.56066
11/25/2009 12:18	285	16675.83	16687.42	33363.26	19.91093	20.75902	19.75968	20.56066
11/25/2009 12:19	286	16675.73	16687.32	33363.05	19.91093	20.75357	19.75787	20.56066
11/25/2009 12:19	287	16675.73	16630.95	33306.68	19.91093	20.75175	19.75968	20.56247
11/25/2009 12:19	288	16675.73	16630.95	33306.68	19.91093	20.75357	19.7615	20.56429
11/25/2009 12:19	289	16675.73	16574.57	33250.3	19.91093	20.75357	19.75968	20.56066
11/25/2009 12:20	290	16675.65	16574.49	33250.14	19.91093	20.75175	19.75787	20.56066
11/25/2009 12:20	291	16675.65	16574.49	33250.14	19.91093	20.75175	19.75787	20.56066
11/25/2009 12:20	292	16675.65	16574.49	33250.14	19.90915	20.75175	19.75787	20.56066
11/25/2009 12:20	293	16675.65	16574.49	33250.14	19.90915	20.75175	19.75787	20.56066
11/25/2009 12:21	294	16675.65	16574.4	33250.14	19.91093	20.74994	19.75787	20.56066
11/25/2009 12:21	295	16675.58	16574.43	33250.01	19.90915	20.75175	19.75787	20.56066
11/25/2009 12:21	296	16675.58	16574.43	33250.01	19.90557	20.74994	19.75606	20.55885
11/25/2009 12:21	297	16675.58	16574.43	33250.01	19.91093	20.75175	19.75787	20.55885
11/25/2009 12:22	298	16675.58	16574.43	33250.01	19.91093	20.75175	19.75606	20.55885
11/25/2009 12:22	299	16675.53	16574.38	33249.91	19.90557	20.74994	19.75606	20.55885
11/25/2009 12:22	300	16675.53	16574.38	33249.91	19.90557	20.74631	19.75243	20.55523
11/25/2009 12:22	301	16675.53	16574.38	33249.91	19.90736	20.74994	19.75425	20.55704
11/25/2009 12:23	302	16675.53	16574.38	33249.91	19.90736	20.74994	19.75425	20.56066
11/25/2009 12:23	303	16675.72	16574.56	33250.29	19.90557	20.74812	19.75062	20.55704
11/25/2009 12:23	304	16675.72	16574.56	33250.29	19.90379	20.74631	19.75062	20.55704
11/25/2009 12:23	305	16675.72	16574.56	33250.29	19.90379	20.74449	19.75062	20.55342
11/25/2009 12:24	306	16675.72	16574.56	33250.29	19.90379	20.74449	19.74881	20.55342
11/25/2009 12:24	307	1803.235	1860.401	3663.637	20.31123	21.26919	20.19117	21.09325
11/25/2009 12:24	308	113.189	56.3758	169.5648	20.43274	21.41625	20.34346	21.26715
11/25/2009 12:24	309	56.85416	56.3758	113.2299	20.45419	21.43985	20.34346	21.26896

Figure D.1: General Positions of strain gages in piles 10 and 11
兹

彔是

䨌是

 ○．

走

11
응

 Bif

 흉․

名
云

 2
需电

多

有

 ｜t

 －

录に

TABLE D.6: Bending moments for pile 10

Depth (ft)	Moment $(\mathrm{k}-\mathrm{ft})$						
	5 kips	10 kips	15 kips	20 kips	25 kips	30 kips	35 kips
1.7	0	0	0	0	0	0	0
2.5	4.158	8.291	12.126	12.094	20.690	26.303	30.867
5	5.785	26.162	38.264	49.914	63.010	78.084	94.076
7.5	4.726	13.353	23.925	35.226	52.618	65.511	78.928
10	0.088	0.822	2.456	5.212	9.500	14.908	19.814
12.5	-0.037	-0.237	-0.540	-0.974	-1.506	-2.082	-2.509
15	0.001	0.006	-0.015	-0.056	-0.113	-0.259	-0.526
17.5	0.007	0.013	0.017	0.020	0.022	0.028	0.034
20	0	0	0	0	0	0	0

TABLE D.7: Bending moments for pile 11

Depth (ft)	Moment $(\mathrm{k}-\mathrm{ft})$	Moment $(\mathrm{k}$ - ft$)$	Moment $(\mathrm{k}-\mathrm{ft})$				
	5 kips	10 kips	15 kips	20 kips	25 kips	30 kips	35 kips
1.3	0	0	0	0	0	0	0
2.5	4.938	9.983	15.744	20.853	25.241	30.312	34.697
5	7.592	16.195	28.810	42.127	53.486	66.389	77.685
7.5	3.641	9.713	19.289	39.411	50.527	67.047	79.896
10	0.068	0.536	1.755	3.713	5.290	7.365	10.143
12.5	-0.021	-0.094	-0.250	-0.533	-0.746	-0.962	-1.389
15	-0.001	-0.005	-0.020	-0.056	-0.119	-0.198	-0.268
17.5	0.000	0.000	-0.001	0.001	0.006	0.009	0.011
20	0	0	0	0	0	0	0

APPENDIX E: LATERAL LOAD TEST X

TABLE E.1: Inclinometer measurements for pile 5
PROJECT:ASHE MICROPILE LATERAL LOAD TESTING MICROPILE NO: 5
DATE: 12/10/09

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	-100	65	-165
16	-119	81	-200
14	-123	87	-210
12	-116	78	-194
10	-86	46	-132
8	-89	51	-140
6	-92	52	-144
4	-38	-11	-27

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
18	-103	66	-169	-4	-0.0024	-0.0024
16	-120	79	-199	1	0.0006	-0.0018
14	-124	85	-209	1	0.0006	-0.0012
12	-115	77	-192	2	0.0012	0
10	-82	44	-126	6	0.0036	0.0036
8	-73	38	-111	29	0.0174	0.021
6	-59	17	-76	68	0.0408	0.0618
4	26	-63	89	116	0.0696	0.1314

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 kips						
18	-101	67	-168	-3	-0.0018	-0.0018
16	-119	81	-200	0	0	-0.0018
14	-122	88	-210	0	0	-0.0018
12	-116	79	-195	-1	-0.0006	-0.0024
10	-79	42	-121	11	0.0066	0.0042
8	-49	7	-56	84	0.0504	0.0546
6	7	-50	57	201	0.1206	0.1752
4	88	-125	213	240	0.144	0.3192

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
60 kips						
18	-102	65	-167	-2	-0.0012	-0.0012
16	-119	79	-198	2	0.0012	0
14	-124	85	-209	1	0.0006	0.0006
12	-118	79	-197	-3	-0.0018	-0.0012
10	-76	38	-114	18	0.0108	0.0096
8	-22	-32	10	150	0.09	0.0996
6	58	-97	155	299	0.1794	0.279
4	149	-187	336	363	0.2178	0.4968

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
80 kips						
18	-101	59	-160	5	0.003	0.003
16	-118	81	-199	1	0.0006	0.0036
14	-123	88	-211	-1	-0.0006	0.003
12	-117	81	-198	-4	-0.0024	0.0006
10	-72	36	-108	24	0.0144	0.015
8	20	-59	79	219	0.1314	0.1464
6	109	-146	255	399	0.2394	0.3858
4	219	-249	468	495	0.297	0.6828

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
100 kips						
18	-102	65	-167	-2	-0.0012	-0.0012
16	-119	80	-199	1	0.0006	-0.0006
14	-125	87	-212	-2	-0.0012	-0.0018
12	-120	80	-200	-6	-0.0036	-0.0054
10	-68	27	-95	37	0.0222	0.0168
8	46	-87	133	273	0.1638	0.1806
6	159	-202	361	505	0.303	0.4836
4	280	-318	598	625	0.375	0.8586

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
18	-99	67	-166	-1	-0.0006	-0.0006
16	-117	77	-194	6	0.0036	0.003
14	-120	87	-207	3	0.0018	0.0048
12	-113	77	-190	4	0.0024	0.0072
10	-76	41	-117	15	0.009	0.0162
8	-72	35	-107	33	0.0198	0.036
6	-62	25	-87	57	0.0342	0.0702
4	19	-54	73	100	0.06	0.1302

TABLE E.2: Inclinometer measurements for pile 6 PROJECT:ASHE MICROPILE LATERAL LOAD TESTING
MICROPILE NO: 6 DATE: 12/10/09

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	-308	274	-582
16	-304	264	-568
14	-304	267	-571
12	-306	271	-577
10	-302	263	-565
8	-297	262	-559
6	-310	268	-578
4	-285	250	-535
2	-291	249	-540

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
18	-310	275	-585	-3	-0.0018	-0.0018
16	-305	263	-568	0	0	-0.0018
14	-308	271	-579	-8	-0.0048	-0.0066
12	-310	270	-580	-3	-0.0018	-0.0084
10	-299	260	-559	6	0.0036	-0.0048
8	-275	235	-510	49	0.0294	0.0246
6	-277	236	-513	65	0.039	0.0636
4	-240	206	-446	89	0.0534	0.117
2	-244	199	-443	97	0.0582	0.1752

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 kips						
18	-306	274	-580	2	0.0012	0.0012
16	-305	266	-571	-3	-0.0018	-0.0006
14	-305	266	-571	0	0	-0.0006
12	-309	266	-575	2	0.0012	0.0006
10	-291	258	-549	16	0.0096	0.0102
8	-245	208	-453	106	0.0636	0.0738
6	-219	178	-397	181	0.1086	0.1824
4	-171	126	-297	238	0.1428	0.3252
2	-167	128	-295	245	0.147	0.4722

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
60 kips						
18	-309	270	-579	3	0.0018	0.0018
16	-305	245	-550	18	0.0108	0.0126
14	-306	260	-566	5	0.003	0.0156
12	-311	272	-583	-6	-0.0036	0.012
10	-289	251	-540	25	0.015	0.027
8	-216	179	-395	164	0.0984	0.1254
6	-166	123	-289	289	0.1734	0.2988
4	-103	71	-174	361	0.2166	0.5154
2	-97	54	-151	389	0.2334	0.7488

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
80 kips						
18	-308	276	-584	-2	-0.0012	-0.0012
16	-304	266	-570	-2	-0.0012	-0.0024
14	-304	267	-571	0	0	-0.0024
12	-311	271	-582	-5	-0.003	-0.0054
10	-285	242	-527	38	0.0228	0.0174
8	-186	147	-333	226	0.1356	0.153
6	-106	64	-170	408	0.2448	0.3978
4	-28	-17	-11	524	0.3144	0.7122
2	-14	-44	30	570	0.342	1.0542

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
100 kips						
18	-307	276	-583	-1	-0.0006	-0.0006
16	-303	265	-568	0	0	-0.0006
14	-305	271	-576	-5	-0.003	-0.0036
12	-313	274	-587	-10	-0.006	-0.0096
10	-280	239	-519	46	0.0276	0.018
8	-153	114	-267	292	0.1752	0.1932
6	-42	-15	-27	551	0.3306	0.5238
4	66	-102	168	703	0.4218	0.9456
2	70	-121	191	731	0.4386	1.3842

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
18	-308	272	-580	2	0.0012	0.0012
16	-302	261	-563	5	0.003	0.0042
14	-302	271	-573	-2	-0.0012	0.003
12	-306	269	-575	2	0.0012	0.0042
10	-291	254	-545	20	0.012	0.0162
8	-262	222	-484	75	0.045	0.0612
6	-260	217	-477	101	0.0606	0.1218
4	-225	195	-420	115	0.069	0.1908
2	-230	188	-418	122	0.0732	0.264

TABLE E.3: Inclinometer measurements for pile 7
PROJECT:ASHE MICROPILE LATERAL LOAD TESTING
MICROPILE NO: 7
DATE: 12/10/09

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	-466	429	-895
16	-451	414	-865
14	-388	353	-741
12	-353	316	-669
10	-338	301	-639
8	-348	313	-661
6	-389	349	-738
4	-412	380	-792
2	-437	399	-836

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
18	-465	429	-894	1	0.0006	0.0006
16	-452	426	-878	-13	-0.0078	-0.0072
14	-389	354	-743	-2	-0.0012	-0.0084
12	-354	315	-669	0	0	-0.0084
10	-330	294	-624	15	0.009	0.0006
8	-326	290	-616	45	0.027	0.0276
6	-351	309	-660	78	0.0468	0.0744
4	-364	330	-694	98	0.0588	0.1332
2	-384	348	-732	104	0.0624	0.1956

