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Abstract: 

Despite cross-disciplinary interest in social influence among adolescent peer groups, significant 
variations in collecting and analyzing peer network data have not been explored, so it is difficult 
to disentangle substantive and methodological differences in peer influence studies. We analyze 
two types of network data (self-reported friendships and multi-informant reports of children who 
“hang around together a lot”) with three methods of identifying group structures (two graph 
theoretic approaches and principal components analysis) to explore substantive differences in 
results.  We then link these differences back to underlying features of the networks, allowing 
greater insight into the general problem of identifying groups in network data.  We find that 
different analytic approaches applied to the same network data produced moderately concordant 
group solutions, with higher concordances for multi-informant data.  The same analytic 
approaches applied to different relational data (on the same nodes) produced weaker 
concordance, suggesting that the underlying data structure may be more salient than analytic 
approach in accounting for different results across studies. Behavioral similarity among group 
members was greatest for approaches that rest directly on density of direct ties. 

 Adolescents | Peer Groups | Network Data Keywords:

Article: 

I. Introduction 

Sociological and psychological research on adolescent peer groups has often proceeded along 
parallel tracks, exploring similar phenomena but within distinct traditions for collecting and 
analyzing peer network data. Building upon a rich tradition of general social network analysis 
theory and methods (Doreian, Kapuscinski, Krackhardt, & Szczypula, 1996; Freeman, 2003; 
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Friedkin & Cook, 1990; Moody, 2001a) sociologists have studied the structure of adolescent 
peer groups and their dynamic change over time (Doreian et al., 1996; Hallinan and Tuma, 1978; 
Hallinan, 1978; Haynie, 2001; Holland and Leinhardt, 1977; Moody, 2001b) as well as social 
influence and diffusion processes (Cohen, 1977; Giordano, Cernkovich, Groat, Pugh & 
Swinford, 1998; Jussim & Osgood, 1989). Similarly, psychologists have built upon theories 
emphasizing peers as contexts for individual development (Hartup, 1996; Kindermann, 1996; 
Sullivan, 1953) to study structure and change in dyadic and group networks (Berndt & Hoyle, 
1985; Cairns, Leung, Buchanan & Cairns, 1995; Farmer, Estell, Bishop, O’Neal, & Cairns, 
2003>; Urberg, Degirmencioglu, Tolson, & Halliday Scher, 1995) and the influence of peers on 
individual adaptation (Berndt, 1982, 1992; Cairns & Cairns, 1994; Hanish, Martin, Fabes, 
Leonard & Herzog, 2005; Kindermann, 1993). 

Despite this parallel interest, there are relatively few cross-citations in the major sociological and 
developmental journals concerned with peer group processes. This is unfortunate because 
different data collection and analytic traditions have emerged in the two fields, making it 
difficult to integrate findings and slowing the transfer of insights and innovations from one field 
to the other. Our goal in this paper is to contribute to a productive integration of these traditions 
by using unique data from a single setting to explore the comparability of peer groups identified 
when two common adolescent peer network data collection procedures are analyzed with three 
common group identification algorithms. 

In the peer context, data collection procedures typically vary along three dimensions: the 
substantive meaning of a social tie (friendship/affection vs. interaction), the level of analysis 
(dyad vs. group) and the informant (self-report vs. multi-informant). These three dimensions 
allow for many distinct measurement strategies, but for conceptual and practical reasons two 
measurement strategies have gained widespread use: self-reports of dyadic friendships and multi-
informant reports of interaction-based groups. Similarly, while the number of grouping 
algorithms found in the literature is large, identifying principled axes of difference is more 
difficult. Two general approaches common in the literature are density-based graph-theoretic 
algorithms from the social network tradition and algorithms based on correlated patterns of 
social ties from the developmental studies tradition. 

While others have studied a broader set of grouping algorithms (Freeman, 2003), we focus on 
these core disciplinary approaches to help foster comparability across a wide literature gap and to 
help link group comparisons directly to features of the network structure.  Comparing grouping 
algorithms poses a difficult research design trap: if each approach is effectively maximizing its 
specific group-definition, one runs a clear risk of simply comparing incompatible definitions – 
that is, there is no clear external indicator of the true solution.  However, in the absence of an 
external metric, being able to first compare different solutions then link those differences to 
underlying graph patterns helps flesh out the substantive meaning of otherwise implicit 
definitional differences embedded in grouping algorithms.  In the adolescent peer group context 
explored here, we expect that differences in data type will affect the transitivity, density and 



structural cohesion (path structure) of the graph, and thereby lead to differences in how the three 
algorithms assign nodes to groups.  Substantively, we hope these comparisons will provide a first 
step in establishing the degree to which studies of “peer networks” within different measurement 
and analysis traditions identify similar phenomena. 

Approaches to Collecting Adolescent Peer Network Data 

Self-reports of friendship dyads. Asking adolescents to name their friends is perhaps the most 
common measurement procedure in both sociology and psychology. Because friendships are 
typically defined as voluntary relationships based on liking, this procedure can be seen as a 
special case of defining meaningful social ties in terms of closeness, affection or liking, which 
has long roots in both sociological (Homans, 1950; Sampson, 1969) and developmental research 
(Bukowski, Newcomb and Hartup, 1996). Some researchers underscore this point by asking 
adolescents to name their “best” or “closest” friends or by asking adolescents to name classmates 
they like or feel close to. Developmental theorists have long held that feelings of friendship or 
closeness motivate attempts to understand and accommodate the friend’s concerns, thus 
providing one process of peer influence (Hartup, 1996; Newcomb and Bagwell, 1995; Sullivan, 
1953). Because feelings of liking or affection are inherently subjective, self-reports are seen as 
the definitive method for identifying adolescents’ friendship preferences. 

There is considerable variability both within and across disciplines in the way researchers 
analyze self-reports of friendships. Psychologists typically focus on friendship dyads and for 
theoretical reasons often restrict attention to reciprocated friendship choices (Berndt and 
Murphy, 2002; Hartup 1996), although some also consider non-reciprocated nominations 
(Hektner, August & Realmuto, 2000; Mrug, Hoza & Bukowski, 2004; Snyder, Horsch, & Childs, 
1997) and larger group structures (Urberg et al., 1995). In contrast, sociologists often focus on 
group structures and typically look to asymmetries in nominations as indicators of group 
hierarchy and status, although some also remain focused on dyads (Hallinan and Tuma, 1978; 
Hallinan, 1978) or on reciprocated nominations (Coleman, 1961). 

Multi-informant, interaction-based groups. A second measurement procedure that is 
increasingly being used in psychological research involves asking every adolescent in a social 
network to identify classmates who “hang around together a lot” (Cairns, Perrin and Cairns, 
1985; Cairns, Cairns, Neckerman, Gest and Gariepy, 1988).  As with self-reported friendships, 
this procedure embodies a particular perspective on the nature of social ties, the relevant level of 
analysis and the most suitable informant. Asking adolescents to identify peers who “hang around 
together a lot” means that social ties are defined in terms of interaction frequency. This makes 
sense from the perspective of social learning theories (Cairns, 1979; Patterson, 1974, 1982), 
which suggest that social behaviors are established, maintained and changed through repeated 
instances of modeling and reinforcement that occur within social interactions. For example, the 
quantity of preschool girls’ interactions with aggressive peers predicted increases over time in 
their own problem behavior (Hanish et al., 2005); and the quantity of delinquent adolescent 



boys’ friendship conversations that involved a well-organized focus on antisocial activities 
predicted the persistence of antisocial patterns (Dishion, Nelson, Winter, and Bullock, 2004). 

