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ABSTRACT 

 
 
NINA SANAPAREDDY. Using bioinformatics to analyze the role of microbial taxa in 
complex ecosystems. (Under the direction of DR. ANTHONY A. FODOR) 

 
 

Microbes are abundant on earth and play a crucial role in the environment they 

inhabit. Before the dawn of metagenomics, the study of the effect of microorganisms on 

their environment was limited due to use of low throughput techniques that could only 

examine single organisms or a few at a time. Metagenomics is a fast growing field of 

science that permits investigation of microbes by directly extracting DNA from the 

environment. A lot of environments, ranging in complexity from the ocean to acid mines, 

from wastewater communities to the human body have been targeted by metagenomics 

studies, and these studies generate tremendous amounts of data and newer and more 

efficient bioinformatic tools and methods are needed to interpret this complex data.  

In this dissertation we used bioinformatic tools to enrich our understanding of the role 

that microorganisms play within some important but understudied microbial 

environments. In Chapter # 1, we report an increased microbial richness associated with 

colorectal cancer. This is an important finding that could lead to the development of 

diagnostic methods to identify individuals at high risk of developing colorectal cancer 

and this early detection could help devise preventive strategies. In Chapter # 2 we discuss 

a batch-effect we discovered in our colorectal cancer project and how filtering out the 

batch-effect helped us in revealing the true biological signal. In Chapter #3 we report 

results of a metagenomic survey where we analyzed the pyrosequences obtained from a 

wastewater community. In Chapter # 4 of this dissertation we perform a systematic 



iv 
 
comparison of some of the methods used in taxonomic profiling of microbial 

communities and show how the choice of method can have an effect on a community’s 

taxonomic profile. 

Overall, this dissertation demonstrates the value of using bioinformatic tools during 

the course of analysis of complex communities, in not only filtering out artifacts and in 

choice of analysis pathways but also in discovering important biological effects. 
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INTRODUCTION 
 
 

The significance of microbes in the environment they inhabit: Microbes are 

everywhere and their presence always affects the environment that they are growing in.  

Microbes are found in almost every habitat on earth, ranging from extreme climates like 

acidic hot springs [1], radioactive waste [2], and Earth's crust [3] to relatively moderate 

ones like inside and on the surface of the plants and animal bodies [4].  Nearly all 

animals, plants and certain types of fungi are dependent on microbes because the 

microbes make vital minerals, nutrients and vitamins accessible to their hosts[5]. 

Microbes inhabit animal digestive systems, their mouths, their skin and many other 

organs and are important for the maintaining the health of their animal hosts. 

Comparisons of germ free  mice with those colonized with microbiota[6], have shown 

that the microbiota help regulate energy balance, not only by extracting calories from 

otherwise indigestible components of our diet but also by controlling host genes that help 

in storage of the extracted energy. These studies thus conclude that manipulating the 

microbial composition may be helpful in regulating the energy balance in the hosts 

[7],[8],[9]. 

The role that microorganisms play in their environment has been a central focus of 

microbiology for a long time. However, in the past, microbiology focused on isolating 

one or a few species at a time, by culturing them individually, so very little insight was 

gained about all the members of that community, as a whole. Metagenomics, sequencing 

of DNA extracted directly from environmental samples is a new tool that helps us study 

microbes, not as separate entities but as a whole, in complex communities. Metagenomic 

studies on a wide variety of environments including the ocean, soil, thermal vents, acid 
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mine drainages and the human microbiome are helping to reveal the vast microbial 

diversity that has been hidden from us in the past due the limitations of the preexisting 

technologies[10], [11], [12].  Metagenomics has rapidly advanced in the recent past and 

this growth can be attributed, not only to the technical and analytical methods developed 

from high throughput platforms but also to the simultaneous advancements in the 

associated bioinformatics and statistical software [13-14]. 

Metagenomic analysis of microbial communities: The term “metagenome”[15] was 

coined by Jo Handelsman and was initially used to describe a collection of genes, from a 

number of genomes, sequenced directly from the environment that could be analyzed in 

the same way as a single genome. Recently though, metagenomics is being used in a 

broader sense, to describe any sequencing of genetic material from uncultured 

environmental samples, whether it is from an entire community, a single organism, all the 

genes or just one gene (like the 16S rRNA gene). Kevin Chen and Lior Pachter 

(researchers at the University of California, Berkeley) defined metagenomics as "the 

application of modern genomics techniques to the study of communities of microbial 

organisms directly in their natural environments, bypassing the need for isolation and lab 

cultivation of individual species."[16]. 

The quality and quantity of results obtained from a metagenomic analysis of any 

community will be dependent upon the procedures used for sampling the community, on 

the molecular biological methods like DNA extraction on the sequencing methods used, 

and on the bioinformatic and statistical analytical methods used.  Deciding on the best 

way to sample a microbial community for metagenomics is one of the biggest challenges 

faced in the planning phase of any metagenomic study. Time-course studies gauge the 
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response of the inhabitant microbes to changing conditions over time. These studies lead 

to a better understanding of the overall community structure, function, and its robustness 

to the changing conditions. Similarly, to comprehend the role of host-associated 

microbial communities in host development and health requires not only sampling from 

the same host over time (longitudinal studies), but also assessing host-to-host variation at 

a given point of time (cross-sectional and case-control studies). Habitat and host 

variability add more levels of complexity the already complex sampling related issues. 

Another source of variability, which is crucial in metagenomics studies, is technical 

variability. In studies involving large sample sizes, sometimes the samples are processed 

in batches and the quality of the data will depend on ensuring that, as far as possible, 

same reagents, protocols, personnel, technologies etc. be used for all the batches in a 

study. In addition, making sure that biological variables (example disease status) do not 

overlap with technical variables (example sequencing date) will assure that the results 

obtained are due to biological differences between samples and not technical differences. 

As biological and computational methods become more efficient, we will be able to draw 

more robust conclusions from analysis of complex metagenomic communities, but issues 

relating to sampling and sequencing procedures and the choice of the methods used for 

bioinformatic and statistical analysis of the community in question should be considered, 

not only in the beginning but also throughout the course of any metagenomic study.  

Advances in sequencing technology and its effect on analysis of complex ecosystems: 

Initially environmental gene sequencing focused on specific genes (often the 16S rRNA 

gene) to obtain a profile of the microbial diversity in the environmental sample.  More 

recently, however, “shotgun Sanger sequencing, massively parallel pyrosequencing”, or 
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Illumina sequencing [17] have been used to obtain sequences of all genes from all 

members of sampled communities. These studies, whether the focus is on a single gene or 

on all the genes, revealed that culture based methods missed a majority of the microbial 

diversity within the environment[18].  

Shotgun sequencing, the approach which had been used to sequence many cultured 

microorganisms[19]as well as the human genome [20], randomly shears the extracted 

genomic DNA into many short sequences before sequencing them. These short fragments 

were sequenced by Sanger sequencing [21] in earlier studies but in the recent past high-

throughput sequencing methods are being increasingly used [13], [22]. The Sanger 

sequencing method (Sanger et al., 1977) is based on synthesizing DNA based on a single 

stranded template while randomly incorporating chain terminators, and the different 

fragment sizes generated by this sequencing method coincide with to the chain-terminator 

locations. In the last decade, the average length of a sequencing-read generated by Sanger 

sequencing has increased from around 450bp to 850bp. Due to the fact that the Sanger 

method runs one sequencing reaction at a time, large metagenomic studies that utilize 

Sanger sequencing could only be carried out at large genome centers with hundreds of 

sequencing machines, all of them working simultaneously to sequence the metagenome. 

Until now, the largest such metagenomic study to have utilized Sanger sequencing is the 

Sorcerer II Global Ocean Sampling (GOS) expedition [23], lead by Dr Craig Venter (well 

known for his role in the Human Genome Project). The enormous size of this study can 

be appreciated by the fact that just the pilot project of this study (conducted in the 

Sargasso Sea) yielded DNA from about 2000 different species, 148 of which were 

completely novel bacteria[24]. This study ended up increasing the size of protein 
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databases to almost twice their original size by adding millions of predicted protein 

sequences and thousands of protein families to the protein databases.  

New sequencing approaches, made possible by parallel advances in fields of 

enzymology, imaging and microfluidics, have increased sequencing capacity but are not 

associated with the huge infrastructure involved in earlier sequencing methods. Most 

sequencing processes involve an initial amplification step that amplifies the DNA. In the 

Sanger method, this is usually done by cloning, where the DNA is incorporated into a 

plasmid and the clones are then grown. Due to a number of reasons (fragment toxicity, 

replication inhibition etc.) the bacteria, mostly E. coli, into which the plasmids are 

transformed, can selectively amplify certain fragments of DNA inducing a bias in this 

step. To overcome the aforementioned shortcomings of the in-vivo methods, Margulies et 

al developed a high throughput strategy for in-vitro amplification that has an added 

advantage of also being inexpensive relative to Sanger sequencing. This method [25] is 

commonly known as 454 pyrosequencing after 454 Life Sciences (Branford, CT, USA), 

the company that commercialized this technology. With the high accuracy, low cost, and 

relatively long reads associated with some “next generation” methods like 454 

sequencing and Illumina sequencing, many researchers have migrated away from 

traditional Sanger capillary sequencing instruments and toward these sequencing 

platforms for a variety of their genome projects. Forest Rohwer’s group at San Diego 

State University were the first to use next generation sequencing, pyrosequencing 

developed by 454 Life Sciences[25], for sequencing community DNA[26]. Even though 

the 454 sequencing method generates shorter sequence lengths, it compensates for that by 

generating very large number of sequences compared to traditional Sanger sequencing 
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methods. The newly available titanium platform, from 454, allows reads as long as 400bp 

and is therefore beginning to approach the read lengths reachable through traditional 

Sanger methods[27].  More recently the Illumina sequencing technology[17] is being 

increasingly used for shotgun metagenomic studies[22] including for the Human 

Microbiome Project; due to its lower cost and lower error rates than the pyrosequencing 

method. 

Bioinformatics methods and challenges in community analysis: Analysis pipelines of 

many early metagenomics studies concentrated on gathering enough sequence 

information to characterize complete genomes from the concoction of metagenomic 

sequences. This was possible for low complexity environments, such as an acid mine 

drainage ecosystem [28], by using various complicated “binning” methods (grouping 

sequences based on oligonucleotide signatures). Whereas in more complex environments 

like soil or ocean samples, assembly still remains one of the major analysis limitations.  

Sequence data from complex environments, due to high levels of microbial diversity, is 

heterogeneous and in most cases contains an unequal representation of the constituent 

species. In addition, organisms in a complex environment frequently belong to closely 

related strains, whose genomes are highly similar, making it practically impossible to 

construct assemblies of each organism present in a sample. Also, viruses and/or inserted 

phages, if present, increase the possibility of generating chimeric contigs[29] that further 

impede assembly. The short-reads associated with newer generation sequencing methods, 

like 454 sequencing and Illumina sequencing, impose further complications. Due to the 

limitations in assembly of metagenomic data, gene prediction methods used in 

metagenomic analysis have been adapted to work with large numbers of fragmented 
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genes on short sequences. However, due to the phylogenetic diversity in samples it is 

difficult to find appropriate training sets for “intrinsic” gene finding in metagenomes. 

Consequently, extrinsic gene finding strategies that find coding regions based on their 

similarity to genes and coding regions in a reference database have been used. Some 

studies (e.g.[30], [31] ) skip gene prediction altogether and focus only on the ‘known 

fraction’ of their dataset by  limiting the downstream analyses to the BLAST annotated 

portion of their reads. These studies rely on direct classification of raw reads by 

homology to existing sequences in sequence databases[32] but the disadvantage of  this 

approach is that it will miss genes from novel organisms that have no close relative 

(homologs) in the sequence databases. 

Taxonomic profiling of metagenomic reads: Assessing the composition of the 

community in question is one of the crucial steps in understanding the role that microbes 

play in their environment. Traditionally, 16S rRNA gene sequences have been used for 

taxonomic assignment in genomes extracted from cultured organisms [33]. The 

sequencing of 16S rRNA genes from new species is made possible by the presence of 

highly conserved regions at several positions, well-located, along the gene [34]. The 

conservation of these regions allows one to design and use broadly targeted 

oligonucleotide primers that work on a wide diversity of species for both sequencing and 

amplification by the polymerase chain reaction (PCR). The amplified products can then 

be characterized in multiple ways; such as through restriction digestion[35], denaturing 

gradient gel electrophoresis[36-37], hybridization to arrays[38], or sequencing 

[39],[40],[41],[42]. As sequencing continues to decrease in cost and difficulty, it has 
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become the preferred option and therefore we focus only on sequence analysis in this 

dissertation.  

The length of the gene targeted using 16S rRNA gene sequencing, not surprisingly, 

has been dependent on the sequence length options offered by the sequencing technology 

available at the time the study was initiated. This is corroborated by the fact that earlier 

sequencing studies, targeting the 16S rRNA gene, captured either the entire or most of 

16S rRNA gene, using the longer read-length associated with traditional Sanger 

sequencing. Recently, with the rapid development of next generation sequencing 

technologies, uncultured bacteria from complex environments have been sequenced at a 

much lower cost than Sanger dideoxy sequencing. One of the earliest examples of the use 

of pyrosequencing in surveying microbial diversity is the exploration of the “deep sea” 

by Sogin and colleagues [43]. One of their reasons for choosing the V6 region for the 

study is that the shorter length of V6 variable region of the 16S rRNA (~65bp), compared 

to the other 16S  variable regions, makes it amenable for capture by the 100-bp reads 

generated by the pyrosequencing technology (GS-20), available at that time. More 

recently, the read length of 454 pyrosequencing machines has been increased to an 

average of 250bp (GS-FLX) and later to 400bp (454-titanium). This opened up more 

options for primer design and allowed the possibility of targeting regions of the 16S 

rRNA gene other than just the V6 region[44].  Using these newly available technologies, 

a vast numbers of “partial sequences” from 16S rRNA genes of environmental DNA have 

been generated and analyzed. The use of partial 16S rRNA sequences has been feasible 

due to studies that found that even fragments of the 16S rRNA gene can be used as 

substitutes for the full-length sequence, in many community analyses [45-46]. The 
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pyrosequencing approach has been used to target a wide range of microbial communities 

and variable regions of the 16S rRNA gene, including the V6 region in deep-sea vents 

microbial communities [43]; V1, V2, V6 and V3 regions  in human  gastrointestinal tract 

[39],[47],[48]as well as the V9 region in soil-derived microbial DNA[49].  

Whole genome sequence based methods that utilize the random or shotgun sequences, 

generated from the entire DNA of the environmental sample[10], for characterization of 

the community, have been suggested as a potential alternative for rRNA gene sequence-

based studies. These methods, also known as “metagenomic methods”, are indeed very 

powerful in that they bypass some of the limitations of PCR methods and, in the process, 

generate sequence data of many genes, including the 16S rRNA gene, from the many 

organisms present in a community. Taxonomic profiling of a community using random 

whole genome sequence reads can not only characterize “Who is there?” but can also be 

used to predict “What they are doing?”[50]. In some cases, application of shotgun 

metagenomics has led to the discovery of novel lineages of organisms that have been 

entirely gone undetected by rRNA gene PCR methods [51].  

Metagenomics is most likely to help us reveal the complex microbial communities, 

inhabiting nearly every environment and organism on Earth, that have been invisible so 

far due to the limitations of pre-existing technologies. Extracting all the possible 

information from metagenomic libraries will continue to be difficult, mainly because of 

the massive size and complexity of the datasets. Greater sequencing depth enabled by the 

lower cost and higher resolution of new technologies would make it possible to detect the 

rare yet important members of our biosphere. But more importantly, improvements in 

bioinformatics tools will make it easier to interpret the metagenome sequence data and in 
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some cases may help assemble whole genomes from metagenomic sequence data. Even 

in communities where assembly is not possible bioinformatic tools, by unearthing the 

microbial composition of the community in question, can help us move closer towards a 

better understanding of the role microbes play in an environment. 

In Chapters#1 and #3 of this dissertation we discuss metagenomic analyses of some 

understudied microbial communities, during the course of which we touch upon some of 

the bioinformatic challenges, mentioned  above, which arise during these analyses. In 

Chapter 2 we talk about batch-effects that are one of the major challenges faced during 

metagenomic analysis and how such effects can mask the true biological signal. In 

Chapter#4 we provide a comparative exploration of some the taxonomic composition 

estimating tools used during metagenomic analyses to exemplify the effect of analysis 

choices on the results of a metagenomic study. 
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CHAPTER 1:  INCREASED MICROBIAL RICHNESS IS ASSOCIATED WITH 
HUMAN COLORECTAL ADENOMAS 

 
 
 
1.1 Abstract  

Differences in gut microbial community composition have been linked to many 

important human diseases including obesity, Crohn’s disease, Ulcerative Colitis [52], 

[53], [54] and colorectal cancer. Previous studies that suspected a link between 

commensal gut bacteria and colorectal cancer, however used low throughput methods 

[55], [56], [57]. In this study, we employed 454 titanium pyrosequencing of the V1-V2 

region of the 16S rRNA gene to characterize adherent bacterial communities from 

mucosal biopsies of 33 adenoma subjects and 38 non-adenoma subjects. We found 87 

taxa (including known pathogens) that had significantly higher relative abundances in 

cases vs. controls while only 5 taxa that were more abundant in control samples. In 

addition, adenoma samples had a pronounced increase in average microbial richness 

suggesting that conditions associated with colorectal adenomas create an environment in 

which potentially pathogenic microbes can flourish.  Intriguingly, the magnitude of the 

differences between adenoma case and control in the gut microbiota was more 

pronounced than differences in the microbiota associated with patient obesity. Because 

the microbial signature associated with colorectal adenomas is generally distinct from 

microbial signatures associated with known risk factors such as increased body mass 



index (BMI), these results suggest that next-generation sequencing of the gut microbiota 

has potential utility as a diagnostic tool indicating the presence of adenomas.  

1.2 Background and significance 

The human microbiome, the microbes that are associated with the human body, 

outnumber our own “human” cells 10 to 1[58]  and provide us with a wide array of vital 

metabolic functions that we are lacking in[12]. The role that these “beneficial” microbes, 

play in health and disease, has been explored in the past, but only recently has the 

technology reached a point where the species present within an individual's microbiome 

can not only be accessed but identified [59], [12], [60], [61], [62], [63]. Recent research 

has shown that the relationship between the gut bacteria and humans is not just 

commensal (non-harmful coexistence), but is in fact symbiotic (mutually beneficial)[64]. 

For instance, microbes living in the our gut help us in digestion of food, in disruption of 

toxic compounds and in combating disease-causing pathogens[65]. Changes in these 

microbial communities may be responsible for digestive disorders [66-67],[68], skin 

diseases [63], obesity [69],[8],[59],[7],[70],[71],[72] and a range of “immuno-pathologic” 

conditions including inflammatory bowel diseases [73],[74],[75-76]. These studies 

suggest that each individual person is a “microbial island”, meaning that each has their 

own unique bacterial signature just as each individual has a unique fingerprint.  However, 

our gut microbiomes share a core group of genes that carry out some core functions and 

the differences in this “core set” can define different physiological states or phenotypes 

(for example lean and obese)[52]. In spite of the strong individual differences in the 

microbial community, researchers studying the human microbiome often perform cross-

sectional, “case-control” studies, which look for differences in bacterial populations 
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between patients who have a specific disease and those who do not[68], [77-78].  These 

studies have shown distinct microbial signatures of disease groups that separate cases 

from controls in diseases such as periodontal disease and gastric cancer [79], [80], [67]. 

The results from these studies indicate that disruption of the human microbiome levels 

plays a crucial role in human health and disease and that these changes can be indicators 

of the disease status in the human hosts. As a possible mechanism, Mazmanian et. al. 

have proposed that “the equilibrium between potentially harmful and potentially 

beneficial bacteria in the gut mediates health versus disease”[81]. Under this model, if the 

balance is altered by changes, for instance due to  diet, stress or antibiotics, then the 

immune response in the intestines is also changed leading to inflammation. This change 

in host-microbe relationship, called “dysbiosis”, has been associated with numerous 

gastro-intestinal diseases like inflammatory bowel disease [77] colon cancer [55] obesity 

[7-8, 70] and diabetes [78]. Chronic inflammation leads to cancer, and this mechanism 

has been suggested as a possible trigger for inflammation and colon cancer in animal 

models [82].  

Colorectal cancer is the second most common cancer in women and third most 

common cancer in men in the Europe and is the second leading cause of death resulting 

from cancer in both sexes[83], in developed countries. Although age, tobacco and alcohol 

consumption, physical activity and body weight are considered important risk factors for 

colorectal cancer[84], the most significant risk factor happens to be diet [85], [86] . In 

addition to the various factors mentioned above, the role of host associated microbiota 

has also been frequently proposed as a critical factor in colorectal cancer 

[55],[87],[88],[57]. Recent studies have investigated the possible role of the microbial 
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component of the colon in Colorectal Cancer [55] and have used culture independent 

approaches to explore the distal gut’s microbiome diversity and stability in individuals 

with colorectal cancer [88]. These studies[87], [88], used 16S rRNA gene denaturing 

gradient gel electrophoresis (DGGE) and ribosomal intergenic spacer analysis (RISA) to 

explore of the microbial diversity in the fecal samples in case and control subjects. 

Recent research on the mucosal adherent microbial component of the colon [89] showed 

that the bacterial community profiles of healthy individuals are stable along the length of 

the colon. While each individual has a distinct bacterial profile, there is some overlap 

between the mucosal-associated bacterial communities among individuals [87].  

 In a recently published study[57], our collaborator Dr Keku Temitope and her 

colleagues characterized the adherent bacteria in normal colon and in the diseased colon 

by fluorescent in-situ hybridization (FISH) analysis of the 16S rRNA genes as well as by 

terminal restriction fragment length polymorphism (TRFLP) and Sanger sequencing of 

16S rRNA clones. Their study showed that a distinct microbial signature is associated 

with colorectal adenomas. The work described in this Chapter, is a further extension of 

Dr. Temitope’s study via the utilization of second-generation sequencing technology, to 

provide deeper coverage of bacterial communities and to characterize the gut microbial 

communities of a larger set of patients.     

1.3 Materials and Methods 

1.3.1 Patient characteristics 

Subjects were screening colonoscopy patients at UNC Hospitals who agreed to 

participate in the Diet and Health Study (DHS V) and the characteristics of these subjects 

are shown in Table 1.1. The enrollment procedure as well as colonoscopy and biopsy 
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procedures and sample collection have been previously described [90], [57]. The study 

was approved by the Institutional Review Board (IRB) at the University of North 

Carolina, School of Medicine (Protocol #05-3138).  

1.3.2 DNA extraction and sequencing 

 Bacterial genomic DNA was extracted from mucosal biopsies; the biopsies ranged in 

weight between 10-20 mg.  Two biopsies per subject were used for bacterial DNA 

extraction and these were placed in lysozyme (30mg/ml; Sigma, St. Louis MO) for 30 

minutes.  The biopsy-lysozyme mixture was homogenized on a bead beater (Biospec 

Products Inc., Bartlesville, OK) at 4,800 rpm for 3 minutes at room temperature followed 

by DNA extraction using the Qiagen DNA isolation kit (cat # 14123) per the 

manufacturer’s recommended protocol.  The mucosal adherent microbiome was analyzed 

by Roche 454 titanium pyrosequencing of 16S rRNA tags from genomic DNAs.  

Pyrosequencing [25] was conducted at the University of Nebraska Lincoln Core for 

Applied Genomics and Ecology (CAGE).  We amplified the V1-V2 region (F8-R357) of 

the 16S rRNA gene from mucosal biopsies followed by titanium-based pyrosequence 

analyses.  The 16S primers contained the Roche 454 Life Science's A or B Titanium 

sequencing adapter (italicized), followed immediately by a unique 8-base barcode 

sequence (BBBBBBBB) and finally the 5' end of primer A-8FM, 5' -

CCATCTCATCCCTGCGTGTCTCGACTCAGBBBBBBBBAGAGTTTGATCMTGGC

TCAG-3' and B-357R, 5'-

CCTATCCCCTGTGTGCCTTGGCAGTCTCAGBBBBBBBBCTGCTGCCTYCCGTA-

3’. Each DNA sample was amplified with uniquely barcoded primers, which allowed us 

to mix PCR products from many samples in a single run.   