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 kips						
18	-466	428	-894	1	0.0006	0.0006
16	-453	414	-867	-2	-0.0012	-0.0006
14	-388	356	-744	-3	-0.0018	-0.0024
12	-355	315	-670	-1	-0.0006	-0.003
10	-327	281	-608	31	0.0186	0.0156
8	-294	257	-551	110	0.066	0.0816
6	-294	251	-545	193	0.1158	0.1974
4	-296	262	-558	234	0.1404	0.3378
2	-312	256	-568	268	0.1608	0.4986

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
60 kips						
18	-465	429	-894	1	0.0006	0.0006
16	-452	412	-864	1	0.0006	0.0012
14	-389	355	-744	-3	-0.0018	-0.0006
12	-354	317	-671	-2	-0.0012	-0.0018
10	-314	277	-591	48	0.0288	0.027
8	-262	226	-488	173	0.1038	0.1308
6	-237	196	-433	305	0.183	0.3138
4	-229	195	-424	368	0.2208	0.5346
2	-242	196	-438	398	0.2388	0.7734

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
80 kips						
18	-465	429	-894	1	0.0006	0.0006
16	-452	414	-866	-1	-0.0006	0
14	-390	355	-745	-4	-0.0024	-0.0024
12	-354	316	-670	-1	-0.0006	-0.003
10	-304	268	-572	67	0.0402	0.0372
8	-228	193	-421	240	0.144	0.1812
6	-177	135	-312	426	0.2556	0.4368
4	-156	128	-284	508	0.3048	0.7416
2	-165	126	-291	545	0.327	1.0686

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
100 kips						
18	-464	430	-894	1	0.0006	0.0006
16	-452	414	-866	-1	-0.0006	0
14	-390	355	-745	-4	-0.0024	-0.0024
12	-354	317	-671	-2	-0.0012	-0.0036
10	-292	250	-542	97	0.0582	0.0546
8	-195	159	-354	307	0.1842	0.2388
6	-114	74	-188	550	0.33	0.5688
4	-82	49	-131	661	0.3966	0.9654
2	-87	48	-135	701	0.4206	1.386

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
18	-466	429	-895	0	0	0
16	-452	413	-865	0	0	0
14	-388	354	-742	-1	-0.0006	-0.0006
12	-351	324	-675	-6	-0.0036	-0.0042
10	-307	268	-575	64	0.0384	0.0342
8	-291	259	-550	111	0.0666	0.1008
6	-325	283	-608	130	0.078	0.1788
4	-350	315	-665	127	0.0762	0.255
2	-374	343	-717	119	0.0714	0.3264

TABLE E.4: Inclinometer measurements for pile 8 PROJECT:ASHE MICROPILE LATERAL LOAD TESTING
MICROPILE NO: 8
DATE: 12/10/09

	Baseline data		
Depth (ft)	A+	A-	Diff. (A)
18	-767	727	-1494
16	-736	700	-1436
14	-717	680	-1397
12	-688	648	-1336
10	-671	630	-1301
8	-673	633	-1306
6	-704	664	-1368
4	-665	629	-1294
2	-575	530	-1105

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
20 kips						
18	-765	728	-1493	1	0.0006	0.0006
16	-737	701	-1438	-2	-0.0012	-0.0006
14	-716	681	-1397	0	0	-0.0006
12	-688	650	-1338	-2	-0.0012	-0.0018
10	-665	623	-1288	13	0.0078	0.006
8	-651	613	-1264	42	0.0252	0.0312
6	-666	628	-1294	74	0.0444	0.0756
4	-617	583	-1200	94	0.0564	0.132
2	-517	471	-988	117	0.0702	0.2022

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
40 kips						
18	-766	727	-1493	1	0.0006	0.0006
16	-739	700	-1439	-3	-0.0018	-0.0012
14	-717	679	-1396	1	0.0006	-0.0006
12	-689	650	-1339	-3	-0.0018	-0.0024
10	-657	616	-1273	28	0.0168	0.0144
8	-622	582	-1204	102	0.0612	0.0756
6	-612	571	-1183	185	0.111	0.1866
4	-554	517	-1071	223	0.1338	0.3204
2	-447	406	-853	252	0.1512	0.4716

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
60 kips						
18	-766	726	-1492	2	0.0012	0.0012
16	-738	702	-1440	-4	-0.0024	-0.0012
14	-716	681	-1397	0	0	-0.0012
12	-687	650	-1337	-1	-0.0006	-0.0018
10	-648	608	-1256	45	0.027	0.0252
8	-589	553	-1142	164	0.0984	0.1236
6	-557	520	-1077	291	0.1746	0.2982
4	-487	454	-941	353	0.2118	0.51
2	-375	325	-700	405	0.243	0.753

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
80 kips						
18	-767	728	-1495	-1	-0.0006	-0.0006
16	-738	700	-1438	-2	-0.0012	-0.0018
14	-718	681	-1399	-2	-0.0012	-0.003
12	-690	649	-1339	-3	-0.0018	-0.0048
10	-640	600	-1240	61	0.0366	0.0318
8	-559	519	-1078	228	0.1368	0.1686
6	-501	460	-961	407	0.2442	0.4128
4	-431	382	-813	481	0.2886	0.7014
2	-302	258	-560	545	0.327	1.0284

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
100 kips						
18	-766	727	-1493	1	0.0006	0.0006
16	-738	702	-1440	-4	-0.0024	-0.0018
14	-716	682	-1398	-1	-0.0006	-0.0024
12	-689	651	-1340	-4	-0.0024	-0.0048
10	-632	590	-1222	79	0.0474	0.0426
8	-522	485	-1007	299	0.1794	0.222
6	-441	403	-844	524	0.3144	0.5364
4	-346	313	-659	635	0.381	0.9174
2	-223	183	-406	699	0.4194	1.3368

Depth (ft)	A+	A-	Diff. (A)	Change	Increment	Total
Final						
18	-767	727	-1494	0	0	0
16	-740	701	-1441	-5	-0.003	-0.003
14	-718	681	-1399	-2	-0.0012	-0.0042
12	-687	648	-1335	1	0.0006	-0.0036
10	-634	591	-1225	76	0.0456	0.042
8	-589	553	-1142	164	0.0984	0.1404
6	-621	579	-1200	168	0.1008	0.2412
4	-593	562	-1155	139	0.0834	0.3246
2	-504	524	-1028	77	0.0462	0.3708

TABLE E.5: Load and displacement measurements for load test X

TIMESTAMP	$\begin{aligned} & \text { RECOR } \\ & \# \end{aligned}$	Load lbs	Load lbs	PotA in	PotB in	PotC in	PotD in	PotE in	PotF in
12/10/2009 14:15	367	790.2	959.2	6.1104	6.5604	13.5068	8.8263	. 377	22.1106
12/10/2009 14:15	369	790.2	959.2	6.1104	6.5604	13.4742	8.8263	20	22.1034
12/10/2009 14:16	371	902.9	902.8	6.1122	6.5586	13.4524	8.826	20.373	22.1106
12/10/2009 14:16	373	733.8	1015.6	6.1050	6.5568	13.4470	8263	20.3702	22.0962
12/10/2009 14:17	375	0.2	902.8	6.106	6.545	13.5177	8.8244	20.3813	22.1106
12/10/2009 14:17	377	564.6	733	6.1068	6.5622	367	8.826	20.3849	22.1251
12/10/2009 14:18	379	677.4	846.4	6.10	6.53	56	. 82	20.3813	22.1142
12/10/2009 14:18	381	564.7	733.5	6.1050	6.5568	13.3508	8.8299	20.388	22.1142
12/10/2009 14:19	383	564.7	733.5	6.1	6.5	13.5957	8.8208	20.3849	22.1070
12/10/2009 14:19	385	564.6	733.5	6.1032	6.5550	13.3817	8.820	20.3776	22.1106
12/10/2009 14:20	387	564.6	77.	6.1086	6.5295	. 5	8.81	20.384	22.1070
12/10/2009 14:20	389	451.9	620.7	6.1032	6.5422	. 3744	8.824	20.381	22.1179
12/10/2009 14:21	391	451.	564.2	6.110	6.5	13.5975	8.83	20.396	22.1106
12/10/2009 14:21	393	451.9	620.7	6.1014	6.538	. 3762	8.820	20	22.1070
12/10/2009 14:22	395	451.9	564.2	6.11	6.54	13.6012	8.8317	20.3886	22.1034
12/10/2009 14:22	397	564.	620.7	6.115	6.522	13.3889	8.8	20.3739	22.1106
12/10/2009 14:23	399	508.3	620.7	6.1104	6.5604	13.5939	8.828	20.3886	22.1034
12/10/2009 14:23	401	564.6	677.1	6.1122	6.5168	401	8.82	20.3813	
12/10/2009 14:24	40	451.9	564.2	6.1193	6.5640	13.57	8.828	20.377	22.1034
12/10/2009 14:24	405	. 3	564.2	6.11	6.53	13.4034	8.82	20.3776	22.0926
12/10/2009 14:25	407	8.2	789	6.1175	6.5622	13.581	8.8263	20.381	22.0926
12/10/2009 14:25	409	959.3	1015.6	6.11	6.55	13.4234	8.8226	20.3739	22.1142
12/10/2009 14:26	411	902.9	959.2	6.1122	6.5568	13.	8.826	20.3	22.0889
12/10/2009 14:26	413	733.8	33.5	6.119	6.54	13.4161	8.82	20.377	22.1142
12/10/2009 14:27	415	677.4	959.2	6.1122	6.5604	13.5594	8.831	20.370	781
12/10/2009 14:27	417	959.3	9.2	6.1211	6.5586	13.4252	8.82	20.3665	22.0998
12/10/2009 14:28	419	2.9	959.2	6.1140	6.5659	13.5703	8.826	20.	22.0817
12/10/2009 14:28	421	846.6	902.8	6.1211	6.562	13.3998	.81	20.3665	22.0998
12/10/2009 14:29	423	677.4	7.1	6.1068	6.560	.54	8.8	20.3702	22.0817
12/10/2009 14:29	425	790.2	789.9	6.1211	6.5586	13.466	8.826	20	22.1034
12/10/2009 14:30	27	733.8	789.9	6.105	6.5622	13.5195	8.831	20.3849	22.1179
12/10/2009 14:30	429	846.6	846.4	6.1175	6.5622	13.5068	8.828	20.373	22.
12/10/2009 14:31	431	733.8	846.4	6.192	6.57	13.4996	8.8317	20.3702	22.1070
12/10/2009 14:31	433		733.5	6.1193	6.5750	13.5123	11.088	20.3	22.1142
12/10/2009 14:32	435	508.	620.7	6.11	6.57	13.4996	. 84	20.377	22.3672
12/10/2009 14:32	437	621.0	564.3	6.119	6.5695	13.4814	8.8408	20.37	22
12/10/2009 14:33	439	4793.5	796.1	6.1229	6.5822	48	8.842	20.3	70
12/10/2009 14:33	441	5131.8	4965.4	6.1265	6.5877	13.49	8.844	20.37	22.
12/10/2009 14:34	443	4906.3	4852.6	6.1229	6.5877	50	8.84	20.3702	22.1034
12/10/2009 14:34	445	5019.0	4852.6	6.1265	6.5877	13.515	8.8	20.	22.1142
12/10/2009 14:35	447	4906.3	4796.2	6.1247	6.5913	13.450	8.838	20.3	2.1034
12/10/2009 14:35	449	4906.3	4796.2	6.1265	6.5859	13.5159	8.842	20.38	22.1142
12/10/2009 14:36	451	4793.5	4796.2	6.1265	6.5931	13.4324	8.8408	20.366	22.0998
12/10/2009 14:36	453	4906.3	4796.2	6.1247	6.5786	13.5123	8.8408	20.3813	79
12/10/2009 14:37	455	4737.1	4739.7	6.1265	6.5986	13.4125	8.837	20.3628	22.0962
12/10/2009 14:37	457	4793.5	4739.7	6.1247	6.5859	13.506	8.835	0.3	22.1070

