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ABSTRACT 
 
 

SURESH KUMAR RAMASAMY. Multi-scale data fusion for surface metrology. (Under 
the direction of DR. JAYARAMAN RAJA) 

 
 

The major trends in manufacturing are miniaturization, convergence of the 

traditional research fields and creation of interdisciplinary research areas.  These trends 

have resulted in the development of multi-scale models and multi-scale surfaces to 

optimize the performance.  Multi-scale surfaces that exhibit specific properties at 

different scales for a specific purpose require multi-scale measurement and 

characterization.  Researchers and instrument developers have developed instruments that 

are able to perform measurements at multiple scales but lack the much required multi-

scale characterization capability.  The primary focus of this research was to explore 

possible multi-scale data fusion strategies and options for surface metrology domain and 

to develop enabling software tools in order to obtain effective multi-scale surface 

characterization, maximizing fidelity while minimizing measurement cost and time.  This 

research effort explored the fusion strategies for surface metrology domain and narrowed 

the focus on Discrete Wavelet Frame (DWF) based multi-scale decomposition.  An 

optimized multi-scale data fusion strategy ‘FWR method’ was developed and was 

successfully demonstrated on both high aspect ratio surfaces and non-planar surfaces.  It 

was demonstrated that the datum features can be effectively characterized at a lower 

resolution using one system (Vision CMM) and the actual features of interest could be 

characterized at a higher resolution using another system (Coherence Scanning 

Interferometer) with higher capability while minimizing the measurement time.  
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CHAPTER 1: INTRODUCTION 
 
 
 

Surface characterization plays an important part in ensuring that products function 

safely and reliably, as intended.  Novel methods to correlate surface texture to functional 

requirements [1] and to select manufacturing systems and measurement instruments for a 

specific surface function [2] have resulted in emphasis for the surface metrology field.  A 

benefit of surface characterization is nowhere more apparent than in the ongoing change 

in warranties on many consumer products.  As recently as two decades ago, cars didn’t 

come with engine and power train warranties.  Surface metrology tools have enabled the 

characterization of honed engine liners and wear studies of gear blocks [3], now, 

warranties on those products are taken for granted.  Elsewhere in personal computers, the 

frequency of hard disk failures and crashes has reduced to below parts-per-million levels.  

Here again, surface metrology tools have played a vital role in characterizing head lift 

finishes and hard particle cleaning.  The advancement and application of surface 

metrology has always been an enabling driver in the commercialization and improvement 

of the reliability of products within the progressive periods – automobiles, semi-

conductors and the current nano-technology era.  In order to better understand the future 

needs in surface metrology, a deeper look at the emerging technology trends is necessary. 
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1.1. Emerging Technology Trends 

Manufacturing technology has undergone a sea of change during the last two 

decades and has evolved into new domains and scales.  The trends can be broadly 

summarized in to these three categories: (a). Miniaturization where macro- and micro- 

scale phenomena meet, (b). Convergence leading to interdisciplinary research fields, and 

(c). Development of multi-scale surfaces. 

1.1.1. Miniaturization 

Taniguchi [4] accurately predicted that miniaturization would be the key driver in 

taking precision machining to new levels as witnessed in the semiconductor processing 

industry.  This trend is nowhere more clearly expressed than by Moore’s law in the 

semiconductor industry and its consequent evolution into micro- / nano-technology.  

Miniaturization has evolved into lab-on-chip concepts, biomaterial surfaces and other 

nano-technology instrumentation.  Lab-on-chip concepts have materialized the possibility 

of testing for an entire set of biological pathogens in a single chip [5].  

Carneiro et al [6] describe how the current miniaturization trend has come to a 

transition region between the macro- and micro-scale phenomena, where the atomic 

world starts and continuum mechanics ends, highlighting the lack of theoretical models to 

explain the probe to part interactions in this regime.  Whitehouse [7] compared the 

relative importance of forces, depending on the scale, and showed that at smaller scales, 

inertial force is dominated by damping and elastic forces, which is a function of surface 

area and surface roughness.  Surface roughness also impacts wear, friction, adhesion, 

light scattering and corrosion to name a few.  He also illustrated the concept of 

classifying shape/form, waviness and roughness changes according to the regime, as 
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shown in Figure 1.1.1.  [Some images shown in the figures of this chapter have been 

taken from the reference publication mentioned in the figure captions.]  This effect could 

also be visualized differently as a meeting point between a top-down approach, where 

products are being consistently miniaturized and bottom-up approach, where molecules 

are used to assemble a mechanical, chemical or biological system.  It can be seen, that 

depending on application and field of study, the line of demarcation between shape and 

roughness gets blurry.   

FIGURE 1.1.1: Feature categories in macro and micro scale regimes. [7] 
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At the micro- and nano- metrology levels, dimension, shape, roughness all play a 

critical role in defining the functional property and product reliability, so measurements 

have to be made in multiple scales. 

Top-down approach is widely prevalent in Micro-Electro-Mechanical-Systems 

(MEMS), Micro-Opto-Electro-Mechanical-Systems (MOEMS) and hard disk drive 

suspensions. Typical products are fabricated on the meso- to micro-scale, yet nano-scale 

surface roughness and surface defects deeply impact product performance.  Typical 

MEMS and MOEMS products have 100 nm size features spread over a several square 

mm or even cm area.  These parts are traditionally manufactured in step-and-repeat 

patterns on a single panel or wafer to reduce costs, as shown in figure 1.1.2.  Precise tools 

are required to measure the micro-scale features within the part and meso-scale tools are 

needed to measure the overall flatness of the panel or wafer and also the positional 

variation of individual patterns.  

FIGURE 1.1.2: A typical patterned surface. [8] 
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A typical hard disk drive suspension has 100 µm features spread over a distance 

of several mm, as shown in figure 1.1.3.  Many of the standard vision systems are on the 

limits of their capability to match the sub- 10 µm level positional requirements of these 

critical features, which are 5 to 10 mm apart from the 100 – 1000 µm datum features.  

 

FIGURE 1.1.3: A typical hard disk drive suspension showing the 
spread of micrometer level features across several mm. [9] 

Spherical Surface 

Slot to establish Y 
axis 

Hole to establish 
origin 

FIGURE 1.1.4: Feature of interest and datum features on a hard disk drive 
suspension sub-component. 
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Figure 1.1.4 shows a specific area of interest on a sub-component of a hard disk 

drive suspension.  The location of the apex of the spherical surface (approx. 200 µm 

spherical radius) needs to be measured with respect to the datum structure established by 

the hole (approx. 100 µm diameter) and slot.  The spherical surface requires 3D 

characterization in order to calculate the apex while for the datum features only require 

2D characterization.  This is a typical example of a product requiring multi-technology 

characterization with the main emphasis of measurement cost reduction while retaining 

data fidelity.   

Miniaturization, driven by the need for cost reduction has enabled existing 

processing methods to produce more parts within the same space and minimal processing 

equipment modification. With miniaturization, the measurement requirements do not 

scale accordingly and existing measurement systems cannot handle these tighter 

requirements when compared to the process equipment.  The added requirement of 

handling multi-technology characterization has resulted in the development of 

instruments stacked with multiple technology sensors, which will be explained in detail 

in section 1.2.1. 

1.1.2. Convergence of Fields 

Miniaturization and convergence of macro- and micro-scale phenomena have 

enabled the major traditional science fields to move closer.  Convergence of fields has 

blurred the envelopes between various primary fields like biology, chemistry, and 

physics.  Exploratory research demands interdisciplinary knowledge of mechanical, 

optical properties, molecular properties and in some cases, multi-scale surface properties.  

For example, a successful lab-on-chip design requires expertise in four domains: micro-
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biology, micro-fluidics, micro-tribology and micro-optics.  This situation is well 

portrayed in figure 1.1.5, which illustrates how the research fields traditionally involved 

with macro-scales have evolved to deal with smaller scales and some fields traditionally 

dealing with  nano-scales have evolved upwards to evaluate macro-scale phenomena .  

Both of these evolution trends have come to cross-roads with the micro- / nano- 

technology domain where all the scales are important.  These multi-scale and multi-

disciplinary research demands measurement tools equipped with multiple technologies, 

which will be explained in detail in section 1.2.1. 

FIGURE 1.1.5: Convergence of traditional scientific fields into micro- 
/ nano-technology. [10] 
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 The following sections describe some of the new products from diverse 

interdisciplinary fields along with their needs for development of new metrology tools. 

1.1.2.1. Bio-medical  

Blunt et al [11] detail the role of tribology and metrology in the development of 

new bio- materials for hip implants.  Medical adhesive surfaces, bio-compatible implant 

surfaces, bio-absorbable drug-eluting stents, micro rough surfaces on titanium screws for 

effective bone re-growth (shown in figure 1.1.6) are some of the examples.   

Development of these new devices and surfaces, demand metrology tools with 

ultra-precision positioning systems and multi-functional sensors for the measurement of 

both biological and mechanical properties.  Extensive research interest is shown in 

FIGURE 1.1.6: Micro-rough surface on titanium screws. [12] 
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surface and sub-surface layers of catheters, design of hydrophobic surfaces and wear of 

implants [13].  Various publications [14-16] demonstrate the use of integrated systems 

that have complimenting technologies – combining Confocal Microscopy, Atomic Force 

Microscopy (AFM), Fluorescence Microscopy, etc.  

Knowledge of surfaces at different scales helps in better understanding on how 

different sizes and types of cells interact with each other and how bio-molecules get 

absorbed onto surfaces.  Recent tissue culture studies [17-19] have shown the importance 

of roughness and patterns of the base structure over the growth of tissues and dendrites, 

leading to the new studies on importance of scaffold characterization.  These studies are 

highly dependent on AFM measurements but recent studies [20] have shown that AFM 

derived roughness parameters are highly sensitive to the scan point density.  In order to 

overcome these errors induced due to just changing the density of points to cover wide 

ranges, there is growing interest to develop integrated systems to cover the macro-, meso- 

and micro-scales in a single setup [21].  Development of multi-scale models in tissue 

growth is still in its infancy and new Computed Tomography (CT) equipment [22] are 

being developed for understanding and developing multi-scale models.  There is a 

growing need for multi-scale surface measurement tools to understand the correlation 

between force impact and muscular and neurological reactions at different scales. 

1.1.2.2. Micro-fluidics 

Micro-fluidics plays a significant role in lab-on-chip concepts.  These micro- 

surface patterns (shown in figure 1.1.7) are commonly etched on large formats and then 

sliced into multiple parts, similar to the manufacturing of silicon wafer patterns.  The 

function of these surfaces relies on micro-scale phenomena for fluid transportation and 
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delivery.  These surfaces have high aspect ratio and surfaces actually involved in fluid 

transportation need to be analyzed separately requiring efficient segmentation techniques. 

 

 

 

1.1.2.3. Micro- and Nano-tribology 

Holmberg et al [24] show the evolution of tribology to cater to multi-scale wear, 

as shown in Figure 1.1.8.  Four decades ago, contact mechanics studies had relied on 

statistical average parameters derived from single-scale models [25, 26], but with 

computational capability reaching new heights, the studies have now started to utilize 

actual 3-D surface topography measurements [27] and have led to new multi-scale 

models [28].  Metrology tools enabling multi-scale measurement play a vital role in the 

development of multi-scale models [29, 30].   

New patterned surfaces are being developed trying to utilize the interesting play 

of surface roughness on friction over different scales – textured surfaces could be used to 

increase friction in meso-scale and macro-scale, but reduce friction in micro-scale.  Plant 

cuticles and insects’ endo-skeletal and wing patterns are being studied extensively in the 

Biomimetics [31 - 34] field to develop new multi-scale patterned surfaces.  The 

FIGURE 1.1.7: Typical micro-fluidics surface patterns. [23] 
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successful development of multi-scale surfaces needs development of hardware and 

software tools to effectively characterize them. 

The inter-disciplinary research fields discussed so far, like bio-medical, micro-

fluidics and nano-tribology, have all shown the recent development of multi-scale 

surfaces and the resulting need for multi-scale surface characterization. A brief 

introduction of multi-scale surfaces and the commonly used classification are described 

in the next section. 

1.1.3. Multi-scale Surfaces 

Most naturally occurring surfaces are inherently multi-scale in nature, exhibiting 

specific properties at different scales for a specific purpose.  When the surface looks the 

same at more than two scales, they are called fractals.  Fractal geometry was introduced 

by Mandelbrot [35] to describe irregular objects and mathematically describe the natural 

and intrinsic properties of surface topography information, such as self-similar, self-

affinities and invariance to scale.  Studies on dental wear [36] and fractured surfaces [37] 

FIGURE 1.1.8: Tribology at different scales. [24] 
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have shown the fractal nature of those surfaces.  Naturally formed surfaces – both 

additive and subtractive typically exhibit fractal nature.  Machined surfaces (human 

induced – both additive and subtractive) normally have a deterministic pattern [38] and 

might show fractal nature at some scales [39].  Conventional machined surfaces have 

roughness, waviness and form, representing different scales [40] as shown in figure 1.1.9.   

Waviness and form on surfaces obtained using traditional machining processes 

are normally due to machine tool guide way errors and vibration.  Roughness is mainly a 

function of cutting tool geometry and is the intended functional surface obtained from 

either a single-step or multi-step process [41].  With the rapid evolution of new designer 

surfaces for MEMS, micro-fluidics etc, traditional methods of separation of surface into 

roughness, waviness and form, and using only roughness data for characterization is not 

FIGURE 1.1.9: Separation of roughness, waviness and form from the 
original profile. [42] 
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effective.  Non-conventional machining processes are used to generate these high aspect 

ratio surfaces, and the surface needs to be characterized at multiple scales.  

The brief description (as shown in figure 1.1.10) for classification of engineered 

surfaces [43, 44] is as follows: 

• Non-Engineered Surfaces—surfaces produced as a direct consequence of the 

manufacturing process where little or no attempt is made to influence surface 

character.  Most of the conventionally machined surfaces fall into this category. 

• Random Surfaces—surfaces produced by random and pseudo-random processes often 

with the specific intention of removing systematic features.  Casting, polishing and 

burnishing are some of the processes that result in these kind of surface.  Figure 

1.1.11 shows a typical surface generated using lapping process.  

• Systematic Surfaces—surfaces exhibiting some repetitive features which are a 

consequence of the natural constraints of the process by which they have been 

produced.  Turning and Blanchard grinding are some of the processes that result in 

Man-made surfaces 

Engineered  Non-engineered  

Unstructured  Structured  Random 

Directional Non-directional 

Systematic 

FIGURE 1.1.10: Classification of man-made surfaces (Based on [43]). 
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FIGURE 1.1.11: Surface obtained from lapping. 

FIGURE 1.1.12: Systematic surface obtained from turning process. 

this kind of surface.  Figure 1.1.12 shows a typical surface obtained from a turning 

process. 

• Engineered Surfaces—surfaces produced in specific ways that deliberately alter 

surface and sub-surface layers to give a specific functional performance.  

• Unstructured Surfaces—surfaces where a deliberate attempt has been made to impart 

texture through semi-control of the manufacturing process without achieving a 

deterministic pattern as shown in figure 1.1.13.  Shot blasting and peening result in 

this kind of surface. 
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FIGURE 1.1.14: Structured surface of a beam shaper optic. 

FUGURE 1.1.13: Typical unstructured surface obtained from shot blasting. 

FIGURE 1.1.15: Cross-section of a Fresnel lens [45]. 
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• Structured Surfaces—surfaces with a deterministic pattern of usually high aspect ratio 

geometric features designed to give a specific function.  Figure 1.1.14 shows a beam 

shaper optical surface with concentric steps.  Some of the surfaces also have patterns 

with varying aspect ratios.  Figure 1.1.15 shows the cross-section of a Fresnel lens, 

where individual outer groove from the lens center has slightly increasing aspect 

ratio.  Since the aspect ratio is not constant, some grooves may fall outside the 

resolution limit of the single instrument setting, and would require multiple 

measurement settings. 

• Directional Surfaces—surfaces with a deterministic pattern which exhibits specific 

directionality.  Rough and fine honing is a two-step process that also results in this 

kind of surface.  Figure 1.1.16 shows a three sided pyramid pattern of a micro mold 

surface.  Pyramid pattern surfaces cannot be segmented using normal height based 

thresholding techniques and requires different parameter based segmentation 

approach.  Three sided pattern is a unique pattern that cannot be segmented using a 

FIGURE 1.1.16: Three sided pyramid pattern mold. 
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single parameter based segmentation technique and requires multi-parameter based 

segmentation technique which will be explained in detail in the section 3.2.1. 

• Non-directional Surfaces—surfaces with a deterministic pattern but without specific 

directionality.  Textured rolling and etching result in this kind of surface.  Figure 

1.1.17 shows a non-directional surface of a diffuser optic. 

Engineered multi-scale surfaces, both directional and non-directional, have been 

gaining use for development of functional surfaces, with specific functional intent at each 

scale. These high aspect ratio surfaces require development of new segmentation 

approaches.  The varying aspect ratio surfaces need different resolution capabilities at 

different locations.  This leads to multiple measurements using different resolutions, but 

the measurements are to be treated independently as the coordinate relationship between 

the measurements is not known.  

The three technology trends discussed so far can be summarized as follows: 

• Miniaturization has led to the development of components with micro-scale features 

which need to be characterized with respect to datum features separated by macro-

FIGURE 1.1.17: Non-directional structured surface of a diffuser optic. 
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scale distances.  This has resulted in a need to combine measurements obtained from 

multiple technologies. 

• Convergence has resulted in the development of multi-scale surfaces and associated 

multi-scale models that were used to develop the functional intent of those surfaces.  

In order to characterize these multi-scale surfaces, measurement instruments have to 

be able to deliver consistent good resolution at varying scales.  

•  Development of multi-scale surfaces with high aspect ratios and varying aspect 

ratios, with specific functional performance intent at specific scales.  Multi-scale 

characterization of these surfaces demand instruments with consistent resolution 

capabilities at varying scales. 

For successful demonstration of a product or a manufacturing process, 

quantitative measurements traceable to an agreed upon metrology scale are required.  

Hence to convert these multi-disciplinary and multi-scale research efforts into successful 

business ventures, there is a significant need for relevant metrology tools that give the 

ability to measure in three dimensions over micro- to meso- scale areas.  The basic 

measurement tasks are measurement of lateral and vertical distances between surfaces, 

geometry or form, texture, roughness and layer thickness.   

In order to perform these measurement tasks, the measurement systems should be 

able to provide the following capabilities: 

• Multi-scale measurement capability: The system or collection of systems should be 

able to cover the vertical and lateral ranges required to measure both the micro-scale 

features and the datum features which are macro-scale distance apart.  The systems 
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should also be able to effectively measure and resolve features with varying aspect 

ratios. 

• Multi-scale surface characterization capability:  The systems should be able to 

correlate the measurements conducted across multiple scales and provide multi-scale 

data to be used for validating the multi-scale models and ensuring the functional 

performance of the measured surface. 

Unfortunately, there is no single measurement system that can cover the entire 

gamut of the lateral measurement range without a significant drop in vertical range and 

resolution.  Figure 1.1.18 illustrates how most technologies tend to overlap in their ability 

to measure lateral and vertical dimensions of products to cater to some limited range of 

product portfolio.  

FIGURE 1.1.18: Measurement instruments capability [10]. 
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To obtain all meaningful details of the surface at various required scales, one is 

left with only two options.  The first option is to perform multiple measurements at the 

required highest resolution and then stitch those to cover the required lateral range.  

Stitching is prone to shape induced errors, as shown in figure 1.1.19.  Figure shows the 

difference between measurements performed with and without reference flatness error 

(which will be discussed in detail in the second chapter) subtraction.  Unless proper care 

is taken to ensure the optimum number of rows and columns involved in the stitch, these 

optical errors would induce shape errors. 

FIGURE 1.1.19:  Stitching induced shape errors (“Potato chip effect”). 

FIGURE 1.1.20:  Difference between consecutive stitch measurements.
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Some stitching methods might also result in lateral misalignment, as shown in 

figure 1.1.20.  Figure shows the difference between two consecutive stitch measurements.  

The misalignment is shown within the red box.  Hence stitching is not recommended.   

The second option is to use a combination of instruments and technologies.  Using 

this approach the focus has been on developing systems housing multiple technologies 

within a single frame.  Several research efforts focused on the development of these 

multiple technology systems are briefly discussed in the next section.  The potential gaps 

seen in those efforts towards addressing the need for multi-scale measurement and 

characterization are also discussed. 

1.2. State-of-art: Current Metrology Research Efforts and Gaps 

The metrology tools needed to perform multi-scale measurements and the related 

characterization needs could be categorized into the following: 

• Instrumentation – true three-dimensional measurement systems for scales below 1-10 

µm, including the comparison studies on their capabilities and development of multi-

scale surface characterization tools. 

• Measurement standards – standards for surface roughness, spacing, and coating 

standards, soft gauges for surface texture and similar software checks for other 

instrumentation and 3-D structures for calibrating micro- and nano-Coordinate 

Measuring Machines (CMM’s), definition of metrological terms, symbols, procedure 

and globally accepted written standards. 

• Validation protocols - identification of minimum requirements for the calibration of 

an instrument, criteria to determine the degree to which an instrument can be 
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calibrated reasonably, traceability and calibration procedures for nano-metrology 

tools. 

Current research efforts are concentrated on instrumentation development with 

the recognition of the need for the development of data fusion tools and internationally 

accepted standards.  Most of the efforts mainly fall under “bridge-type” systems, where 

the relationship between individual systems is previously known, calibrated and 

considered to be fairly stable.  Hansen et al [10] describe integrated systems, called 

micro-CMMs and nano-CMMs which combine CMM for large scale positioning and an 

accurate AFM for micro- and nano-metrology, that were developed by academic 

institutions in US and EU and their later commercial counterparts.  The instrumentation 

development efforts are described in detail in the following section. 

1.2.1. Instrumentation Development 

The previous section highlighted the need for multi-scale measurement and 

characterization and the general lack of single technology tools to effectively characterize 

those surfaces.  This section discusses the instrumentation development efforts that are 

specifically oriented towards addressing that gap.  The instrumentation development 

efforts can be categorized as (a) Integrated sensors approach, (b) Cascaded sensors 

approach, (c) Scaled topometry approach, and (d) Multi-mode single instrument 

approach  

1.2.1.1. Integrated Sensors Approach 

The integrated sensors approach is the first logical step and has been largely 

commercialized.  In this approach, multiple technologies are attached to a common 

metrology frame.  Many multi-sensor CMMs routinely combine touch trigger probes, 
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vision probes and laser point triangulation or line scanning probes, as shown in the 

schematic diagram in figure 1.2.1.  Multiple probes are used to collectively obtain data 

clouds about the measured surface and then combined using data cloud manipulation 

software.  The sensor selection is mainly based on the capabilities and limitations of 

individual probes towards measuring that particular feature.  There are some systems that 

also provide probing options that are not purely for dimensional metrology purposes, like 

the MicroGlider ® by FRT GmbH [46], which provides a chromatic sensor, film 

thickness sensor, a camera and an AFM.   