5 
 
1.3.3 Data filtering 

1.3.3.1 Sample filtering 

We screened all the samples for a batch-effect that correlated with the date of 

submission to the sequencing center.  Samples were shipped on 3 separate dates from 

Chapel Hill to the sequencing center in Nebraska. Samples shipped on one particular date 

(09/30/2009) were found to cluster separately from samples shipped on other dates 

(06/10/2008 and 7/21/2008).  The DNA stocks of these 2 groups of samples were also 

stored in different freezers at the Chapel Hill lab. In addition, the sum of Bacteroidetes 

and Firmicutes observed in samples shipped on this date was much lower than we would 

expect based on both previously published human gut microbial 454 datasets and our 

own 454 datasets.  Sequences generated from samples sent to the sequencing center on 

this date were therefore removed from further analysis. Leek et al. recently showed the 

importance of screening high throughput datasets for batch-effects [91]  and screening for 

batch-effects indeed proved useful in removing the technical artifacts from our dataset.  

The descriptive characteristics and of the 71 samples, 33 cases and 38 controls selected 

after sample filtering, are shown in Table 1.1. 

1.3.3.2 Sequence filtering 

1.3.3.2.1 RDP Pipeline 

The first step in the data analysis process involved a preliminary QC (quality control) 

filter (downstream of the Roche-454 GS-FLX software filtering). We removed sequences 

from our dataset if there were any Ns in the sequence or the 5’ primer did not exactly 

match the expected 5’ primer or if the average quality score was less than 20.  We then 

removed the 5’ primer sequence from our reads that have survived above filtering.  Only 
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trimmed filtered sequences with a length between 200-500bp were kept in our data set for 

RDP analysis. 

1.3.3.2.2 OTU Pipeline 

We removed sequences from inclusion in the OTU dataset if there were any Ns in the 

trimmed sequence or if the 5’ primer did not exactly match the expected 5’ primer.   As 

recommended by Kunin et. al.[92], sequences were end-trimmed with the Lucy algorithm 

[93] at a threshold of 0.002 (quality score of 27). Only reads with trimmed lengths 

between 150 and 450 were retained for OTU analysis.  Table 1.2 shows the number of 

sequences removed by our RDP and OTU pipelines. 

1.3.4 Bacterial Identification 

The sequences in our dataset were given taxonomic assignments based on two 

methods.  

1.3.4.1 RDP assignment method 

Sequences that have been filtered using the RDP pipeline (Table 1.2) were submitted 

to the RDP Classifier 2.1 algorithm for taxonomic identification at various taxonomic 

levels.  Sequences assigned in each sample to various taxa, from phylum level and genus 

level, were counted at the RDP confidence threshold of 80.  

1.3.4.2 OTU assignment method 

OTU analysis is more sensitive to sequencing error[92] and we therefore applied 

additional QC steps in our OTU analysis pipeline (Table 1.2). Sequences filtered through 

the OTU pipeline were submitted to Abundant OTU 

(http://omics.informatics.indiana.edu/AbundantOTU/) for assignment of each sequence to 

operational taxonomic units (OTUs; 97% identity). Sequences assigned in each sample to 
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various OTUs were counted and then normalized and log transformed (see Data 

Preprocessing), before proceeding to further downstream analyses.  Consensus sequences 

generated by AbundantOTU during construction of OTUs were submitted to RDP 

classifier 2.1 to assign taxonomy to each of the OTU groups.  Consensus sequences of the 

613 OTUs generated by AbundantOTU (available as 

Sanapareddy_SupplementaryDataFile1) were also submitted to ChimeraSlayer [94] ( 

http://microbiomeutil.sourceforge.net/) and the 9 consensus OTUs identified by chimera 

slayer as chimeras were removed from our dataset. In addition consensus sequences of 4 

OTUs on BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) search against the Silva 

reference 16S database failed to match with >97% sequence identity so these were also 

removed from further analysis.  This left a total of 600 OTUs.   

1.3.5 Richness and Evenness 

Shannon-Wiener Diversity Index, H, was calculated using the equation, H = -∑ Pi 

(lnPi), where Pi is the proportion of each species (taxa) in the sample.  Richness was 

calculated as the number of OTUs, genera or phyla observed in 2,636 sequences (where 

2,636 is the number of sequences seen in the sample with the fewest sequences).  For 

each sample, 2,636 sequences were randomly chosen 1,000 times and the average 

number of OTUs, genera or phyla observed over these 1,000 permutations was reported 

as richness.  

Evenness measures how evenly the individuals are distributed among the different 

species/taxa and is calculated by J= H’/Log (S) where H’ is Shannon diversity and S is 

the number of species or taxa in each sample.  Wilcoxon-tests and Student’s t-tests were 

performed to compare the mean similarities of the groups, case and control. The false 
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discovery rate was set at 10% using the Benjamini and Hochberg procedure[95]  to avoid 

type 1 error due to multiple comparisons on a single data set.  

1.3.6 Data Preprocessing 

1.3.6.1 Normalization 

Raw counts were normalized then log transformed using the normalization scheme 

mentioned below, before proceeding with the rest of the analyses. 

LOG10 ((Raw count / # of sequences in that sample)*Average # of sequences per sample 

+1). 

1.3.6.2 Removal of rare taxa 

In order to minimize the number of null hypotheses for which we would need to 

correct for multiple hypothesis testing, we removed rarely occurring taxa that occurred in 

so few patients that they could not be significantly associated with case-control or obesity 

phenotypes.  In all of our analyses (except richness calculations), we therefore only 

included taxa which occurred at least once in 25% of all samples.  For the RDP approach, 

9 phyla and 100 genera met this criterion.  For the OTU approach, 371 OTUs met this 

criterion. 

1.3.7 Tree Generation 

 For each of the 371 consensus sequences from OTUs that met the above criteria, 

BLASTN (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to find the top 10 hits in the 

Silva reference tree release 104 (http://www.arb-silva.de/download/arb-files/).  In this 

way, we identified a set of 3,594 aligned sequences to serve as our reference tree.   The 

program align.seqs within MOTHUR (http://www.mothur.org/) was used to align the 371 

AbundantOTU consensus sequences that passed all QC steps, to these 3,594 aligned 
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sequences as extracted from the Silva reference alignment.  With custom Java code based 

on the Archaeopteryx code base (http://www.phylosoft.org/archaeopteryx/), we removed 

all but the 3,594 sequences from the Silva reference tree.  We then uploaded the 

alignment of the 3,594 reference sequences plus the 371 AbundantOTU sequences to the 

RaxXML EPA server (http://i12k-exelixis3.informatik.tu-muenchen.de/raxml), which 

uses maximum likelihood to place new sequences within a reference tree.  Custom Java 

code (available upon request) was used to add RDP calls from each consensus sequence 

(Appendix A, Supplementary Figure 5) and coloring by false discovery rate (Figure 1.2, 

Appendix A, Supplementary Figure 5) to the tree.  Trees were visualized with 

Archaeopteryx.  Leaf nodes in Supplementary Figure 5 (Appendix A, Supplementary 

figures) are labeled with the RDP call of the consensus sequence at 80% confidence.   

1.3.8 UniFrac Analysis 

The tree generated from the 371 OTU consensus sequences (using RaxXML EPA 

server described above)  along with the environment  file with the abundance information 

of each of the 371 OTUs within the case and control environments were submitted to 

UniFrac [96]  and Fast UniFrac to see if cases cluster separately from controls. We ran 

100 permutations on the abundance weighted tree using the UniFrac significance test.   

1.3.9 Data Validation 

1.3.9.1 Real-time quantitative PCR validation 

q-PCR primers were designed based on no less than 95% sequence similarity from 

bacterial 16S  ribosomal DNA sequence alignments obtained from pyrosequencing. To 

measure the abundance of a specific taxon, three primer pairs where designed: one 

generic for all bacterial groups (Universal Primer): [EUB341-F 5’-
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CCTACGGGAGGCAGCAG-3’ EUB518-R 5’-ATTACCGCGGCTGCTGG-3’] and 

three taxon-specific primer pairs: first for the Helicobacter genus (Heli_F 5’ 

AGTGGCGCACGGGTGAGTA 3’ 

Heli_R 5’ GTGTCCGTTCACCCTCTCA 3’), the next one for the Acidovorax genus 

(Aci_F 5’-TGCTGACGAGTGGCGAAC-3’ Aci_R 5’-GTGGCTGGTCGTCCTCTC-3’) 

and another for the Cloacibacterium genus (Clo_F 5’-TGCGGAACACGTGTGCAA-3’ 

Clo_R 5’-CCGTTACCTCACCAACTAGC-3’).  

10 µL PCR reactions were prepared containing 100ng of DNA extracted from colonic 

mucosal biopsies, 10 µM of each primer, and 5 µL of Fast-SYBR Green Master Mix 

(Applied Biosystems). Cycling conditions were: 1 cycle at 95°C for 10 minutes followed 

by 45 cycles of 95°C for 15 seconds, 60°C for 1 minute, and 72°C for 30 seconds. A 

single dissociation curve cycle was run as follows: 95°C for 30 seconds, 60°C for 30 

minute, and 90°C for 30 seconds. A pool of samples was prepared to serve as the 

standard for the qPCR by mixing equal volumes from each sample. Abundance of a 

specific taxon was calculated by the delta-delta threshold cycle (∆∆Ct) method[97]  in 

which: ∆∆Ct = (CtTSE – CtUE) – (CtTSP – CtUP) .Where: CtTSE: Ct of experimental 

samples for taxon-specific primers, CtUE: Ct of experimental samples for universal 

primer, CtTSP: Ct for DNA Pool for taxon-specific primers, CtUP: Ct for DNA pool for 

universal primers. Theoretically, the abundance of a taxon is 2−ddCt. 

1.3.10 Nucleotide sequence accession numbers 

All 454 pyrosequences from this study are available in the Genbank database under 

the accession # SRS 166138.1-172960.2. 

1.3.11 Statistical analyses 
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The diversity indices, richness and evenness, were calculated using JAVA 

implementations (available upon request).  Kruskal-Wallis, Wilcoxon and Student’s t-

tests were performed using JMP 8.0 (SAS Institute, Cary NC) to compare the mean 

similarities of the groups, case and control. Regression and correlation analyses were 

performed using JMP 8.0 (SAS Institute, Cary NC) and in R (Open Sourced Statistical 

software).  

1.4 Results 

To evaluate associations between the gut microbiota and the presence of adenomas, 

we collected mucosal biopsies from the same region (~10-12 cm regions from the anal 

verge) from 33 adenoma subjects and 38 controls.   Our initial analyses looked at global 

signatures of the entire microbial community.  At the phylum, genus and OTU levels we 

found significant differences in richness (i.e. the number of taxa present in a sample), but 

no differences in evenness (i.e. how evenly distributed taxa are within a sample), between 

cases and controls (Figure 1.1; Appendix A, Supplementary Figures 1 & 2).  In order to 

see whether case samples cluster separately from control samples, we used UniFrac[96]  

to cluster our sequences based on their placement in the phylogenetic tree shown in 

Figure 1.2. Running 100 permutations on the abundance weighted tree using the UniFrac 

significance test resulted in a p-Value of 0.02 suggesting a marginally significant 

separation between cases and controls when considering all of the nodes of the 

phylogenetic tree.   Similarly, weak clustering was seen when we used principle co-

ordinate analysis (PCoA) on the same tree using FastUnifrac (Appendix A, 

Supplementary Figure 3). 
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We next asked which individual bacterial taxa were different between cases and 

controls.  By examining the results of the RDP classification algorithm [46] at the 

phylum level,  we observed at a 10% false discovery rate threshold that cases had higher 

relative abundance of TM7, Cyanobacteria and Verrucomicrobia compared to controls 

(Appendix A, Supplementary Table 1).  At the genus level at a 10% false discovery rate 

threshold, the relative abundance levels of 30 genera including Acidovorax, 

Aquabacterium, Cloacibacterium, Helicobacter, Lactococcus, Lactobacillus and 

Pseudomonas were higher in cases vs. controls (Appendix A, Supplementary Table 2).  

Remarkably, only one genus, Streptococcus, had a higher relative abundance in the 

control group.  In order to validate these pyrosequencing results, we developed qPCR 

assays for a subset of observed genera that were significantly different in their relative 

abundances between cases and controls (i.e., Helicobacter spp, Acidovorax spp and 

Cloacibacteria spp.). We observed the expected correlations between the two methods 

(Appendix A, Supplementary Figure 4), validating the results of our pyrosequencing 

approach. 

We also performed an analysis of Operational Taxonomic Units (OTUs), which are 

clusters of sequences in which the average percent identity of all of the sequences within 

a cluster is >=97%. Our analysis at the OTU level at a 10% false discovery rate threshold 

found 87 OTUs with significantly higher relative abundance in cases vs. controls and 

only 5 OTUs higher in controls (Appendix A, Supplementary Table 3).  When we used 

the RDP classification algorithm to classify the consensus sequence for each of the 92 

significantly different OTUs, bacteria with higher relative abundance in cases were 

mostly members of the phyla Firmicutes (42.6%), Bacteroidetes (25.5%) and 
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Proteobacteria (24.5%) (Figure 1.2, Appendix A, Supplementary Figure 5).  A rank-

abundance curve demonstrates that the OTU differences between cases and controls 

(significant at 10% FDR) are entirely in low abundance taxa (Appendix A, 

Supplementary Figure 6).  This observation explains why there are differences between 

case and control in richness (Figure 1.1), which depends on the total number of taxa 

observed, but not evenness, which is more sensitive to changes in high-abundance taxa. 

Since obesity is a risk-factor for development of colorectal cancer, and changes in the 

human microbiome have been associated with obesity [52], [98] we evaluated the 

relationship between the relative abundance levels of the individual taxa and the risk 

factors, BMI and Waist-to-Hip Ratio (WHR). We classified subjects into one of three 

BMI categories; Normal (BMI<25), Overweight (BMI = 25-29) and Obese (BMI 30 and 

above) and three WHR levels; low, medium and high based on accepted thresholds 

(http://www.bmi-calculator.net/waist-to-hip-ratio-calculator/waist-to-hip-ratio-chart.php).  

For each OTU, the non-parametric Kruskal-Wallis test was performed between the three 

groups for BMI and WHR. There were no OTUs that showed significant differences 

between the various BMI and WHR risk factor categories even if we were to set a false 

discovery rate threshold as high as <200% (Appendix A, Appendix A, Supplementary 

Tables 4 & 5).  Likewise, there were no significant differences in the diversity measures, 

richness and evenness, between the various risk factor categories (Figures 1.3 & 1.4).  

Finally, regressions between BMI values and WHR values against each taxa at the OTU 

level also showed no significant association between the OTUs with either BMI or WHR 

at an FDR threshold of <10% (Appendix A, Supplementary Figures 7 & 8, Appendix A, 

Supplementary Tables 6 & 7).   
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1.5 Discussion 

Taken together, these findings demonstrate that the development of adenomas is 

associated with changes in the relative abundance of various taxa, including pathogens, 

present in the gut mucosa and that these changes are distinct from those associated with 

obesity.  Analogous to the mechanism suggested for inflammatory bowel diseases[99], a 

potential explanation for this observation could be that the presence of adenomas 

compromises gut mucosal immunity, leading to an increased relative abundance in 

known pathogens such as Pseudomonas, Helicobacter, Acinetobacter (Appendix A: 

Appendix A, Supplementary Table 2, Supplementary Table 3) and other genera 

belonging to the phylum Proteobacteria (Figure 1.2). Alternatively, the presence of these 

pathogens may directly increase the risk of adenoma development by changing the gut 

environment.  For example, Helicobacter has a much higher relative abundance in cases 

vs. controls (Appendix A,  Supplementary Tables 2& 3) consistent with previous studies, 

which implicate the role of this bacterium in colorectal adenomas[100],[101],[102];  a 

possible explanation for this association is that this microbe alters the pH of the 

gastrointestinal tract[103],[104]. Acidovorax spp, another member of the bacterial 

signature identified as significantly different between case and control in this study, is a 

flagellated, Gram-negative acid-degrading member of the phylum Proteobacteria.  

Although, not much is known about its clinical epidemiology and pathogenicity in 

humans, it has been associated with induction of local inflammation [105], [106].  

Lactobacillus, another taxa that we found to be higher in case than control, is an acid 

producing bacteria known to lower gut pH and regulate the growth of other bacteria.  

While Lactobacillus is generally considered a beneficial microbe, [107], [108] its 



15 
 
presence in this case may help to lower pH to create favorable conditions for bacterial 

dysbiosis.  This is consistent with suggestions by Duncan and co-workers [109] that 

bacteria that grow in acidic pH create an environment that can be exploited by more low 

pH-tolerant microbes.   

While further experiments will be required to determine if and how increased 

microbial richness causes the development of adenomas, our observation that the 

microbial signature associated with adenomas is largely distinct from that associated with 

obesity suggests that next-generation sequencing of microbial communities may have 

considerable value as a diagnostic that can separate risk-factors from the actual presence 

of adenomas.    

 

FIGURE 1.1: Richness (left panel) and evenness (right panel) for the OTUs 
observed in our study for cases (n=33) vs. controls (n=38).  The x-axis is 
proportional to the number of subjects in each category.  By the Wilcoxon test, 
cases had a significantly higher richness (p= 0.0061) than controls, but there was 
no significant difference in evenness (p = 0.36). 
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FIGURE 1.2: Maximum likelihood tree generated from the 371 OTUs (OTUs that 
were observed in at least 25% of our patients).  The tree was generated using the 
RaxXML EPA server (http://i12k-exelixis3.informatik.tu-muenchen.de/raxml) (see 
methods). Branches are colored based on RDP Phylum level assignments. Red 
colored branches represent OTUs significantly different between cases and controls 
within each Phylum (at 10% FDR).   
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FIGURE 1.3: Richness (left panel) and evenness (right panel) at the OTU level, in 
Normal (n=27) vs. Overweight (n=25) vs. Obese (n=18) BMI categories. No significant 
difference was seen by the Kruskal-Wallis test in richness (p = 0.21) or evenness (p = 
0.42) between the 3 categories. 

 

 
FIGURE 1.4: Richness (left panel) and evenness (right panel) at the OTU level, in Low-
Risk (n=25) vs. Medium-Risk (n=16) vs. High-Risk (n=30) Waist-to-hip ratio categories. 
No significant difference was seen by the Kruskal-Wallis test in richness (p = 0.26) or 
evenness (p = 0.76) between the 3 categories. 
 
 



18 
 
TABLE 1.1: Descriptive characteristics of the study participants, cases (33) and controls 
(38). p-Values are based on t-tests between case and control (age, WHR and caloric 
intake) or the Chi square test (% Male and %BMI).  The *p-Value for BMI is from the 
chi-quare test comparing across the groups. Caloric intake is reported as kilocalories 
(kcal) and is based on responses from a food frequency questionnaire [110] that was 
administered to subjects during phone interviews.   
 
Characteristics  Case (n=33) Control (n=38) p-Value* 

Age (mean, SEM)  57.45 (1.11) 55.70 (1.08) 0.26 

Male (%)  60.61 50 0.54 

WHR (mean, SEM)  0.94 (0.01) 0.90 (0.01) 0.06 

BMI (%)        

      Normal 27.27 48.65   

      Overweight 48.48 24.32 0.09 

      Obese 24.24 27.03   

Caloric intake (kcal) (mean, 
SEM)  

2053.78 (149.9) 2104.89 
(252.46) 0.86 

 
 TABLE 1.2: 454 dataset characteristics before and after QC for RDP and OTU pipelines 
 

RDP Pipeline Original After QC 

Total # of Sequences 600354 598645 

Average/Sample 8455.69 8431.62 

SD 3840.73 3843.29 

Average Sequence Length 343.131 343.575 

      

OTU Pipeline Original  After QC 

Total # of Sequences 600354 532506 

Average/Sample 8455.69 7500.08 

SD 3840.73 3578.55 

Average Sequence Length 343.131 302.034 



CHAPTER 2: FILTERING OUT BATCH-EFFECTS IN METAGENOMIC  
ANALYSIS REVEALS A TRUE BIOLOGICAL SIGNAL 

 
 

2.1 Abstract 

Difference between populations, different body sites and disease states has been the 

focus of many metagenomic studies, including the Human Microbiome project. As with 

other comparative studies, caution needs to be exerted in these studies to separate real 

biological differences from technical artifacts. Using an example of a major batch- effect 

that we discovered during the analysis phase of our colorectal cancer project (chapter 1), 

we illustrate how filtering out batch-effects helped us to reveal a very important 

biological result in our data.  

2.2 Background and significance 

The quality and validity of results obtained from any biological research, including 

research involving high-throughput technologies like microarrays, mass spectrometry and 

sequencing requires quality control measures to be used during the design, experimental 

and analysis phases of the research process. During the course of a metagenomic study 

such as the one described in chapter 1, a series of experimental methods, protocols, 

hardware, software and analyses are used. Keeping all these conditions constant is 

essentially impossible. Batch-effects occur when the outcome of experiments is affected 

by the group in which the samples are processed. Batches can be either reagent batches, 



date batches, or technician associated batches. For example, batch- effects may occur if a 

subgroup of samples were processed in one lab versus the other or by one technician 

versus the other. Batch-effects are important technical artifacts commonly encountered in 

many metagenomic and genomic studies; they must be accounted for in order to reap the 

benefits from these studies. Low throughput techniques such as Western blotting and 

PCR are also prone to batch-effects but batch-effects are much more easily detected in 

high-throughput methods like microarrays, sequencing (454, Illumina etc.) and 

proteomics [91].  Also due to the fact that high-throughput experiments are generally 

performed in larger scale they are processed in different locations, on different dates, and 

possibly by various technicians in order to distribute workload. All of these factors make 

high-throughput studies, like metagenomic studies extremely vulnerable to batch-effects.  

Studies that demonstrated the correlation between biological variables and technical 

variables have been reported in literature[111],[112] and these studies acknowledge the 

fact that batch-effects are critical in high throughput analyses and have to be dealt with in 

order to reach biologically accurate conclusions. In this chapter we illustrate, through our 

own dataset, how batch-effects masked true biological effects and how by filtering them 

out we were able to salvage the study.   

2.3 Materials and Methods 

2.3.1 Methods 

Study Participants, colonoscopy and Biopsy procedures and DNA Extraction were as 

described in the previous chapter. 

2.3.2 Bacterial Identification 
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The first step in the data analysis process involved a preliminary QC filter 

(downstream of the filters from the Roche-454 GS-FLX software). We removed 

sequences from our dataset if (1) there were any Ns in the sequence or the 5’ primer did 

not exactly match the expected 5’ primer or if the average quality score was less than 20. 

We then removed the 5’ primer sequence from our reads that have survived above 

filtering.  Only trimmed filtered sequences with a length between 200-500bp were kept in 

our data set and submitted to the RDP classifier algorithm 2.0[46] for taxonomic 

identification at various taxonomic levels. Sequences assigned in each sample to various 

taxa, from phylum level up to genus level, were counted at the RDP confidence threshold 

of 80%. Raw counts were normalized, and then log transformed using the normalization 

scheme mentioned below, before proceeding further. 

LOG10 ((Raw count / # of sequences in that sample) +0.001) 

Only taxa with >= 10seqs in at least 25% of the samples were selected for 

downstream statistical analyses. 

2.3.3 Statistical analyses 

The Shannon-Wiener Diversity Index, H, was calculated using the following 

equation: H = -∑ Pi (lnPi) where Pi is the proportion of each species (taxa) in the sample. 

Student’s t-tests were performed to compare the mean similarities of the groups, case and 

control. Student’s t-tests, Wilcoxons, PCA and hierarchical clustering were performed 

using JMP 8.0 (SAS Institute, Cary NC). 

2.4 Results and Discussion 

2.4.1 Descriptive characteristics of study participants 
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We analyzed the adherent microbiota from mucosal biopsies from 167 individuals, 

including 80 adenoma cases and 87 non-adenoma controls based on the16S rDNA genes 

and 454 titanium pyrosequencing methods. Case subjects were slightly older (case-57.2 

years) compared to controls (55.5 years). Cases were more likely to have higher Waist-

to-Hip-Ratio than controls (p=0.0001) and be overweight or obese (p=0.018).  There 

were no significant differences between cases and controls for smoking, fiber intake, 

caloric intake, and fat (Table 2.1).  After applying a quality filter (see methods), a total of 

1,411,767 sequences were present and of these, 1,407,099 were classified as domain 

Bacteria at a confidence threshold of 80% by the RDP classification algorithm[46].  The 

average number of sequences/subject was ~8400 (8403.37±3133.38) and the average 

sequence length was ~350bp (341.37±86.9).  

