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ABSTRACT

LIPIKA GHOSH. Analysis of failure time data with missing and informative
auxiliary covariates.

(Under the direction of DR. YANQING SUN & DR. JIANCHENG JIANG)

In this dissertation we use Cox’s regression model to fit failure time data with

continuous informative auxiliary variables in the presence of a validation subsample.

The work is motivated by a common problem of missing or mismeasured covariates

in survival analysis as a result of which the relative risk function is not available

for all the subjects in the sample. Here we introduce a two-stage procedure for

estimating the parameters in the model. We first estimate the induced relative risk

function with a kernel smoother based on the validation subsample, and then improve

the estimation by utilizing the information from the non-validation subsample and

the auxiliary observations from the primary sample. Asymptotic normality of the

proposed estimator is obtained. The proposed method allows one to efficiently model

the failure time data with informative multivariate auxiliary covariate. Comparison

of the proposed approach with several existing methods is made via simulations. A

real dataset is analyzed to illustrate the proposed method.
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CHAPTER 1: INTRODUCTION

1.1 Motivation & Background

In epidemiologic studies the researchers often wish to investigate the association

between a particular risk factor or exposure variable with disease. The exposure

variable may be hard or expensive to measure whereas some auxiliary variables vector

are easy to measure for all subjects in the study cohort. Statistical methods that take

advantage of existing auxiliary information about an expensive exposure variable are

desirable in practice. For example, in a large scale nutritional study, it would be

prohibitively expensive to obtain the exact dietary intake on each individual. Instead,

a self administered quantitative food questionnaire is conducted on all subjects and

a validation set consisting of a subset of the full study cohort is selected. The

individuals in the validation set are asked to provide more detailed and accurate

dietary information. Although the true covariates are missing, there exist some

surrogates or auxiliary measurements which convey information about them and serve

as common proxy measure. How to utilize the available auxiliary information is

important for achieving higher statistical efficiency in the estimation of the effect of

covariates. In this thesis, we study censored failure time regression with a continuous

auxiliary covariate vector.

A variety of authors have contributed their work to this field. Related works

include Prentice (1982), Pepe (1989), Lin and Ying (1993), Hughes (1993), Lipsitz

and Ibrahim (1996), Zhou and Wang (2000), Fan and Wang (2009), Liu, Wu and Zhou

(2010), etc. In particular, Prentice (1982) introduced a partial likelihood estimator

based on the induced relative risk function. This method was further developed
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by Pepe (1989) using parametric modeling. Zhou and Pepe (1995) proposed an

estimated partial likelihood method for discrete auxiliary covariates to relax the

parametric assumptions on the frequency of events and the underlying distributions

of covariates. This method was extended by Zhou and Wang (2000) to deal with

continuous auxiliary variables, based on the Nadaraya-Watson kernel smoother method

(Nadaraya, 1964; Watson, 1964). Fan and Wang, Liu (2009) and Wu, Zhou (2010)

used the same approach for multivariate failure time data with auxiliary covariates.

While Zhou and Wang’s (2000) approach is useful in certain situations, there are some

restrictions on it. First, the approach is effective only when the auxiliary variable W

is of low dimension so that “curse of dimensionality” in nonparametric smoothing can

be avoided. Secondly, it requires that, conditionally on X, W provides no additional

information about the hazard of failure; that is, all of the effects of W on failure and

censoring are mediated through X, which is somewhat restricted since W may not

be a true surrogate and depends on the failure given X. In addition, the resulting

estimators of the parameters are not efficient if the ratio of validation observations

is small, which is mainly due to the fact that their smoothing method only used

the data in the validation set to predict the induced relative risk function rj for j

in the non-validation set. Since the important information from the observations in

the non-validation subsample is not fully utilized, this method cannot be efficient in

certain situations. We here propose a new method to deal with the problems. The

proposed method allowsW to be highly dimensional and to be informative in the sense

that, conditional X, it may provide additional information on the hazard of failure.

We first estimate the induced relative risk function with a kernel smoother based on

the validation sample, and then improve the estimation by utilizing the information

on the incomplete observations from the non-validation subsample. In addition, the

local linear smoother (see for example in Fan and Gijbels, 1996) is employed to

enhance the performance of the kernel smoother in Zhou and Wang (2000) at the
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boundary regions. The newly proposed method will be expected to improve the

efficiency of the estimators of parameters in various situations. Asymptotic normality

of the proposed estimators is derived. The results in theory and practice show that

the proposed method is efficient in certain situations even if auxiliary variable W is

not very informative about X.

In the following sections of Chapter 1 we give a brief introduction of proportional

hazards models and a brief overview of the remaining dissertation.

1.2 Proportional Hazard Models and Partial Likelihood

Proportional hazard models are popular models used in survival analysis that

can be used to assess the importance of various covariates in the survival times of

individuals or objects through the hazard function. In survival data, we need special

techniques to explore the relationship between the survival times of an individual

and the explanatory variables. The most frequently used model was proposed by

Cox(1972) and is widely known as the Cox Proportional Hazards model. Prior to Cox

Regression the leading approach to analyze mutivariate survival data was parametric

which requires one to know the nature of the survival distribution. Also we need to be

careful about violation of the model assumptions for some parametric models. Cox’

regression model has the following advantages over those methods.

(1) Cox regression is a distribution free modeling approach.

(2) This model allows us to estimate the regression coefficients without specifying

the baseline hazard function, and the estimates depend on the rank of the event

times, not their numerical values.

(3) Since the model depends on ranks, the coefficients remain unchanged by any

monotonic transformation of the hazard function.

(4) This model permits us to incorporate time varying covariates.
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(5) With appropriate specification Cox’s model can be employed to answer many

challenging research questions.

1.2.1 Formulation of the Cox model

Let z = (z1, z2, ...., zp) be a p× 1 vector of covariates of risk factors and λ(t|z) be

the hazard function which depend on the covariates z. The generalized form of the

proportional hazards model is

λ(t|z) = λ0(t)exp(β1z1 + .....+ βpzp)

where λ0(t) is the underlying baseline hazard function at time t and β1, β2, ...., βp are

the regression coefficients.

This model is known as a semiparametric model. The nonparametric part is λ0(t)

since it does not require any assumption about the shape of the underlying hazard

function. The parametric part of the model reflects the effect of the predictors,

exp(β′z) , which is called the risk function. Cox’s model is also called the proportional

hazards model since it assumes a constant ratio of hazards over time for any two

individuals or units.

1.2.2 Partial Likelihood

The concept of Partial Likelihood was introduced by Cox (1972) for analysis of

multiplicative hazard models. It was subsequently modified by many authors, such

as Wong (1986) and Anderson & Gill(1982). Why partial likelihood is used instead of

the full likelihood? First, we are interested in making inference about the regression

parameters but not the form of the baseline hazard; second, the partial likelihood

avoids misspecification of the baseline and hence assuages the modeling bias; third,

under certain conditions the partial likelihood estimator is semiparametrically efficient.

We will first give brief description of Partial Likelihood. Consider a sample of N

individuals who are followed up in time prospectively. Suppose that k of these
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individuals die during the observed period. Also assume that, N-k individuals are

right censored, that is they are still alive at the end of the observation period.

Let t1 ≤ t2 ≤ ... ≤ tk be the ordered failure times for the k individuals who die

during the observation period.

For the individual j(i = 1, 2, ..N), let

tj = observed follow up time, Zj = vector of predictors, and R(tj) = the risk set

at time tj, that is the number of individuals who are alive and at risk at time tj.

The probability that the individual j with covariates zj dies at time tj given that

individuals in R(tj) are at risk and only one individual dies at tj is given by

Lj =
exp(β′z(j))∑

i∈R(tj) exp(β
′z(i))

The partial likelihood (PL) is then obtained by taking the product of all these

probabilities across all the individuals in the sample who failed. Therefore, the partial

likelihood can be interpreted as the ratio of the risk for the individual who fails at a

specific time with the risk of all other individuals at the same time. The estimates

of the parameters can be obtained by maximizing the partial likelihood. We note

that, the censored observations contribute information only in the denominator of

the partial likelihood. Since each term in the partial likelihood contributes small

information about the parameters β, the goodness of PL does not depend on the

sample size but on the censoring rate. If the number of censored observations is large,

partial likelihood is less informative. Cox’s partial likelihood method is invalid when

there are ties in the dataset. In case of tied dataset, that is multiple individuals having

the same survival time, we can use Breslow’s approximation to partial likelihood.

1.2.3 Time Dependent Covariates

A time-dependent covariate in a Cox model is a predictor whose values may

vary with time. Fisher and Lin (1999) extended the cox model to include the
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time-dependent covariates. In this work Xi(t), Zi(t) and Wi(t) are time dependent,

i.e, at time t, the measurements are Xi(t), Zi(t) and Wi(t) respectively. For simplicity

sometimes Xi, Zi and Wi are used instead of Xi(t), Zi(t) and Wi(t).

1.3 Overview

The rest of this dissertation is organized as follows. In Chapter 2 we introduce

a new estimation approach to predict the induced relative risk for individuals in

the non-validation subsample based on the local linear smoother. In Chapter 3 we

establish asymptotic properties of the proposed estimators of the parameters. In

Chapter 4 we conduct simulations to compare the performance of different estimating

methods. In Chapter 5 we apply the proposed method to analyze a real dataset. In

chapter 6 we summarize the dissertation and discuss future research work in this area.



CHAPTER 2: ESTIMATED PARTIAL LIKELIHOOD FOR THE COX MODEL

Motivated by the idea of the partial likelihood approach in Zhou & Pepe (1995)

and Zhou Wang (2000) we introduce a new approach to estimate the induced relative

risk function for an individual in the non-validation set.

2.1 Notations

To facilitate exposition, we here employ the notations in Zhou and Wang (2000).

Suppose that there are n independent individuals in a study cohort. Let {Xi(t), Zi(t)}

denote the covariate vectors for the ith subject at time t (i = 1, · · · , n). Assume that

Xi(·) is observed only in the validation subsample which is chosen at the baseline

under the ignorable missing mechanism condition (Rubin, 1976). Let Zi(·) be the

remaining covariate vector that is always observed and W (·) the informative auxiliary

variables for X(·). Let ηi be an indicator variable with ηi = 1 if the ith individual

is in the validation set and 0 if in the non-validation set. Put V = {i : ηi = 1}

and V̄ = {i : ηi = 0}. We assume that individuals in the validation subsample are

randomly selected and hence representative. Then observed data for the ith subject

is {Si, δi, Zi(·),Wi(·), Xi(·)}, if ηi = 1 and {Si, δi, Zi(·),Wi(·)}, if ηi = 0, where Si is

the observed event time for the ith subject which is the minimum of the potential

failure time Ti and the censoring time Ci and δi is the indicator of failure. Now,we

consider the following conditional hazard function of failure time

λ{t;Xi(t), Zi(t)} ≡ lim
∆t↓0

[
1

∆t
Pr{t ≤ Ti < t+ ∆t|Ti ≥ t,Xi(t), Zi(t)}

]
= λ0(t) exp{β′1Xi(t) + β′2Zi(t)}, (2.1)
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where λ0(·) ≥ 0 is unspecified which is called the base-line hazard rate and β′0 =

(β′1, β
′
2)′ is the relative risk parameter vector to be estimated.

Model (2.1) can be fitted using the partial likelihood estimation based on the

validation set V which leads to the complete-case partial likelihood estimator (see

Cox, 1972). The resulting estimator is consistent, but it neglects the important

information on the auxiliary W . For individuals in V , the relative risk functions are

exp{β′1Xi(t) + β′2Zi(t)}.

For subjects in V̄ , the true variate X is not observed, but the relative risk functions

can be imputated by estimators of

exp{β′2Zi(t)}E[exp{β′1Xi(t)}|Ti ≥ t, Zi(t)].

Then under the independent censoring assumption (Prentice, 1982), the induced

relative risk for an individual i can be written as

ri(β, t) = ηi exp{β′1Xi(t) + β′2Zi(t)}

+(1− ηi) exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t)]. (2.2)

Then the partial likelihood function for the β is

PL(β) =
n∏
i=1

{ ri(β, Si)∑
j∈R(Si)

rj(β, Si)

}δi
. (2.3)

In order to estimate the parameters β based on the above partial likelihood, one needs

an imputation value for the conditional expectation E[exp{β′1Xi(t)}|Si ≥ t, Zi(t)].

Different imputation approaches generally yield different estimation of β. Zhou

and Wang (2000) employed an imputation method for the relative risk functions
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for subjects in V̄ , where the relative risk functions are imputated by nonparametric

estimators of

exp{β′2Zi(t)}E[exp{β′1Xi(t)}|Si ≥ t, Zi(t),Wi(t)]. (2.4)

under the assumption that W is not informative, that is, all of the effects of W on

failure and censoring are mediated through X, so that

λ{t;Xi(t), Zi(t),Wi(t)} ≡ lim
∆t↓0

[ 1

∆t
Pr{t ≤ Ti < t+ ∆t|Ti ≥ t,Xi(t), Zi(t),Wi(t)}

]
= lim

∆t↓0

[ 1

∆t
Pr{t ≤ Ti < t+ ∆t|Ti ≥ t,Xi(t), Zi(t)}

]
= λ0(t) exp{β′1Xi(t) + β′2Zi(t)}

≡ λ{t;Xi(t), Zi(t)},

Zhou and Wang (2000) derived the consistency and asymptotic normality of the

estimator. However, if W is informative, their method will generally be biased. In

addition, this method directly used information in the auxiliary covariate W and

estimated the conditional expectation in (2.4). So it may encounter the so-called

“curse of dimensionality” if W is of high dimension. For the present study, the

information in W will be used in a new way.

2.2 Local Linear Regression

We employ the kernel regression approach for estimating the relative risk function

for the subjects with missing covariate measurements. Here, we give a brief description

of the local linear regression. Local linear regression is a popular modeling procedure

in nonparametric regression. Fan and Gijbels(1996) illustrated the techniques and

theoretical properties in their literature. The local linear smoother possesses some

advantages over the Nadaraya Watson (1964) method employed in Zhou & Wang

(2000).

1. Local linear estimator has less bias while it does not increase the variance.
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2. Local linear smoothing is very adaptable and can be applied for for different

types of data design.

3. Local linear smoothing has the advantage that it adapts automatically to the

boundary effects, and so no boundary modifications are needed.

Consider the bivariate data (X1, Y1), (X2, Y2), ...., (Xn, Yn) which form an independent

and identically distributed sample from the population (X,Y). We want to estimate

the regression function m(x0) = E(Y |X = x0) and its derivative m′(x0). The data is

generated from the model

Yi = m(Xi) + εi 1 ≤ i ≤ n,

where, {εi}n1 denote zero mean random variables with variance σ2.

Suppose that the second order derivative at x0 exists. We then approximate the

unknown regression functionm(x) locally by a linear equation. Using Taylor’s expansion

in the neighborhood of x0 we have,

m(x) ≈ m′(x0) + (x− x0)m′(x0).

The above polynomial is locally fitted by a weighted least squares problem:

Minimize
n∑
i=1

{Yi − β0 − β1(Xi − x0)}2Kh(Xi − x0)

over βj, j=0,1, where h is a smoothing parameter controlling the size of the local

neighborhood and Kh(.) = K(./h)/h. Here K is a symmetric kernel function which

assigns weight to each data point. We denote by β̂j, j = 0, 1 , the solution of the

above weighted least squares problem. From the Taylor’s expansion we can see that

m̂ν(x0) = ν!β̂ν is an estimator of m(ν)(x0) (ν = 0, 1). The estimator m̂0(x) is termed

as a local linear regression smoother or a local linear fit. This estimator can be
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explicitly expressed as

m̂0(x) =

∑n
i=1wiYi∑n
i=1wi

,

wi = Kh(Xi − x)Sn,2 − (Xi − x)Sn,1,

where, Sn,j =
∑n

i=1 Kh(Xi − x)(Xi − x)j. For convenience we work with the matrix

notation below.