 

1.2.1.2. Cascaded Sensors Approach 

The cascaded sensors approach is the next evolutionary step from integrated 

sensors approach, where multiple sensors with different resolutions are used towards a 

common criterion of reduced measurement time with better uncertainty.  Topfer et al [48] 

FIGURE 1.2.1: A Typical multi-sensor measurement approach in a CMM 
based dimensional metrology application [47]. 
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proposed a cascaded system approach, as shown in figure 1.2.2, where each level has 

sensors that have a higher resolution by at least by a factor of 10 from the sensors from 

the next level.  Lower level sensor’s data is used to fine tune the location and 

measurement method (inspection planning/strategy) deployed on the next level of 

sensors.  They highlight the fact that there are not many publications on dimensional 

metrology in the micro- and nano-range with several sensors and in particular, none on 

data fusion based on data from different sensors.  

 

1.2.1.3. Scaled Topometry Approach 

The scaled topometry approach is similar to the cascaded systems approach for 

micro-scale metrology, but for extended surfaces [49, 50].  The concept of scaled 

topometry (shown in figure 1.2.3) consists of a systematic combination of various optical 

measurement techniques with overlapping ranges of resolution.  These systems rely on 

building all technologies into one single frame, with known relation between coordinate 

systems referenced by those instruments.  Parts are placed inside the measurement 

volume once and all the instruments are used in a logical sequence to obtain a surface 

map.  Data obtained using multiple resolutions are merged using wavelet analysis based 

FIGURE 1.2.2: Cascaded system approach by Topfer et al [48]. 
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data fusion techniques.  But once the part is removed from the setup, any additional 

measurements cannot be correlated to the previous measurement dataset with precision.  

 

1.2.1.4. Multi-mode, Single-instrument Approach 

The multi-mode, single-instrument approach provides the option of multiple 

technologies mostly on a rotary turret, using a known reference / origin and single 

metrology loop and multiple detection systems.  There has been a steady increase in the 

number of commercially available hybrid systems utilizing this approach.  Sensofar® by 

Solarius [51] (offers Phase Shifting Interferometry (PSI), Vertical Scanning 

Interferometry (VSI) and Confocal Microscopy modes on a rotary turret), 

NewView7300® by Zygo Corp. [52] (offers various software modes High 2G, High, 

Low), NT9000® by Bruker AXS[53] (Offers PSI, VSI and HD VSI), Alpha 500® by 

WITec GmbH [54] (offers Confocal Raman Microscopy, Atomic Force Microscopy and 

FIGURE 1.2.3: Setup using the concept of scaled topometry [50]. 
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Scanning Near-field Optical Microscopy probes as options on a rotary turret, shown in 

figure 1.2.4) fall under this category.   

 

The instrumentation development efforts have a strong focus on hardware based 

combination of different sensors.  Under industrial settings, it becomes cumbersome to 

figure out all possible technologies and to cascade those into multiple systems, not to 

mention the cost burden involved with setting up the bridge type system with the selected 

technologies.  The stability of the relationship between the individual coordinate systems 

needs further long term study.  The overlapping systems pose a limitation on the 

positioning accuracy of the stages, requiring the stages of an individual measurement 

system to be capable to meet positioning requirement of its successive system.   

The sensors communicate with each other, but data is not necessarily merged 

together.  These systems enable the user to obtain different surface maps using various 

technologies, but user doesn’t readily have the ability to combine all the obtained data 

into one single dataset.  But for effectively characterizing the multi-scale surface, all the 

FIGURE 1.2.4: Combined CRM, AFM and SNOM probe by WITec GmbH [54]. 



 27

datasets need to be aligned with respect to each other.  It is not sufficient to just perform 

measurements are multiple scales, but also be capable of characterizing the entire multi-

scale surface.  Previously described systems are able to perform measurements at 

multiple scales but lack the much required multi-scale characterization capability.  The 

multi-scale characterization gaps are further explained in the next section. 

1.2.2. Multi-scale Characterization Gaps 

Researchers and instrument manufacturers have developed instruments with the 

capability to perform measurements at multiple scales, but the ability to address the 

multi-scale characterization capability still has not been effectively resolved.  By 

enabling measurements using different magnifications / sampling intervals, in the 

Amplitude-Wavelength domain, the effective utilizable space of the instrument is 

expanded, as shown in figure 1.2.5.   

Consider the Fresnel micro lens array shown in figure 1.2.6, where the individual 

features have varying aspect ratios.  The central features on individual lens are resolved 

much better compared to the region shown inside the black circled area, under the 

selected measurement condition – 10X objective with a 0.5X magnification tube and 100 

µm scan length on NV6300 system.  The features are better resolved at a higher 

magnification using the same 10X objective but with a 2.0X magnification tube, as 

shown in figure 1.2.7.   
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FIGURE 1.2.5: AW map of individual magnifications in NV6300 system [2]. 

FIGURE 1.2.6: Fresnel micro lens array at 5X magnification. 
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With these two magnifications, the features are effectively resolved, but the two 

datasets are independent.  In order to correlate both data and characterize the entire 

surface, the coordinate relationship between the data needs to be established.  Data cloud 

manipulation software packages [55] are available to handle datasets obtained from 

macro-scale 3D measurement systems, but have not been widely used with micro-scale 

surface measurement systems.  From figures 1.2.6 and 1.2.7, the potential advantage of 

combining multiple magnification datasets is evident – better capability for characterizing 

varying aspect ratios.  This example illustrates the first multi-scale characterization gap, 

which could be addressed by development of strategies for fusion of data obtained from 

same instrument but with different magnifications / sampling intervals.  This would result 

in better preservation of resolution at different ranges and increased confidence on data. 

FIGURE 1.2.7: Fresnel micro lens array at 20X magnification. 
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FIGURE 1.2.8: 3D surface plot of the spherical surface at 25% light setting. 

Light setting and other available software options could be used to obtain more 

data using the same magnification.  A typical example is data obtained on a spherical 

surface (feature on a hard disk drive suspension shown in figure 1.1.4 ) from using a 

Coherence Scanning Interferometry (CSI) system (NT8000 from Bruker AXS at 10X 

magnification and 20% light setting) is shown in figure 1.2.8. 

There is significant data drop out at the regions with high slopes (area within two 

dashed green circles shown in figure 1.2.8) which are normally attributed to numerical 

aperture limitations of the objective.  This data drop out impacts the capability of the 

sphere fitting algorithms.  In order to reduce the data drop out, the light levels could be 

increased.  With the change in light setting from 20% to 35%, side slope regions can also 

be measured, but this results in significant saturation on all other areas, as shown in 
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figure 1.2.9 (indicated by dark blue regions).  There is no built-in option available in the 

system that could merge these two data.  This example illustrates the second need for the 

development of fusion strategies involving datasets obtained from same instrument but 

with different settings. 

If the CSI system is also used for measuring the datums, the individual 

measurements have to be measured at the same magnification and stitching is the only 

available option which is time consuming.  The hole and slot can be measured using a 

vision system (Pinnacle systems from VIEW Micro-Metrology [56] with 2.5X and 10X 

magnifications) with good resolution.  A better option would be to measure the datums at 

a suitable magnification in a vision system, measure the 3D features using CSI systems at 

a suitable magnification and then merge those datasets together.  This situation demands 

FIGURE 1.2.9: 3D surface plot of the spherical surface at 35% light setting. 
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development of fusion strategies dealing with datasets obtained from different systems 

but with similar sampling intervals.  This example illustrates a clear third need for 

development of software based data fusion tools in the surface metrology domain and 

also for the possible union 2D and 3D datasets for performing dimensional measurements 

and surface characterization on single dataset. 

Data fusion strategies capable of handling these three scenarios would enable 

minimization of measurement time while preserving or maximizing data fidelity.  The 

effective approach towards multi-scale measurement and characterization would be to use 

the individual measurement tools and finding a method to relate the individual coordinate 

systems and use an offline virtual tool to unify, manipulate, segment, merge and retrieve 

data.  This approach would enable cost effective characterization of surfaces without 

sacrificing the fidelity of data.  Data fusion has also been used in surface metrology 

domain, but mainly in the perspective of image fusion based on focus criteria, which is 

explained in the next section. 

1.3. Data Fusion  

Data fusion is used at different levels of complexity from a simple overlay to 

stereo vision where two images obtained from cameras fixed at two viewpoints are used 

to triangulate and calculate a 3D image.  Data obtained from two technologies could be 

overlaid on top of each other without any further processing, assuming there are minimal 

transformational errors between the two datasets, as shown in figure 1.3.1.  
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Depth-from-focus and focus variation based methods rely on merging data 

obtained from images taken at different z height intervals, and then finding the maximum 

contrast points at each image to create 3D image [58] with all points at virtually infinite 

focus.  The main gap seen in this approach is that this cannot be utilized to merge two 

data datasets which already exhibit the infinite focus condition.  This approach also 

assumes that the data are pre-registered and are of same magnification.  Hence, it does 

not permit data fusion of multiple resolutions or magnifications.   

 Shaw and Weckenmann [59] have demonstrated the possibility of fusion of data 

obtained from two different sensors for effective optical characterization in the 

dimensional metrology domain.  They proposed segmentation of data into shape 

primitives and based on the capability of each sensor, selected primitives from individual 

data is merged together to generate the final data.  In the surface metrology domain, 

shape primitives based segmentation and instrument capability based fusion is not 

effective due to lack of primitive shapes in surface measurements.  Focus based fusion 

strategies cannot be used as every data point in the data sets under consideration has to be 

treated as essentially at optimal focus.  Hence, there is a need to explore different fusion 

FIGURE 1.3.1: Image overlay of AFM and Confocal images [57]. 
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strategies pertaining to surface metrology domain, where individual pixel level data 

fusion can be performed based on selected criteria.  

Wavelet and fractal analysis has been successfully used for data segmentation and 

fusion purposes in other macro level fields [60], and are being explored as possible 

solutions for the micro- and nano-level data fusion, as shown in figure 1.3.2.  This 

approach still utilizes focus variation between images, hence cannot be used for data 

containing multiple resolutions or magnifications. 

Single-scale overlay is not feasible when both the data are not accurately 

registered.  Hence, either single-scale or multi-scale data fusion is the preferred option.  

Shape primitive based single-scale fusion has been successfully demonstrated in 

dimensional metrology domain but cannot be effectively used in surface metrology 

domain as surface data lack shape primitives.  Also, if both the data were obtained using 

same instrument, then primitive shape selection criteria gets complicated.  Focus based 

multi-scale fusion methods are also ineffective as all data points in both datasets are 

FIGURE 1.3.2: Data fusion using complex values wavelet transformation [61]. 
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under optimal focus conditions.  Therefore, multi-scale data fusion methods that are not 

based on focus need to be explored.  A detailed description of individual steps of generic 

multi-scale data fusion will be briefly explained in the next section. 

1.4. Multi-scale Data Fusion 

Joint Directors of Laboratories [62] defines data fusion as a “multi-level, multi-

faceted process handling the automatic detection, association, correlation, estimation and 

combination of data and information from several sources”.  Ranchin and Wald [63] 

proposed the ARSIS concept (in French “Amelioration de la resolution spatiale par 

injection de structures” meaning ‘improvement of the spatial resolution by structure 

injection’) as a framework for fusion of multi-modal images specifically for satellite 

imagery [64] and then generalized it for fusion of images with different spatial and 

spectral resolutions.  A generic frame work for Multi-Scale Data Fusion (MSDF) (based 

on [65]) is shown in figure 1.4.1.  The individual steps are discussed in detail along the 

options available under each basic step.  
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A. Original Data B. Pre-condition C. Coarse Registration 

D. Fine Registration E. Multi-scale Decomposition 

F. Multi-scale Fusion G. Inverse Transform 

FIGURE 1.4.1: Schematic of generic multi-scale data fusion (A) Original Data (B) Pre-
condition (outlier removal, plane removal, resample and resize) (C) Coarse registration 
(D) Fine registration after control point detection (E) Multi scale decomposition on 
selected same size area from both data (F) Multi scale Fusion (G) Inverse Transform on 
fused sub-datasets to obtain fused data.   
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1.4.1. Pre-conditioning  

The data sets need pre-conditioning to ensure that multi-scale decomposition 

would be effective.  Outliers and missing data need to be removed and replaced with the 

data mean or zero.  The dataset with the higher sampling interval is down sampled to 

match the dataset with the lower sampling interval.  If the sampling intervals (spatial 

resolution) of the datasets under consideration do not have the ratio of power of two, then 

the decimation algorithm cannot be used effectively.  Therefore, resampling has to be 

performed to ensure that the ratio of the sampling intervals is a power of two and also 

padded with zeros or mean value of data to make the array size a power of 2.   

1.4.2.  Coarse Registration 

After the datasets have been pre-conditioned, the next step is to roughly align both 

datasets, which is called coarse registration.  Coarse registration can be either done 

manually by locating unique fiducial markers and edges on both the images, or automated 

programs could be utilized.  Sum of Absolute Differences (SAD) and Normalized Cross 

Correlation (NCC) could be used to find the approximate translation offsets between the 

two datasets.    

1.4.3. Fine Registration  

The datasets have to be precisely aligned before data fusion.  Typically fine 

registration is performed by finding matching fiducial / control points [66] on both the 

datasets and then calculating a transformation matrix which would match the control 

points in both the datasets using least squares optimization.  Edge detection [67, 68] is 

used to find contours on both datasets which could be used as control points.  Different 

segmentation algorithms [69] could be used to find more uniform dispersion of control 



 38

points for effective alignment.  Iterative Closest Point (ICP) algorithms [70] and its 

variants [71, 72] are widely used for alignment.   

1.4.4. Multi-scale Decomposition  

Multi-scale decomposition deals with representing the given signal at different 

resolutions depending on the scale at which it is analyzed.  It was first explored for 2D 

signals [73, 74] and then for various image processing applications in medical data and 

image processing [75, 76] and image compression [77].  

The multi-scale nature of surfaces and non-directional, non-repeating features 

posed an interesting challenge to the traditional Fourier based analysis methods.  Fourier 

theory enables the decomposition of any signal into a series of sine and cosine functions, 

but it is not possible to have both frequency and time resolution at the same time, due to 

the Heisenberg’s uncertainty principle.  In order to overcome this disadvantage, 

Windowed Fourier transform and Short-term Fourier transform were developed, followed 

by Gabor transform [78] and discrete wavelet transform.  Wavelets are compact zero-sum 

signals vanishing outside the finite interval, giving the benefit of effective localization in 

both time and frequency, enabling better characterization of multi-scale engineered 

surfaces.  Rather than being restricted to a single wave type, wavelet transform opens the 

possibility of using any wavelet as the basis function.  This enables wavelet transform to 

be versatile compared to traditional sine wave based Fourier transform.  The simplest 

wavelet is a square-shaped ‘Haar wavelet’ [77] shown in figure 1.4.2.  The real and 

imaginary components of a generic harmonic wavelet [79] is shown in figure 1.4.3 ‘a’ 

and ‘b’.    Figure 1.4.4 illustrates how a given input signal could be decomposed using a 

Haar wavelet.  
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FIGURE 1.4.3: (a) Real and (b) Imaginary part of a generic harmonic 
wavelet [79]. 
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FIGURE 1.4.2: Haar wavelet.  
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Wavelets enable a signal to be decomposed to different scales without reduction 

in the resolution, unlike the traditional Fourier transform.  Figure 1.4.5 shows the 

decomposition of a signal into seven scales.  The localized noise in the input signal is 

effectively captured at the higher resolution scales and the sine wave is captured in the 

lowest resolution scale.  This example demonstrates the capability of wavelet transform 

method to detect localized signal variations. 

 

FIGURE 1.4.4: Decomposition of a signal using Haar wavelet [80]. 
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Wavelet based multi-scale decomposition and representation of data has been 

successfully used in surface metrology domain for multi-scale analysis of engineered 

surfaces [82, 83].  Wavelet based multi-scale decomposition and fusion has been 

successfully demonstrated in medical image data fusion [84] and remote sensing [85].   

A typical analogy used for multi-scale decomposition and representation of data is 

to compare the data to a pyramid [86], as shown in figure 1.4.6.  Assuming that the 

bottom most plane is the data at its full resolution, each successive upper tier is an 

approximation of the tier directly below it.   

 

 

FIGURE 1.4.5: Decomposition of a signal into different scales [81]. 
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The three common methods used for multi-scale decomposition methods are the 

Pyramid Transform (PT) or Generalized Laplacian Pyramid Transform (GLP) [87, 88], 

Discrete Wavelet Transform (DWT) or Mallat method [89] and Discrete Wavelet Frame 

(DWF) or À Trous method [90], as shown in figure 1.4.7.  LPT method follows the 

typical pyramid system of reduction, resulting in an image half the size of its predecessor.  

DWT usually results in three images after every transform – horizontal, vertical and 

FIGURE 1.4.6: Pyramid model of data approximation [86]. 

FIGURE 1.4.7: Three common multi scale decomposition methods – 
Laplacian Pyramid Transform (LPT), Discrete Wavelet Transform (DWT) 
and Discrete Wavelet Frame (DWF) [86]. 
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diagonal (denoted by LH, HL and HH).  DWF results in frames of the same size as the 

original data.   

Human visual perception is very good at facial recognition even at very low 

resolutions, as demonstrated by the fact that vast majority of Americans being able to 

recognize the image shown in figure 1.4.8 as President Abraham Lincoln.  Therefore, in 

order to compare the performance of DWT and DWF, an image ‘Haritha’ of a human 

face on a background filled with ripples is used (Image courtesy – Dr. Brian D. 

Boudreau).   

1.4.4.1. Discrete Wavelet Transform (DWT) 

The Morlet-Grossmann definition [91] of the Continuous Wavelet Transform 

(CWT) for a 1-dimensional signal )()( 2 RLxf ∈ , the space of all square integrable 

functions, is given by: 

dx
a

bxxf
a

baW )()(1),( −∗∫
∞

∞−
= ψ , where 

• ),( baW  is the wavelet coefficient of the function )(xf  

• )(xψ  is the analyzing wavelet 

• a  (> 0) is the scale parameter 

• b  is the position parameter 

 

FIGURE 1.4.8: Pixelated image of President Abraham Lincoln. 



 44

CWT has three properties, linearity, covariance under translation and covariance 

under dilation.  Covariance under dilation is very useful for analyzing multi scale 

surfaces enabling analysis at different scales without losing the resolution.   

CSI and AFM make discrete point measurements requiring a discrete wavelet 

transform.  In DWT, the dataset is repeatedly down sampled by dyadic reduction and then 

a convolution is applied using the corresponding scaled mother wavelet.  For efficient 

transformation, the datasets are padded to a size of power of 2.  Figure 1.4.9 a-d, shows 

the 4-level decomposition of image ‘Haritha’ using ‘Coiflet 5’ as the mother wavelet.  At 

each level of decomposition, the size of the resulting image is half the size of the 

previous image. 

FIGURE 1.4.9: 4-level DWT  decomposition of (a) Original image ‘Haritha’ at 
1024 x 2048 size decomposed to (d) 128x 256 size using Coiflet 5 as mother 
wavelet. 
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1.4.4.2. Discrete Wavelet Frame (DWF) 

DWT requires dyadic reduction at each level of decomposition and hence results 

in an image that is half the size of the previous level.  In order to retain the same size, 

discrete wavelet frame method is preferred, where no decimation is performed.  This 

method is also called à trous (with holes) method as instead of decimation, data is 

replaced with zeros.  Figure 1.4.10 shows individual frames of image ‘Haritha’ after a 6 

level decomposition using a B3 spline.   

At each level of decomposition, a wavelet coefficient plane Wj is generated with 

the difference between successive decompositions Cj and Cj-1.  In order to regenerate the 

FIGURE 1.4.10: 6-level DWF based decomposition of image ‘Haritha’ using B3 
spline as mother wavelet. 
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original data C0, the last smoothed data Cn is added to the summation of all coefficient 

planes.  Since DWF is non-decimating and is shift-invariant, it is generally preferred for 

image fusion.  An n-Level multi-scale decomposition of both the datasets using DWF 

results in two sets of ‘n’ sub-datasets, which will be used for data fusion. 

1.4.5. Data Fusion  

Data fusion is carried out at individual scales.  First the sub-datasets obtained 

from multi-scale decomposition are matched according to scale.  For the sub-datasets at 

each scale, data fusion is performed at individual data point level by means of simple 

methods like choosing the maximum, minimum or mean of the two data points or 

weighted averaging methods can also be used.  Since the useful features in the data are 

usually larger than one data point, single data point based maximum, minimum or mean 

approach are not recommended and instead, a kernel based weighted average is generally 

preferable [92].   

1.4.6. Inverse Transform   

Inverse transformation is performed on the fused datasets to obtain the fused final 

dataset. 

The pre-requisites for using existing pixel level multi-scale data fusion strategies 

are: 

• Images shall have different spatial and spectral resolutions, 

• Images shall represent the same area, 

• Images shall be accurately registered, and 

• No major change shall have occurred on the area between the acquisition of those 

images 
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In surface metrology domain, the datasets may or may not have different spectral 

resolutions and may or may not represent the same area.  For data sets which are of 

approximately same area but with different spatial resolutions, both the datasets are 

initially leveled to remove shape.  But for measurements obtained using CSI at various 

magnifications, the area also correspondingly changes and shape removal may or may not 

be permitted depending upon the measurement intent.  Optics induced shape errors are 

not similar at different magnifications.  These challenges demand development of MSDF 

strategies suited for multi-scale surface characterization of engineered surfaces in general 

and non-planar surfaces in particular. 

Accurate registration of datasets cannot be guaranteed because of orientation and 

placement errors along with measurement system’s axis errors.  Surface datasets also 

may not have easily locatable control points or markers to enable manual selection and 

alignment.  For segmentation of structured engineered surfaces with non-planar patterns 

existing height based separation methods are not effective.  Therefore, effective 

segmentation and edge detection algorithms have to be studied.  For multi-scale 

decomposition in DWF domain, three different options could be used: (a) performing in 

2D where the rows are executed first followed by columns using a 2D  mother wavelet 

(b) performing in 3D where rows and columns are executed simultaneously using a 3D 

mother wavelet and (c) performing in hybrid 3D for patterned surfaces for better edge 

preservation.  The pros and cons of these three methods for different kinds of surfaces 

need to be characterized.  Various single-scale and multi-scale fusion metrics have been 

proposed in image fusion domain, but detailed analysis is needed to find the metrics that 

are effective for surface metrology domain.  Performance of different data fusion 
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methods on multiple surface types (engineered directional and non-directional surfaces, 

unstructured and systematic surfaces) needs to be evaluated.  The main steps involved 

with MSDF are coarse and fine registration, multi-scale decomposition and data fusion.  