2.4.2 All samples clustered into two distinct groups 

We started our analysis of this dataset with an unsupervised approach by asking 

whether all samples from the study form natural groups with respect to their microbiome 

composition, independent of metadata associated with each sample. Principal component 

analysis of the log normalized abundance of all taxa at the genus level revealed 2 distinct 

clusters (Figure 2.1). The samples in cluster 1 showed a very different microbial profile 

compared to the samples in cluster 2 (Tables 2.2 and 2.3). The cluster 1 had a lot of 

within-cluster variability with significant differences in microbial abundance between 

cases and controls (Table 2.2), whereas cluster 2 was compact with very little variability 

between all the samples within the cluster. Most of the case subjects belonged to this 

cluster and there were no significant differences between the case and control subjects 

within this cluster (Table 2.3). Due to the fact that from the PCA all samples in cluster 2 
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were incredibly similar to one another, with respect to their microbiome composition, and 

that previous studies [113],[59],[52] had suggested that each individual had a unique 

microbiome fingerprint, we suspected that there could be some technical artifact that was 

causing the incongruent pattern in the samples belonging to cluster 2. 

2.4.3 The distinct clustering was due to a batch-effect 

To check if our notion was indeed true, we looked for a correlation between these 

naturally occurring groups and the metadata associated with the samples to see if any of 

the metadata categories were responsible for this separation. Just as we had expected, our 

results indicated that there is an almost perfect correlation of clusters 1 and 2 with the 

technical variable groups (batches) namely the “Date sent for Sequencing” and “Location 

of Stock DNA” (Figure 2.3). Once we had confirmed that this behavior was due to a 

batch- effect, the next step was to find a way to get rid of the batch-effect, if possible. 

The question was, given the two distinct batches, is there a reason to believe that one of 

them is biologically “correct”? If so, which batch is the biologically correct batch and 

which one is the incorrect batch?   

2.4.4 Batch-1 had a biological signature   

Based on previous literature [69], [7] we would expect a true gut microbiome sample 

to have certain broad characteristics. Firstly, as mentioned above, pioneering studies in 

the field of human microbiome research [113], [52] have suggested that each person is 

like a “microbial island”, with respect to their gut microbial composition, meaning that 

each would have their own microbiome signature. From our PCA (Figure 2.2) and from 

comparison of the Shannon Diversity index of batches 1 and 2 (Figure 2.3), it is obvious 

that samples in batch-1 conformed to this pre-existing knowledge but the samples in 
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batch-2 were too similar to one another to satisfy the “individual microbiome concept”. 

In addition, previous literature in this field suggests that the composition of the gut 

microbiota in human and most mammals is dominated by the two phyla [114], [115], 

Bacteroidetes and Firmicutes and the overall percentage of Bacteroidetes + Firmicutes 

(B+F) in the samples is expected to be about 90% of the total gut bacteria. From figure 

2.4 it is evident that samples in batch-1 meet that expectation whereas the samples in 

batch-2 had B+F percentages that are considerably lower than we would expect based on 

previously published human gut microbial datasets[70], [115] including  a dataset from 

our own lab[116]. Based on this justification, the 95 samples that belong to batch-2 were 

removed from further analysis and only 71 samples were further analyzed to look for a 

microbial signature associated with colorectal adenoma status.  

The results of our analysis, after removal of the batch-effect, provide another level of 

justification for our decision to exclude the samples in batch-2 from further analysis 

(Figure 2.5, Chapter 1 Appendix A, Supplementary figures 1 and 2 and Appendix A, 

Supplementary Tables 1 and 2).  When all of our samples (including the batch-effect 

samples) were included in our analysis, we found that no taxa at Phylum level and only 2 

taxa at genus level were significantly different between the cases and controls at 10% 

FDR (Tables 2.4 and 2.5). But once we filtered out the batch-effect, our results improved 

and we now have 3 phyla and 31 genera that are significantly different between case and 

control at 10% FDR threshold (Appendix A, Supplementary Tables 1 and 2).  This 

clearly indicates that the biologically correct signature (Figures 2.3 and 2.4) of the 

samples in batch-1(that helped us make the decision that it is the good batch) is also 

linked to significant differences between the case vs. control samples in that batch. By 
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using prior knowledge in the field and with the help of bioinformatic analysis tools, we 

were able to “save” our study and recover the true biological potential of our data from 

getting lost in the technical noise.   

To summarize, while we were able tell the “biological” signal apart from what is 

likely non-biological noise, the exact reason for the deviation of the samples belonging to 

the affected batch cannot be pin-pointed, since the two technical variables stock DNA 

(hallway freezer vs. lab freezer) and the date sent for sequencing (09/30/09 vs. other) are 

100% confounded with each other. Fortunately, since these technical variables were not 

confounded with the biological variable (disease status, case and control) of interest to us, 

we were able to successfully detect the batch-effect and remove it from our dataset to 

reveal the important biological effect in our study. This chapter thus demonstrates both 

the necessity and feasibility of examining batch-effects in metagenomic datasets and 

provides a possible analysis path for detecting such artifacts and removing them. 
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FIGURE 2.1: Principal component Analysis (PCA) on the normalized log abundances of 
all taxa at the genus level shows 2 distinct clusters that do not correlate with disease 
status; Case (red), Control (green).  
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FIGURE 2.2: Principal component Analysis (PCA) on the normalized log abundances of 
all taxa at the genus level shows 2 distinct clusters that correlate almost perfectly with 
technical variables; Date sent for Sequencing (Purple: Other; Orange: 09/30/09) and 
Location of Stock DNA (Purple: Hallway freezer; Orange: Lab freezer) indicating a 
batch-effect.  
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FIGURE 2.3: Wilcoxon test (p<0.001) on the Shannon Diversity indices between the 
technical variable groups (Date sent for Sequencing and Location of Stock DNA) shows 
that most samples in batch-2; Date sent for sequencing (09/30/09) and Location of Stock 
DNA (-80 Lab freezer) have unusually similar Shannon diversity indices. 
 
 
 
 
 
 
 
 

 
FIGURE 2.4: Wilcoxon test (p<0.001) on the percentage of Bacteroidetes + Firmicutes 
between the technical variable groups (Date sent for Sequencing and Location of Stock 
DNA) show that the most samples in batch-2; Date sent for sequencing (09/30/09) and 
Location of Stock DNA (-80 Lab freezer) have an abnormally low B+F%. 
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FIGURE 2.5: Principal component Analysis (PCA) on the normalized log abundances of 
all taxa at the genus level after removal of the batch-effect samples; Case (red), Control 
(green). 
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TABLE 2.1: General characteristics of the study participants, cases (80) and controls 
(87). p-Values are based on t-tests between case and control (age, WHR and caloric 
intake) or the Chi square test (% Male and %BMI).   
 

Characteristic Case n=80 Control n=87 p-values 

Age (mean, SD) 57.2 ± 6.88 55.5 ± 6.09 0.099 

Male (%) 58% 38% 0.01 

Family History of CRC (Yes %) 4% 2% NA 

Waist-hip ratio (mean, SD) 0.94 ± 0.076 0.89 ± 0.079 0.0001 

BMI  (mean, SD) 27.34 ± 4.53 26.6, 5.94 0.369 

Smoking (Yes %) 56% 49% NA 

Calories  (mean, SD) 2041.51 ± 800.71 1976.13 ± 1062.03 0.66 

Alcohol_g (mean, SD) 11.46 ± 16.21 16.99 ± 62.97 0.46 

Total_fat_g (mean, SD) 75.88 ± 31.22 73.72 ± 31.75 0.67 

Dietary Fiber (mean, SD) 20.09 ± 8.93 20.71 ± 10.21 0.68 
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TABLE 2.2: T-tests on log-normalized abundances of genera in cases vs. controls  in 
cluster 1. Only top 10 taxa based on p-Values shown. Significant differences between 
case and control seen at 10% FDR. T-test p-Values were corrected for multiple testing 
using (n*p)/R where n = total number of taxa tested, p = raw p-Value and R = sorted 
Rank of the taxon. 
 

Taxa p-Value  Rank n*p/R  

Helicobacter 0.000118336 1 0.005680125 

Acidovorax 0.000209127 2 0.005019045 

Lactobacillus 0.000500604 3 0.008009666 

Cloacibacterium 0.000510639 4 0.006127667 

Lactococcus 0.000550592 5 0.005285679 

Stenotrophomonas 0.000921315 6 0.007370519 

Turicibacter 0.001653894 7 0.011340985 

Weissella 0.001660807 8 0.009964842 

Delftia 0.001994309 9 0.010636313 

Acinetobacter 0.002363268 10 0.011343687 
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TABLE 2.3: T-tests on log-normalized abundances of genera in cases vs. controls in 
cluster 2. Only top 10 taxa based on p-Values shown. No significant differences between 
case and control seen at 10% FDR. T-test p-Values were corrected for multiple testing 
using (n*p)/R where n = total number of taxa tested, p = raw p-Value and R = sorted 
Rank of the taxon. 
 

Taxa p-Value  Rank n*p/R  

Pantoea 0.03707127 1 1.77942096 

Burkholderia 0.045751861 2 1.098044653 

Dorea 0.053883447 3 0.862135153 

Turicibacter 0.061158934 4 0.733907206 

Bacillaceae_1 0.069582119 5 0.667988338 

Lactococcus 0.081598587 6 0.652788692 

Parabacteroides  0.126241514 7 0.865656094 

Chryseobacterium 0.143720051 8 0.862320304 

Bryantella 0.153965999 9 0.821151995 

Streptococcus 0.165889593 10 0.796270046 
 
 
TABLE 2.4: T-tests on log-normalized abundances of phyla in cases (80 subjects) vs. 
controls (87 subjects), before removing batch-effect shown.  Only phyla which have at 
least 10 sequences assigned to them in 25% of the samples are shown. T-test p-Values 
were corrected for multiple testing[95] using (n*p)/R where n= total number of taxa 
tested, p= raw p-Value and R= sorted Rank of the taxon. 
 

Taxa t-Test p_Value RANK n*p/R 

Firmicutes 0.019160329 1 0.114961971 

Cyanobacteria 0.040488222 2 0.121464665 

Actinobacteria 0.073114722 3 0.146229443 

Proteobacteria 0.155797173 4 0.233695759 

TM7 0.388303816 5 0.46596458 

Bacteroidetes 0.532809351 6 0.532809351 
 
 
TABLE 2.5: T-tests on log-normalized abundances of genera in cases (80 subjects) vs. 
controls (87 subjects), before removing batch-effect shown.  Only genera which have at 
least 10 sequences assigned to them in 25% of the samples are shown. T-test p-Values 
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were corrected for multiple testing[95] using (n*p)/R where n= total number of taxa 
tested, p= raw p-Value and R= sorted Rank of the taxon. 
 
Taxa t-Test p_Value RANK n*p/R 

Cloacibacterium 0.000577837 1 0.027736174 

Acidovorax 0.002426601 2 0.058238416 

Acinetobacter 0.011368024 3 0.181888381 

Streptococcus 0.016895792 4 0.202749502 

Lactobacillus 0.068901773 5 0.661457017 

Bacillaceae_1 0.084901022 6 0.679208178 

Helicobacter 0.10190281 7 0.698762128 

Sutterella 0.105286728 8 0.63172037 

Delftia 0.13381527 9 0.713681438 

Micrococcineae 0.134231434 10 0.644310882 

Stenotrophomonas 0.150206126 11 0.655444915 

Dorea 0.153808383 12 0.615233532 

Sphingobium 0.156600567 13 0.578217477 

Pantoea 0.169016522 14 0.579485218 

Sphingomonas 0.174709512 15 0.559070438 

Alistipes 0.195506126 16 0.586518378 

Exiguobacterium 0.204798818 17 0.578255485 

Lactococcus 0.212610872 18 0.566962325 

Bryantella 0.212887223 19 0.537820352 

Chryseobacterium 0.220024908 20 0.528059779 

Turicibacter 0.259646746 21 0.593478277 

Pseudomonas 0.280269635 22 0.611497385 

Agrobacterium 0.36124946 23 0.753911917 

Serratia 0.370766763 24 0.741533525 

Rikenella 0.399816152 25 0.767647011 

Leuconostoc 0.402214518 26 0.742549879 

Weissella 0.446325861 27 0.793468197 

Coprococcus 0.455961712 28 0.78164865 

Burkholderia 0.456934521 29 0.756305414 

Roseburia 0.514954353 30 0.823926965 

Shinella 0.533258234 31 0.825690169 

Ruminococcus 0.593612066 32 0.890418099 

Subdoligranulum 0.597673669 33 0.869343518 

Methylobacterium 0.646389809 34 0.912550319 

Anaerotruncus 0.6491764 35 0.890299063 

Flavimonas 0.655266685 36 0.873688913 
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Bacteroides 0.692484055 37 0.898357693 

Variovorax 0.704272198 38 0.889606986 

Chryseomonas 0.721439112 39 0.887925061 

Peptostreptococcaceae_Incertae_Sedis 0.785155542 40 0.942186651 

Faecalibacterium 0.792620103 41 0.927945486 

Erwinia 0.839482176 42 0.959408201 

Coriobacterineae 0.871637423 43 0.972990612 

Clostridiaceae_1 0.873337628 44 0.952731958 

Coprobacillus 0.913262206 45 0.974146353 

Erysipelotrichaceae_Incertae_Sedis 0.952178019 46 0.993577064 

Parabacteroides 0.962042355 47 0.982511342 

Lachnospiraceae_Incertae_Sedis 0.965972327 48 0.965972327 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 3: MOLECULAR DIVERSITY OF A NORTH CAROLINA 
WASTEWATER TREATMENT PLANT AS REVEALED  

BY PYROSEQUENCING [117] 
 
 

3.1 Abstract 

We report the results of pyrosequencing DNA collected from the activated sludge 

basin of a wastewater treatment plant in Charlotte, North Carolina, U.S.A.  Using the 

454-FLX technology, we generated 378,601 sequences with an average read length of 

250.4 base pairs.  Running the 454 assembly algorithm over our sequences yielded very 

poor assembly with only 0.3% of our sequences participating in assembly of significant 

contigs.  Of the 117 contigs greater than 500 base pairs that were assembled, the most 

common annotations were to transposases and hypothetical proteins.  Comparing our 

sequences to known microbial genomes showed non-specific recruitment indicating that 

previously described taxa are only distantly related to the most abundant microbes in this 

treatment plant.  A comparison of proteins generated by translating our sequence set to 

translations of other sequenced microbiomes shows a distinct metabolic profile for 

activated sludge with high counts for genes involved in metabolism of aromatic 

compounds and low counts for genes involved in photosynthesis.  Taken together, these 

data document the substantial levels of microbial diversity within activated sludge and 

further establish the great utility of pyrosequencing for investigating diversity in complex 

ecosystems. 



3.2 Background and significance 
 

The entire biosphere is influenced by the ability of microorganisms to transform the 

world around them. Microbes have the ability to convert the some of the important 

elements of life like carbon, nitrogen, oxygen, and sulfur, from their inaccessible natural 

forms to simpler forms to make them available to other living beings. Microbes in their 

role as scavengers help clean up the both organic (biodegradable wastes) and inorganic 

(chemical and oil spills) wastes from the environment [118], [119], [120]. While some of 

these activities are carried out by individual microbes, most of these processes are 

mediated by complex microbial communities that have the ability to adapt quickly to the 

changes in their surrounding environment. One of the environments where 

microorganisms play a critical role is within wastewater treatment plants [121], [122], 

[123]. Wastewater treatment plants are probably the largest “microbially-mediated 

biotechnology processes” on the planet[124] and they play an very important role in 

maintenance of public health.  

Although largely invisible in the urban landscape when they are functioning well, 

wastewater treatment plants are integral to the municipal obligation to protect public 

health, aquatic ecosystems, and the quality of life.  At the heart of wastewater treatment 

plants is a process whereby a dense microbial consortium is employed to remove organic 

and nutrient contaminants. These microbes used to treat wastewater are a crucial tool in 

environmental protection. The current use of molecular techniques that do not require the 

isolation and cultivation of microorganisms[125-126], including 16S rRNA[127-129] and 

fluorescent in situ hybridization[130] have greatly expanded our understanding of 

wastewater microbial communities.  Researchers have identified many bacteria of 
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importance to wastewater treatment including those involved in biological phosphorus 

removal [131-133] nitrifiers[130, 134-135], denitrifiers[123, 136-137] and methanogens 

[138-139].  Molecular techniques have also improved our understanding of fundamental 

processes such as nitrification and denitrification as well as plant upsets, such as foaming 

[140-141], which can decrease treatment efficiency. 

In this Chapter, we apply pyrosequencing technology to probe the molecular diversity 

of the aerobic basin of a wastewater treatment plant in Charlotte, North Carolina, U.S.A.  

In line with other studies of complex microbial communities [10, 142], we observed 

astounding levels of diversity.  We find that the most prevalent microbes in the 

wastewater treatment plant have substantial regions of their genomes that are poorly 

described by existing sequence databases.  Our results demonstrate that despite recent 

technological advances that allow for the identification of microorganisms, the microbial 

population of wastewater treatment plants remains under sampled and inadequately 

characterized.  During the course of this study we also introduce the various 

bioinformatic methods used in the metagenomic analysis of complex ecosystems and 

discuss the advantages as well as the limitations of some of these methods. Our results 

are a first step towards a more complete molecular characterization of this important but 

understudied microbial community. 

3.3 Materials and Methods 

The Mallard Creek Water Reclamation Facility is located in Charlotte, North 

Carolina.  The plant has an average daily inflow of 7.5 million gallons and the 

wastewater is mostly domestic, with additional input from the University of North 

Carolina Charlotte, University City Carolinas Medical Center hospital, and several 
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industrial users.  A schematic of the flow through the plant is shown in Supplemental 

Figure 1.  Influent raw wastewater is screened and sent through grit removal before it is 

routed to day tank equalization basins that distribute the flow among three primary 

clarifiers.  Primary effluent enters anoxic basins, where it is joined by recycle flow from 

the aeration basins.  Effluent from the anoxic basins enters aeration basins (solids 

retention time ~ 8 days) and then flows to secondary clarifiers.  Clarified effluent is 

routed to denitrification filters and then to UV disinfection before discharge to Mallard 

Creek.  

The plant NPDES (National Pollutant Discharge Elimination System) permit requires 

the plant to meet a monthly CBOD5 of 4.2 mg/L in the summer and 8.3 mg/L in the 

winter months. Ammonia nitrogen (NH3-N) levels must be below 1 mg/L and 2 mg/L in 

summer and winter, respectively. There are no other nitrogen or phosphorus limits. Total 

suspended solids are limited to a maximum of 30 mg/L, and the pH must be between 6 

and 9 standard units. Fecal coliforms counts must be less than 200 colony forming units 

(cfu) per 100 mL sample. These limits are routinely met by the plant unless there are 

extreme weather events or plant upsets. Wastewater entering the secondary treatment 

system was monitored over a six month period for filtered flocculated COD, a good 

estimator of readily biodegradable soluble organics, and values ranged from 40-75 mg/L. 

Ammonia nitrogen concentrations in this same flow ranged from 12-24 mg/L, with the 

concentration varying in part due to return flow from digested sludge dewatering.  

On the morning of March 20, 2007 we collected a 50 mL sample from the aeration 

basin using a plastic dipper.  At the time of sample collection, temperature in the aeration 

basin was 18.5oC and pH was 6.5.  The sample was decanted to remove as much foam as 
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possible before transferring the liquid to a sterile tube.  DNA was extracted from the 

sample using a Mo Bio UltraClean Water DNA Kit.  The sample tube was inverted 

several times to maximize homogeneity and a 10 mL aliquot was removed and pipetted 

on to the provided filter (0.22 µm).  Filtrate was discarded and DNA was extracted from 

the membrane using the manufacturer’s protocol.  The final DNA extract was analyzed 

for purity and concentration using a NanoDrop ND-1000 spectrophotometer.  

Approximately 100 µl of extracted DNA was concentrated in a speed vac and 

resuspended in about 12 ul of molecular grade biology water.  The final sample 

concentration was 479 ng/µl as determined by a NanoDrop spectrophotometer.  

Preliminary analysis of the DNA using Denaturing Gradient Gel Electrophoresis (DGGE) 

indicated substantial diversity in the observed bands confirming that our DNA extraction 

was successful (data not shown).  The sample was submitted to 454 Life Sciences for 

pyrosequencing of the 454-FLX platform.  The methodology underlying pyrosequencing 

has been documented elsewhere [25].  

Sequences and quality scores from our pyrosequencing run have been submitted to 

the NCBI short read archive (accession numbers SRA001012). All the supplemental 

material related to this chapter can be found at; 

http://aem.asm.org/cgi/content/full/75/6/1688/DC1?maxtoshow=&hits=10&RESULTFO

RMAT=&fulltext=Nina+Sanapareddy&searchid=1&FIRSTINDEX=0&resourcetype=H

WCIT. 

3.4 Results and Discussion 

3.4.1 Our sequence set largely fails to assemble, although contigs that were generated 

from the assembly include many transposons and hypothetical proteins.  
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Our pyrosequencing run yielded 378,601 sequences with an average read length of 

250.4 ± 29.1 (mean ± SD).  The distribution of sequence lengths was approximately 

normal with a small left tail indicating some short reads (Supplemental Figure 3, see 

methods).  We attempted to assemble sequences in this dataset using version 1.1.02 of the 

GS De Novo Assembler of the Genome Sequencer FLX Data Analysis suite with the 

default parameters applied.  This assembly algorithm attempts to combine individual 

sequence reads into longer “contigs”.  Given that metagenomic datasets of complex 

ecosystems have been extremely resistant to assembly [142-143], we expected to see very 

little assembly in our dataset.  The 454 sequence assembler defines a “large” contig as 

one that consists of at least 500 base pairs.  Because our average sequence length was 

~250 base pairs, this threshold could be achieved with the overlap of a modest number of 

our sequences.  Despite this, only 1154 (or approximately 0.3%) of our reads were 

recruited into 117 contigs greater than 500 base pairs (the sequences of these contigs are 

available as Supplemental File 1, see methods).  To assign possible functions to these 

contigs, we used the GenMark algorithm[144] to predict genes on our contigs and then 

performed a BLASTP search of these predicted proteins against the Pfam database.  This 

method produces more assignments than other approaches including those based on 

profile searches (Supplemental File 11, see methods).  With an e-score cutoff of 0.01, this 

approach found matches for 75% (88/117) of our large contigs (Supplemental File 2, see 

methods).  Of these matches, 22% (20/88) were to hypothetical proteins and 21% (19/88) 

were to transposases.  The prevalence of transposases in our assembled contigs strongly 

suggests that transposons are much more strongly conserved across metagenomes than 

other genomic regions while the prevalence of hypothetical proteins shows that the 
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function of many of the highly conserved regions of our metagenome is poorly 

understood.   

This failure of the 454 assembly algorithm to assemble 99.7% of our sequence reads 

emphasizes the great diversity of the microbial community within the treatment plant.  

Because previous literature has found a similar failure of assembly algorithms on 

metagenomic communities characterized by Sanger sequencing[142], as well as on 

simulated data sets created by Sanger sequencing reads[143], we would not expect a 

significantly improved degree of assembly even if our sequence reads were longer. 

3.4.2 The majority of taxa in the wastewater treatment plant cannot be classified at the 

Genus level. 

In order to discover the 16S rRNA genes within our dataset, we downloaded the 16S 

rRNA gene FASTA DNA sequences from v. 9.52 of the Ribosomal Database Project 

(RDP)[145] and used these sequences to create a BLAST database.  Using the blastn 

algorithm, we asked which of our 378,601 query sequences could be found in this RDP 

database with an e-score of e<=0.01 (Supplemental File 11, see methods).  The resulting 

648 sequences (available as Supplemental File 3, see methods) were run through the RDP 

classification algorithm[46] (see supplementary methods).  The RDP classifier algorithm 

uses Bayesian statistics to assign taxa to 16S rRNA gene sequences.  The output of this 

algorithm includes a confidence score, which ranges from 0 to 100, that indicates the 

degree of confidence that can be assigned to the classification based on the results of 100 

bootstrap trials (see[46] for more details).  The recommended threshold for assigning of a 

taxa by the RDP algorithm is a confidence score >=80.  Because sequence reads as short 

as 90 basepairs have been shown to suffice to accurately characterize taxa [32, 146], we 
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anticipate that our results would not be substantially different even if we had a read 

length longer than 250 basepairs.   

The classifications of the 148 16S rRNA sequences that could be assigned to Phylum 

with a confidence score of >=80 are provided as Supplemental File 4(see methods) and 

are summarized in Figure 3.1.  In another paper[147], we show that these classifications 

of 16S rRNA sequences derived from the whole-genome wastewater sequence set are 

well correlated with results from PCR experiments targeting the 16S rRNA gene.  At the 

Phylum level, the observed taxa are dominated by the Proteobacteria with ~70% of the 

classifiable taxa belonging to this category (Figure 3.1 top panel).  Moving from Phylum 

to Genus, fewer of the sequences can be classified with an RDP confidence score of at 

least 80%.  At the Genus level, nearly 60% of the sequences cannot be classified at a 

RDP threshold of 80 and, of the taxa that can be classified; there is no dominant taxon 

(Figure 3.1).  These data demonstrate the extraordinary microbial diversity of activated 

sludge and is consistent with reports from other complex environments [43, 142, 148].  