Let X be the design matrix of the given least squares problem. Then,

X =


1 (X1 − x0)

...
...

1 (Xn − x0).



Also, let Y =


Y1

...

Y ′n;

 and β̂ =


β̂0

...

β̂p


Further, let W be the n× n diagonal matrix of weights .i.e.

W = diag{Kh(Xi − x0)}.

The weighted least squares problem can then be written as

minβ(Y−Xβ)TW(Y−Xβ)

with β = (β0, β1)T . The solution vector can be obtained by

β̂ = (XTWX)−1XTWY.
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2.3 Estimation Method

Throughout this dissertation, we assume that model (2.1) holds. In this section, we

propose a new estimated partial likelihood approach to estimate the model parameters

in (2.1).

2.3.1 Estimation of the Relative Risk Function

Denote γi(β, t) = exp{β′1Xi(t) + β′2Zi(t)}, and

φi(β, t) = exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t)].

Then,

ri(β, t) = ηiγi(β, t) + (1− ηi)φi(β, t).

Put ζi(β1, t) = exp(β′1Xi(t)) and νj(β1, t) = E[ζj(β1, t)|Sj ≥ t, Zj(t)]. Since the

validation subsample is representative, we can estimate based on the local linear

regression which leads to the following estimators of νj(β1, t) for j ∈ V̄ :

ν̂j(β1, t) =
∑
i∈V

ωi(t, Zj(t);h)ζi(β1, t), (2.5)

where h is the bandwidth,

ωi(t, Zj(t);h) =
{s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))∑
i∈V {s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))

and sk =
∑

i∈V (Zi(t)− Zj(t))k(I[Si≥t]Kh(Zi(t)− Zj(t))

with Kh(·) = h−dK(·/h) for a d-variate kernel function K(·) (d is the dimension

of Z).

Here, ωi(t, Zj(t);h) is known as the effective kernel ( Fan & yao 2005). In

Zhou and Wang (2000), the Nadaraya Watson (1964) estimator was used for the

nonparametric smoothing in the estimation of E[γi(β, t)|Si ≥ t, Zi(t),Wi(t)], where
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“curse of dimensionality” can happen if W is of high dimension. The estimator is

given by,

ν̂j(β1, t) =
∑
i∈V

ω̃i(t, Zj(t);h)ζi(β1, t), (2.6)

where h is the bandwidth and

ω̃i(t, Zj(t);h) = I[Si≥t]Kh(Zi(t)− Zj(t))/
∑
i∈V

I[Si≥t]Kh(Zi(t)− Zj(t))

with Kh(·) = h−dK(·/h) for a d-variate kernel function K(·) (d is the dimension of

Z).

Note that the above estimation method uses only the complete observations in V

and neglects the important information on incomplete observations in V̄ . It follows

that this approach can not be expected to be efficient in certain situations. Also note

that even for one dimensional Z andW , the method in Zhou and Wang (2000) requires

a two-dimensional smoother while the new method needs only one-dimensional smoother.

To have a performance comparable with that of one-dimensional nonparametric smoother

using M1 = 50 data points, for a 2-dimensional nonparameteric smoother, we need

about M = M1.2
1 = 109 data points. Hence the loss of efficiency due to highly

dimensional smoothing is large and increasing exponentially fast (see page 317 of Fan

and Yao, 2003).

2.3.2 Improved Estimation of the Relative Risk Function

Recall that, W is an auxiliary variable for X and is hence correlated with X. Let

ξi(α, t) = exp(α′Wi(t)), where α is a parameter vector to be chosen. Considering

the conditional expectation of ψi(α, t) = E[ξi(α, t)|Si ≥ t, Zi(t)], ψi(α, t) can also be

estimated by local linear smoothing based on the data in V :

ψ̂j(β1, t) =
∑
i∈V

ωi(t, Zj(t);h)ξi(β1, t), (2.7)
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In the above, the weight function , ωi(t, Zj(t);h), kernel Kh(.), bandwidth h and

sk have the same interpretation as in (2.5).

Proposition 2.1 Suppose that the conditions in section (3.5) holds and nv denotes

the number of observations in the validation set. Given (Sj ≥ t, Zj(t)),
√
nvhd[(ν̂j(β1, t)−

νj(β1, t)), (ψ̂j(α, t) − ψj(α, t))] is jointly asymptotically normal with mean zero and

covariance matrix

Σ = v0(K)p−1(Zj)

 σ2
1(Zj, t) ρ∗α(Zj, t)σ1(Zj, t)σ2(Zj, t)

ρ∗α(Zj, t)σ1(Zj, t)σ2(Zj, t) σ2
2(Zj, t)

 ,
where v0(K) =

∫
K2(u)du, σ2

1(Zj, t) = V ar[ζj|Sj ≥ t, Zj], σ
2
2(Zj, t) = V ar[ξj|Sj ≥

t, Zj], ρ
∗
α(Zj, t) is the conditional correlation coefficient between ζj and ξj given (Sj ≥

t, Zj), and p(·) is the density function of Z.

By the distribution theory for multivariate normal variates, the conditional distribution

of
√
nvhd[ν̂j(β1, t)−νj(β1, t)] given

√
nvhd[ψ̂j(α, t)−ψj(α, t)] is asymptotically normal

with mean

ρ∗α(Zj, t)
σ1(Zj, t)

σ2(Zj, t)

√
nhd[ψ̂j(α, t)− ψj(α, t)].

The conditional mean can then be estimated by substituting consistent estimators

based on the validation sample for ρ∗α(Zj, t), σ1(Zj, t) and σ2(Zj, t), and replacing

ψj(α, t) with the primary sample based estimator

ψ̄j(β1, t) =
∑
i∈V ∪V̄

ω̄i(t, Zj(t);h)ξi(β1, t), (2.8)

where h is the bandwidth and

ω̄i(t, Zj(t);h) =
{s̄2 − (Zi(t)− Zj(t))s̄1}I[Si≥t]Kh(Zi(t)− Zj(t))∑

i∈V ∪V̄ {s̄2 − (Zi(t)− Zj(t))s̄1}I[Si≥t]Kh(Zi(t)− Zj(t))

and s̄k =
∑

i∈V ∪V̄ (Zi(t)− Zj(t))k(I[Si≥t]Kh(Zi(t)− Zj(t))
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with Kh(·) = h−dK(·/h) for a d-variate kernel function K(·) (d is the dimension of

Z).

Here, ω̄i(t, Zj(t);h) is also known as the effective kernel. By equating
√
nhd[ν̂j(β1, t)−

νj(β1, t)] with its estimated conditional mean and solving for νj(β1, t), we obtain an

improved estimate ν̄j(β1, t):

ν̄j(β1, t) = ν̂j(β1, t)− ρ̂∗α(Zj, t)
σ̂1(Zj, t)

σ̂2(Zj, t)
[ψ̂j(α, t)− ψ̄j(α, t)]. (2.9)

The updated estimator ν̄j depends on α which is related to the efficiency of the

estimator.

Proposition 2.2 Assume that the conditions in section (3.5) holds. Given (Sj ≥

t, Zj(t)), √
nvhd[ν̄j(β1, t)− νj(β1, t)]

D−→ N (0,Ω),

where Ω(Zj, t) = σ2
1(Zj, t)[1− (1− ρ)ρ∗2α (Zj, t)]v0(K)p−1(Zj).

When ρ∗α = 0, the estimator ν̄j is asymptotically equivalent to ν̂j, which corresponds

to the kernel regression estimator based on only the validation set V .

By Propositions 2.1 and 2.2, ν̄j is more efficient than ν̂j. The proposed estimator is

consistent for any α. However, its limiting covariance matrix depends on the choices

of α. We chose the optimum value αopt by minimizing the trace of the covariance

matrix of the EPL estimator with β̂EPL substituted by the initial estimator obtained

from complete-cox regression which uses the data available only on the validation set.

In particular, β̂EPL(αopt) is guaranteed to be more efficient than the complete-case

estimator β̂EPL(0). In this study αopt is estimated by minimizing the trace of the

covariance matrix of β̂EPL.

The proposed estimation method was similarly used in Chen and Chen (2000)

for estimating parameters in a parametric regression model. Our estimation can be

regarded as an extension of their estimation approach in nonparametric regression. In
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addition, we do not need a working model to specify the regression relation between

the surrogate and the covariate, and hence there is no risk of mispecification of the

working model.

We propose to estimate the reduced relative risk ri(β, t) by

r̂i(β, t) = ηiγi(β, t) + (1− ηi)φ̄i(β, t), (2.10)

where φ̄i(β, t) = ν̄i(β1, t) exp{β′2Zi(t)}. Then the parameters β can be estimated by

maximizing the following estimated partial likelihood function:

EPL(β) =
n∏
i=1

{
r̂i(β, Si)∑

j∈R(Si)
r̂j(β, Si)

}δi

, (2.11)

where R(Si) is the risk set at time Si. We denote β̂EPL = arg maxβ EPL(β).

For an extreme case with W = Z, the ψ̂j equals ψ̄j, which leads to ν̄j = ν̂j and

that the resulting estimator β̂EPL is the same as that in Zhou and Wang (2000). In

above estimation of the reduced relative risk, we used an improved estimator φj(β, t)

for j ∈ V̄ . The “curse of dimensionality ” problem in Zhou & Wang (2000) can be

avoided for a highly dimensional W . Our approach would be useful in cases where

the number of variables in Z which are correlated with the missing covariate X is

low, whereas the exposure variables of interest and their auxiliary variables may be

of high dimension.



CHAPTER 3: ASYMPTOTIC RESULTS

3.1 Counting Process Formulation for the Cox Model

In this section we will develop the counting process formulation for Cox’s type

of model. We are going to use the framework developed in Anderson and Gill(1982)

and the basic theory from Fleming and Harrington (1991). For simplicity, we assume

the time interval to be finite. We take the time interval as [0,1] without loss of

generality. To prove the asymptotic properties, we consider a sequence of models. A

multivariate counting process with n components is a non-decreasing integer valued

stochastic process which can be expressed as

N (n) = {N (n)
i (t) : 0 ≤ t <∞ ; i = 1, 2, ..., n}.

Here, N
(n)
i is the number of observed events in the life of the ith subject (i =

1, 2, ..., n) in the nth model ( n=1,2,...) over the time interval [0,1]. For simplicity we

shall drop the subscript n in the following sections.

It is assumed that Ni(0) = 0 for all i and the jump size is +1. This process may

count the number of events in the nth individual that happened upto time t. If it

is the death of the individual then Ni(t) ∈ {0, 1}. Ni(t) is right continuous and no

two components of N jump at the same time. So there will be atmost one jump

for each subject in the study. In our model we consider the nondecreasing family

{Ft : t ∈ [0, 1]} of sub σ-algebra on the probability space {Ω,F ,P}. Ft is known as

the filtration which is history of everything that happens upto time t. We shall use

the results for counting processses and local martingales with respect to the filtration

given above. Counting process is associated with a cumulative intensity process Λ
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whose components are given by

Λi(t) = Λi(t+ dt)− Λi(t)

= P (Ni(t+ dt)−Ni(t) = 1|Ft−),

where Ft− represents everything that has happened upto just before t. This history

includes paths of Ni(.) and also other information about the predictor variables and

censoring etc. A martingale with respect to a filtration Ft is a right-continuous

stochastic process M(t) with left-hand limits such that, in addition to some technical

conditions:

(1) M(t) is adapted to history,

(2) E|M(t)| <∞ for all t, and

(3) M(t) possesses the key martingale property E(M(t)|Fs) = M(s) for all s ≤ t.

Following Anderson and Gill (1982), our model can be generalized as

Λi(t+ dt)− Λi(t) = λi(t)dt

= Y i(t)λ0(t)r∗i (t)}dt, (3.1)

where

r∗i (β, t) = ηi exp{β′1Xi(t) + β′2Zi(t)}

+(1− ηi) exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t),Wi(t)], (3.2)

Yi(t) = 1, if the ith individual is under observation just before time t and 0 otherwise.

Yi(.) is known as the“at-risk” indicator process and λ0(t) is the baseline hazard

function. We assume that the covariate processes X(t) and Z(t) are predictable and

locally bounded. Since X(t) and Z(t) are taken to be adapted and left continuous
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with right hand limits, these assumptions hold true as illustrated in Fleming and

Harrington(1991). Therefore by considering the counting process N and associated

intensity process λ, we can define the process Mi(t) by

Mi(t) = Ni(t)−
∫ t

0

λi(u)du, i = 1, 2, ..., n, t ∈ [0, 1]. (3.3)

Then Mi(t) are local martingales on the time interval [0,1]. Then local martingales

are local square integrable martingales since the intensity process λ(.) is locally

bounded. Following the theory and discussions in Fleming and Harrington (1991)

, the predictable variation process of M(t) is given by

< Mi,Mi > =

∫ t

0

λi(u)du (3.4)

and < Mi,Mj >= 0 when i 6= j.

The last equation implies Mi and Mj are orthogonal for i 6= j.

To prove the asymptotic properties of our estimator we use the the following

theorem on local martingales.

Theorem 3.1 If Hi is a locally bounded and Ft−−predictable process, then
∑n

i=1

∫
HidMi

is a local square integrable Martingale, and the predictable covariance process is given

by
n∑
i=1

<

∫
HidMi,

∫
HidMi >=

n∑
i=1

<

∫
H2
i d < Mi,Mi > .

For the proof of the above , see Theorem 2.4.3 (Page 70) in Fleming and Harrington

(1991).

Using the new notation we write down the logarithm of the partial likelihood function

using the information upto time t as

L(β, t) =
n∑
i=1

∫ t

0

log{ri(u)}dNi(u)−
∫ t

0

log{
n∑
i=1

Yi(u)ri(u)}dN̄(u), (3.5)
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where N̄ =
∑n

i=1 Ni. For the individuals in the non-validation set the induced relative

risk function r(β, t) is unknown. In section (2.2) we proposed an imputation method

for the this function based on the kernel smoothing approach and then estimated the

parameter vector β = (β′1, β
′
2)′ from the partial likelihood function given in (2.11).

Therefore to obtain the proposed estimator β̂EPL we need to find the solution of the

estimating equation

∂

∂β
L(β, t) = 0.

To obtain the above, we substitute r(β, t) by r̂(β, t) given in (2.10). Then the vector

of derivatives of the logarithm of partial likelihood function with respect to β can be

expressed as

Û(β, t) =
n∑
i=1

∫ t

0

r̂
(1)
i (u)

r̂i(u)
dNi(u)−

∫ t

0

∑n
i=1 Yi(u)r̂

(1)
i (u)∑n

i=1 Yi(u)r̂i(u)
N̄(u)

=
n∑
i=1

∫ t

0

∆(r̂i(u))dNi(u), (3.6)

where r̂
(1)
i (u) = ∂

∂β
r̂i(u) and

∆(r̂i(u)) =
r̂

(1)
i (u)

r̂i(u)
−
∑n

i=1 Yi(u)r̂
(1)
i (u)∑n

i=1 Yi(u)r̂i(u)
.