ESTAMP	RE \#	Loa lbs	LoadB lbs	PotA in	PotB in	$\begin{aligned} & \text { PotC } \\ & \text { in } \end{aligned}$	Pot in	Pot in	PotF in
12/10/2009 14:38	459	4680.7	4739.7	6.1265	6.5986	13.3998	8.8353	20.3628	22.
12/10/2009 14:38	46	4793.4	4739.7	6.1265	6.5840	13.5086	8.8353	20.3739	22.1106
12/10/2009 14:39	463	4680.7	4739	6.1265	6.5913	13.3998	8.8353	20.3628	22.0998
12/10/2009 14:39	465	4793.6	4796.3	6.1193	6.5786	13.5286	8.8335	20.3702	22.1070
12	467	468	46	6.	6.5949	13.4071	8.8353	20.3628	8
12/10/2009 14:40	469	4793.6	4683.4	6.1247	6.5786	13.5105	8.8335	20.3776	70
12/	471	4680.8	46	6.1	6.59	13.3962	8.8353	20.3628	
12/10/2009 14:41	473	4793.6	4683.	6.1247	6.5822	13.5014	8.8335	20.3739	22.1070
12/10/2009 14:42	475	4680.8	4627.0	6.1265	6.6058	13.4071	8.8371	20.3628	22.1034
12	477	4680.8	45	6.	6.5859	13.5032	8.8353	20.3776	
12/10/2009 14:43	479	3778.6	3837.0	6.1265	6.6058	13.4361	8.8353	20.3628	22.1070
12/10/2009 14:43	48	3665.9	383	6.12	6.5913	13.5123	8.8335	20.3739	22.1106
12/10/2009 14:44	483	5019.1	502	6.1265	6.6077	13.3944	8.8371	20.3628	26
12/10/2009	485	4793.6	4909.1	6.1229	6.5913	13.5322	8.8353	20.3776	22.1070
12/10/2009	487	6	46	6.1	6.6058	13	8.8353	20.3628	
12/10/2009 14:45	489	4342.5	4570.5	6.1283	6.5931	13.5195	8.8389	20.3776	22.1179
12/10/2009 14:46	49	4173.3	4288	6.12	6.6004	13.4324	8.8426	20.3665	2
12/10/2009 14:46	493	4173.3	428	6.1301	6.59	13.5123	8.8426	20.3849	142
12/10/2009 14:47	495	4116.9	4175	6.1265	6.5949	13.4506	8.8426	20.3702	22.1070
12/10/2009 14:47	49	4060.5	4175.5	6.	6.5	13	8.8	20.3997	
12/10/2009 14:48	499	4060.5	417	6.1301	6.5968	13.4742	8.8426	20.3813	22.1142
12/10/2009 14:48	50	4060.7	4175	6.128	6.5968	13.4996	8.8408	20.3665	22.1215
12/10/2009 14:49	503	4060.7	41	6.126	6.59	13.5050	8.842	20.3776	34
12/10/2009	505	4060.8	4119.3	6.1283	6.5968	13.5014	8.8408	20.3739	22.1142
12/10/2009 14:50	50	40	40	6.12	6.5968	13.5032	8.8408	20.3776	6
12/10/2009 14:50	509	004.5	406	6.1336	6.600	13.5359	8.8462	20.3739	22.1215
12/10/2009	51	4004.5	4063	6.1247	6.6022	13.5377	8.8444	20.3813	22.1142
12/10/2009 14:51	513	3948.2	406	6.1265	6.60	13.5377	8.846	20.3776	22.1142
12/10/2009 1	515	4850.4	4740	6.1247	6.600	13.5395	8.8480	20.3776	22.1287
12/10/2009 14:52	517	10320.4	9932	6.228	6.72	13.6284	8.9930	20.4993	88
12/10/2009 14:53	519	1026	993	6.2266	6.72	13.6502	8.998	20.5066	60
12/10/2009 14:53	521	10264.2	9819	6.2284	6.7257	13.6012	8.9930	20.5103	22.262
12/10/2009 14:54	523	10207.8	9819.	6.221	6.72	13.6647	8.994	20.4993	2.2552
12/10/2009 14:54	525	10151.5	9762.9	6.2302	6.7276	13.5867	8.9894	20.5066	22.2660
12/10/2009 14:55	527	10151.5	9706.	6.2266	6.7257	13.6756	8.9930	20.4956	22.2443
12/10/2009 14:55	529	10038.8	9706.6	6.2356	6.7257	13.5540	8.9858	20.4956	22.2660
12/10/2009 14:56	531	10038.8	9706.6	6.2248	6.7257	13.7010	8.9930	20.4993	22.2407
12/10/2009 14:56	533	10038.8	9706.6	6.2302	6.7276	13.5431	8.9876	20.4956	22.2696
12/10/2009 14:57	535	9982.4	9706.	6.2195	6.7276	13.6864	8.9967	20.4956	22.2371
12/10/2009 14:57	537	9982.4	9706.6	6.2230	6.7276	13.5486	8.9876	20.4993	22.2696
12/10/2009 14:58	539	9926.1	9706.	6.2248	6.7239	13.6828	8.9930	20.4956	22.2515
12/10/2009 14:58	541	9926.1	9650.2	6.2248	6.7257	13.5431	8.9876	20.4956	22.2515
12/10/2009 14:59	543	9926.1	9650.3	6.2284	6.7294	13.6883	8.9894	20.4956	22.2515
12/10/2009 14:59	545	9926.1	9650.3	6.2266	6.7312	13.5431	8.9948	20.4993	22.2515
12/10/2009 15:00	547	9926.1	9593.9	6.2213	6.7294	13.6937	8.9894	20.5103	22.2552
12/10/2009 15:00	549	9926.1	9593.9	6.2266	6.7330	13.5504	8.9967	20.5103	22.2515
12/10/2009 15:01	551	9926.2	9593.9	6.2213	6.7239	13.6937	8.9948	20.5103	22.2515

TIMESTAMP	RECO \#	LoadA lbs	LoadB lbs	PotA in	PotB in	$\begin{aligned} & \text { PotC } \\ & \text { in } \end{aligned}$	Pot in	Pot in	in
12/10/2009 15:01	553	9869.8	9593.9	6.2266	6.7294	13.5467	8.9840	20.5066	22.2
12/10/2009 15:02	555	9869.8	9593.9	6.2230	6.7221	13.6937	8.9948	20.5103	22.2624
12/	55	9869.8	9593	6.2302	6.7276	13.5558	8.9858	20.5066	22.2624
12/10/2009 15:03	559	9869.8	9593.9	6.2195	6.7257	13.6919	8.9948	20.5103	22.2624
12	561	98	959	6.2302	6.7	13	8.9876	20.4956	88
12/10/2009 15:04	563	98	959	6.2266	6.7312	13.6973	8.9858	20.4993	88
	565	9813.4	9593.	6.2248	6.7257	13.5885	8.9894	20.4845	22.2588
12/	567	98	959	6.	6.7257	13.6030	8.9912	20.4993	15
12/10/2009 15:05	569	9813.4	9593.9	6.2248	6.7257	13.6338	8.9894	20.4956	22.2515
12/	571	9813.4	95	6	6.7239	13.5921	8.9930	20.5029	3
12/10/2009 15:06	573	9813.4	9593.9	6.2266	6.7276	13.6883	8.9912	20.4993	22.2443
12/10/2009 15:	575	9813.4	9593	6.2266	6.7330	13.5467	8.9912	20.5029	22.2588
12/10/2009 15:	577	98	95	6.	6.7	13	8.9948	66	2
12/10/2009 15:08	579	9813.4	9594.0	6.2230	6.7312	13.6991	8.9894	20.4993	22.2660
12/10/2009 15:08	581	12971.5	12	6.2713	6.	13.7536	9.0655	20.5656	3
12/10/2009 15:09	583	15396.5	14	6.3	6.8566	13.6973	9.1362	20.6136	22.4069
12/10/2009	585	15227.8	14673	6.319	6.8584	13.8080	9.1308	20.6173	2
12/10/2009 15:10	587	152	145	6.3	6.8	13	9.1326	20.6099	33
12/10/2009 15	589	15171.8	145	6.3232	6.8638	13.8080	9.1344	20.6136	22.4033
12/10/2009 15:11	59	15115.4	14	6.3	6.85	13	9.1326	20.6173	22.3961
12/10/2009 15:11	593	1511	145	6.3232	6.85	13.8116	9.1380	20.6136	22.4105
12/10/2009	595	15115.8	14448	6.3232	6.8620	13.6828	9.1399	20.6320	22.4069
12/10/2009 15:12	59	15	14	6.3	6.8566	13.8098	9.	20.6246	
12/10/2009 15:13	599	15003.3	14	6.3268	6.8693	13.6973	9.1417	20.6062	22.4214
12/10/2009 1	60	15003.	14	6.332	6.8638	13.8062	9.1417	20.6320	22.4214
12/10/2009 15:14	603	15003.5	144	6.3321	6.87	13.7300	9.14	20.6246	22.4214
12/10/2009 15	605	14947.	14449	6.3339	6.8693	13.7989	9.1453	20.6394	22.4286
12/10/2009 15:15	60	14890.8	14392	6.328	6.8	13	9.1	20.6246	2
12/10/2009 15:15	609	14890.	14392	6.3321	6.8638	13.7808	9.147	20.6394	22.4214
12/10/2009 15:16	61	14891.0	14336	6.3290	6.8643	13.7309	9.1495	20.6223	22
12/10/2009 15:16	613	14891.	14336	6.325	6.86	13.7817	9.14	20.6519	65
12/10/2009 15	615	14834.7	14336	6.3311	6.8647	13.7462	9.1482	20.6308	22.4133
12/10/2009 15:17	617	14778.3	14336	6.3329	6.86	13.7825	9.148	20.6272	22.4350
12/10/2009 15:18	619	1477	14336	6.3314	6.8668	13.7667	9.15	20.6	22.4251
12/10/2009 15:18	621	14778.4	14336.6	6.3368	6.8759	13.7867	9.1468	20.6317	22.4360
12/10/2009 15:19	623	14778.4	14336	6.331	6.8707	13.8017	9.1526	20.6325	95
12/10/2009 15:19	625	19516.2	18852	6.4139	6.9688	13.8507	9.2632	20.7394	22.5488
12/10/2009 15:20	627	20531.5	19868.	6.4336	7.0051	13.8997	9.2994	20.7652	22.5741
12/10/2009 15:20	629	20419.5	19756.	6.4355	7.00	13.8910	9.2997	20.7658	22.574
12/10/2009 15:21	631	20306.6	19643.1	6.4320	7.0071	13.9182	9.3015	20.7695	22.5892
12/10/2009 15:21	633	20307.3	19530	6.4393	7.0091	13.9240	9.2981	20.7700	22.5788
12/10/2009 15:22	635	20194.4	19530.8	6.4321	7.0037	13.9639	9.2999	20.7663	22.5716
12/10/2009 15:22	637	20194.9	19531.3	6.4358	7.0129	13.9351	9.2928	20.7740	22.5828
12/10/2009 15:23	639	20194.9	19474.	6.4322	7.0110	13.9678	9.3037	20.7667	22.5648
12/10/2009 15:23	641	20138.9	19418.7	6.4395	7.0111	13.9335	9.2948	20.7706	22.5904
12/10/2009 15:24	643	20082.5	19418.7	6.4341	7.0111	13.9698	9.3020	20.7706	22.5651
12/10/2009 15:24	645	20082.8	19419.0	6.4415	7.0115	13.9523	9.2952	20.7753	22.5914