The visible nature of social interactions suggests that reports may be obtained from any 
individuals with access to the relevant interaction settings. Certainly self-reports of interaction 
patterns are feasible and face-valid (Bagwell, Coie, Terry, and Lochman, 2000). Direct 
researcher observations can also be very effective with young children (Hanish et al., 2005; 
Ladd, 1983; Strayer & Santos, 1996; Vaughn and Waters, 1981), but are expensive to gather and 
have two disadvantages during adolescence: some important interaction settings may be 
inaccessible to researchers (e.g., hallways, buses), and those that are available (e.g., classrooms) 
may be misleading due to the strong constraints they impose on interaction patterns (Feld, 1981). 
In contrast, peers can be seen as expert participant-observers in the adolescent social network 
with unique access to a range of relevant settings. In a procedure developed by Cairns (described 
in detail below), all peers in a network are prompted to identify classmates who “hang around 
together a lot,” and the multiple reports are summarized in a symmetric “co-nomination matrix." 
The use of information from multiple informants to construct a global network was 
independently developed in the line of research on cognitive social structures (CSS; Krackhardt, 
1987). The Cairns method differs from the CSS approach in that informants (“perceivers” in CSS 
terms) are not limited to reporting on common group membership, but rather are allowed to 
inform on any relation connecting others in the network. 

Self-reports of friendship dyads and multi-informant reports of interaction-based groups are 
conceptually and operationally distinct ways of assessing adolescent peer networks. The two 
approaches differ in how they define the basis of social ties (closeness vs. interaction), the level 
of analysis at which data collection occurs (dyad vs. group) and the informant (self- vs. multi-
informant). The resulting data structures are quite different: self-reports of friendships produce a 
directed adjacency matrix whereas multi-informant social groups produce a symmetric co-
nomination matrix. These data differences often result in different degrees of density and 
transitivity.  The group-basis of multiple-informant data results in graphs similar to the one-mode 
projection of two-mode graphs, with significantly more closed triads than self-reported graphs, 
which tend to be sparser.  Each approach is a conceptually coherent strategy for identifying 
“adolescent peer groups”, but it is not at all obvious that groups derived from subjectively 
perceived, dyadic friendship ties are equivalent to those derived from consensually perceived, 
visible group interaction patterns. When researchers use these two different strategies to identify 
“peer groups”, are they studying the same thing? 

Approaches to Identifying Group Structures 

Similarities in patterns of ties. There is a long tradition of grouping together individuals who 
share similar patterns of social ties. Early social network researchers used principal components 
analysis or centroid factor analysis to identify groups (factors) from interaction (e.g. Wright and 
Evitts, 1961) and nomination matrices (e.g., Bock and Husain, 1952; MacRae, 1960). More 



recently, a growing number of developmental researchers have used correlation-based algorithms 
to identify peer groups from multi-informant reports (Boivin & Hymel, 1997; Cairns et al., 1985, 
1988; Estell, Cairns, Farmer & Cairns, 2002; Farmer et al., 2003; Rodkin, Farmer, Pearl, & Van 
Acker, 2000; Xie, Cairns & Cairns, 1999). One group has used principal axis factoring to 
identify groups from an adjacency matrix (Bagwell et al., 2000). Principal components analysis 
(PCA) has also been applied to co-nomination matrices (Gest, Rulison and Welsh, 2005). These 
approaches share the premise that groups can be conceptualized as individuals whose patterns of 
received friendship nominations or whose profile of co-nominations with peers are similar (i.e., 
correlated). These approaches have clear links to the block-modeling traditions rooted in 
CONCOR (White, Boorman, and Breiger, 1976), where actors are classified as similar if they 
have similar nomination patterns to/from others in the network. One of the potential advantages 
of the PCA approach, as will become evident below, is that an element of structural equivalence 
informs the construction of primary groups, allowing one to identify groups that are both 
internally dense and similarly situated in the graph at large. 

Direct approaches.  The social network field has identified many approaches for finding primary 
groups in networks (Frank, 1995; Fershtman, 1997; Burt, 1978; Freeman, 1992; Richards, 1995; 
Seidman and Foster, 1978).  A basic division in such methods is between those that identify 
exact graph theory features and those that search the graph to identify a solution 
iteratively.  Many graph-theoretic methods for finding primary groups are challenged in settings 
where data are messy, resulting in assignments that are not robust to the kinds of data that 
analysts typically encounter (see Moody, 2001a for a review). These methods also often identify 
groups that heavily overlap.  Recent work on structural cohesion has taken this feature as a 
strength of the model, in that k-connectedcomponents have a strictly defined and interpretable 
overlap structure and are more robust to data quality as k-cohesion increases.[2] 

The alternative approach has been to identify groups based on a search and clustering process, 
using algorithms that attempt to generate clusters with relatively high in-group density.  The 
exact algorithms vary significantly.  One line of work makes many assignments of nodes to 
groups in attempts to minimize a cost function (Borgatti, Everett, and Freeman, 1999; Guimera 
and Amaral, 2005).  Much of the research on group detection algorithms has been to identify 
ways to seed or speed these types of searches, with some very sophisticated pattern recognition 
approaches being most popular (Richards, 1995; Fershtman, 1997).  While often successful in 
small groups, these iterative solutions can be very time-consuming on large networks.  Recent 
work has attempted to identify search processes either directly on graphs, such as extensions of 
simulated annealing processes (Guimera and Amaral, 2005) or on summary statistics generated 
by the network structure (Moody, 2001a) that allow searches of very large networks.  Finally, a 
third line of research has taken a statistical modeling approach, using guided search algorithms 
based on a tie probability model (Frank, 1995).  These models work on the logic that groups 
should focus on ties, so the probability of a tie between i and j (pij) is a function of a parameter 
on the group partition, and nodes are juggled across partitions until that parameter is maximized. 



The Present Study 

To our knowledge, within the literature on adolescent peer social networks, there are no 
empirical reports comparing the group solutions obtained when factor-analytic and graph-
theoretic grouping algorithms are applied to two of the most common types of peer network data. 
To begin linking these different data collection and analytic traditions, we use a single data set to 
identify adolescent peer groups based on two types of peer network data (self-reported 
friendships and multi-informant interaction-based groups) with each of three group identification 
methods (principal components analysis and two graph-theoretic algorithms). 

II. Methods 

Participants 

Data were provided by 134 (62 girls, 72 boys) of the 150 students (89%) enrolled in the 6th 
grade at a middle school serving a small, working-class community in central Pennsylvania. This 
data permitted us to describe the peer networks of 148 (68 girls, 80 boys) of the 150 students (see 
below). Students at the school scored near the statewide average on tests of achievement, 
although rates of poverty in the community exceeded the state average. Almost all students 
(99%) were Caucasian, reflecting the demographics of the community. This project was a 
component of a Safe Schools / Healthy Students grant obtained by the school district from the U. 
S. Departments of Education, Justice and Health and Human Services. Prior to the October 
student survey, parents were mailed letters describing the project with a form to sign if they did 
not wish their child to participate. Students whose parents did not return a form exempting them 
from the project were asked to complete a group-administered survey lasting approximately 45 
minutes. Students were free to decline to participate in the survey. 

Peer Network Data 

Self-reported friendships. We construct friendship groups from students’ reports of friendships. 
Students were asked: “Some kids have a lot of friends, some kids have one friend and some kids 
don’t have a friend. What about you? List the names of any friends you have in your grade.” 
Students were provided a roster containing the names of all students in the 6th grade, organized 
by homeroom. Space was provided for students to list up to ten names, although some students 
listed several more than that (range: 0 to 31 nominations). These data were organized into an 
adjacency matrix. For the principal component analyses, we entered ones along the diagonal 
(MacRae, 1960). 