For performing these individual steps, various options are available.  Hence further study 

is needed to select optimal choice of tools to perform these steps.   

Exploring multi-scale data fusion strategies suited for multi-scale surface 

characterization and selection of options for individual steps will be the focus of this 

research, which will be explained in detail in the next section. 

1.5. Research Focus 

The primary focus of this research is “to explore possible multi-scale data fusion 

strategies and options for surface metrology domain and to develop enabling software 

tools in order to obtain effective multi-scale surface characterization, maximizing fidelity 

while minimizing measurement cost and time”.   

Fusion strategies for surface datasets are treated in four different categories: 

• Single-scale, single-domain data, where data sets obtained from the same 

instrument but with multiple light settings are considered. 

• Single-scale, multi-domain data, where data sets obtained from different 

instruments but approximately same sampling interval are considered. 

• Multi-scale, single-domain data, where data sets obtained from similar 

technology instruments but with different sampling intervals are considered. 

• Multi-scale, multi-domain data, where data sets obtained from multiple 

technology instruments and different sampling intervals are considered. 
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Two main optical characterization tools that will be considered are the vision 

CMMs (for 2D characterization) and CSIs (for 3D characterization).  Effective data 

fusion is possible when the input data sets have good signal-to-noise ratio and closely 

oriented with respect to each other.  Hence, better understanding of possible error sources 

that would affect fusion performance is necessary and best practices / proper procedures 

have to be followed to ensure high fidelity data.  Therefore, calibration, adjustment and 

error estimation methods that could be used for CSIs will be analyzed in detail.   

Selected datasets will be subject to various additive and defocus noise, and 

translational and rotational misalignment in order to understand the impact of noise and 

misalignment on coarse and fine registration.  Directional, non-directional and non-

engineered surfaces will be used to study the performance of different transformation 

methods and select the optimal method suitable for handling different surfaces.  Fusion 

metrics will be studied by comparing their performance on quantifying the similarity 

between multiple types of surface datasets and their noisy versions.  Based on the 

selected fusion metrics, available data fusion methods will be evaluated and robust 

method with highest data fidelity will be selected.  After selecting options suitable for 

handling wide varieties of surface types, possible solution of handling non-planar data 

sets will be explored. 



CHAPTER 2: ADJUSTMENT PROCEDURES FOR A COHERENCE SCANNING 
INTERFEROMETER AND QUANTIFICATION OF ITS ERRORS 

 
 
 

For effective Multi-Scale Data Fusion (MSDF) with high data fidelity, care 

should be taken to ensure that the individual data obtained at different magnifications are 

accurate.  In order to better understand a system, calibration and adjustment protocols of 

the system and quantification of error sources is necessary.  Therefore, standard 

calibration and adjustment procedures have to be followed to ensure the system is at 

optimal performance at all magnification settings.  Since the research focus is on fusion 

of data obtained from Coherence Scanning Interferometers (CSIs) and Vision CMMs, 

special attention will be made towards adjustment and quantification of errors in CSI 

systems.  NPL GPG No.108 and 116 [93, 94] describes best practices for sample 

preparation and instrument setup and also discusses possible error sources.  The ISO 

25178 [95] specification standards on areal surface topography measurements detail a 

series of tests that can be used to calibrate CSI systems and list the metrological 

characteristics of CSI systems.  Giusca and Leach [96] document the basic calibration 

procedure for areal surface topography measuring instruments.  These four documents 

form the basis for the calibration and adjustment procedures detailed in this chapter.  
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Various publications document possible error sources involved with CSIs, such as 

the uncertainty of calibration standard used, non-linearity of instrument in lateral and 

vertical axes, Abbe offset errors, sample alignment errors, thermal drift induced errors, 

cross talk between axes, evaluation method, piezo materials inherent errors like creep, 

hysteresis, non-linearity, drift and aging.  There is a need for a comprehensive treatment, 

detailing the adjustment sequence and what error sources to be aware of depending upon 

the application.  This chapter details the basic adjustment procedure for CSI that can be 

readily deployed and then goes over error sources, test methods to find their impacts on 

X, Y and Z measurements, and their possible impact on MSDF process.  Most of the tests 

were conducted on NewViewTM 7300 3D optical profiler system by Zygo Corporation, 

but could be readily used for any CSI system. 

Before discussing the calibration, adjustment procedures and error evaluation 

methods, a typical structure of CSI system is explained.  With better understanding of the 

system’s metrology structure, listing the possible error sources becomes easy. 

2.1. Configuration of a Coherence Scanning Interferometer 

The typical CSI is shown in figure 2.1.1.  Typically a halogen or LED light source 

is used.  Light is then expanded, homogenized and shaped using optical sub systems, 

aperture stop and field stop.  The treated light is then directed to the non-polarizing beam 

splitter using a 45° mirror.  The beam splitter directs the light into the interferometer 

objective, which is mounted on a multi position turret.  Objective turret is mounted to a 

scanner, which is attached to the rigid frame.  The reference mirror is housed inside the 

Mirau type objective (low magnifications do use Michelson type setup).  The light is 

focused on to the surface to be measured.  The reflected light then interferes with the 
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reference beam and creates an interference pattern.  This pattern is magnified through the 

magnification/zoom tube setup, which can be mounted on a separate turret.  The beam is 

focused into the detector, which can be a CCD or CMOS camera.  CSI systems typically 

rely on the fidelity of the scanner for Z accuracy and repeatability.  Some systems do 

provide an optional secondary system to provide feedback for the actual position of 

scanner.  These secondary systems could be capacitance or interferometer based.  This 

schematic shows a secondary interferometer system with a laser power source which 

travels the same path and gets reflected back from the reference mirror.  A beam splitter 

could be used to direct the secondary laser into a secondary detector. 
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FIGURE 2.1.1: Schematic of a typical coherence scanning interferometer. 
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Some CSI instruments rely on the scanner for Z accuracy and therefore Z 

calibration is of prime importance for those systems.  The other sources of error could be 

any hardware that lays on the beam path all the way from the light source to the detector 

and signal processing and transmission devices between detector to the computer, 

software algorithms that convert voltage signals to Z heights.  The bandwidth of light 

source, aberrations in relaying and conditioning optics and mirrors, drift and non-linearity 

of scanner, stability of objective and magnification tube turrets, detector non-linearity, 

static and dynamic noises in the setup, external vibrations, overall frame stability are 

possible sources of errors, to name a few.  The various calibration standards that would 

be used for performing the tests described in section 2.2, 2.3 and 2.4 are as described in 

the following section. 

2.1.1. Calibration Standards 

2.1.1.1. Silicon Carbide (SiC) Reference Flat Standard 

 This standard (shown in figure 2.1.2) provides sub-Angstrom level flat reference 

surface which could be used to map the reference mirror and relay optics form errors 

(The standard used was certified for RMS 0.37 Angstrom).  

 

 

FIGURE 2.1.2: Silicon Carbide reference 
flat standard [97]. 
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2.1.1.2. Step Height Standard 

 This NIST traceable standard (shown in figure 2.1.3) provides a 100 µm wide, 

750 µm long stepped surface etched on quartz and coated with chromium for good 

reflectivity.  At least three step heights are preferable to cover the Z range of interest.  It 

is used for calibration of Z axis scanner of the system.  The standards used were certified 

to 1.81 ± 0.011 µm, 24.23 ± 0.144 µm and 23.874 ± 0.144 µm.  This standard also has a 

pitch pattern which is used for the test described in section 2.3.9. 

2.1.1.3. Lateral Calibration Standard 

This NIST traceable standard (shown in figure 2.1.4) provides patterned surfaces 

etched on silicon dioxide and coated with platinum.  It enables the calculation of 

magnification of each objective to better precision, resulting in precise lateral 

measurements.  This standard is also used for calculating turret relocation offsets when 

multiple magnifications are used, but any surface with a well-defined horizontal and 

vertical edge that could be used to align to a cross hair would suffice.  The standard used 

FIGURE 2.1.3: Step height standard [98]. 
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was certified for the following pitches 3 ± 0.018 µm, 10 ± 0.020 µm, 30 ± 0.18 µm, 100 

± 0.6 µm, 200 ± 1.3 µm and 500 ± 3.1 µm. 

2.1.1.4. Optical Dimensional Standard 

This NPL traceable standard (shown in figure 2.1.5) is a 100 mm square chrome-

on-quartz photo mask that is typically be used for calibration of vision systems.  It 

contains 22 patterns (A through V) in a square ring format repeated six times (1 through 

6) at different magnifications to form square concentric rings.  Each specific pattern has a 

FIGURE 2.1.4: Lateral calibration standard [99]. 

FIGURE 2.1.5: Patterns in optical dimensional standard [100]. 
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unique alphanumeric code (ex. 6M means clear log-normal array pattern of the outer 

most ring.  Concentric circle pattern 6E could be used to calculate turret offsets and for 

the test described in section 2.3.1 and 2.4.2, location 6M is used merely as a precision flat 

surface with good reflectance and any chrome-on-glass patterned surface could be used 

instead for that purpose.  This standard could also be used for lateral calibration. 

2.1.1.5. Surface Roughness Reference Standards 

These NIST traceable surface roughness and spacing reference standards based on 

type C (Spacing measurement standards) and D (Roughness measurement standards) of 

ISO 5436 – 1:2000 [101] are available with different periodic profiles and random 

profiles (as shown in figure 2.1.6), and roughness values.  Depending on the typical 

product spectrum, it is recommended to select these artifacts to cover the entire vertical 

range needed.  Different profiles are preferable for performing the test described in 

section 2.3.4, so a selection of sinusoidal, square and random surface roughness reference 

standards could be used. 

 

 

a 

b 

c 

FIGURE 2.1.6: Cross sectional profiles of (a) random surface (b) 
sinusoidal surface and (c) square wave surface [102]. 
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2.2. Basic Adjustment Steps 

2.2.1. Vibration Level 

  Vibrations generally impact the measurements by convolving actual data and their 

impact can be seen as ripples or ripples of missing data under high vibration levels, as 

shown in figure 2.2.1.   

The impact of vibrations partially depends on the algorithm used [103].  Missing 

data impact the performance of DWT and other interpolation algorithms that might be 

FIGURE 2.2.1: (a) Measurements taken under ideal environment (b) under high 
vibration levels, seen as ripples of missing data. 

a b 

FIGURE 2.2.2: Amplitude Vs. Frequency plot of a vibration on a 
stable system. 
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used during the fusion process.  Ripples impact the performance of kernel based weighted 

average data fusion methods. 

Assuming that only one algorithm is used for a chosen system, the vibration levels 

have to be tested to ensure it is within the vibration level requirements.  The systems 

vibration limitations are based on scanning speed and the capability of the vibration 

isolation table.  Typically the RMS noise is expected to be below 5 nm.  Figure 2.2.2 

shows Amplitude –Frequency plot for a system under low vibration levels.   

The instrument was placed at three locations, each location susceptible to 

different vibration levels due to active vibrations from near by systems.  Step height on 

the step height standard was measured 25 times, along with the vibration levels measured 

using a spindle error analyzer [104].  Figure 2.2.3 shows the linear relationship between 

measured amplitudes (peak-to-peak) and the repeatability of step height measured.  
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FIGURE 2.2.3: Relation between vibration levels and measurement error. 
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2.2.2. Z Calibration 

The main purpose of the instrument is to make accurate Z measurements, so the 

calibration of that axis is critical (Some systems use secondary laser source to monitor the 

actual Z movement, so those systems do not need Z calibration).  Care should be taken to 

select the scan lengths that will be commonly used and the corresponding step height 

standard.  The step height standard should be aligned such that only one fringe occurs on 

the selected surface area.  Masks have to be applied to avoid the edge effects [105].  If 

possible, objective with the highest numerical aperture (NA) with robust design (some 

high numerical aperture objectives are tunable, which is not preferred for this step) and 

the most commonly used scan length are to be used.  The central point on the bi-

directional scan is to be set such that it is at a nominal center height between the two 

heights of the step height standard that is being measured.  Plane removal is done with 

respect to the bottom surface.  For this test, bottom surface was considered as a reference 

surface and the top surface as test surface).  The masked regions and the run results for a 

24 µm step height standard are shown in figure 2.2.4.  The standard deviation is taken as 

the step height measurement repeatability. 
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2.2.3. Lateral Calibration 

Lateral calibration is to be performed to find the actual magnification of 

individual objectives along with the possible zoom tube configurations and to convert the 

pixel spacing into absolute units of measurement.  Place the lateral calibration standard at 

the approximate center of the stage and select the required section of the lateral 

calibration standard for the objectives to be calibrated.  Null the fringes and set the scan 

location to the optimum focus for individual objective and zoom tube configurations.  

Some instruments have a built in lateral calibration application which is shown in figure 

2.2.5, but the procedure could be easily performed using available edge detection 

FIGURE 2.2.4: Screen shot of results on 30 measurements taken on 
24.23 µm step height standard. 
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algorithms in any generic image processing software after converting the datasets into 

binary images. 

 

2.2.4. High Magnification Objective Optimization 

Most 50X and above magnifications have the flexibility of tuning to reduce the 

errors induced to the changes in the optical relay [106] due to external influences.  

Optimum setting of these magnifications will ensure that both the surface and the fringe 

come to focus at the same time.  One suggested guideline is to fine tune the objective by 

twisting the objective housing until the surface roughness measured is the maximum, but 

it is not valid for the entire surface roughness regime.  Figure 2.2.6 shows the Pa surface 

roughness values obtained on 5 different samples (L01 and L15 were selected with a 

surface roughness range of 25 - 50 nm, M09 and M10 within 50 - 100 nm, and H05 100 - 

FIGURE 2.2.5: Lateral Calibrator Window. 
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150 nm).  The objective was optimized using an Aluminum-Titanium-Carbon (ALTIC) 

surface until the obtained surface roughness was ~5 nm.  First set of measurements were 

taken at optimal focus, the second set of measurements were taken at a defocus condition 

and then the third set of measurement was taken after refocusing the objective.  It can be 

seen that even though the objective was set to optimal focus when the obtained surface 

roughness was maximal on the ALTIC surface, the measured roughness values on the 

selected surfaces decreased. 

Therefore, it is recommended to track the surface roughness values along with the 

rotation interval and then reset to either the local minima or maxima.  Optimization of 

high magnification objectives is critical because in most data fusion process, the high 

frequency portion of the high magnification data is to be fused with the low frequency 

portion of the low magnification data.  When high magnification objective is not at 

optimal condition, defocus effects alter the instrument transfer function, there by 

affecting the fidelity of the data obtained using different objectives. 

FIGURE 2.2.6: Effect of focus on roughness for selected samples with 
varying roughness values. 
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2.2.5. Turret Reference Coordinates 

In order to correct for angular and spatial offsets between different magnification 

configurations, the turret reference coordinates need to be set up, ensuring that the sample 

surface is centered and in focus.  By presetting the turret reference coordinates, the 

dependence on coarse registration algorithm is reduced.  Also, this test enables the 

estimation of expected translational and angular misalignment due to rotary turrets.  The 

offsets are calculated with respect to the most commonly used magnification 

configuration, and therefore this process is initiated with that magnification 

configuration.  (Before starting this process, it is preferable to warm up the objective and 

zoom tube turrets by rotating them for a couple of rotations).  One edge of a square 

pattern in the lateral calibration standard is taken and one corner is positioned such that it 

aligns with the intersection point of the cross hairs and the two edges align with the cross 

hairs placed in the field of view.  For each magnification configuration, the fringes are 

nulled to the top surface of the square and then realigned to match the cross hairs, as 

shown in figure 2.2.7.  The X, Y offsets and θ, Φ offsets from the commonly used 

magnification configuration are noted. 
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2.2.6. Reference Mirror Flatness Test 

In order to reduce the errors induced by variations on the reference mirror and 

optical relay systems alignment and aberrations [107, 108], a temporal average of the 

reference mirror surface measurement could be subtracted from individual measurements.  

This reference mirror measurement has to be performed on each magnification 

configuration.  A SiC optical flat standard free of surface defects and dents is aligned 

such that the fringes are nulled.  Then multiple measurements are taken separated by 

correlation length and then averaged to obtain the map of the reference flatness mirror for 

that magnification configuration, as shown in figure 2.2.8.  The reference mirror 

measurement is used to reduce the error induced in the shape of the measurand.  Since the 

datasets will be obtained using two different magnifications, if fusion is performed on 

raw data without this error correction, it will result in erroneous fusion of the low 

frequency portion of the data. 

FIGURE 2.2.7: Image of one corner of Lateral calibration standard used for 
finding offset between different magnifications.  
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Calibration of X, Y and Z axes and optimization of focus for high magnification 

objectives forms the basic operations needed to ensure data fidelity across 

magnifications.  Reference mirror flatness test enables to quantify relay optics errors and 

account for those while measuring smooth and flat surfaces.  Turret reference coordinates 

test enables to reduce the translational and rotational offset between different 

magnification settings.  System vibration level testing quantifies the system baseline 

capability.  After calibration of individual axes, the next step is to quantify errors.  The 

systematic errors could be quantified and used to adjust the measurements.  The next 

section discusses the error sources impacting mainly the Z axis, followed by another 

section detailing the error sources impacting X and Y axes.  

 

 

 

FIGURE 2.2.8: Reference mirror surface error map for a chosen 
magnification (objective and zoom tube combination). 
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2.3. Z-axis Based Errors 

2.3.1. Repeatability (Regular and Auto Focus) 

Repeatability of the system establishes the baseline capability of the system and in 

turn, the uncertainty of the data fusion process.  In order to quantify the repeatability of 

the system under regular measurement conditions and while using ‘auto focus’ option, 

optical dimensional standard at location 6M is used (any optical standard with chrome 

plated circle pattern could be used instead).  Thirty measurements are taken in a sequence 

with ‘auto focus’ option turned on and next set of thirty measurements are taken with 

‘auto focus’ option turned off.  All chrome coated surfaces are masked, as shown in 

figure 2.3.1 (regions filled with golden yellow color are considered and area inside of 

circles are not considered for further analysis) and no plane removal is done.  If plane 

removal is chosen, then the results will mainly show the system’s dynamic noise and not 

the z axis repeatability.  Average different between successive measurements will show 

the z offset between measurements, therefore surface roughness parameter Sa is 

calculated on the difference between two successive measurements, as shown in figure 

2.3.2.  The obtained Sa values are shown in figure 2.3.3. 
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FIGURE 2.3.1: Image obtained on 6M location in NPL optical 
dimensional standard, regions masked for further analysis. 

FIGURE 2.3.2: Map of difference between successive measurements. 
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FIGURE 2.3.4: Circles analyzed using Sherlock ® [109] software for diameters and 
center coordinates. 

FIGURE 2.3.3: Deviations in height between successive measurements.  

Repeatability 80 nm, Auto focus repeatability 190 nm
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The sum of average and one standard deviation of 29 difference measurements is 

taken as the Z stage repeatability [95].  Sum of squares method is used to calculate the 

impact of auto focus measurements.  In order to calculate the impact on dimensional 

measurement, the 50 datasets (25 without ‘autofocus’ and 25 with ‘autofocus’) were 

converted to image format and six different circles within the field-of-view (as shown in 

figure 2.3.4) were analyzed for diameter and center coordinates, as shown in figure 2.3.5.   

The root sum of squares of standard deviations of six circles from first set (25 

datasets measured without ‘autofocus’ option) of measurements is taken as standard 

repeatability (σs) and then corresponding value (σT) is calculated for second set of 

measurements (25 datasets with ‘autofocus’ option). Impact of autofocus on repeatability 

(σAF) is given by 22
STAF σσσ −=  

FIGURE 2.3.5: Standard deviations of circle diameters and centers for 25 
measurements.  
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It should be noted that the repeatability depends on various factors like scan 

length, surface reflectivity and roughness etc.  So, care should be taken to ensure that 

appropriate surface samples are used to conduct this test.  Figure 2.3.6 shows the 

difference between successive measurements of optical dimensional standard.  In the 

figure, it can be noticed that the variations are significantly different on chrome 

(background) and non-chrome (circular areas) surfaces.  This demonstrates the fact that 

the uncertainty involved with data fusion pertaining to surfaces with non-uniform optical 

properties will also be non-uniform. 

 

2.3.2. Scan Length 

 Some CSI systems use Piezoelectric Transducer (PZT) based scanner and for each 

scan length, a specific ramp file (a ramp file is the map of the non-linearity of the PZT) 

could be used.  Z calibration is generally performed using one specific scan length, so 

other scan lengths have to be characterized.  Z scaling error between the standard scan 

length to different available scan lengths, for different magnifications needs to be 

FIGURE 2.3.6: Plot showing the difference between successive 
measurements on chrome surface with non-chrome circular areas.  
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established.  An average of five measurements is taken for on three different step height 

standards (1.816, 23.847 and 49.094 µm) using different scan lengths (5, 10, 20, 40, 65, 

100 and 150 µm) and magnifications (2.5X, 10X and 50X objectives with 0.5X, 1.0X and 

2.0X zoom tubes).  For each magnification, 100 µm scan length is taken as the standard 

and the scaling ratios are calculated, as shown in Table 2.3.1. 

 

2.3.3. NA Correction Factor 

After the Z calibration factor is calculated for the chosen objective, correction 

factors [110-113] for other objectives have to be calculated.  These correction factors are 

needed to ensure that there is high correlation between data obtained using multiple 

objectives, which is very crucial to ensure the fidelity of data fusion process.  A chosen 

step height (49.094 µm) is aligned; scan location and masks are set according to best 

Obj. 50x
Zoom 0.5x Zoom 1.0x Zoom 2.0x Zoom 0.5x Zoom 1.0x Zoom 2.0x Zoom 0.5x

5 1.811 1.813 1.809 1.813 1.816 1.815 1.816
10 1.813 1.812 1.810 1.814 1.816 1.815 1.817
20 1.813 1.813 1.812 1.814 1.816 1.814 1.815
40 1.811 1.811 1.810 1.814 1.815 1.814 1.815
65 1.810 1.810 1.807 1.813 1.814 1.814 1.815
100 1.809 1.809 1.807 1.812 1.813 1.813 1.813
150 1.810 1.809 1.806 1.811 1.811 1.811 1.812
5 - - - - - - -

10 - - - - - - -
20 - - - - - - -
40 - - - - - - -
65 23.925 23.922 23.937 23.926 23.929 23.927 23.925
100 23.915 23.905 23.922 23.915 23.915 23.913 23.914
150 23.907 23.895 23.917 23.907 23.904 23.902 23.904
5 - - - - - - -

10 - - - - - - -
20 - - - - - - -
40 - - - - - - -
65 - - - - - - -
100 49.006 49.007 48.989 48.977 48.967 48.966 48.897
150 48.995 48.998 48.975 48.963 48.953 48.952 48.886
5 1.0011 1.0021 1.0011 1.0006 1.0015 1.0014 1.0014

10 1.0019 1.0013 1.0014 1.0010 1.0018 1.0012 1.0019
20 1.0022 1.0021 1.0025 1.0009 1.0019 1.0008 1.0011
40 1.0012 1.0008 1.0015 1.0009 1.0010 1.0006 1.0012
65 1.0005 1.0006 1.0004 1.0005 1.0007 1.0005 1.0008
100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
150 1.0000 0.9996 0.9996 0.9995 0.9995 0.9994 0.9996
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TABLE 2.3.1: Scan length based z scaling errors for chosen magnifications 
(objective and zoom tube combinations).
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practices detailed for Z calibration.  Step height is measured using different magnification 

(2.5X, 10X and 50X objectives along with 0.5X, 1.0X and 2.0X zoom tubes) and average 

of 20 measurements is taken and then the correction factor (ratio between the calculated 

heights to the height measured using magnification used for Z calibration) with respect to 

10X magnification (10X objective and 1.0X zoom tube) is calculated accordingly, as 

shown in Table 2.3.2.  