STAMP	REC \#	lbs	LoadB lbs	PotA in	PotB in	PotC in	Pot in	Pot in	PotF in
12/10/2009 15:25	647	20082.8	19419	6.4362	7.0096	13.9595	9.3043	20.7827	22.5770
2009 15:25	649	20026.7	19419.3	6.4366	7.0101	13.9623	9.2958	20.7841	22.6002
12	651	199	19	6.4402	7.0120	13.9587	9.2977	20.7767	822
12/10/2009 15:26	653	19970.4	19363.0	6.4388	7.0087	13.9468	9.2964	20.7779	22.5762
2009 15:27	65	19970.4	19363.0	6.4352	7.0105	13.9595	9.2964	20.7779	22.5870
12/10/2009 15:27	657	199	193	6.4371	7.0142	13.9433	9.3073	20.7781	801
12/10/2009 15:28	659	19970.6	19306.7	6.4281	7.0124	13.9633	9.2983	20.7781	22.5764
10/2009 15:28	66	19914.2	19306.7	6.4371	7.0088	13.9197	9.2946	20.7818	22.5692
12/10/2009 15:29	663	198	19	6.4302	7.0055	13.9602	9.2969	90	74
12/10/2009 15:29	665	19857.9	19306.8	6.4391	7.0091	13.8913	9.2896	20.7753	22.5738
12/10/2009 15:30	667	19858.0	19306.9	6.4304	7.0057	13.9535	9.2972	20.7760	22.5782
12/10/2009 15:30	669	19858.	193	6.4	7.00	13.8246	9.2972	2	18
12/10/2009 15:31	67	19858.1	19307.0	6.4342	7.0059	13.9575	9.2956	20.7692	22.5897
12/10/2009 15:31	673	19858.1	19307.0	6.4288	7.0059	13.8631	9.2974	20.7877	22.5752
12/10/2009 15:32	675	19858	19	6.	7.0	13.9541	9.3013	20.7734	99
12/10/2009 15:32	67	19858.	19307.1	6.4343	7.0006	13.9033	9.2976	20.7697	22.5829
12/10/2009 15:33	679	19801.8	19307.1	6.4362	7.0044	13.9272	9.2942	20.7737	22.5833
12/10/2009 15:33	68	19801	19	6.4	7.0	13	9.3032	20.7811	69
12/10/2009 15:34	68	19745	1930	6.4381	7.011	13.8057	9.2979	20.7667	22.5872
12/10/2009 15:34	685	20873.7	20323.3	6.4381	7.0172	13.9673	9.3143	20.7999	22.5909
12/10/2009 15:35	68	25161	2461	6.53	7.1	14.0255	9.4304	20.8960	85
12/10/2009 15:35	68	25273.	24726	6.5294	7.140	14.0582	9.4504	20.9034	22.7430
12/10/2009 15:36	691	25161.	24613.8	6.5437	7.1463	14.0219	9.4413	20.8887	22.7430
12/10/2009 15:36	69	25161.	24500	6.531	7.1428	14.0602	9.4541	20.9073	59
12/10/2009 15:37	69	25161	24500	6.5259	7.146	13.9948	9.4432	20.8962	22.7287
12/10/2009 15:37	697	25048.3	24388.1	6.5349	7.1446	14.0603	9.4524	20.9074	22.7397
12/10/2009 15:38	69	25048.3	24388	6.5313	7.1483	13.9858	9.4433	20.8964	22.7470
12/10/2009 15:38	70	25048.3	24388	6.5367	7.148	14.0712	9.4434	20.9002	22.7543
12/10/2009 15:39	703	25048.3	24388.1	6.5367	7.1465	13.9786	9.4434	20.8891	22.7399
12/10/2009 15:39	705	25048.3	24331.6	6.5385	7.1520	14.0695	9.4452	20.8929	22.7327
12/10/2009 15:40	70	24935.	24275	6.5349	7.1	13.9878	9.4452	20.9040	22.7291
12/10/2009 15:40	709	24935.	24275.2	6.5368	7.1375	14.0677	9.447	20.8967	22.7437
12/10/2009 15:41	711	24935.5	24275.2	6.5368	7.1465	14.0005	9.4489	20.8819	22.7437
12/10/2009 15:41	71	24936.	24276.	6.5350	7.1375	14.0678	9.4435	20.8967	22.7401
12/10/2009 15:42	71	24936.	24276.	6.5421	7.1502	13.9824	9.4435	20.8783	22.7329
12/10/2009 15:42	717	24937.1	24276.7	6.5422	7.1429	14.0496	9.4453	20.8968	22.7402
12/10/2009 15:43	719	24824.3	24276.7	6.5368	7.1448	14.0151	9.4507	20.8857	22.7293
12/10/2009 15:43	721	24824.8	24277	6.5350	7.1448	14.0460	9.4417	20.9079	22.7438
12/10/2009 15:44	723	24824.8	24277.2	6.5368	7.1393	14.0224	9.4453	20.8931	22.7294
12/10/2009 15:44	725	24824.8	24277.2	6.5386	7.1448	14.0333	9.4453	20.8857	22.7402
12/10/2009 15:45	727	27306.7	26873.9	6.5672	7.1884	14.0751	9.5052	20.9374	22.7836
12/10/2009 15:45	729	30184.0	29922.6	6.6299	7.2720	14.1386	9.6013	21.0039	22.8849
12/10/2009 15:46	731	30015.4	29697.4	6.6245	7.2721	14.1623	9.6013	21.0150	22.8994
12/10/2009 15:46	733	29902.5	29584.5	6.6281	7.2721	14.1223	9.5977	21.0150	22.8849
12/10/2009 15:47	735	29903.0	29472.1	6.6245	7.2757	14.1641	9.5995	21.0150	22.8668
12/10/2009 15:47	737	29903.0	29472.1	6.6317	7.2739	14.1514	9.5923	21.0113	22.8885
12/10/2009 15:48	739	29790.6	29472.5	6.6245	7.2739	14.1732	9.6014	21.0261	22.8741

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	PotA in	PotB in	$\begin{aligned} & \text { PotC } \\ & \text { in } \end{aligned}$	PotD in	PotE in	PotF in
12/10/2009 15:48	741	29790.6	29416.0	6.6299	7.2757	14.1587	9.5923	21.0261	22.8994
12/10/2009 15:4	743	29790.9	29359.8	6.6263	7.2739	14.1587	9.5977	21.0224	22.8741
12/10/2009 15:49	745	29790.9	29359.8	6.6245	7.2739	14.1568	9.5959	21.0187	22.8633
12/10/2009 15:50	747	29791.2	29360.1	6.6227	7.2757	14.1605	9.5959	21.0113	22.8777
12	749	29791.2	29360.1	6.6245	7.2775	14.1605	9.5996	21.0187	22.8669
12/10/2009 15:51	751	29678.5	29303.8	6.6174	7.2757	14.1623	9.5959	21.0261	22.8741
12/10/2009 15:51	753	29678.5	29247.4	6.6263	7.2775	14.1569	9.5850	21.0224	22.8741
12	755	. 5	29247.4	6.6	7.2703	14.1587	77	61	77
12/10/2009 15:52	757	29678.7	29247.5	6.6317	7.2757	14.1478	9.5887	21.0150	22.8778
12/10/2009 15:53	759	29678.7	29247.5	6.6263	7.2721	14.1659	9.6032	21.0261	22.8741
12/10/2009 15	761	29678.8	29247.6	6.6227	7.2775	14.1169	9.5959	187	22.8850
12/10/2009 15:54	763	29678.8	29247.6	6.6245	7.2721	14.1659	9.5905	21.0335	22.8886
12/10/2009 15:54	76	29678.9	2924	6.6263	7.2757	14.0752	9.5941	21.0150	22.8850
12/10/2009 15:55	67	29678.9	29247.7	6.6245	7.2775	14.1641	9.5941	21.0224	22.8778
12/10/2009 15:5	769	29622.6	29191.4	6.6210	7.2739	14.1042	9.5978	21.0261	22.8742
12/10/2009 15:56	77	29566.2	29	6.62	7.2648	14.1659	9.5978	21.0150	50
12/10/2009 15:56	773	29566.2	29134.9	6.6210	7.2757	14.0861	9.5959	21.0151	22.8886
12/10/2009 15:57	775	29566.2	29134.9	6.6263	7.2685	14.1569	9.5959	21.0261	22.8922
12/10/2009 15:5	77	29566.3	29	6.62	7.28	14	9.5959	0077	78
12/10/2009 15:58	779	29566.3	29135.0	6.6263	7.2721	14.1496	9.6032	21.0298	22.8814
12/10/2009 15:5	781	29566.3	29135.0	6.626	7.2685	14.1169	9.5978	21.0114	22.8778
12/10/2009 15:59	783	29566.3	29135.	6.6263	7.27	14.1369	9.5923	21.0298	814
12/10/2009 15:59	785	29509.9	29135.1	6.6263	7.2775	14.1623	9.5996	21.0261	22.8886
12/10/2009 16:00	787	29453.5	29135.	6.628	7.2794	14.0480	9.6032	21.0224	22.8669
12/10/2009 16:00	789	29453.5	29135	6.6245	7.2739	14.1660	9.5996	21.0335	22.8886
12/10/2009 16:	791	29453.5	29135.1	6.6281	7.2830	14.1678	9.5923	21.0151	22.8886
12/10/2009 16:01	793	30356.3	29925.6	6.6281	7.2775	14.1714	9.6086	21.0335	22.8850
12/10/2009 16:02	795	35321.5	34837.9	6.7265	7.4157	14.2458	9.741	21.1368	23.0441
12/10/2009 16:02	797	35095.8	34725.0	6.7247	7.4139	14.2840	9.7519	21.1590	23.0550
12/10/2009 16:03	799	34982.9	34612.	6.7265	7.4157	14.2168	9.7501	21.1442	23.0622
12/10/2009 16:03	801	34982.9	34555.6	6.7301	7.4212	14.2894	9.7519	21.1516	23.0477
12/10/2009 16:04	803	34870.1	34442.7	6.7301	7.4175	14.2295	9.7556	21.1590	23.0550
12/10/2009 16:04	805	34870.1	34442.7	6.7319	7.4066	14.2858	9.7574	21.1553	23.0658
12/10/2009 16:05	807	34870.1	34386.2	6.7301	7.4175	14.2113	9.7556	21.1405	23.0622
12/10/2009 16:05	809	34757.3	34329.8	6.7319	7.4139	14.2785	9.7538	21.1590	23.0586
12/10/2009 16:06	811	34758.5	34330.9	6.7319	7.4212	14.2386	9.7538	21.1405	23.0622
12/10/2009 16:06	813	34758.5	34330.9	6.7337	7.4103	14.2785	9.7538	21.1664	23.0550
12/10/2009 16:07	815	34758.2	34274.2	6.7283	7.4103	14.2404	9.7574	21.1442	23.0477
12/10/2009 16:07	817	34758.2	34217.8	6.7319	7.4139	14.2567	9.7538	21.1700	23.0622
12/10/2009 16:08	819	34758.2	34217.8	6.7319	7.4121	14.2622	9.7519	21.1700	23.0477
12/10/2009 16:08	821	34701.6	34217.6	6.7337	7.4139	14.2585	9.7519	21.1664	23.0513
12/10/2009 16:09	823	34645.2	34217.6	6.7283	7.4121	14.2803	9.7556	21.1700	23.0550
12/10/2009 16:09	825	34645.0	34217.4	6.7319	7.4139	14.2477	9.7501	21.1737	23.0513
12/10/2009 16:10	827	34645.0	34217.4	6.7247	7.4121	14.2821	9.7556	21.1700	23.0333
12/10/2009 16:10	829	34644.9	34217.3	6.7301	7.4139	14.2604	9.7447	21.1627	23.0477
12/10/2009 16:11	831	34644.9	34217.3	6.7247	7.4157	14.2912	9.7538	21.1700	23.0333
12/10/2009 16:11	833	34644.8	34160.8	6.7301	7.4121	14.2785	9.7483	21.1774	23.0586