We note that the inability of the RDP algorithm to classify these sequences to taxa with 

high confidence is not primarily the result of our 16S rRNA sequences having never been 

previously observed.  Figure 3.2 shows that many of the sequences with RDP scores 

<80% (to the left of the vertical lines) have very high percent identities to previously 

described sequences.  These results demonstrate that for wastewater treatment plants, as 

is the case for other complex ecosystems, the accumulation of 16S rRNA sequences in 

public databases is vastly outpacing our ability to classify them, and that this problem 

becomes more pronounced as one moves from Phylum towards Genus.  Presumably 

future annotation efforts will rectify this problem. 
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3.4.3 16S rRNA gene sequences from freshwater, soil and other wastewater studies 

dominate our sequence set.  

For each of the 648 sequences in our pyrosequencing dataset that matched the 16S 

RDP database (v 9.52) at an e-score cutoff of <=0.01, we manually annotated where the 

corresponding RDP sequence was discovered.  This was done by manual inspection of 

the Genbank records for these 648 sequences.  The results of this annotation can be found 

in Supplemental File 8 (see methods) and are graphed in Figure 3.3.  The x-axis of Figure 

3.3 indicates our classification while the y-axis indicates the e-score with which the top 

hit from each of our query sequences matched the RDP database.   We see that while a 

large number of environments had at least one hit, if we restrict ourselves to 

environments with multiple hits at high stringency (i.e. low e-score), only three 

environments are well represented: freshwater, soil and other wastewater studies (Figure 

3.3).  While, of course, the low number of sequences for some of the other environments 

may simply reflect the low number of sequences from that environment in the 16S RDP 

database, there is a strikingly small number of sequences with high scores that relate to 

two 16S populations that are well represented in the database: marine and human.  The 

relatively small number of human-derived 16S rRNA sequences observed is particularly 

interesting given the vast number of human microbes deposited into the wastewater 

treatment plant each day.  These results show that the environment within the wastewater 

treatment plant exhibits strong selection pressure against the microbes that are present in 

human feces.  

3.4.4 Sequenced bacterial genomes are not well represented in the wastewater 

metagenome. 
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When using BLASTN to compare our sequences to the nt database, only 34% 

(73,274/378,601) match the nt database even at a relaxed threshold e-score cutoff of 

e<0.01 (data not shown; see Supplemental Bioinformatics methods).  Of the sequences 

that do match the nt database at this threshold, the vast majority (over 98%) have their 

best hit to bacteria taxa (data not shown; see Supplemental Bioinformatics methods for 

details).  Since wastewater treatment plants are known to harbor many eukaryotes (e.g. 

[149]), this result likely reflects our DNA isolation strategy, which was designed to 

capture prokaryotic DNA, rather than the “true” ratio of prokaryotes to eukaryotes in the 

treatment plant.     

As of November 2008, there are 772 complete bacterial genomes at the NCBI 

database (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.fna.tar.gz).  In order to explore how 

well these known genomes are represented in the treatment plant, we used BLASTN to 

compare our wastewater sequences to the 1,442 assembled genome and plasmid 

sequences from the 772 sequenced bacteria.  In order to eliminate spurious hits, we 

required that any hit matched at least 75 nucleotides in our query sequence (see 

Supplementary Bioinformatics methods for more details).  Because our average sequence 

length was 250.4 basepairs (Supplemental Figure 3, Supplemental File 3, see methods), 

this is not an overly conservative criterion.  Under this criterion, only 20% 

(73,274/378,601) of our sequences matched to any of the known bacterial genomes.  This 

result again reflects the great diversity of the wastewater treatment plant and emphasizes 

a key challenge for genomics; despite the considerable effort that has been expended in 

the microbial genome projects, the great majority of our sequence reads are not found in 

known genomes.  
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 For the sequences that do match to known genomes, we can determine how closely 

the sequenced genomes from cultivated organisms match the genomes present in our 

wastewater metagenome.  We calculated for each of the 1,442 assembled sequences from 

the 772 finished genome projects the number of nucleotides in that genome that have a 

BLASTN match that is aligned to at least one of our wastewater sequences.  Dividing this 

number by the total length of each assembled sequence yields the “fraction genome 

covered”.  Figure 3.4. shows that even the most well represented assembled genome, the 

nitroaromatic compound-degrader Acidovorax sp. JS42 (NC_008782), has a match to 

only 25% of its sequence to our wastewater metagenome.  Table 3.1 shows that the 

fraction genome covered is similarly poor for the ten genomes that recruited the most 

reads from our wastewater metagenome. 

Figure 3.5 shows a recruitment graph of our wastewater treatment plant for the 

assembled Acidovorax sp. JS42 chromosome, which recruited the most sequences from 

our wastewater genome (Table 3.1; Supplemental File 6, see methods). On the x-axis is 

the position where sequence reads are mapped with blastn against the Acidovorax 

genome. On the y-axis is the percent identity of the read when compared to the matching 

subsection of the Acidovorax genome.  Figure 3.5 shows sequences from two different 

sources: our March 20 aeration basin pyrosequencing run (black lines) and the 

environmental sequence database from NCBI downloaded in June 2007 (red lines), which 

at that time was largely dominated by sequences from the J. Craig Venter Institute’s 

Global Ocean Sampling (GOS) [142].  We included the environmental sequence database 

because we wanted to assess how specific our wastewater treatment plant results were 

relative to other metagenomic sequencing databases.   
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The pattern seen in Figure 3.5 is typical of non-specific recruitment. For regions of 

the genome with conserved genes, both sources of sequence matched to the genome, but 

the percent identities were usually below 90%.  For regions of the genome that are poorly 

conserved, such as the putative transmembrane protein (marked by arrows in the 

annotation section at the top of Figure 3.5), very few sequences from either source 

mapped to the genome.  We observed similar patterns of non-specific recruitment over a 

number of the genomes that recruited large numbers of sequence reads in our March 20 

aeration basin dataset (data not shown).  In the Venter GOS survey, a similar pattern of 

non-specific recruitment was observed against nearly every known microbial genome 

despite the presence of over 7,600,000 sequences in the dataset [142].  This result is one 

of the principle reasons that the GOS study concluded that microbial diversity in the 

oceans is profound [142]. Our results show that the most abundant microbes in the 

wastewater treatment plant have genomes that are largely uncharacterized.  Moreover, the 

pattern of non-specific recruitment shown in Figure 3.5 suggests that even additional 

whole-genome shotgun sequencing would not improve the match between known 

genomes and the sequences observed in our metagenome. 

One genome of particular interest that is not yet deposited as an assembled genome at 

NCBI is the “Candidatus Accumulibacter phosphatis” taxa that dominates two lab scale 

EBPR sludges recently sequenced[124].  Although the assembled genome of this taxa has 

not yet been publicly released, we saw similar patterns of non-specific recruitment to the 

largest assembled contigs that have been released as we saw to the publically available 

assembled genomes (data not shown).  This suggests that the “Candidatus 
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Accumulibacter phosphatis” taxon is not a dominant member of our North Carolina 

wastewater genome. 

The great diversity of our wastewater metagenome caused very few contigs to be 

recruited.  Of the sequences that were recruited to contigs, a substantial fraction involved 

transposases.  We might expect, therefore, a different pattern of recruitment around 

transposons.  Figure 3.6 shows a region of the Acidovorax genome around a transposase 

with a stark exception to the pattern of non-specific recruitment.  A large number of 

sequences from our metagenome recruited to this region with a nearly perfect match.  

Interestingly, a number of marine sequences from the Global Ocean Survey[142] also 

matched the region around this transposase (red lines), suggesting that, unlike most 

genomic regions, parts of this transposon are conserved across a wide environmental 

space. 

3.4.5 When mapped to protein space, the wastewater metagenome displays a distinct 

metabolic profile. 

By translating our nucleotide sequences in all six frames and mapping the translated 

sequences to known proteins, we can generate a distinct metabolic profile for our 

wastewater sequences.  This approach, asking which genes a microbial community is 

capable of producing, has been successfully used to analyze the metabolic signatures of a 

number of metagenomic sequence sets [150-151].  To perform this analysis, we 

submitted our pyrosequencing dataset for annotation on the SEED platform [152-153].  

Within SEED, metabolic pathways are classified into a hierarchical structure in which all 

of the genes required for a specific task are arranged into subsystems. At the highest level 

of organization, the subsystems include both catabolic and anabolic functions (for 
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example, DNA metabolism) and at the lowest levels the subsystems are specific 

pathways (for example, the synthesis pathway for thymidine).   Using the blastx 

algorithm and an e-score cutoff of 0.001, the SEED database was able to assign ~60% of 

our sequences.  The result of assigning these sequences to functional categories is shown 

in Figure 3.7.  For comparison, we show in Figure 3.7 the mapping to functional 

categories from a recently published survey of 1,040,665 sequences from 45 microbial 

metagenomes collected from nine distinct biomes [151].  We note that when compared to 

the “average” profile of these nine biomes, the wastewater treatment plant presents a 

distinct metabolic signature.  For example, compared to other biomes, the wastewater 

treatment plant contains nearly no genes coding for proteins involved in photosynthesis.  

We would expect this as the primary energy source for these microbes is the organic 

material being processed by the treatment plant.  In addition, genes involved in the 

degradation of aromatic compounds are expressed at a much higher rate within the 

wastewater treatment plant than in other metagenomic systems.  Again, we might expect 

this given the nature of household and industrial wastes present in sewage.  Finally, we 

note that the Mallard Creek Wastewater Treatment Plant has no additional biological 

nutrient removal (BNR) facilities to treat phosphorus.  Consistent with this, genes 

involved with phosphorus metabolism appear to be lower than the genes involved with 

nitrogen metabolism within the activated sludge (Figure 3.7).  

3.5 Summary 

We are at the beginning of a sequencing revolution.  The 91 million base pairs of 

sequence data described in this paper were generated from a single sequencing run on a 

454-FLX instrument generating over 6000 base pairs of sequence per dollar.  This is 
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approximately a 10-fold lower cost per basepair than Sanger sequencing and moreover 

eliminates the costly and time-intensive step of creating a bacterial clone library.  As new 

sequencing technologies continue to be developed, we can expect both the cost and the 

experimental effort associated with metagenomic sequencing projects to drop 

exponentially.   

Perhaps the most surprising result in our study is the pronounced conservation of 

transposases across widely differing environments.  While there is generally poor 

agreement between sequences from the Global Ocean Survey and known genomes [142], 

and between our wastewater genomes and known genomes (Figures 3.4-3.5), there are a 

few regions of conservation involving transposons (Figure 3.6) where there is a 

pronounced match between the metagenomes and the sequenced genomes.  A substantial 

fraction of the contigs that could be assembled from our dataset involved strongly 

conserved transposases.  It is an open question why transposons have escaped the 

pronounced sequence mutability that mark nearly all of the rest of bacterial genomes. 

As in other metagenomic projects [10, 23, 142], our results point to the extraordinary 

diversity of microbial communities.  Patterns of non-specific recruitment to known 

genomes suggest that even among the taxa that can be mapped to Genbank, the structure 

of much of the genomes of the most abundant organisms in the wastewater treatment 

plant is unknown (Figures 3.4-3.5).  Despite the great diversity of microbes in the 

treatment plant, analysis at the protein level is surprisingly tractable with the sequences 

from the treatment plant displaying a distinct metabolic profile consistent with what we 

would expect from the plant’s function (Figure 3.7).  This suggests that despite the great 

complexity of microbial communities, next generation sequencing technology will be a 
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useful tool for monitoring changes in microbial processes across time and space.  As 

treatment requirements become more stringent and monitoring expands to address a 

broadening group of compounds of concern, probe-free sequencing will accelerate the 

rate at which key microbial groups can be identified and selected for to optimize 

contaminant removal.  
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FIGURE 3.1:  Pie charts show taxonomic assignments for 148 16S rRNA sequences 
within our dataset that could be classified to Phylum with an RDP confidence scores of 
>=80.  At the phylum level, the Simpsons diversity index is 0.48. 
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FIGURE 3.2: Results from the RDP classification algorithm for 148 16S rRNA 
sequences that can be assigned to the Phylum level with a confidence score of >=80.  The 
x-axis of each graph shows the confidence in assignments as reported by the RDP 
classification algorithm.  The y-axis of each graph shows the percent identity between our 
query sequence and the best BLASTN hit in the RDP database v 9.52.   Horizontal and 
vertical lines indicate 95% sequence identity and an 80% RDP confidence scores. 
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FIGURE 3.3:  The location (as determined by manual annotation) and e-score of 
sequences from the 648 member pyrosequencing dataset that matched the 16S RDP 
database at an e-score cutoff of 0.01.  
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FIGURE 3.4:  For each of the 1,442 assembled plasmids and chromosomes at NCBI, the 
fraction covered as a function of the size of each assembled sequence.  Fraction covered 
is defined as the number of nucleotides in the assembled sequences that match at least 
one of our wastewater sequences divided by the total number of nucleotides in the 
assembled sequence. 
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FIGURE 3.5: Non-specific recruitment against the Acidovorax sp. JS42 genome.  Blast 
hits with alignment lengths below 75 nucleotides (for the March 20th run) or 250 
nucleotides (for the Environmental Sequence database) were removed.  Protein 
annotations are derived from the full NCBI core nucleotide report for the Acidovorax sp. 
JS42 genome.  
(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=121592436) 
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FIGURE 3.6: A region involving a transposase from the JS42 genome that shows an 
exception to the pattern of non-specific recruitment.  For visualization purposes, a small 
amount of random noise has been added to the y-axis (as otherwise most of the hits to the 
transposase region would be superimposed).  The sequences shown in red matching to the 
region of the transposase are from the Global Ocean Survey [142]. 
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FIGURE 3.7: Functional categories provided for our dataset by the Seed server 
(http://www.theseed.org).  The data for microbial genomes are averages from sequences 
gathered from multiple biomes [151]. 
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TABLE 3.1:  The top ten assembled microbial genomes as sorted by the number of hits 
recruited from our wastewater metagenome.  The complete list of all assembled microbial 
genomes is given as Supplementary File 6(see methods). 
 

 
numberHits 

FractionGenome 
Covered 

 
annotation 

18110 0.26 gi|121592436|ref|NC_008782.1|  
Acidovorax sp. JS42, 
 

17341 0.20 gi|120608714|ref|NC_008752.1|  
Acidovorax avenae subsp. citrulli AAC00-1 
 

17100 0.16 gi|160895450|ref|NC_010002.1|  
Delftia acidovorans SPH-1 
 

16800 0.20 gi|171056692|ref|NC_010524.1|  
Leptothrix cholodnii SP-6 
 

15752 0.23 gi|124265193|ref|NC_008825.1|  
Methylibium petroleiphilum PM1 
 

15695 0.22 gi|121602919|ref|NC_008781.1|  
Polaromonas naphthalenivorans 
 

15468 0.18 gi|91785913|ref|NC_007948.1|  
Polaromonas sp. JS666 
 

14735 0.16 gi|121607004|ref|NC_008786.1|  
Verminephrobacter eiseniae EF01-2 
 

13590 0.18 gi|89898822|ref|NC_007908.1|  
Rhodoferax ferrireducens T118 
 

11595 0.15 gi|119896292|ref|NC_008702.1|  
Azoarcus sp. BH72 

 

 

 
  

 

 



CHAPTER 4: COMPARISON OF 16S rRNA GENE SEQUENCE BASED 
TAXONOMIC PROFILING TO WHOLE GENOME SEQUENCE BASED 

TAXONOMIC PROFILING METHODS 
 
 
4.1 Abstract  

One of the major steps in analyzing microbial communities is the estimation of the 

taxonomic composition of the community in question. 16S rRNA gene sequence based 

methods have been an accepted “gold standard” for taxonomic profiling of genomes as 

well as metagenomes. We evaluated methods that use whole genome sequences for 

determining the taxonomic composition of a community, to see if whole genome 

sequence based methods can replace 16S rRNA gene sequence based methods for 

taxonomic profiling. To achieve this, we compared methods that use sequences derived 

from PCR targeting the 16S rRNA genes of the community with whole genome 

sequences derived from shotgun sequencing of the community to see if they generate a 

similar or different taxonomic profile of the given community.   

Not surpisingly, we find substantial differences between the two groups of methods 

with the degree of similarity decreasing from broad taxonomic levels (Phylum, Class) to 

more specific taxonomic levels (Family, Genus).  At all levels of classification, however, 

there are assignments made by one group of methods but are missed by the other and 

vice-versa. This indicates that 16S rRNA gene sequence based and whole genome 

sequence based methods are complementary to each other, and that whole genome 



sequence based methods cannot currently replace the 16S rRNA gene sequence based 

methods for taxonomic profiling of a community.  

 Amongst the whole genome sequence based methods evaluated, results show that the 

algorithm that only considers the 16S rRNA gene sequences within a whole-genome 

metagenomic dataset shows much better correspondence to PCR-derived 16S rRNA 

methods than algorithms that attempt to assign every read within a whole-genome 

dataset. Of the latter group of methods, BlastBestHit, MEGAN and WebCARMA, our 

results show that no method is obviously superior to any other. Also, the fact that 

different methods report different diversity indices for the same community proves that 

the method selected for taxonomic profiling determines the depth of the taxonomic 

composition extracted from the community. 

4.2 Background and significance 

The choice of taxonomic profiling methods used for community analysis differ based 

on whether the 16S rRNA gene sequences (targeted by PCR) are available or whole 

genome sequence reads (generated by random shotgun sequencing) are available.  Some 

methods use 16S rRNA gene sequences, generated from targeted PCR or mined from 

random whole genome datasets, to describe the taxonomic composition of the community 

in question. Other methods (such as  BlastBestHit, MEGAN [154] and CARMA [155]) 

place random whole genome reads into a taxonomic framework based on their similarity 

to one or more reference databases.   

For almost three decades, 16S rRNA gene based taxonomic profiling has been the 

classical "gold standard" approach to assess the microbial composition in environmental 

gene surveys [34, 156]. 16S rRNA gene sequences are present in all bacteria and consist 
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of multiple conserved regions interspersed by variable regions.  Conserved regions can be 

used to design primers while the variable regions can be used for phylogenetic 

assignment. These features make the 16S rRNA gene a good candidate for phylogenetic 

analysis by PCR[157]. Despite being a powerful tool for phylogenetic and taxonomic 

analysis, the 16S rRNA gene sequence based analyses have several limitations. There is 

significant variation in the number of copies of the 16S rRNA gene present in the genome 

of different species. This variation can complicate quantitative estimates such as relative 

abundance of a particular sequence type (phylotype) in an environment [158]. Another 

limitation of this method is that in the PCR amplification step of sequencing, the broadly 

targeted “universal” PCR primers designed to amplify all members of a major taxonomic 

groups (e.g., all bacteria, or all archaea) are not in-fact “universal”. This is because all 

members of a taxonomic group do not share identical sequences even in the conserved 

region; primer bias, therefore, remains a problem [159]. Even the best designed primer 

pairs tend to be biased towards some evolutionary group over others making the resulting 

taxonomic profiles generated by this method not a true representation of the community. 

A third drawback of 16S rRNA gene based method in general is that the taxonomic 

assignment made using this method is not always  accurate and does not necessarily 

reflect the true phylogeny of the organism [160]. This inaccuracy can be attributed to 

many factors including biased databases, lateral gene transfer and different rates of 

evolution for different genes within a microbial genome. Whole genome sequence based 

taxonomic profiling methods promise to overcome some of the above mentioned 

limitations, but these approaches generate their own set of problems. Typically, when 

whole genome sequence reads from metagenomic studies are used for taxonomic 
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profiling of a community, phylogenetic categories are assigned to the randomly generated 

sequence reads based on their homology to known genes in sequence databases. One 

approach is to find the 16S rRNA gene reads from within the whole genome sequence set 

and use those 16S rRNA reads  for taxonomic profiling of the community[44]. One 

drawback of this approach is that this method relies on an adequate number of 16S rRNA 

gene sequences being present in the metagenomic sequences. Usually the number of 

reads containing stretches of 16S rRNA gene sequence, long enough to be used for this 

purpose, are very small (for example less than 500 out of ~300,000 in the wastewater 

dataset[44],[117] and less than 1000 out of ~500,000 in the human gut microbiome 

dataset).   

An alternative, to the use of just the 16S rRNA gene sequences from whole genome 

datasets, is to use all of the sequence reads (or assembled contigs) as input for a search 

against a protein or nucleotide database to find homologues whose taxonomy can then be 

assigned to the reads. One of the simplest examples of this approach is the “BlastBestHit” 

method, which assigns taxonomy to a sequence using the taxonomy of the topmost 

BLAST match. The shortcomings of BLAST based methods include the requirement of a 

sufficient sequence length and the existence of close homologues in the reference 

database. Another BLAST-based analysis is  MEGAN[154], which takes the search 

results of the sequence reads (using BLAST or any sequence comparison tool) against 

any protein or nucleotide as its input and assigns taxonomy to reads based on the lowest 

common ancestor (LCA) of the selected hits. For instance if a read has 10 hits at the 

genus level, which meet the similarity threshold, and if >2/3 of the hits have the same 

taxonomy at the genus level then the read gets assigned to that particular genus. If there is 
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no consensus at the genus level, the algorithm looks for a consensus at the family level 

and so on, up the tree, until it finds a consensus at a particular taxonomic level. The read 

then gets assigned to the consensus taxon at that taxonomic level. Due to this strategy, all 

sequences, irrespective of their conservation level, are assigned taxonomy by MEGAN; 

species specific sequences are assigned to corresponding species and highly conserved 

sequences are assigned at higher taxonomic levels. So the taxonomic level assigned to a 

sequence also implicitly indicates the conservation level of that sequence-read. The 

consensus finding step of the algorithm  helps avoid making erroneous assignments due 

to horizontal gene transfer and database bias by not making any assignment at that 

taxonomic level at all (due to lack of consensus if a sequence has matches to many 

different taxa). The biggest shortcoming of the MEGAN method is that its underlying 

algorithm only takes into account presence or absence of matches for the reads at the 

given score threshold. Once the matches are found at a given sequence similarity 

threshold, the matches are not ranked by their level of similarity, instead they are just 

weighted equally while assigning taxa. 

Homology based approaches for assigning taxonomy to sequence reads were further 

extended to the protein level and one notable application is the tool CARMA[155], which 

starts out by looking for Pfam domains within the sequence-reads. Once it finds matches 

it builds phylogenetic trees from the sequence-reads and their reference sequences and 

then classifies them. The CARMA algorithm has two distinct modules; the first step 

identifies Pfam domains or fragments in the unassembled reads using the Pfam profile 

hidden Markov models (pHMMs). In this step the biggest advantage of the CARMA 

method, its ability to assign taxonomy to short sequence fragments, generated by “next-
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generation” sequencing methods (454, Illumina etc.), is harnessed. This ability is 

conferred to this method because pHMMs are very efficient in detecting short conserved 

functional sequences within the sequence-reads. The Pfam domain and protein family 

matches identified within the reads of the metagenomic sample are called “environmental 

gene tags” (EGTs), which can be used in the next step for quantitatively characterizing 

the metagenome. In the second step of this method, a phylogenetic tree is constructed for 

each EGT (environmental gene tag) with its matching Pfam family and the environmental 

gene tags are classified based on their phylogenetic relationships (proximity in the tree) 

to the Pfam family members with known taxonomies. CARMA is computationally 

demanding but has been shown to exhibit high accuracy for a wide range of taxonomic 

groups; sequence-fragments as short as 80 bp  and EGTs as short as 27 amino acids have 

been phylogenetically classified up to the rank of genus [155]. The Pfam domain 

assignments made by CARMA not only help in taxonomic profiling but also in functional 

profiling of the metagenome. This group has recently released the web-server version of 

their method, WebCARMA[161]. The major drawback of the WebCARMA method is 

that there is an upload limit of 100MB per month per user, so large metagenomic datasets 

cannot be processed using this method. 

For classification of the sequences generated by whole genome shotgun sequencing 

of a metagenome, a diverse range of methods mentioned above, have been used with 

dramatic differences in classification results, depending on both underlying algorithms 

and parameters[162].  In this dissertation chapter, we compare the results of these 

different methods on datasets for which we have both PCR-based 16S rRNA sequences 
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and whole genome-metagenome datasets to ask if taxonomies constructed with these two 

methods are identical.   

4.3 Materials and Methods 

There are many taxonomic profiling methods available to assess taxonomic 

composition of a given community [163], [46], [162], [164], [165], [154], [155] but due 

to time and resource constraints we limited our comparison to a few of these methods. 