Multi-informant groups. We construct multi-informant groups using Cairns’ Social-Cognitive 
Map (SCM) method. Students were asked: “Are there some kids in your grade who hang around 
together a lot? List the names of the kids in each of the different groups in your grade. Try to 
think of as many groups as you can.” Space was provided for students to list up to nine groups 
with up to ten individuals per group and students were free to list themselves in a group. Two 



observational studies confirm that the frequency of being named to the same group is correlated 
with observable interaction rates (Cairns et al., 1985; Gest, Farmer, Cairns & Xie, 2003). For 
example, 4th and 7th grade students interacted with members of their multi-informant groups at 
rates three to four times higher than with other same-sex peers (Gest et al., 2003). In the present 
study, all nominations were organized into a symmetric co-nomination matrix in which off-
diagonal cells indicated the total number of times two individuals were named to the same group. 
Values along the diagonal indicated the total number of times a given child was named to any 
social group. Students were not required to classify all peers into groups, so there was variability 
in how often different adolescents were named to groups. 

Social behavior, educational attitudes and achievement. We examine group homogeneity with 
respect to four measures of social behavior and educational attitudes and achievement. Following 
standard procedures in the developmental literature on peer relations (Coie, Dodge & Copotelli, 
1982), we asked each adolescent to name the peers s/he liked the most and the peers s/he liked 
the least. The number of times each adolescent was named as liked most and least was tallied and 
standardized within gender. The difference between each adolescent’s standardized liked-most 
and standardized liked-least scores was computed as an index of peer social preference, and this 
score itself was standardized within gender (M = 0, SD = 1, Skew = .04). Aggression was 
measured with five items rated by teachers on a 5-point scale (a= .92; 1 = low, 5 = high). To 
better capture the highly skewed scores on aggression, each child was classified as non-
aggressive (76.6% of sample with Mean scores <2.0 on the 5-point scale), Moderately 
Aggressive (14.6% with Mean scores between 2 and 3) or Highly Aggressive (8.8% with Mean 
scores greater than 3.0). Liking for school was measured with a single item measured on a 5-
point Likert scale (“I like going to school”; M = 3.31, SD = 1.32, Skew = -.29). Grade Point 
Average (GPA) was calculated as the average of students’ grades in Reading, Social Studies, 
Math and Science during the 1st grading period (M = 3.40, SD = .66, Skew = -1.01). 

Principal Components Analysis (PCA) 

We applied principal component analysis to both types of peer network data. First, we extracted 
all factors[3] that had eigenvalues greater than 1.0, resulting in 39 factors for the self-reported 
friendship data and 38 factors for the multi-informant network data. Factors with eigenvalues 
less than 1 were not extracted because these factors explain less variance in the solution than a 
single variable. Second, we applied a Varimax rotation and then determined whether each factor 
was defined by at least three individuals whose primary loading (>.30) was on that factor. We 
required three individuals per factor because the theoretical definition of a group requires at least 
three members and we required factor loadings above .30 to ensure that each individual shared at 
least 9% of their variance with the group.[4] When one or more factors did not meet these 
criteria, we re-ran the PCA extracting one less factor, resulting in 24-factor (group) solutions for 
both types of network data. This process, along with using Varimax rotation, allowed us to 
obtain maximum differentiation while still identifying empirically reliable and conceptually 
meaningful groups. Some adolescents had significant factor loadings on more than one factor 



that could be interpreted as reflecting membership in more than one group, but for purposes of 
comparing grouping solutions across methods, we assigned such “dual-members” to the group 
on which they had the highest loading. 

Graph-Theoretic Techniques 

We use two social-network based group detection methods to compare with the PCA routine: 
Moody’s (2001a) Recursive Neighborhood Means (RNM) approach and UCINET VI’s 
FACTIONS (FAC) routine (Borgatti et al., 1999).  The RNM approach was chosen because of its 
theoretical link to the substantive problems of peer effects and the FAC routine because it is 
commonly available and thus likely to be used by others.  Like the PCA routine, both of these 
approaches are “indirect,” in that they do not search for a particular graph theoretic pattern (like 
cliques), but instead use the observed network to generate a cost / similarity score that is 
clustered or maximized.  These types of indirect routines are useful, as many of the direct graph 
theoretic approaches (such as searching for cliques or k-cores) are either very slow 
algorithmically or have substantive difficulties identifying primary groups.  

Moody’s RNM routine was originally designed as an efficient means to cluster very large 
(>10,000 node) networks, but its theoretical foundation in peer influence models (Friedkin, 1998; 
Friedkin and Cook, 1990) suggests that it should be substantively useful for settings where peer 
influence is the central concern.  The RNM routine uses a two-step procedure.  In the first step, 
one simulates a peer influence process on k random variables.  The peer influence simulation 
then adjusts each person’s score on each random variable to equal the (tie-strength weighted) 
mean of the people to whom they are connected.  Because the original variables are uncorrelated, 
dense clusters of nodes will come to occupy unique positions in the k-dimensional space defined 
by the resulting distribution of random variables.  In the second step, one uses cluster analysis 
(here we use Ward’s minimum variance method) to identify groups based on the resulting 
influence variables.  The number of groups is determined by examining changes in fit statistics 
(here we used Freeman’s (1972) segregation index as our guide), such that two initially distinct 
groups are joined if doing so significantly improves the fit for both groups.  In addition, any 
small or disconnected groups were examined manually to see if nodes would be better classified 
by placing these nodes in a “between” group position.[5] 

The FAC routine searches for groups with a “clique-like” structure.  A perfectly clique-like 
structure would have groups that are completely connected internally (everyone tied to everyone 
else) and no ties outside of the groups.  Thus, the routine counts null dyads within groups and 
ties outside of groups as deviations from the ideal, and adjusts group boundaries to minimize the 
number of such deviations.  As with many of the group detection algorithms, one must determine 
the number of factions initially.  Initial examinations of these data showed that the RNM 
approach was finding fewer groups than the PCA approach, so we choose 20 groups as a number 
that “split the difference” between the other two approaches.  



For both the RNM and the FAC routines, we treated the data as symmetric, but weighted 
reciprocated ties more than asymmetric ties.[6]  For the multi-informant nomination data, we 
used the number of times each pair was nominated as being in the same group as the basis for the 
tie weight.  Initial FAC runs suggested that the predominance of often non-concordant single 
naming was throwing the results, so we limited analysis to pairs with 2 or more co-nominations. 

Comparing Alternative Results 

Part of the difficulty in finding primary groups in networks is defining exactly what features 
represent a primary group.  While theoretical and algorithm advances have been made in 
identifying particular aspects of network structure that clarify our understanding of primary 
groups [such as structural cohesion (Moody and White, 2003), tie strength (Freeman, 1992), 
clustering and distance ( Holland and Leinhardt, 1970; Holland and Leinhardt, 1971; Watts, 
1999) and the ratio of in-group to out-group ties (Fershtman, 1997; Guimera and Amaral, 
2005)],  there is no unified agreement on what counts as a “clique-like” subgroup.  In the 
substantive setting of interest here, we expect primary peer groups to be small and tight-knit.  In 
general, we also expect them to be largely distinct,[7]with relations / interaction falling 
disproportionately within the primary group.  We use six measures to examine how “tight-knit” 
and distinct the group solutions are for both types of data. 