Using the Doob Meyer decomposition, from (3.1) and (3.3) we rewrite the estimating

equation as

Û(β, t) =
n∑
i=1

∫ t

0

∆(r̂i(u))dMi(u) +
n∑
i=1

∫ t

0

∆(r̂i(u))r̂∗i (u)λ0(u)du. (3.7)

Also, with the estimator of β0, β̂EPL, from the estimating score equation given above,
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the cumulative hazard Λ0(t) =
∫ t

0
λ0(w) dw can be consistently estimated as

Λ̂0(t) =

∫ t

0

[
n∑
i=1

Yi(u)r∗i (β̂EPL, u)]−1

n∑
i=1

dNi(u). (3.8)

3.2 Notations

In this section we will define some notations which will be used in the proofs. All

the limits are taken as n → ∞ unless otherwise stated. This implies numbers of

subjects in the validation set and non-validation set, both, nv → ∞ and (n−nv) →

∞. Let d be the dimension of Zi, nv be the subsample size of the validation set,

ρ ∈ (0, 1] be the limit of ratio of validation observations, limn→∞ nv/n. For a vector a,

define |a| =
√
a′a =

√
a2
i . Also, we write the matrix aa′ = a⊗2 and (aa′)(aa′)′ = a⊗4.

For the relative risk function r (for r̂, r∗, r̂∗, φ and φ̂ as well) , let rj denote the jth

derivative of r with respect to β, j=0,1,2, where r(0) = r. Define

s(0)(β, t) = E[Yi(t)ri(β, t)],

s(1)(β, t) = (∂/∂β)s(0)(β, t) = E[Yi(t)r
(1)
i (β, t)],

s(2)(β, t) = (∂/∂βτ )s(1)(β, t) = E[Yi(t)r
(2)
i (β, t)],

s(3)(β, t) = E
[
Y (t)

(r(1)
i (β, t)

ri(β, t)

)
r∗i (β0, t)

]
,

s(4)(β, t) = E
[
Y (t)

(r(2)
i (β, t)

ri(β, t)

)
r∗i (β0, t)

]
,

s(5)(β, t) = E
[
Y (t)

(r(1)
i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t)

]
,

s(6)(β, t) = E
[
Y (t)

(r(2)
i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t)

]
,

s(7)(β, t) = E
[
Y (t)

(r(1)
i (β, t)

ri(β, t)

)⊗4
r∗i (β0, t)

]
,
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where Yi(t) = I[Si≥t] is the at-risk indicator, r
(1)
i (β, t) = (∂/∂β)ri(β, t) and r

(2)
i (β, t) =

(∂/∂β)r
(1)
i (β, t).

Observe that,

s(0)(β, t) = E[Yi(t)ri(β, t)] = E[Yi(t)r
∗
i (β, t)]

Next we define

S(0)(β, t) =
1

n

n∑
i=1

Yi(t)ri(β, t),

S(1)(β, t) = (∂/∂β)S(0)(β, t) =
1

n

n∑
i=1

Yi(t)r
(1)
i (β, t),

S(2)(β, t) = (∂/∂βτ )S(1)(β, t) =
1

n

n∑
i=1

Yi(t)r
(2)
i (β, t),

S(3)(β, t) =
1

n

n∑
i=1

Y (t)
(r(1)

i (β, t)

ri(β, t)

)
r∗i (β0, t),

S(4)(β, t) =
1

n

n∑
i=1

Y (t)
(r(2)

i (β, t)

ri(β, t)

)
r∗i (β0, t),

S(5)(β, t) =
1

n

n∑
i=1

Y (t)
(r(1)

i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t),

S(6)(β, t) =
1

n

n∑
i=1

Y (t)
(r(2)

i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t),

S(7)(β, t) =
1

n

n∑
i=1

Y (t)
(r(1)

i (β, t)

ri(β, t)

)⊗4
r∗(β0, t),

For k = 1, 2, ..., 7, we similarly define Ŝ(k)(β, t) with r(β, t) replaced by r̂(β, t) and

r∗(β, t) by r̂∗(β, t), respectively.

Now, we define,

φ∗i (β, t) = exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t),Wi(t)], (3.9)
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and

r∗i (β, t) = ηiγi(β, t) + (1− ηi)φ∗i (β, t). (3.10)

Let Ni(t) = I[Si<t,δi=1] and

Mi(t) = Ni(t)−
∫ t

0

Yi(u)r∗i (β0, u)λ0(u)du, (3.11)

which is a martingale (Kalbfleisch and Prentice (1980), Fleming and Harrington

(1991)) as discussed in section 3.1.

Next, without loss of generality, we assume that t ∈ [0, 1]. Put

∆(φi)(u) = φ
(1)
i (u)/φi(u)− s(1)/s(0),

∆(γi)(u) = γ
(1)
i (u)/γi(u)− s(1)/s(0),

Qi =

∫ 1

0

∆(φi)(u)Yi(u)[γi(β0, u)− φi(β0, u)]λ0(u)du,

Q∗i =

∫ 1

0

∆(φi)(u)Yi(u)θi(u;α)λ0(u)du,

Q∗∗i =

∫ 1

0

∆(φi)(u)Yi(u)[φ∗i (β0, u)− φi(β0, u)]λ0(u)du,

where φ
(1)
i (β, u) = (∂/∂β)φi(β, u), and

θi(u;α) = [ξi(α, u)− ψi(α, u)] exp(β′2Zi(u))ρ∗α(Zi, u)σ1(Zi, u)/σ2(Zi, u).

By using counting process notations, the score function corresponding to the

estimated partial likelihood function (2.11) at time point t can be written as

Û(β, t) =
n∑
i=1

∫ t

0

∆(r̂i)(β, u)dMi(u) +
n∑
i=1

∫ t

0

∆(r̂i)(β, u)r∗i (β0, u)Yi(u)λ0(u)du,(3.12)
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where

∆(r̂i)(u) =
r̂

(1)
i (β, u)

r̂i(β, u)
−
∑n

i=1 Yi(u)r̂
1)
i (β, u)∑n

i=1 Yi(u)r̂i(β, u)
.

Next we define I(β), Σ1(β) and Σ2(β) and Σ(β) respectively, which will be required

in the proof of asymptotic normality of our estimator.

Let

I(β) = −E

∫ 1

0

r(2)
i (β, u)

r
(0)
i (β, u)

−

{
r

(1)
i (β, u)

r
(0)
i (β, u)

}⊗2

− s(2)(β, u)

s(0)(β, u)
+

{
s(1)(β, u)

s(0)(β, u)

}⊗2
 dNi(t)

 ,

Σ1(β) = E

[∫ 1

0

∆(φi)(u)dMi(u)− (1− ρ)Q∗i +Q∗∗i

]⊗2

,

Σ2(β) = E

[∫ 1

0

∆(γi)(u)dMi(u)− 1− ρ
ρ
{Qi − (1− ρ)Q∗i }

]⊗2

, and

Σ(β) = ρΣ1(β) + (1− ρ)Σ2(β).

From Theorem 3.6 proved in section (3.7) , the asymptotic covariance matrix of β̂EPL

is of sandwich form, which can be consistently be estimated by Ω̂ = Î−1(β)Σ̂(β)Î−1(β),

where Î(β) and Σ̂(β) are the corresponding sample quantities, respectively. Specifically,

Î(β)

= −n−1

n∑
i=1

∫ 1

0

 r̂i(2)(β, u)

r̂i
(0)(β, u)

−

{
r̂i

(1)(β, u)

r
(0)
i (β, u)

}⊗2

− Ŝ(2)(β, u)

Ŝ(0)(β, u)
+

{
Ŝ(1)(β, u)

Ŝ(0)(β, u)

}⊗2
 dNi(t),

Σ̂1(β) = n−1

n∑
i=1

{∫ 1

0

∆(φ̂i)(t)[dNi(t)− Yi(t)r̂i(β, t) dΛ̂0(t)]− (1− ρ̂)Q̂∗i + Q̂∗∗i

}⊗2

,
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Σ̂2(β) = n−1
v

nv∑
i=1

{∫ 1

0

∆(γ̂i)(t)[dNi(t)− Yi(t)r̂i(β, t) dΛ̂0(t)]− 1− ρ̂
ρ̂

[Q̂i − (1− ρ̂)Q̂∗i ]
}⊗2

,

where

Q̂i =

∫ 1

0

∆(φ̂i)(t)Yi(t)[r̂i(β, t)− φ̂i(β, t)] dΛ̂0(t),

Q̂∗i =

∫ 1

0

∆(φ̂i)(t)Yi(t)θ̂i(t;α) dΛ̂0(t),

Q̂∗∗i =
∫ 1

0
∆(φ̂i)(t)Yi(t)[φ̂i

∗
(β, t)− φ̂i(β, t)] dΛ̂0(t), ρ̂ = nv/n,

∆(φ̂i)(t) = φ̂
(1)
i (β, t)/φ̂i(β, t)− Ŝ(1)(β, t)/Ŝ(0)(β, t),

∆(γ̂i)(t) = γ̂
(1)
i (β, t)/γ̂i(β, t)− Ŝ(1)(β, t)/Ŝ(0)(β, t),

and

θ̂i(t;α) =
[
ξi(α, t)− ψ̄i(α, t)

]
exp(βτ2Zi(t))ρ̂

∗
α(Zi, t)σ̂1(Zi, u)/σ̂2(Zi, t).

3.3 Consistency of β̂EPL

To show the consistency of the estimator β̂EPL we use the inverse function theorem

from Walter and Rudin(1964) and Foutz’s (1977) argument.

Inverse Function Theorem: Suppose f is a mapping from an open set Θ in

Euclidean p space Rp into Rp, the partial derivatives of f exist and are continuous

on Θ, and the matrix derivatives f ′(θ∗) has inverse f ′(θ∗)−1 for some θ∗ ∈ Θ. Write

λ = 1/4 ‖ f ′(θ∗)−1 ‖).

Use the continuity of elements of f ′(θ∗) to fix a neighborhood Uδ of θ∗ of sufficiently

small radius δ > 0 to insure ‖ f ′(θ)− f ′(θ∗) ‖) < 2λ, whenever θ ∈ Uδ. Then
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(a) for every θ1, θ2 in Uδ,

|f(θ1)− f(θ2)| ≥ 2λ|θ1 − θ2|,

and (b) the image set f(Uδ) contains the open neighborhood with radius λδ about

f(θ∗).

(a) insures that f is one-to-one on Uδ and that f−1 is well defined on the image set

f(Uδ). The proof of the theorem is given in p 194 ( Walter & Rudin, 1964). Consider

the inverse function 1
n
Û−1 which is a mapping from p-dimensional Euclidean space to

an open subset of B. β̂EPL is the value at 0 of this function. In the later section we

show that, this inverse function is well defined in an open neighborhood about 0 with

probability tending to 1. Then we can prove that β̂EPL = 1
n
Û−1(0) is a consistent

estimate of β0.

3.4 Asymptotic Normality of β̂EPL

To prove the asymptotic normality of the estimator β̂EPL we use martingale

approach under multivariate counting process framework. The main techniques we

employed are Taylor’s expansion of the score function corresponding to the estimated

likelihood function (2.11), Lenglart inequality, the martingale central limit theorem

(see e.g. Fleming and Harrington, 1991), and nonparametric regression techniques.

We use the first order Taylor’s expansion of the score function Û(β, 1) around β0,

which gives

Û(β, 1)− Û(β0, 1) =
∂

∂β∗
Û(β∗, 1)(β̂ − β0),

where, β∗ is between β̂ and β0. Since β̂EPL is the solution of the score equation

Û(β, 1) = 0, we can rewrite the above equation as

n−1/2Û(β0, 1) = {−n−1 ∂

∂β∗
Û(β∗, 1)}n1/2(β̂EPL − β0).
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We will show that

−n−1∂Û(β∗, 1)

∂β

P−→ I(β0).

Then the asymptotic normality of n1/2(β̂EPL−β0) follows by showing that n−1/2Û(β0, 1)

is asymptotically normal with mean 0 and variance (1 − ρ)Σ1(β0) + ρΣ2(β0), where

ρ, I(β0), Σ1(β0) and Σ2(β0) are defined in the section (3.2).

3.5 Definitions and Conditions

The following conditions are needed throughout the remaining part of the dissertation:

(1)
∫ 1

0
λ0(s)ds <∞.

(2) Pr(Y (1) = 1|V ) > 0 for any V .

(3)There exists an open subset B, containing the true β, β0, of the Euclidean

space Rp. In addition, r
(2)
i (β, t) with elements (∂2/∂βi∂βj)r(β, t) exists and

is continuous on B for each t ∈ [0, 1], uniform in t, and φ(β, t) is bounded away

from 0 on B × [0, 1]. Furthermore, I(β0) defined in section (3.2) is positive

definite.

(4)

E{ sup
B×[0,1]

|Y (t)r∗(j)(β, t)|} <∞, j = 0, 1, 2,

E

{
sup
B×[0,1]

|Y (t)

(
r(1)(β, t)

r(β, t)

)⊗2j

r∗(β0, t)|

}
<∞, j = 1, 2,

E

{
sup
B×[0,1]

|Y (t)

(
r(2)(β, t)

r(β, t)

)⊗j
r∗(β0, t)|

}
<∞, j = 1, 2.

(5) Let FY (t),Z be the joint distribution of (Y (t), Z), and f(t, z) = (∂/∂z)FY (t),z(1, z).

For each t ∈ [0, 1], both f(t, z) and φ(β, t) have the 2nd continuous derivative

almost everywhere.

(6) h→ 0, nh2d+3 → 0 and nhd(log n)2 →∞, as n→∞.
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3.6 Properties of Local Polynomial estimators

Our proposed estimator is based on local linear estimation which we introduced

in section 2.2. In particular, we employed the local linear kernel smoother (p = 1)

in section (2.2) of chapter 2. In this section we will mention some properties of

local linear estimators. Most of the proofs are given in Fan and Gijbels (1996), Fan

and Yao (2005). First we show, how a local polynomial kernel smoother can be

expressed as usual kernel estimator introduced by Nadaraya and Watson. Define Sk,

for k = 0, 1, ..p given by,

Sk =
n∑
i=1

(Xi − x0)kKh(Xi − x0).

Now, let, S = XTWX, the (p+ 1)× (p+ 1) matrix Sk+l, 0 ≤ k, l ≤ p.

Then the estimator β̂ν from section (1.4) can be written as

β̂ν = eTν+1β̂

= eTν+1S
−1XTWy

=
∑
i∈V

Wν

(Xi − x0

h
)Yi(t), (3.13)

where, Wν is called the effective kernel and can be expresses as the following

Wν(x) = eTν+1S
−1{1, xh, ...., (xh)p}K(x)/h (3.14)

In the expression above Wν depends on the design points and locations. That is

why it can adapt automatically to various designs and to boundary estimation. The

weights Wν satisfies the following discrete moment conditions

n∑
i=1

(Xi − x0)qWν

(Xi − x0

h
) = δν,q 0 ≤ ν, q ≤ p, (3.15)
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where δν,q = 0 if ν 6= q and 1, otherwise. It follows from the above result, that the

local polynomial estimator is unbiased for estimating βν when the true regression

function m(x) is polynomial of order p. To prove the asymptotic properties we need

the asymptotic form of the estimator in (3.13) .

Let S be the (p + 1) × (p + 1) matrix whose(i, j)th element is µi+j−2, where,

µj =
∫∞
−∞ u

jK(u)du. With these notations we can define the equivalent kernel by,

K∗ν (x) = eTν+1S
(−1){1, x, ...., (x)p}K(x) =

( p∑
l=0

Sνlxl
)
K(x), (3.16)

where Sνl is the (ν + 1, l + 1)-element of S−1..

Note that,

Sk = nhkf(x0)µk{1 + op(1)} (3.17)

From this, it follows that,

S = nhkf(x0)HSH{1 + op(1)} (3.18)

where, H = diag(1, h, .., hp). substituting the above in the definition of W ν , we have

W ν(x) =
1

nhν + 1f(x0)
eTν+1S

−1{1, x, ...., (x)p}K(x){1 + op(1)} (3.19)

Therefore,

β̂ν =
1

nhν+1f(x0)

n∑
i=1

K∗ν

(Xi − x0)

h
Yi{1 + op(1)} (3.20)

where K∗ν (x) is already defined in (3.16).
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The kernel K∗ν satisfies the following moment conditions:

∫
uqK∗ν (u)du = δνq 0 ≤ ν, q ≤ p,

This is an asymptotic version of the discrete moment conditions in (3.15). Next we

give the expressions for bias and variance of the estimator m̂ν(x0) with respect to the

equivalent kernels K∗ν

bias(m̂ν(x0)) =
(∫

up+1K∗ν (u)du
) ν!