The various taxonomic diversity assessment tools, compared in this chapter, were either 

downloaded and run according to the authors’ instructions or re-implemented in Java 

whenever the source codes were unavailable (see computational methods below). The 

analysis path followed is shown in the flowchart described in Figure 4.1. 

Two metagenomic datasets, the wastewater dataset from our lab, an environmental 

metagenome, described in chapter 3 of this dissertation above, and a human gut 

microbiome dataset from one of the subjects, TS19, of the 31 monozygotic twin pairs and 

23 dizygotic (DZ) twin pairs, in the Twin study[52] performed by Jeff Gordon’s group, 

were chosen for analysis. We chose these two datasets not only because both these 

datasets had the whole-genome and 16S sequence libraries available but because they 

differ in their compositional complexity and their representation in sequence databases.  

For both datasets, the PCR generated 16S rRNA gene sequences were submitted to the 

RDP classifier algorithm[46] to get taxonomic assignments for the sequences at a 

confidence threshold of 80%. The whole genome sequences, from both datasets, were 

submitted to the various whole genome sequence classification methods, 16sMined, 

BlastBestHit, MEGAN and to WebCARMA to get the respective classifications for the 

reads.  



66 
 
4.3.1 Computational Methods 

4.3.1.1 Targeted 16S rRNA gene (PCR generated) based taxonomic profiling 

The 16S rRNA gene sequences, which have been targeted by performing PCR on 

DNA extracted from the community in question, are the input sequences in this method. 

The most commonly used primer pairs target the V1-V2, V6, V6-V7 or V2, variable 

regions in the 16S rRNA gene. These sequences, V1-V2, V6 and V6-V7 in the 

wastewater dataset and V2 and V6 in the twin-study dataset, were submitted to the RDP 

classifier 2.0, a Naïve Bayesian Classifier and the RDP classifications are assigned to the 

16S rRNA gene sequences. The taxonomic assignments made to the sequences at every 

taxonomic level, with a RDP confidence threshold of >=80% were only considered. 

4.3.1.2 16sMined 

A BLAST database was created from all available 16S rRNA gene sequences 

(current_prokMSA_unaligned.fasta ) downloaded from the Greengenes database (a 16S 

rRNA gene sequence database)[166]. For each query sequence, from the metagenomic 

datasets, we performed a BLASTN search against this database at a stringent e-Value cut-

off of e = 10-8. Query sequences, which found matches in the 16S rRNA gene sequence 

database at this low e-Value threshold, were considered as probable 16S rRNA gene 

sequences. These mined 16S rRNA gene sequences were submitted to the RDP classifier 

algorithm for classification. The taxonomic assignments made to the sequences at every 

taxonomic level, with a RDP confidence threshold of >=80% were only considered.  

4.3.1.3 16sMerged 

Hamp et al[44] suggested that different 16S rRNA gene regions capture different 

fractions of the community composition due to primer bias. Therefore, for our 
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comparative analyses, we merged (pooled) the taxonomic profiles interpreted by the 16S 

rRNA gene sequences derived from various primer pairs by combining the assignments 

made by all the 16S sequences available for the dataset.We merged V1-V2, V6-V7 and 

V6 for the wastewater dataset; and V2 and V6 sequences for the Gordon twin-study 

dataset.  Other methods (averaging the profiles and normalizing the profiles to a fixed 

number of sequences and then averaging them etc.) of merging the taxonomic profiles of 

the 16S rRNA regions for a given dataset were tried but all gave very similar results so 

the method described above was used. 

4.3.1.4 BlastBestHit method 

This method was used for classification of reads generated by whole genome shotgun 

sequencing of the 2 communities chosen in this study. The sequences were searched 

against a database of all sequenced bacterial genomes (nucleotide) using BLASTN at a 

relaxed e-Value threshold of 0.01. The taxonomy of the top hit for each sequence is the 

taxonomy assigned to it. Sequences which have no hits at this e-Value cut-off remain 

unclassified. 

4.3.1.5 MEGAN 

This program is written in JAVA (http://www.java.com/en/); the source code for this 

algorithm has not been released but the JAR (Java Archive) files are available for 

download at http://www-ab.informatik.uni-tuebingen.de/software/megan. In the first step 

of the analysis, a database was created from all sequenced bacterial genomes 

(nucleotide). The DNA reads, from our datasets (wastewater dataset and twin-study 

dataset) were compared against this database using a BLASTN search. The BLASTN 
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search results are the input for MEGAN, which uses its LCA strategy to assign taxonomy 

to the reads. 

4.3.1.6 WebCARMA 

We used the web application version of the CARMA algorithm, WebCarma[161]  for 

classification of our reads. The upload limit is 100MB, so we preprocessed the sequences 

in our Wastewater dataset to remove duplicates and filter out sequences with lengths 

lesser that 75bp and greater than 280bp. The filtered version of the dataset was used for 

comparison across all the algorithms. The human gut microbiome whole genome dataset 

was less than 100MB so we uploaded it, as is, to the WebCarma portal for taxonomic 

assignment. 

4.3.2 Comparative Analysis 

4.3.2.1 NCBI namespace to RDP namespace 

The taxonomic assignments for the whole genome sequence reads were converted 

from the NCBI naming format to the RDP namespace. To achieve this, all the sequenced 

bacterial genomes were downloaded from the NCBI genome database. 16S rRNA gene 

sequences from these genomes were extracted and submitted to the RDP classifier 2.0 for 

RDP classification of all the bacterial 16S rRNA gene sequences. Most bacteria have 

more than one 16S rRNA gene sequence; in those cases the consensus taxonomy of all 

the 16S rRNA genes within a given bacterium was chosen as the RDP taxonomy for that 

bacterium. For instance if a bacterium has five 16S sequences, the taxonomic 

classification of more than 50% of these 16S sequences at the genus level is the 

consensus taxonomy of that bacterium. 
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Once all the reads from the PCR generated 16S rRNA gene datasets and the whole-

genome sequence datasets were given a taxonomic assignment and the final taxonomic 

profiles were converted to the RDP namespace, comparison between all the methods was 

done. At each taxonomic level, starting from the Phylum level to the genus level, 

taxonomic assignments were counted and a pseudocount of 1 was added to all taxa counts 

before log transformation. To assess the similarity between any two methods, 

comparisons were performed, by creating scatterplots, on the log transformed counts at 

all taxonomic levels. Since the relationship between taxonomic assignment methods did 

not meet the assumption of linearity, Spearman Rank Correlation (rho) was used to 

measure the agreement between various methods.  Shannon Diversity indices of each of 

the datasets, using the various methods, were also compared. 

4.3.3 Statistical methods 

Non-parametric correlations (Spearman Rank correlations) were generated using JMP 

(SAS Institute). Shannon-Wiener Diversity indices, H, were calculated using the 

equation, H = -∑ Pi (lnPi), where Pi is the proportion of each taxon within the method. 

4.4 Results 

4.4.1 16S rRNA mined method is more similar to the PCR targeted 16S rRNA methods 

than the whole genome sequence based methods.  

As an initial step of our analysis, we compared the 16S sequences mined from the 

whole genome sequences from the wastewater dataset to the PCR targeted 16S sequences 

from the same environment. Just as reported by Hamp et al[44], our results indicate that 

the mined 16S rRNA gene sequences are similar to both the whole genome sequences as 

well as the targeted 16S rRNA gene sequences (Figures 4.2a and 4.2b) in their ability to 
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assess the community’s taxonomic profile. The mined method is comparatively more 

similar to the PCR targeted 16S rRNA methods than the whole genome sequence based 

methods and in both our datasets, the similarity decreases as we go from the Phylum level 

to the Genus level, dropping to lower levels of agreement or no agreement at the Genus 

level (Figures 4.2a and 4.2b). The 16sMerged method correlated better, with the 

16sMined method, than the individual 16S rRNA methods. Since the 16sMerged method 

serves as a combined representative of the various 16S regions, it was used as a proxy for 

all the 16S regions, in comparisons of 16S rRNA gene sequence based methods to the 

whole genome sequence based methods (Figures 4.5a and 4.5b). 

Also, as shown by Hamp et al[44] and by our own results (Figures 4.3a and 4.3b,4.4a 

and 4.4b), the agreement at Phylum level is being driven by “abundant” taxa and the 

differences at the genus level are due to the non-abundant taxa.  

4.4.2 The two groups of methods (16S and WGS) agree at broader taxonomic levels but 

the degree of correlation decreases towards the specific taxonomic levels. 

Comparison between PCR 16S rRNA gene sequence based taxonomic profiles and 

whole genome sequence based taxonomic profiles, of the wastewater dataset (Appendix 

B, Supplementary Figures 1a and 2a; Appendix B, Supplementary Table 1) and the 

human gut microbiome dataset (Appendix B, Supplementary Figures 1b and 2b, 

Appendix B, Supplementary Table 2), showed that there is a good degree of correlation 

between PCR 16S rRNA methods and whole genome methods at the phylum level but the 

correlation decreases considerably as we go down to the genus level (Figures 4.5a and 

4.5b). Within the PCR 16S rRNA gene sequence methods, the V1-V2 region in the 

wastewater dataset and the V2 region in the Gordon dataset performed marginally better 
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than the other primer pairs and than the 16sMerged method (Appendix B, Supplementary 

Tables 1 and 2). 

4.4.3 16sMined method is the only whole genome sequence based method that shows 

potential for replacing the PCR targeted 16S sequence based methods. 

As shown by our results (Figures 4.5a and 4.5b; Appendix B, Supplementary Tables 1 

and 2), the 16sMined method is the best match to the PCR targeted 16S  gene sequence 

based methods at all levels of classification and it is the only whole genome sequence 

method that shows potential for replacing the PCR targeted 16S  sequence based 

methods. The advantage of the 16sMined method is that it overcomes primer bias; one of 

the major drawbacks of the PCR targeted 16S methods. However, the biggest 

shortcoming of this method, as discussed earlier, is that very few 16S rRNA gene 

sequences are produced by this method to give a reasonable enough taxonomic profile of 

the community.  Therefore, this method of taxonomic profiling of the community cannot 

currenly replace the PCR 16S rRNA gene sequence based methods but may become 

viable as the decreasing cost of sequencing in the future increases the size of shotgun 

whole-genome datasets (with possibly more 16S rRNA sequences to extract).  

4.4.4 Performance of the Whole Genome Sequence based methods is driven not only the 

by underlying algorithm but also by the community complexity and by the database bias. 

When we compared the 16sMerged method (a combination of taxonomies generated 

by the PCR targeted 16S regions available for a given dataset) to the three whole genome 

sequence (WGS) based methods with different underlying algorithms (BlastBestHit, 

MEGAN and WebCARMA), our results show that these methods are very similar, to 

each other, in their perfomance (Figures 4.5a and 4.5b; Appendix B, Supplementary table 
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1 and 2). For the wastewater dataset, all 3 methods were nearly identical (Figure 4.5a), 

whereas for the human gut microbiome dataset (Figure 4.5b), WebCARMA slightly 

outperforms the other two methods at all taxonomic levels except the Phylum level. As 

expected, BlastBestHit and MEGAN, where the underlying search algorithm (BLAST) 

and the database (sequenced genomes) are the same, seem to be more similar to each 

other than to WebCARMA.  Also all the WGS methods were slightly better correlated 

with the PCR 16S Method (16sMerged) in the human microbiome dataset than in the 

wastewater dataset (environmental metagenome). The human microbiome is by far less 

taxonomically complex than the wastewater community and also has been studied more 

so has a better representation in the sequence databases (both protein and nucleotide). 

This indicates that in addition to factors such as the underlying algorithm, the complexity 

of the community sampled and the biases in the database searched play a significant role 

in the performance of the taxonomy profiling method.  

4.4.5 Different methods produce different profiles of the same community as shown by 

Shannon Diversity measurements. 

Shannon diversity indices for a given environment (Wastewater community or 

Human gut microbial community) are considerably different using different methods 

(Figures 4.6a and 4.6b). As discussed in the previous section, this discrepancy could be 

not only due to obvious reasons such as the efficacy of the algorithm but also due to the 

not so obvious reasons such as possible database associated bias. The database bias is 

introduced because different methods rely on different publicly available databases to 

confer taxonomic assignments to the reads. 

4.5 Discussion 
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With the range of methods available for evaluating the taxonomic composition of a 

community, the choice of the right method to use can get extremely confusing. A 

systematic comparison of the methods used for determining the taxonomic composition 

of a metagenomic community is needed, and one of the goals of this study is to fill that 

void. Other studies have done comparisons between taxonomic profiling methods but 

most of these studies were partial comparisons[167] with the introduction of new or 

improved algorithms[168]. None of these studies involve  a thorough evaluation of the 

types of taxonomic profiling algorithms used but are limited to comparison of the new 

methods developed by that particular group to earlier taxonomic profiling 

algorithms[162].  A recent study by Hamp et al compared the targeted 16S rRNA 

sequences to the randomly generated 16S rRNA sequences (mined from the 

metagenome), in terms of their ability to generate the taxonomic profile of the 

community, and showed that profiles generated by either method were in general 

agreement but this agreement did not extend to the rare taxa[44]. Their study 

demonstrated that the choice of primers targeting the 16S rRNA gene can also have an 

effect on the taxonomic profile reported and our results attest to that.  Our study, unlike 

its predecessors closely evaluates both PCR 16S rRNA gene sequence and whole genome 

sequence based taxonomic methods with the purpose of providing comparative data and 

results that can help researchers make an informed choice. 

The advantage of the whole genome sequencing approach is due to the fact that it 

samples of the entire DNA present in a community but this method works best for 

identifying the abundant organisms in a community. On the other hand, there is the 

rRNA-PCR method and even though it targets only a single gene, it allows the 
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characterization of the less abundant organisms in a community. Metagenomic 

sequencing does produce 16S rRNA gene sequences which can be analyzed in same way 

as PCR-generated 16S rRNA gene sequences. Our results indicate that profiling the 16S 

rRNA gene sequences extracted (mined) from the community metagenome serves as an 

important cross check for both approaches and that it is the only whole genome sequence 

method that closely matches the PCR targeted 16S rRNA gene sequence methods. While 

this definitely should be the preferred method of taxonomic assessment from whole 

genome sequence datasets, it is not presently a replacement for the PCR targeted 16S 

rRNA gene sequence methods.  Whether the 16S rRNA sequences originate as a result of 

targeting the 16S rRNA gene or are a result of whole genome sequencing of 

environmental DNA (metagenomic sequencing), one of the greatest incentives for 

concentrating on 16S rRNA gene sequence based studies is the ever-expanding database 

of 16S rRNA gene sequences from cultured organisms and environmental samples being 

deposited regularly.  

Some researchers view whole-genome sequence based taxonomic methods as a 

replacement for rRNA gene PCR based methods [167].  The results of our systematic 

comparison indicate that these methods are not mutually exclusive (with very different 

outcomes) but have some degree of overlap and the degree of overlap decreases from 

broader taxonomic levels (Phylum, Class) to narrower taxonomic level (Family, Genus). 

At every taxonomic level, assignments made by one method are missed by the other and 

vice-versa. Since these are complementary approaches, it is obvious that whole genome 

shotgun sequencing cannot currenly replace 16S rRNA gene based taxonomic profiling 

for assessing the community composition.  
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Of the three whole genome sequence based methods (BlastBestHit, MEGAN and 

WebCARMA), with different underlying algorithms, we consider that all of them are 

very similar in terms of their agreement with the PCR 16S sequence based methods. The 

efficiency of these methods, as with other taxonomic profiling methods, is dependent not 

only on the algorithm but also on the complexity of the community being profiled and on 

the database being searched. Finally, since the taxonomic profile of the same community, 

as reported by the various methods (see Figures 4.6a and 4.6b) is different, the choice of 

the method used in taxonomic profiling of a community does indeed have an effect on the 

taxonomic profile assessed. The factors affecting the performance of the various methods 

are possibly the same ones that offer an explanation as to why all the methods give 

different Shannon Diversity indices when the same community is profiled.  

The value of this study lies in the fact that it illustrates that when the true composition 

of an environment is unknown, it is better to use as many of the complementary methods 

as possible to get the best picture of “who is there”. Our results also reiterate, what other 

such studies [44], [162] have found, that the various taxonomic assessment methods are 

only “snapshot” tools because they only capture some portion (not the entire range) of the 

community’s diversity. Since each of the methods evaluated in this study differ not only 

in their range but the in their depth, we conclude that the choice of the taxonomic 

profiling method/methods should depend on the level of resolution desired from the 

community under study. 
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FIGURE 4.1: Shows a flowchart describing the analysis path followed in comparison of 
taxonomic profiling methods. 
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FIGURE 4.2a: Comparison of the 16S sequences mined from the wastewater 
metagenome to the PCR targeted 16S sequences and whole genome sequences from the 
same environment. 
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FIGURE 4.2b: Comparison of the 16S sequences extracted (mined) from the metagenome 
of the human gut microbiome to the PCR targeted 16S sequences and whole genome 
sequences from the same environment. 
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FIGURE 4.3a: Wastewater dataset: Scatter-plots showing the high level of agreement 
between 16sMined methods and the16sMerged method and both BlastBestHit method at 
the Phylum level. The abundant taxa driving the agreement are marked by red triangles. 

 

 
FIGURE 4.3b: Human gut microbiome dataset: Scatter-plots showing the high level of 
agreement between 16sMined methods and the 16sMerged method and both BlastBestHit 
method at the Phylum level. The abundant taxa driving the agreement are marked by 
purple triangles. 
 

 
FIGURE 4.4a:  Wastewater Dataset: Scatter-plots showing the relatively lower level of 
agreement between 16sMined methods and 16sMerged method and BlastBestHit 
methods at the Genus level compared to the Phylum level. Some of the low abundance 
taxa responsible for the lower level of agreement are marked with red asterisks. 
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FIGURE 4.4b:  Human gut microbiome dataset: Scatter-plots showing the relatively 
lower level of agreement between 16sMined methods and 16sMerged method and 
BlastBestHit methods at the Genus level compared to the Phylum level. Some of the low 
abundance taxa responsible for the lower level of agreement are marked with purple 
asterisks. 
 

 
FIGURE 4.5a: Comparison of the 16sMerged method(PCR 16S  method) to all the whole 
genome sequence based methods shows that, for the wastewater metagenome, the 
16sMined method (WGS 16S  method) performs best amongst the 4 whole genome 
sequence based methods evaluated and the other 3 methods are very similar to one 
another. 
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FIGURE 4.5b: Comparison of the 16sMerged method (PCR 16S  method) to all the 
whole genome sequence based methods shows that, for the human gut microbiome 
dataset, the 16sMined method (WGS 16S method) performs best amongst the 4 whole 
genome sequence based methods evaluated. Within other 3 methods theWebCARMA 
method slightly outperforms BlastBestHit and Megan, at all taxonomic levels except 
Phylum level. 
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FIGURE 4.6a: Shannon Diversity indices of the wastewater dataset at the Phylum and 
Genus levels using the different taxonomic profiling methods is shown. 
 

 

 

FIGURE 4.6b: Shannon Diversity indices of the human gut microbiome dataset at the 
Phylum and Genus levels using the different taxonomic profiling methods is shown. 

 
 



CHAPTER 5: CONCLUSIONS 
 
 

Microbes are ubiquitous and interest in microbes and their interactions with their 

habitats has been a focus of biological research from time immemorial. This interest has 

been renewed in recent times with rapid increase in sequencing technologies, resulting in 

decreasing sequencing costs, making the study of entire microbial communities easier 

and accessible to everyone.  The consequence of this is a deluge of enormous amounts of 

data and novel and efficient bioinformatic tools are needed to decipher this complex data.  

 Availability of high-throughput technologies, tools and analytical methods helps us 

generate large quantities of data related to the microbial communities and help us 

understand these complex communities in a fraction of the time it took us decades ago. 

However, the biggest trade-off is that with increasing sample, sequence and data 

volumes, the experimental, technical and analysis pitfalls encountered are also amplified. 

Technical artifacts, unfortunately, pose a huge problem during metagenomic analyses. 

Following proper checks and balances throughout the course of such large scale studies, 

from the design to the data analysis stage is what is required to weed out the artifacts 

from the true biological effects. Since every step of metagenomic analysis involves 

choices (experimental, technological or analytical) to be made, and since the choice of 

method can have an effect on the results, there is a pressing need for standards to be 

established in this field.  



During the course of this dissertation, we establish the value of using bioinformatics 

tools to understand complex ecosystems, not only by filtering out the unwanted artifacts 

and by helping make informed analysis choices, but also in reaching biologically 

important and accurate conclusions. 
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APPENDIX A: SUPPLEMENTARY MATERIALS FOR CHAPTER 1 
 
 

Supplementary Tables 

Supplementary Table 1: Wilcoxon-tests on log-normalized abundances of all phyla in 
cases (33 subjects) vs. controls (38 subjects).  Only phyla which have at least 1 sequence 
assigned to them in 25% of the samples are shown. The direction of change shows the 
relative abundance in cases compared to controls. Wilcoxon p-Values were corrected for 
multiple testing1 using (n*p)/R where n= total number of taxa tested, p= raw p-Value and 
R= sorted Rank of the taxon. *While the sequences classified to Cyanobacteria may in 
fact originate from plastids or from non-Cyanobacteria, other human and animal gut 
studies2 have also observed sequences classified to Cyanobacteria.   
 
Phylum Name Wilcoxon p-Value Rank (n*p)/R Direction 

TM7 0.00020 1 0.00180 Up 

Cyanobacteria* 0.00220 2 0.00990 Up 

Verrucomicrobia 0.00610 3 0.01830 Up 

Firmicutes 0.04740 4 0.10665 Down 

Acidobacteria 0.06010 5 0.10818 Up 

Fusobacteria 0.17740 6 0.26610 Up 

Proteobacteria 0.18110 7 0.23284 Up 

Actinobacteria 0.31030 8 0.34909 Up 

Bacteroidetes 0.83560 9 0.83560 Up 
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Supplementary Table 2: Wilcoxon-tests on log-normalized abundances of genera in cases 
(33 subjects) vs. controls (38 subjects).  Only genera which have at least 1 sequence 
assigned to them in 25% of the samples are shown. The direction of change shows the 
relative abundance in cases compared to controls. Wilcoxon p-Values were corrected for 
multiple testing1 using (n*p)/R where n= total number of taxa tested, p= raw p-Value and 
R= sorted Rank of the taxon.  
 

Genus 
Wilcoxon p-

Value Rank (n*p)/R Direction 

Helicobacter 0.00003 1 0.00290 Up 

Aquabacterium 0.00005 2 0.00270 Up 

Weissella 0.00026 3 0.00870 Up 

Lactococcus 0.00070 4 0.01748 Up 

Acidovorax 0.00083 5 0.01666 Up 

Turicibacter 0.00128 6 0.02138 Up 

Lactobacillus 0.00134 7 0.01917 Up 

Sphingobium 0.00137 8 0.01715 Up 

Cloacibacterium 0.00145 9 0.01611 Up 

Stenotrophomonas 0.00171 10 0.01709 Up 

Succinivibrio 0.00261 11 0.02374 Up 

Azonexus 0.00324 12 0.02702 Up 

Leuconostoc 0.00326 13 0.02504 Up 

Delftia 0.00385 14 0.02752 Up 

Dechloromonas 0.00401 15 0.02673 Up 

Akkermansia 0.00595 16 0.03717 Up 

Bryantella 0.00682 17 0.04012 Up 

Acinetobacter 0.00711 18 0.03947 Up 

Agrobacterium 0.00882 19 0.04643 Up 

Streptococcus 0.01006 20 0.05028 Down 

Bacillaceae_1 0.01384 21 0.06590 Up 

Allobaculum 0.01408 22 0.06400 Up 

Serratia 0.01620 23 0.07044 Up 

Rubrobacterineae 0.01729 24 0.07206 Up 

Chryseobacterium 0.01947 25 0.07788 Up 

Micrococcineae 0.01948 26 0.07493 Up 

Pantoea 0.02126 27 0.07873 Up 
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Gp2 0.02315 28 0.08267 Up 

Pseudomonas 0.02367 29 0.08161 Up 

Exiguobacterium 0.02493 30 0.08310 Up 

Gp1 0.02806 31 0.09051 Up 

Pseudoxanthomonas 0.04403 32 0.13759 Up 

Dorea 0.04758 33 0.14418 Down 

Novosphingobium 0.04910 34 0.14441 Up 

Sutterella 0.05041 35 0.14403 Up 

Bifidobacteriaceae 0.05077 36 0.14102 Down 

Chryseomonas 0.05792 37 0.15654 Up 

Comamonas 0.07497 38 0.19730 Up 

Carnobacteriaceae_1 0.07831 39 0.20080 Up 

Alistipes 0.08070 40 0.20175 Up 

Bacteroides 0.09360 41 0.22829 Down 

Staphylococcus 0.10208 42 0.24304 Up 

Variovorax 0.10572 43 0.24585 Up 

Flavimonas 0.11058 44 0.25131 Up 

Shinella 0.12952 45 0.28783 Up 

Syntrophococcus 0.13651 46 0.29676 Up 

Methylobacterium 0.13766 47 0.29290 Up 

Roseburia 0.15451 48 0.32189 Up 

Enterobacter 0.15715 49 0.32072 Up 

Erwinia 0.16696 50 0.33392 Up 

Rheinheimera 0.17078 51 0.33486 Down 

Prevotella 0.19727 52 0.37936 Up 

Succinispira 0.20400 53 0.38491 Up 

Pedobacter 0.23060 54 0.42704 Up 

Fusobacterium 0.23880 55 0.43419 Up 

Sphingomonas 0.25308 56 0.45192 Up 

Bradyrhizobium 0.25361 57 0.44492 Down 

Propionibacterineae 0.26446 58 0.45596 Up 

Burkholderia 0.26620 59 0.45119 Up 

Veillonella 0.28595 60 0.47659 Down 

Vibrio 0.28683 61 0.47022 Down 

Papillibacter 0.28810 62 0.46468 Up 
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Marinomonas 0.31275 63 0.49643 Down 

Bilophila 0.40399 64 0.63123 Up 

Gemella 0.40841 65 0.62832 Up 

Enhydrobacter 0.44562 66 0.67518 Up 

Anaerococcus 0.45866 67 0.68456 Up 

Pseudoalteromonas 0.47369 68 0.69660 Down 

Finegoldia 0.49275 69 0.71413 Down 

Haemophilus 0.49499 70 0.70712 Down 

Butyrivibrio 0.52466 71 0.73896 Up 

Coprococcus 0.53663 72 0.74532 Up 

Clostridiaceae_1 0.57343 73 0.78553 Up 

Ruminococcaceae_Incertae_Sedis 0.59101 74 0.79867 Up 

Paracoccus 0.61333 75 0.81777 Up 

Anaerotruncus 0.64579 76 0.84973 Down 

Parabacteroides 0.64883 77 0.84264 Up 

Lachnospiraceae_Incertae_Sedis 0.68417 78 0.87714 Up 

Citrobacter 0.68862 79 0.87167 Up 

Coprobacillus 0.69082 80 0.86352 Down 

Desulfovibrio 0.71148 81 0.87837 Down 

Shigella 0.72933 82 0.88943 Down 

Actinomycineae 0.74703 83 0.90004 Down 

Uruburuella 0.75252 84 0.89586 Down 

Corynebacterineae 0.78329 85 0.92152 Down 

Megamonas 0.84097 86 0.97787 Down 

Aeromonas 0.85775 87 0.98592 Down 

Holdemania 0.86825 88 0.98665 Up 

Subdoligranulum 0.87174 89 0.97948 Up 

Coriobacterineae 0.87710 90 0.97456 Down 

Ralstonia 0.88637 91 0.97403 Up 

Erysipelotrichaceae_Incertae_Sedis 0.89520 92 0.97304 Up 

Allomonas 0.91827 93 0.98739 Down 

Peptostreptococcaceae_Incertae_Sedis 0.93100 94 0.99043 Up 

Brevundimonas 0.94692 95 0.99676 Down 

Carnobacteriaceae_2 0.94786 96 0.98736 Up 

Anaerovorax 0.96308 97 0.99286 Down 
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Faecalibacterium 0.97701 98 0.99695 Up 

Ruminococcus 0.98616 99 0.99612 Up 

Dialister 0.99025 100 0.99025 Up 
 

Supplementary Table 3: Wilcoxon-tests on log-normalized abundances of OTUs (97%) in 
cases (33 subjects) vs. controls (38 subjects). Only OTUs which have at least 1 sequence 
assigned to them in 25% of the samples are shown. RDP classification of consensus 
sequences at genus level shown. Wilcoxon p-Values were corrected for multiple testing1 
using (n*p)/R where n = total number of taxa tested, p = raw p-Value and R = sorted 
Rank of the taxon. 

OtuName 
Wilcoxon p-

Value Rank n*p/R Direction RDP genus level Assignment 

OTU72 0.000084 1 0.031257 Up Aquabacterium 

OTU226 0.000085 2 0.015686 Up Rikenella 

OTU200 0.000087 3 0.010705 Up Helicobacter 

OTU432 0.000111 4 0.010297 Up Paludibacter 

OTU285 0.000137 5 0.010167 Up Butyrivibrio 

OTU157 0.000139 6 0.008578 Up Marinilabilia 

OTU240 0.000318 7 0.016856 Up Weissella 

OTU370 0.000384 8 0.017786 Up Lactobacillus 

OTU284 0.000424 9 0.017486 Down Rubritepida 

OTU22 0.00043 10 0.015937 Up Acidovorax 

OTU96 0.000484 11 0.016326 Up Diaphorobacter 

OTU119 0.000579 12 0.017915 Up Lachnobacterium 

OTU213 0.000679 13 0.019378 Up Lactococcus 

OTU73 0.000703 14 0.018642 Up Lactococcus 

OTU306 0.000821 15 0.020303 Down Oligotropha 

OTU373 0.000896 16 0.020772 Up Sporobacter 

OTU501 0.000947 17 0.020667 Up 
Ruminococcaceae Incertae 
Sedis 

OTU37 0.001006 18 0.020743 Up Cloacibacterium 

OTU109 0.001008 19 0.019674 Up Turicibacter 

OTU100 0.001258 20 0.023329 Up Xylanibacter 

OTU122 0.001335 21 0.023579 Up Prevotella 

OTU46 0.001398 22 0.023569 Up Bacillaceae 1 

OTU525 0.001497 23 0.024146 Up Catonella 

OTU70 0.001582 24 0.02446 Up Sphingobium 

OTU91 0.001641 25 0.024351 Up Lactobacillus 

OTU75 0.001703 26 0.024306 Up Stenotrophomonas 

OTU328 0.00179 27 0.02459 Up Parasporobacterium 
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OTU309 0.002063 28 0.027333 Up Paludibacter 

OTU230 0.002084 29 0.026658 Up Butyrivibrio 

OTU371 0.002129 30 0.02633 Up Comamonas 

OTU177 0.002213 31 0.026484 Up Butyrivibrio 

OTU136 0.002304 32 0.026712 Up Micrococcineae 

OTU357 0.002384 33 0.026803 Up Coprococcus 

OTU387 0.002449 34 0.026723 Up Coprococcus 

OTU124 0.002547 35 0.026996 Up Lactobacillus 

OTU38 0.002829 36 0.029152 Up Pseudomonas 

OTU56 0.002884 37 0.028914 Up Delftia 

OTU202 0.002913 38 0.028437 Up 
Lachnospiraceae Incertae 
Sedis 

OTU133 0.002963 39 0.028182 Up Faecalibacterium 

OTU242 0.003059 40 0.028371 Up Coriobacterineae 

OTU189 0.00349 41 0.031576 Up Acidovorax 

OTU439 0.003755 42 0.033171 Down Algibacter 

OTU265 0.003802 43 0.032805 Up Sphingomonas 

OTU139 0.003893 44 0.032827 Up Azonexus 

OTU95 0.004005 45 0.03302 Up Ruminococcus 

OTU23 0.004051 46 0.032674 Up 
Lachnospiraceae Incertae 
Sedis 

OTU59 0.004084 47 0.032241 Up Acinetobacter 

OTU502 0.004279 48 0.033077 Up Paludibacter 

OTU64 0.004323 49 0.032735 Up Erwinia 

OTU454 0.004669 50 0.034641 Up Paludibacter 

OTU286 0.005422 51 0.039446 Up Hallella 

OTU464 0.005427 52 0.038721 Up Marinilabilia 

OTU161 0.006285 53 0.043997 Up Prevotella 

OTU423 0.007065 54 0.048543 Up Parasporobacterium 

OTU53 0.007612 55 0.051345 Up Succinivibrio 

OTU239 0.007843 56 0.051957 Up Succinispira 

OTU319 0.008701 57 0.056633 Up Agrobacterium 

OTU193 0.008755 58 0.056004 Up Xylanibacter 

OTU61 0.009098 59 0.057207 Up Papillibacter 

OTU365 0.009827 60 0.060762 Up Succinispira 

OTU437 0.010114 61 0.061514 Up Marinilabilia 

OTU225 0.010608 62 0.063477 Up Prevotella 

OTU366 0.01081 63 0.063657 Up Coprococcus 

OTU92 0.01095 64 0.063478 Up Rubrobacterineae 

OTU463 0.01103 65 0.062958 Up 
Lachnospiraceae Incertae 
Sedis 

OTU97 0.011294 66 0.063484 Up Pseudomonas 



104 
 
OTU21 0.011865 67 0.065699 Up Finegoldia 

OTU149 0.012682 68 0.069192 Down Haemophilus 

OTU241 0.013048 69 0.070156 Up Chryseobacterium 

OTU250 0.013254 70 0.070246 Up Paludibacter 

OTU210 0.013651 71 0.071332 Up Allobaculum 

OTU347 0.013893 72 0.071586 Down Vitellibacter 

OTU191 0.014678 73 0.074597 Up Subdoligranulum 

OTU404 0.014845 74 0.074425 Up Hallella 

OTU396 0.014935 75 0.073878 Up Coprococcus 

OTU345 0.01502 76 0.073319 Up Butyrivibrio 

OTU401 0.015426 77 0.074324 Up Alistipes 

OTU67 0.015821 78 0.075251 Up Lactobacillus 

OTU407 0.016533 79 0.077644 Up Turicibacter 

OTU313 0.016785 80 0.077842 Up Enterobacter 

OTU353 0.017139 81 0.0785 Up Dorea 

OTU418 0.019841 82 0.08977 Up Stenotrophomonas 

OTU393 0.020465 83 0.091478 Up Micrococcineae 

OTU120 0.020843 84 0.092056 Up Micrococcineae 

OTU413 0.021269 85 0.092833 Up Subdoligranulum 

OTU341 0.021427 86 0.092433 Up Prevotella 

OTU93 0.021869 87 0.093258 Up Alistipes 

OTU186 0.022338 88 0.094173 Up Faecalibacterium 

OTU79 0.022545 89 0.093981 Up 
Lachnospiraceae Incertae 
Sedis 

OTU197 0.023847 90 0.098304 Up Lactobacillus 

OTU219 0.024265 91 0.098928 Up Rikenella 

OTU86 0.02429 92 0.097951 Up Fusobacterium 

OTU297 0.0273 93 0.108905 Up Bacillaceae 1 

OTU442 0.02802 94 0.110588 Up Roseburia 

OTU389 0.028617 95 0.111759 Up Parabacteroides 

OTU352 0.028801 96 0.111304 Down Saprospira 

OTU49 0.031048 97 0.118749 Up Sutterella 

OTU329 0.032674 98 0.123693 Down Methanohalobium 

OTU176 0.033016 99 0.123727 Up Erwinia 

OTU484 0.033734 100 0.125152 Down Effluviibacter 

OTU569 0.033751 101 0.123975 Up Erwinia 

OTU66 0.034683 102 0.126152 Down Streptococcus 

OTU391 0.03501 103 0.126103 Up Aquiflexum 

OTU356 0.036933 104 0.131753 Up Novosphingobium 

OTU11 0.041357 105 0.146129 Up Bacteroides 

OTU330 0.04391 106 0.153686 Up Coriobacterineae 
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OTU361 0.04391 107 0.152249 Up Succinivibrio 

OTU113 0.044104 108 0.151507 Up Rikenella 

OTU45 0.04423 109 0.150544 Down Xenohaliotis 

OTU471 0.045642 110 0.153937 Up 
Lachnospiraceae Incertae 
Sedis 

OTU247 0.047313 111 0.158135 Up Xylanibacter 

OTU283 0.050651 112 0.16778 Up Anaerophaga 

OTU128 0.055374 113 0.181802 Up Prevotella 

OTU270 0.056309 114 0.183252 Up Succinispira 

OTU57 0.061822 115 0.199442 Down 
Lachnospiraceae Incertae 
Sedis 

OTU77 0.06775 116 0.216684 Up Coprococcus 

OTU138 0.068101 117 0.215945 Down Simkania 

OTU491 0.068451 118 0.215214 Up Clostridiaceae 1 

OTU169 0.069264 119 0.215941 Down Streptococcus 

OTU207 0.070648 120 0.218419 Up Succinispira 

OTU237 0.072858 121 0.223392 Up Prevotella 

OTU499 0.075097 122 0.22837 Down 
Lachnospiraceae Incertae 
Sedis 

OTU14 0.07526 123 0.227004 Up 
Erysipelotrichaceae Incertae 
Sedis 

OTU417 0.07743 124 0.231665 Up Lachnobacterium 

OTU111 0.080236 125 0.23814 Up 
Peptostreptococcaceae 
Incertae Sedis 

OTU322 0.080575 126 0.237249 Up Roseburia 

OTU244 0.081081 127 0.236857 Up Prevotella 

OTU350 0.083008 128 0.240595 Up Coprococcus 

OTU159 0.084952 129 0.244319 Up Faecalibacterium 

OTU224 0.088054 130 0.251292 Up Prevotella 

OTU338 0.09269 131 0.262503 Up Micrococcineae 

OTU376 0.093281 132 0.262177 Up Methylobacterium 

OTU254 0.093506 133 0.260833 Down 
Lachnospiraceae Incertae 
Sedis 

OTU36 0.094305 134 0.261099 Up Bacteroides 

OTU8 0.095901 135 0.263551 Down Dorea 

OTU326 0.096151 136 0.262295 Down 
Lachnospiraceae Incertae 
Sedis 

OTU282 0.104442 137 0.282832 Down Streptococcus 

OTU264 0.107146 138 0.288052 Up Comamonas 

OTU26 0.11087 139 0.29592 Down Dorea 

OTU137 0.1132 140 0.299979 Up Prevotella 

OTU222 0.116058 141 0.305373 Up Prevotella 

OTU85 0.117436 142 0.306821 Up Bacteroides 

OTU397 0.12782 143 0.331617 Up 
Peptostreptococcaceae 
Incertae Sedis 
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OTU167 0.129522 144 0.333699 Up Allobaculum 

OTU420 0.13338 145 0.341269 Up Dorea 

OTU474 0.13338 146 0.338931 Up Sphingobium 

OTU29 0.137289 147 0.346491 Down 
Lachnospiraceae Incertae 
Sedis 

OTU144 0.138737 148 0.347779 Down Dorea 

OTU172 0.140932 149 0.350912 Down Marinilabilia 

OTU409 0.141562 150 0.350129 Up Alkalilimnicola 

OTU68 0.145429 151 0.357313 Up Dorea 

OTU216 0.146992 152 0.358776 Up Sphingomonas 

OTU421 0.150949 153 0.366028 Down Streptococcus 

OTU476 0.157687 154 0.379882 Down Streptococcus 

OTU519 0.159874 155 0.382665 Up Catonella 

OTU143 0.160715 156 0.382213 Down 
Lachnospiraceae Incertae 
Sedis 

OTU275 0.160841 157 0.380078 Up 
Lachnospiraceae Incertae 
Sedis 

OTU206 0.161316 158 0.378785 Up Paludibacter 

OTU419 0.161556 159 0.376965 Up Micrococcineae 

OTU1 0.163025 160 0.378015 Down Bacteroides 

OTU248 0.16912 161 0.389711 Up 
Lachnospiraceae Incertae 
Sedis 

OTU134 0.169695 162 0.388622 Down 
Ruminococcaceae Incertae 
Sedis 

OTU141 0.174538 163 0.397262 Up Faecalibacterium 

OTU368 0.176676 164 0.399676 Up 
Ruminococcaceae Incertae 
Sedis 

OTU205 0.17885 165 0.402142 Up 
Erysipelotrichaceae Incertae 
Sedis 

OTU300 0.17925 166 0.400614 Down 
Lachnospiraceae Incertae 
Sedis 

OTU152 0.183253 167 0.407108 Down Faecalibacterium 

OTU82 0.189641 168 0.418791 Up Roseburia 

OTU28 0.194628 169 0.427261 Down Bacteroides 

OTU299 0.195265 170 0.426137 Up 
Lachnospiraceae Incertae 
Sedis 

OTU135 0.19551 171 0.424178 Up Clostridiaceae 1 

OTU267 0.197149 172 0.425246 Up Parabacteroides 

OTU249 0.197702 173 0.423974 Up Faecalibacterium 

OTU334 0.205736 174 0.438667 Up Citrobacter 

OTU34 0.206355 175 0.437473 Down Dorea 

OTU192 0.212037 176 0.446964 Up Sphingomonas 

OTU153 0.213057 177 0.446576 Up Roseburia 

OTU266 0.214087 178 0.446215 Down Bacteroides 

OTU87 0.215609 179 0.446876 Up Propionibacterineae 
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OTU235 0.224633 180 0.462994 Up Desulfovibrio 

OTU50 0.226155 181 0.463556 Up Sutterella 

OTU33 0.229786 182 0.468411 Down 
Lachnospiraceae Incertae 
Sedis 

OTU90 0.231703 183 0.469737 Up 
Lachnospiraceae Incertae 
Sedis 

OTU204 0.231703 184 0.467184 Up Dialister 

OTU395 0.236361 185 0.474 Up Subdoligranulum 

OTU317 0.237329 186 0.473383 Up Prevotella 

OTU203 0.238017 187 0.472215 Down Rheinheimera 

OTU165 0.23893 188 0.471505 Up Alistipes 

OTU303 0.245272 189 0.481459 Down Faecalibacterium 

OTU15 0.246531 190 0.481385 Up Roseburia 

OTU127 0.246632 191 0.479061 Down 
Lachnospiraceae Incertae 
Sedis 

OTU412 0.248001 192 0.47921 Up Sphingomonas 

OTU178 0.250803 193 0.482114 Up 
Lachnospiraceae Incertae 
Sedis 

OTU195 0.252465 194 0.482808 Down Pseudoalteromonas 

OTU162 0.255823 195 0.486719 Down Veillonella 

OTU154 0.260826 196 0.493707 Down Faecalibacterium 

OTU190 0.260891 197 0.491324 Up 
Ruminococcaceae Incertae 
Sedis 

OTU74 0.263322 198 0.493397 Up Ruminococcus 

OTU425 0.264265 199 0.492674 Up Enhydrobacter 

OTU118 0.26768 200 0.496547 Up Burkholderia 

OTU83 0.268729 201 0.496012 Down Dorea 

OTU188 0.269309 202 0.494622 Down 
Lachnospiraceae Incertae 
Sedis 

OTU156 0.275877 203 0.504188 Up 
Lachnospiraceae Incertae 
Sedis 

OTU146 0.277131 204 0.503998 Down Vibrio 

OTU84 0.277838 205 0.50282 Down Marinomonas 

OTU3 0.286165 206 0.515375 Down 
Lachnospiraceae Incertae 
Sedis 

OTU170 0.2869 207 0.514203 Down Bacteroides 

OTU5 0.293459 208 0.52343 Up Sphingomonas 

OTU19 0.296777 209 0.526814 Up Syntrophococcus 

OTU142 0.301855 210 0.533278 Down 
Lachnospiraceae Incertae 
Sedis 

OTU307 0.303841 211 0.534242 Up Megamonas 

OTU360 0.310287 212 0.543003 Down Faecalibacterium 

OTU227 0.314679 213 0.548103 Down 
Lachnospiraceae Incertae 
Sedis 

OTU145 0.31593 214 0.54771 Up Afipia 

OTU453 0.318042 215 0.548807 Up Faecalibacterium 



108 
 
OTU296 0.326377 216 0.560583 Up Papillibacter 

OTU166 0.328441 217 0.561529 Down 
Lachnospiraceae Incertae 
Sedis 

OTU7 0.330993 218 0.563296 Up Bacteroides 

OTU256 0.33172 219 0.561955 Up Anaerotruncus 

OTU274 0.333905 220 0.563085 Down 
Lachnospiraceae Incertae 
Sedis 

OTU65 0.334251 221 0.561118 Up 
Lachnospiraceae Incertae 
Sedis 

OTU327 0.337489 222 0.564002 Up Pelomonas 

OTU168 0.342414 223 0.569666 Down Roseburia 

OTU89 0.347493 224 0.575535 Up Bacteroides 

OTU71 0.353559 225 0.582979 Up 
Lachnospiraceae Incertae 
Sedis 

OTU47 0.353621 226 0.580501 Down Succinispira 

OTU349 0.371504 227 0.607171 Up Syntrophococcus 

OTU495 0.372554 228 0.606217 Down Streptococcus 

OTU304 0.375615 229 0.608529 Down Faecalibacterium 

OTU181 0.376974 230 0.608075 Up Bacteroides 

OTU199 0.379331 231 0.609229 Up Acetanaerobacterium 

OTU44 0.383199 232 0.612788 Up 
Lachnospiraceae Incertae 
Sedis 

OTU183 0.383518 233 0.610665 Down Bacteroides 

OTU364 0.384954 234 0.610333 Up Exiguobacterium 

OTU6 0.403239 235 0.636604 Down 
Lachnospiraceae Incertae 
Sedis 

OTU553 0.403416 236 0.634184 Up Syntrophococcus 

OTU88 0.409553 237 0.641115 Down Streptococcus 

OTU268 0.412992 238 0.643782 Up Staphylococcus 

OTU198 0.417755 239 0.648482 Up 
Lachnospiraceae Incertae 
Sedis 

OTU160 0.428286 240 0.662059 Down 
Lachnospiraceae Incertae 
Sedis 

OTU315 0.440228 241 0.677696 Down Coriobacterineae 

OTU20 0.44566 242 0.683222 Down 
Lachnospiraceae Incertae 
Sedis 

OTU354 0.450531 243 0.687848 Up Anaerotruncus 

OTU179 0.450803 244 0.685442 Up 
Ruminococcaceae Incertae 
Sedis 

OTU76 0.454998 245 0.688997 Down Lachnobacterium 

OTU374 0.455869 246 0.687509 Down 
Lachnospiraceae Incertae 
Sedis 

OTU4 0.464125 247 0.697128 Up 
Lachnospiraceae Incertae 
Sedis 

OTU24 0.466828 248 0.69836 Up 
Lachnospiraceae Incertae 
Sedis 

OTU173 0.473245 249 0.705117 Down Anaerotruncus 
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OTU54 0.476242 250 0.706743 Up 
Lachnospiraceae Incertae 
Sedis 

OTU288 0.477369 251 0.705593 Up 
Ruminococcaceae Incertae 
Sedis 

OTU229 0.478121 252 0.703901 Down Coriobacterineae 

OTU367 0.484431 253 0.710371 Up Pseudomonas 

OTU233 0.495265 254 0.723399 Up Syntrophococcus 

OTU359 0.499339 255 0.72649 Up Faecalibacterium 

OTU452 0.505628 256 0.732766 Down Butyrivibrio 

OTU455 0.508508 257 0.734071 Down Finegoldia 

OTU41 0.508672 258 0.731462 Down Subdoligranulum 

OTU62 0.508801 259 0.728823 Down Ruminococcus 

OTU400 0.515068 260 0.734962 Up Bryantella 

OTU42 0.519408 261 0.738315 Up Prevotella 

OTU470 0.521033 262 0.737799 Down 
Lachnospiraceae Incertae 
Sedis 

OTU422 0.524664 263 0.740116 Up Peptococcaceae 1 

OTU566 0.531236 264 0.746548 Down Dorea 

OTU214 0.531345 265 0.743883 Down Roseburia 

OTU375 0.534803 266 0.74591 Up Pseudomonas 

OTU456 0.541252 267 0.752076 Down Anaerovorax 

OTU538 0.541252 268 0.74927 Down 
Lachnospiraceae Incertae 
Sedis 

OTU272 0.543323 269 0.749342 Down Sporobacter 

OTU182 0.544691 270 0.748446 Down 
Lachnospiraceae Incertae 
Sedis 

OTU260 0.549257 271 0.751935 Down 
Erysipelotrichaceae Incertae 
Sedis 

OTU406 0.551284 272 0.751935 Up Bacteroides 

OTU17 0.554959 273 0.754175 Down Escherichia 

OTU123 0.562088 274 0.761075 Up Papillibacter 

OTU58 0.577186 275 0.778677 Down 
Peptostreptococcaceae 
Incertae Sedis 

OTU380 0.597757 276 0.803507 Down Sporobacter 

OTU372 0.598207 277 0.801208 Up Allomonas 

OTU460 0.598207 278 0.798326 Up 
Lachnospiraceae Incertae 
Sedis 

OTU164 0.598254 279 0.795527 Down Faecalibacterium 

OTU9 0.606837 280 0.804058 Up Bacteroides 

OTU493 0.611938 281 0.807932 Down 
Lachnospiraceae Incertae 
Sedis 

OTU411 0.61495 282 0.80903 Up Faecalibacterium 

OTU506 0.61495 283 0.806172 Up Syntrophococcus 

OTU104 0.620801 284 0.810976 Down Syntrophococcus 

OTU184 0.621999 285 0.80969 Down 
Lachnospiraceae Incertae 
Sedis 
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OTU60 0.622167 286 0.807077 Up Subdoligranulum 

OTU196 0.627379 287 0.811003 Down Bacteroides 

OTU305 0.635906 288 0.819171 Down 
Lachnospiraceae Incertae 
Sedis 

OTU408 0.636907 289 0.817621 Up Bryantella 

OTU217 0.637392 290 0.815422 Up Prevotella 

OTU27 0.644638 291 0.821858 Up 
Lachnospiraceae Incertae 
Sedis 

OTU117 0.644751 292 0.819187 Down Naxibacter 

OTU238 0.648684 293 0.821372 Down 
Lachnospiraceae Incertae 
Sedis 

OTU129 0.649316 294 0.819374 Down Roseburia 

OTU148 0.651838 295 0.819769 Down 
Lachnospiraceae Incertae 
Sedis 

OTU343 0.668166 296 0.837465 Up Lachnobacterium 

OTU429 0.668166 297 0.834645 Down Dorea 

OTU363 0.670411 298 0.834639 Up Faecalibacterium 

OTU140 0.671784 299 0.833551 Up Faecalibacterium 

OTU52 0.672431 300 0.831573 Up 
Lachnospiraceae Incertae 
Sedis 

OTU378 0.689349 301 0.849663 Down Bacillaceae 1 

OTU508 0.689557 302 0.847104 Down 
Lachnospiraceae Incertae 
Sedis 

OTU10 0.689926 303 0.844761 Up Coprobacillus 

OTU32 0.690686 304 0.84291 Down 
Erysipelotrichaceae Incertae 
Sedis 

OTU80 0.698714 305 0.849911 Down 
Lachnospiraceae Incertae 
Sedis 

OTU110 0.712924 306 0.864363 Up 
Lachnospiraceae Incertae 
Sedis 

OTU106 0.715991 307 0.865253 Down 
Lachnospiraceae Incertae 
Sedis 

OTU379 0.716925 308 0.863568 Up Roseburia 

OTU171 0.716992 309 0.860854 Down Bacteroides 

OTU30 0.725113 310 0.867797 Up Bryantella 

OTU324 0.738903 311 0.881456 Up Faecalibacterium 

OTU311 0.740828 312 0.880921 Up 
Lachnospiraceae Incertae 
Sedis 

OTU101 0.745441 313 0.883574 Down Pseudoalteromonas 

OTU287 0.751988 314 0.888496 Down Anaerovorax 

OTU212 0.757145 315 0.891749 Down Coprobacillus 

OTU55 0.767222 316 0.900757 Up Parabacteroides 

OTU392 0.768645 317 0.899582 Up 
Lachnospiraceae Incertae 
Sedis 

OTU114 0.768686 318 0.8968 Up Megamonas 

OTU243 0.772843 319 0.898824 Up Anaerotruncus 
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OTU108 0.77323 320 0.896464 Up 
Lachnospiraceae Incertae 
Sedis 

OTU231 0.775025 321 0.895745 Up Anaerotruncus 

OTU316 0.775025 322 0.892964 Up Alistipes 

OTU403 0.784314 323 0.900868 Up Methylobacterium 

OTU131 0.784488 324 0.898287 Up 
Lachnospiraceae Incertae 
Sedis 

OTU103 0.789604 325 0.901363 Up Roseburia 

OTU105 0.793064 326 0.902536 Up Bacteroides 

OTU155 0.800433 327 0.908137 Down Roseburia 

OTU107 0.811899 328 0.918337 Down Ruminococcus 

OTU269 0.815747 329 0.919885 Down Butyrivibrio 

OTU312 0.819071 330 0.920834 Down Coriobacterineae 

OTU18 0.822123 331 0.921474 Up Faecalibacterium 

OTU115 0.825146 332 0.922076 Down Roseburia 

OTU126 0.825636 333 0.919852 Down Aeromonas 

OTU40 0.830942 334 0.922993 Up 
Lachnospiraceae Incertae 
Sedis 

OTU12 0.832163 335 0.921589 Up Bryantella 

OTU416 0.838341 336 0.925668 Up 
Lachnospiraceae Incertae 
Sedis 

OTU102 0.839205 337 0.923873 Down 
Lachnospiraceae Incertae 
Sedis 

OTU130 0.847691 338 0.930453 Up 
Lachnospiraceae Incertae 
Sedis 

OTU51 0.849066 339 0.929213 Down Klebsiella 

OTU187 0.853675 340 0.93151 Down 
Erysipelotrichaceae Incertae 
Sedis 

OTU492 0.860391 341 0.936085 Down Coriobacterineae 

OTU158 0.870215 342 0.944005 Down Bacteroides 

OTU43 0.871472 343 0.942613 Down 
Lachnospiraceae Incertae 
Sedis 

OTU445 0.874152 344 0.942763 Down Corynebacterineae 

OTU424 0.874975 345 0.940915 Down Streptococcus 

OTU35 0.885406 346 0.949381 Down Bryantella 

OTU358 0.886366 347 0.947671 Up Roseburia 

OTU39 0.889892 348 0.948707 Down Coriobacterineae 

OTU291 0.890838 349 0.946994 Up Syntrophococcus 

OTU292 0.892843 350 0.946414 Down Alistipes 

OTU94 0.894124 351 0.945072 Down Anaerotruncus 

OTU31 0.903421 352 0.952185 Up Coprococcus 

OTU399 0.913216 353 0.959782 Down Ralstonia 

OTU253 0.914073 354 0.957969 Down Uruburuella 

OTU69 0.921491 355 0.963023 Down 
Lachnospiraceae Incertae 
Sedis 
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OTU547 0.921893 356 0.960737 Up Subdoligranulum 

OTU25 0.931086 357 0.967599 Up Parabacteroides 

OTU277 0.933541 358 0.967441 Down 
Lachnospiraceae Incertae 
Sedis 

OTU293 0.935543 359 0.966814 Down 
Lachnospiraceae Incertae 
Sedis 

OTU98 0.93936 360 0.968063 Up 
Lachnospiraceae Incertae 
Sedis 

OTU194 0.949283 361 0.975579 Down Alistipes 

OTU344 0.961288 362 0.985187 Down Carnobacteriaceae 1 

OTU48 0.967805 363 0.989134 Down Bacteroides 

OTU132 0.972304 364 0.991002 Down Parabacteroides 

OTU355 0.973371 365 0.989371 Down Corynebacterineae 

OTU458 0.984021 366 0.997463 Up Roseburia 

OTU180 0.98511 367 0.995847 Down Roseburia 

OTU151 0.985591 368 0.993626 Down Subdoligranulum 

OTU16 0.986197 369 0.991542 Down 
Lachnospiraceae Incertae 
Sedis 

OTU2 0.986203 370 0.988868 Up Faecalibacterium 

OTU150 0.995379 371 0.995379 Up 
Ruminococcaceae Incertae 
Sedis 

Supplementary Table 4: Kruskal-Wallis tests on log-normalized abundances of OTUs 
(97%) in BMI categories Normal (<25) vs. Overweight (26- 30) vs. Obese (>30). RDP 
classification of consensus sequences at genus level shown.  Only OTUs which have at 
least 1 sequence assigned to them in 25% of the samples are shown.  Kruskal-Wallis p-
Values were corrected for multiple testing1using (n*p)/R where n = total number of taxa 
tested, p = raw p-Value and R = sorted Rank of the taxon. 

OTUname 
Kruskal-Wallis p-

Value Rank n*p/R RDP Genus level Assignment 

OTU153 0.0125 1 4.6375 Roseburia 

OTU306 0.0202 2 3.7471 Oligotropha 

OTU445 0.0252 3 3.1164 Corynebacterineae 

OTU4 0.0256 4 2.3744 Lachnospiraceae Incertae Sedis 

OTU538 0.0295 5 2.1889 Lachnospiraceae Incertae Sedis 

OTU439 0.037 6 2.28783 Algibacter 

OTU72 0.0371 7 1.9663 Aquabacterium 

OTU525 0.0374 8 1.73443 Catonella 

OTU75 0.0376 9 1.54996 Stenotrophomonas 

OTU110 0.0412 10 1.52852 Lachnospiraceae Incertae Sedis 

OTU98 0.0416 11 1.40305 Lachnospiraceae Incertae Sedis 

OTU277 0.0429 12 1.32633 Lachnospiraceae Incertae Sedis 
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OTU28 0.0442 13 1.2614 Bacteroides 

OTU156 0.0452 14 1.1978 Lachnospiraceae Incertae Sedis 

OTU16 0.0517 15 1.27871 Lachnospiraceae Incertae Sedis 

OTU43 0.054 16 1.25213 Lachnospiraceae Incertae Sedis 

OTU27 0.0549 17 1.19811 Lachnospiraceae Incertae Sedis 

OTU470 0.0686 18 1.41392 Lachnospiraceae Incertae Sedis 

OTU39 0.0705 19 1.37661 Coriobacterineae 

OTU506 0.0736 20 1.36528 Syntrophococcus 

OTU157 0.0758 21 1.33913 Marinilabilia 

OTU9 0.0786 22 1.32548 Bacteroides 

OTU131 0.0788 23 1.27108 Lachnospiraceae Incertae Sedis 

OTU240 0.0798 24 1.23358 Weissella 

OTU566 0.0815 25 1.20946 Dorea 

OTU288 0.0848 26 1.21003 Ruminococcaceae Incertae Sedis 

OTU1 0.0869 27 1.19407 Bacteroides 

OTU341 0.0879 28 1.16468 Prevotella 

OTU326 0.0911 29 1.16545 Lachnospiraceae Incertae Sedis 

OTU380 0.0947 30 1.17112 Sporobacter 

OTU214 0.0954 31 1.14172 Roseburia 

OTU11 0.0984 32 1.14083 Bacteroides 

OTU172 0.0997 33 1.12087 Marinilabilia 

OTU173 0.1008 34 1.09991 Anaerotruncus 

OTU499 0.1021 35 1.08226 Lachnospiraceae Incertae Sedis 

OTU7 0.1026 36 1.05735 Bacteroides 

OTU357 0.1084 37 1.08693 Coprococcus 

OTU356 0.1086 38 1.06028 Novosphingobium 

OTU248 0.1124 39 1.06924 Lachnospiraceae Incertae Sedis 

OTU328 0.1146 40 1.06292 Parasporobacterium 

OTU56 0.119 41 1.0768 Delftia 

OTU96 0.1197 42 1.05735 Diaphorobacter 

OTU372 0.1223 43 1.05519 Allomonas 

OTU241 0.1272 44 1.07253 Chryseobacterium 

OTU371 0.1295 45 1.06766 Comamonas 

OTU305 0.1297 46 1.04606 Lachnospiraceae Incertae Sedis 

OTU47 0.1317 47 1.03959 Succinispira 

OTU204 0.1363 48 1.05349 Dialister 

OTU59 0.1363 49 1.03199 Acinetobacter 
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OTU138 0.147 50 1.09074 Simkania 

OTU519 0.1476 51 1.07372 Catonella 

OTU197 0.1479 52 1.05521 Lactobacillus 

OTU132 0.1487 53 1.0409 Parabacteroides 

OTU79 0.1491 54 1.02437 Lachnospiraceae Incertae Sedis 

OTU370 0.1519 55 1.02463 Lactobacillus 

OTU97 0.152 56 1.007 Pseudomonas 

OTU501 0.1567 57 1.01992 Ruminococcaceae Incertae Sedis 

OTU329 0.1616 58 1.03368 Methanohalobium 

OTU266 0.1618 59 1.01742 Bacteroides 

OTU464 0.1618 60 1.00046 Marinilabilia 

OTU338 0.1692 61 1.02907 Micrococcineae 

OTU304 0.1731 62 1.03581 Faecalibacterium 

OTU374 0.1784 63 1.05058 Lachnospiraceae Incertae Sedis 

OTU411 0.1827 64 1.05909 Faecalibacterium 

OTU139 0.1839 65 1.04964 Azonexus 

OTU399 0.1849 66 1.03936 Ralstonia 

OTU40 0.1864 67 1.03216 Lachnospiraceae Incertae Sedis 

OTU200 0.1891 68 1.03171 Helicobacter 

OTU12 0.1918 69 1.03127 Bryantella 

OTU432 0.1919 70 1.01707 Paludibacter 

OTU452 0.1938 71 1.01267 Butyrivibrio 

OTU86 0.1953 72 1.00634 Fusobacterium 

OTU547 0.1959 73 0.9956 Subdoligranulum 

OTU51 0.1975 74 0.99017 Klebsiella 

OTU148 0.1994 75 0.98637 Lachnospiraceae Incertae Sedis 

OTU391 0.2026 76 0.98901 Aquiflexum 

OTU120 0.2027 77 0.97665 Micrococcineae 

OTU367 0.2053 78 0.97649 Pseudomonas 

OTU287 0.2077 79 0.9754 Anaerovorax 

OTU412 0.2092 80 0.97017 Sphingomonas 

OTU502 0.2095 81 0.95956 Paludibacter 

OTU319 0.2113 82 0.956 Agrobacterium 

OTU23 0.215 83 0.96102 Lachnospiraceae Incertae Sedis 

OTU269 0.2155 84 0.95179 Butyrivibrio 

OTU177 0.2167 85 0.94583 Butyrivibrio 

OTU437 0.2182 86 0.9413 Marinilabilia 
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OTU136 0.2206 87 0.94072 Micrococcineae 

OTU182 0.2221 88 0.93635 Lachnospiraceae Incertae Sedis 

OTU243 0.223 89 0.92958 Anaerotruncus 

OTU14 0.2291 90 0.9444 
Erysipelotrichaceae Incertae 
Sedis 

OTU283 0.2296 91 0.93606 Anaerophaga 

OTU421 0.2297 92 0.92629 Streptococcus 

OTU238 0.2308 93 0.92072 Lachnospiraceae Incertae Sedis 

OTU442 0.2308 94 0.91092 Roseburia 

OTU492 0.2332 95 0.91071 Coriobacterineae 

OTU29 0.235 96 0.90818 Lachnospiraceae Incertae Sedis 

OTU406 0.2368 97 0.9057 Bacteroides 

OTU265 0.2376 98 0.89949 Sphingomonas 

OTU90 0.2431 99 0.91101 Lachnospiraceae Incertae Sedis 

OTU38 0.2507 100 0.9301 Pseudomonas 

OTU32 0.251 101 0.92199 
Erysipelotrichaceae Incertae 
Sedis 

OTU458 0.2529 102 0.91986 Roseburia 

OTU474 0.2555 103 0.9203 Sphingobium 

OTU569 0.259 104 0.92393 Erwinia 

OTU101 0.2611 105 0.92255 Pseudoalteromonas 

OTU162 0.2672 106 0.9352 Veillonella 

OTU22 0.2693 107 0.93374 Acidovorax 

OTU37 0.2702 108 0.92819 Cloacibacterium 

OTU416 0.2715 109 0.9241 Lachnospiraceae Incertae Sedis 

OTU80 0.273 110 0.92075 Lachnospiraceae Incertae Sedis 

OTU392 0.2753 111 0.92015 Lachnospiraceae Incertae Sedis 

OTU87 0.2765 112 0.91591 Propionibacterineae 

OTU161 0.2781 113 0.91305 Prevotella 

OTU109 0.2825 114 0.91936 Turicibacter 

OTU297 0.2949 115 0.95137 Bacillaceae 1 

OTU216 0.3 116 0.95948 Sphingomonas 

OTU127 0.3011 117 0.95477 Lachnospiraceae Incertae Sedis 

OTU256 0.3017 118 0.94857 Anaerotruncus 

OTU195 0.3058 119 0.95338 Pseudoalteromonas 

OTU119 0.3065 120 0.9476 Lachnobacterium 

OTU239 0.3065 121 0.93976 Succinispira 

OTU183 0.3107 122 0.94483 Bacteroides 
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OTU146 0.3111 123 0.93836 Vibrio 

OTU70 0.3138 124 0.93887 Sphingobium 

OTU300 0.3145 125 0.93344 Lachnospiraceae Incertae Sedis 

OTU354 0.3245 126 0.95547 Anaerotruncus 

OTU128 0.3258 127 0.95175 Prevotella 

OTU345 0.3295 128 0.95504 Butyrivibrio 

OTU144 0.3315 129 0.95338 Dorea 

OTU133 0.3389 130 0.96717 Faecalibacterium 

OTU393 0.3441 131 0.97451 Micrococcineae 

OTU401 0.3465 132 0.97388 Alistipes 

OTU226 0.3468 133 0.96739 Rikenella 

OTU313 0.347 134 0.96072 Enterobacter 

OTU454 0.3474 135 0.95471 Paludibacter 

OTU6 0.3478 136 0.94878 Lachnospiraceae Incertae Sedis 

OTU118 0.3482 137 0.94294 Burkholderia 

OTU176 0.3533 138 0.94981 Erwinia 

OTU397 0.357 139 0.95286 
Peptostreptococcaceae Incertae 
Sedis 

OTU180 0.3577 140 0.94791 Roseburia 

OTU168 0.3627 141 0.95434 Roseburia 

OTU419 0.3647 142 0.95284 Micrococcineae 

OTU50 0.3647 143 0.94618 Sutterella 

OTU34 0.3652 144 0.9409 Dorea 

OTU71 0.3653 145 0.93466 Lachnospiraceae Incertae Sedis 

OTU64 0.3681 146 0.93538 Erwinia 

OTU159 0.375 147 0.94643 Faecalibacterium 

OTU199 0.376 148 0.94254 Acetanaerobacterium 

OTU88 0.3762 149 0.93671 Streptococcus 

OTU178 0.3777 150 0.93418 Lachnospiraceae Incertae Sedis 

OTU352 0.3778 151 0.92824 Saprospira 

OTU237 0.381 152 0.92994 Prevotella 

OTU210 0.3815 153 0.92508 Allobaculum 

OTU225 0.3842 154 0.92557 Prevotella 

OTU74 0.3866 155 0.92535 Ruminococcus 

OTU334 0.3908 156 0.9294 Citrobacter 

OTU192 0.3917 157 0.92561 Sphingomonas 

OTU158 0.3954 158 0.92844 Bacteroides 

OTU353 0.396 159 0.924 Dorea 
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OTU229 0.4 160 0.9275 Coriobacterineae 

OTU193 0.4004 161 0.92266 Xylanibacter 

OTU230 0.4021 162 0.92086 Butyrivibrio 

OTU57 0.4051 163 0.92204 Lachnospiraceae Incertae Sedis 

OTU19 0.409 164 0.92524 Syntrophococcus 

OTU363 0.4092 165 0.92008 Faecalibacterium 

OTU65 0.4105 166 0.91744 Lachnospiraceae Incertae Sedis 

OTU145 0.4157 167 0.9235 Afipia 

OTU270 0.4187 168 0.92463 Succinispira 

OTU84 0.4201 169 0.92223 Marinomonas 

OTU100 0.4225 170 0.92204 Xylanibacter 

OTU366 0.4227 171 0.91709 Coprococcus 

OTU403 0.4238 172 0.91413 Methylobacterium 

OTU267 0.4253 173 0.91206 Parabacteroides 

OTU170 0.4256 174 0.90746 Bacteroides 

OTU423 0.43 175 0.9116 Parasporobacterium 

OTU268 0.4307 176 0.9079 Staphylococcus 

OTU365 0.4311 177 0.90361 Succinispira 

OTU181 0.4312 178 0.89874 Bacteroides 

OTU364 0.4323 179 0.896 Exiguobacterium 

OTU491 0.4335 180 0.89349 Clostridiaceae 1 

OTU105 0.4364 181 0.8945 Bacteroides 

OTU5 0.4368 182 0.8904 Sphingomonas 

OTU322 0.4414 183 0.89486 Roseburia 

OTU224 0.4432 184 0.89363 Prevotella 

OTU213 0.4468 185 0.89602 Lactococcus 

OTU343 0.4495 186 0.89658 Lachnobacterium 

OTU26 0.4516 187 0.89596 Dorea 

OTU49 0.4579 188 0.90362 Sutterella 

OTU186 0.4584 189 0.89982 Faecalibacterium 

OTU45 0.4603 190 0.8988 Xenohaliotis 

OTU344 0.4722 191 0.91721 Carnobacteriaceae 1 

OTU114 0.4744 192 0.91668 Megamonas 

OTU194 0.478 193 0.91885 Alistipes 

OTU249 0.4809 194 0.91966 Faecalibacterium 

OTU73 0.4888 195 0.92997 Lactococcus 

OTU122 0.4898 196 0.92712 Prevotella 
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OTU307 0.4912 197 0.92505 Megamonas 

OTU124 0.5009 198 0.93856 Lactobacillus 

OTU187 0.5039 199 0.93943 
Erysipelotrichaceae Incertae 
Sedis 

OTU235 0.5047 200 0.93622 Desulfovibrio 

OTU149 0.5059 201 0.93378 Haemophilus 

OTU309 0.5061 202 0.92952 Paludibacter 

OTU143 0.5074 203 0.92732 Lachnospiraceae Incertae Sedis 

OTU31 0.5076 204 0.92314 Coprococcus 

OTU30 0.5115 205 0.92569 Bryantella 

OTU151 0.5116 206 0.92138 Subdoligranulum 

OTU425 0.5166 207 0.92589 Enhydrobacter 

OTU41 0.5176 208 0.92322 Subdoligranulum 

OTU291 0.5193 209 0.92182 Syntrophococcus 

OTU82 0.5226 210 0.92326 Roseburia 

OTU206 0.5229 211 0.91941 Paludibacter 

OTU160 0.5232 212 0.9156 Lachnospiraceae Incertae Sedis 

OTU135 0.5243 213 0.91322 Clostridiaceae 1 

OTU418 0.5253 214 0.91068 Stenotrophomonas 

OTU152 0.5303 215 0.91508 Faecalibacterium 

OTU46 0.5305 216 0.91118 Bacillaceae 1 

OTU76 0.5306 217 0.90715 Lachnobacterium 

OTU89 0.5315 218 0.90453 Bacteroides 

OTU330 0.532 219 0.90124 Coriobacterineae 

OTU471 0.535 220 0.9022 Lachnospiraceae Incertae Sedis 

OTU171 0.5368 221 0.90114 Bacteroides 

OTU103 0.5438 222 0.90878 Roseburia 

OTU244 0.5447 223 0.9062 Prevotella 

OTU358 0.5453 224 0.90315 Roseburia 

OTU453 0.5461 225 0.90046 Faecalibacterium 

OTU111 0.5483 226 0.90009 
Peptostreptococcaceae Incertae 
Sedis 

OTU189 0.5493 227 0.89775 Acidovorax 

OTU24 0.55 228 0.89496 Lachnospiraceae Incertae Sedis 

OTU376 0.5502 229 0.89137 Methylobacterium 

OTU203 0.5533 230 0.8925 Rheinheimera 

OTU455 0.5625 231 0.90341 Finegoldia 

OTU484 0.5693 232 0.91039 Effluviibacter 
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OTU350 0.5747 233 0.91508 Coprococcus 

OTU35 0.5757 234 0.91276 Bryantella 

OTU69 0.5784 235 0.91313 Lachnospiraceae Incertae Sedis 

OTU91 0.5813 236 0.91382 Lactobacillus 

OTU66 0.5835 237 0.91341 Streptococcus 

OTU463 0.5846 238 0.91129 Lachnospiraceae Incertae Sedis 

OTU387 0.58818 239 0.91303 Coprococcus 

OTU378 0.589 240 0.9105 Bacillaceae 1 

OTU126 0.5937 241 0.91395 Aeromonas 

OTU373 0.5949 242 0.91202 Sporobacter 

OTU169 0.595 243 0.90842 Streptococcus 

OTU233 0.5959 244 0.90606 Syntrophococcus 

OTU284 0.5973 245 0.90448 Rubritepida 

OTU108 0.6038 246 0.91061 Lachnospiraceae Incertae Sedis 

OTU247 0.6044 247 0.90782 Xylanibacter 

OTU130 0.6073 248 0.9085 Lachnospiraceae Incertae Sedis 

OTU165 0.6145 249 0.91558 Alistipes 

OTU327 0.615 250 0.91266 Pelomonas 

OTU106 0.6165 251 0.91124 Lachnospiraceae Incertae Sedis 

OTU420 0.6168 252 0.90807 Dorea 

OTU207 0.6187 253 0.90726 Succinispira 

OTU324 0.6203 254 0.90603 Faecalibacterium 

OTU275 0.6213 255 0.90393 Lachnospiraceae Incertae Sedis 

OTU347 0.6235 256 0.90359 Vitellibacter 

OTU198 0.6266 257 0.90455 Lachnospiraceae Incertae Sedis 

OTU493 0.6268 258 0.90133 Lachnospiraceae Incertae Sedis 

OTU60 0.6291 259 0.90114 Subdoligranulum 

OTU164 0.6307 260 0.89996 Faecalibacterium 

OTU85 0.6349 261 0.90248 Bacteroides 

OTU155 0.6395 262 0.90555 Roseburia 

OTU188 0.6396 263 0.90225 Lachnospiraceae Incertae Sedis 

OTU117 0.6399 264 0.89925 Naxibacter 

OTU404 0.6453 265 0.90342 Hallella 

OTU53 0.6509 266 0.90783 Succinivibrio 

OTU67 0.6584 267 0.91486 Lactobacillus 

OTU134 0.6601 268 0.9138 Ruminococcaceae Incertae Sedis 

OTU286 0.6604 269 0.91081 Hallella 
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OTU476 0.6642 270 0.91266 Streptococcus 