 

2.3.4. Algorithms 

Different algorithms [114-117] accommodate different levels of vibrations, and 

phase skewing effects.  Therefore, there is a need to evaluate different algorithm options 

available on the system.  Various disceprencies have been documented between 

Obj. 50x
Zoom 1x Zoom 2x Zoom 0.5x Zoom 1x Zoom 2x Zoom 0.5x

1 48.9593 48.9593 48.9624 48.9601 48.9602 48.9618
2 48.9649 48.9608 48.9635 48.9546 48.9600 48.9621
3 48.9643 48.9639 48.9612 48.9541 48.9673 48.9626
4 48.9639 48.9620 48.9667 48.9529 48.9569 48.9710
5 48.9591 48.9614 48.9639 48.9528 48.9641 48.9693
6 48.9596 48.9643 48.9634 48.9587 48.9612 48.9667
7 48.9637 48.9652 48.9627 48.9537 48.9642 48.9611
8 48.9617 48.9669 48.9630 48.9565 48.9630 48.9660
9 48.9560 48.9578 48.9658 48.9532 48.9667 48.9684

10 48.9589 48.9578 48.9714 48.9522 48.9623 48.9646
11 48.9598 48.9653 48.9653 48.9590 48.9625 48.9635
12 48.9577 48.9571 48.9662 48.9581 48.9618 48.9618
13 48.9668 48.9617 48.9614 48.9569 48.9614 48.9666
14 48.9621 48.9685 48.9620 48.9552 48.9582 48.9593
15 48.9587 48.9693 48.9673 48.9536 48.9632 48.9648
16 48.9590 48.9670 48.9666 48.9532 48.9633 48.9686
17 48.9662 48.9649 48.9664 48.9549 48.9634 48.9654
18 48.9627 48.9620 48.9687 48.9566 48.9646 48.9604
19 48.9634 48.9648 48.9659 48.9512 48.9608 48.9638
20 48.9617 48.9691 48.9645 48.9597 48.9676 48.9655

average 48.9615 48.9635 48.9649 48.9554 48.9626 48.9647
std. dev 0.0030 0.0038 0.0026 0.0027 0.0028 0.0032

NAC 1.0001 1.0002 1.0002 1.0000 1.0001 1.0002

Run No.
Obj. 2.5x Obj. 10x

Average Step Height in µm

TABLE 2.3.2: NA Correction factor for chosen 
magnifications with respect to 10X objective and 1X zoom. 
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measurements taken on same surface using multiple technologies [118, 119].  Tests have 

also shown that the differences between technologies do not produce a similar effect for 

different surface roughness ranges [120].  Hence it is generally not recommended to fuse 

data obtained using different algorithms.  In situations where this is unavoidable, it is 

recommended to use this test to establish the expected error.  To quantify the impact of 

algorithms, random surface roughness reference specimen standards (30, 100 and 150 nm 

Ra specimens), sinusoidal shaped periodic profile reference specimen standards (60 and 

100 nm wavelength spacing) and square wave shaped pitch standard (40 nm step height) 

were measured using three different algorithm modes (High2G, High, Normal and Low 

are the four available options on NV6300® system by Zygo Corp. For this test, only 

High2G, High and Normal were used).  Figure 2.3.7 shows the difference in profile plots 

obtained on the square wave standard using three different modes.  Mode 3 shows 

significant edge transition errors. .Figure 2.3.8 shows profile plots of random surface 

roughness specimen with 150 nm Ra, measured under three different modes.  Figure 

2.3.9 shows the measured Ra values of three random surface roughness specimens (30, 

100 and 150 nm).  From the graph, it can be seen that the there is no consistent bias 

measured Ra values between different algorithm modes.  Figure 2.3.10 shows the 

difference between three modes on all the standards used.  Average of these deviations is 

taken as the impact of surface roughness on algorithm.  
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FIGURE 2.3.7: Surface profiles obtained on square wave 
standard using different algorithm settings.  
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FIGURE 2.3.8: Surface profiles obtained on 150 nm random surface standard 
using different algorithm settings. 
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FIGURE 2.3.9: Measured Ra values on different random surface standards using 
different algorithm modes. 
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FIGURE 2.3.10: Deviations in Ra values on different random profile surface 
standards using different algorithm modes. 
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2.3.5. Noise 

In order to calculate the instrument’s noise level, SiC optical flat standard is 

measured 26 times using the preferred objective and zoom tube combination along with 

the preferred scan length.  This test is to be performed after ensuring proper alignment / 

optimum null cavity and optimal focus.  It is also recommended that a least squares plane 

be removed from the data.  Differences between successive data sets are calculated and 

for those difference of datasets, ISO flatness, tilt along X and Y axis are calculated, as 

shown in table 2.3.3.  ISO flatness is the envelope containing the data points, therefore 

could be treated as the maximum difference between successive measurements.  Peak-to-

Valley (PV) value also could be used, but PV would provide vertical difference whereas 

ISO flatness would provide orthogonal distance from the least squares plane fitted to the 

surface, thereby compensating for the tilt.  This methodology enables separation of 

angular variations from the vertical noise.  The average of these 25 ISO flatness and tilt 

values are taken as the error contribution due to a combination of system static noise, 

dynamic noise and environmental noise.  

 

 

 

 

 

 

 

 



 77

 

2.3.6. Z Non-linearity 

Z calibration coefficient does not account for non-linearity in the Z stage’s 

scanner [121-125].  In order to calculate the Z non-linearity, a SiC optical flat standard is 

placed at an inclination such that the measured Z heights would cover the entire scan 

length.  The high contrast fringe is focused at the center of the field of view for the first 

set of ten measurements (multiple measurements are taken to reduce the impact due to 

dynamic noise and vibration induced errors) and then the Z stage is moved by one fringe 

up for the second set of ten measurements and one fringe down for the third set of ten 

measurements.  The test is repeated with the standard rotated by 90°.  The standard is 

tiled in the opposite direction and the next set of measurements is taken followed by 

ISO Flatness Tilt X Tilt Y
(nm) ( ° ) ( ° )

2-1 4.9650 0.0000 0.0000
3-2 5.0670 -0.0001 0.0000
4-3 6.6150 0.0000 0.0000
5-4 6.8290 0.0000 0.0000
6-5 6.4690 0.0000 0.0000
7-6 4.9700 0.0000 0.0000
8-7 5.0620 0.0000 0.0000
9-8 5.4460 0.0001 0.0000

10-9 4.4510 0.0000 0.0000
11-10 6.6840 0.0000 0.0000
12-11 3.8630 0.0000 0.0000
13-12 4.3430 0.0000 0.0000
14-13 5.1160 0.0001 0.0000
15-14 5.9300 0.0000 0.0000
16-15 5.4250 0.0000 0.0000
17-16 4.7220 0.0000 0.0000
18-17 5.0210 0.0001 0.0000
19-18 5.6500 0.0001 0.0000
20-19 5.5170 0.0000 0.0000
21-20 5.9240 0.0001 0.0000
22-21 5.1920 0.0000 0.0000
23-22 5.2050 0.0001 0.0000
24-23 4.3150 0.0000 0.0000
25-24 5.5530 0.0000 0.0000
26-25 5.0520 0.0000 0.0000
26-1 7.8880 0.0012 -0.0005

Average 5.3354 0.0000 0.0000

Run Delta

TABLE 2.3.3: ISO Flatness and tilt variation 
between successive scans on SiC standard. 
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another set of measurements after the standard is rotated by 90°.  The differences 

between the three measurements are calculated (as shown in figure 2.3.11) and then an 

average of those two datasets is calculated.  The average of eight PV values is taken as 

the contribution of the Z scanner’s non-linearity towards measurement uncertainty.  

 

2.3.7. Focus Errors 

When the surface is not under optimal focus condition [126, 127], errors are 

induced in the shape of the measured surface.  So, it is recommended to ensure that best 

practices are used while obtaining multiple magnification measurements.  Turret 

FIGURE 2.3.11: Difference between two measurements taken at different Z heights. 
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reference coordinate system setup reduces the impact but does not eliminate the need for 

this error.  The impact partially depends on the surface roughness, surface lateral and 

vertical heights.  1.8 µm step height standard is positioned such that only the bottom 

surface of the standard in the field of view.  First measurement is taken with the surface 

at optimal focus (as shown in figure 2.3.12a) and then second measurement is taken at a 

Z offset of +25 µm.  The difference between both measurements is shown in figure 

2.3.12b.  ISO flatness of the difference is taken as the contribution of out-of-focus 

towards measurement uncertainty for nominally flat surfaces. 

The standard is then repositioned such that both the top and bottom surfaces can 

be measured.  First measurement is taken after top surface is focused and fringes are 

nulled on that surface.  Plane removal is performed using top surface as the reference 

surface.  Second measurement is taken at approximately 20 µm above this point and third 

measurement is taken at approximately 20 µm the focus point.  The difference between 

these three surfaces is shown in figure 2.3.13.  

FIGURE 2.3.12: (a) Surface map of bottom surface of 1.8 µm step height standard at 
optimal focus (b) Height differences from (a) when measured at 25 µm Z offset. 

a b 
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Since plane removal was performed on all three datasets using the top surface as 

the reference, it is expected that on the difference measurements, one surface would be 

nominally zero, but due to errors induced because of out-of-focus condition, both top and 

bottom surfaces are not at the nominal location.  The same process is repeated on 49.09 

µm step height standard and the results are shown in figure 2.3.14.  Average of ISO 

flatness calculated from these difference datasets is taken as the contribution of out-of-

focus conditions for stepped surfaces. 

 

 

FIGURE 2.3.13: Step height differences on 1.8 µm step height standard, due to 
measurements taken at different focus heights. 

FIGURE 2.3.14: Step height differences on 49.09 µm step height standard, due to 
measurements taken at different focus heights. 
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2.3.8. Dissimilar Materials 

Unaccounted phase changes [128, 129] occur if dissimilar material surfaces are 

measured together.  If the same kind of surface configuration is routinely measured, then 

the sample surface could be sputter coated with one uniform metal coating and then 

measured.  Figure 2.3.15 shows a sample surface with two copper pads above a layer of 

dielectric.  The step height between the copper layer and dielectric layer of five samples 

are measured under normal conditions and after sputter coating.  The difference between 

the heights obtained before and after coating is taken as the error induced due to 

measurement of materials with dissimilar optical properties, as shown in table 2.3.4.  

 

 

 

 

 

FIGURE 2.3.15: Sample surface showing two copper reference surfaces (A) with 
respect to which dielectric surface (B) is measured. 

A B A 
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2.3.9. Environmental Changes 

It is good practice to obtain multiple magnification measurements within least 

time interval between measurements.  But for some experiments, like those involved with 

wear studies, long delay between measurements is inevitable.  For these kinds of datasets, 

impact of environmental changes needs to be factored in.  In order to account for errors 

induced due to environmental changes like temperature, humidity and pressure, instead of 

trying to find individual contributions, an all-inclusive approach is taken.  The 24.23 µm 

step height standard is used for this test, but instead of the regular location, the pitch 

pattern location is used.  Step height of the top surface is measured with respect to bottom 

surface on either side (as shown in figure 2.3.16a) and width is calculated on the image 

generated by converting height values to normalized intensity values (as shown in figure 

2.3.16b).   

 

 

 

TABLE 2.3.4: Step height differences measured on five samples 
before and after sputter coating. 
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 Step height and width are measured for 24 hours with 15 minute time interval 

between each measurement with no change in magnification configuration, as shown in 

figure 2.3.17.  The variation in width measurement is taken as the impact on dimensional 

measurement.  The variation in height measurement is taken as the impact on Z height 

measurement.  

 

FIGURE 2.3.16: (a) Reference masks on the pitch pattern location (b) Width 
measurement. 

FIGURE 2.3.17: Long term stability impact on height and width measurements. 
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2.3.10. Stitching Errors 

Non-symmetric matrix type stitching could result in ‘potato-chip’ effect – 

distortion in the shape (shape can be distorted with a saddle minimum or maximum at the 

center), as shown in figure 2.3.18.  When the system error map (obtained from the 

reference mirror flatness test detailed in section 2.2.6) was not subtracted from individual 

measurements, approximately 40 m radius of curvature was induced.  Hence, when 

fusion is to be performed on stitched datasets, it is highly recommended to subtract 

system error map data to reduce errors that will be induced into the overall shape of the 

measured surface.  Figure 2.3.19 shows the difference between two stitched datasets – 

one with system error map subtraction and one without.   In order to account for stitching 

based errors, a square wave standard is stitched using 4x4 array with 25% overlap (shown 

in figure 2.3.20a).  26 measurements are taken and ISO flatness is calculated on the 

difference between consecutive measurements, as shown in figure 2.3.20b. 

 

 

FIGURE 2.3.18:  Stitching induced shape errors (“Potato chip effect”). 
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It can be seen from figure 2.3.20b that the noise levels are less on the overlap 

regions, but there is significant edge effect on the area pertaining to the 3rd column and 1st 

row.  Figure 2.3.21 shows the same difference plot after 5x5 kernel low pass filter and the 

affected area is shown inside red box.  The difference between 25 successive 

measurements is shown in figure 2.3.22.  

 

 

FIGURE 2.3.19:  Spherical shape induced when stitched without subtraction 
of system error map. 

FIGURE 2.3.20:  (a) Stitched surface of square wave standard (b) Difference 
between consecutive measurements. 

a b
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2.4. X,Y-axis Based Errors 

2.4.1. Objective and Turret Repositioning Errors 

In the case of automated measurements involving multiple magnifications, it is 

hard to ensure that the focus is optimal between magnification changes.  Turret reference 

FIGURE 2.3.21:  Difference between consecutive measurements 
after low pass filter. 

FIGURE 2.3.22:  ISO Flatness of difference between consecutive measurements. 
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coordinates can change by as much as 4 µm spatially and by several arc seconds along tip 

and tilt, due to turret’s rotary positioning error.  This variation would result in first order 

X, Y errors (impacting dimensional measurement) and Z errors of the second order 

(tip/tilt change would lead to focus change, which in turn impacts Z measurements).  

Concentric circles pattern 6E of optical dimensional standard is measured 30 times, with 

the magnification configuration changed between each measurement, by moving to a 

different magnification setting and then moving back to the required magnification.  The 

average standard deviation of change in lateral coordinates for the center of the measured 

fiducial is taken as the nominal expected error in lateral variation due to repositioning 

error, as shown in table 2.4.1.  

 

2.4.2. XY Stage Non-linearity 

 While using the system for multiple field of view measurements either using 

single magnification configuration or multiple magnification configurations, apart from 

the objective and turret repositioning errors, stage non-linearity also impacts the 

dimensional measurements.  Various self-calibration methods [130-132] have been 

proposed to calculate the stage non-linearity and out-of-plane errors.  For testing stage 

non-linearity, a certified grid plate is placed on the stage and is allowed to stabilize for at 

least 8 hours.  Then the grid locations shown in figure 2.4.1 are measured in the 

directional sequence 1-12.  The center of each grid (shown in figure 2.4.2) is measured 

TABLE 2.4.1: Objective turret and zoom tube turret relocation errors. 

X Y X Y X Y X Y
1.0x -34.781 0.386 0.038 0.035 -37.354 0.410 3.847 0.185
1.5x -36.712 2.806 0.038 0.055 -34.386 2.633 3.506 0.105

Zoom Tube
Nominal Std. Deviation

Zoom Tube Offset in µm Objective + Zoom Tube Offset in µm
Nominal Std. Deviation
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for couple of runs until the stage has sufficiently warmed up (in this case 6 runs, as 

shown in figure 2.4.3) and then the difference in center positions of each grid is taken.  

The average value of those differences is taken as stage non-linearity error. 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.4.1: Stage travel map for measuring grid plate, to quantify stage non-
linearity. 
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FIGURE 2.4.2: Grid plate measurement, showing variation between target 
and actual locations. 



 89

 

2.4.3. Camera Non-linear Warping Error 

This error is generally assumed to be negligible for surface roughness analysis.  

But for precise dimensional measurement requirements, it is necessary to quantify this 

error.  A lateral calibration standard could be used for calculating non-linear warping 

errors [133-135] of the combination of camera and all optics between the sample surface 

and the camera.  The 3D map of lateral calibration standard and the background surface 

variation is shown in figure 2.4.4.  The variation of the calculated centers from the 

certified nominal is taken as the errors induced on dimensional measurement due to 

image warping.  The schematic is shown in figure 2.4.5.  In order to account for 

measurement specific (diameter, width etc.) errors, the object of interest can be placed 

within 80% inner area of the field of view at multiple locations.  Using sufficient 

sampling points to calculate the measurand, the standard deviation of the measurand is 

taken as the impact of non-linear warping induced by camera and optics.  

FIGURE 2.4.3: Grid plate location measured differences, showing 
initial stage warm-up and stabilization. 
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FIGURE 2.4.4: (a) 3D map of Lateral calibration standard (b) Background surface 
variation. 
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FIGURE 2.4.5: Schematic showing the camera non-linear warping error (a) 
Image of raw data (b) after edge detection (c) centroid of squares (d) 
location errors. 
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2.5. Summary 

The best practices for calibrating and adjusting a CSI system were described, 

along with the standards (and associated uncertainties) that could be used to perform the 

calibration and other tests.  Several test methods to evaluate the impact of those error 

sources on measurements along three axes were discussed.  The error sources that would 

be potential requirements for the data fusion process, like the rotary turret repositioning 

errors and surface fitting residuals were discussed.  Table 2.5.1 summarizes the error 

sources along with their impact on X, Y and Z axis measurements and comments on 

when those error sources need to be considered. 

The above mentioned error sources and methods are not all-inclusive and doesn’t 

account for system settings change due to changes in the nominal wavelength and 

bandwidth of the light source, light intensity change, PZT drift, aperture settings etc.  For 

Z height calibration, it is preferable to use at least three step heights – first one at 

minimum step height just above correlation length, second one at maximum step height 

that is just below the maximum scan length possible and third one at the approximate 

mean.  The average of three z calibration coefficients [136, 137] is taken as the over-all z 

calibration coefficient.  While measuring engineered patterned surfaces, different 

measurement technologies and magnification have individual spatial and vertical 

resolution limits [138-140], therefore individual magnification should be tested for this. 
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TABLE 2.5.1: Summary of CSI error sources and their possible impacts. 
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It was shown that around 4 µm of misalignment is expected between 

measurements taken using multiple magnifications on the same system and stage 

positioning accuracy was 2 µm.  This gives the potential misalignment between data sets 

obtained using different magnifications as, µm924222 =+× .  The coarse and fine 

registration algorithms should be able to handle this 9 µm misalignment and align the 

datasets to within one pixel. 

In order to ensure effective data fusion, systematic errors due to NA correction 

and scan length have to be accounted for and compensated at individual measurements.  

Having established the capability of the measurement system and the expected 

misalignment, the next step is to evaluate whether the coarse and fine registration steps 

can handle the possible misalignment between measurements.  It was also shown that 

vibration based, defocus based random noise can be present on the data.  Performance of 

coarse and fine registration methods on data sets under the influence of additive noise and 

defocus noise needs to be evaluated.  The performance of coarse and fine registration 

methods to account for the noise levels and possible misalignment will be evaluated in 

the next chapter. 

 



CHAPTER 3: COARSE AND FINE REGISTRATION 
 
 
 
In order to establish confidence in the Multi-Scale Data Fusion (MSDF) process, 

evaluation of the performance of individual steps and algorithms is very important.  Li et 

al [141] stress the significance proper choice of individual process steps on the fusion 

performance and the lack of comprehensive analysis and comparison of different 

schemes.  They recommend evaluation of different fusion algorithms not only on the 

fused data based performance criteria, but also the computation complexity and 

processing time requirement.  Therefore, in this chapter, simulation studies that are 

performed to evaluate the performance of coarse and fine registration will be explained in 

detail. 

The first major step in the MSDF process is coarse registration.  In the second 

chapter, it was demonstrated that the rotary turret relocation errors could be around 9 µm.  

It was also shown that defocus and Numerical Aperture (NA) based errors could affect 

the measurements.  In order to understand the impact of translation and rotational 

misalignment between datasets on coarse and fine registration, a simulation study is 

performed.  The objective is to study the impact of noise and blurring of datasets on 

coarse registration.  
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Traditionally, noise is induced at single-scale.  In this section, a new methodology 

for generating multi-scale noise is proposed and used to compare the performance of 

coarse registration.  This simulation based study is used to establish the limitations of 

coarse registration, which directly impacts the performance of fine registration.   

Within Discrete Wavelet Frame (DWF) transformation domain, there are three 

different approaches that could be used for multi-scale decomposition of data.  The 

performance characteristics of these three approaches will be studied in detail, along with 

possible applications of those approaches for other characterization needs.  

Fine registration is the most critical step in MSDF. Data fusion cannot be 

effective, if the datasets are not aligned to within one pixel accuracy.  The impact of three 

DWF methods, two edge detection methods, and noise on fine registration will be studied 

in detail.   

3.1. Coarse Registration 

Coarse registration is usually performed either by manually selecting fiducial 

markers in both the datasets or by automated methods like Sum of Absolute Differences 

(SAD) and Normalized Cross Correlation (NCC).  SAD will be minimum at the position 

where similarity between both the data is maximum and NCC will be maximum at the 

position where similarity between both the data is maximum.  SAD of two datasets Ic(x,y) 

of length M x N and Iγ(x,y) of length P x Q is calculated by 
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NCC is given by 
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 Raol [142] summarizes a performance evaluation of NCC and SAD under three 

noise levels as follows: 

• In the absence of noise, both NCC and SAD are equally accurate 

• In the presence of ‘Salt & Pepper’ noise, SAD is more accurate compared to NCC 

• In the presence of ‘Gaussian’ noise, NCC proved to be more accurate compared to 

SAD. 