(p+ 1)!
mp+1(x0)hp+1−ν + op(h

p+1−ν),(3.21)

and

V ar(m̂ν(x0)) =

∫
K∗2ν (u)du

ν!2σ2(x0)

f(x0)nh1+2ν
+ op

( 1

nh1+2ν

)
. (3.22)

Finally, we state two important results. The proofs are given in fan and Gijbels

(1996).

If the design density f is uniformly continuous on [a, b] with infx∈[a,b]f(x) > 0,

then the local polynomial estimator has the following uniform convergence under the

condition

supx∈[a,b]|m̂(x)−m(x)| = Op

(
hp+1 + { nh

log(1/h)
}−1/2

)
. (3.23)

Under condition (1) in §6.6.2 of Fan and Yao(2005) and if h = O(n1/(2p+3)) and

m(p+1)(.) is continuous at the point x, then as n→∞,

√
nh
[
diag(1, h, ..., hp){β̂p(x)− β0(x)} − hp+1m(p+1)(x)

(p+ 1)!
S−1cp

]
D−→ N{0, σ2(x)S−1S∗S−1/f(x)}, (3.24)

where S = {µi+j−2}p+1,p+1
i,j=1 , S∗ = {νi+j−2}p+1,p+1

i,j=1 with µj =
∫∞
−∞ u

jK(u)du and νj =
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−∞ u

jK2(u)du.

3.7 Proofs

First we prove the two propositions mentioned in Chapter 2.

Proof of Proposition 2.1. Note that ν̂j−νj =
∑

i∈V ωi(νi−νj)+
∑

i∈V ωi(ζi−νi).

In the above ωi is the effective kernel weight and can be expressed as

ωi(t, Zj(t);h) =
{s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))∑
i∈V {s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))

= W nv
ν

By standard nonparametric regression techniques (see for example Härdle, 1990; Fan

and Gijbels, 1996 ), it can be shown that the first term above is Op(h
p+1) as in (3.21)

(ν = 0), which is of order op(1/
√
nvhd) if one uses an undersmoothing bandwidth

such that nh2p+3 → 0, so that ν̂j − νj =
∑

i∈V ωi(ζi − νi) + op(1/
√
nvhd).

Similarly, ψ̂j−ψj =
∑

i∈V ωi(ξi−ψi)+op(1/
√
nvhd). Then the asymptotic normality

can be obtained by using the Cramé-Wald device and directly computing the asymptotic

mean and variance (see, for example the Lemma 6.3 in Jiang and Mack, 2001).

Let,

Vn1 =
√
nvhd[ν̂j − νj] =

∑
wi(ζi − νi) + op(1)

and

Wn2 =
√
nvhd[ξ̂j − ψj] =

∑
wi(ζi − νi) + op(1)

Let Wn = aVn1 + bVn2 + op(1), where a, b are scalars.

Now, E{Wn|Sj ≥ t, Zj(t)} = E{aVn1 + bVn2|Sj ≥ t, Zj(t)}

E{aVn1|Sj ≥ t, Zj(t)} = E
[
a
∑
{ωi(ζi − E(ζi|Sj ≥ t, Zj(t)}|Si ≥ t, Zi(t)

]
P→ 0

Similarly, E{bVn2|Sj ≥ t, Zj(t)}
P→ 0.
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Now,

V ar
[
Wn|Sj ≥ t, Zj(t)

]
= V ar{aVn1 + bVn2|Sj ≥ t, Zj(t)}

= a2V ar
[∑

ωi(ζi − νi)|Si ≥ t, Zi(t)
]

+ b2V ar
[∑

ωi(ξi − ψi)|Si ≥ t, Zi(t)
]

+2abCov
[(∑

ωi(ζi − νi),
∑

ωi(ξi − ψi)
)
|Si ≥ t, Zi(t)

]
P−→ (a b)Σ(a b)′,

where,

Σ = v0(K)p−1(Zj)

 σ2
1(Zj, t) ρ∗α(Zj, t)σ1(Zj, t)σ2(Zj, t)

ρ∗α(Zj, t)σ1(Zj, t)σ2(Zj, t) σ2
2(Zj, t)

 ,
where v0(K) =

∫
K2(u)du, σ2

1(Zj, t) = V ar[ζj|Sj ≥ t, Zj], σ
2
2(Zj, t) = V ar[ξj|Sj ≥

t, Zj], ρ
∗
α(Zj, t) is the conditional correlation coefficient between ζj and ξj given (Sj ≥

t, Zj), and p(·) is the density function of Z.

Now, by properties of normal distribution, the result in (3.24) and Cramer-Wold

device
√
nvh[{ν̂j(β1, t)−νj(β1, t)}, {ψ̂j(α1, t)−ψj(α, t)}] is jointly asymptotically normal

with covariance matrix Σ defined above. Hence the proof is completed.

Proof of Proposition 2.2. Note that from (2.9)

[ν̄j − νj] = [ν̂j − νj]

−ρ∗(Zj, t)
σ1(Zj, t)

σ2(Zj, t)
[(ψ̂j − ψj)− (ψ̄j − ψj)](1 + op(1)).

The asymptotic normality of
√
nvhd(ν̄j− νj) is obtained by the asymptotic normality

of
√
nvhd(ν̂j − νj),

√
nvhd(ψ̂j − ψj) and

√
nhd(ψ̄j − ψj).

Note that nv

n
→ ρ as n→∞.
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Using the property of multivariate normal variables and Slutsky’s theorem

√
nvhd(ν̄j − νj)

L−→ N (0,Ω),

where

Ω = v0(K)p−1(Zj)
[
σ2

1(Zj, t) + ρ∗2α (Zj, t)
σ2

1(Zj, t)

σ2
2(Zj, t)

σ2
2(Zj, t)

+ρ∗2α (Zj, t)
σ2

1(Zj, t)

σ2
2(Zj, t)

ρσ2
2(Zj, t)− 2ρ∗2α (Zj, t)

σ1(Zj, t)

σ2(Zj, t)
σ1(Zj, t)σ2(Zj, t)

−2ρρ∗2α (Zj, t)
σ2

1(Zj, t)

σ2
2(Zj, t)

σ2
2(Zj, t) + 2ρρ∗2α (Zj, t)

σ2
1(Zj, t)

σ2
2(Zj, t)

σ2
2(Zj, t)

]
= σ2

1(Zj, t)[1− (1− ρ)ρ∗2α (Zj, t)]v0(K)p−1(Zj)

Hence proved.

Next we need the following theorems and lemmas to show the consistency and

asymptotic normality of our proposed estimator. Some of the proofs are given in

Anderson and Gill(1982) and Zhou PhD Dissertation(1992). We follow their idea

and the proofs relevant to our model.

Theorem 3.2 Under the conditions in section (3.5)

supB×[0,1] ‖ φ̄(β, t)− φ(β, t) ‖→ 0 a.s and supB×[0,1] ‖ r̂(β, t)− r(β, t) ‖→ 0 a.s

Proof. Consider the notations defined in section 2.2. Note that from (2.9)

[ν̄j − νj] = [ν̂j − νj]

−ρ̂∗(Zj, t)
σ̂1(Zj, t)

σ̂2(Zj, t)
[(ψ̂j − ψj) + (ψ̄j − ψj)]

Now applying the theorem 6.5 in Fan and Yao (2005) given in (3.23) and the condition

(6) in section 3.5, we have ν̂j − νj
a.s−→ 0.

Similarly from the definition of ψ̂j and ψ̄j, and the same argument for local

polynomial estimators
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(ψ̂j − ψj)
a.s−→ 0

(ψ̄j − ψj)
a.s−→ 0.

Also the local polynomial kernel estimates ρ̂∗α(Zj, t), σ̂1(Zj, t) and σ̂1(Zj, t) converges

to ρ∗α(Zj, t), σ1(Zj, t) and σ2(Zj, t) respectively.

Therefore,

supB×[0,1] ‖ φ̄(β, t)− φ(β, t) ‖→ 0 a.s.

Now, (r̂i(β, t)− ri(β, t))=0 when ηi = 1.

So supB×[0,1] ‖ r̂(β, t)− r(β, t) ‖→ 0 a.s.

Theorem 3.3 Under the conditions in section , for k = 0, 1, .. . . . , 4

sup
B×[0,1]

‖ Ŝ(k)(β, t)− S(k)(β, t) ‖→ 0 a.s

and

sup
B×[0,1]

‖ Ŝ(k)(β, t)− s(k)(β, t) ‖→ 0 a.s

Proof. We shall prove the above result for for k = 0. The remaining results can

be proved in a similar way. By the definition of Ŝ(0)(β, t) and S(0)(β, t) and by the

theorem (3.2)

supBx[0,1] ‖ Ŝ(0)(β, t)− S(0)(β, t) ‖→ 0 a.s

Next, by the definition of s(0) and applying the uniform stron law of large numbers

sup
B×[0,1]

‖ S(0)(β, t)− s(0)(β, t) ‖→ 0 a.s

Now,

sup
B×[0,1]

‖ Ŝ(0)(β, t)− s(0)(β, t) ‖ ≤ sup
B×[0,1]

‖ S(0)(β, t)− S(0)(β, t) ‖

+ sup
B×[0,1]

‖ S(0)(β, t)− s(0)(β, t) ‖
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Hence, it follows directly,

sup
B×[0,1]

‖ Ŝ(0)(β, t)− s(0)(β, t) ‖→ 0 a.s

Lemma 3.1

n−1/2

n∑
i=1

∫ 1

0

(r̂
(k)
i (β0, w)− r(k)

i (β0, w))2Yi(w)r∗i (β0, w)λ0(w) dw
p→ 0, k = 0, 1

n−1/2

n∑
i=1

∫ 1

0

(Ŝ(k)(β0, w)− S(k)(β0, w))2Yi(w)r∗i (β0, w)λ0(w) dw
p→ 0, k = 0, 1.

Proof. The proof of the above theorem is similar to the lemma 2.4 of Zhou (1992,

PhD dissertation)

Lemma 3.2

n−1/2

n∑
i=1

∫ 1

0

∆(r̂i)(β0, w)Yi(w)r∗i (β0, w)λ0(w) dw

= −n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w)]λ0(w) dw

−n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β0, w)]λ0(w) dw + op(1)

Proof. By the Taylor expansion, the second term of Û(β, t) in (3.7) admits the

following decomposition

n−1/2

n∑
i=1

∫ 1

0

∆(r̂i)(β0, w)Yi(w)r∗i (β0, w)λ0(w) dw

= −n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β, w)]λ0(w)dw

−n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β0, w)]λ0(w)dw + op(1).
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f(x, y) = f(x0, y0) +
∂f(x, y)

∂x

∣∣∣
x0,y0

(x− x0)

+
∂f(x, y)

∂y

∣∣∣
x0,y0

(y − y0) +O((x− x0)2 + (y − y0)2),

if ∂2f
∂x2

, ∂2f
∂y2

, and ∂2f
∂x∂y

are finite. Then r̂(1)

r̂
= r̂(1)

r
− r(1)(r̂−r)

r2
+O[(r̂− r)2 + (r̂(1)− r(1))2]

Ŝ(1)

Ŝ(0) = Ŝ(1)

S(0) − S(1)(Ŝ−S(0))

S(0)2 +O[(Ŝ − S(0))2 + (Ŝ(1) − S(1))2].

Note that
∑

i ∆r̂i(u)r̂i(u)Yi(u) = 0.

It follows that the left side of the result in the lemma can be expressed as

n−1/2

n∑
i=1

∫ 1

0

∆(r̂i)(β0, w)Yi(w)r∗i (β0, w)λ0(w) dw

= −n−1/2

n∑
i=1

∫ 1

0

∆(r̂i)(β0, w)Yi(w)[r̂i(β0, w)− r∗i (β0, w)]λ0(w) dw

= −n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w) + ri(β0, w)

−r∗i (β0, w)]λ0(w) dw + op(1)

= −n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w)]λ0(w) dw

−n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β0, w)]λ0(w) dw + op(1)

where the last equality is from Lemma 2.4 of Zhou (1992). Therefore the result holds.

Lemma 3.3

supβ∈B‖ −
1

n

∂Û(β, 1)

∂β
− I(β)‖ P−→ 0.

Furthermore, − 1
n
∂Û(β0)
∂β

is positive definite with probability going to 1.

Proof. From equation (3.6) we have

Û(β, t) =
n∑
i=1

∫ t

0

[ r̂(1)
i (β, u)

r̂i(β, u)
−
∑n

i=1 Yi(u)r̂
(1)
i (β, u)∑n

i=1 Yi(u)r̂i(β, u)

]
dNi(u) (3.25)
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Differentiating with respect to β, we have,

∂Û(β, 1)/∂β =

∫ 1

0

n∑
i=1

[ r̂(2)
i (β, t)

r̂
(0)
i (β, t)

−
( r̂(1)

i (β, t)

r̂
(0)
i (β, t)

)⊗2

− Ŝ
(2)(β, t)

Ŝ(0)(β, t)
+
( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗2]
dNi(t).

Now, we define the process,

C(β, t)

=

∫ 1

0

n∑
i=1

[ r̂(2)
i (β, t)

r̂
(0)
i (β, t)

−
( r̂(1)

i (β, t)

r̂
(0)
i (β, t)

)⊗2

− Ŝ
(2)(β, t)

Ŝ(0)(β, t)
+
( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗2]
Y i(t)r∗i (β0, t)λ0(t)dt.

Then,

n−1∂Û(β, 1)/∂β − n−1C(β, 1) =

∫ 1

0

n−1

n∑
i=1

[ r̂(2)
i (β, t)

r̂
(0)
i (β, t)

−
( r̂(1)

i (β, t)

r̂
(0)
i (β, t)

)⊗2

− Ŝ
(2)(β, t)

Ŝ(0)(β, t)
+
( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗2]
dMi(t).

which is a local square integrable martingale by condition (3) and the covariance

process is given by

〈n−1∂Û(β, .)/∂β − n−1C(β, .), n−1∂Û(β, 1)/∂β − n−1C(β, t)〉 = B(β, .),
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where

B(β, 1) =

∫ 1

0

[ 1

n2

n∑
i=1

( r̂(2)
i (β, t)

r̂
(0)
i (β, t)

)⊗2

r∗i (β0, t)λ0(t)

+
1

n2

n∑
i=1

(
(
r̂

(1)
i (β, t)

r̂
(0)
i (β, t)

)⊗4

r∗i (β0, t)λ0(t)

+
1

n

n∑
i=1

( Ŝ(2)(β, t)

Ŝ(0)(β, t)

)⊗2 1

n

n∑
i=1

Yi(t)r
∗
i (β0, t)λ0(t)

+
1

n

n∑
i=1

( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗4 1

n

n∑
i=1

Yi(t)r
∗
i (β0, t)λ0(t)

]
dt

+ remaining terms

By the definitions in section (3.2) and conditions in (3.5) all the terms converge to

zero. Therefore ‖B(β, 1)‖B
P−→ 0. Now, by Lenglart’s inequality( Apendix I Anderson

and Gill 1982) it follows that 1
n
Û(β, t) and 1

n
C(β, t) converges in probability to the

same limit uniformly in β ∈ B. By theorem (3.3) and conditions in section (3.5)

1

n
C(β, t)

P−→
∫ 1

0

n∑
i=1

[
s(4)(β, t)− s(5)(β, t)− s(2)(β, t)

s(0)(β, t)
s(0)(β0, t) +

(s(1)(β, t)

s(0)(β, t)

)⊗2

s(0)(β0, t)
]
λ0(t)dt

≡ −I(β) uniformly in β in the neighborhood of β0.