Tight-knit primary groups are likely to be relatively dense and have many closed triads that hold 
the local group together.  In general, network density is the average value of relations taken over 
all possible dyads.  We measure relative density as the density of ties falling within group 
divided by the density of ties that fall outside of groups.  To account for group structure as well 
as volume (Freeman, 1992), we use two triad-based measures.  Closed triads capture cases where 
friends of friends are friends (transitive relations), and we expect substantively that primary 
friendship groups will be characterized by relatively high numbers of closed triads.  The 
transitivity ratio is defined as the proportion of all potentially closed triads that are actually 
closed.  It is calculated as the proportion of all two-step paths (iàj, jàk) that are also direct paths 
(iàk).  We define the relative transitivity ratio as the transitivity ratio calculated only among 
within-group dyads over the transitivity ratio of the entire network.  Ideally, groups should 
enclose closed triads, thus any case of a group boundary separating a closed triad is a deviation 
from the ideal-type model.  We thus measure theproportion of all closed triads (T300) that fall 
entirely within group to capture how often group solutions encapsulate closed triads.[8] 

The distinctiveness of a group is measured by how often relations fall within rather than between 
groups.  We use Freeman’s segregation index (1972), the proportion of all ties that fall outside of 
groups, and the modularity index (Newman and Girvan, 2004) as three measures of group 
distinction.  Freeman reasoned that if a group partition was irrelevant, then relations should be 
distributed randomly across the group boundaries.  Freeman’s network segregation index is thus 
calculated as the difference between the number of observed cross-group ties and the number of 
randomly expected cross-group ties, divided by the number of randomly expected cross-group 



ties.  When the value is 1.0, all relations fall within separate groups.  When the value is 0, then 
relations are distributed randomly across groups.  The modularity statistic (Newman and Girvan, 
2004) follows a similar logic and will be 0 if ties are distributed randomly.  The advantage of the 
modularity score is that the measure reaches a clear maximum value when ties are more likely to 
fall within groups, making it ideal for comparing group distinctiveness across solutions.  Finally, 
the proportion of tiesthat fall outside of groups provides a readily interpretable (though not 
gauged against random chance) metric for the sheer volume of cross-group ties. 

Group size enters into our consideration both substantively and methodologically.  Substantively, 
children’s primary groups tend to be small (Rubin, Bukowski and Parker, 1998) and thus any 
solution that generates very large groups lacks a certain level of face validity.  However, we also 
expect a group to have a certain extra-individual character that extends beyond any single 
individual member (Simmel, 1950; Moody and White, 2003).  The smallest collection that can 
exist independent of any single actor is the triad, and thus groups are typically defined as having 
3 or more nodes.  Methodologically, the distribution of group sizes affects all of the other metrics 
used to define groups.  On the one hand, if all nodes were partitioned into a single group, then 
there would be no out-of-group ties and all triads would fall within the group (there would, of 
course, be no data reduction here either!).  On the other hand, if everyone were assigned to a 
single closed triad, then in-group density would be perfect, leading to very high relative densities 
and relative transitivity ratios.[9] 

Finally, we use two versions of the Rand statistic (Rand, 1971) to compare the different primary 
group solutions statistically and “Shadow plots” (Batagelj and Mrvar, 2001) to evaluate overlap 
qualitatively.  Measures for comparing nominal distributions, such as Kappa, are ineffectual if 
the number of groups differs across solutions.  The Rand statistic, in contrast, allows us to 
compare clustering solutions with any number of clusters.  Substantively, the Rand statistic 
measures the proportion of pairs classified similarly in two solutions.  A pair is similarly 
classified if they were put in the same cluster in both solutions, or classified as being in different 
clusters in both solutions.  A value of 1.0 means that the two partitions are substantively 
identical.  While intuitive, the raw Rand statistic does not distinguish observed matching from 
matching expected by chance.  Since each pair has to be placed in some cluster, a proportion of 
pairs will be similarly classified due simply to chance alone.  We use the adjusted Rand statistic 
proposed by Morey and Agresti (1984) to correct for chance overlap.  This measure captures the 
percent difference from chance in the likelihood that a pair of actors is similarly classified. 

Shadow plots are schematic images of an adjacency matrix, with the rows and columns sorted to 
help see the structure in the graph.  Cell values are shaded (“shadowed”) proportional to the 
strength of the ij cell, and allow us to visually compare the overlap of the group solutions to the 
underlying tie-distribution. 

Analytic Strategy 



The analysis progresses in three stages. First, we provide descriptive information about the 
friendship and multi-informant data: the number of friends and groups identified, tie density and 
transitivity, sociograms, and a regression model clarifying the correspondence between multi-
informant group nominations and friendship nominations. Second, we quantify the agreement 
among the various group solutions using the adjusted Rand index. Third, we examine differences 
in the structural features of the groups identified from the multi-informant and self-reported 
friendship data, with a special focus on reasons for lower concordance across analytic strategies 
in the case of self-reported friendship data. 

III. Results 

Descriptive Summary of Peer Network Data 

Reports of friends and groups. On average, adolescents listed 9.72 friends (SD = 3.95) and 
identified 3.76 groups (SD = 2.01) with 4.60 (SD = 2.10) individuals per group (i.e., a total of 
17.26 group members).  More than half of all self-reported friends (59.4%) and more than half of 
all peers nominated to social groups (51.1%) were outside of the adolescent’s own homeroom, 
confirming that the social network is appropriately considered at the level of the entire grade. 

Graph statistics. The multi-informant group data demonstrated a high density of ties (.486) and 
transitivity (.571). This suggests ample “clusteredness” to be exploited by each grouping method, 
which is to be expected, since the data generates ties between all pairs named as members of the 
same group. In contrast, the self-reported friendship data had lower density (.121) and transitivity 
(.302) scores.  This will make finding groups consistently more challenging than with the multi-
informant data, because there will be less clustering for the algorithms to exploit. 

Sociograms. Next we constructed sociograms illustrating each type of network data. In each 
sociogram, position in the xy plane is determined by a force-directed automatic layout algorithm 
implemented in PAJEK (Batagelj and Mrvar, 2001). For these layouts, social ties are analogous 
to springs, with stronger values indicating a stronger pull between the nodes. As such, two nodes 
that are connected will tend to be close to each other, while nodes that are disconnected will be 
further apart. In an ideal-typical sense, if the network were composed of very distinct groups 
(and the nominations reflected these groups), then the figure would contain distinct “clumps” for 
each group. 

Figure 1. Self-reported Friendship Nominations 



  

Thick Blue lines are reciprocated friendship nominations, thin gray are asymmetric nominations. 
Letters identify particular nodes to compare with Figure 2. 

In Figure 1, each node represents a student and each line represents a friendship nomination. For 
the present analyses, asymmetric ties (thinner lines) count less than symmetric ties (thicker 
lines). This figure shows that friendship nominations among 6th graders are heavily conditioned 
by sex. Beyond this strong sex segregation, the network does not suggest many small groups, 
particularly among the males. Instead, both the male and female sides of the network have a 
“core-periphery” structure, with a small number of individuals who have no reciprocated ties, 
and a large cluster of individuals who are strongly connected. Females in the network are slightly 



more differentiated, with what appears to be two or three overlapping “clumps” stretching along 
the “north-south” axis. In addition, there are two small groups in the “south-east” portion of the 
figure with no reciprocated connections to the rest of the network, but one link between them. 
These were students who spent part of their day in a Special Education classroom: despite being 
“mainstreamed” in General Education classrooms for much of the school day, these children’s 
friendships were largely separate from the rest of the grade. 

Figure 2.  Lines represent the number of time each node was named as belonging to the same 
group. Letters identify particular nodes to compare to figure 1. 

 

In Figure 2, each line indicates the number of times that two students (nodes) were named as 
being members of the same group. The thickness and shade of the line corresponds to the 
frequency of co-nomination to the same group. Although the number of co-nominations linking 



individual nodes ranged from 1 to 33, for clarity these values were grouped into six ranges. 
There are three immediate impressions given by this figure. First, there are clear clusters with 
very strong agreement (thick lines), particularly among the females, indicating substantial 
consensus among students regarding the interaction patterns of their peers. Second, there are 
large individual differences in the maximum number of co-nominations linking a given student 
to other students: the maximum number of co-nominations is centered around 10 (Mean = 11.1, 
Median = 9.0), but 39 (27.1%) students were never named more than 5 times with any peer, 
while 18 (12.5%) students reached over 20 co-nominations with at least one of their peers. Third, 
the wide linkages at low levels (the very thin lines connecting a wide body of nodes across the 
graph) suggests that some people provide idiosyncratic reports of groups that are at odds with the 
group consensus. 

In general, the two sociograms correspond quite closely in terms of the overall shape, the 
separation of males and females, and the location of individual nodes (fourteen of which are 
labeled, A through N, on each graph).[10] The two groups of special education students in the 
southern portion of the graph (including nodes G, J and K), for example, contain nearly identical 
members. In addition, 3 of the 4 male nodes in the “female” section of the friendship graph 
(including nodes E and I) are similarly more closely associated with the female side of the multi-
informant graph. In both graphs, boys L and M occupy similar positions in clusters outside the 
main clump of boys, while girls H-F and B-C are located in parallel positions within the 
relatively core groups of girls. Boys N and D reside on the periphery of both graphs, whereas girl 
A is peripheral in the friendship graph but closer to the core of the multi-informant graph. 

Correspondence between friendship and multi-informant nominations. We tested the degree to 
which the number of times two people were nominated as hanging out together predicted 
friendship nominations. We model the likelihood of a friendship nomination, controlling for 
network and group involvement measures including: number of friends named, number of 
friendship nominations received, number of group nominations received and the sex composition 
of the dyad. Because the dependent variable is dichotomous (nominated or not), we use a logistic 
regression model. The results (Table 1) clearly show that the number of times a dyad is 
nominated to the same group strongly predicts a friendship nomination. 

Table 1. Logistic Regression of Friendship Nomination on Multi-informant Co-
nominations (odds ratio in parentheses) 

Variable Model 
1 

Model 
2 

Model 
3 

Model 
4 

Intercept -4.87 -6.31 -6.54 -6.28 

# of friends named by ego (ODG) 0.138 0.145 0.144 0.145 



(1.15) (1.16) (1.16) (1.16) 

# of times alter was named as a friend (IDG) 0.146 

(1.16) 

0.144 

(1.16) 

0.144 

(1.16) 

0.153 

(1.17) 

# of times ego named as a group member (ego 
visibility) 

-0.015 

(0.989) 

-0.011 

(0.989) 

-0.01 

(0.989) 

-0.01 

(0.989) 

# of times alter named as a group member (alter 
visibility) 

-0.008 

(0.992) 

-0.008 

(0.992) 

-0.007 

(0.993) 

-.009 

(0.991) 

Same sex dyad   1.84 

(6.355) 

2.05 

(7.76) 

  

Both Male       1.74 

(5.71) 

Both Female       2.04 

(7.69) 

Number of Co-Nominations 0.603 

(1.83) 

0.508 

(1.66) 

1.09 

(2.99) 

0.506 

(1.66) 

Group x Same Sex     -0.610 

(0.544) 

  

          

Pseudo R2 0.37 0.423 0.428 0.424 

Note.  All variables are statistically significant at the .0001 level. 

After controlling for sex composition of the dyad, the odds of a friendship nomination increase 
by 1.66 for each time the pair is said to belong to the same group.  This effect differs by gender 
composition. Specifically, a co-nomination is more likely to predict a friendship when the dyad 
is cross-sex, though the relative rarity of these nominations makes this finding somewhat less 
important. As expected, the controls for network expansiveness (ODG) and attractiveness (IDG) 
are also important. While statistically significant, simple visibility of either party really does not 
matter that much (the odds ratios are close to 1.0). To simplify the interpretation of this 
coefficient, Figure 3 plots the predicted probability of a friendship nomination for a same-sex 



dyad, by the number of times they are nominated as being in the same group (estimates based on 
model 2).[11] This figure indicates that (in these data) the likelihood of a self-reported friendship 
reaches 50% as the number of multi-informant interaction co-nominations reaches around 7, and 
exceeds 95% when the number of co-nominations reaches around 13. 

 

Comparability of Group Solutions 

Table 2. Comparability of Group Solutions 

    Self Nominations Multi-Informant Nominations 
    RNM FAC PCA RNM FAC PCA 
Self 
Nom 

RNM --- 0.328 0.362 0.417 0.392 0.316 
FAC 0.861 --- 0.475 0.464 0.498 0.465 
PCA 0.873 0.949 --- 0.584 0.572 0.465 

Mult 
Nom 

RNM 0.881 0.942 0.958 --- 0.687 0.695 
FAC 0.872 0.947 0.957 0.965 --- 0.665 
PCA 0.862 0.948 0.948 0.969 0.966 --- 

Note.  Values above the diagonal are the chance-adjusted Rand statistic (Morey and Agresti, 
1984).  Values below the diagonal are the simple Rand statistic, unadjusted for chance.  The 
interpretation of the Rand statistic is the probability that a randomly chosen pair will be similarly 
classified by the two partitions.  The interpretation for the adjusted Rand is the percent difference 
between the number of observed agreements and the number of chance agreements. 



We next examined the similarities between grouping algorithms for both types of data. Table 2 
contains the Rand matching coefficients describing the comparability of the node partitions 
across the six different combinations of network data and group identification algorithm. The 
positive coefficients across all comparisons indicate that the partitions are significantly 
correlated, but the differences that occur are systematic. Overall agreement is higher across the 
three multi-informant solutions (mean Rand=0.97, Adjusted Rand=0.68) than across the three 
self-reported friendship solutions (mean R=0.89; AR=0.39).  This main effect of network data is 
quite large, and due largely to the clear clustering evident in the multi-informant matrix. 
Effectively, subgroups in the multi-informant network are much easier targets to hit than in the 
less clustered friendship network, so that differences in grouping algorithms are less likely to 
lead to divergent grouping solutions. 

Within the friendship network, the RNM solution is less similar to the other two (AR: 
RNM,FAC =0.33; RNM,PCA =0.36) than they are to each other (FAC,PCA =0.48).  This 
suggests that the three methods differ in their basic strategies which, as we will see below, trade 
off larger, distinctive groupings (RNM) and smaller groupings with greater in-group density 
(FAC, PCA). Overall, the groups derived from the self-reported friendship data with a particular 
algorithm were as similar to groups derived from the multi-informant data (upper right quadrant 
of Table 2; median AR=.47) as they were to each other (AR range .33 to .48). 

From the perspective of comparing results across different combinations of data collection 
techniques and analytic strategies, these results send a mixed signal. On the one hand, the 
significant chance-adjusted agreement across all six solutions indicates that investigators using a 
wide range of methods (measures*algorithms) are indeed describing similar phenomena. On the 
other hand, compared to self-reported friendship data, the more clustered multi-informant data 
produce much more consistent groupings across several analytic methods. We next turn to the 
details of the kinds of groups identified by each approach. 

Differences in the Structural Features of Group Solutions 

Table 3.  Structural Features of Groups 

Type of Network Data Group Identification Procedure 
Recursive 
Neighborhood 
Means 

FAC Principal 
Components 
Analysis 

Gender x 
Homeroom 

  
Self-Reported Friendships 
Density = .12 
Transitivity Ratio = .57 

        

   # of Groups 10 + 
14  between 

20* 24 + 3 
unclassified 

  

   Size: M (SD) 13.3 (11.6) 7.3 (1.9) 6.04 (2.22)   
   Min  -  Max 5 - 43 5  - 12 3 – 12   



   Groups of size = 3 0 0 3   
   Relative Density 9.76 11.43 13.61 7.84 
   Relative Transitivity 1.58 2.56 2.60 2.14 
   Prop. closed triads in same group 0.60 0.27 0.24 0.21 
   Freeman Segregation 0.57 0.32 0.33 0.311 
   Modularity 0.46 0.30 0.31 0.41 
   Proportion of ties out-of-group 0.346 0.641 0.636 0.636 

          
  
Multi-informant Groups 
Density .49 
Transitivity Ratio = .57 

        

   # of Groups 20+9 between 20* 24 + 1 
unclassified 

  

   Size: M (SD) 6.95 (3.03) 7.4 (2.6) 6.13 (2.44)   
   Min  -  Max 4 – 14 5 – 13 3 – 11   
   Groups of size = 3 0 0 4   
   Relative Density 27.22 30.83 29.72 10.87 
   Relative Transitivity 1.54 1.66 1.67 1.54 
   Prop. closed triads in same group 0.41 0.52 0.31 0.21 
   Freeman Segregation 0.56 0.58 0.53 0.394 
   Modularity 0.52 0.53 0.50 0.36 
   Proportion of ties out-of-group 0.399 0.383 0.439 0.556 

* Number of groups is definitional 



Table 4. Within-Group Behavioral Homogeneity 

      Type of Network Data 

    Group structure Index Self-Reported 
Friendships 

Multi-
Informant 
Groups 

Group 
Identification 
Procedure 

Recursive 
Neighborhood 
Means 

Like Going to School .080 / .066 a .228 
Peer Social Preference .142 / .143 .281** 
Teacher-rated Aggression .048 / .088 .204 
Grade Point Average .080 / .226* .224 

FAC Like Going to School .126 .220 
Peer Social Preference .197 .342*** 
Teacher-rated Aggression .171 .229* 
Grade Point Average .247+ .246* 

Principal 
Components 
Analysis 

Like Going to School .235 .276* 
Peer Social Preference .366*** .317** 
Teacher-rated Aggression .403*** .439*** 
Grade Point Average .332** .289* 

* p < .05. ** p < .01. *** p < .001. 

Note. Effects of group membership (Partial eta-squared) after controlling for gender. For the 
RCN self-reported friendship solution, values after the slash are the partial eta-squared values 
after removing group 1. 

  

Table 3 contains the group structure statistics for the six clustering solutions and, for comparison, 
the statistics for a simple attribute clustering based on sex and homeroom.  Table 4 contains 
estimates of group behavioral homogeneity. Below we briefly summarize results for the multi-
informant networks before examining reasons for the variability in solutions for the friendship 
data. 

Multi-informant Group Structures. The three methods produced similarly sized groups from the 
multi-informant data. The average group sizes were very similar for RNM and FAC (6.95 vs. 
7.40) with a similar distribution of group size (range 4 to 14 for RNM; 5 to 13 for FAC), and 
PCA groups were only somewhat smaller (M = 6.13, range 3 to 11). Group tight-knittedness was 
very similar across solutions, with the relative density of in-group to out-group ties roughly three 
times higher for the RNM, FAC and PCA solutions (27.22, 30.83, 29.72) than for a partition 



reflecting the split by gender and homeroom (10.87). Group differentiation was also similar 
across solutions. 

The estimates of group behavioral homogeneity were generally reliable and moderate in 
magnitude for each solution.  Given the similarity in the partitions, it was surprising that 
homogeneity was consistently higher for the PCA groups than for the RNM groups, with 
homogeneity of FAC groups at intermediate levels. The substantially higher levels of similarity 
in aggressive behavior for the PCA groups was due largely to a subset of 13 boys, 5 of whom 
were highly aggressive (representing nearly half of the highly aggressive students in the entire 
grade). RNM and FAC placed all 13 individuals in the same group, whereas PCA separated them 
into a group of 8 that contained all 5 highly aggressive individuals and a group of 5 non-
aggressive boys. The most likely explanation for the modest differences in similarity for the 
other behaviors is that PCA produced slightly smaller groupings, but we examine this issue more 
fully in the context of the friendship network solutions, which differed more substantially in 
additional ways. At this stage, the most noteworthy feature of multi-informant data was that three 
distinct group identification procedures produced solutions that were highly comparable in terms 
of structural characteristics, the placement of individuals into groups, and estimates of behavioral 
homogeneity. 

Self-Reported Friendship Group Structures 

Size. As with the multi-informant network data, the RNM and FACTION solutions tended to 
produce larger friendship groups than the PCA solution. FAC and PCA produced group sizes 
that were very similar to those obtained when the comparable method was applied to the multi-
informant data (FAC: M = 7.3 for friendship data, M = 7.4 for multi-informant data; PCA: M = 
6.0 and M = 6.1, respectively). The RNM friendship solution generated one male group of 43 
nodes.  This large cluster dominates the RNM solution, and appears to drive a number of the 
differences reported in the group structure below. When this group is excluded from 
consideration, the RNM solution for friendship data produces groups only a bit larger than those 
for multi-informant data (M = 8.5 vs. M = 6.95). 

Internal density. The PCA solution produced groups with the highest density and internal 
transitivity, with the FAC groups being quite similar. More specifically, the relative density of 
ties for the PCA, FAC and RNM groups was 13.6, 11.4 and 9.8, respectively, and the within-
group transitivity ratio for each was 2.60, 2.56 and 1.58. Again, much of the difference in this 
“tight-knittedness” for the RNM solution is attributable to the large group of 43 nodes. When 
that group is excluded, indicators of internal density are more similar for the remaining RNM 
groups. 

Differentiation. The RNM groups were more highly differentiated than the PCA or FAC groups. 
Sixty percent of closed triads fall within RNM groups, whereas the majority of closed triads in 
both the PCA and FAC routines cross group boundaries, suggesting that the RNM solution 



effectively constructs groups so as to have relatively fewer contacts with other groups.  This is 
evident in the other group clustering statistics as well.  The segregation index for the RNM 
solution is 0.56, compared to 0.32 and 0.33 for the FAC and PCA solutions, respectively and the 
modularity score for RNM is 0.456, compared to 0.299 and 0.311 for FAC and PCA, 
respectively.  Similarly, while 64% of ties fall outside of the FAC and PCA groups, only 35% of 
ties fall outside of RNM groups.  

Behavioral homogeneity. The three solutions produced varying estimates of behavioral 
homogeneity. The ordering of these differences was the same as for the multi-informant data: 
PCA produced the largest estimates of homogeneity, FAC produced intermediate, but often 
statistically insignificant estimates, and RNM produced weaker and usually statistically 
insignificant estimates, which increased only modestly when the large group comprised of 43 
individuals was excluded. Within methods, PCA-based estimates of homogeneity were 
comparable for the friendship and multi-informant data, but for both FAC and (especially) RNM, 
estimates of homogeneity were distinctly higher for the multi-informant data. 

Summary. The less clustered self-reported friendship data produced results that varied more 
across analytic method than did the multi-informant data.  In these circumstances, the RNM 
procedure achieves its relative advantage in differentiation at the cost of less tight-knit groups. 
That is, it appears that the RNM procedure tends to favor distinct groups, even if they are less 
internally dense, while the PCA and FAC solutions return groups that are internally very dense 
and transitive, but that also have many ties and closed triads falling outside of the respective 
groups. These differences were correlated with estimates of behavior homogeneity. 

A Closer Look 

What accounts for the differences in partition results for the self-reported friendship 
data?  Figure 4 below provides an intuitive comparison of the RNM and PCA 
solutions.[12]  Panel A presents the shadow plots for the overlap in assignments (1st matrix) and 
the raw data used to generate the cluster solutions (2nd matrix).  The high-level of agreement for 
the multi-informant data is evident by the fact that most of the shaded cells in the first column 
are black – indicating that the pair was classified in the same group by both solutions.  The 
matrix has been permuted to pull clusters along the diagonal.  The places where the algorithms 
miss each other are colored gray (the pair was grouped together by one algorithm but not the 
other).  You can see that when the algorithms “missed” they tended to be in very similar regions 
of the graph.  For example, the largest amount of mismatch between the two solutions occurred 
in the block-diagonal cell in the lower right of this image, where both agreed on the pairwise 
placement of two smaller sections, but disagree on the remainder of the pairs.  If we look at the 
corresponding region of the raw data, we see that this section had very high levels of joint 
nominations.  The tendency for PCA to pick up dense rather than distinct groups accounts for the 
difference in the two solutions. 



 

Now consider the self-nomination case in panel B.  The lower overall agreement is evident in the 
larger number of gray cells, but note also the greater diversity of tie distribution in the raw data 
in the second matrix.  The region of greatest disagreement is in the lower-right of the adjacency 
matrix.  Here we see that PCA and RNM agreed on the pairwise assignment of those nodes with 
the strongest ties, but PCA split the set into many small groups and RNM kept them 
together.  This is exactly the trade-off between distinction and density alluded to above. 

This tradeoff becomes more apparent if we zoom in on the region of the self-reported friendship 
network where the three approaches disagree most: the large ‘tangle’ of reciprocated relations on 
the male side of Figure 1.  Figure 5 plots the 60 nodes involved in this set, identifying groups 
with four different methods. To ease comparison, the figures use the same layout for each 



solution, but colors and shaded regions encapsulate nodes according to how each algorithm 
clustered the data set.[13]  The figure includes the three indirect clustering routines compared 
here, as well as a cohesive blocking routine described by Moody & White (2003), which helps 
inform why the other three solutions differ.  To help visualize the cluster results, nodes of the 
same color are enveloped in a semi-transparent region shaded the same color as the nodes.  

 

The three clustering methods agree exactly on the grouping of the seven nodes at the top of the 
figure and have relatively similar assignments of the nodes around the nine-person star at the far 
right of the figure.  These nine nodes center around a central actor, and every solution finds a 



group centered around this actor, although they differ slightly on their exact composition.  The 
yellow section in the RNM solution, however, dominates the bulk of this subgraph.  If you look 
carefully across the three solutions, you see little agreement on the placement of nodes within 
this set.[14]  The FAC solution crosses the strongest tie section in multiple ways (other layouts, 
that do not weight reciprocated ties for example, do not help here).  The PCA solution provides 
more compact divisions, but a number of points spread over the bulk of this tangle.  The RNM 
approach just called it a single group. 

Why is it so difficult to consistently partition this section?  The answer lies in the direct blocking 
given in the lower-right panel of Figure 5.  Instead of identifying primary groups, here we 
employ a cohesive blocking of the graph.  A cohesive block contains nodes that are similarly 
situated in the node-independent path structure (here based solely on the reciprocated-tie 
network). If a component is k-connected, then the graph cannot be divided into separate pieces 
unless at least k nodes are removed (Moody & White 2003).  All nodes are part of the 1-
component, but nested within this set is a 47-person bicomponent, two 3-components (size 4 – 
the heart of the section all methods agree on; and size 35 – the large orange region), and the core 
of this network is a 22-person 4-component (olive green section) that admits to no more strongly 
linked k-components.[15]  

Node connectivity provides a natural boundary for primary groups, as the cutpoints in the graph 
provide a clear partition of edges into distinct sets. Since there is no natural split in the cohesion 
structure to exploit, the resulting divisions are based on other graph features.[16]  FAC appears 
to incorporate weak-ties, while the PCA solution appears to use both the weak tie information 
and capitalize on the increase in correlation that comes from two actors not being connected to 
similar third parties.  This element of structural equivalence is evident in the light pink trio 
composed of actors all connected to a central star (that is in another group), and perhaps suggests 
one mechanism to explain the greater homogeneity within group.  RNM, in contrast, focuses 
largely on group distinctiveness, building on these cutponts, and thus does not attempt to split 
this group. 

IV. Conclusion and Discussion 

Are investigators who use different data collection methods and different analysis techniques to 
find adolescent “peer groups” studying the same thing?  Our results suggest that (for these data) 
all methods find roughly similar groups, but that: (a) the differences that do appear are 
systematically and strongly affected by the data collection method, depending more on the group 
detection algorithm for self-reported friendship data; (b) when detection algorithms differ, they 
trade off the extent to which detected groups are distinct from the rest of the network rather than 
internally dense and (c) algorithms favoring internally dense ties identify groups with greater 
behavioral similarity.  



With respect to data, the multi-informant data produces easier targets for any algorithm to 
cluster.  We suspect that the substantial difference in the “clusteredness” of the self-reported 
friendship and multi-informant group data follows largely from differences in the level at which 
affiliations are reported (dyads vs. groups). Lists of dyadic friendships do not imply direct ties 
among the friends listed. In contrast, recorded responses at the level of groups are completely 
connected (and distinct) cliques, so the resulting networks have to look like overlaps of cliques. 
Differences in the clusteredness of the two types of data were further magnified by the fact that 
adolescents listed nearly twice as many peers in response to the groups question (M = 17.3) as 
they did when they listed only their own friends (M =9.72). Finally, it is possible that there are 
differences in the transitivity of (peer-perceived) interaction patterns and (self-reported) affective 
ties: in other words, feelings of friendship may be more diffusely organized than the interaction 
patterns perceived by peers. Within these data, we cannot disentangle how each of these factors 
(group-vs-dyad; multi-vs.-self-informant; interaction-vs.-closeness) contributed to the greater 
clusteredness of the multi-informant data, but together they clearly resulted in substantial 
differences in the data structures from which groups were derived. 

In comparing detection algorithms, the RNM procedure is biased toward identifying groups that 
are distinct from each other, while FAC and PCA find groups that are more internally dense, 
even if they are not strongly distinct from other groups in the network. The tension between 
group distinctiveness (RNM) and internal density (FAC, PCA) is most apparent when the 
network structure does not lend itself to a set of clearly discrete groups, such as with the 
friendship data (Figure 5). The fact that the smaller, denser groups identified by FAC and PCA 
are more behaviorally homogenous than the larger groupings identified by RNM suggests that 
they are making non-random differentiations within the large “tangle” of relationships.  The 
tension between grouping algorithms that emphasize distinctiveness over internal density may be 
reduced by allowing groups to overlap. In the PCA procedure, for example, significant loadings 
on two factors can be interpreted as instances of membership in two overlapping groups: 
explicitly permitting such “dual-membership” would likely decrease the number of closed triads 
that are split when these individuals are forced to be members of only one group. 