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	PotA in	PotB in	PotC in	PotD in	PotE in	$\begin{aligned} & \text { PotF } \\ & \text { in } \end{aligned}$
12/10/2009 16:12	835	34644.8	34104.3	6.7265	7.4121	14.2749	9.7556	21.1700	23.0369
12/10/2009 1	83	36451.5	36025.2	6.7516	7.4430	14.3021	9.7864	21.1737	23.0730
12/10/2009 16:13	839	40232.0	39752.0	6.8250	7.5502	14.3911	9.9043	21.2623	23.1924
12/10/2009 16:13	841	40062.4	39638.7	6.8321	7.5593	14.3983	9.9170	21.2734	23.1960
12	84	39949.5	39525.8	6.8250	7.5557	14.4001	9.9079	21.2807	23.2032
12/10/2009 16:1	845	39894.2	39413.9	6.8339	7.5557	14.4001	9.9025	21.2734	23.2068
12/10/2009 16:15	847	39837.8	39413.9	6.8232	7.5502	14.3947	9.9116	21.2697	23.2068
12	849	39837.3	3930	6.8375	7.5575	14.2967	9.9007	660	24
12/10/2009 16:16	851	39724.4	39300.5	6.8250	7.5539	14.4074	9.9134	21.2844	23.2104
12/10/2009 16:16	853	39724.4	39300.5	6.8267	7.5575	14.3711	9.9079	21.2660	23.2104
12/10/2009 16	85	39724.0	391	6.8303	7.5575	14.4020	9.9061	07	23.2141
12/10/2009 16:17	857	39724.0	39187.2	6.8339	7.5593	14.3602	9.9152	21.2771	23.2104
12/10/2009 16:18	859	39610.9	39186.9	6.8321	7.5502	14.4110	9.9152	21.2734	23.2104
12/10/2009 16:	86	396	391	6.8321	7.5	14.3584	9.9134	44	77
12/10/2009 16:19	863	39610.6	39186.6	6.8303	7.5539	14.4038	9.9152	21.2807	23.2213
12/10/2009 16:19	865	39610.6	39073.	6.8339	7.5630	14.3493	9.9152	21.2623	23.2104
12/10/2009 16:20	86	39610.4	39073	6.8339	7.5521	14.3874	9.9134	807	77
12/10/2009 16:20	869	39610.4	39073.5	6.8303	7.5521	14.3675	9.9134	21.2697	23.2068
12/10/2009 16:	871	39610.3	39073.	6.8321	7.5521	14.3820	9.9152	21.2807	23.2177
12/10/2009 16:21	87	39	390	6.8357	7.5	14.3820	9.	21.2771	4
12/10/2009 16:22	875	39553.7	39073.2	6.8357	7.5557	14.3856	9.9152	21.2660	23.2141
12/10/2009 16:	877	39497.3	39016.8	6.8321	7.5593	14.3965	9.9188	21.2807	23.2213
12/10/2009 16:23	87	39497	390	6.8339	7.5575	14.3893	9.9170	21.2844	23.2141
12/10/2009 16:23	881	39497.2	38960.2	6.8303	7.5539	14.4074	9.9134	21.2807	23.2104
12/10/2009 16	883	39497.2	38960.2	6.8393	7.5593	14.3874	9.9116	21.2807	23.2213
12/10/2009 16:24	885	39498.5	38961	6.8321	7.5575	14.4147	9.9188	21	23.1996
12/10/2009 16:25	887	39498.5	38961.4	6.8321	7.5630	14.4020	9.9152	21.284	23.2321
12/10/2009 16:25	889	39498.1	38961.	6.8321	7.5575	14.4001	9.9206	21.2881	23.2068
12/10/2009 16:26	89	39498.	38961	6.8321	7.5593	14.4038	9.9134	21.2771	23.1996
12/10/2009 16:26	893	39497.9	38960.8	6.8285	7.5612	14.4020	9.9116	21.2807	23.2068
12/10/2009 16:2	895	39497.9	38960.8	6.8321	7.5593	14.4110	9.9225	21.2844	23.2068
12/10/2009 16:27	897	39441.2	38960.6	6.8303	7.5557	14.4110	9.9170	21.2918	23.2177
12/10/2009 16:28	899	39441.2	38904.2	6.8357	7.5612	14.4092	9.9061	21.2881	23.2213
12/10/2009 16:28	901	39386.0	38905.3	6.8285	7.5539	14.4074	9.9170	21.2844	23.2249
12/10/2009 16:29	903	39386.0	38848.9	6.8375	7.5666	14.4092	9.9061	21.2734	23.2177
12/10/2009 16:29	905	39385.6	38848.5	6.8339	7.5593	14.4147	9.9279	21.288	23.2249
12/10/2009 16:30	907	39385.6	38848.5	6.8303	7.5612	14.4056	9.9152	21.2807	23.2177
12/10/2009 16:30	909	40852.3	40655.0	6.8464	7.5793	14.4365	9.9406	21.3213	23.2466
12/10/2009 16:31	911	44914.8	44833.5	6.9305	7.6902	14.4964	10.0640	21.4062	23.3804
12/10/2009 16:31	913	44858.1	44833.2	6.9466	7.7139	14.5472	10.0767	21.4283	23.3912
12/10/2009 16:32	915	44688.8	44720.2	6.9466	7.7048	14.4982	10.0839	21.4394	23.3949
12/10/2009 16:32	917	44576.0	44607.3	6.9466	7.6993	14.5418	10.0803	21.4247	23.3985
12/10/2009 16:33	919	44520.8	44552.1	6.9449	7.7121	14.4946	10.0821	21.4136	23.4093
12/10/2009 16:33	921	44464.4	44495.6	6.9520	7.7048	14.5272	10.0803	21.4394	23.4021
12/10/2009 16:34	923	44463.9	44438.7	6.9520	7.7175	14.5054	10.0857	21.4210	23.4021
12/10/2009 16:34	925	44351.1	44382.2	6.9520	7.7066	14.5436	10.0894	21.4542	23.4093
12/10/2009 16:35	927	44352.2	44383.3	6.9520	7.7011	14.5127	10.0894	21.4357	23.3949

| TIMESTAMP | RECORD LoadA | LoadB | PotA | PotB | PotC | PotD | PotE | PotF | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\#$ | lbs | lbs | in | in | in | in | in | in |

2009 16.35	929	44352.2	44270.4	6.9520	02	2	10.0894		
12/10/2009 16:36	931	44353.1	44271.3	6.9538	7.7066	14.5327	10.0857	21.4283	23.3985
12/10/2009 16:36	933	44296.7	44271.3	6.9556	7.7121	14.5254	10.0875	21.4320	23.4057
12/10/2009 16:37	935	44241.0	44272.0	6.9502	7.7102	14.5490	10.0857	21.435	23.
12/10/2009 16:37	937	44241.0	44159.1	6.9538	7.7084	14.5182	10.0894	21.443	23.4093
12/10/2009 16:38	939	4424	44159.6	6.9484	7.7084	14.5490	10.0894	21	23.3912
12/10/2009 16:38	941	44241.5	44159.6	6.9520	7.7121	14.5272	10.0803	21.4320	
12/10/2009 16:39	943	44242.0	44160.1	6.9502	7.7102	14.5472	10.0894	21.43	76
12/10/2009 16:39	945	44242.0	44160.1	6.9484	7.7102	14.5399	10.0839	21.443	23.4129
12/10/2009 16:40	947	44185.6	44103.6	6.9520	7.7048	14.5381	10.0857	21.	23.3949
12/10/2009 16:40	949	44185.9	44047.5	6.9484	7.7121	14.5418	10.0803	21.439	23.3912
12/10/2009 16:41	951	44129.5	44047.5	6.9466	7.7121	14.5399	10.0821	21.435	23.3
12/10/2009 16:41	953	44129.8	44047.	6.9520	7.7	14.5436	10.		23.3912
12/10/2009 16:42	955	46217.7	46193.7	6.9681	7.7375	14.5799	10.1238	21.4726	23.4382
12/10/2009 16:42	957	50113.4	49696.9	7.0594	7.8539	14.6598	10.2327	21.5538	23.5503
12/10/2009 16:43	959	49944.1	49696.9	7.0558	7.8557	14.6688	10.2490	21.5686	76
12/10/2009 16:43	961	49774.7	49527.4	7.0540	7.8648	14.6725	10.2417	21.557	23.5
12/10/2009 16:44	963	49661.8	49470.9	7.0558	7.8593	14.6725	10.2508	21.572	23.5648
12/10/2009 16:44	96	49550.5	49359.	7.0522	7.8648	14.6325	10.2454	21.557	23
12/10/2009 16:45	967	49437.7	49303.0	7.0594	7.8666	14.6	10.2417	21	23.5648
12/10/2009 16:45	969	49438.9	49247.8	7.0612	7.8629	14.6289	10.2435	21.56	23.5648
12/10/2009 16:46	971	49382.5	49191.3	7.0612	7.8539	14.6815	10.2454	21.56	23.5648
12/10/2009 16:46	973	49327.1	49135.9	7.0558	7.8611	14.6144	10.2490	21.5538	23.5684
12/10/2009 16:47	975	49327.	49135.9	7.0594	7.8539	14.6525	10.2417	21.5649	23.5684
12/10/2009 16:47	977	49327.9	49136.	7.0612	7.8702	14.6362	10.2435	21.542	23.5
12/10/2009 16:48	979	49215.0	49080.2	7.0630	7.8593	14.6598	10.2454	21.5686	23.5612
12/10/2009 16:48	981	49215.	49023.7	7.0612	7.8557	14.64	10.2490	21.55	23
12/10/2009 16:49	983	49215.6	49024.3	7.0576	7.8557	14.632	10.2	21.	23.5648
12/10/2009 16:49	985	49215.6	49024.3	7.0612	7.8593	14.6489	10.2490	21.557	23.5540
12/10/2009 16:50	987	49216.2	48968.4	7.0630	7.8629	14.6489	10.2490	21.546	23.5648
12/10/2009 16:50	989	49159.7	48911.9	7.0558	7.8611	14.6707	10.2472	21.5575	23.5720
12/10/2009 16:51	991	49103.7	48912.3	7.0594	7.8593	14.6452	10.2454	21.5612	23.56
12/10/2009 16:51	993	49103.7	48912.3	7.0576	7.8666	14.6761	10.2490	21.5575	23.
12/10/2009 16:52	995	49104.	48912.6	7.0612	7.8629	14.6670	10.241	21.55	23.
12/10/2009 16:52	997	49104.	48912.6	7.0612	7.8611	14.674	10.24	21.56	23.5
12/10/2009 16:53	999	49104.3	48912.9	7.0612	7.8629	14.6198	10.254	21.553	23.5612
12/10/2009 16:53	1001	49104.3	48799.9	7.0594	7.8593	14.6761	10.2544	21.575	23.5576
12/10/2009 16:54	1003	49104.5	48800.1	7.0630	7.8648	14.5545	10.2435	21.5612	23.5576
12/10/2009 16:54	1005	49104.5	48800.1	7.0612	7.8575	14.6634	10.2490	21.5723	23.5612
12/10/2009 16:55	1007	48991.7	48800.2	7.0540	7.8539	14.6126	10.2472	21.5649	23.5648
12/10/2009 16:55	1009	48991.7	48800.2	7.0630	7.8611	14.6452	10.2435	21.5649	23.5648
12/10/2009 16:56	1011	48991.7	48800.2	7.0612	7.8593	14.6743	10.2454	21.5723	23.5503
12/10/2009 16:56	1013	48991.9	48743.9	7.0612	7.8666	14.6725	10.2399	21.5723	23.5612
12/10/2009 16:57	1015	48991.9	48687.4	7.0576	7.8575	14.6743	10.2508	21.5796	23.5684
12/10/2009 16:57	1017	48992.0	48687.5	7.0647	7.8684	14.6761	10.2417	21.5686	23.5576
12/10/2009 16:58	1019	48992.0	48687.5	7.0594	7.8648	14.6761	10.2599	21.5796	23.5756
12/10/2009 16.58									

TIMESTAMP	RECORD \#	LoadA lbs	LoadB lbs	PotA in	PotB in	$\begin{aligned} & \text { PotC } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { PotD } \\ & \text { in } \end{aligned}$	PotE in	PotF in
12/10/2009 16:59	1023	54974.8	54787.6	7.1757	8.0120	14.8086	10.4104	21.7125	23.7456
12/10/2009 16:59	1025	55087.7	55013.6	7.1828	8.0193	14.7759	10.4195	21.7125	23.
12/10/2009 17:00	1027	54749.1	54787.7	7.1828	8.0193	14.8195	10.4195	21.7125	23.7420
12/10/2009 17:00	1029	54974.9	55126.6	7.1828	8.0320	14.7669	10.4322	21.7236	23.7673
12/10/2009 17:01	1031	54749.1	54957.2	7.1882	8.0229	14.8141	10.4304	21.7272	23
12/10/2009 17:01	1033	54636.3	54900.7	7.1882	8.0375	14.7669	10.	21	23.7456
12/10/2009 17:02	1035	545	54	7.1	8.0266	14.7959	10.4340	36	
12/10/2009 17:02	1037	54410.5	54731.3	7.1828	8.0248	14.7977	10.4322	21.7088	23.7420
12/10/2009 17:03	1039	54410.5	54674.8	7.1846	8.0229	14.7923	10.4322	21.7088	23.76
12/10/2009 17:03	1041	54297.7	54618.4	7.1900	8.0266	14.7796	10.4322	21.7088	23
12/10/2009 17:04	1043	54297.7	545	7.1	8.0284	14.8068	10.4322	21.7162	
12/10/2009 17:04	1045	54184.8	54561.9	7.1793	8.0302	14.8068	10.4322	21.7125	23.7673
12/10/2009 17:05	1047	54184.8	54505.4	7.1864	8.0266	14.7868	10.4286	21.7162	23.7384
12/10/2009 17:05	1049	54128.	54449.	7.1828	8.0284	14.8195	10.4340	21.7088	23.7311
12/10/2009 17:06	10	54072.0	54	7.186	8.0302	14.7959	10.4231	21.7088	
12/10/2009 17:06	1053	54072.0	54449.0	7.1828	8.0266	14.8032	10.4358	21.7199	23.7275
12/10/2009 17:07	1055	54015.5	54392.5	7.1811	8.0302	14.8068	10.4268	21.7125	23.7456
12/10/2009 17:07	1057	53959.	54336.0	7.1864	8.0320	14.8050	10.4286	21.7088	23.
12/10/2009 17:08	105	53959	54336.	7.182	8.03	14.8086	10.43	21	23.7347
12/10/2009 17:08	1061	53959.	54336.0	7.175	8.0266	14.8141	10	21.7199	23.7420
12/10/2009 17:09	1063	53959.1	54279.6	7.1828	8.0302	14.8068	10.4195	21.716	23.7420
12/10/2009 17:09	1065	53902.7	54279.6	7.1793	8.0248	14.8086	10.4304	21.7162	23
12/10/2009 17:10	106	53846.	54223	7.177	8.0338	14.810	10.4231	21.7051	23.7420
12/10/2009 17:10	1069	53846.	54223	7.179	8.026	14.	10.	21	23.7456
12/10/2009 17:11	1071	53846.2	54223.1	7.181	8.0284	14.7995	10.426	21.	23
12/10/2009 17:11	1073	53846.2	54223.1	7.1828	8.0302	14.8123	10.4231	21.7162	23.7492
12/10/2009 17	1075	53789.8	54166.6	7.1846	8.0284	14.7723	10.4268	21.7125	23.
12/10/2009 17:12	1077	53789.	54110	7.18	8.02	14.8	10.	21.712	23.7492
12/10/2009 17:13	107	53789.8	54223	7.182	8.028	14.7832	10.	21.7014	23
12/10/2009 17:13	1081	54184.9	57047.2	7.1936	8.0375	14.8359	10.459	21.7605	23.7818
12/10/2009 17:14	1083	53846.3	58233.3	7.1954	8.0557	14.8014	10.4739	21.7494	23.79
12/10/2009 17:14	1085	53846.3	57273.	7.1990	8.0466	14.8322	10.4739	21.7863	23.81
12/10/2009 17:15	1087	53846.	57047	7.19	8.0	14.832	10.4739	21.	23.
12/10/2009 17:15	1089	53846.3	56934.3	7.1972	8.0448	14.826	10.47	1.7	23.
12/10/2009 17:16	1091	53620.5	59306.5	7.1990	8.0484	14.8395	10.4812	21.7863	23.80
12/10/2009 17:16	1093	53281.8	59532.4	7.2115	8.0611	14.8377	10.4993	21.7937	23.8360
12/10/2009 17:17	1095	53281.8	58741.7	7.2043	8.061	14.8685	10.5011	21.8010	23.8
12/10/2009 17:17	1097	53281.8	58515.8	7.2097	8.0593	14.850	10.50	21.804	23.839
12/10/2009 17:18	1099	53281.8	58289.8	7.2043	8.0629	14.8685	10.4993	21.797	23.821
12/10/2009 17:18	1101	53281.8	58176.9	7.2079	8.0611	14.8558	10.4957	21.8010	23.8432
12/10/2009 17:19	1103	53281.8	58063.9	7.2061	8.0575	14.8613	10.5029	21.8047	23.8288
12/10/2009 17:19	1105	53281.8	57950.9	7.2043	8.0593	14.8576	10.4975	21.8084	23.8505
12/10/2009 17:20	1107	53281.8	57950.9	7.2115	8.0611	14.8631	10.4957	21.797	23.8324
12/10/2009 17:20	1109	53281.8	57838.0	7.2061	8.0629	14.8722	10.5084	21.7937	23.8288
12/10/2009 17:21	1111	53225.4	57838.0	7.2043	8.0593	14.8722	10.5011	21.8010	23.8360
12/10/2009 17:21	1113	47637.7	47558.2	7.1274	7.9520	14.7868	10.3868	21.6940	23.7058
12/10/2009 17:22	1115	47750.6	47784.1	7.1310	7.9520	14.7868	10.3814	21.6977	23.7131