Hence,

supβ∈B‖
1

n

∂Û(β, 1)

∂β
− I(β)‖ P−→ 0.

At β = β0 , I(β) = I(β0) which is positive definite by condition (3). Hence the proof

is completed.
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Lemma 3.4 Under the conditions in section (3.5) , we have:

n−1/2Û(β0, 1)

= n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

where Q, Q∗, Q∗∗ are defined in section (3.2).

Proof. Note that r̂i−ri = (1−ηi)(φ̄i−φi) and ri−r∗i = (1−ηi)(φi−φ∗i ). Applying the

first order expansion x/y = x0/y0+(x−x0)/y0−(y−y0)x0/y
2
0 +O((x−x0)2+(y−y0)2)

to r̂(1)/r̂ and Ŝ(1)/Ŝ(0) around (r(1), r) and (s(1), s(0)), respectively, and by lemma 3.2

we can rewrite the second summation of n−1/2Û(β0, 1) in (3.12) as

∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w) + ri(β0, w)− r∗i (β0, w)]λ0(w) dw + op(1)

= −n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w)]λ0(w) dw

−n−1/2

n∑
i=1

∫ 1

0

∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β, w)]λ0(w) dw + op(1)

= −n−1/2
∑
j∈V̄

∫ 1

0

(φ̄j − φj)∆(φj)(u)Yj(u)λ0(u)du

+n−1/2
∑
j∈V̄

∫ 1

0

(φ∗j − φj)∆(φj)(u)Yj(u)λ0(u)du+ op(1)

= In1 + In2 + op(1). (3.26)

Note that φ̂j(β, t) = ν̂j(β1, t) exp{β′2Zj(t)}.
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Since

φ̄j − φj = (φ̂j − φj)− exp{β′2Zj(u)}ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)
(ψ̂j − ψ̄j)(1 + op(1))

=
∑
i∈V

ωi(γi − φj)− exp{β′2Zj(u)}[
∑
i∈V

ωi(ξi − ψj)ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)

−
∑
i∈V ∪V̄

ω̄i(ξi − ψj)ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)
](1 + op(1)) + op(

1√
n

)

=
∑
i∈V

ωi[(γi − φj)− exp{β′2Zj(u)}ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)
(ξi − ψj)](1 + op(1))

+
∑
i∈V ∪V̄

ω̄i(ξi − ψj) exp{β′2Zj(u)}ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)
(1 + op(1)) + op(

1√
n

),

the first term in (3.26) can be rewritten as

In1 = −n−1/2
∑
j∈V̄

∫ 1

0

∆(φj)(u)Yj(u)λ0(u)

×
{∑
i∈V

ωi[(γi − φj)− exp{β′2Zj(u)}ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)
(ξi − ψj)]

+
∑
i∈V ∪V̄

ω̄i(ξi − ψj) exp{β′2Zj(u)}ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)

}
du(1 + op(1)) + op(1)

≡ Jñ1 + Jñ2 + op(1).

Note that

n−1
v

∑
i∈V

Yi(t)Kh(Zi − Zj) = f(t, Zj)(1 + op(1)),

n−1
∑
i∈V ∪V̄

Yi(t)Kh(Zi − Zj) = f(t, Zj)(1 + op(1)),

ωi(t, Zj;h) = f−1(t, Zj)(1 + op(1)) n−1
v Yi(t)Kh(Zi − Zj),

ω̄i(t, Zj;h) = f−1(t, Zj)(1 + op(1)) n−1Yi(t)Kh(Zi − Zj),
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uniformly for j = 1, · · · , n. Then

Jñ1 = − 1√
n

∑
j∈V̄

∫ 1

0

∆(φj)(u)Yj(u)λ0(u)f−1(u, Zj) ·

1

nv

∑
i∈V

Yi(u)Kh(Zi − Zj)[(γi − φj)− exp{β′2Zj(u)}ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)
(ξi − ψj)]du

+ op(1)

= − 1√
n

n− nv
nv

∑
i∈V

[Qi −Q∗i ] + op(1),

Jñ2 = − 1√
n

∑
j∈V̄

∫ 1

0

∆(φj)(u)Yj(u)λ0(u) exp{β′2Zj(u)}ρ∗α(Zj, u)
σ1(Zj, u)

σ2(Zj, u)

× 1

n

∑
i∈V ∪V̄

Yi(u)Kh(Zi − Zj)(ξi − ψj)f−1(u, Zj)du+ op(1)

= − 1√
n

n− nv
n

∑
i∈V ∪V̄

Q∗i + op(1).

Again, since φ∗j − φj = φ∗j − E{φ∗j |Yi(t) = 1, Zi(t)}

The second term in (3.26) can be rewritten as

In2 = n−1/2
∑
j∈V̄

∫ 1

0

[φ∗j − E{φ∗j |Yi(u) = 1, Zi(u)]∆(φj)(u)Yj(u)λ0(u)

≡ n−1/2
∑
j∈V̄

Q∗∗i .

Therefore, the second summation of n−1/2Û(β, 1) in (3.12) equals

− 1√
n

n− nv
nv

∑
i∈V

[Qi −Q∗i ]−
1√
n

n− nv
n

∑
i∈V ∪V̄

Q∗i + n−1/2
∑
j∈V̄

Q∗∗i + op(1).

Hence, n−1/2Û(β, 1) can be expressed as
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n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

Lemma 3.5 Under the conditions in section (3.5)

n−1Û(β0, 1)
a.s−→ 0.

Proof. From lemma (3.4) we can write,

n−1/2Û(β0, 1)

= n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

Note that Mi(t) is a martingale with mean zero. Also E [Q∗i ] = 0, E [Q∗∗i ] = 0 and

E [Qi] = 0. Then, by strong law of large numbers, we have

n−1Û(β0, 1)
a.s−→ 0

3.7.1 Proof of consistency of β̂EPL

Theorem 3.4 β̂EPL is a consistent estimator for β0.

Proof. We have shown that n−1 ∂
∂β
Û(β, 1) exists and is continuous in an open

neighborhood B of β0. Now, by the lemma (3.3)−n−1 ∂
∂β
Û(β, 1) converges in probability

to a fixed function I(β), uniformly in an open neighborhood of β0. Also every

element of I(β) is a continuous function of β in the neighborhood of β0 and I−1(β0)
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exists. Next, by condition 3 in section (3.5) −n−1 ∂
∂β
Û(β, 1) is positive-definite with

probability going to 1. Finally from lemma (3.5) we have, n−1 ∂
∂β
Û(β0, 1)

a.s−→ 0.

Using the above results, Inverse Function Theorem given in section 3.3 and following

closely the arguments of Foutz (1977), β̂EPL is a consistent estimator for β0.

3.7.2 Proof of Asymptotic Normality of β̂EPL

Theorem 3.5

− 1

n

∂

∂β
Û(β, 1)|β=β∗

a.s−→ I(β0)

Proof. In lemma (3.3) we have shown that,

− 1
n
∂
∂β
Û(β, 1)

a.s−→ I(β) for any β ∈ B and that I(β0) is positive definite, where

I(β0)

=

∫ 1

0

[
s(3)(β0, t)− s(4)(β0, t)−

s(2)(β0, t)

s(0)(β0, t)
s(0)(β0, t) +

(s(1)(β0, t)

s(0)(β0, t)

)⊗2

s(0)(β0, t)
]
λ0(t)dt

=

∫ 1

0

[s(2)(β0, t)

s(0)(β0, t)
−
(s(1)(β0, t)

s(0)(β0, t)

)⊗2]
s(0)(β0, t)λ0(t)dt

I(β) is continuous in β. Now, for β∗ lying between β̂EPL and β0

| − 1

n

∂

∂β
Û(β, 1)− I(β0) |

=| − 1

n

∂

∂β
Û(β, 1)− I(β∗) + I(β∗)− I(β0) |

≤| − 1

n

∂

∂β
Û(β, 1)− I(β) | + |I(β∗)− I(β0)|

The first term on the right hand side goes to zero in probability by lemmma 2. Since

β̂EPL is consistent estimator for β0 by theorem 3.4 and I is continuous, the second

term converges to zero in probability. Hence,

− 1

n

∂

∂β
Û(β, 1)|β=β∗

a.s−→ I(β0) as n → ∞
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.

Theorem 3.6 Suppose that Conditions in section 3.5 holds. Then β̂EPL satisfies

√
n(β̂EPL − β0)

L−→ N (0,Ω(β0)),

where Ω(β0) = I−1(β0)Σ(β0)I−1(β0) with Σ(β0) = (1− ρ)Σ1(β0) + ρΣ2(β0),

Proof: By (3.12), β̂EPL solves the equation Û(β, 1) = 0. By Taylor’s expansion,

n−1/2Û(β0, 1) = −n−1∂Û(β∗, 1)

∂β

√
n(β̂EPL − β0), (3.27)

where β∗ is between β̂EPL and β0. By Lemma (3.3) and consistency of β̂EPL,

−n−1∂Û(β∗, 1)

∂β

P−→ I(β0).

Therefore, to prove the asymptotic normality it suffices to show that n−1/2Û(β0, 1)

is asymptotically normal with mean 0 and variance (1− ρ)Σ1(β0) + ρΣ2(β0).

From lemma (3.4) we have,

n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

Now, ∆φ(β0, u) is locally bounded by the given conditions. By the martingale

central limit theorem the first term above converges weakly to a gaussian process

with covariance (1 − ρ)Σ1(β0). The third term above is a sum of independently

distributed terms with mean zero from the validation subsample. Then this term is

asymptotically normal with mean zero and variance ρΣ2(β0). By independence of the

two terms, n−1/2Û(β0, 1)
P−→ N(0,Σ(β0)) with Σ(β0) = (1− ρ)Σ1(β0) + ρΣ2(β0).



CHAPTER 4: SIMULATIONS

In this section, we conduct finite-sample simulations. The aims of the simulations

are three-fold: one is to examine the small sample behavior of β̂EPL, another is to

compare the performance of our estimator with some existing estimators under various

situations, and the third and the most important is to illustrate that the proposed

estimation allows for an informative auxiliary vector W .

4.1 Generation of Data

The covariates (X,Z) are generated from the following transformation to create

correlation:  X

Z

 =

 1 0.0

0.5 1


 U1

U2

 , (4.1)

where Ui’s are independent and identically distributed as U(0, 2). The failure time T

conditional on covariate X is from an exponential distribution with hazard function

λ(t;X) = λexp(β1X + β2Z),

where, λ is the baseline constant hazard. We only consider the case λ = 1.

Then

f(t;X,Z) = exp(β1X1 + β2X2)exp(−te(β1X1+β2X2)).

The auxiliary variable W is generated from

W = X + γ log(T ) + e, (4.2)
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where e ∼ N (0, σ2) and σ2 is the parameter controlling the strength of the association

between X and W . We consider the settings with γ = 0, 2 and 4. The model (4.2)

with γ = 2 allows one to explore the effectiveness of the proposed method with an

informative surrogate W . For γ = 0, it also allows us to compare the performance of

the newly proposed method and that in Zhou and Wang (2000). We do simulations

for σ = 0.2, 0.8 and 1.6. The censoring variable C is uniformly distributed and

is independent of the failure time variable. It is generated from the uniform (0, c)

distribution where c is a parameter which determines the percentage of censoring in

the sample.

For β = (ln(2), 0.5))′, the values of c for 20%, 50% and 80% censoring obtained

are 0.1353, 0.372 and 0.0965 respectively. The observation time is then obtained from

S = T ∧ C.

The validation set is randomly selected by using P (ηi = 1) = 0.5. We choose

the Gaussian kernel function with the bandwidths h = (σ̂Zn
−1/3 which satisfy the

bandwidth conditions in section 3.5, where σ̂Z is the sample standard deviation of Z.

4.2 Implementation method in finite samples

In the proposed estimation method we obtained the pseudo-partial likelihood by

considering all the subjects both in the validation and non-validation sets. For the

subjects in the non-validation set we estimated the relative risk function by the kernel

smoothing approach. Recall that, the estimated relative risk defined in (2.9) is given

by

r̂i(β, t) = ηiγi(β, t) + (1− ηi)φ̄i(β, t),

where φ̄i(β, t) = ν̄i(β1, t) exp{β′2Zi(t)} and for j ∈ V̄ ,

ν̄j(β1, t) = ν̂j(β1, t)− ρ̂∗α(Zj, t)
σ̂1(Zj, t)

σ̂2(Zj, t)
[ψ̂j(α, t)− ψ̄j(α, t)].
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Now consider the weight function in the definitions of ν̂j(β1, t), ψ̂i(β, t) and ψ̄i(β, t) in

Section (4.1). ν̂j(β1, t) is undefined when the denominator is zero. It happens when

the risk set in the validation set is a null set. Similar situations occur in estimation

of ψ̂i(β, t) and ψ̄i(β, t). In practice, when we have a finite sample it is indeed possible

that there will be no subject in the validation set at time t which usually happen in the

latter part of the time interval being studied. Consequently r̂i(β1, t) (i = 1, 2, ..., n)

becomes impossible to calculate. In this case we could use either of the following two

approaches

(a) perform estimation without using those points where the risk set in the validation

set becomes empty.

(b) perform estimation after imputation of the relative risk function at those points

by interpolation based on neighboring points.

Since Z is assumed to be a continuous variable, we employed the latter approach

in our study to deal with the problem. For those observations, for which the risk set

is empty, the relative risk functions can be estimated by the relative risk function

of the subject with maximum observation time at risk in the validation set. Then

the parameters β can be estimated by maximizing the following estimated partial

likelihood function:

EPL(β) =
n∏
i=1

{
r̂i(β, Si)∑

j∈R(Si)
r̂j(β, Si)

}δi

,

where R(Si) is the risk set at time Si. We denote β̂EPL = arg maxβ EPL(β). The

performance of the proposed estimator in finite sample is illustrated in the following

section.

4.3 Simulation Results

Tables 4.1-4.9 provide the results for the following settings:
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1. β0: [ln(2), 0.5]′.

2. n: 100, 200 and 300.

3. Censoring percentage: 20%, 50% and 80%.

4. σ : 0.2, 0.8, 1.6.

5. γ : 0, 2, 4.

6. validation fraction ρ: 30%, 50% and 70%.

In this section we will discuss the results in regards to bias and asymptotic

normality of β̂EPL. We will also observe the performance of the variance estimator

proposed in our study.

4.3.1 Bias of β̂EPL

Examining the first column in the Tables 4.1-4.9, we find that there exists a bias

in different situations which tends to zero. In all the situations β̂EPL is observed to

be a consistent estimator of true β0.

We observed the effect of four different factors on the bias of the estimator β̂EPL

which is illustrated below.

1. n : As the sample size n increases, the bias decreases.

2. Censoring Percentage: We did not observe any significant effect of censoring

percentage on the bias of β̂EPL.

3. σ: σ represents the strength of association between X and W . Since we include

the information contained in W both from the validation and non-validation

sets the effect of σ2 on the bias of the estimator is not dramatic. When n

increases, the bias of β̂EPL goes to zero.
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4. Validation fraction: As the validation fraction increases the bias decreases. In

Tables 4.10 and 4.11, we have shown the bias of estimator for different validation

fractions and n = 300.

4.3.2 Normality of β̂EPL

In chapter 3 we proved the asymptotic normality of the proposed estimator β̂EPL.