Based on this recommendation, NCC was chosen as preferred method for coarse 

registration for this study.  Consider the datasets obtained from a honed surface at 5X and 

20X magnifications (shown in figure 3.1.1 a and b) measured on a NV7300 CSI system.  

Both the datasets are pre-conditioned by removing outliers and filling missing data points 

with mean of the dataset.  

 

 



 97

 

 

  

FIGURE 3.1.1: Honed surface at (a) 5X and (b) 20X optical magnification.  

a 

b 
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FIGURE 3.1.2: (a) 5X magnification data of honed surface (b) Resampled 
version to match 20X magnification data’s sampling interval. 

a 

b 
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 The 5X data is resampled to match the 20X data, as shown in figure 3.1.2 a and b.  

The resampled 5X data (shown in figure 3.1.2b) and the 20X data (shown in figure 3.1.1 

b) are used to calculate NCC, as shown in figure 3.1.3.  The identified peak location is 

within the circle inset shown in figure 3.1.3. 

 

 After finding the approximate location of the dataset with higher sampling 

interval (DHigh) inside the dataset with lower sampling interval (DLow), a new dataset 

(DLowClip, shown in figure 3.1.4) is generated by trimming DLow to the size of DHigh.  

 

 

 

FIGURE 3.1.3: 3D mesh of NCC for 20X magnification data on 5X 
magnification data.  
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3.1.1. Impact of Noise and Misalignment on Coarse Registration 

In order to characterize the impact of noise and angular misalignment between 

two datasets on coarse registration, a study was performed on 12 different datasets, 

shown in figure 3.1.5.   

Each datasets was treated with 10 noise conditions - Gaussian noise with three 

variance levels (0.005, 0.01 and 0.015), and Speckle noise with three variance levels 

(0.02, 0.04 and 0.06), Salt & Pepper noise with three noise density levels (0.025, 0.05, 

and 0.075), and Poisson noise.  Instead of adding noise at single level, it is added at 

multiple scales, based on the schematic shown in figure 3.1.6. 

 

 

FIGURE 3.1.4: Clipped 5X magnification data.  
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FIGURE 3.1.5: Sample datasets chosen for the comparison study (1) Lapped 
surface (2) beam shaper optical surface (3) Dipole diffuser optical surface (4) 
Turned surface (5) Fresnel lens surface (6) Honed surface (7),(8) and (9) Pattern 
generator surfaces  (10) Formed surface (11) Spot array generator (12) Square grid 
array surface. 
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A set of six noise maps are generated for the individual noise type and a six-level 

DWF is performed with B3 spline using 3D Hybrid method.  A sub image from each 

noise map is taken to generate a new multi-scale noise map.  Figure 3.1.7a shows the 

original image and 3.1.7b-k shows the images obtained after addition of multi-scale 

noise. 

 

 

 

 

 

 

FIGURE 3.1.6: Schematic showing the method of generation of multi scale noise. 

Six single scale noise data 

Six level decomposition of noise data 

Multi-scale noise data 
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FIGURE 3.1.7: (a) Original Image (b)-(d)  Image obtained after addition of multi-
scale Gaussian noise (e)-(g) Images obtained after addition of multi-scale salt and 
pepper noise (h)-(j) Images after addition of multi-scale speckle noise (k) Image 
after addition of Poisson noise. 

a b c 

d e f 
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Convolution was performed using a Coiflet wavelet (shown in figure 3.1.8) to 

simulate blurring of data due to NA and lateral resolution based errors.  Each noisy image 

obtained is then rotated from -1° to +1° in increments of 0.25° and NCC is used to find 

the approximate location in the original image that best correlates to the rotated version 

of the noisy sub image.  The calculated location values for 12 datasets are as shown in 

figure 3.1.9.  It can be seen that dataset no.5 (Fresnel lens) showed a huge impact of 

angular misalignment, shown by red circles.  Figure 3.1.10 shows the calculated location 

values with respect to the noise type.  From the figure it can be seen that there is no 

difference in pattern with respect to noise type.  Based on this it is concluded that the type 

of noise has negligible impact on the coarse registration.   

 

 

FIGURE 3.1.8: 3D and 2D representation of the Coiflet wavelet used as point 
spread function. 
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FIGURE 3.1.9: Calculated X and Y location for 12 datasets with different noise levels 
and angular misalignment. 
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FIGURE 3.1.10: Calculated X and Y location with respect to noise type. 
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a b 

FIGURE 3.1.12: (a) Noisy image rotated by 1° (b) Zoomed in view of area 
shown inside red box in (a) to show the 5 pixel offset. 

FIGURE 3.1.11: Calculated X and Y location with respect to angular misalignment. 
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Figure 3.1.11 shows the calculated location values with respect to the angular 

misalignment.  From the figure, it can be seen that the coarse alignment performance is 

strongly dependent on the angular misalignment, and as much as 4 pixel misalignment 

can be expected for a 1° angular misalignment.  Figure 3.1.12a shows the noisy image 

obtained after 1° rotation.  The area within the red box is shown in figure 3.1.12b.  It can 

be seen that the starting point has shifted by five pixels.  Hence, the 4 pixel misalignment 

obtained using coarse registration is considered within the limits of actual angular 

rotation that was induced.  

After coarse registration, the next step in MSDF is to perform fine registration.  

Fine registration is accomplished by two sub-steps, called segmentation and 

transformation.  First the datasets under consideration are segmented to identify areas of 

interest which could be used as control points for transformation.  Defects, cracks, and 

edges could be used as control points.  Edge detection tools are very effective in finding 

these control points.  Alternate approach would be to identify a uniform spread of control 

points across the entire surface that was measured.  This approach is comparable to 

‘Watershed’ based edge detection approach, hence was not considered for further 

evaluation.  

3.2. Fine Registration 

The datasets DLowClip,(shown in figure 3.1.4) and DHigh (shown in figure 3.1.1b) 

have to be precisely aligned before data fusion.  Typically fine registration is performed 

by finding matching fiducial / control points on both the datasets and then calculating a 

transformation matrix which would match the control points in both the datasets using 

least squares optimization, represented by B=T x A, where A and B are the two matrices 
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containing the x, y, z coordinates of the control points from both the datasets.  T is the 

transformation matrix given by, 
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where, tx, ty, tz are the translational offsets along x, y and z axis, α, β, γ are the angles of 

rotation with respect to the x, y and z axis.  The Iterative Closest Point (ICP) algorithm is 

efficient and robust under two conditions: 

• The closest local minimum for the integration of the datasets is equivalent to the 

global one.  This means that the two datasets should not be separated too far from 

each other to guarantee the merging into the right areas. 

• Low and high resolutions do not differ much from each other, i.e., there are enough 

data points in the areas of the low resolution data set into which the high resolution 

local data set should be integrated, to direct the merging to a high-precision 

registration. 

Figure 3.2.1 shows the data points used for fine registration – green data points 

obtained from 20X magnification data and blue data points from 5X magnification data.  

Magenta data points were obtained after realignment using ICP finite difference [143] 

method.    
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After finding the transformation matrix using ICP algorithm, DHigh is rotated with 

respect to all three axes for α, β, γ  accordingly and translated along Z axis by tz to match 

DLowClip.  After each rotation, resampling using bilinear interpolation method is performed 

to preserve the shape of the data.  After fine registration, DLow is trimmed to generate 

DLowClipNew to exactly match the size of DHigh, by using the translation offsets tx, ty 

obtained from the transformation matrix.  DLowClipNew is then up sampled using linear 

interpolation techniques to match the sampling interval of DHigh, to generate 

DLowClipNewRes.as shown in figure 3.2.2. 

 

FIGURE 3.2.1: Green data points obtained from 20X magnification data, blue data 
points obtained from 5X magnification data and magenta data points are the 

realigned location of green data points. 
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Effective data segmentation is crucial for determination of control points which 

will be used for fine registration. Segmentation is also a critical process for 

characterization of engineered surfaces.  Mathia et al [144] discuss the need for an 

FIGURE 3.2.2: (a) Clipped 5X magnification data (b) 
Realigned 20X magnification data. 

a 

b 
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automated method to segment the structured surfaces into regions of interest.  Hence, 

different segmentation techniques will be explored in detail.   

3.2.1. Segmentation Approaches for Engineered Surfaces 

For patterned surfaces with stepped planar surfaces, such as Fresnel micro-lens 

arrays, existing height based separation or segmentation of surfaces [145] and edge 

detection in image analysis domain can be readily used.  Verma and Raja [146] have 

developed a MATLAB® based software system to automatically locate features on the 

surface and dimensionally characterize them.  Once the segmentation is performed, 

features are extracted and primary objects are identified and then dimensions are 

calculated.  Kong et al [147] have presented an image processing approach to the 

characterization of optical microstructures, mainly on the spatial height based data 

separation approach. 

For surfaces with different textured areas, single parameter based clustering and 

segmentation could also be effective.  Senin et al [148] proposed a clustering based 

segmentation approach.  They have successfully applied the already developed methods 

in image analysis domain to segmentation of 3D surface data, under the premise that 3D 

surface data could also be treated similar to gray scale image data.  They also mention 

that the only other image analysis based method deployed in surface topography domain 

– watershed based segmentation [149], which is being included in the new ISO standard 

[150] for areal surface texture characterization.  Clustering based on one parameter, albeit 

on any transform domain is the main suggestion of the authors.  When suggesting the use 

of multiple parameters, they took the weighted average approach to find one metric 

which is a weighted average of selected parameters.  They conclude that multi-parameter 
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method is not significantly better than one parameter method.  Three facetted pyramid, 

shown in figure 3.2.3, is a unique surface model which cannot be segmented using single 

parameter and needs multiple parameter based segmentation.   

Using Hough Transform [151] and Radon Transform [152] to identify specific 

patterns on engineered surfaces has already been documented.  The peaks on data 

obtained using either of the transforms are used to generate an image of interest, which 

could be further processed using standard image morphological analysis tools.  The 

proposed approach takes a next step from the single parameter based segmentation 

approach and proposes the use of multiple parameters for segmentation.  The concept is 

very much in use in the image analysis domain [153], where the image is converted to 

any other domain and two different parameters are analyzed in a two- dimensional 

histogram [154] to find individual clusters.  The clusters can be identified and separated 

using regular thresholding [155] algorithms and corresponding indices are used to 

FIGURE 3.2.3: Three faceted pyramid patterned surface. 
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separate the height data into multiple segments.  The conceptual schematic is shown in 

figure 3.2.4. 

 

3.2.2. Multiple Domain Based Segmentation 

In order to find edges, a 4-level DWF [156] transform with B3 spline as mother 

wavelet is performed and the obtained wavelet planes are shown in figure 3.2.5.  A region 

of W1 plane is shown in figure 3.2.6b along with the raw data in 3.2.6a.  Comparing 

figures 3.2.6 a and b, it can be visually seen that the W1 plane is able to show the edges 

better and even the individual tool path is clearly visible.  It is also seen that the top and 

bottom edges are not similar, which is a characteristic limitation of the micro size ball 

FIGURE 3.2.4: Schematic showing the multi-parameter based 
segmentation approach. 
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milling process.  Planes W1 or W2 could be used to find the edges as shown in figure 

3.2.7.   

 

 

 

FIGURE 3.2.5: Images obtained by DWF Transform. 

FIGURE 3.2.6: (a) Raw data (b) W1 plane obtained by DWF Transform. 

a b 
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Since the top and bottom edges are different in edge crispiness, each one needs 

slightly different morphological filtering approaches.  The edges obtained (shown in 

figure 3.2.7) could be combined to generate a binary mask to segment the individual 

facets as shown in figure 3.2.8.   

FIGURE 3.2.8: Segmented dataset obtained by applying the 
binary mask to original data. 

FIGURE 3.2.7: Edge detected on W1 Image obtained by DWP Transform. 
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The segments are identified, labeled and surface roughness parameter ‘Sa’ is 

calculated, as shown in figure 3.2.9.  The edges obtained from figure 3.2.5 could also be 

used analyze individual edge variations using Radon transform as shown in figure 3.2.10.  

The radon transformed image (b) can be converted to a binary image (c) by generic 

threshold algorithms and then inverse transformed to obtain (d).  The variations in the 

lines correlate to the actual variation of the edges.  

 

 

 

 

 

FIGURE 3.2.9: Surface roughness values of individual segments. 
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The same method could also be used for effectively characterizing the cross-hatch 

angle of honed surfaces.  Single-scale analysis of a honed surface is shown in figure 

3.2.11b.  Multi-scale analysis of the same surface is shown in figure 3.2.11c.  Comparing 

figures b and c, it can be seen that the multi-scale analysis yields better results. 

FIGURE 3.2.10: Using Radon Transform for calculating edge variation in 
pattern. 

θ  (de g ree s )

x'

 

 

0

5 0

1 0 0

1 5 0

2 0 0

a b 

d c 
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3.2.3. Multiple Parameter Based Segmentation  

The alternate method is to perform multiple parameters based masking.  For this, 

the x and y gradients of the height data are calculated and a 2D histogram (with 200 x 

200 bins) of the slopes is generated as shown in figure 3.2.12.  Generic peak picking 

algorithms [157] could be used to identify the number of peaks in the histogram and used 

to separate the cluster data close to these three peaks.   Sub-images a – c in figure 3.2.13, 

show the segmented individual facets and figure 3.2.13d shows the combined image color 

coded to show the three facets of the pattern.  Once the three facet data is grouped, each 

facet can be separated, segmented and labeled, as shown in figure 3.2.14. 

a b c

FIGURE 3.2.11: (a) Surface after honing process (b) Result from single-scale 
analysis (c) Result from multi-scale analysis (B3 spline and 2D DWF). 
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FIGURE 3.2.13: (a-c) Three individual facets (d) all three facets shown together. 

a b 

c d 

FIGURE 3.2.12: 2D histogram plot of slopes.  
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FIGURE 3.2.14: Labeled segments of selected facet of the pyramid pattern. 

FIGURE 3.2.15: Color coded least squares plane of all facets of the pyramid 
pattern. 
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The least squares planes fit on the individual facets are shown in figure 3.2.15, 

with three facets represented in separate colors.  Table 3.2.1 shows the average and 

standard deviation of angle made by individual facets with respect to the horizontal plane. 

Benefits of using multi-scale analysis were briefly mentioned while explaining 

different segmentation approaches.  Segmentation on multi-scale decomposed data is 

very effective for multi-scale defect characterization.  Multi-scale decomposition or 

transformation could be performed using three different methods, yielding different sub-

sets of data.  The effectiveness of segmentation directly depends on the obtained sub-sets.  

Therefore, these three methods will be discussed in detail in the following section. 

3.2.4.  Transformation Methods for Engineered Surfaces 

Only DWF method was considered for this study, because of their non-decimation 

and shift invariance advantages.  Within DWF method, three transformation methods that 

were considered for this study are described as follows: 

• 2D DWF method: DWT is usually performed in two-steps, with row operations 

followed by column operations.  The same approach could also be used for DWF 

method.  For example, a 2D B3 spline could be used as mother wavelet, and row and 

columns could be transformed in stages.   

• 3D DWF method: The second methods would be to create a 3D B3 spline and 

perform row and column transformations simultaneously.  The 3D B3 spline is given 

by, 

Average Std. dev.
1 Red 2.693 0.130
2 Yellow 2.641 0.211
3 Blue 3.088 0.178

Angle (Degrees)Facets

Table 3.2.1: Average and standard deviations of calculated normals for facets. 
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• 3D Hybrid DWF method: The third method is a hybrid method where the value 

pertaining to 3D approach is calculated and then the mean value of that calculated 

value and the actual data point is taken.  This method is similar to hybrid median 

filter used in image processing domain, as an edge preserving method.  For structured 

surfaces with high aspect ratios and sudden height transitions, this method would be 

able to better preserve the edges at different scales.  

The impact of using these methods on the data fusion was studied using two 

samples – one containing an array of square grids and another a square wave spacing 

specimen standard.  A six-level DWF transformation was performed on the square grid 

array data using B3 spline.  All three methods yield the original data upon inverse 

transformation, as shown in figure 3.2.16.   
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The sub sets obtained using 2D, 3D and 3D Hybrid method are shown in figures 

3.2.17, 3.2.18 and 3.2.19 respectively.  It can be seen that even though the three methods 

yield the original data back after inverse transformation, the individual sub set data are 

different when individual sub sets are compared between the three methods.  This would 

result in different fused data when fusion is performed using weighted average methods.   

 

 

 

 

 

 

FIGURE 3.2.16: (a) Original data , (b-d) Data obtained after inverse transformation 
of 6 sub sets obtained of 2D, 3D and 3D Hybrid methods respectively. 

a b

c d
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FIGURE 3.2.17: Square grid array sub datasets obtained using 2D method. 

a b

c d

e f
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FIGURE 3.2.18: Square grid array sub datasets obtained using 3D method. 

a b

c d

e f
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FIGURE 3.2.19: Square grid array sub datasets obtained using 3D Hybrid method. 

a b

c d

e f



 127

 

 

 

 

 

 

 

FIGURE 3.2.20: Square wave spacing specimen sub datasets obtained using 
2D method. 

a b

c d

e f
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FIGURE 3.2.21: Square wave spacing specimen sub datasets obtained using 3D 
method. 

a b

c d

e f
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The sub-sets obtained on square wave spacing specimen standard are shown in 

figures 3.2.20, 3.2.21 and 3.2.22 respectively.  From figure 3.2.20, it can be seen that this 

method could be of potential use for defect characterization (pointed out by four red 

arrows), as the other two methods do not show this defect effectively.  Since the 2D 

method results in sub-sets which show column wise features more pronounced, this 

method is not preferred for fusion.  Therefore, only 3D and 3D Hybrid methods will be 

considered for fusion needs, but all three will be considered for fine registration purposes. 

FIGURE 3.2.22: Square wave spacing specimen sub datasets obtained using 3D 
Hybrid method. 

a b

c d

e f
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The salient differences between three DWF methods were described using two 

patterned surface samples.  It was shown that 2D method was very effective for defect 

characterization.  Since the sub sets obtained using 2D method showed pronounced 

features along one axis only, it was removed from further study for consideration for data 

fusion step.  All three approaches were able to reproduce the original surface, but 

individual sub sets were characteristically different.  Hence would result in different 

performance levels for same type of edge detection methods.  The impact of 

transformation methods on edge detection is detailed in the following section. 

3.2.5. Impact of Transformation Methods on Edge Detection 

Three most commonly used edge detection methods -‘Canny’, ‘Sobel’, and 

‘Watershed’, were chosen for this study.  The edges obtained from these three methods 

are different from the perspective of number of points detected, spread etc, as shown in 

figure 3.2.23.  Figure 3.2.23a shows the data obtained on a honed surface, which is 

converted to a gray scale image.  Figure 3.2.23b shows the edges obtained using ‘Canny’ 

method performed at single scale.  Figure 3.2.23c and d show results obtained using 

‘Sobel’ and ‘Watershed’ methods respectively.  It can be seen from figure 3.2.23d, that 

‘Watershed’ method generates a higher magnitude of control points, which are distributed 

across the entire area.  Even though the ‘Watershed’ method yields the highest density of 

data points, it may not be the efficient way as the excessive amount of data points result 

in increased computation time during alignment.   
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For this study, ‘Watershed’ edge detection method was only used on a single-

scale, and four levels of decomposition was performed using three methods of 

decomposition (2D, 3D and 3D Hybrid) and individual sub-images were treated with two 

edge detection methods (‘Canny’ and ‘Sobel’).  Detected edges were combined at 

increasing levels of decomposition as shown in figures 3.2.24 and 3.2.25.  Comparing 

figures 3.2.23b with 3.2.24 a- d, it can be seen that edges obtained in DWF sub-images 

are comparatively higher compared to single-scale edge detection.   

 

a b 

c d 

FIGURE 3.2.23: (a) Original Image (b) Edges detected using ‘Canny’ method (c) Edges 
detected using ‘Sobel’ method (d) Edges detected using ‘Watershed’ method. 
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FIGURE 3.2.24: Edges detected using ‘Canny’ method on sub-images obtained using  4 
level ‘3D’ DWT method (a) from first sub-image (b) from first two sub-images (c) from 
first three sub-images and (d)all four sub-images. 

a b 

c d 
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FIGURE 3.2.25: Edges detected using ‘Sobel’ method on sub-images obtained using  4 
level ‘3D’ DWT method (a) from first sub-image (b) from first two sub-images (c) 
from first three sub-images and (d)all four sub-images. 

a b 

c d 
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Figure 3.2.26 compares edges obtained (when all four sub-images are used) from 

three DWF methods (2D, 3D and 3D Hybrid) and two edge detection methods (‘Canny’ 

and ‘Sobel’).  Comparing figures ‘a’ with ‘d’, ‘b’ with ‘e’, and ‘c’ with ‘f’, it can be seen 

that in general ‘Canny’ edge detection method performs better than ‘Sobel’ method.  

FIGURE 3.2.26: (a-c) Edges detected using ‘Sobel’ edge detection method on all sub-
images obtained using  (a)  ‘2D’ DWT (b) ‘3D’ DWT (c) ‘3DH’ DWT ; (d-f) Edges 
detected using ‘Canny’ edge detection method on all sub-images obtained using  (d)  ‘2D’ 
DWT (e) ‘3D’ DWT (f) ‘3DH’ DWT. 

a d 

b e 

c f 
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Comparing figures ‘a’ with ‘b’ and ‘c’, and ‘d’ with ‘e’ and ‘f’, it can be seen that ‘2D’ 

method provides significantly noisy edges.  Comparing figures ‘b’ with ‘c’ and ‘d’ with 

‘e’, it can be seen that both ‘3D’ and ‘3DH’ method performs similar. 

The benefits of using multi-scale decomposed images for edge detection and 

thereby calculating control points for transformation were discussed in detail.  In order to 

select the transformation method, edge detection method for fine registration, a 

simulation study was performed, which will be explained in the following section. 

3.2.6. Impact of Noise and Transformation Methods on Fine Registration  

In order to characterize the impact of coarse registration, single scale and multi-

scale edge detection methods and transformation methods, a study was performed on 

previously generated original and noisy versions of 12 datasets.  First simulation run was 

performed as a best case scenario for axial and angular alignment, where the original 

image and the noisy version of the image were considered with no translation or 

rotational errors.  Average translational error was computed from the results obtained 

from 10 noise types and is shown in figure 3.2.27a, along with the observed variations.  