IMESTAMP		Load lbs	LoadB lbs	Pot in	PotB in	PotC in	Pot in	Pot in	PotF in
009	1117	23480.8	23948.5	6.6961	7.3594	14.3257	9.7937	2623	23.1707
12/10/2009 17:23	1119	3	2	6.6	7.	1	9.7937	21.2697	3
12/10/2009	1121	24045.2	24174.5	6.6997	7.3630	14.3221	9.7955	21.2807	23.1707
12/10/2009	1123	24158.1	24	6.	7.	14.3348	9.7991	21.2697	
009	1125	242	24400.	6.7015	7.368	14.2894	9.7955	21.2475	23.
10/2009 17.2	11	24	24	6.	7.	14	9.7937	21.2734	23.1671
/2009	1129	438	245	6.7015	7.35	14.305	9.79	21.2512	23.
009	1131	18288.	18639	6.595	7.22	14.2204	9.6685	21.1885	23.0
12/10/2009 17:26	1133	142	146	6.5118	7.10	4.1	9.55	21.088	22
12/10/2009 17:27	1135	1433	1491	6.515	7.1085	14.1079	9.5506	21.0778	22.94
12/10/2009 17:2	1137	14450.2	1502	6.51	7.1	14.	9.5488	21.081	22.9248
0/2009 17	1139	14619.5	15024.3	6.5172	7.113	14.1242	9.5542	21.0852	22.9284
12/10/2009 17:28	1141	14675.9	15137.3	6.5118	7.1121	14.1478	9.5542	21.0962	22.9465
12/10/2009 17:29	1143	14788.8	15137.	6.5154	7.1103	14.1278	9.5506	21.0962	22.9320
12/10/2009 17:29	1145	14788.8	15193.8	6.5136	7.1157	14.1514	9.5542	21.0852	22.9176
2/10/2009 17:30	1147	1581.5	1581.5	6.2935	6.812	13.8991	9.2404	20.8748	22.6

[^2]
 แibuly 3 3f

 R

 \&8

 gix

[^3]

 응 층흔
 흧른
事

長号

面新岳

[^4]

แ1

最嘈岳

I 1

 \％ 8

 11

志
E
足
药

 §
発迫岳费

量气

 둥흉

 581

 581

> 数晨 $\frac{5}{2}$

出息

へ㑒密意

It
｜t量量

会量
 0

会量需

 あ

 （1）页范

> 長 $\frac{E}{2}$

为응

命

 ～

云 0^{2}

気高

 แH1 зก

 あ (

 E

 あ

男量

長
苗黄弿

TABLE E.10: Bending moments for pile 5

Depth (ft)	Moment (k-ft)	Moment (k-ft)	Moment $(k-f t)$	Moment (k-ft)	Moment (k-ft)	Moment $(\mathrm{k}-\mathrm{ft})$	Moment $(\mathrm{k}-\mathrm{ft})$	Moment (k-ft)	Moment $(k-\mathrm{ft})$	Moment $(\mathrm{k}-\mathrm{ft})$	Moment (k-ft)	Moment (k-ft)	Moment $(\mathrm{k}-\mathrm{ft})$
	5 kips	10 kips	15 kips	20 kips	30 kips	40 kips	50 kips	60 kips	70 kips	80 kips	90 kips	100 kips	110 kips
0.4	0	0	0	0	0	0	0	0	0	0	0	0	0
2.5	0.151	2.820	8.519	14.035	19.989	19.891	25.716	31.47604	31.43637	37.05004	43.70848	44.32761	50.2472
5	0.181	5.324	18.415	30.267	42.335	42.107	53.802	65.04438	64.8233	74.87646	85.70357	86.87701	96.62912
7.5	0.059	3.701	16.214	28.422	40.634	40.529	52.317	63.67013	63.53633	75.52322	87.48806	89.20983	99.47841
10	-0.006	0.461	2.954	5.286	7.617	7.772	10.071	12.28294	12.42897	15.21542	18.331	18.7832	21.96494
12.5	-0.012	-0.111	-0.605	-1.044	-1.440	-1.454	-1.820	-2.22938	-2.24666	-2.67361	-3.07984	-3.0995	-3.51966
15	0.001	0.003	-0.017	-0.046	-0.070	-0.074	-0.098	-0.12231	-0.11149	-0.16481	-0.21631	-0.14557	-0.27417
17.5	-0.003	-0.002	-0.002	-0.001	0.000	0.000	0.003	0.004407	0.004028	0.008121	0.012621	0.015103	0.016079
20	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE E.11: Bending moments for pile 6

Depth (ft)	Moment (k-ft)	Moment $(\mathrm{k}-\mathrm{ft})$	Moment (k-ft)	Moment (k-ft)	Moment $(\mathrm{k}-\mathrm{ft})$	Moment $(\mathrm{k}-\mathrm{ft})$	Moment $(\mathrm{k}-\mathrm{ft})$	Moment $(\mathrm{k}-\mathrm{ft})$	$\begin{gathered} \hline \text { Moment } \\ (\mathrm{k}-\mathrm{ft}) \\ \hline \end{gathered}$				
	5 kips	10 kips	15 kips	20 kips	30 kips	40 kips	50 kips	60 kips	70 kips	80 kips	90 kips	100 kips	110 kips
1	0	0	0	0	0	0	0	0	0	0	0	0	0
2.5	0.240	1.898	4.804	6.735	8.344	8.256	9.664	10.80894	10.74229	11.69154	12.80119	13.08704	13.66215
5	0.347	3.973	14.311	23.818	33.618	33.361	42.691	49.25696	49.12834	58.3381	68.16692	72.79968	76.98542
7.5	0.129	3.531	16.568	31.490	48.039	47.826	63.257	77.55624	77.36521	92.258	106.6909	116.5644	121.9469
10	-0.092	1.857	10.265	16.406	22.601	22.813	28.790	34.95247	35.0854	41.56542	48.41053	52.04656	55.21999
12.5	0.035	-0.017	-0.318	-0.962	-1.784	-1.796	-2.479	-3.21356	-3.22487	-4.00997	-4.7695	-5.1856	-5.54561
15	0.003	0.008	-0.009	-0.033	-0.050	-0.056	-0.063	-0.07689	-0.08316	-0.10865	-0.1579	-0.10374	-0.22393
17.5	-0.002	-0.003	-0.004	0.004	0.006	0.007	0.008	0.008673	0.010126	0.011352	0.012977	0.015518	0.016623
20	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE E.12: Bending moments for pile 7

Depth (ft)	Moment $(\mathrm{k}-\mathrm{ft})$	Moment $(\mathrm{k}-\mathrm{ft})$	Moment $(k-\mathrm{ft})$	Moment (k-ft)	Moment $(k-\mathrm{ft})$	Moment (k-ft)	Moment (k-ft)	Moment $(\mathrm{k}-\mathrm{ft})$	Moment (k-ft)	Moment $(\mathrm{k}-\mathrm{ft})$	Moment (k-ft)	Moment (k-ft)	Moment $(\mathrm{k}-\mathrm{ft})$
	5 kips	10 kips	15 kips	20 kips	30 kips	40 kips	50 kips	60 kips	70 kips	80 kips	90 kips	100 kips	110 kips
1.2	0	0	0	0	0	0	0	0	0	0	0	0	0
2.5	-0.190	0.791	3.420	5.517	7.752	7.661	9.789	11.82245	11.93235	14.00209	16.02278	18.23047	18.00585
5	0.286	3.556	12.575	20.053	27.783	27.640	35.104	42.3955	42.73106	49.89008	57.44068	65.95192	65.18804
7.5	0.309	3.812	17.930	31.129	44.815	44.714	57.850	70.86688	71.7361	83.94622	97.53422	112.5432	111.3711
10	0.066	1.374	10.345	17.678	24.862	24.980	31.911	39.23655	40.03581	47.22579	55.42343	63.35311	63.62902
12.5	0.000	0.011	0.164	0.102	-0.006	0.027	-0.048	-0.03764	0.048253	0.123161	0.330588	0.414306	0.673524
15	0.007	0.007	-0.069	-0.159	-0.255	-0.260	-0.360	-0.50447	-0.48455	-0.66296	-0.79321	-0.88702	-0.92557
17.5	0.000	0.000	0.005	0.015	0.024	0.023	0.036	0.045805	0.059196	0.045225	0.035457	0.022753	0.014053
20	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE E.13: Bending moments for pile 8

Depth (ft)	Moment $(\mathrm{k}-\mathrm{ft})$												
	5 k kps	10 kips	15 kips	20 kips	30 kips	40 kips	50 kips	60 kips	70 kips	80 kips	90 kips	100 kips	110 kips
0.9	0	0	0	0	0	0	0	0	0	0	0	0	0
2.5	-0.579	-2.802	-7.665	-11.739	-15.704	-15.529	-19.293	-22.5626	-25.4114	-25.0931	-28.3475	-32.0566	-31.6065
5	-0.190	-4.034	-14.599	-22.899	-31.069	-30.911	-38.613	-46.0757	-51.995	-51.7226	-58.9634	-67.0217	-66.8282
7.5	0.029	-4.198	-22.761	-37.188	-51.279	-51.178	-64.681	-77.1444	-87.444	-89.4582	-102.116	-115.356	-115.135
10	0.026	-0.876	-9.227	-16.560	-23.667	-23.883	-30.393	-36.808	-41.3335	-43.93	-51.5544	-59.3875	-60.9715
12.5	-0.006	-0.009	0.182	0.372	0.509	0.500	0.592	0.596834	0.622451	0.469485	0.205089	0.1346	-0.00261
15	-0.009	-0.012	0.008	0.035	0.065	0.068	0.104	0.152455	0.1911	0.217943	0.307734	0.368169	0.398957
17.5	0.003	0.002	0.002	0.002	0.003	0.007	0.004	0.003317	0.004017	0.004546	0.004805	0.003382	0.003149
20	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX F: LABORATORY BENDING TESTS