In Figures 4.1-4.6 we draw the QQplot of the estimates for different values of σ and γ

when n equals 300. We observe that the plot is close to a straight line. As n increases,

the points lie closer to the line. Therefore, we can conclude that β̂EPL = (β̂1, β̂2)′ are

approximately normally distributed.

4.3.3 Performance of estimator of standard error of β̂EPL

The sample standard error of β̂EPL is calculated from 500 simulations and shown

in the Tables 4.1-4.9 for different settings. This simulation standard error can be

used as an estimate of the true standard error of the estimator. We also calculated

the mean of the 500 estimates of standard error using the variance estimator of β̂EPL

suggested in chapter 3. By examining the corresponding columns in the tables, we

observe that the estimated standard errors provide very good estimates of the true

standard errors of the EPL estimator. The mean of the estimated standard error is

very close to the simulated standard errors of β̂EPL.

We also calculated the nominal 95% confidence intervals using the following formula

β̂EPL ± 1.96ŝ.e(βEPL).

The coverage probabilities are listed in the table which ranges from .91-.96 in most

of the cases. This implies that standard error estimates of β̂EPL are quite reasonable.



50

4.3.4 Results

Table 4.1: Simulation Results with β = [0.693 0.5]′, γ = 0 and 50% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.701 0.679 0.436 0.405 0.948

β̂2 0.509 0.513 0.310 0.277 0.926

0.8 β̂1 0.744 0.726 0.443 0.399 0.940

β̂2 0.505 0.499 0.307 0.279 0.926

1.6 β̂1 0.761 0.745 0.438 0.404 0.950

β̂2 0.503 0.495 0.304 0.277 0.936

200 0.2 β̂1 0.727 0.700 0.304 0.283 0.936

β̂2 0.503 0.516 0.201 0.194 0.944

0.8 β̂1 0.761 0.720 0.312 0.287 0.930

β̂2 0.492 0.510 0.205 0.197 0.944

1.6 β̂1 0.763 0.727 0.311 0.290 0.922

β̂2 0.494 0.514 0.204 0.199 0.944

300 0.2 β̂1 0.671 0.671 0.238 0.249 0.940

β̂2 0.505 0.504 0.163 0.161 0.946

0.8 β̂1 0.693 0.697 0.243 0.227 0.930

β̂2 0.498 0.503 0.166 0.159 0.942

1.6 β̂1 0.697 0.697 0.242 0.228 0.938

β̂2 0.497 0.504 0.166 0.160 0.952

1β̂EPL denotes the proposed estimator, se is the standard error of β̂EPL from simulation,
mean(ŝe) denotes the mean of the estimated standard errors and cp denotes the 95% coverage
probability.
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Figure 4.1: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 0 and σ = 0.2
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Figure 4.2: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 0 and σ = 0.8
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Figure 4.3: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 0 and σ = 1.6
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Table 4.2: Simulation Results with β = [0.693 0.5]′, γ = 2 and 50% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.745 0.727 0.432 0.403 0.948

β̂2 0.516 0.514 0.312 0.280 0.928

0.8 β̂1 0.747 0.740 0.436 0.406 0.942

β̂2 0.515 0.508 0.310 0.281 0.920

1.6 β̂1 0.741 0.717 0.425 0.412 0.950

β̂2 0.516 0.507 0.311 0.278 0.922

200 0.2 β̂1 0.747 0.713 0.296 0.287 0.944

β̂2 0.502 0.513 0.202 0.198 0.952

0.8 β̂1 0.748 0.719 0.291 0.287 0.948

β̂2 0.502 0.512 0.203 0.198 0.952

1.6 β̂1 0.758 0.740 0.296 0.289 0.942

β̂2 0.498 0.503 0.202 0.199 0.950

300 0.2 β̂1 0.691 0.683 0.242 0.233 0.938

β̂2 0.500 0.509 0.169 0.161 0.938

0.8 β̂1 0.689 0.687 0.234 0.226 0.942

β̂2 0.500 0.512 0.163 0.159 0.948

1.6 β̂1 0.688 0.677 0.242 0.227 0.942

β̂2 0.501 0.513 0.167 0.159 0.944
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Figure 4.4: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 2 and σ = 0.2
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Figure 4.5: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 2 and σ = 0.8



57

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

Quantiles of Standard Normal

Q
u
a
nt
il
es

o
f
th
e
E
st
im

a
to
r
β̂
1

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

Quantiles of Standard Normal

Q
u
a
nt
il
es

o
f
th
e
E
st
im

a
to
r
β̂
2

Figure 4.6: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 2 and σ = 1.6
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Table 4.3: Simulation Results with β = [0.693 0.5]′, γ = 4 and 50% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.733 0.714 0.436 0.415 0.954

β̂2 0.521 0.511 0.314 0.285 0.922

0.8 β̂1 0.735 0.727 0.435 0.432 0.946

β̂2 0.517 0.509 0.314 0.295 0.922

1.6 β̂1 0.732 0.716 0.443 0.478 0.952

β̂2 0.513 0.510 0.326 0.299 0.926

200 0.2 β̂1 0.738 0.713 0.297 0.287 0.946

β̂2 0.504 0.515 0.205 0.198 0.944

0.8 β̂1 0.738 0.717 0.287 0.285 0.944

β̂2 0.504 0.509 0.202 0.197 0.944

1.6 β̂1 0.743 0.725 0.291 0.288 0.944

β̂2 0.502 0.518 0.201 0.198 0.944

300 0.2 β̂1 0.681 0.677 0.237 0.226 0.944

β̂2 0.503 0.509 0.167 0.159 0.950

0.8 β̂1 0.681 0.679 0.234 0.226 0.942

β̂2 0.504 -0.513 0.166 0.159 0.944

1.6 β̂1 0.685 0.684 0.236 0.226 0.946

β̂2 0.504 0.512 0.165 0.159 0.950
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Figure 4.7: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 4 and σ = 0.2
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Figure 4.8: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 4 and σ = 0.8
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Figure 4.9: QQplot of β̂EPL = (β̂1 β̂2)′ for n = 300, γ = 4 and σ = 1.6
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Table 4.4: Simulation Results with β = [0.693 0.5]′, γ = 0 and 20% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.705 0.692 0.346 0.308 0.914

β̂2 0.506 0.503 0.224 0.213 0.934

0.8 β̂1 0.740 0.718 0.350 0.314 0.922

β̂2 0.517 0.504 0.229 0.216 0.940

1.6 β̂1 0.751 0.742 0.347 0.318 0.914

β̂2 0.504 0.503 0.231 0.220 0.940

200 0.2 β̂1 0.722 0.702 0.250 0.220 0.920

β̂2 0.498 0.491 0.167 0.151 0.930

0.8 β̂1 0.754 0.736 0.260 0.229 0.904

β̂2 0.492 0.491 0.168 0.155 0.936

1.6 β̂1 0.761 0.746 0.255 0.225 0.928

β̂2 0.489 0.489 0.171 0.156 0.936

300 0.2 β̂1 0.682 0.670 0.192 0.178 0.942

β̂2 0.497 0.495 0.126 0.123 0.940

0.8 β̂1 0.700 0.695 0.197 0.205 0.932

β̂2 0.494 0.494 0.131 0.136 0.950

1.6 β̂1 0.706 0.690 0.194 0.288 0.936

β̂2 0.493 0.491 0.129 0.173 0.952
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Table 4.5: Simulation Results with β = [0.693 0.5]′, γ = 2 and 20% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.743 0.737 0.337 0.318 0.926

β̂2 0.513 0.506 0.233 0.222 0.944

0.8 β̂1 0.737 0.742 0.332 0.315 0.930

β̂2 0.515 0.513 0.231 0.219 0.952

1.6 β̂1 0.737 0.738 0.345 0.326 0.920

β̂2 0.513 0.507 0.231 0.217 0.932

200 0.2 β̂1 0.754 0.742 0.243 0.222 0.922

β̂2 0.492 0.485 0.167 0.154 0.944

0.8 β̂1 0.748 0.735 0.246 0.222 0.934

β̂2 0.500 0.488 0.170 0.154 0.942

1.6 β̂1 0.754 0.732 0.253 0.223 0.928

β̂2 0.493 0.490 0.170 0.155 0.946

300 0.2 β̂1 0.701 0.689 0.190 0.179 0.940

β̂2 0.494 0.489 0.128 0.125 0.956

0.8 β̂1 0.706 0.691 0.192 0.180 0.944

β̂2 0.493 0.486 0.128 0.126 0.952

1.6 β̂1 0.700 0.683 0.193 0.184 0.938

β̂2 0.495 0.491 0.132 0.127 0.946
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Table 4.6: Simulation Results with β = [0.693 0.5]′, γ = 4 and 20% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.716 0.701 0.334 0.334 0.928

β̂2 0.523 0.510 0.232 0.231 0.942

0.8 β̂1 0.731 0.715 0.347 0.318 0.922

β̂2 0.522 0.515 0.235 0.224 0.944

1.6 β̂1 0.736 0.712 0.344 0.319 0.940

β̂2 0.520 0.517 0.233 0.222 0.940

200 0.2 β̂1 0.738 0.718 0.242 0.222 0.936

β̂2 0.499 0.498 0.169 0.155 0.942

0.8 β̂1 0.741 0.725 0.246 0.222 0.920

β̂2 0.496 0.496 0.170 0.154 0.942

1.6 β̂1 0.740 0.729 0.253 0.225 0.926

β̂2 0.497 0.492 0.171 0.162 0.938

300 0.2 β̂1 0.690 0.681 0.187 0.178 0.940

β̂2 0.499 0.495 0.129 0.125 0.946

0.8 β̂1 0.692 0.687 0.190 0.179 0.934

β̂2 0.500 0.501 0.127 0.126 0.950

1.6 β̂1 0.690 0.676 0.189 0.182 0.942

β̂2 0.500 0.503 0.129 0.127 0.952
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Table 4.7: Simulation Results with β = [0.693 0.5]′, γ = 0 and 80% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.717 0.699 0.756 0.784 0.946

β̂2 0.531 0.489 0.498 0.490 0.944

0.8 β̂1 0.743 0.710 0.803 0.774 0.952

β̂2 0.532 0.507 0.517 0.468 0.944

1.6 β̂1 0.765 0.752 0.752 0.713 0.960

β̂2 0.529 0.504 0.494 0.463 0.946

200 0.2 β̂1 0.742 0.738 0.492 0.470 0.942

β̂2 0.501 0.489 0.319 0.317 0.956

0.8 β̂1 0.776 0.764 0.491 0.472 0.942

β̂2 0.492 0.491 0.318 0.317 0.964

1.6 β̂1 0.772 0.763 0.497 0.475 0.952

β̂2 0.496 0.502 0.318 0.320 0.960

300 0.2 β̂1 0.690 0.681 0.187 0.178 0.940

β̂2 0.499 0.495 0.129 0.125 0.946

0.8 β̂1 0.692 0.687 0.190 0.179 0.934

β̂2 0.500 0.501 0.127 0.126 0.950

1.6 β̂1 0.700 0.692 0.397 0.376 0.934

β̂2 0.509 0.511 0.259 0.259 0.960
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Table 4.8: Simulation Results with β = [0.693 0.5]′, γ = 2 and 80% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.752 0.690 0.740 0.723 0.962

β̂2 0.536 0.503 0.506 0.474 0.952

0.8 β̂1 0.762 0.735 0.763 0.819 0.958

β̂2 0.532 0.511 0.503 0.505 0.956

1.6 β̂1 0.772 0.731 0.751 0.742 0.956

β̂2 0.536 0.504 0.501 0.485 0.948

200 0.2 β̂1 0.757 0.768 0.489 0.469 0.950

β̂2 0.501 0.496 0.323 0.318 0.952

0.8 β̂1 0.752 0.760 0.481 0.469 0.952

β̂2 0.501 0.500 0.319 0.317 0.960

1.6 β̂1 0.771 0.785 0.484 0.473 0.950

β̂2 0.496 0.502 0.323 0.319 0.956

300 0.2 β̂1 0.688 0.677 0.391 0.374 0.942

β̂2 0.513 0.518 0.259 0.257 0.960

0.8 β̂1 0.689 0.677 0.374 0.368 0.938

β̂2 0.512 0.512 0.260 0.257 0.960

1.6 β̂1 0.692 0.674 0.391 0.375 0.938

β̂2 0.513 0.517 0.262 0.258 0.956
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Table 4.9: Simulation Results with β = [0.693 0.5]′, γ = 4 and 80% censoring

n σ β̂EPL mean median se mean(ŝe) cp

100 0.2 β̂1 0.752 0.690 0.740 0.723 0.962

β̂2 0.536 0.503 0.506 0.474 0.952

0.8 β̂1 0.761 0.719 0.762 1.077 0.950

β̂2 0.533 0.481 0.503 0.732 0.946

1.6 β̂1 0.772 0.718 0.745 0.807 0.956

β̂2 0.530 0.505 0.493 0.509 0.946

200 0.2 β̂1 0.745 0.761 0.487 0.469 0.940

β̂2 0.505 0.505 0.323 0.318 0.962

0.8 β̂1 0.747 0.777 0.487 0.472 0.950

β̂2 0.505 0.505 0.323 0.318 0.964

1.6 β̂1 0.762 0.781 0.481 0.471 0.956

β̂2 0.500 0.500 0.323 0.319 0.958

300 0.2 β̂1 0.685 0.670 0.392 0.374 0.934

β̂2 0.515 0.518 0.259 0.258 0.956

0.8 β̂1 0.682 0.674 0.391 0.440 0.938

β̂2 0.517 0.524 0.259 0.285 0.960

1.6 β̂1 0.686 0.675 0.395 0.374 0.936

β̂2 0.517 0.517 0.257 0.258 0.956
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In the following two tables we illustrate the effect of validation fraction on the

estimator.

Table 4.10: Simulation Results with σ = 0.2

n V alidationProp β̂EPL mean median se mean(ŝe) cp

100 0.3 β̂1 0.745 0.756 0.537 0.528 0.924

β̂2 0.514 0.500 0.314 0.308 0.928

0.5 β̂1 0.701 0.679 0.436 0.405 0.948

β̂2 0.509 0.513 0.310 0.277 0.926

0.7 β̂1 0.700 0.674 0.370 0.338 0.918

β̂2 0.507 0.497 0.292 0.261 0.912

200 0.3 β̂1 0.731 0.704 0.371 0.352 0.936

β̂2 0.503 0.511 0.215 0.212 0.944

0.5 β̂1 0.727 0.700 0.304 0.283 0.936

β̂2 0.503 0.516 0.201 0.194 0.944

0.7 β̂1 0.713 0.717 0.224 0.269 0.948

β̂2 0.509 0.516 0.185 0.204 0.958

300 0.3 β̂1 0.709 0.703 0.320 0.279 0.920

β̂2 0.495 0.495 0.180 0.170 0.918

0.5 β̂1 0.670 0.671 0.238 0.249 0.940

β̂2 0.505 0.504 0.163 0.161 0.946

0.7 β̂1 0.670 0.661 0.191 0.193 0.946

β̂2 0.505 0.513 0.152 0.151 0.956



69

Table 4.11: Simulation Results with σ = 0.8

n V alidationProp β̂EPL mean median se mean(ŝe) cp

100 0.3 β̂1 0.805 0.788 0.540 0.633 0.938

β̂2 0.511 0.496 0.330 0.357 0.936

0.5 β̂1 0.744 0.726 0.443 0.399 0.940

β̂2 0.505 0.499 0.307 0.279 0.926

0.7 β̂1 0.720 0.701 0.376 0.340 0.920

β̂2 0.507 0.502 0.293 0.261 0.916

200 0.3 β̂1 0.782 0.762 0.385 0.372 0.950

β̂2 0.496 0.503 0.221 0.229 0.944

0.5 β̂1 0.761 0.720 0.312 0.287 0.930

β̂2 0.492 0.510 0.205 0.197 0.944

0.7 β̂1 0.723 0.725 0.226 0.228 0.948

β̂2 0.506 0.514 0.186 0.188 0.960

300 0.3 β̂1 0.746 0.727 0.335 0.287 0.904

β̂2 0.485 0.493 0.187 0.178 0.932

0.5 β̂1 0.693 0.697 0.243 0.227 0.930

β̂2 0.498 0.503 0.166 0.159 0.942

0.7 β̂1 0.676 0.668 0.193 0.193 0.952

β̂2 0.503 0.513 0.152 0.152 0.950
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4.4 Comparison of different methods

In this section, we have explored five different methods to estimate the unknown

parameter in our simulation study.