The computation time on a HP computer (with Intel ® Core™ i5, 2.8 Ghz processor, 6 

GB RAM and 64-bit operating system) is shown in figure 3.2.27b.  From figure 3.2.27a, 

it can be seen that the single scale ‘Watershed’ edge detection performs significantly 

better compared to all other options and the next best performance is obtained from 

‘Canny’ and ‘Sobel’ edge detection methods when ‘3D’ method of decomposition is used 

and edges obtained from at least 3 levels of sub images are considered. 
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FIGURE 3.2.27: (a) Average and standard deviation of calculated translation 
values using different decomposition, edge detection options (b) Computation 
time for the different options, under zero translation and angular misalignment.  
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FIGURE 3.2.28: (a) Average and standard deviation of calculated translation 
values using different decomposition, edge detection options (b) Computation 
time for the different options, under 1 pixel translation and zero angular 
misalignment. 
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For the second run, the noisy image was shifted by one pixel along both axis and 

the results are shown in figure 3.2.28 a and b.  For this scenario, single scale ‘Watershed’ 

option performed better followed by ‘Canny’ and ‘Sobel’ methods when ‘3D’ method of 

decomposition was used and edges obtained from at least 3 levels of sub images are 

considered.  ‘Watershed’ method yielded the translation offset values closest to one 

(which was the induced offset) and had the least variation. 

For the third run, the noisy image was shifted by four pixels along both axis and 

rotated clockwise by 1°.  The results are shown in figure 3.2.29 a and b.  For this scenario 

too, single scale ‘Watershed’ option performed better followed by ‘Canny’ method when 

‘3D Hybrid’ method of decomposition was used and edges obtained from at least 3 levels 

of sub images are considered.  ‘Watershed’ method yielded the translation offset values 

closest to four (which is the expected offset after 1° rotation) and has the least variation 

For the fourth run, the noisy image was treated with a convolution filter and 1° 

rotation.  The results are shown in figure 3.2.30 a and b.   For this scenario, single scale 

‘Watershed’ option performed significantly better followed by ‘Canny’ method when ‘3D 

Hybrid’ method of decomposition was used and edges obtained from at least 3 levels of 

sub-images are considered.  

The performance results for ‘Watershed’ edge detection method is summarized in 

the table 3.2.2.  The performance results for ‘Canny’ edge detection method on sub 

images obtained using 3D Hybrid method when first three decomposition levels are 

considered are summarized in table 3.2.3 and table 3.2.4 summarizes the performance 

when all four levels are considered.   
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FIGURE 3.2.29: (a) Average and standard deviation of calculated translation 
values using different decomposition, edge detection options (b) Computation 
time for the different options, under 4 pixel translation and 1° angular 
misalignment. 
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FIGURE 3.2.30: (a) Average and standard deviation of calculated translation 
values using different decomposition, edge detection options (b) Computation 
time for the different options, under convolution and 1° angular misalignment. 
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TABLE 3.2.4: Performance results of ‘Canny’ edge detection method on 
all sub images obtained using a 4-level 3D Hybrid decomposition method. 

X Y
1 With no misalignment 0.727 0.834 76
2 With 1 pixel misalignment 0.809 0.871 82
3 With 4 pixel misalignment 1.505 0.879 132
4 With 4 pixel misalignment and blurr 1.307 0.969 167

Canny Edge Detection Method (3D Hybrid + L4)

Sl.No Test Type
Translation Error Std. 

Dev. (in pixels)
Avg. 

Computation 
Time (in Sec)

TABLE 3.2.3: Performance results of ‘Canny’ edge detection method on 
first three sub images obtained using a 4-level 3D Hybrid decomposition 
method. 

X Y
1 With no misalignment 0.81 0.844 52
2 With 1 pixel misalignment 0.863 0.848 56
3 With 4 pixel misalignment 1.584 0.855 88
4 With 4 pixel misalignment and blurr 1.307 0.954 112

Sl.No Test Type
Translation Error Std. 

Dev. (in pixels)
Avg. 

Computation 
Time (in Sec)

Canny Edge Detection Method (3D Hybrid + L3)

TABLE 3.2.2: Performance results of ‘Watershed’ edge detection method 
on single-scale images. 

X Y
1 With no misalignment 0.245 0.268 69
2 With 1 pixel misalignment 0.266 0.297 82
3 With 4 pixel misalignment 1.059 0.542 171
4 With 4 pixel misalignment and blurr 0.808 0.461 261

Sl.No
Translation Error Std. 

Dev. (in pixels)
Avg. 

Computation 
Time (in Sec)

Test Type

Watershed Edge Detection Method
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Comparing the performance results summarized in tables 3.2.2, 3.2.3 and 3.2.4, it 

can be seen that even though single scale ‘Watershed’ edge detection method takes 

approximately twice the computation time of ‘Canny’ edge detection method (when at 

least three sub-images are considered),  it is able to align the datasets within one pixel 

accuracy.  Therefore, single scale ‘Watershed’ edge detection is selected as the preferred 

method for obtaining the control points for fine registration. 

3.3. Summary  

Coarse registration using Normalized Cross Correlation (NCC) was explained and 

a simulation study was performed to understand the impact of noise and defocus on 

coarse registration.  It was shown that type of noise had negligible impact on coarse 

registration.  Then segmentation and transformation used for fine registration was 

discussed.  Multiple domains based and multiple parameter based segmentation was 

described.  The potential advantages of multi-scale decomposition based edge detection 

and feature detection for effective characterization and defect analysis on engineered 

surfaces was explored.  The impact of three different transformation methods on edge 

detection was explained.   

A simulation study was conducted to find the impact of noise and transformation 

methods on fine registration.  Based on this study, single scale ‘Watershed’ method was 

chosen as the preferred edge detection method.  Among multi-scale methods, it was 

demonstrated that the performance is highly dependent on the type of surface.  ‘Canny’ 

was chosen as the preferred method when ‘3D’ or ‘3D Hybrid’ method of decomposition 

is used and at least 3 levels of sub-images are considered.   
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After careful analysis of coarse registration capabilities, transformation methods, 

edge detection methods and fine registration, the next step is to evaluate the fusion 

methods and fusion metrics.  Various single-scale and multi-scale fusion metrics have 

been proposed for image quality analysis purposes.  These fusion metrics performance in 

fusion of data pertaining to surface metrology domain needs to be explored.  Different 

weighted average based fusion schemes have been developed in order to generate fused 

data that would represent both the datasets, compared to scenario when either one is 

individually used.  The capability of these fusion methods for different types of surface 

data needs to be compared in order to select the robust method that could handle most 

types of data and yield high synergy of data under consideration. 



CHAPTER 4: FUSION STRATEGIES AND METRICS 
 
 
 
 In the previous chapter, the impact of translational and angular misalignment, and 

noise on coarse registration was analyzed.  Three transformation methods and their 

impact on edge detection were discussed.  Then the impact of noise and transformation 

methods on fine registration was analyzed.  Based on simulation studies, ‘Watershed’ 

was chosen for single-scale based edge detection. 

After coarse and fine registration, the next major step in Multi-Scale Data Fusion 

(MSDF) is data fusion.  Data fusion can be performed at pixel level using simple methods 

like using the maximum, minimum or average value of the datasets.  For example, when 

maxima based data fusion is performed, the following rule is used F(i,j) = Max [A(i, j), 

B(i, j)], where F(i, j) is a pixel in the fused data and A(i, j), B(i, j)  are the corresponding 

pixels in both data.  Apart from these methods, weighted averages could also be used.  In 

order to evaluate the performance of different fusion methods, fusion metrics are used.  

Since there are multiple fusion metrics, performance evaluation and selection of the 

fusion metrics is critical.  Therefore, various single-scale and multi-scale fusion metrics 

will be studied for their performance and then the selected fusion metrics will be used as 

performance metrics to study the selected fusion methods. 
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4.1. Fusion Metrics 

4.1.1. Single-scale Based Performance Metrics 

These metrics are mostly useful for characterizing single-scale data fusion 

methods, but can also be used for multi-scale data fusion methods for their simplicity. 

The most commonly used metrics are as below 

• Root Mean Square Error (RMSE) : ∑∑
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where R denotes reference data, F denotes fused data, (i, j) a given data point and 

N x M is the size of the data. RMSE increases with the increase in deviation 

between R and F.  The method which results in least RMSE value is preferable. 

• Peak Signal to Noise Ratio (PSNR) 
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log10 , where L is the number of gray 

levels in the image, after the data is converted to a normalized gray scale image d 

based on the heights in the data. PSNR will be infinity when R and F are exactly 

same.  The data fusion process that yields the highest PSNR value is desirable. 

• Mutual Information (MI) 
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log),( , where h R,F denotes the normalized joint 

gray level histogram images R and F, obtained by converting the datasets into 

gray scale images and hR, hF are the normalized marginal histograms of the two 

images. 
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• Universal Quality Index (UQI)[158] 
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UQI calculates the amount of salient information that has been effectively 

transferred from image x to image y.  The possible values for UQI range from -1 

to 1 and the best value 1 would be achieved images x and y are exact. 

• Overall Cross Entropy (CE) : 
2

);();();,( FYCEFXCEFYXCE +
= , where  

∑
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2 )(
)(log)();(  and X, Y are the source images and F is the fused 

image, obtained by converting the datasets into gray scale images 

4.1.2. Multi-scale Based Performance Metrics 

These metrics are based on single-scale metrics but have been adapted for multi-

scale data.  Many of single-scale performance metrics could be directly applied to the 

individual scale images.  The process would in a series of results corresponding to the 
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level of decomposition performed.  These results could be averaged or weighted averaged 

to calculate the final result.   

• Multi Scale Root Mean Square Error (MS-RMSE) 

∑
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n
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1 , where, RMSEj is the root mean square error value calculated 

on individual scale image j after n-level decomposition of original and fused images.  

• Multi Scale Structural Similarity Index (MS-SSIM) [159, 160]  
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where, one of the original datasets X and the fused dataset Y are taken and both are 

decomposed to M levels. lM(X,Y) is the luminance comparison factor, which is computed 

only at the largest scale M and c(X,Y) and s(X,Y) are the contrast and structural similarity 

comparison factors computed at all scales. 
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where µx, σx and σxy are mean of X, standard deviation of X and covariance of X and Y 

respectively and C1, C2 and C3 are small constants given by C1 = (K1L)2, C2 = (K2L)2 and 

C3 = C2/2, where L is the dynamic range of the gray scales (255), K1<<1 and K2 << 1. α, 

β, γ are parameters chosen according to the importance of three factors – luminance, 
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contrast and structural similarity.  When α = β = γ = 1, and C1 = C2 = 0, the structural 

similarity index results in universal image quality index.  

Instead of calculating an average value for RMSE and SSIM from all the sub 

datasets, the individual values are treated independently for the proposed analysis.   

4.1.3. Evaluation of Performance Metrics  

In order to characterize the performance of individual metrics, previously used set 

of 12 datasets and 11 noisy versions of those datasets were evaluated using single-scale 

based metrics (RMSE, PSNR, CE, MI, UQI and SSIM) and multi-scale based metrics 

(MS-SSIM and MS-RMSE).  With the known levels of noise that was added to the data, 

the expected quality level should closely track the noise levels demonstrating a specific 

trend, as shown in figure 4.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.1.1: Expected quality metric to correspond to the levels of additive noise. 
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RMSE results (shown in figure 4.1.2) show that it is able to differentiate between 

noise levels within each data type, but there is no correlation between data types, as the 

metric doesn’t follow the expected trend shown in figure 4.1.1.  PSNR (shown in figure 

4.1.3), and CE (shown in figure 5.1.3) perform similarly. 

FIGURE 4.1.2: Root Mean Square Error (RMSE) values obtained on 12 datasets 
with 11 noise levels. 
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FIGURE 4.1.3: Picture Signal to Noise Ratio (PSNR) values obtained on 12 
datasets with 11 noise levels. 

PSNR

-45
-40
-35
-30
-25
-20
-15
-10

-5
0

50% 100% 150% 50% 100% 150% 50% 100% 150%

Blurr Gaussian Speckle Salt & Pepper Poisson

Noise Type



 150

 

MI (shown in figure 4.1.5), UQI (shown in figure 4.1.6), and SSIM (shown in 

figure 4.1.7) are able to differentiate between noise levels as well as show a stable 

correlation on all data types, similar to the expectation shown in figure 4.1.1.  Based on 

FIGURE 4.1.4: Cross Entropy (CE) values obtained on 12 datasets with 11 noise 
levels. 
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FIGURE 4.1.5: Mutual Information (MI) values obtained on 12 datasets with 11 
noise levels. 
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the performance in this study, MI, UQI, and SSIM were chosen as preferred metrics for 

single-scale based performance metrics.   

 

FIGURE 4.1.6: Universal Quality Index (UQI) values obtained on 12 datasets with 
11 noise levels. 
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FIGURE 4.1.7: Structural Similarity Index (SSIM) values obtained on 12 datasets 
with 11 noise levels. 
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Figure 4.1.8 shows the MI values obtained on individual data sets.  It can 

also be seen from figure 4.1.8 that MI is able to show that ‘Data no.5’ behaves 

differently compared to other data.   

 

For multi-scale based metrics performance study, the images were transformed 

into six sub-images using 6-level DWF using ‘3D’ method.  Instead of calculating an 

average of six individual sub-image based values, the values were treated independently.  

Figure 4.1.9 and 4.1.10 show the calculated SSIM values for first three and last 

three sub-images respectively.  From figure 4.1.9, it can be seen that the major noise 

impacts are in the first level of sub-image and as the level progresses, there is gradually 

lesser impact of noise.   

 

FIGURE 4.1.8: Individual Mutual Information (MI) values obtained on 12 datasets 
with 11 noise levels. 
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FIGURE 4.1.9: Structural Similarity Index (SSIM) values obtained on 12 
datasets with 11 noise levels, for first three levels. 
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MS - SSIM 5
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FIGURE 4.1.10: Structural Similarity Index (SSIM) values obtained on 12 
datasets with 11 noise levels, for last three levels. 
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Even though MI was able to differentiate the impact of noise on ‘Data no.5’ 

similar to MS-SSIM, the potential drawback to this metric is that it doesn’t provide a 

baseline to evaluate like UQI, SSIM and MS-SSIM, which are set to have a maximum 

value of 1.   

Having selected the single-scale and multi-scale performance metrics, the next 

step is to evaluate different fusion methods.  The easier options would be to either select 

the maximum value or mean value between the two datasets.  Since the objective is to 

merge significant details from both the data, weighted averages are more suitable.  

Therefore, activity based weighted averages will be considered in detail in the next 

section. 

4.2. Weighted Averaging Methods 

Weighted averaging can be performed based on individual data point or based on 

a window / kernel or based on a combination of wavelet coefficients and window.   

4.2.1. Regional Energy Based (RE)   

This method [161] uses window based activity level measurement called regional 

energy and then a match degree is computed.  Based on a preset threshold value, the 

match degree is the used to calculate weighted averages.  After n level of decomposition, 

two sub images A(i, j) and B(i, j) are taken and region energies VA(i, j) and VB(i, j) are 

calculated. 
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The match degree M (i, j) is then computed using the formula 
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The fusion rule is given (for a selected threshold of T (T > 0.5)) by,  
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4.2.2. Regional Edge Intensity Based (REI)  

This method [162] also uses a window based activity level measurement called 

edge intensity, which is used to calculate corresponding weightage factors.  After n level 

of decomposition, if f (i, j) refers to the data point in a sub image and R (m, n) a m x n 

window.  Then the edge intensity of R(m, n) is defined by 
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The weights are calculated using the formula 
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The new pixel value is obtained by 
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4.2.3. Combination of Wavelet Coefficients and Local Gradients (WGC):  

This method [163] uses a combination of two activity level measurements to 

calculate the weightage factors.  Let WA j,k (m,n) and WB j,k (m,n) stand for wavelet 

coefficients of source image A and source image B, j is the decomposed resolution level 

and k-0,1,2,3 are the four frequency bands.  The local gradient of wavelet coefficient 

Wj,k(m,n) is defined as below 

{ }41,),(max)),(( ,, −=×= pnmWKnmWGradient kjpkj , 

where Kp are the four directional gradient operators. p=1 is the convolution kernel for 

135 degree directions, p=2 for the 90 degree, p=3 for 0 degree and p=4 for 45 degree, as 

shown in figure 4.2.1. 
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The proposed image activity level measurement combines the wavelet coefficient 

at the sampling point (m, n) and its local wavelet coefficient gradient feature together. 

),()),(()),(( ,,, nmWnmWGradientnmWA kjkjkj ×= , 

where A (Wj,k(m,n)) reflects the activity level information of the wavelet coefficient 

Wj,k(m,n).  The image fusion scheme is given by, 
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Three activity based weighted average data fusion methods (RE, REI and WGC) 

were described.  In order to evaluate the three methods and select the optimal method for 

surface metrology domain, a study was conducted, which will be explained in detail in 

the following sections.  Before describing the performance study, the data fusion process 

step is explained in detail in the next section 

4.3. Data Fusion 

 For data fusion, the previously matched and registered locations from both 

magnification datasets are decomposed into six sub-images using DWF method.  Figure 

4.3.1 and 4.3.2 show the six sub-images obtained on a honed surface at 5X and 20X 

magnification respectively, that were previously registered using coarse and fine 

registration steps. 

FIGURE 4.2.1: Four directional convolution kernels. 
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FIGURE 4.3.1: Six wavelet planes (a-f) obtained from 5X magnification 
measurement on honed surface. 
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FIGURE 4.3.2: Six wavelet planes obtained from 20X magnification measurement on 
honed surface. 

a b 

c d 

e f 



 161

 

FIGURE 4.3.3: Two set of six wavelet planes fused to obtain new set of six wavelet 
planes. 
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FIGURE 4.3.4: (a) 5X magnification data (b) 20X magnification data (c) 
Fused data on honed surface. 

b 

c 

a 
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 The individual sub-images at each level of decomposition are then fused using 

selected weighted average methods to obtain a new set of six sub-images, as shown in 

figure 4.3.3.  The 5X magnification data is shown in figure 4.3.4a and 20X magnification 

data is shown in figure 4.3.4b.  The six fused wavelet planes are inverse transformed to 

obtain the fused data, as shown in figure 4.3.4c.   

 In order to evaluate the three weighted average based data fusion methods (RE, 

REI and WGC) and select the optimal method for surface metrology domain, a study was 

conducted, which will be explained in detail in the next section. 

4.4. Performance Evaluation of Transformation and Fusion Methods  

In order to evaluate the performance of two transformation methods (3D and 3D 

Hybrid), and three fusion methods (RE,REI and WGC), 12 sets of data - 4 sets each of 

directional structured surface (shown in figure 4.4.1) , non-directional structured surface 

(shown in figure 4.4.2) and systematic non-engineered surface (shown in figure 4.4.3), 

were fused using a 6-level DWF transformation, coarse registration was performed using 

NCC, ‘Watershed’ edge detection on single scale was used and the obtained control 

points were used for fine registration using ICP finite difference method.   
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a b 

d c 

FIGURE 4.4.1: Four structured directional surfaces considered (a) Beam shaper 
optical surface at 50X and 100X optical magnification (b) Fresnel micro-lens array at 
5X and 20X optical magnification (c) Square grid pattern surface at 10X and 20X 
optical magnification (d) Concentric square pattern surface at 10X and 20X optical 
magnification. 
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a b

dc

FIGURE 4.4.2: Four structured non-directional surfaces considered (a) Dipole 
diffuser optical surface at 50X and 100X optical magnification (b) Spot array 
generator optical surface at 50X and 10X optical magnification (c ) and (d) Pattern 
generator optical surface at 50X and 100X optical magnification.  
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FIGURE 4.4.3: Four systematic surfaces considered (a) line generator  optical 
surface at 10X and 20X optical magnification (b) Turned surface at 5X and 20X 
optical magnification (c) Honed surface at 5X and 20X optical magnification (d) 
Honed surface at 5X and 10X optical magnification.  

a b

dc
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Rl,F Rl,F Rl,F Rl,F Rl,F Rl,F Rh,F Rh,F Rh,F Rh,F Rh,F Rh,F

Data
fusion 

method
R11(1) R11(2) R11(3) R11(4) R11(5) R11(6) R12(1) R12(2) R12(3) R12(4) R12(5) R12(6)

3D 0.97231 0.99679 0.99553 0.99122 0.9933 0.86604 1 0.99094 0.9864 0.98163 0.99103 0.81289
3DH 0.97712 0.97265 0.96936 0.9612 0.94523 0.86604 1 0.96469 0.91062 0.90752 0.89274 0.81289
3D 0.97231 0.99574 0.99432 0.99181 0.99329 0.95908 1 0.99108 0.99152 0.99082 0.99431 0.96259

3DH 0.97712 0.85136 0.85213 0.90022 0.90556 0.95908 1 0.85851 0.77444 0.80843 0.92352 0.96259
3D 0.97231 0.99333 0.98382 0.95746 0.93989 0.64242 1 0.98963 0.97791 0.9539 0.94091 0.59898

3DH 0.97712 0.56768 0.52067 0.58589 0.64957 0.64242 1 0.55405 0.48895 0.55429 0.61961 0.59898
3D 0.2007 0.43849 0.38758 0.95576 0.91813 0.93114 1 1 1 0.61329 0.74829 0.77558

3DH 0.2906 0.40867 0.42335 0.91007 0.94664 0.93114 1 1 1 0.70469 0.79435 0.77558
3D 0.2007 0.43849 0.38758 0.92567 0.92701 0.87568 1 1 1 0.62762 0.79636 0.89354

3DH 0.2906 0.40867 0.42335 0.86752 0.86615 0.87568 1 1 1 0.70992 0.81846 0.89354
3D 0.2007 0.43849 0.38758 0.70823 0.67425 0.65568 1 1 1 0.51824 0.69279 0.69971

3DH 0.2906 0.40867 0.42335 0.51577 0.57833 0.65568 1 1 1 0.46339 0.62006 0.69971
3D 0.56864 0.91031 0.94743 0.98296 0.99101 0.92935 1 0.92243 0.95609 0.98337 0.99114 0.92752

3DH 0.65533 0.93037 0.96803 0.98395 0.98856 0.92935 1 0.94567 0.96621 0.98272 0.98789 0.92752
3D 0.56864 0.94446 0.96962 0.99331 0.99768 0.99475 1 0.94186 0.96519 0.99243 0.99757 0.99072

3DH 0.65533 0.94449 0.96742 0.98998 0.99577 0.99475 1 0.92971 0.96906 0.99022 0.99573 0.99072
3D 0.56864 0.87178 0.8809 0.92136 0.94267 0.61742 1 0.9116 0.90589 0.92371 0.94306 0.61664

3DH 0.65533 0.74798 0.804 0.8324 0.86465 0.61742 1 0.75358 0.81889 0.83234 0.86327 0.61664
3D 0.59743 0.94719 0.97632 0.99092 0.99366 0.99525 1 0.94873 0.9777 0.99088 0.99363 0.99532

3DH 0.73361 0.9522 0.98144 0.98952 0.99353 0.99525 1 0.96538 0.98211 0.98878 0.9934 0.99532
3D 0.59743 0.96708 0.98543 0.99647 0.99816 0.99937 1 0.96579 0.98435 0.9964 0.99813 0.99931

3DH 0.73361 0.97337 0.98945 0.99485 0.99811 0.99937 1 0.96296 0.98583 0.99426 0.99762 0.99931
3D 0.59743 0.91753 0.92882 0.95481 0.95919 0.97209 1 0.93943 0.941 0.95619 0.95808 0.97222

3DH 0.73361 0.91649 0.94247 0.94176 0.95059 0.97209 1 0.91987 0.9425 0.93838 0.9497 0.97222
3D 0.49623 0.91662 0.95937 0.97927 0.98937 0.97532 1 0.91 0.95505 0.97729 0.98886 0.97249

3DH 0.60818 0.94382 0.96192 0.97994 0.98714 0.97532 1 0.93988 0.96095 0.9777 0.98717 0.97249
3D 0.49623 0.94139 0.97298 0.98865 0.99617 0.98332 1 0.95246 0.97943 0.99074 0.99665 0.98994

3DH 0.60818 0.95503 0.97097 0.98809 0.99551 0.98332 1 0.9606 0.97746 0.99043 0.99665 0.98994
3D 0.49623 0.88922 0.91328 0.941 0.97168 0.94808 1 0.92728 0.95027 0.96377 0.98053 0.97544

3DH 0.60818 0.89338 0.89839 0.93785 0.96869 0.94808 1 0.9391 0.94908 0.96057 0.98005 0.97544
3D 0.64934 0.9129 0.9726 0.99555 0.9982 0.99647 1 0.9358 0.97108 0.99528 0.99815 0.99646

3DH 0.70737 0.95425 0.98201 0.99595 0.99746 0.99647 1 0.95171 0.98556 0.99563 0.99726 0.99646
3D 0.64934 0.9394 0.98228 0.99723 0.9993 0.99874 1 0.95759 0.9872 0.99767 0.99935 0.99905

3DH 0.70737 0.95589 0.98496 0.99753 0.99896 0.99874 1 0.96663 0.99083 0.99779 0.9989 0.99905
3D 0.64934 0.88846 0.94453 0.98482 0.99283 0.99233 1 0.94292 0.96936 0.9909 0.99482 0.99605

3DH 0.70737 0.89833 0.95887 0.98391 0.99151 0.99233 1 0.95055 0.97382 0.98878 0.99224 0.99605
3D 0.62188 0.8948 0.94913 0.98226 0.98658 0.97464 1 0.86608 0.943 0.9826 0.98931 0.98505

3DH 0.65515 0.90919 0.96321 0.97948 0.98159 0.97464 1 0.92018 0.96397 0.98177 0.98639 0.98505
3D 0.62188 0.91804 0.96294 0.98794 0.99425 0.98289 1 0.90634 0.96629 0.98825 0.99443 0.99737

3DH 0.65515 0.91983 0.96682 0.98703 0.99335 0.98289 1 0.92237 0.97063 0.98789 0.99365 0.99737
3D 0.62188 0.86096 0.88066 0.92931 0.95742 0.954 1 0.86884 0.90979 0.94743 0.96799 0.97688

3DH 0.65515 0.83165 0.87887 0.92147 0.9514 0.954 1 0.87042 0.90963 0.93808 0.96207 0.97688
3D 0.64503 0.92453 0.97738 0.99584 0.99789 0.97895 1 0.93505 0.9747 0.9953 0.99774 0.97581

3DH 0.70446 0.95847 0.9861 0.99455 0.99523 0.97895 1 0.94758 0.98309 0.99429 0.99506 0.97581
3D 0.64503 0.94949 0.98576 0.99774 0.99931 0.9914 1 0.95792 0.98779 0.9977 0.99917 0.99277

3DH 0.70446 0.96226 0.9887 0.99752 0.99903 0.9914 1 0.96742 0.98902 0.99777 0.99884 0.99277
3D 0.64503 0.90399 0.94833 0.98411 0.99122 0.95764 1 0.9396 0.96601 0.98928 0.99245 0.9757

3DH 0.70446 0.90009 0.93967 0.97637 0.97976 0.95764 1 0.93124 0.95679 0.9822 0.98138 0.9757
3D 0.48351 0.90702 0.94641 0.94624 0.96805 0.93406 1 0.88741 0.9223 0.92386 0.97437 0.81421

3DH 0.58078 0.90095 0.90794 0.91545 0.94676 0.93406 1 0.86398 0.86441 0.85419 0.89294 0.81421
3D 0.48351 0.93232 0.96757 0.96578 0.98573 0.89082 1 0.921 0.9545 0.96411 0.98857 0.89289

3DH 0.58078 0.92951 0.93751 0.922 0.9179 0.89082 1 0.90441 0.92785 0.92391 0.93484 0.89289
3D 0.48351 0.88238 0.87989 0.84846 0.94909 0.64126 1 0.87948 0.87608 0.89094 0.96844 0.60452

3DH 0.58078 0.80603 0.69243 0.57283 0.62 0.64126 1 0.80897 0.69798 0.59068 0.62788 0.60452
3D 0.57731 0.58843 0.79612 0.92659 0.94517 0.84175 1 1 1 0.9298 0.94618 0.82144

3DH 0.70003 0.77256 0.87626 0.89331 0.86077 0.84175 1 1 1 0.87659 0.84965 0.82144
3D 0.57731 0.58843 0.79612 0.95256 0.97495 0.83134 1 1 1 0.94954 0.97645 0.80606

3DH 0.70003 0.77256 0.87626 0.57516 0.69168 0.83134 1 1 1 0.57347 0.68873 0.80606
3D 0.57731 0.58843 0.79612 0.7893 0.83391 0.40189 1 1 1 0.81671 0.8539 0.3839

3DH 0.70003 0.77256 0.87626 0.26931 0.38449 0.40189 1 1 1 0.27108 0.3866 0.3839
3D 0.66541 0.8134 0.93661 0.99132 0.99323 0.87919 1 1 1 0.98689 0.99175 0.98652

3DH 0.76356 0.8568 0.90215 0.87129 0.85325 0.87919 1 1 1 0.97662 0.97779 0.98652
3D 0.66541 0.8134 0.93661 0.99495 0.99739 0.91876 1 1 1 0.9906 0.99109 0.94797

3DH 0.76356 0.8568 0.90215 0.88229 0.90735 0.91876 1 1 1 0.89874 0.94662 0.94797
3D 0.66541 0.8134 0.93661 0.97083 0.98372 0.80367 1 1 1 0.96522 0.97221 0.91875

3DH 0.76356 0.8568 0.90215 0.7749 0.76495 0.80367 1 1 1 0.87119 0.88689 0.91875
3D 0.57834 0.93233 0.97658 0.98927 0.99429 0.80187 1 0.91627 0.97112 0.99088 0.99424 0.79843

3DH 0.67905 0.90504 0.91201 0.91285 0.86179 0.80187 1 0.82959 0.88976 0.9117 0.85413 0.79843
3D 0.57834 0.94328 0.98678 0.99641 0.99782 0.94087 1 0.95272 0.98625 0.99647 0.99843 0.945

3DH 0.67905 0.79653 0.89417 0.9453 0.95994 0.94087 1 0.80119 0.89571 0.94729 0.96501 0.945
3D 0.57834 0.92057 0.95911 0.96975 0.97639 0.46457 1 0.92177 0.96086 0.97434 0.98036 0.46705

3DH 0.67905 0.42533 0.44066 0.45789 0.43809 0.46457 1 0.40808 0.43616 0.45685 0.43938 0.46705

4

RE

REI

WGC

RE

REI

WGC

RE

REI

WGC

SY
ST

EM
AT

IC
 S

UR
FA

CE
S

1

2

3

RE

REI

WGC

3

RE

REI

WGC

4

RE

REI

WGC

1

RE

REI

WGC

ST
RU

CT
UR

ED
 D

IR
EC

TI
ON

AL
 S

UR
FA

CE
S

ST
RU

CT
UR

ED
 N

ON
-D

IR
EC

TI
ON

AL
 S

UR
FA

CE
S

2

RE

REI

WGC

3

RE

REI

WGC

4

RE

REI

WGC

RE

REI

WGC

1

2

RE

REI

WGC

MS-SSIM

TABLE 4.4.1: Multi-scale performance metric for 12 datasets. 
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Table 4.4.1 summarizes the MS-SSIM fusion metric results on 12 datasets.  The 

first six column values are obtained by comparing the low magnification data with the 

fused data and the next six column values are obtained by comparing the high 

magnification data with the fused data.  Within each fusion method, the better performing 

transformation method is shown by bold type face and within each dataset, the better 

performing combination is highlighted with yellow color.  From the table 4.4.1, it can be 

seen that REI fusion method and ‘3D’ transformation method perform better on an 

average.  It can also be seen that ‘3D Hybrid’ method is able to consistently preserve 

finer details of the low magnification data, which was the intended purpose of that 

method.  The difference between the fused data obtained using ‘3D’ and ‘3D Hybrid’ 

method is shown in figure 4.4.4.  From the figure, it can be seen that significant 

difference is seen at high transition areas.  

FIGURE 4.4.4: Difference between fused square grid array data 
obtained using 3D and ‘3D Hybrid’ method showing artifacts near 
sudden transition areas. 
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TABLE 4.4.2: Multi-scale performance metrics for 12 datasets using 
‘3D’ transformation and ‘REI’ fusion method combination. 

Rl,F Rl,F Rl,F Rl,F Rl,F Rl,F Rh,F Rh,F Rh,F Rh,F Rh,F Rh,F

Data R11(1) R11(2) R11(3) R11(4) R11(5) R11(6) R12(1) R12(2) R12(3) R12(4) R12(5) R12(6)

0.97231 0.99574 0.99432 0.99181 0.99329 0.95908 1 0.99108 0.99152 0.99082 0.99431 0.96259
0.2007 0.43849 0.38758 0.92567 0.92701 0.87568 1 1 1 0.62762 0.79636 0.89354
0.56864 0.94446 0.96962 0.99331 0.99768 0.99475 1 0.94186 0.96519 0.99243 0.99757 0.99072
0.59743 0.96708 0.98543 0.99647 0.99816 0.99937 1 0.96579 0.98435 0.9964 0.99813 0.99931
0.49623 0.94139 0.97298 0.98865 0.99617 0.98332 1 0.95246 0.97943 0.99074 0.99665 0.98994
0.64934 0.9394 0.98228 0.99723 0.9993 0.99874 1 0.95759 0.9872 0.99767 0.99935 0.99905
0.62188 0.91804 0.96294 0.98794 0.99425 0.98289 1 0.90634 0.96629 0.98825 0.99443 0.99737
0.64503 0.94949 0.98576 0.99774 0.99931 0.9914 1 0.95792 0.98779 0.9977 0.99917 0.99277
0.48351 0.93232 0.96757 0.96578 0.98573 0.89082 1 0.921 0.9545 0.96411 0.98857 0.89289
0.57731 0.58843 0.79612 0.95256 0.97495 0.83134 1 1 1 0.94954 0.97645 0.80606
0.66541 0.8134 0.93661 0.99495 0.99739 0.91876 1 1 1 0.9906 0.99109 0.94797
0.57834 0.94328 0.98678 0.99641 0.99782 0.94087 1 0.95272 0.98625 0.99647 0.99843 0.9454

SYSTEMATIC SURFACES

1
2
3

3
4

1

STRUCTURED DIRECTIONAL 
SURFACES

STRUCTURED NON-
DIRECTIONAL SURFACES

2

3
4

1
2

MS-SSIM

TABLE 4.4.3: Single-scale performance metrics for 12 datasets using 
‘3D’ transformation and ‘REI’ fusion method combination. 

Rl,F Rh,F Rh,Rl Rl,F Rh,F Rh,Rl Rl,F Rh,F Rh,Rl

Data R6(1) R6(2) R6(3) R7(1) R7(2) R7(3) R8(1) R8(2) R8(3)

0.95421 1.6332 0.8876 0.38342 0.55958 0.4753 0.95399 0.94036 0.90464
-1.764 2.7849 -1.9051 0.33509 0.99431 0.33464 0.33457 0.99378 0.33644
2.7145 4.1774 1.6381 0.42954 0.90095 0.30803 0.84771 0.96835 0.81225
3.3551 4.8871 2.3255 0.45826 0.92981 0.35317 0.86437 0.98269 0.82642
2.1484 4.2011 1.8842 0.43234 0.85638 0.39827 0.73501 0.98677 0.69918
4.1468 5.6686 3.9126 0.52631 0.857 0.55187 0.78655 0.9911 0.77145
3.487 5.3571 3.9264 0.50913 0.80669 0.46801 0.75042 0.9763 0.70235

4.3492 6.0224 4.3134 0.59184 0.88238 0.59666 0.78753 0.9906 0.76761
0.58719 3.1346 0.26262 0.68245 0.95377 0.63091 0.68669 0.97088 0.6509

-0.86498 -0.66012 0.34107 0.36256 0.72014 0.43278 0.71043 0.90105 0.76596
0.091405 2.1367 -0.58533 0.4371 0.90257 0.44177 0.8317 0.98443 0.82173

1.2395 3.3057 0.98117 0.5136 0.94528 0.44213 0.80895 0.98735 0.782744

SYSTEMATIC SURFACES

1
2
3

3
4

1

STRUCTURED DIRECTIONAL 
SURFACES

STRUCTURED NON-
DIRECTIONAL SURFACES

2

3
4

1
2

MI UQI SSIM
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Table 4.4.2 summarizes the MS-SSIM values obtained on all 12 datasets using 

‘REI’ fusion method and ‘3D’ transformation method.  Table 4.4.3 summarizes the 

single-scale fusion metrics for the ‘3D’ transformation and ‘REI’ fusion combination.  

Table 4.4.3 shows three single-scale metrics (MI, UQI and SSIM) when the low 

magnification data (Rl) is compared with fused data (F), high magnification data (Rh) 

with fused data (F), and high magnification data with low magnification data 

respectively.  Comparing the values between (Rh,F) and (Rh,Rl), it can be seen that the 

fused data has better similarity to the high magnification data compared to the low 

magnification data.  This shows that data fusion process is able to produce a synergistic 

effect of preserving significant data pertaining to both the magnifications and generate a 

fused data which is effective in characterizing the surface when compared to both the 

magnification data sets separately.  Figure 4.4.5 shows the fused data for structured 

directional surface sample datasets.   
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The fused data location for Fresnel micro-lens array data (shown in figure 4.4.5b) 

is shown in figure 4.4.6.  Green box is used to show the location of the fused data and a 

red box near the fused location is shown to illustrate the resolution issues when low 

magnification is used. 

 

FIGURE 4.4.5: Fused data for four structured directional surfaces considered 
(a) Beam shaper optical surface (b) Fresnel micro-lens array (c) Square grid 
pattern surface (d) Concentric square pattern surface.  

a

c d

b
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Figure 4.4.7 and 4.4.8 show the fused data for structured non-directional and 

systematic surface sample datasets respectively.  From figure 4.4.5a, 4.4.7 b, c, and d, it 

can be seen that there are visible artifacts near the edges when the fused data is replaced 

into the low magnification data, showing as sudden height transition between fused data 

and the original low magnification data.  These errors are not seen on nominally planar 

surfaces like the ones seen in figure 4.4.7. 

 

FIGURE 4.4.6: Green box showing the fused data and red box showing the 
resolution issues with the low magnification data on Fresnel lens. 
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FIGURE 4.4.7: Fused data for four structured non-directional surfaces 
considered (a) Dipole diffuser optical surface (b) Spot array generator optical 
surface (c ) and (d) Pattern generator optical surfaces.  

a 

c d 

b 
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These visible edge artifacts are mainly due to significant change in between 

datasets pertaining to low frequency.  From figure 4.3.3, it can be seen that both the 5X 

and 20X data have almost similar data at all sub-levels except the last level, which 

represents the lowest resolution level.  The reason for this significant change in shape 

could be due to errors induced in shape at different magnifications, defocus and NA 

variations between different magnifications which were discussed in sections 2.2.6, 2.3.3 

and 2.3.7 of second chapter.  This effect is negligible on nominally planar surfaces and 

becomes significant when dealing with non-planar surfaces and surfaces with high aspect 

FIGURE 4.4.8: Fused data for four systematic surfaces considered (a) Line 
generator optical surface (b) Turned surface (c) and (d) Honed surfaces.  

a 

c d 

b 
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ratio sub-regions.  In order to reduce these edge artifacts and thereby accommodate non-

planar surfaces, the fusion strategy has to change for sub-images containing shape 

information. 

4.5. Summary 

Different fusion metrics were compared for their performance using a set of noisy 

versions of datasets.  Based on that study, three single-scale (MI, UQI and SSIM) and one 

multi-scale performance metric (MS-SSIM) were selected.  Using these performance 

metrics, two directional surface datasets were transformed using ‘3D’ and ‘3D Hybrid’ 

methods and fused using three weighted average methods (RE, REI and WGC).  Based 

on that study, REI method was selected as the preferred fusion method and ‘3D’ as the 

preferred transformation method.  Using the selected options for edge detection, 

transformation method and fusion method, 12 datasets were fused and their performance 

metrics were summarized.   

Visual edge effects on non-planar surfaces were demonstrated and the need for 

optimized fusion strategy was discussed.  In order to reduce these artifacts, a new fusion 

strategy will be explored that would utilize existing philosophy in surface metrology 

domain – separation of roughness, waviness and form.  In the next chapter, surface 

measurement datasets will be treated specifically and specific strategies for data fusion 

for surface metrology datasets in particular will be developed.  First, optimized strategy 

for fusing multiple magnification datasets of non-planar surfaces will be discussed, 

followed by single-scale, single-domain data fusion and single-scale multiple-domain 

data fusion. 

 



CHAPTER 5: FUSION STRATEGIES FOR SURFACE METROLOGY 
 
 
 

In the previous chapters, a generic framework for multi-scale data fusion was 

described along with possible options available at each individual step.  Single-scale and 

multi-scale fusion metrics that could be used to evaluate individual options and optimize 

the fusion process were also described.  The visual edge artifacts seen on non-planar 

surfaces and the need for an optimized fusion strategy to accommodate those surfaces 

were discussed. In this chapter, surface measurement datasets are treated specifically and 

specific strategies for data fusion for surface metrology datasets in particular are 

developed.  First, optimized strategy for fusing multiple magnification datasets of non-

planar surfaces is discussed, followed by single-scale, single-domain data fusion and 

single-scale, multiple-domain data fusion.   

5.1. Multi-scale, Single-domain Data Fusion  

The possible cause of edge artifacts could be due to errors induced in shape at 

different magnifications, defocus and NA variations between different magnifications, 

which were discussed in sections 2.2.6, 2.3.3 and 2.3.7 of second chapter.  This effect is 

very prominent on surfaces that are nominally flat on most areas and have a high aspect 

ratio feature which is measured using higher magnification or sampling interval.  
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 In order to reduce these edge artifacts and thereby accommodate non-planar 

surfaces, the fusion strategy has to change for sub-images containing shape information.  

The framework for multi-scale data fusion for surface metrology datasets is shown in 

figure 5.1.1.  It retains most of the steps that were discussed for a generic multi-scale data 

fusion process, but deviates only for the data fusion step. 

 

Roughness Form Waviness 

FIGURE 5.1.1: Schematic of FWR multi-scale data fusion for surface metrology 
datasets (A) Original Data (B) Pre-condition (outlier removal, resample and resize) 
(C) Coarse registration (D) Fine registration after control point detection (E) Multi 
scale decomposition on selected same size area from both data (F) Multi scale 
Fusion (G) Inverse Transform on fused sub-datasets to obtain fused data (H) Fused 
data replaced to the original location.

A B DC

H G

EF
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5.1.1. Pre-conditioning 

Most naturally occurring surfaces and man-made surfaces could be analyzed in 

multi-scale format provided the data doesn’t have too many outliers and missing data.  It 

is permissible to fill sporadic missing data with linear interpolation techniques, but if the 

missing data is in big continuous areas, filling those areas with mean values or zeros is 

not effective.  This in turn results in poor multi-scale decomposition results. 

The data obtained using high sampling rate (DataHigh) and low sampling rate 

(DataLow) are initially leveled with respect to a reference surface if there is one or a least 

squares plane surface is used as a reference.  The data are normalized and outliers and 

missing data points are replaced with mean value (since the data was previously 

normalized, the mean value will be very close to zero).  If the data is very noisy due to 

vibration issues or system’s dynamic noise level, it is recommended to de-noise the data 

by statistical methods either in Fourier domain or wavelet domain [164, 165].  Either one 

of the data set is resampled to ensure that the ratio of their sampling interval is a power of 

two.  The datasets are also resized to have the array size a power of two, if DWT is the 

chosen decomposition method.  Figure 5.1.2a shows the original 5X magnification data 

of the honed surface and figure 5.1.2b shows the resampled version of the 5X 

magnification data to match the sampling interval of the 20X magnification data. 
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5.1.2. Coarse Registration 

Data Low is up sampled to match the sampling interval of Data High using linear 

interpolation method to generate Data LowHighRes.  Coarse registration is performed using 

normalized cross correlation function on Data LowHighRes with Data High as template and 

then based the peak location, a sub-set image Data LowClip (similar to the area of Data High, 

along with a border region to accommodate angular variation between both the datasets) 

FIGURE 5.1.2: (a) 5X magnification data of honed surface (b) Resampled 
version to match 20X magnification data’s sampling interval. 

a 

b 
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is generated from Data Low.  Figure 5.1.3 shows the 3D mesh representation of the 

calculated NCC values and the black circled location indicates the maximum value of the 

NCC, denoting the possible matching location of 20X magnification data on to 5X 

magnification data.  

 

5.1.3. Fine Registration 

For effective fine registration, it is recommended to perform segmentation and 

edge detection using single ‘Watershed’ method.  Figure 5.1.4 shows the data points used 

for fine registration – green colored data points obtained from 20X magnification data 

and blue colored data points from 5X magnification data.  Magenta colored data points 

were obtained after realignment using ICP finite difference method.   

FIGURE 5.1.3: 3D mesh of NCC for 20X magnification data on 5X 
magnification data.  
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Using the transformation parameters, DataHigh is aligned to DataLow.  A new data 

DataLowClipNew is generated from DataLow based on tx and ty values, and up sampled (to 

match the sampling interval of DataHigh) to get DataLowClipNewRes.  Figure 5.1.5a shows 

DataLowClipNewRes and figure 5.1.5b shows the realigned DataHigh for honed surface sample. 

 

 

 

 

 

 

FIGURE 5.1.4: Green data points obtained from 20X magnification data, 
blue data points obtained from 5X magnification data and magenta data 

points are the realigned location of green data points. 
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5.1.4. Multi-scale Decomposition 

For multi-scale decomposition, à trous DWP method with B3 spline as mother 

wavelet was chosen and six level of decomposition is performed to obtain two sets of six 

wavelet planes for DataLowClipNewRes and DataHigh.  

 

FIGURE 5.1.5: (a) Clipped 5X magnification data 
(b) Realigned 20X magnification data. 

a 

b 
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5.1.5. Data Fusion 

The six wavelet planes obtained are matched as shown in figure 5.1.6.  The planes 

are then categorized in a fashion similar to separation of roughness, waviness and form.  

The first two planes are considered to represent roughness and next two planes to 

represent waviness and last two planes to represent form.  The first two wavelet planes of 

DataLowClipNewRes were obtained by interpolation and therefore they are not considered for 

fusion.  For planes representing form, only the planes of DataLowClipNewRes are considered 

so as to match overall from of DataLow, into which the fused data is going to be placed.  

For the planes belonging to waviness and roughness and that were not obtained by 

interpolation, data fusion is performed at pixel level using REI weighted average 

approach.  This strategy specific to surface metrology domain is named FWR method to 

represent the usage of separation of surface data to ‘Form, Waviness and Roughness’. 
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FIGURE 5.1.6: Two set of six wavelet planes fused to obtain new set of six 
wavelet planes using the FWR method. 

Roughness 

Waviness

Form 
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5.1.6. Inverse Transform 

The six fused wavelet planes are inverse transformed to obtain the fused data, 

which is then replaced into the corresponding location in DataLowHighRes (up sampled 

version of DataLow).   Figure 5.1.7 shows the fused data using the new proposed FWR 

method, on beam shaper optical surface data and surface obtained from turning process, 

which has shown edge artifacts when the generic fusion strategy was followed. 

 

 

FIGURE 5.1.7: Fused data for beam shaper optical surface (a) using all 
frames (b) using FWR method; Fused data for turned surface (c) using all 

frames (d) using FWR method. 

a 

c d 

b 
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 Figure 5.1.8 shows similar results obtained on two honed surface samples 

obtained using the generic fusion strategy and the FWR method.  It can be seen from 

figure 5.1.7 b and d, and 5.1.8 b and d that FWR method is able to avoid edge artifacts. 

 

 

 

FIGURE 5.1.8: Fused data for honed surface (a and c) using all frames (b an 
d) using FWR method. 

a 

c d 

b 



 187

In order to demonstrate the robustness of this method, as an example, a 10X 

magnification measurement on a formed location on a surface of a one cent coin is fused 

with a 5X magnification measurement, as shown in figure 5.1.9.  

 

 

FIGURE 5.1.9: (a) Fused data obtained when all planes are considered for 
fusion (b) Fused data obtained using FWR method. 

a 

b 
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Figure 5.1.9a is obtained when all the six planes were treated equally and fused, 

showing poor transition with the 5X magnification data.  Figure 5.1.9b is obtained when 

the roughness and waviness planes are fused and the form planes are taken from the 5X 

magnification data, showing good transition between the fused data and the 5X 

magnification data. 

 Having successfully demonstrated the fusion of multiple magnification datasets 

on different surface types, as a next step, fusion pertaining to single-scale, single-domain 

data is explored. 

5.2. Single-scale, Single-domain Data Fusion 

Single-scale, single-domain data fusion is particularly useful in situations where 

different light settings could be used to obtain more data.  Consider the measurements 

obtained on spherical surface on the hard disk drive suspension, which was detailed in 

chapter 1.  Figure 5.2.1 shows the 3D data obtained using NT8000 ® system with 10x 

objective and 20% light setting.  Figure 5.2.2 shows data obtained at 35% light setting.  

Due to camera saturation, this setting results in ‘No Data’ condition on most areas except 

the side slope regions.  In order to merge these two data sets, all finite data points from 

both data sets are taken as control points.  The data obtained using 20% light setting was 

considered as the reference data (A) as this data has more information regarding the flat 

surface.  ICP finite difference method was used to align control points from data obtained 

using 35% light setting (B) to A.  The aligned control points are shown in figure 5.2.3. 
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FIGURE 5.2.2: 3D surface plot of the spherical surface at 35% light setting. 

FIGURE 5.2.1: 3D surface plot of the spherical surface at 20% light setting. 



 190

 

FIGURE 5.2.3: Control points (Blue – from data A, Green – from data B, 
Magenta – data of B after alignment).  

FIGURE 5.2.4: Fused 3D data.  
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Since the main surface that is under consideration is a single scale spherical 

surface and there is lot of missing data, multi scale decomposition of these data is not 

preferable.  On a single scale, individual pixel level fusion is performed using maxima 

rule F(i,j) = Max [A(i, j), B(i, j)], where F(i, j) is a pixel in the fused data and A(i, j), B(i, 

j)  are the corresponding pixels in both data.  Since the missing data were replaced with 

either mean value of the data or zero, using average is not preferable.  The fused data is 

shown in figure 5.2.4.  

Having successfully demonstrated single-scale, single-domain data fusion, the 

next step is to fuse the data obtained from two domains.  For this, data shown in figure 

5.2.4 (with spacing of 0.9702 µm) is fused with 2D image shown in figure 5.2.5 obtained 

at 10X magnification with the pixel size of 0.832 µm.   

This method of data fusion is considered as single-scale (as the data sets have 

closely matching sampling size) and multi-domain (as both 2D and 3D data are 

considered) data fusion, which will be explained in detail in the next section. 

FIGURE 5.2.5: 2D image. 
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5.3. Single-scale, Multi-domain Data Fusion 

In order to fuse data obtained from two different domains, the data has to be 

converted to one common domain.  For this, the 3D data (shown in figure 5.2.4) is 

converted to height based gray scale image, as shown in figure 5.3.1.  Then the image is 

resampled using linear interpolation method to match the pixel size of the 2D image.  

Since the 2D image is not entirely height based and is rather a combination of slope and 

height, the control points have to be selected with care.  From both the images, it can be 

seen that the edge of the flat surface and the false edge generated at the transition 

between the flat surface and the spherical surface are present in both images.  Therefore 

these two edges are taken as control points and ICP finite difference algorithm is used for 

aligning the images, but the rotation about x and y axes are set to zero.  After alignment, 

data fusion is performed at pixel level using the maxima rule F(i,j) = Max [A(i, j), B(i, j)], 

where F(i, j) is a pixel in the fused data and A(i, j), B(i, j)  are the corresponding pixels in 

images.  The fused image is shown in figure 5.3.2. 

FIGURE 5.3.1: Fused 3D data converted to gray scale 
image.
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The fused data shown in figure 5.3.2 is then fused to the image obtained at 2.5X 

at a pixel size of 3.569 µm (shown in figure 5.3.3a) using the basic data fusion steps 

described in first chapter.  It is possible to up sample 2.5X magnification image to match 

10X magnification image, but for memory limitations, the concept is shown with down 

sampling 10X magnification image to match 2.5X magnification image.   

As a first step, the image containing the 3D data with the sample size of 0.832 µm 

(shown in figure 5.3.3b) is down sampled to 3.569 µm (as shown in figure 5.3.3c).  As a 

second step, normalized cross correlation function is used to find the approximate 

location of the high magnification image inside the low magnification image and the 

corresponding low magnification section is trimmed for further analysis, as shown in 

figure 5.3.3d.  ‘Canny’ edge finder is used to find the control points in the images ‘c’ and 

‘d’ shown in figure 5.3.3.  ICP finite difference method is used to find the alignment 

between the two control points, with the rotations along x and y axes set to zero.  Based 

on the obtained transformation matrix, image ‘c’ is rotated about z axis and the intensity 

FIGURE 5.3.2: 2D Image fused with 3D data converted to gray scale 
image.
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values are adjusted.  Then data fusion is performed at pixel level using the maxima rule 

F(i,j) = Max [A(i, j), B(i, j)], where F(i, j) is a pixel in the fused data and A(i, j), B(i, j)  

are the corresponding pixels in the low magnification and high magnification images.  

The final image after 3D data fusion is shown in figure 5.3.4.   

 

 

 

 

 

FIGURE 5.3.3: (a) 2.5x mag image (b) 10x mag image fused with 3D data (c) down 
sampled version of ‘b’ (d) trimmed region of ‘a’ that matches ‘c’ 

a

c d

b
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With the effective data fusion, the following are accomplished: 

• The datum features (hole and slot) are imaged using a vision system at lower 

magnification enabling measurement time reduction and stage error minimization 

• The spherical feature is characterized using CSI measurement data, enabling more 

surface being characterized and better correlation to actual shape 

• The GD&T requirement of measuring the spherical feature’s apex point with 

respect to the datum features. 

 

FIGURE 5.3.4: Image after 3D data fusion. 
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5.4. Summary 

A new fusion strategy ‘FWR method’ specific to surface metrology domain was 

proposed and its effectiveness was demonstrated on several non-planar and high aspect 

ratio surfaces.  Fusion strategy for single-scale data sets obtained using different 

instrument settings was demonstrated on two 3D surface measurements obtained on a 

spherical feature on a hard disk drive suspension.  Then fusion strategy for single-scale 

datasets obtained using different instruments was demonstrated using images obtained 

from a vision CMM and the previously fused 3D surface data.   

With the successful deployment of these fusion strategies, it was demonstrated 

that data fusion can be effectively used for better characterization of features and perform 

datum based dimensional measurements covering a wider lateral range, with less 

measurement time and more data fidelity. 



CHAPTER 6: SUMMARY AND RECOMMENDATIONS 
 
 
 
 A major trend in manufacturing is towards miniaturization which leads to 

convergence of the traditional research fields to create interdisciplinary research areas.  

For example, a successful lab-on-chip design requires expertise in four domains: micro-

biology, micro-fluidics, micro-tribology and micro-optics.  Interdisciplinary research 

efforts have started focusing on the development of multi-scale models and development 

of multi-scale surfaces to optimize the performance.  In bio-medical research, knowledge 

of surfaces at different scales helps in better understanding of how different sizes and 

types of cells interact with each other and how bio-molecules get absorbed onto surfaces.   

 Along with the growing demand of multi-scale surface analysis for development 

of mathematical models, there has also been an increasing development of designer 

multi-scale surfaces, exhibiting specific properties at different scales for a specific 

purpose.  For these multi-scale surfaces, traditional method of separation of surface into 

roughness, waviness and form, and using only the roughness data for surface 

characterization is not effective.  Many of the varying aspect ratio surfaces need different 

resolution capabilities at different locations.  Multi-scale surfaces require multi-scale 

measurement and characterization.   
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Apart from the capability to perform measurements at different scales and resolve 

features with varying aspect ratios, the system should be also capable of correlating the 

measurements across multiple scales and provide a multi-scale data, which could be used 

for validating multi-scale models and ensure the functional performance of the surface.  

Multi-scale surface analysis demands metrology tools that can cover a wide range of 

measurement range and resolution.  In order to address this demand, various 

instrumentation development efforts are being carried out.   

To expand the system’s measurement area in Amplitude-Wavelength space, 

various magnifications or technologies could be used.  Most of the instrumentation 

development has been using this approach, where different sub-instruments are connected 

together into a single frame.  The sensors communicate with each other, but the data is 

not necessarily merged together.  These systems enable the user to obtain different 

surface maps using various technologies, but user doesn’t readily have the ability to 

combine all the obtained data into one single dataset.  For effectively characterizing the 

multi-scale surface, all the datasets need to be aligned with respect to each other.  It is not 

sufficient to just perform measurements are multiple scales, but also be capable of 

characterizing the entire multi-scale surface.   

Researchers and instrument developers have developed instruments that are able 

to perform measurements at multiple scales but lack the much required multi-scale 

characterization capability.  This kind of approach is cost prohibitive in an industrial 

setting to obtain bridge systems to cater to their ever changing measurement 

requirements.  The effective approach is to obtain measurements from different available 

tools and then use a virtual offline software based tool to manipulate, merge and retrieve 
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data.  This software based data fusion is actively used in satellite imaging, remote sensing 

and medical imaging to name a few.  Data fusion by averaging temporal smooth surface 

data is already commonplace for subtracting system optical error in CSI systems.  It is 

also used in triangulation systems and Imaging Confocal Microscopy (ICM) systems.  

Data fusion is generally performed on data obtained using same magnification.  Our 

approach requires a fusion tool for data obtained using multiple magnifications.  The 

primary focus was “to explore possible multi-scale data fusion strategies and options for 

surface metrology domain and to develop enabling software tools in order to obtain 

effective multi-scale surface characterization, maximizing fidelity while minimizing 

measurement cost and time”.   

Fusion strategies for surface datasets can be treated as four different categories: 

• Single-scale, single-domain data, where data sets obtained from the same instrument 

but with multiple light settings are considered. 

• Single-scale, multi-domain data, where data sets obtained from different instruments 

but approximately same sampling interval are considered. 

• Multi-scale, single-domain data, where data sets obtained from similar technology 

instruments but with different sampling intervals are considered. 

• Multi-scale, multi-domain data, where data sets obtained from multiple technology 

instruments and different sampling intervals are considered. 

Existing approach in the dimensional metrology domain performs fusion based on 

shape primitives.  Data in the surface metrology domain typically do not have extensive 

shape primitives.  Hence a window based pixel level fusion approach was explored for 

the surface metrology domain.  Pyramid based multi-scale decomposition and fusion 
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strategy was chosen and À Trous Discrete Wavelet Frame (DWF) method was explored 

for potential use.  

The basic steps involved in a multi-scale data fusion process are coarse 

registration, fine registration, multi-scale decomposition, fusion and inverse 

transformation.  For each step, multiple options are available along with the potential 

confusion of which performance metric to be used for evaluating the different options. 

 First simulation study was conducted to evaluate the impact of different noise 

levels, misalignment and defocus on various process steps.  For this study different types 

of surface samples were taken and multi-scale noise and defocus were induced.  The 

simulation study demonstrated that coarse and fine registration can register data to within 

one pixel accuracy.  ‘Watershed’ edge detection method showed consistent performance 

at different noise levels and misalignment compared to ‘Canny’ and ‘Sobel’ edge 

detection methods on sub-images obtained by multi-scale decomposition.  The 

performance results of ‘Watershed’ edge detection method are shown in table 6.1.1. 

Second simulation study was conducted to evaluate available weighted average 

based fusion methods.  Various single-scale and multi-scale performance metrics were 

calculated for the previously registered data sets by comparing the original data to the 

TABLE 6.1.1: Performance results of ‘Watershed’ edge detection method 
on single-scale images. 

X Y
1 With no misalignment 0.245 0.268 69
2 With 1 pixel misalignment 0.266 0.297 82
3 With 4 pixel misalignment 1.059 0.542 171
4 With 4 pixel misalignment and blurr 0.808 0.461 261

Sl.No
Translation Error Std. 

Dev. (in pixels)
Avg. 

Computation 
Time (in Sec)

Test Type

Watershed Edge Detection Method
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noisy version.  Based on that study it was determined that the following single-scale 

based metrics - Mutual Information (MI), Universal Quality Index (UQI) and Structural 

Similarity Index (SSIM) were preferred and for multi-scale evaluation, SSIM could be 

used. Instead of averaging SSIM values obtained from all individual sub-images, it is 

recommended to treat those individually. 

Third study was conducted to select the preferred weighted averaging based data 

fusion method.  Three methods of data fusion (Regional Energy (RE), Regional Edge 

Intensity (REI), and Combination of Wavelet coefficients and local Gradients (WGC) and 

two methods of transformation (3D and 3D Hybrid) were used on twelve data sets with 

four each of directional, non-directional and systematic type surfaces.  Fusion metrics 

selected using the second simulation study was used to evaluate each of the 

transformation and data fusion method combination.  Based on the study, it was shown 

that REI is the preferred fusion method and 3D is the preferred transformation method.  

REI method uses a window based activity level measurement called edge intensity, which 

is used to calculate corresponding weightage factors.  After n-level of decomposition, if 

f(i, j) refers to the data point in a sub image and R (m, n) a m x n window.  Then the edge 

intensity of R(m, n) is defined by 
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FIGURE 6.1.1: Fused data for a sample honed surface showing 
shape error.  
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The fused data, when it was replaced into the low magnification data, it displayed 

visual edge effects on some non-planar data sets, as shown in figure 6.1.1.  This 

necessitated further study to evaluate alternate fusion strategies. 
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 An optimized fusion strategy (FWR method) for surface metrology domain 

(shown in figure 6.1.2) was proposed where the sub-images obtained from DWF were 

separated into three regimes – form, waviness and roughness, and fusion was not 

performed on sub-images in the form regime.  This approach effectively eliminated the 

edge effects.   

 

Roughness Form Waviness 

FIGURE 6.1.2: Schematic of FWR multi-scale data fusion for surface metrology 
datasets (A) Original Data (B) Pre-condition (outlier removal, resample and resize) 
(C) Coarse registration (D) Fine registration after control point detection (E) Multi 
scale decomposition on selected same size area from both data (F) Multi scale 
Fusion (G) Inverse Transform on fused sub-datasets to obtain fused data (H) Fused 
data replaced to the original location.

A B DC

HG

EF
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The optimal strategy for surface metrology domain was established along with the 

preferred options for various process steps and shown that it is possible to fuse data to 

pixel-level accuracy and extract synergy by merging data.   

Two specific scenarios for fusion was also discussed, first one involving datasets 

obtained from same instrument at different light setting and the second one involving one 

data obtained from a CSI system and another from a Vision CMM (shown in figure 

6.1.3).   

 

 

FIGURE 6.1.3: Image after 3D data fusion. 
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With those two case studies, it was demonstrated that using the data fusion 

approach, the datum features can be effectively characterized at a lower resolution using 

one system (Vision CMM) and the actual features of interest could be characterized at a 

higher resolution using another system (CSI) with higher capability while minimizing the 

measurement time. 

6.1. Contributions 

The major contributions of this research effort are: 

• Development of multi-scale data fusion strategies specific for surface metrology 

domain, to enable effective multi-scale characterization. 

• An optimized multi-scale data fusion strategy ‘FWR method’ for accommodating 

non-planar surfaces was developed and successfully demonstrated on both high 

aspect ratio surfaces and non-planar surfaces.   

• Three simulation studies were conducted to select robust options at individual 

process steps.  The following options were selected based on these three studies – 

o Coarse registration: Normalized cross-correlation is capable of handling 

multiple noise types and align to one pixel accuracy 

o Fine registration – Segmentation: Single level, ‘Watershed’ method was 

the robust method 

o Multi-scale decomposition: 3D transformation method was the most 

robust method 

o Data fusion: Regional Edge Intensity based weighted average fusion 

method performed well on multiple types of datasets. 
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o Fusion metrics: Mutual Information, Universal Quality Index and 

Structural Similarity performed well on multiple types of datasets.   

• 3D Hybrid DWF transformation method was developed and demonstrated to 

show better edge preservation capability, which would be of great use for 

analyzing high aspect ratio surfaces. 

• 2D DWF transformation method was demonstrated to be better for defect 

characterization, as shown in figure 6.1.4. 

 

 

FIGURE 6.1.4: Square wave spacing specimen sub datasets obtained 
using 2D method. 
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• A novel concept of multi-parameter and multi-domain based masking for 

effective segmentation of structured surfaces was demonstrated using a three 

sided pyramid patterned surface as a specific case study (shown in figure 6.1.5).  

Table 6.1.2 shows the average and standard deviation of angle made by individual 

facets with respect to the horizontal plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.1.5: (a-c) Three individual facets (d) all three facets shown together. 

a b 

c d

Table 6.1.2: Average and standard deviations of calculated normals for 
facets. 

Average Std. dev.
1 Red 2.693 0.130
2 Yellow 2.641 0.211
3 Blue 3.088 0.178

Angle (Degrees)Facets
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TABLE 6.1.3: Summary of CSI error sources and their possible impacts. 
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• In order to better understand the CSI system, a comprehensive list of possible 

error sources was compiled along with the development of possible test plan that 

could be used to quantify the errors.  Table 6.1.3 summarizes the error sources 

along with their impact on X, Y and Z axis measurements and comments on when 

those error sources need to be considered. 

This research effort explored the fusion strategies for surface metrology domain 

and narrowed the focus on DWF based multi-scale decomposition.  This research opens 

up the possibility of further efforts on different nuances involved with multi-scale data 

fusion, which will be briefly discussed in the next section. 

6.2. Recommendations 

 The research effort explored the fusion strategies for surface metrology domain 

and narrowed the focus on DWT and DWF based multi-scale decomposition  Within 

DWT method, ‘Coiflets’ were selected based on proven performance on metrology 

datasets.  Within DWF method, B-3 spline was selected for their simplicity and 

performance.  Further study could be made on other potential wavelets like Newland’s 

harmonic wavelets.  Curvelets [166] and ridgelets [167] also show good potential for 

further study.  

 CSI systems were the main instruments considered for this study. Research could 

be easily expanded to Scanning Electron Microscopes (SEMs) to cover a wider range.  

Datasets were induced with defocus effect using ‘Coiflet’ wavelets for simplicity.  

Further study can be done to explore the actual optical transfer function of individual 

instrument and used correspondingly. 
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 Three edge detection methods were considered for this study – ‘Canny’, ‘Sobel’ 

and ‘Watershed’.  Other potential wavelet based edge detection algorithms [168] could 

also compared for their performance. 

 For fine registration method, different variants of ICP algorithm could be 

explored to optimize the computation time.    
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APPENDIX A: LIST OF MATLAB FUNCTIONS 
 
 
 
Main file to run the fusion code: 

testforfusionrev3.m 
 

Needs following files to run 
nkreadzygodat.m, zygoheader.mat, zygoheaderlegend.mat 
nkreadopds.m 
mallat_decomposition.m 
aligndata_ms.m 
atrous_decomposition4.m 
ICP_finite.m 
 fminlbfgs.m, fminsearch.m, lsqnonlin.m movepoints.m 
aligndata.m 
atrous_decomposition.m 
fusion_fwr.m 
fusion_metrics.m 
 joint_h.m, MI2.m, img_qi.m,  ssim_index.m, rmse.m 
fusion_ms_metrics.m 
 

Other files 
 testfordecomplevels.m 
 aligndata_ms_temp.m 
 createnoise.m 

ms_gaussian_noise.m, ms_salt_pepper_noise.m, ms_speckle_noise.m, 
ms_poisson_noise.m 

 createconvnoise.m 
 fusion_zipscan.m 
 test_coarse_alignment.m 
 
 