TABLE F.1: Load and displacement measurements for lab pile 1

Distance from Left End of Pile			
Total Load (kips)	2 ft		3 ft
Vertical	4 ft		
0.1	0.0000	0.0012	0.0013
16.0	0.0120	0.0146	0.0092
23.4	0.0229	0.0251	0.0166
25.4	0.0253	0.0252	0.0174
31.3	0.0384	0.0406	0.0227
38.1	0.0469	0.0516	0.0299
45.5	0.0616	0.0653	0.0359
53.5	0.0698	0.0774	0.0430
62.2	0.0842	0.0886	0.0506
71.2	0.0937	0.1044	0.0579
80.4	0.1076	0.1184	0.0655
89.8	0.1192	0.1336	0.0736
99.8	0.1310	0.1487	0.0799
110.3	0.1432	0.1623	0.0907
121.4	0.1546	0.1765	0.0992
132.8	0.1670	0.1920	0.1089
147.9	0.1832	0.2133	0.1211
163.3	0.2037	0.2369	0.1335
176.1	0.2176	0.2620	0.1441
182.8	0.2246	0.4580	0.1498

TABLE F.2: Bending moments for lab pile 1

Distance from Left End	Total Load (kips)											
	25 kips	50 kips	75 kips	100 kips	125 kips	150 kips	175 kips	200 kips	225 kips	250 kips	275 kips	300 kips
(ft)	Bending Moment (k*ft)											
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	4.39	5.92	7.60	3.56	4.54	5.22	10.32	12.48	13.84	14.84	15.58	4.35
2	12.43	14.86	21.37	31.16	41.04	51.03	65.91	76.63	86.21	97.01	106.33	28.42
3	31.29	43.40	66.59	90.69	99.59	107.92	119.15	128.28	135.44	77.16	85.09	4.44
4	12.71	20.01	30.06	40.40	60.27	75.64	93.84	108.13	120.96	132.78	141.15	66.43
4.5	6.95	10.77	15.57	20.92	26.44	32.08	35.95	39.68	43.98	50.32	55.44	18.81
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE F.3: Load and displacement measurements for lab pile 2

Distance from Left End of Pile				
Total Load (kips)	1.5 ft	2.5 ft	3.5 ft	4.5 ft
5.0	0.0040	0.0104	-0.0343	0.0194
10.0	0.0120	0.0196	-0.0082	0.0256
20.0	0.0228	0.0336	0.1451	0.0440
30.0	0.0283	0.0462	0.1173	0.0586
40.0	0.0414	0.0601	0.1756	0.0692
50.0	0.0496	0.0706	0.1070	0.0808
60.0	0.0583	0.0832	0.1475	0.0956
70.0	0.0644	0.0923	0.2611	0.1029
80.0	0.0727	0.1047	0.1390	0.1172
90.0	0.0837	0.1170	0.2714	0.1276
100.0	0.0899	0.1278	0.1866	0.1401
110.0	0.0955	0.1395	0.2326	0.1479
120.0	0.1044	0.1499	0.1958	0.1582
130.0	0.1109	0.1604	0.2179	0.1698
140.0	0.1191	0.1690	0.2204	0.1787
150.0	0.1251	0.1786	0.2224	0.1875
160.0	0.1326	0.1871	0.1437	0.1965
170.0	0.1364	0.1956	0.0929	0.2048
180.0	0.1429	0.2027	0.0553	0.2125
190.0	0.1532	0.2113	0.1859	0.2191
200.0	0.1586	0.2204	0.1679	0.2279
210.0	0.1629	0.2313	0.2004	0.2361
220.0	0.1709	0.2402	0.1897	0.2423
230.0	0.1814	0.2496	0.2236	0.2539
240.0	0.1834	0.2588	0.2067	0.2597
250.0	0.1952	0.2675	0.2406	0.2671
260.0	0.1990	0.2766	0.2769	0.2746
270.0	0.2068	0.2866	0.2102	0.2823
280.0	0.2139	0.2979	0.2330	0.2910
290.0	0.2254	0.3084	0.2490	0.3000
300.0	0.2314	0.3221	0.2991	0.3119
303.6	0.2382	0.3298	0.3307	0.3167

TABLE F.4: Bending moments for lab pile 2

Distance from	Total Load (kips)											
	25 kips	50 kips	75 kips	100 kips	125 kips	150 kips	175 kips	200 kips	225 kips	250 kips	275 kips	300 kips
(ft)	Bending Moment (k*ft)											
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	10.18	18.00	23.32	29.19	35.48	39.09	43.33	47.04	52.74	55.83	59.79	63.55
2	29.05	45.07	58.63	73.02	75.19	76.67	78.48	80.06	10.47	12.10	12.69	14.38
3	29.88	47.84	59.97	75.35	89.83	102.03	111.44	118.93	127.61	131.74	137.10	65.18
4	11.76	21.92	30.20	39.96	47.55	55.19	61.24	66.31	72.08	75.67	78.71	80.58
4.5	6.68	4.52	7.16	8.89	12.90	17.16	20.80	23.68	28.55	31.27	33.12	34.59
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE F.5: Load and displacement measurements for lab pile 3

Distance from Left End of Pile				
Total Load (kips)	1.5 ft	2.5 ft	3.5 ft	4.5 ft
10.0	0.0125	0.0141	0.0169	0.0103
20.0	0.0231	0.0362	0.0395	0.0332
30.0	0.0399	0.0555	0.0580	0.0495
40.0	0.0505	0.0689	0.0738	0.0622
50.0	0.0609	0.0846	0.0886	0.0756
60.0	0.0714	0.0978	0.1021	0.0873
70.0	0.0809	0.1111	0.1165	0.1009
80.0	0.0903	0.1224	0.1312	0.1106
90.0	0.0995	0.1335	0.1424	0.1214
100.0	0.1071	0.1479	0.1526	0.1331
110.0	0.1141	0.1609	0.1646	0.1412
120.0	0.1259	0.1730	0.1765	0.1521
130.0	0.1324	0.1818	0.1839	0.1609
140.0	0.1400	0.1969	0.1972	0.1728
150.0	0.1485	0.2033	0.2062	0.1793
160.0	0.1559	0.2167	0.2170	0.1878
170.0	0.1646	0.2271	0.2269	0.1959
180.0	0.1726	0.2362	0.2363	0.2058
190.0	0.1787	0.2456	0.2459	0.2133
200.0	0.1858	0.2573	0.2555	0.2204
210.0	0.1971	0.2682	0.2646	0.2283
220.0	0.2025	0.2781	0.2748	0.2397
230.0	0.2091	0.2890	0.2846	0.2469
240.0	0.2225	0.2989	0.2949	0.2550
250.0	0.2260	0.3101	0.3069	0.2605
260.0	0.2380	0.3225	0.3175	0.2701
270.0	0.2426	0.3371	0.3306	0.2796
275.0	0.2521	0.3452	0.3363	0.2863

TABLE F.6: Bending moments for lab pile 3

Distance from	Total Load (kips)										
Left End	50 kips	75 kips	100 kips	125 kips	150 kips	175 kips	200 kips	225 kips	250 kips	275 kips	278 kips
(ft)	Bending Moment (k*ft)										
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	2.98	4.61	4.97	5.12	5.10	5.24	5.66	6.50	7.71	8.65	8.74
2	21.12	31.49	43.99	54.40	56.13	58.04	62.71	67.96	73.65	78.61	78.66
3	52.62	78.65	84.52	83.94	90.19	90.92	90.20	25.41	98.13	6.98	6.42
4	40.21	56.45	80.82	96.27	99.62	100.91	104.17	108.87	113.84	47.50	118.74
4.5	3.28	5.04	4.17	11.01	12.26	13.05	15.30	17.07	19.52	17.89	17.87
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE F.7: Load and displacement measurements for lab pile 4

Distance from Left End of Pile				
Total Load (kips)	1.5 ft	2.5 ft		3.5 ft
Vertical Displacement (in)	4.5 ft			
5.0	0.0000	0.0023	-0.0004	0.0003
10.0	0.0000	-0.0004	0.0112	0.0159
20.0	0.0146	0.0205	0.0349	0.0316
30.0	0.0259	0.0360	0.0557	0.0510
40.0	0.0368	0.0512	0.0715	0.0631
50.0	0.0448	0.0659	0.0859	0.0752
60.0	0.0544	0.0784	0.1019	0.0885
70.0	0.0658	0.0894	0.1141	0.1012
80.0	0.0720	0.1015	0.1283	0.1123
90.0	0.0820	0.1135	0.1412	0.1235
100.0	0.0892	0.1218	0.1524	0.1349
110.0	0.0982	0.1332	0.1651	0.1458
120.0	0.1051	0.1448	0.1765	0.1555
130.0	0.1136	0.1549	0.1890	0.1661
140.0	0.1188	0.1638	0.1997	0.1761
150.0	0.1308	0.1730	0.2122	0.1864
160.0	0.1371	0.1825	0.2230	0.1945
170.0	0.1409	0.1941	0.2356	0.2031
180.0	0.1494	0.2040	0.2453	0.2127
190.0	0.1594	0.2121	0.2555	0.2209
200.0	0.1628	0.2226	0.2665	0.2291
210.0	0.1747	0.2326	0.2777	0.2370
220.0	0.1780	0.2415	0.2880	0.2457
230.0	0.1873	0.2509	0.2995	0.2563
240.0	0.1927	0.2612	0.3097	0.2632
250.0	0.2051	0.2706	0.3201	0.2726
260.0	0.2097	0.2821	0.3320	0.2816
270.0	0.2209	0.2941	0.3438	0.2907
280.0	0.2293	0.3103	0.3546	0.3022
290.0	0.2441	0.3253	0.3712	0.3132
295.0	0.2526	0.3387	0.3870	0.3242

TABLE F.8: Bending moments for lab pile 4

Distance from	Total Load (kips)											
Left End	25 kips	50 kips	75 kips	100 kips	125 kips	150 kips	175 kips	200 kips	225 kips	250 kips	275 kips	295 kips
(ft)	Bending Moment (k*ft)											
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	15.37	30.89	43.52	56.29	69.23	85.31	94.83	106.75	117.54	127.35	139.16	148.01
2	15.80	37.55	52.36	65.15	78.06	90.40	97.74	106.98	116.46	124.21	133.96	141.44
3	17.70	43.14	59.96	75.87	91.91	110.42	121.34	133.61	141.65	119.92	34.96	34.96
4	40.56	58.80	80.75	94.81	99.45	106.25	109.17	44.80	119.61	53.83	59.48	13.33
4.5	8.69	53.35	66.40	79.42	91.15	111.37	120.80	135.33	146.90	146.90	146.90	146.90
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE F.9: Load and displacement measurements for lab pile 5

Distance from Left End of Pile									
Total Load (kips)	1.5 ft					2.5 ft	3.5 ft		4.5 ft
5.0	0.0053	0.0119	0.0092	0.0094					
10.0	0.0092	0.0205	0.0192	0.0202					
20.0	0.0211	0.0324	0.0343	0.0378					
30.0	0.0323	0.0479	0.0501	0.0468					
40.0	0.0381	0.0601	0.0640	0.0594					
50.0	0.0486	0.0722	0.0767	0.0714					
60.0	0.0620	0.0854	0.0881	0.0815					
70.0	0.0653	0.0957	0.1002	0.0926					
80.0	0.0758	0.1077	0.1110	0.1031					
90.0	0.0843	0.1215	0.1241	0.1149					
100.0	0.0935	0.1325	0.1362	0.1233					
110.0	0.1006	0.1429	0.1453	0.1319					
120.0	0.1090	0.1558	0.1565	0.1422					
130.0	0.1144	0.1660	0.1682	0.1519					
140.0	0.1265	0.1761	0.1789	0.1618					
150.0	0.1335	0.1863	0.1906	0.1709					
160.0	0.1371	0.1989	0.2014	0.1785					
170.0	0.1469	0.2074	0.2118	0.1890					
180.0	0.1573	0.2202	0.2219	0.1964					
190.0	0.1600	0.2286	0.2335	0.2061					
200.0	0.1711	0.2398	0.2417	0.2133					
210.0	0.1761	0.2490	0.2511	0.2194					
220.0	0.1862	0.2602	0.2611	0.2284					
230.0	0.1929	0.2700	0.2682	0.2364					
240.0	0.2015	0.2787	0.2796	0.2455					
250.0	0.2084	0.2915	0.2895	0.2526					
260.0	0.2192	0.3051	0.3006	0.2611					
269.0	0.2306	0.3248	0.3159	0.2748					