1. β̂F -The full-data Cox regression estimator which uses the the full data without

any missing covariate.

2. β̂CC-The complete-case Cox regression estimator which uses the data available

only on the validation set.

3. β̂N -The Cox regression estimator with W substitued for the missing X for the

subjects in the non-validation set.

4. β̂ZW -The estimated partial likelihood estimator suggested by Zhou and Wang

(2000), and

5. β̂EPL-The newly proposed estimator.

4.4.1 Performance of different methods

Tables 4.11-4.21 provide the results for the following settings for different methods

discussed above.

1. β0 = (β01, β02)′: [ln(2), 0.5]′.

2. n: 100 and 300.

3. Censoring percentage: 20% and 50%.

4. σ : 0.2, 0.8, 1.6.

5. γ : 0,2, 4.

6. Validation fraction ρ: 50%.



71

4.4.2 Results

In Tables 4.12-4.29 we present our simulation results obtained using the estimation

procedures described above.

For a given sample size, mean(β̂EPL)− β0)(bias), median(β̂EPL)-β0,(robust bias),

standard errors, mean of the estimated standard errors and 95% confidence intervals

for the estimators are obtained using 500 independent runs. In this section we discuss

the results with regards to the bias and variance of the estimators. We also discuss

the performance of the estimated variances obtained using these methods.

Bias: From these results we observe that, the full-data Cox Regression estimator

(β̂F ) the complete-case Cox Regression estimator(β̂CC) and our proposed estimator(β̂EPL)

have acceptable small bias for all values of σ and γ considered. The estimated partial

likelihood method ((β̂ZW )) proposed by Zhou and Wang (2000) works for γ = 0 but

biased for γ 6= 0. The naive estimator βN is biased.

Variance: The standard errors of all the estimators are obtained. We note that,

(β̂F ) is the most efficient estimator. The proposed estimator (β̂EPL) is more efficient

than (β̂cc) in all the situations considered. We also compared our estimator with Zhou

and Wang’s estimator (β̂ZW ). When γ = 0, Zhou’s method is more efficient for very

small value of σ but for higher values of σ both methods are almost equally efficient

and their estimator has more bias than our estimator. For situations where γ 6= 0,

the consistency property of their estimator does not hold. So, we cannot compare the

efficiency of both the estimators in that case.

Estimated Standard Error: We observe that the estimator of the standard

error performs very well for all the estimators when γ = 0. When γ 6= 0, the

standard error estimates of both β̂N and β̂ZW are biased whereas the standard error

estimates of β̂EPL remains to be consistent for all values of γ and σ. The 95% coverage

probabilities shown in the Tables also demonstrate this fact.
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Table 4.12: n = 100, σ = 0.2 and γ = 0

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 0.068 0.076 0.158 0.158 0.926

β̂2 0.024 0.028 0.146 0.145 0.954

β̂ZW β̂1 0.045 0.033 0.346 0.329 0.940

β̂2 0.013 -0.001 0.283 0.257 0.914

β̂EPL β̂1 0.008 -0.014 0.436 0.405 0.948

β̂2 0.009 0.013 0.310 0.277 0.926

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.031 -0.029 0.234 0.223 0.934

β̂2 0.018 0.011 0.210 0.204 0.938

β̂ZW β̂1 0.044 0.038 0.272 0.263 0.966

β̂2 0.013 0.005 0.212 0.204 0.952

β̂EPL β̂1 0.012 -0.001 0.346 0.308 0.914

β̂2 0.006 0.003 0.224 0.213 0.934

1β̂EPL denotes the full data Cox regression estimator, β̂CC denotes the complete case Cox
regression estimator, β̂N denotes the naive Cox regression estimator replacing missing X by W,
β̂ZW denotes the partial likelihood estimator proposed by Zhou and Wang(2000) and β̂EPL denotes

the proposed estimator; C represents percentage of censoring, se is the standard error of β̂EPL from
simulation, mean(ŝe) denotes the mean of the estimated standard errors and cp denotes the 95%
coverage probability.
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Table 4.13: n = 100, σ = 0.8 and γ = 0

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.369 -0.381 0.206 0.196 0.504

β̂2 0.139 0.028 0.260 0.249 0.914

β̂ZW β̂1 -0.045 -0.052 0.374 0.356 0.940

β̂2 0.055 0.051 0.287 0.262 0.932

β̂EPL β̂1 0.051 0.033 0.443 0.399 0.940

β̂2 0.005 -0.001 0.307 0.279 0.926

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.368 -0.372 0.165 0.156 0.352

β̂2 0.126 0.122 0.202 0.198 0.918

β̂ZW β̂1 -0.046 -0.052 0.272 0.263 0.966

β̂2 0.052 0.053 0.213 0.207 0.942

β̂EPL β̂1 0.046 0.025 0.350 0.314 0.922

β̂2 0.007 0.004 0.229 0.217 0.940
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Table 4.14: n = 100, σ = 1.6 and γ = 0

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.566 -0.572 0.130 0.112 0.026

β̂2 0.208 0.191 0.252 0.244 0.878

β̂ZW β̂1 -0.102 -0.098 0.391 0.364 0.928

β̂2 0.077 0.074 0.291 0.263 0.920

β̂EPL β̂1 0.004 0.004 0.242 0.228 0.938

β̂2 -0.003 0.004 0.166 0.160 0.952

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.567 -0.574 0.105 0.096 0.002

β̂2 0.188 0.182 0.196 0.195 0.864

β̂ZW β̂1 -0.046 -0.052 0.272 0.263 0.966

β̂2 0.052 0.053 0.213 0.207 0.942

β̂EPL β̂1 0.058 0.049 0.347 0.318 0.914

β̂2 0.004 0.003 0.231 0.220 0.940
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Table 4.15: n = 300, σ = 0.2 and γ = 0

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 0.068 0.076 0.158 0.158 0.926

β̂2 0.024 0.028 0.146 0.145 0.954

β̂ZW β̂1 -0.007 -0.012 0.176 0.177 0.950

β̂2 0.010 0.018 0.150 0.147 0.944

β̂EPL β̂1 0.022 0.022 0.238 0.249 0.940

β̂2 0.005 0.004 0.163 0.161 0.946

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.056 -0.064 0.127 0.126 0.928

β̂2 0.016 0.011 0.116 0.115 0.952

β̂ZW β̂1 -0.006 -0.006 0.141 0.142 0.966

β̂2 0.004 0.003 0.119 0.117 0.952

β̂EPL β̂1 -0.011 -0.023 0.192 0.178 0.942

β̂2 -0.003 -0.005 0.126 0.123 0.940
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Table 4.16: n = 300, σ = 0.8 and γ = 0

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.392 -0.392 0.114 0.108 0.068

β̂2 0.139 0.139 0.142 0.140 0.830

β̂ZW β̂1 -0.056 -0.055 0.198 0.223 0.932

β̂2 0.033 0.044 0.156 0.157 0.946

β̂EPL β̂1 0.000 0-.004 0.243 0.227 0.930

β̂2 -0.002 0.003 0.166 0.159 0.942

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.390 -0.393 0.092 0.086 0.018

β̂2 0.123 0.123 0.115 0.112 0.792

β̂ZW β̂1 -0.048 -0.058 0.159 0.172 0.954

β̂2 0.026 0.028 0.123 0.123 0.944

β̂EPL β̂1 0.007 0.004 0.243 0.227 0.930

β̂2 -0.007 0.031 0.166 0.159 0.942
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Table 4.17: n = 300, σ = 1.6 and γ = 0

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.579 -0.580 0.071 0.067 0.0

β̂2 0.207 0.207 0.139 0.138 0.684

β̂ZW β̂1 -0.096 -0.045 0.209 0.229 0.908

β̂2 0.097 0.053 0.157 0.158 0.936

β̂EPL β̂1 0.000 0-.004 0.243 0.227 0.930

β̂2 -0.002 0.003 0.166 0.159 0.942

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.580 -0.582 0.057 0.053 0.0

β̂2 0.184 0.187 0.112 0.110 0.614

β̂ZW β̂1 -0.084 -0.089 0.170 0.192 0.904

β̂2 0.034 0.042 0.192 0.125 0.942

β̂EPL β̂1 0.007 0.004 0.243 0.227 0.930

β̂2 -0.007 0.031 0.166 0.159 0.942
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Table 4.18: n = 100, σ = 0.2 and γ = 2

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.988 -0.983 0.084 0.068 0.0

β̂2 0.169 0.160 0.237 0.244 0.920

β̂ZW β̂1 -0.434 -0.484 0.574 0.373 0.670

β̂2 0.174 0.172 0.324 0.274 0.892

β̂EPL β̂1 0.052 0.034 0.432 0.403 0.948

β̂2 0.016 0.014 0.312 0.280 0.928

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -1.003 -1.000 0.071 0.062 0.0

β̂2 0.155 0.151 0.180 0.195 0.924

β̂ZW β̂1 -0.455 -0.466 0.467 0.292 0.550

β̂2 0.163 0.159 0.241 0.214 0.862

β̂EPL β̂1 0.050 0.044 0.337 0.318 0.926

β̂2 0.013 0.006 0.233 0.222 0.944



79

Table 4.19: n = 100, σ = 0.8 and γ = 2

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.961 -0.955 0.076 0.064 0.0

β̂2 0.177 0.164 0.243 0.244 0.904

β̂ZW β̂1 -0.325 -0.368 0.569 0.374 0.721

β̂2 0.141 0.140 0.325 0.271 0.888

β̂EPL β̂1 0.054 0.046 0.435 0.406 0.942

β̂2 0.015 0.008 0.310 0.281 0.920

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.969 -0.966 0.064 0.057 0.0

β̂2 0.163 0.168 0.186 0.195 0.910

β̂ZW β̂1 -0.328 -0.354 0.450 0.291 0.658

β̂2 0.128 0.124 0.238 0.212 0.878

β̂EPL β̂1 0.044 0.049 0.332 0.315 0.930

β̂2 0.015 0.013 0.231 0.219 0.952
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Table 4.20: n = 100, σ = 1.6 and γ = 2

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.906 -0.905 0.064 0.055 0.0

β̂2 0.194 0.183 0.253 0.254 0.874

β̂ZW β̂1 -0.214 -0.243 0.518 0.373 0.794

β̂2 0.108 0.109 0.312 0.269 0.904

β̂EPL β̂1 0.048 0.024 0.425 0.412 0.950

β̂2 0.016 0.007 0.311 0.278 0.922

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.902 -0.899 0.054 0.049 0.0

β̂2 0.180 0.185 0.194 0.195 0.876

β̂ZW β̂1 -0.243 -0.229 0.409 0.292 0.766

β̂2 0.097 0.089 0.229 0.211 0.900

β̂EPL β̂1 0.044 0.045 0.345 0.326 0.920

β̂2 0.013 0.007 0.231 0.217 0.932
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Table 4.21: n = 300, σ = 0.2 and γ = 2

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.994 -0.991 0.048 0.039 0.0

β̂2 0.166 0.169 0.127 0.137 0.796

β̂ZW β̂1 -0.630 -0.635 0.246 0.170 0.108

β̂2 0.202 0.199 0.137 0.125 0..630

β̂EPL β̂1 -0.003 0-.010 0.242 0.233 0.938

β̂2 -0.001 0.009 0.169 0.161 0.938

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -1.001 0.152 0.044 0.034 0

β̂2 -1.007 0.154 0.100 0.110 0.748

β̂ZW β̂1 -0.617 -0.613 0.304 0.219 0.244

β̂2 0.223 0.224 0.178 0.161 0.70

β̂EPL β̂1 0.007 -0.004 0.190 0.17 0.940

β̂2 -0.006 -0.011 0.128 0.125 0.956
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Table 4.22: n = 300, σ = 0.8 and γ = 2

C mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.965 -0.963 0.044 0.129 0.0

β̂2 0.175 0.176 0.036 0.137 0.770

β̂ZW β̂1 -0.399 -0.395 0.325 0.213 0.520

β̂2 0.147 0.145 0.180 0.157 0.808

β̂EPL β̂1 0.004 0-.006 0.234 0.226 0.942

β̂2 0.000 0.012 0.163 0.159 0.948

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.972 -0.972 0.039 0.033 0.0

β̂2 0.161 0.164 0.102 0.110 0.716

β̂ZW β̂1 -0.388 -0.399 0.262 0.168 0.412

β̂2 0.127 0.128 0.138 0.122 0.784

β̂EPL β̂1 0.012 -0.002 0.192 0.180 0.944

β̂2 -0.007 -0.014 0.128 0.126 0.952
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Table 4.23: n = 300, σ = 1.6 and γ = 2

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.906 -0.908 0.037 0.031 0.0

β̂2 0.194 0.197 0.134 0.137 0.728

β̂ZW β̂1 -0.225 -0.222 0.312 0.232 0.716

β̂2 0.089 0.091 0.176 0.160 0.894

β̂EPL β̂1 -0.005 -0.017 0.242 0.227 0.942

β̂2 0.001 0.013 0.167 0.159 0.944

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.902 -0.902 0.032 0.105 0.0

β̂2 0.178 0.180 0.105 0.110 0.620

β̂ZW β̂1 -0.208 -0.208 0.248 0.175 0.670

β̂2 0.074 0.077 0.135 0.123 0.902

β̂EPL β̂1 0.007 -0.010 0.193 0.184 0.938

β̂2 -0.005 -0.009 0.132 0.127 0.946



84

Table 4.24: n = 100, σ = 0.2 and γ = 4

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.852 -0.849 0.042 0.034 0.0

β̂2 0.104 0.090 0.239 0.245 0.952

β̂ZW β̂1 -0.126 -0.127 0.595 0.375 0.845

β̂2 0.081 0.085 0.335 0.273 0.938

β̂EPL β̂1 0.040 0.021 0.436 0.415 0.954

β̂2 0.021 0.011 0.314 0.285 0.922

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.865 -0.864 0.037 0.032 0.0

β̂2 0.092 0.088 0.180 0.195 0.960

β̂ZW β̂1 -0.134 -0.138 0.494 0.290 0.736

β̂2 0.075 0.083 0.250 0.215 0.908

β̂EPL β̂1 0.023 0.008 0.334 0.334 0.928

β̂2 0.023 0.010 0.232 0.231 0.942
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Table 4.25: n = 100, σ = 0.8 and γ = 4