It is noteworthy that behavior similarity was higher within groups identified by PCA than within 
groups identified by the other two algorithms.  Why would this be true, particularly given 
RNM’s theoretical foundation in peer influence models?  Two explanations deserve further 
examination.  First, PCA uses a profile similarity score (the correlation of ties across all actors), 
which is a classic measure of structural equivalence.  Finding a stronger behavioral effect for 
PCA groups over the other two algorithms suggests future work might focus on role-based 
mechanisms that are related to a group’s position in the overall network structure (Burt, 1978, 
1987; Friedkin, 1984; Mizruchi, 1993).  Second, it might be that dyads, rather than groups, are 
the relevant unit for influence in early adolescence. Developmental researchers have suggested 
that group-level dynamics and influence begin during adolescence (Rubin et al., 1998), but 
systematic research clarifying exactly when these processes emerge is lacking. If dyad-level 



influences prevail in early adolescence, then the slight advantage in dyadic strength identified 
within the PCA groups makes it a better proxy of those processes.  

The RNM routine implements a behavior model that assumes equal influence of similarly 
weighted ties, but recent sociological work on social influence (Friedkin, 1998; Friedkin and 
Johnsen, 1997; Haynie, 2001) suggests that peers are counted differentially based on their 
position.  One way to test this assumption would be to generate RNM similarity scores that 
interact with peer position, giving higher weights to central actors or the number of third parties 
commonly joining each pair. Developmental researchers are moving in a similar direction by 
considering strategies that would differentially weight peers in the social network based on 
information about both friendship ties and interaction frequency (Kindermann, 1996). For 
example, extra weight could be assigned to friends within interaction-based groups, or 
reciprocated friends could be weighted according to the number of peers who report that they 
“hang around together a lot.” 

What general recommendations about data collection and group detection method can be made 
from this comparison?   First, it is clear that the group membership results depend strongly on the 
data collection method and it appears that the most relevant feature of the method depends on the 
level of density and transitivity / clustering it generates.  Second, while we find a generally broad 
consensus across methods and data, when these grouping methods disagree, it tends to be along a 
dimension of distinction vs. density.  With the typically sparser and less clustered self-reported 
friendship data, researchers should recognize this probable disagreement across methods and 
provide a clear theoretical rationale for why density would be preferable to distinction (or vice 
versa).  Researchers might ideally seek evidence of the generalizability of substantive 
conclusions by comparing substantive conclusions across multiple grouping algorithms applied 
to the same network or the same grouping algorithm applied across multiple networks. When 
there are not compelling conceptual or logistical reasons to measure peer groups in terms of self-
reported friendships, then collecting data in the form of multi-informant groups will likely 
provide a more robust basis for group identification. 

Future research should more fully explore several issues that were beyond the scope of these 
analyses. Most fundamentally, if peer similarity and influence operate mainly at the dyadic level 
in early adolescence, might it be more efficient to focus on these direct ties and forego the 
identification of group structures altogether? At what stage in development do group structures 
add explanatory power over and above direct ties? How might allowing for overlap among 
groups affect differences among group solutions and estimates of behavioral similarity? How 
might information about friendships and interaction-based social ties be combined to weight 
peers differentially according to their likely influence? Given that both developmental and 
sociological network researchers have articulated similar questions and potential solutions to 
these questions, continued cross-fertilization of conceptual, methodological and analytic methods 
should produce benefits for both fields. 
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[1] Scott D. Gest, Human Development & Family Studies, Pennsylvania State University, 110 
Henderson South Building, University Park, PA 16802. Phone 814-865-3464, Fax 814-863-
6207,gest@psu.edu. 

[2] Throughout this paper, we distinguish between cohesive groups and primary groups.  We 
reserve “structural cohesion” and thus “cohesive groups” to refer to node connectivity, and focus 
our attention on “primary peer groups” here.  Peer groups should be structurally cohesive, but 
structurally cohesive groups can encompass wider sets than primary peer groups. 

[3] To help avoid confusion between graph-theoretic connected components, we use “factors” to 
describe the sets that emerge from the PCA models. 

[4] As a practical matter, over 96% of all individuals had loadings > .40. Altering the threshold 
to .25 and .35 results in very similar solutions, with the primary difference being the degree of 
overlap between groups (i.e., cross-loading) 

[5] Since both FAC and RNM are indirect techniques, there is no necessary guarantee that the 
resulting groups will be connected.  As the UCINET manual states clearly: “Care should be 



taken when using this routine. The algorithm seeks to find the minima of the cost function.  Even 
if successful this result may still be a high value in which case the factions may not represent 
cohesive subgroups”  (Borgatti et. al 1999). 

[6] An alternative would be to just work with the reciprocated ties, which has often been done in 
the developmental literature.  But we felt that (a) substantively, information was imbedded 
within these asymmetric ties that should not be ignored and a weighted solution gave priority to 
reciprocated relations without ignoring asymmetric ties and (b) recent sensitivity work suggests 
that assuming that all asymmetric ties equal 0 leads to greater distortion in graph statistics than 
does assuming that they carry value. 

[7] There are reasons to consider grouping algorithms that permit overlap between groups as a 
realistic depiction of real-world peer groups, in which overlap could reflect a stable feature of the 
peer network or an artifact of taking a “snapshot” of a dynamic network shifting from structure 
of non-overlapping groups to another. For our present comparative purposes, however, we focus 
on non-overlapping grouping solutions. 

[8] Density measures are calculated using the valued versions of each network.  For the 
friendship network, reciprocated ties are counted as 2 and asymmetric ties as 1.  For the multiple 
nomination data, values are equal to the number of co-nominations.  For the triad measures, the 
friendship network was binarized such that any ties = 1.  For the multiple nomination data, any 
tie > 1 was coded to 1. 

[9] Part of the appeal of the modularity index is that it takes a value of 0 when the nodes are all 
assigned to a single group, which is exactly what allows it to reach a peak value at a number of 
clusters somewhere between 0 and N. 

[10] We did not equate the coordinates of the two graphs because arbitrarily picking one of the 
layouts (or some combination of them) as the 'right' coordinates would preclude comparing the 
general shape of the two layouts. 

[11] The network data used here violate the basic independence assumptions of standard 
statistical tests, so the statistical significance estimates need to be treated carefully.  We also ran 
a non-parametric QAP regression of nominations as a function of co-involvement and find 
similar results.  We report the logit estimates here because the odds-ratio interpretation is clearer. 

[12] We compare just these two here, as they were the most different across both data types. 

[13] The clustering was done on the full network, not this limited set.  Applying the same routine 
to just these 60 might lead to different results, as information about how some of the nodes are 
attached to 3rd parties not represented in this figure likely affects the clustering. 

[14] The difference is not due entirely to size.  If you specify a 10-group solution in FAC, for 
example, the 12 groups in this set decreases to 6, with an average size of 10.  The solution for the 



“group of 9” then looks like a merge of the orange and light blue groups, with one more central 
node co-opted from the center of the graph.  The bulk of the large 4-component is split into a 
core/periphery, with the 17 most central nodes forming the core.  Interestingly, the former 
agreement on the group at the top then drops, by adding more nodes from the periphery of the 
network to that set. 

[15] The Moody-White algorithm proceeds by identifying all k-cuts in a graph, then searching 
the resulting graph for more cuts.  This identifies all k+l components nested within any k-
components.  But it also identifies deeply embedded groups that are less than k connected, but 
still the strongest remaining set after the last round’s k-cuts have been made.  In this case, this 
shows that after removing the 4-cuts from the deepest 4-component, you still have a core 3-
component remaining, that is similar to the core of the 10-person FAC solution. 

[16] And some element of random luck, at least for FAC and RNM, which take a random-
number / variable starting point. 

 