TABLE F.10: Bending moments for lab pile 5

Distance from	Total Load (kips)											
Left End	25 kips	50 kips	75 kips	100 kips	125 kips	150 kips	175 kips	200 kips	225 kips	250 kips	275 kips	300 kips
(ft)	Bending Moment ($\mathrm{k}^{*} \mathrm{ft}$)											
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.5	4.39	5.92	7.60	3.56	4.54	5.22	10.32	12.48	13.84	14.84	15.58	4.35
2	12.43	14.86	21.37	31.16	41.04	51.03	65.91	76.63	86.21	97.01	106.33	28.42
3	31.29	43.40	66.59	90.69	99.59	107.92	119.15	128.28	135.44	77.16	85.09	4.44
4	12.71	20.01	30.06	40.40	60.27	75.64	93.84	108.13	120.96	132.78	141.15	66.43
4.5	6.95	10.77	15.57	20.92	26.44	32.08	35.95	39.68	43.98	50.32	55.44	18.81
5.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE F.11: Joint bending moments for lab pile 1-5

Joint Moment Pile \#1		JOINT MOMENT Pile \#2		Joint Moment Pile \#3		Joint Moment Pile \#4		Joint Moment Pile \#5	
$\begin{gathered} \text { Load } \\ (\text { Kips }) \\ \hline \end{gathered}$	Moment (k-ft.)	$\begin{aligned} & \text { Load } \\ & \text { (kips) } \end{aligned}$	Moment (k-ft.)	$\begin{aligned} & \text { Load } \\ & \text { (kips) } \end{aligned}$	Moment (k-ft.)	$\begin{aligned} & \text { Load } \\ & \text { (kips) } \end{aligned}$	Moment (k-ft.)	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { Load } \\ \text { (Kips) } \\ \hline \end{array}$	Moment (k-ft.)
0	0	0	0	0	0	0	0	0	0
25	31.29	25	29.9	50	52.6	25	17.70	25	31.29
50	43.4	50	47.8	75	78.6	50	43.14	50	43.40
75	66.59	75	60	100	84.5	75	59.96	75	66.59
100	90.69	100	75.4	125	83.9	100	75.87	100	90.69
125	99.59	125	89.8	150	90.2	125	91.91	125	99.59
150	107.92	150	102	175	90.9	150	110.42	150	107.92
175	119.15	175	111.4	200	90.2	175	121.34	175	119.15
200	128.28	200	118.9	225	25.4	200	133.61	200	128.28
225	135.44	225	127.6	250	98.1	225	141.65	225	135.44
250	77.16	250	127.6	275	7.0	250	119.92	250	77.16
275	85.09	275	137.1	278	6.4	275	34.96	275	85.09
300	4.44	300	65.2			295	34.96	300	4.44

TABLE F.12: Load and displacement measurements for lab pile 6

Distance from Left End of Pile				
Total Load (kips)	1.5 ft	2.5 ft	3.5 ft	4.5 ft
5.0	-0.0015	0.0003	0.0008	0.0005
10.0	0.0056	0.0111	0.0096	0.0084
20.0	0.0197	0.0307	0.0269	0.0272
30.0	0.0293	0.0466	0.0482	0.0485
40.0	0.0396	0.0652	0.0623	0.0590
50.0	0.0539	0.0776	0.0751	0.0698
60.0	0.0617	0.0889	0.0904	0.0820
70.0	0.0701	0.1072	0.1060	0.0946
80.0	0.0785	0.1151	0.1186	0.1042
90.0	0.0893	0.1318	0.1328	0.1151
100.0	0.1008	0.1473	0.1456	0.1282
110.0	0.1065	0.1587	0.1599	0.1358
120.0	0.1162	0.1739	0.1712	0.1477
130.0	0.1270	0.1829	0.1818	0.1542
140.0	0.1299	0.1983	0.1921	0.1643
150.0	0.1399	0.2106	0.2049	0.1751
160.0	0.1515	0.2204	0.2166	0.1825
170.0	0.1534	0.2305	0.2268	0.1923
180.0	0.1651	0.2420	0.2364	0.2008
190.0	0.1695	0.2527	0.2484	0.2094
200.0	0.1787	0.2639	0.2591	0.2173
210.0	0.1846	0.2743	0.2677	0.2250
220.0	0.1967	0.2867	0.2798	0.2330
230.0	0.1987	0.2955	0.2893	0.2403
240.0	0.2085	0.3076	0.3006	0.2484
250.0	0.2172	0.3177	0.3106	0.2561
260.0	0.2217	0.3275	0.3213	0.2637
270.0	0.2359	0.3420	0.3345	0.2723
280.0	0.2439	0.3538	0.3448	0.2805
290.0	0.2501	0.3678	0.3567	0.2882
300.0	0.2617	0.3831	0.3711	0.2998
302.6	0.2672	0.3937	0.3805	0.3046

TABLE F.13: Load and displacement measurements for lab pile 7

Distance from Left End of Pile								
Total Load (kips)	1.5 ft					2.5 ft	Vertical Displacement (in)	4.5 ft
5.0	0.0059	0.0062	0.0100	0.0168				
10.0	0.0151	0.0131	0.0190	0.0238				
20.0	0.0252	0.0367	0.0422	0.0417				
30.0	0.0401	0.0549	0.0569	0.0564				
40.0	0.0492	0.0679	0.0723	0.0691				
50.0	0.0605	0.0840	0.0872	0.0827				
60.0	0.0698	0.1010	0.1016	0.0947				
70.0	0.0798	0.1151	0.1142	0.1043				
80.0	0.0898	0.1294	0.1266	0.1180				
90.0	0.0970	0.1412	0.1399	0.1245				
100.0	0.1045	0.1526	0.1514	0.1367				
110.0	0.1148	0.1655	0.1630	0.1488				
120.0	0.1265	0.1761	0.1757	0.1560				
130.0	0.1315	0.1878	0.1887	0.1683				
140.0	0.1400	0.2025	0.2013	0.1780				
150.0	0.1492	0.2127	0.2141	0.1871				
160.0	0.1589	0.2231	0.2252	0.1943				
170.0	0.1670	0.2376	0.2384	0.2048				
180.0	0.1745	0.2480	0.2486	0.2138				
190.0	0.1799	0.2595	0.2609	0.2241				
200.0	0.1937	0.2728	0.2722	0.2315				
210.0	0.2000	0.2852	0.2820	0.2402				
220.0	0.2041	0.2970	0.2932	0.2486				
230.0	0.2207	0.3100	0.3080	0.2574				
234.8	0.2235	0.3216	0.3179	0.2658				

TABLE F.14: Load and displacement measurements for lab pile 8

Distance from Left End of Pile				
Total Load (kips)	1.5 ft	2.5 ft	3.5 ft	4.5 ft
5.0	0.0037	0.0066	0.0042	0.0055
10.0	0.0089	0.0123	0.0099	0.0124
20.0	0.0183	0.0263	0.0287	0.0282
30.0	0.0290	0.0424	0.0463	0.0439
40.0	0.0397	0.0607	0.0669	0.0631
50.0	0.0482	0.0748	0.0790	0.0698
60.0	0.0567	0.0875	0.0920	0.0815
70.0	0.0647	0.1009	0.1041	0.0928
80.0	0.0718	0.1141	0.1161	0.1011
90.0	0.0803	0.1248	0.1287	0.1136
100.0	0.0894	0.1355	0.1387	0.1222
110.0	0.1001	0.1477	0.1505	0.1319
120.0	0.1152	0.1721	0.1795	0.1591
130.0	0.1211	0.1836	0.1884	0.1697
140.0	0.1299	0.1933	0.1984	0.1758
150.0	0.1361	0.2029	0.2085	0.1840
160.0	0.1440	0.2138	0.2197	0.1935
170.0	0.1497	0.2235	0.2306	0.2021
180.0	0.1611	0.2334	0.2418	0.2114
190.0	0.1681	0.2448	0.2516	0.2170
200.0	0.1730	0.2572	0.2628	0.2255
210.0	0.1815	0.2685	0.2743	0.2333
220.0	0.1926	0.2796	0.2857	0.2412
230.0	0.1964	0.2911	0.2964	0.2501
240.0	0.2083	0.3033	0.3075	0.2584
250.0	0.2133	0.3131	0.3177	0.2653
260.0	0.2245	0.3269	0.3309	0.2760
270.0	0.2376	0.3429	0.3443	0.2850
279.6	0.2487	0.3676	0.3621	0.2984

TABLE F.15: Load and displacement measurements for lab pile 9

	Distance from Left End of Pile			
Total Load (kips)	1.5 ft	Vertical Displacement (in)		$4.5 \mathrm{ft}$
5.0	0.0024	0.0005	0.0055	0.0029
10.0	0.0064	0.0075	0.0129	0.0100
20.0	0.0166	0.0256	0.0304	0.0231
30.0	0.0250	0.0400	0.0486	0.0397
40.0	0.0318	0.0557	0.0627	0.0527
50.0	0.0427	0.0650	0.0775	0.0667
60.0	0.0505	0.0778	0.0922	0.0770
70.0	0.0581	0.0913	0.1071	0.0888
80.0	0.0665	0.1032	0.1201	0.1007
90.0	0.0809	0.1236	0.1368	0.1179
100.0	0.0893	0.1352	0.1485	0.1294
110.0	0.0934	0.1448	0.1620	0.1400
120.0	0.1037	0.1559	0.1740	0.1511
130.0	0.1096	0.1673	0.1864	0.1566
140.0	0.1180	0.1778	0.2020	0.1681
150.0	0.1254	0.1886	0.2123	0.1781
160.0	0.1339	0.1993	0.2238	0.1886
170.0	0.1382	0.2098	0.2359	0.1991
180.0	0.1492	0.2206	0.2483	0.2101
190.0	0.1557	0.2308	0.2593	0.2194
200.0	0.1608	0.2371	0.2721	0.2290
210.0	0.1676	0.2514	0.2832	0.2385
220.0	0.1795	0.2610	0.2982	0.2473
230.0	0.1827	0.2729	0.3115	0.2585
240.0	0.1943	0.2845	0.3228	0.2684
250.0	0.1985	0.2948	0.3358	0.2776
260.0	0.2082	0.3055	0.3488	0.2865
270.0	0.2171	0.3164	0.3640	0.2990
279.7	0.2282	0.3360	0.3871	0.3161

APPENDIX G: STEEL AND GROUT TESTING RESULTES
FIGURE G.1: Steel Coupon Test

MATERIALS RESEARCH DIVISION
Modern Industries, Inc.
613 WEST 11th STREET • P.O. BOX 399
ERIE, PENNSYLVANIA 16512-0399
TEL. (814) 455-8061 FAX (814) 451-0686 www.modernind.com

Skyline Steel LLC
Complete Material Testing and Research Services

2000 Cliff Mine Rd, Suite 410	Sample ID : $\mathbf{S - 1 4 4 8 3 5}$
Pittsburgh PA 15275	Registered : 08/05/09
Attn:Mr. Chris Gabuzda	Received : 08/05/09

Part Num Mill/L Sample I Sample I	Generic AMPLE 0-3/4"OD OUPON				Submilter: Outside Customer Purchase Order: :4488-2 Release : Batch Code 1 : Batch Code 2:	
Sample Notes:						
Tensile Test					Test Method:	ASTM A370-09/ASTM E8/E8M - 08 Mechanical/Tension Testing of Metallic Materials
Component	Result	Units	Spec. Min	$\frac{\text { Spec. }}{\text { Max }}$		
Sample ID	SAMPLE\#1					
Area	0.0487	sq.in.				
Tensile	159	ksi				
Yield	150	ksi				
Offset	. 2%					
Elong	16	\%				
Gage	1.00					
R/A	71	\%				
Hard	321					
Scale	HBW10/3000					
Comments						

FIGURE G.2: Steel Coupon Test Result

MATERIALS RESEARCH DIVISION
 Modern Industries, Inc.

Skyline Steel LLC

613 WEST 11th STREET • P.O. BOX 399
ERIE, PENNSYLVANIA 16512-0399
TEL. (814) 455-8061 FAX (814) 451-0686
www.modemind.com

Complete Material Testing and Research Services
Certificate of Analysis

Submitter : Outside Customer Purchase Order : 4488-2

Release :
Batch Code 1: Batch Code 2 :

FIGURE G.3: Steel Coupon Test Result

FIGURE G.4: Steel Coupon Test Result

TABLE G.1: Laboratory Grout Compressive Tests Result

CUBE TEST			
(2X2) in			
NO.	Total Maximum Load (Ibs)	Area $\left(\right.$ in $\left.^{2}\right)$	Compressive Strength (PSI)
1	23679	4	5919.75
2	20917	4	5229.25
3	16466	4	4116.50
4	27287	4	6821.75
5	14283	4	3570.75
6	22823	4	5705.75
7	10504	4	2626.00
8	15335	4	3833.75
9	17257	4	4314.25
Average Compressive Strength (PSI)			

[^0]: Figure 3.12: The preliminary displacement-depth, bending moment-depth, and top displacement of a typical micropile

[^1]: * Note: Result, from pile 10 and 11, pile test not to failure

[^2]:

 $\stackrel{2}{5}$

[^3]:

[^4]:

