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Abstract: 

Richter and McCann (2007) presented a median-based multiple comparison procedure for 
assessing evidence of group location differences. The sampling distribution was based on the 
permutation distribution of the maximum median difference among all pairs, and provides strong 
control of the FWE. This idea is extended to develop a step-down procedure for comparing 
group locations. The new step-down procedure exploits logical dependencies between pairwise 
hypotheses and provides greater power than the single-step procedure, while still maintaining 
strong FWE control. The new procedure can also be a more powerful alternative to existing 
methods based on means, especially for heavy-tailed distributions. 
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Article: 

1. Introduction 

Richter and McCann (2007) presented a single-step multiple pairwise testing procedure, using 
median differences, for assessing evidence of group location differences. The sampling 
distribution was based on the permutation distribution of the maximum median difference among 
all pairs, and provides strong control of the familywise error rate (FWE), which is defined here 
as the probability of at least one false rejection among all true hypotheses. This article develops a 
more powerful step-down procedure utilizing the permutation distribution considered by Richter 
and McCann (2007) and incorporating logical constraints between hypotheses. 

Holm (1979) introduced a sequential (step-down) procedure applicable to multiple pairwise 
comparisons, and showed it to be more powerful than using a simple Bonferroni adjustment. It is 
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based on the idea that after a particular hypothesis has been rejected, it is not necessary to adjust 
the significance level for that comparison in subsequent steps. Shaffer (1986) later showed that 
Holm's method may be modified to give more powerful tests by incorporating logical 
dependencies between hypotheses. Holland and Copenhaver (1987) suggested a slight 
improvement on Shaffer's method under a certain type of dependence of the test statistics. 
Westfall (1997) noted further improvements in power are possible by also incorporating the 
dependencies between the means themselves. He presented an approach based on resampling 
the p-value distribution, which he showed can be more powerful than Shaffer's method. Westfall 
and Tobias (2007) further improved Shaffer's method by developing a closed testing procedure 
based on resampling the p-value distribution. 

Other authors have considered nonparametric permutation tests to address multiplicity issues. 
Finos and Salmaso (2005) considered a nonparametric permutation approach to adjust for 
multiplicity based on optimal subsets. Their method, however, provides only weak FWE control. 
Finos and Salmaso (2006) developed weighted nonparametric permutation methods which 
strongly control the FWE. However, these methods are designed to encompass situations where 
certain comparisons are considered more important a priori, and specifically focus on cases 
where the number of variables is much higher than the number of observations. Finos and 
Salmaso (2007) considered weighted nonparametric permutation methods that in some situations 
allow the researcher to select weights a posteriori without sacrificing multiplicity control. Their 
procedure is developed for multivariate data with dependencies where the tests that are adjusted 
for multiplicity each involve only one variable. 

For the specific case of all pairwise comparisons, Miller (1981) proposed a permutation multiple 
pairwise testing procedure based on the range of the sample means. However, Petrondas and 
Gabriel (1983) showed that the FWE may not be controlled when randomization is over all 
groups, including those not in the subset being tested. Nemenyi (1963) proposed a similar 
procedure based on the maximum of differences of Mood's (1950) two-sample median statistics. 
Hochberg and Tamhane (1987) pointed out that Nemenyi's procedure is not based on a testing 
family, and suggested instead that the test be based on the maximum of the separate median 
statistics for each pairwise comparison. Richter and McCann (2007) proposed using median 
differences instead of differences of Mood statistics, with the sampling distribution based on the 
permutation distribution of the maximum median difference among all pairs, and randomization 
restricted to within each pair. Richter and McCann (2007) showed that their method provided 
strong control of the FWE, and that using median differences is preferred over using differences 
of Mood statistics. 

This article extends the procedure of Richter and McCann (2007) and presents step-down 
pairwise testing procedures for comparing group locations that incorporate logical dependencies 
between hypotheses. Simulation results suggest that the step-down procedures can be more 
powerful alternatives to existing analogous normal theory methods, especially for heavy-tailed 
distributions. 



2. Methodology 

Throughout the remainder, consider a one-way layout with k groups, where F i is the common 
continuous distribution function for the ith group, n i is the sample size of the ith group, 
and N = n 1 + n 2 + … +n k . Further, let μ i be the location parameter associated with the ith 

distribution and  be the sample median for the ith group. Distributions are assumed identical 
for all treatments except for possible location differences. That is, for i, j = 1, 
2,…, k with i < j, F i (x) = F j (x − Δ ij ), where Δ ijrepresents the location difference between 
groups i and j. The reference distribution for testing the single comparison, H 0(ij): Δ ij = 0, is 

based on the distribution of , the maximum of all pairwise median 
differences, calculated for a large set of random reassignments of observations to groups. It 
should be noted that although we consider only the special case of a location shift, the proposed 
methods are valid also in the more general case where distributions are allowed to differ in shape 
under the alternative hypothesis. In the general case, the hypotheses 
are H 0(ij): F i (x) = F j (x), i, j = 1, 2,…, k withi < j, H a(ij): F i (x) ≤ F j (x) 
(or H a(ij): F i (x) ≥ F j (x).) 

Let C j denote the number of possible true hypotheses at Step j. In order to ensure strong control 
of the FWE, rather than randomize over all groups remaining at each step, randomization is done 
separately within each pair, and the maximum absolute difference over all pairs obtained. 

2.1. Maximal Subsets Procedure 

Step 1. Compute the permutation reference distribution using all  pairs. For each 
pairwise median difference, compute a p-value using the permutation reference distribution. 
Denote the ordered p-values as p 11, p 12,…, p 1C 1 . (i) If all p-values are greater than the specified 
α-level, then no group location differences can be declared and the procedure stops. (ii) 
If p11 ≤ α, declare the locations associated with the corresponding groups different, and proceed 
to Step 2. 

Step 2. Consider the pairwise hypothesis associated with p 12 from Step 1. The maximum 
number of possible true hypotheses, given that the hypothesis rejected in Step 1 cannot be true, is 

now . Thus, compute a reference distribution for each set, S i2, 

of  pairs containing the pairwise hypothesis associated with p 12, and a 

corresponding p-value, p2S i2 . Then set , 

where  and  is used to maintain monotonicity. 



If p 2 > α, no further group location differences can be declared and the procedure stops. 
If p 2 ≤ α, declare the locations associated with the corresponding groups different, and proceed 

to Step 3. Note that in Step 2, permutation is over sets of size  rather than , as 
would be the case using Holm's method, which does not incorporate logical dependencies. 

Step j . Consider the pairwise hypothesis associated with p 1j from Step 1. Compute a reference 
distribution for each set, S ij , ofC j pairs containing this pair, where again C j is the maximum 
number of possible true hypotheses, given the hypotheses rejected in Step 1 through j cannot be 
true. Compute a p-value, p jS ij , using each reference distribution, and 

set , where  is the maximum p-value calculated 
at Step j. If p j  > α, no further group location differences can be declared and the procedure 
stops. If p j  ≤ α, declare the locations associated with the corresponding groups different, and 
proceed to Step j + 1. 

The following theorem shows that this procedure provides strong control of the FWE. 

Theorem 2.1 

The permutation maximal subsets procedure using the maximum absolute median difference as 
the test statistic has familywise error rate no larger than α. 

Proof 

Our procedure is performed and described in terms of p-values for ease in computation and 
explanation, but could equivalently be carried out in terms of test statistics. The proof is more 
transparent in terms of test statistics, and thus this formulation of the procedure will be utilized 
here. 

Let T i be the absolute value of the median difference for the ith hypothesis, i = 1, 2,…, p, 

and  be the ith largest order statistic of this set of median differences. Assume that some 
set I of m hypotheses is actually true. Let d α, m be the permutation distribution percentile with an 
area to the right of α when comparing a set of m hypotheses. In situations where the set of 
hypotheses that can be true in any particular application can be any subset of the indexes of 
the p hypotheses, then we have a situation of “free combinations”. In our situation, however, this 
is not true. 

At each stage j, j = 1, 2,…, p of our procedure, consider the set of remaining hypotheses to be 
possibly rejected as J j and let m jbe the maximum number of hypotheses among the set J j that 
could possibly be true. Notice that when I = J j , then m j  = m as obviously all of these true 
hypotheses can be true simultaneously. Our procedure will begin with the largest absolute 
median difference and reject at each stage if the largest remaining absolute median difference is 



greater than the permutation critical point when the number of hypotheses to compare is equal 
to m j . 

Let j* be such that min {m j  | m j  ≥ m} = m j*. Now d α, m is nondecreasing in m since 
for m 1 < m 2 we have that 

 

which implies that d α, m 1  ≤ d α, m 2 . As m j is non increasing in j, we have that d α, m j+1  ≤ d α, m j . 
Thus, d α, m  ≤ d α, m j* . Now consider the case where T i  < d α, m  ∀ i ∈ I. 

Then  and the test will terminate in step p − m + 1 or earlier. But 
then obviously we will also have failed to reject the set of true hypotheses. 
As P (T i  < d α, m ∀ i ∈ I) = 1 − α, the proof is complete. 

The maximum possible numbers of true hypotheses at each step are given for up to ten groups by 
Holland and Copenhaver (1987) and Shaffer (1986) provided a recursive formula to calculate 
these for any number of groups. The following example illustrates the maximal subsets 
procedure. 

2.2. Example 

Consider the hypothetical data for four groups in Table 1. Suppose the interest is in determining 
if there are group location differences. The maximal subset procedure can be utilized to address 
this question. 

Table 1. Data for four groups, with median and mean for each group 

Group  Observations  Median Mean 
1  11, 13, 14, 33, 84  14  31 
2  19, 21, 107, 108, 184  107  87.8 
3  1, 1, 8, 9, 33, 39, 65  9  22.3 
4  1, 15, 16, 16, 26, 56, 

100  
16  32.9 

 

Step 1. Perform the single step procedure where each pairwise difference is compared to the 
permutation distribution of the maximum difference among all C 1 = 6 pairs. The resulting p-
values, based on 10,000 randomizations, are given in Table 2. 

Table 2. Pairwise hypotheses and Step 1 p-values 

Null hypothesis  Step 1 p-value 
H 0(12): Δ12 = 0  0.059 = p 12 
H 0(13): Δ13 = 0  1.000 = p 16 



H 0(14): Δ14 = 0  1.000 =p 15 
H 0(23): Δ23 = 0  0.012 = p 11 
H 0(24): Δ24 = 0  0.072 = p 13 
H 0(34): Δ34 = 0  1.000 = p 14 
 

Since p 11 = 0.012 <0.05, we would reject H 0(23): Δ23 = 0 and declare the locations of groups 2 
and 3 statistically different and proceed to Step 2. 

Step 2. We are now interested in testing H 0(12): Δ12 = 0, corresponding to p 12 = 0.059. There is 
now a maximum of C 2 = 3 hypotheses that can be simultaneously true. However, only one set of 
three hypotheses, Δ12 = Δ14 = Δ24 = 0, does not imply Δ23 = 0. Thus, the single-step procedure is 
performed, where the randomization is done within each of the three above pairs, and the 
maximum difference over the three pairs is used to determine the reference distribution. The 
corresponding p-value, based on 10,000 randomizations, is 0.047. Thus, the p-value for 
testing H 0(12): Δ12 = 0 is max (0.047, 0.012) = 0.047, and the locations of groups 1 and 2 are 
declared different, and we proceed to Step 3. 

Step 3. We are now interested in testing H 0(24): Δ24 = 0, corresponding to p 13 = 0.072. There is 
still a maximum of C 3 = 3 hypotheses that can be simultaneously true. However, all remaining 
sets of three hypotheses containing H 0(24): Δ24 = 0 imply either Δ12 = 0 or Δ23 = 0. In fact, there 
is only one set of two hypotheses, (2,4), (1,3), for which Δ24 = 0 that can be simultaneously true. 
The corresponding p-value is 0.014. Then p 3 =max (0.0140, 0.047) = 0.047 <0.05, and we 
declare groups 2 and 4 different and proceed to Step 4. 

Step 4. We are now interested in testing H 0(34): Δ34 = 0, corresponding to p 14 = 1.000 (Since 
three hypotheses had p-values of 1.000, the tiebreaker used was the largest observed median 
difference). There is still a maximum of C 4 = 3 hypotheses that can be simultaneously true. Now 
only Δ13 = Δ14 = 0 can additionally be assumed. The p-value for the test of H 0(34): Δ34 = 0 is 
0.928, so p 4 =max (0.928, 0.047) = 0.928 >0.05; thus, we cannot declare groups 3 and 4 
different at α = 0.05, and the procedure stops. 

For completeness, we also report the p-values associated with the tests for the remaining 
hypotheses, as well as the p-values computed using Westfall's (1997) procedure comparing 
means, in Table 3. 

Table 3. Pairwise hypotheses and p-values for permutation step-down and Westfall's procedures 

Null hypothesis  p-value Westfall 
H 0(12): Δ12 = 0  0.047  0.054 
H 0(13): Δ13 = 0  0.939  0.899 
H 0(14): Δ14 = 0  0.966  0.849 
H 0(23): Δ23 = 0  0.012  0.048 
H 0(24): Δ24 = 0  0.047  0.061 



H 0(34): Δ34 = 0  0.928  0.849 
 

The result of the procedure, with familywise α = 0.05, is that we have statistical evidence that 
group 2 has different location from groups 1, 3, and 4, but not that the locations of any other 
pairs differ. Note that the single-step median and Westfall's procedure declares only that group 2 
differs in location from groups 1 and 3, but not group 4. 

2.3. Conservative Maximal Subsets Procedure 

Implementing the above procedure requires determining the possible true hypotheses at each 
step. This is possible, but can be a difficult and computationally intensive task when the number 
of groups is not small. For example, Proc Glimmix in SAS will determine the logical alternatives 
for pairwise testing of means, but this becomes computationally infeasible for more than ten 
groups (SAS Institute, 2005). A conservative alternative is to simply form all possible sets of 
size C j , the maximum number of subsets that can be simultaneously true at Step j, including sets 
containing pairs declared different at a previous step. These sets must result in a p-value at least 
as large as sets containing only non rejected pairs. This is because previously rejected pairs will 
contribute differences to the reference distribution that are larger than those contributed by the 
non rejected pairs, thus creating more values at least as large as the one under consideration than 
would be the case for sets containing only non rejected pairs. Thus, the p-value calculated, p j , 
will be conservative. 

To illustrate the conservative maximal subsets procedure, we return to Example 2. For each of 
Steps 2–4, there are a maximum of C j  = 3 pairs that can be simultaneously true, and for each 

hypothesis, there is  possible sets of three hypotheses. Thus, the p-value for testing a 
hypothesis in these steps will be, for each hypothesis, the maximum p-value across all ten 
possible sets of three including that pair. At Step 2, we wish to test H 0(12): Δ12 = 0, and thus 
consider tests of this hypothesis for all sets of three containing the pair (1,2). The p-values for all 
possible permutation tests are given in Table 4. 

Table 4. p-values for the test of H 0(12): Δ12 = 0 for all possible subsets of size C = 3 

Other parameters assumed equal to 0  p-value 
Δ13 = Δ14 = 0  0.047 
Δ13 = Δ23 = 0  0.059 
Δ13 = Δ24 = 0  0.047 
Δ13 = Δ34 = 0  0.047 
Δ14 = Δ23 = 0  0.047 
Δ14 = Δ24 = 0  0.047 
Δ14 = Δ34 = 0  0.047 
Δ23 = Δ24 = 0  0.059 
Δ23 = Δ34 = 0  0.059 



Δ24 = Δ34 = 0  0.047 
 

The maximum p-value is 0.059, and thus the p-value for testing H 0(12): Δ12 = 0 is max (0.059, 
0.012) = 0.059, and locations of groups 1 and 2 cannot be declared different and the procedures 
stops. 

A summary of the procedure for the more conservative method compared to the method based on 
the actual hypotheses is given in Table 5. 

Table 5. Pairwise hypotheses and p-values for maximal subsets and conservative maximal 
subsets procedures 

Null hypothesis  p-value—maximal subsets  p-value—conservative maximal subsets 
H 0(12): Δ12 = 0  0.047  0.059 
H 0(13): Δ13 = 0  0.939  1.000 
H 0(14): Δ14 = 0  0.966  1.000 
H 0(23): Δ23 = 0  0.012  0.012 
H 0(24): Δ24 = 0  0.047  0.072 
H 0(34): Δ34 = 0  0.928  1.000 
 

Note that all p-values are slightly higher for the more conservative procedure. Thus, the power is 
slightly less, and for this example the overall conclusions reached by the two procedures are not 
the same, as only groups 2 and 3 can be declared different. 

2.4. Two-Step Procedure 

The conservative maximal subset procedure, while eliminating the need to determine the specific 
subsets that can be simultaneously equal, requires potentially very many permutation tests at 
each step, and the procedure may also become computationally infeasible if there are a large 
number of groups. Shaffer (1986) observed that when incorporating logical restrictions between 
hypotheses, the greatest single improvement in power occurs between Steps 1 and 2, and 
suggested that a conservative short-cut to the full step-down method would be to use the number 
of possible true hypotheses at Step 2, not only for Step 2, but also for all remaining steps. This 
suggestion can also be used as a conservative short-cut for the proposed permutation procedure, 

by using  for Steps 2 through . Since when k = 4, C 2 = C 3 = C 4 = 3, in 
Example 2 the two-step procedure would be identical to the maximal subset procedure, and 
result in the same conclusions. Note that the two-step procedure may also be based on the 
conservative approach, where the pairs rejected at previous steps are included in the sets over 
which the maximum absolute difference is computed. Simulation results in the next section 
support that there is both a substantial gain in power of the two-step over the single-step method, 
and little loss of power compared to the maximal subset procedure. 



3. Simulation 

3.1. Simulation Details 

A small simulation study was performed to assess the power advantage of the step-down 
procedure over the single-step method, as well as to compare the power of the two-step method 
to the maximal subset procedure (Note: we consider here only the conservative maximal subset 
procedure, due to computational complexity of the maximal subset procedure). Power was also 
calculated for the normal-based means comparison procedure of Westfall (1997), to determine if 
there are situations where the median-based method may be more powerful than an analogous 
method using means. 

Four groups were considered, and the additive model 

 

employed, where μ i is the location parameter associated with the ith population. Several different 
distributions were considered for ϵ ij . Normal, Laplace, and Cauchy distributions were chosen to 
represent symmetric distributions with progressively heavier tails, and, similarly, exponential 
and lognormal (σ = 1.5) represented light and heavy-tailed skewed distributions, respectively. 
While methods based on means (such as Westfall's procedure) are not consistent for the Cauchy 
distribution, we make this comparison to get a sense of the maximum power advantage of the 
median-based methods. 

The single step procedure (1-step) as well as four variations of the step-down procedure were 
examined: the full maximal subsets procedure (full); the full step-down procedure using 
conservative maximal subsets (c-full); the two-step procedure (2-step); and the two-step 
procedure using conservative maximal subsets (c2-step). 

All permutation tests were based on 10,000 random permutations, and for each case considered, 
average and all-pairs power and FWE estimates were based on 1,000 randomly generated 
samples. 

3.2. Simulation Results 

The results of the simulation suggest that the step-down procedures have substantially higher 
average, or per-pair, power than the one-step procedure, especially for the very heavy-tailed 
Cauchy and lognormal distributions (see Tables 6-8). In addition, there seems little to be gained 
by using the full step-down procedure over the two-step method, particularly when comparing 
the conservative procedures. In fact, the two-step procedure (2-step) often had the same or better 
power than the conservative full step-down procedure (c-full), although the two-step procedure 
(2-step) was not substantially better than the conservative two-step (c2-step). The median-based 
procedures also showed higher power than Westfall's method for very heavy-tailed (Cauchy, 
lognormal) distributions. As would be expected, the median-based procedures had lower power 



for lighter-tailed (normal, exponential, Laplace) distributions. With respect to all-pairs power, 
the median-based procedures performed best when all location differences were the same size 
(see Tables 6 and 7), but had virtually no all-pairs power when there were several magnitudes of 
location differences present (see Table 9). Westfall's procedure had much higher all-pairs power 
for the lighter-tailed distributions, but virtually none for the heavier-tailed distributions. 

Table 6. Estimated average power, based on 1,000 random data sets. Location configuration: Δ1 
= 3, Δ2 = Δ3 = Δ4 = 0 

  Error distribution 
Method  Normal  Laplace  Cauchy  Exponential  Lognormal 
Perm 1-step  0.996  0.987  0.732  0.962  0.414 
Perm c2-step  0.997  0.993  0.818  0.980  0.485 
Perm 2-step  0.998  0.993  0.834  0.982  0.494 
Perm c-full  0.997  0.993  0.818  0.980  0.485 
Perm full  0.998  0.993  0.834  0.982  0.494 
Westfall  1.000  1.000  0.130  1.000  0.261 
 

Table 7. Estimated all-pairs power, based on 1,000 random data sets. Location configuration: Δ1 
= 3, Δ2 = Δ3 = Δ4 = 0 

   Error distribution 
Method  Normal  Laplace  Cauchy  Exponential  Lognormal 
Perm 1-step  0.991  0.965  0.497  0.895  0.184 
Perm c2-step  0.994  0.981  0.700  0.946  0.263 
Perm 2-step  0.996  0.983  0.656  0.952  0.283 
Perm c-full  0.994  0.981  0.656  0.946  0.263 
Perm full  0.996  0.983  0.700  0.952  0.283 
Westfall  1.000  1.000  0.074  1.000  0.176 
 

Table 8. Estimated average power, based on 1,000 random data sets. Location configuration: Δ1 
= 3, Δ2 = 1, Δ3 = Δ4 = 0 

  Error distribution 
Method  Normal  Laplace  Cauchy  Exponential  Lognormal 
Perm 1-step  0.537  0.492  0.330  0.467  0.260 
Perm c2-step  0.560  0.525  0.374  0.493  0.299 
Perm 2-step  0.569  0.530  0.378  0.496  0.302 
Perm cfull  0.560  0.525  0.374  0.493  0.299 
Perm full  0.577  0.535  0.378  0.496  0.304 
Westfall  0.915  0.774  0.043  0.916  0.153 
 



Table 9. Estimated all pairs power, based on 1,000 random data sets. Location configuration: Δ1 
= 3, Δ2 = 1, Δ3 = Δ4 = 0 

   Error distribution 
Method  Normal  Laplace  Cauchy  Exponential  Lognormal 
Perm 1-step  0  0  0  0  0 
Perm c2-step  0.001  0.001  0  0  0 
Perm 2-step  0.017  0.011  0  0.002  0.002 
Perm cfull  0.001  0.002  0  0  0 
Perm full  0.04  0.022  0  0.003  0.003 
Westfall  0.733  0.333  0.006  0.721  0 
 

4. Discussion 

The example in Sec. 2 and the simulation results of Sec. 3 suggest that the step-down procedures 
using medians can substantially improve the power to detect pairwise differences in location, 
compared to the single step median procedure. In addition, using medians can be a more 
powerful alternative to methods based on means, especially for heavy-tailed distributions. The 
results can depend upon which characterization of power is used, however, with the median-
based procedure generally having good average power but low all-pairs power, especially when 
median differences of different magnitudes were present. This suggests that the median-based 
methods will be better at detecting larger location differences for heavy-tailed distributions, but 
may not be as useful for detecting smaller location differences when larger differences are also 
present. 

Only Westfall's (1997) method was considered as a representative procedure for comparing 
means of normal distributions. Thus, results may vary for different step-down procedures for 
comparing means. Since Westfall's procedure exploits both dependencies between means and 
logical relationships between hypotheses, and has been shown to be more powerful than several 
competitors (Westfall, 1997), it seems reasonable to assume that it is one of the most powerful 
step-down procedures for comparing means, and a good benchmark against which to compare 
the median-based procedures. 

In addition, only a relatively small number of groups was considered (four) in the simulations. It 
would be expected that the power of the permutation methods may increase as the number of 
groups increase, as with more pairs in a subset, the larger median differences would have less 
influence on the distribution of the maximum differences across pairs. It has been shown that for 
two groups, rank-based methods have increased power advantages over the t-test with larger 
sample sizes (e.g., Blair and Higgins, 1980), and that there is little difference in power between 
rank and median-based methods (Keller-McNulty and Higgins,1987). Thus, it might be expected 
that a similar relationship exists between the median-based pairwise comparison procedures and 
analogous procedures for means of normal distributions. However, it is still likely that the most 



substantial gain in power will occur at the second step, and given the computational complexity 
of the full step-down procedure, the two-step procedure may serve as a viable, and only slightly 
less powerful alternative. 
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