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.845 -0.846 0.041 0.034 0.0

β̂2 0.108 0.093 0.241 0.245 0.946

β̂ZW β̂1 -0.102 -0.127 0.606 0.401 0.894

β̂2 0.118 0.108 0.336 0.271 0.888

β̂EPL β̂1 0.042 0.034 0.435 0.432 0.946

β̂2 0.074 0.085 0.336 0.275 0.794

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.859 -0.857 0.035 0.031 0.0

β̂2 0.096 0.097 0.182 0.195 0.952

β̂ZW β̂1 -0.121 -0.121 0.492 0.300 0.726

β̂2 0.072 0.072 0.250 0.215 0.908

β̂EPL β̂1 0.034 0.022 0.347 0.318 0.922

β̂2 0.022 0.015 0.235 0.224 0.944



86

Table 4.26: n = 100, σ = 1.6 and γ = 4

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.837 -0.834 0.038 0.248 0.0

β̂2 0.117 0.102 0.032 0.245 0.904

β̂ZW β̂1 -0.081 -0.141 0.575 0.390 0.812

β̂2 0.069 0.080 0.327 0.275 0.908

β̂EPL β̂1 0.039 0.023 0.443 0.478 0.952

β̂2 0.013 0.010 0.326 0.299 0.926

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.837 -0.834 0.038 0.032 0.0

β̂2 0.117 0.102 0.248 0.243 0.938

β̂ZW β̂1 -0.095 -0.119 0.464 0.292 0.760

β̂2 0.066 0.069 0.246 0.214 0.904

β̂EPL β̂1 0.043 0.019 0.344 0.319 0.940

β̂2 0.020 0.017 0.233 0.222 0.940
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Table 4.27: n = 300, σ = 0.2 and γ = 4

C mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.856 -0.854 0.024 0.020 0.0

β̂2 0.097 0.099 0.129 0.138 0.910

β̂ZW β̂1 -0.293 -0.292 0.331 0.213 0.608

β̂2 0.111 0.111 0.181 0.158 0.878

β̂EPL β̂1 -0.013 0-.016 0.237 0.226 0.942

β̂2 0.003 0.009 0.167 0.159 0.944

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.868 -0.867 0.023 0.018 0.0

β̂2 0.087 0.090 0.100 0.110 0.904

β̂ZW β̂1 -0.310 -0.301 0.284 0.167 0.508

β̂2 0.103 0.096 0.143 0.123 0.814

β̂EPL β̂1 -0.003 -0.011 0.187 0.178 0.940

β̂2 -0.002 -0.005 0.129 0.125 0.946
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Table 4.28: n = 300, σ = 0.8 and γ = 4

C mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.851 -0.850 0.024 0.019 0.0

β̂2 0.100 0.099 0.128 0.138 0.908

β̂ZW β̂1 -0.218 -0.191 0.335 0.221 0.682

β̂2 0.086 0.081 0.183 0.159 0.892

β̂EPL β̂1 -0.012 0-.014 0.234 0.226 0.942

β̂2 0.004 0.013 0.166 0.160 0.944

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.868 -0.867 0.023 0.018 0.0

β̂2 0.087 0.090 0.100 0.110 0.904

β̂ZW β̂1 -0.221 -0.217 0.284 0.169 0.614

β̂2 0.076 0.074 0.143 0.123 0.874

β̂EPL β̂1 -0.001 -0.006 0.190 0.179 0.934

β̂2 -0.001 0.001 0.127 0.125 0.950
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Table 4.29: n = 300, σ = 1.6 and γ = 4

C mean− β0 median− β0 se mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.839 -0.837 0.022 0.018 0.0

β̂2 0.115 0.118 0.130 0.138 0.884

β̂ZW β̂1 -0.119 -0.099 0.333 0.217 0.760

β̂2 0.053 0.052 0.182 0.157 0.908

β̂EPL β̂1 0.008 0.009 0.236 0.226 0.946

β̂2 0.004 0.012 0.165 0.159 0.950

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.846 -0.845 0.019 0.017 0.0

β̂2 0.105 0.106 0.102 0.110 0.868

β̂ZW β̂1 -0.114 -0.115 0.273 0.182 0.724

β̂2 0.045 0.044 0.141 0.125 0.912

β̂EPL β̂1 -0.003 -0.017 0.189 0.182 0.942

β̂2 -0.001 -0.003 0.129 0.127 0.952



CHAPTER 5: REAL DATA ANALYSIS

We apply the proposed approach to the primary biliary cirrhosis(PBC) data from

the Mayo Clinic trial which was conducted between 1974 and 1984. PBC is a rare and

fatal chronic liver disease in which the bile ducts in the liver become inflamed and

damaged and, ultimately, destroyed. The cause of this disease is unknown. It develops

over time and may cause the liver to stop working completely. There was a total of

424 patients who met the eligibility criteria for the randomized, placebo-controlled

study of treatment of PBC with drug D-penicillamine. Complete data were collected

on the first 312 cases who participated in the randomized trial. The remaining 112

cases did not participate in the clinical trial but some basic measurements on them

were recorded to be followed for survival. Six of these cases were lost to follow-up

shortly after diagnosis, so the data here are on an additional 106 cases as well as

the 312 randomized participants. A detailed description about this dataset and the

covariates recorded can be found in Dickson et al. [6] and Markus et al. [27].

The PBC data can be used to estimate a survival distribution, test for differences

between two groups and estimate covariate effects via a regression model. The

variables involved in our specfic analysis include:

(1) id: case number;

(2) days: number of days between registration and the earlier of death, transplantation,

or study analysis time;

(3) status: status of censoring;

(4) chol: serum cholesterol (inmg/dl);
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(5) bili: serum bilirubin (in mg/dl) and

(6) Age: age in days.

For this dataset, we wanted to analyze the effect of patients’ serum cholesterol and

age on the survival of the patients. This type of failure time data can be modeled by

the Cox Proportional hazards models with an unknown baseline hazard function but

special techniques are required when we have missing data. About 31% outcomes of

cholesterol were missing in the data set. If we remove those observations, we may get

biased estimates. In such situation we wanted to use the information from auxiliary

covariates if available. To choose the auxiliary covariates, we performed preliminary

statistical analysis on the available covariates. We observed that the outcomes of

serum bilirubin were completely obtained with no missing values and we found that

a significant correlation (0.4490) exists between serum cholesterol and bilirubin. We

performed a Cox regression analysis to explore whether bilirubin has some additional

effect on the hazard of failure. The results obtained are shown in the following table.

We observed that, the estimates of the coefficients and their standard error estimates

Table 5.1: Regression Analysis of Primary Biliary Cirrhosis (PBC) data
Method Variable Estimates of the

Parameter
Standard Error 95% Confidence

Interval

logbili < 1.6
CC

logchol 0.271 0.393 (-0.499, 1.040)
age 0.055 0.012 (0.031, 0.079)

logbili ≥ 1.6
ZW

logchol -0.635 0.345 (-1.312, 0.042)
age -0.005 0.016 (-0.037, 0.027)

are quite different for both the situations and the 95% confidence intervals for the

coefficient of age are nonoverlapping. Though there is a significant correlation between

bilirubin and cholesterol, from the above analysis, we can conclude that serum bilirubin

has some additional effect on the hazard of failure given the available information on

serum cholesterol. That means it may not be a true surrogate for cholesterol. Hence,

our proposed method can be applied to this dataset by considering serum bilirubin
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as an informative auxiliary covariate. In a preliminary step, we take the logarithmic

transformation of cholesterol and bilirubin as suggested in the clinical literature. The

following table displays the analysis results based on the the CC method, the ZW

method proposed by Zhou and Wang(2000) and the proposed EPL method. The

CC method uses only 284 complete-case observations and the other two methods use

all 418 observations. Variable “logchol” denote the logarithm of cholesterol. The

estimates of the coefficients and their standard errors are given in the Table 5.2.

Table 5.2: Regression Analysis of Primary Biliary Cirrhosis (PBC) data
Method Variable Estimates of the

Parameter
Standard Error 95% Confidence

Interval

CC
logchol 0.853 0.214 (0.432, 1.273)

age 0.048 0.010 (0.029, 0.067)

ZW
logchol 1.054 0.168 (0.726, 1.383)

age 0.046 .008 (0.032, 0.061)

EPL
logchol 0.871 0.212 (0.456, 1.287)

age 0.043 0.007 (0.029, 0.058)

The regression analysis confirm that both serum cholesterol and age are significantly

related to the time to event. The estimates of the regression parameters from the

EPL method are very close to those obtained from the CC method. Note that

there is a discrepancy between the estimates for “logchol”from complete data and

Zhou and Wangs estimate which could be due to the fact that the latter method

does not consider the additional effect contributed by the auxiliary covariate. The

variance estimate for β̂EPL is calculated using the proposed estimator Ω̂(β). We

observe that the estimated standard errors from the EPL and ZW methods are

smaller than those from the CC method. The ratio of estimated standard errors

for β̂EPL and β̂ZW relative to β̂CC are(0.991, 0.7) and (0.785, 0.8) respectively.

The 95% confidence interval for the regression parameter of “logchol” from the CC

method, ZW method and EPL methods are (0.432, 1.273), (0.726, 1.383) and (0.456,

1.287) respectively. In our simulations we observed that the standard errors of the
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estimates were underestimated by ZW method (2000) method when the auxiliary

variable was informative. In the real data analysis also the standard error estimate

for serum cholesterol might be underestimated. In addition, the computation burden

for our method is much less than that for Zhou and Wang’s(2000) method. This is

because the latter needs to run two-dimensional smoothing and the former just runs

one-dimensional smoothing. This is also true for simulations.



CHAPTER 6: CONCLUSION AND FUTURE WORK

In this dissertation we have studied the proposed partial likelihood method (EPL)for

dealing with missing and auxiliary covariates in failure time data. We compared

the proposed method with several others methods. We assumed that the auxiliary

covariate Z is continuous. In our model the auxiliary covariate W is assumed to be

informative about the hazard of failure conditional on X, where X is the exposure

variable which is missing for some of the subjects in the study cohort. We discussed

the asymptotic properties of the proposed estimator. We have shown that the proposed

estimator β̂EPL is consistent for the parameter β and is asymptotically normally

distributed. We also derived the consistent estimator of the asymptotic covariance of

β̂EPL.

In the simulation study, we investigated the finite sample performance of the proposed

estimator and compared the performance with several existing methods. It was

observed that in most practical scenarios our estimator performs favorably and it is

more efficient than the Cox partial likelihood estimator based only on the validation

set. It was also found that the proposed method performs much better than Zhou

and Wang’s estimator when auxiliary covariate W is informative about the hazard of

failure given X. In real life we often have auxiliary covariates which may not be true

surrogates for X. This demonstrates advantages of our estimator.

A brief description of the nice properties of our proposed estimator β̂EPL is given

below:

(a) The proposed method allows W to be high dimensional and to be informative

in the sense that, conditional X, it provide additional information about hazard
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of failure.

(c) This method utilizes the information about β in the non validation set since

the partial likelihood includes all the individuals in the cohort.

(e) The validation set in our model is taken as a simple random sample from

the cohort. This model can be extended to different sampling schemes like

stratified sampling or outcome dependent sampling, which is under investigation

in another project.

(f) The method is computationally straight forward and the computation time is

much less than Zhou and Wang’s method.

(g) The problem of curse of dimensionality has been partially removed.

(h) As illustrated in the simulation study, Zhou and Wang’s estimator is consistent

for different values of σ when γ = 0. In finite samples their method is more

efficient for very small values of σ but for higher values of σ both methods are

almost equally efficient and their estimator has more bias than our estimator.

Also for situations where γ 6= 0, the consistency property of their estimator

does not hold whereas our estimator remains to be consistent.

CONCERNS:

We have few concerns with the proposed method.

1. The proposed estimator will not perform well if the dimension of Z is high. In

such situations we can introduce some additive structure.

2. We used the same bandwidth as suggested by Zhou and Wang (2000) in our

estimation. Though it performs reasonably well, it would be worthwhile to

consider a bandwidth selection criteria like generalized cross-validation.
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3. It is desirable to increase the efficiency of the estimation. In future, We can

consider modifying our model by including a suitable weight in the partial

likelihood score equation.

FUTURE RESEARCH:

In our study, the sampling scheme is simple random sampling. We would like to

extend our method for outcome dependent sampling (ODS) which is a cost effective

sampling strategy. In the ODS design, one observes the exposure with a probability,

maybe unknown, depending on the outcome.

Also another extension of our method is multivariate failure time data which arise

in many contexts. In that case our model can be modified to a stratified model.
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[17] Härdle, W. (1990) Applied Nonparametric Regression. London: Cambridge
University Press.

[18] Hughes, M. D. (1993) Regression Dilution in the Proportional Hazards Model.
Biometrics, 49, 1056-1066.

[19] Jiang, J. and Mack, Y. P. (2001) Robust Local Polynomial Regression for
Dependent Data. Statistica Sinica, 11, 705-722.

[20] Kalbfleisch, J. D. and Prentice, R. L. (1980) The Statistical Analysis of Failure
Time Data. New York: Wiley.

[21] Kulich, M. and Lin, D. Y. (2000) Additive Hazards Regression with Covariate
Measurement Error. Journal of American Statistical Association, 95, 238-248.

[22] Lehmann, E.L. (1983) Theory of Point Estimation. J. Wiley and Sons, New
York.

[23] Lin, D. Y. and Ying, Z. (1993) Cox Regression with Incomplete Covariate
Measurements. Journal of American Statistical Association, 88, 1341-1349.

[24] Lipsitz, S. and Ibrahim, J. G. (1996) Using the E-M algorithm for Survival Data
with Incomplete Categorical Covariates. Lifetime Data Analysis, 2, 5-14.

[25] Liu, Y., Wu, Y., and Zhou, H. (2010) Multivariate Failure Times Regression
with a Continuous Auxiliary Covariate. Journal of Multivariate Analysis, 101,
679-691.

[26] Louis, T.(1982) Finding the Observed Information Matrix when using the EM
Algorithm. Journal of Royal Statistical Society B, 44,2, 226-233.

[27] Markus, B.H., Dickson, E.R., Grambsch, P.M, Fleming, T.R., Mazzaferro, V.,
Klintmalm, G.B., Wiesner, R.H., Van Thiel, D.H. and Starzl, T.E. (1989)
Efficiency of Liver Transplantation in Patients with Primary Biliary Cirrhosis,
N. Engl. J. Med. 320, 17091713.

[28] McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, Second
Edition. Chapman and Hall, London.

[29] Oaks, D. (1977) The Asymptotic Information in Censored Survival Data.
Biometrika, 64, 441-448.

[30] Nadaraya, E. A. (1964) On Estimating Regression. Theory Probab. Applic., 10,
186-190.



99

[31] Pepe, M. S. and Fleming, T.R. (1991) A Nonparametric Method for Dealing with
Mismeasured Covariate data. Journal of American Statistical Association86,
413, 108-113.

[32] Pepe, M. S., Self, S. G. and Prentice, R. L. (1989) Further Results on Covariate
Measurement Errors in Cohort Studies with Time to Response Data. Statist.
Med., 8, 1167-1178.

[33] Prentice, R. L. (1982) Covariate Measurement Errors and Parameter Estimation
in a Failure Time Regression Model. Biometrika, 69, 331-342.

[34] Prentice, R. L. and Self, S.G. (1983) Asymptotic Distribution Theory for
Cox-type Regression Models with General Relative Risk Form. Annals of
Statistics, 11, 804-813.

[35] Rubin, D. B. (1976) Inference and Missing Data. Biometrika, 63, 581-592.

[36] Rudin, W. (1964) PrincipleS of Mathematical Analysis, New York: McGraw-Hill
Book Co.

[37] Silverman, B. W. (1978) Weak and Strong Uniform Consistency of the Kernel
Estimate of a Density and its Derivatives. Annals of Statistics, 6, 177-184.

[38] Watson, G. S. (1964) Smooth Regression Analysis. Sankhya A, 26, 359-372.

[39] Zhou, H. (1992) Auxiliary and Missing Covariate Problems in Failure Time
Regression Analysis, Ph.D. Thesis, University of Washington.

[40] Zhou, H. and Pepe, M. S. (1995) Auxiliary Covariate Data in Failure Time
Regression Analysis. Biometrika, 82, 139-149.

[41] Zhou, H. and Wang, C.-Y. (2000) Failure Time Regression with Continuous
Covariates Measured with Error. Journal of Royal Statistical Society B, 62,
657-665.