OTU508 0.6654 271 0.91094 Lachnospiraceae Incertae Sedis 

OTU361 0.6727 272 0.91754 Succinivibrio 

OTU274 0.681 273 0.92546 Lachnospiraceae Incertae Sedis 

OTU113 0.6855 274 0.92818 Rikenella 

OTU212 0.6881 275 0.92831 Coprobacillus 

OTU52 0.69227 276 0.93055 Lachnospiraceae Incertae Sedis 

OTU299 0.6954 277 0.93138 Lachnospiraceae Incertae Sedis 

OTU315 0.6976 278 0.93097 Coriobacterineae 

OTU429 0.6982 279 0.92843 Dorea 

OTU107 0.6991 280 0.92631 Ruminococcus 

OTU42 0.7035 281 0.92882 Prevotella 

OTU20 0.7054 282 0.92803 Lachnospiraceae Incertae Sedis 

OTU15 0.7074 283 0.92737 Roseburia 

OTU285 0.7114 284 0.92933 Butyrivibrio 

OTU102 0.7156 285 0.93154 Lachnospiraceae Incertae Sedis 

OTU375 0.7256 286 0.94125 Pseudomonas 

OTU389 0.7273 287 0.94017 Parabacteroides 

OTU202 0.7275 288 0.93716 Lachnospiraceae Incertae Sedis 

OTU222 0.7295 289 0.93649 Prevotella 

OTU395 0.7357 290 0.94119 Subdoligranulum 

OTU250 0.7363 291 0.93872 Paludibacter 

OTU115 0.7405 292 0.94084 Roseburia 

OTU21 0.7508 293 0.95067 Finegoldia 

OTU33 0.7525 294 0.94958 Lachnospiraceae Incertae Sedis 

OTU360 0.7528 295 0.94674 Faecalibacterium 

OTU231 0.7545 296 0.94567 Anaerotruncus 

OTU292 0.7554 297 0.94361 Alistipes 

OTU242 0.7656 298 0.95315 Coriobacterineae 

OTU311 0.7664 299 0.95095 Lachnospiraceae Incertae Sedis 

OTU205 0.7694 300 0.95149 
Erysipelotrichaceae Incertae 
Sedis 

OTU217 0.7694 301 0.94833 Prevotella 

OTU140 0.77 302 0.94593 Faecalibacterium 

OTU317 0.7757 303 0.94978 Prevotella 

OTU190 0.7768 304 0.948 Ruminococcaceae Incertae Sedis 

OTU282 0.7852 305 0.95511 Streptococcus 

OTU312 0.7899 306 0.95769 Coriobacterineae 
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OTU303 0.798 307 0.96436 Faecalibacterium 

OTU296 0.8006 308 0.96436 Papillibacter 

OTU150 0.8055 309 0.96712 Ruminococcaceae Incertae Sedis 

OTU184 0.8057 310 0.96424 Lachnospiraceae Incertae Sedis 

OTU104 0.8059 311 0.96138 Syntrophococcus 

OTU154 0.808 312 0.96079 Faecalibacterium 

OTU553 0.8125 313 0.96306 Syntrophococcus 

OTU254 0.8131 314 0.9607 Lachnospiraceae Incertae Sedis 

OTU359 0.8214 315 0.96743 Faecalibacterium 

OTU166 0.8253 316 0.96894 Lachnospiraceae Incertae Sedis 

OTU142 0.8254 317 0.966 Lachnospiraceae Incertae Sedis 

OTU417 0.8299 318 0.96822 Lachnobacterium 

OTU10 0.833 319 0.96879 Coprobacillus 

OTU18 0.837 320 0.9704 Faecalibacterium 

OTU68 0.8376 321 0.96807 Dorea 

OTU3 0.8382 322 0.96575 Lachnospiraceae Incertae Sedis 

OTU407 0.839 323 0.96368 Turicibacter 

OTU495 0.8404 324 0.96231 Streptococcus 

OTU61 0.8405 325 0.95946 Papillibacter 

OTU17 0.846 326 0.96278 Escherichia 

OTU83 0.8462 327 0.96006 Dorea 

OTU54 0.8468 328 0.95781 Lachnospiraceae Incertae Sedis 

OTU409 0.848 329 0.95626 Alkalilimnicola 

OTU25 0.8491 330 0.95459 Parabacteroides 

OTU253 0.8496 331 0.95227 Uruburuella 

OTU355 0.8553 332 0.95577 Corynebacterineae 

OTU264 0.8585 333 0.95647 Comamonas 

OTU129 0.8632 334 0.95882 Roseburia 

OTU94 0.8638 335 0.95663 Anaerotruncus 

OTU227 0.868 336 0.95842 Lachnospiraceae Incertae Sedis 

OTU413 0.8732 337 0.9613 Subdoligranulum 

OTU8 0.8757 338 0.9612 Dorea 

OTU92 0.8801 339 0.96318 Rubrobacterineae 

OTU36 0.8815 340 0.96187 Bacteroides 

OTU191 0.8823 341 0.95992 Subdoligranulum 

OTU422 0.8834 342 0.95831 Peptococcaceae 1 

OTU396 0.8849 343 0.95714 Coprococcus 
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OTU167 0.8882 344 0.95791 Allobaculum 

OTU93 0.895 345 0.96245 Alistipes 

OTU408 0.8976 346 0.96246 Bryantella 

OTU260 0.9 347 0.96225 
Erysipelotrichaceae Incertae 
Sedis 

OTU2 0.9165 348 0.97707 Faecalibacterium 

OTU456 0.9187 349 0.97661 Anaerovorax 

OTU293 0.9214 350 0.97668 Lachnospiraceae Incertae Sedis 

OTU219 0.9222 351 0.97475 Rikenella 

OTU349 0.9245 352 0.9744 Syntrophococcus 

OTU460 0.9246 353 0.97175 Lachnospiraceae Incertae Sedis 

OTU95 0.9326 354 0.97739 Ruminococcus 

OTU48 0.9459 355 0.98853 Bacteroides 

OTU55 0.9609 356 1.00139 Parabacteroides 

OTU196 0.9689 357 1.0069 Bacteroides 

OTU368 0.9705 358 1.00574 Ruminococcaceae Incertae Sedis 

OTU424 0.9713 359 1.00377 Streptococcus 

OTU137 0.9718 360 1.00149 Prevotella 

OTU123 0.9789 361 1.00602 Papillibacter 

OTU316 0.9789 362 1.00324 Alistipes 

OTU62 0.9824 363 1.00405 Ruminococcus 

OTU272 0.9832 364 1.00211 Sporobacter 

OTU379 0.9862 365 1.00241 Roseburia 

OTU44 0.9892 366 1.00271 Lachnospiraceae Incertae Sedis 

OTU141 0.9895 367 1.00028 Faecalibacterium 

OTU58 0.9913 368 0.99938 
Peptostreptococcaceae Incertae 
Sedis 

OTU400 0.9926 369 0.99798 Bryantella 

OTU179 0.9933 370 0.99598 Ruminococcaceae Incertae Sedis 

OTU77 0.9993 371 0.9993 Coprococcus 
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Supplementary Table 5: Kruskal Wallis-tests on log-normalized abundances of OTUs 
(97%) in WHR levels low, medium and high.  Only OTUs which have at least 1 sequence 
assigned to them in 25% of the samples are shown.  RDP classification of consensus 
sequences at genus level shown. Kruskal-Wallis p-Values were corrected for multiple 
testing1 using (n*p)/R where n = total number of taxa tested, p = raw p-Value and R = 
sorted rank of the taxon. 

OTUName 
Kruskal-Wallis p-

Value Rank n*p/R RDP Genus Level Assignment 

OTU299 0.0059 1 2.1889 Lachnospiraceae Incertae Sedis 

OTU538 0.0068 2 1.2614 Lachnospiraceae Incertae Sedis 

OTU306 0.0149 3 1.84263 Oligotropha 

OTU569 0.0174 4 1.61385 Erwinia 

OTU387 0.022 5 1.6324 Coprococcus 

OTU349 0.0265 6 1.63858 Syntrophococcus 

OTU8 0.0268 7 1.4204 Dorea 

OTU419 0.0338 8 1.56748 Micrococcineae 

OTU484 0.0349 9 1.43866 Effluviibacter 

OTU19 0.0404 10 1.49884 Syntrophococcus 

OTU464 0.0406 11 1.36933 Marinilabilia 

OTU156 0.0414 12 1.27995 Lachnospiraceae Incertae Sedis 

OTU248 0.0432 13 1.23286 Lachnospiraceae Incertae Sedis 

OTU48 0.046 14 1.219 Bacteroides 

OTU210 0.0463 15 1.14515 Allobaculum 

OTU172 0.048 16 1.113 Marinilabilia 

OTU93 0.0497 17 1.08463 Alistipes 

OTU373 0.0556 18 1.14598 Sporobacter 

OTU168 0.0571 19 1.11495 Roseburia 

OTU250 0.0588 20 1.09074 Paludibacter 

OTU375 0.0613 21 1.08297 Pseudomonas 

OTU291 0.0616 22 1.0388 Syntrophococcus 

OTU35 0.0698 23 1.1259 Bryantella 

OTU357 0.0708 24 1.09445 Coprococcus 

OTU439 0.071 25 1.05364 Algibacter 

OTU110 0.0715 26 1.02025 Lachnospiraceae Incertae Sedis 

OTU525 0.0717 27 0.98521 Catonella 

OTU67 0.0736 28 0.9752 Lactobacillus 
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OTU5 0.0741 29 0.94797 Sphingomonas 

OTU96 0.0766 30 0.94729 Diaphorobacter 

OTU493 0.0787 31 0.94186 Lachnospiraceae Incertae Sedis 

OTU566 0.0835 32 0.96808 Dorea 

OTU84 0.0839 33 0.94324 Marinomonas 

OTU34 0.0849 34 0.92641 Dorea 

OTU399 0.0853 35 0.90418 Ralstonia 

OTU366 0.0882 36 0.90895 Coprococcus 

OTU142 0.0913 37 0.91547 Lachnospiraceae Incertae Sedis 

OTU95 0.0916 38 0.89431 Ruminococcus 

OTU360 0.0918 39 0.87328 Faecalibacterium 

OTU45 0.0918 40 0.85145 Xenohaliotis 

OTU508 0.0926 41 0.83792 Lachnospiraceae Incertae Sedis 

OTU329 0.0961 42 0.84888 Methanohalobium 

OTU151 0.0962 43 0.83 Subdoligranulum 

OTU501 0.0979 44 0.82548 Ruminococcaceae Incertae Sedis 

OTU244 0.1002 45 0.82609 Prevotella 

OTU315 0.1064 46 0.85814 Coriobacterineae 

OTU553 0.1072 47 0.8462 Syntrophococcus 

OTU230 0.1095 48 0.84634 Butyrivibrio 

OTU316 0.1102 49 0.83437 Alistipes 

OTU197 0.1107 50 0.82139 Lactobacillus 

OTU104 0.1147 51 0.83439 Syntrophococcus 

OTU191 0.1181 52 0.8426 Subdoligranulum 

OTU161 0.1184 53 0.8288 Prevotella 

OTU243 0.1184 54 0.81345 Anaerotruncus 

OTU62 0.1192 55 0.80406 Ruminococcus 

OTU23 0.1193 56 0.79036 Lachnospiraceae Incertae Sedis 

OTU205 0.1197 57 0.7791 
Erysipelotrichaceae Incertae 
Sedis 

OTU106 0.125 58 0.79957 Lachnospiraceae Incertae Sedis 

OTU224 0.1271 59 0.79922 Prevotella 

OTU74 0.131 60 0.81002 Ruminococcus 

OTU372 0.1312 61 0.79795 Allomonas 

OTU470 0.1338 62 0.80064 Lachnospiraceae Incertae Sedis 
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OTU160 0.1368 63 0.8056 Lachnospiraceae Incertae Sedis 

OTU404 0.1385 64 0.80287 Hallella 

OTU190 0.1394 65 0.79565 Ruminococcaceae Incertae Sedis 

OTU432 0.1402 66 0.78809 Paludibacter 

OTU471 0.1412 67 0.78187 Lachnospiraceae Incertae Sedis 

OTU28 0.144 68 0.78565 Bacteroides 

OTU233 0.145 69 0.77964 Syntrophococcus 

OTU41 0.1468 70 0.77804 Subdoligranulum 

OTU365 0.1534 71 0.80157 Succinispira 

OTU395 0.1557 72 0.80229 Subdoligranulum 

OTU305 0.1573 73 0.79943 Lachnospiraceae Incertae Sedis 

OTU30 0.1594 74 0.79915 Bryantella 

OTU154 0.1597 75 0.78998 Faecalibacterium 

OTU46 0.1602 76 0.78203 Bacillaceae 1 

OTU100 0.1611 77 0.77621 Xylanibacter 

OTU254 0.1671 78 0.7948 Lachnospiraceae Incertae Sedis 

OTU200 0.1725 79 0.81009 Helicobacter 

OTU421 0.1763 80 0.81759 Streptococcus 

OTU277 0.1773 81 0.81208 Lachnospiraceae Incertae Sedis 

OTU239 0.1778 82 0.80444 Succinispira 

OTU1 0.1808 83 0.80815 Bacteroides 

OTU68 0.1814 84 0.80118 Dorea 

OTU72 0.1816 85 0.79263 Aquabacterium 

OTU495 0.1891 86 0.81577 Streptococcus 

OTU275 0.1938 87 0.82643 Lachnospiraceae Incertae Sedis 

OTU370 0.1946 88 0.82042 Lactobacillus 

OTU284 0.1958 89 0.8162 Rubritepida 

OTU195 0.1959 90 0.80754 Pseudoalteromonas 

OTU91 0.1979 91 0.80682 Lactobacillus 

OTU82 0.198 92 0.79846 Roseburia 

OTU378 0.1982 93 0.79067 Bacillaceae 1 

OTU206 0.2061 94 0.81344 Paludibacter 

OTU317 0.2063 95 0.80566 Prevotella 

OTU165 0.2065 96 0.79804 Alistipes 

OTU113 0.2074 97 0.79325 Rikenella 
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OTU130 0.2101 98 0.79538 Lachnospiraceae Incertae Sedis 

OTU138 0.2157 99 0.80833 Acidovorax 

OTU22 0.2166 100 0.80359 Coriobacterineae 

OTU492 0.2189 101 0.80408 Lactococcus 

OTU73 0.2211 102 0.8042 Prevotella 

OTU137 0.225 103 0.81044 Afipia 

OTU145 0.23 104 0.82048 Erwinia 

OTU64 0.2302 105 0.81337 Streptococcus 

OTU282 0.2306 106 0.8071 Prevotella 

OTU42 0.231 107 0.80094 Enhydrobacter 

OTU425 0.2351 108 0.80761 Cloacibacterium 

OTU37 0.2366 109 0.80531 Papillibacter 

OTU61 0.2382 110 0.80338 Roseburia 

OTU180 0.2389 111 0.79849 Streptococcus 

OTU169 0.2395 112 0.79334 Micrococcineae 

OTU136 0.2416 113 0.79322 Faecalibacterium 

OTU304 0.2444 114 0.79537 Lachnospiraceae Incertae Sedis 

OTU188 0.2467 115 0.79588 Coprobacillus 

OTU10 0.2477 116 0.79221 Prevotella 

OTU128 0.2568 117 0.8143 Dorea 

OTU420 0.2582 118 0.8118 Paludibacter 

OTU454 0.2585 119 0.80591 Uruburuella 

OTU253 0.2599 120 0.80352 Bacteroides 

OTU406 0.2601 121 0.7975 Bacteroides 

OTU7 0.2613 122 0.79461 Weissella 

OTU240 0.2614 123 0.78845 Coriobacterineae 

OTU312 0.2621 124 0.78419 Acinetobacter 

OTU59 0.2645 125 0.78504 Acidovorax 

OTU189 0.2663 126 0.78411 Rubrobacterineae 

OTU92 0.2691 127 0.78611 Xylanibacter 

OTU193 0.2737 128 0.7933 Streptococcus 

OTU424 0.2749 129 0.7906 Papillibacter 

OTU123 0.2753 130 0.78566 Ruminococcaceae Incertae Sedis 

OTU368 0.2773 131 0.78533 Faecalibacterium 

OTU18 0.2803 132 0.78781 Bryantella 
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OTU12 0.2818 133 0.78607 Sphingomonas 

OTU192 0.284 134 0.7863 Succinispira 

OTU207 0.284 135 0.78047 Lachnospiraceae Incertae Sedis 

OTU416 0.2856 136 0.7791 Allobaculum 

OTU167 0.2875 137 0.77856 Lachnospiraceae Incertae Sedis 

OTU98 0.2908 138 0.78179 Faecalibacterium 

OTU249 0.2916 139 0.7783 Lachnospiraceae Incertae Sedis 

OTU300 0.2948 140 0.78122 Roseburia 

OTU214 0.2976 141 0.78305 Klebsiella 

OTU51 0.299 142 0.78119 Streptococcus 

OTU476 0.3015 143 0.78221 Marinilabilia 

OTU437 0.3067 144 0.79018 Faecalibacterium 

OTU453 0.3096 145 0.79215 Paludibacter 

OTU309 0.3132 146 0.79587 Sporobacter 

OTU380 0.321 147 0.81014 Pseudomonas 

OTU367 0.3238 148 0.81169 Faecalibacterium 

OTU133 0.3241 149 0.80699 Prevotella 

OTU225 0.3246 150 0.80284 Vitellibacter 

OTU347 0.3294 151 0.80932 Propionibacterineae 

OTU87 0.3324 152 0.81132 Coprococcus 

OTU350 0.3391 153 0.82226 Streptococcus 

OTU66 0.3455 154 0.83234 Pelomonas 

OTU327 0.3464 155 0.82913 Exiguobacterium 

OTU364 0.3494 156 0.83094 Lachnospiraceae Incertae Sedis 

OTU127 0.3529 157 0.83392 Finegoldia 

OTU21 0.3576 158 0.83968 Rikenella 

OTU226 0.3623 159 0.84537 Ruminococcaceae Incertae Sedis 

OTU150 0.3626 160 0.84078 Lachnospiraceae Incertae Sedis 

OTU71 0.3626 161 0.83556 Bacteroides 

OTU183 0.364 162 0.8336 Corynebacterineae 

OTU445 0.3681 163 0.83782 Lactococcus 

OTU213 0.369 164 0.83475 Anaerotruncus 

OTU231 0.3705 165 0.83306 Lachnobacterium 

OTU119 0.3712 166 0.82961 Lachnospiraceae Incertae Sedis 

OTU460 0.3766 167 0.83664 Chryseobacterium 
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OTU241 0.3767 168 0.83188 Sphingomonas 

OTU412 0.3778 169 0.82937 Carnobacteriaceae 1 

OTU344 0.3792 170 0.82755 Vibrio 

OTU146 0.3819 171 0.82857 Megamonas 

OTU114 0.3867 172 0.8341 Micrococcineae 

OTU393 0.3888 173 0.83378 Lachnobacterium 

OTU417 0.3916 174 0.83496 Lachnospiraceae Incertae Sedis 

OTU131 0.3917 175 0.8304 Saprospira 

OTU352 0.3921 176 0.82653 Roseburia 

OTU358 0.3996 177 0.83758 Lachnospiraceae Incertae Sedis 

OTU227 0.4027 178 0.83934 Succinivibrio 

OTU53 0.4074 179 0.84439 Bacteroides 

OTU36 0.4117 180 0.84856 Coriobacterineae 

OTU39 0.4129 181 0.84633 Pseudomonas 

OTU97 0.4193 182 0.85473 Bacteroides 

OTU89 0.4203 183 0.85208 Faecalibacterium 

OTU186 0.4216 184 0.85007 Streptococcus 

OTU88 0.4223 185 0.84688 Anaerophaga 

OTU283 0.4327 186 0.86307 Lachnospiraceae Incertae Sedis 

OTU16 0.4394 187 0.87175 Faecalibacterium 

OTU324 0.44 188 0.8683 Coprobacillus 

OTU212 0.4402 189 0.8641 Succinivibrio 

OTU361 0.4418 190 0.86267 Butyrivibrio 

OTU177 0.4429 191 0.86029 Roseburia 

OTU379 0.4443 192 0.85852 Lachnospiraceae Incertae Sedis 

OTU3 0.4476 193 0.86041 Agrobacterium 

OTU319 0.4476 194 0.85598 Coriobacterineae 

OTU229 0.4528 195 0.86148 Lachnospiraceae Incertae Sedis 

OTU202 0.4564 196 0.8639 Lachnospiraceae Incertae Sedis 

OTU311 0.461 197 0.86818 Sphingomonas 

OTU265 0.4622 198 0.86604 Aquiflexum 

OTU391 0.4654 199 0.86766 
Peptostreptococcaceae Incertae 
Sedis 

OTU397 0.4706 200 0.87296 Prevotella 

OTU222 0.4779 201 0.88209 Lachnospiraceae Incertae Sedis 
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OTU40 0.4816 202 0.88452 Bacteroides 

OTU196 0.4846 203 0.88565 Lachnospiraceae Incertae Sedis 

OTU24 0.4884 204 0.88822 Bryantella 

OTU408 0.4951 205 0.89601 Roseburia 

OTU153 0.4971 206 0.89526 Fusobacterium 

OTU86 0.5011 207 0.89811 Lachnospiraceae Incertae Sedis 

OTU326 0.5018 208 0.89504 Clostridiaceae 1 

OTU491 0.5047 209 0.8959 Bacteroides 

OTU171 0.5061 210 0.89411 Citrobacter 

OTU334 0.5071 211 0.89163 Alistipes 

OTU194 0.508 212 0.889 Aeromonas 

OTU126 0.5122 213 0.89214 Prevotella 

OTU237 0.5138 214 0.89075 Dorea 

OTU26 0.5169 215 0.89195 Subdoligranulum 

OTU60 0.517 216 0.888 Lachnospiraceae Incertae Sedis 

OTU52 0.5335 217 0.91211 Ruminococcus 

OTU107 0.5352 218 0.91082 Catonella 

OTU519 0.5367 219 0.9092 Faecalibacterium 

OTU140 0.5398 220 0.9103 Papillibacter 

OTU296 0.5432 221 0.91189 Sutterella 

OTU49 0.548 222 0.9158 Lachnobacterium 

OTU343 0.5663 223 0.94214 Lactobacillus 

OTU124 0.5814 224 0.96294 Ruminococcaceae Incertae Sedis 

OTU288 0.5881 225 0.96971 Marinilabilia 

OTU157 0.5897 226 0.96805 Megamonas 

OTU307 0.5901 227 0.96444 Bacteroides 

OTU266 0.5921 228 0.96346 Finegoldia 

OTU455 0.5928 229 0.96039 Bacteroides 

OTU11 0.5944 230 0.95879 Anaerotruncus 

OTU94 0.6022 231 0.96717 Turicibacter 

OTU109 0.6054 232 0.96812 Bacteroides 

OTU85 0.6056 233 0.96428 Roseburia 

OTU115 0.6061 234 0.96095 Butyrivibrio 

OTU452 0.6141 235 0.96949 Xylanibacter 

OTU247 0.6152 236 0.96712 Faecalibacterium 
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OTU359 0.6155 237 0.9635 Bacteroides 

OTU170 0.6263 238 0.97629 Prevotella 

OTU341 0.6266 239 0.97267 Lachnospiraceae Incertae Sedis 

OTU392 0.6282 240 0.97109 Faecalibacterium 

OTU164 0.6284 241 0.96737 Lachnospiraceae Incertae Sedis 

OTU57 0.631 242 0.96736 Lachnospiraceae Incertae Sedis 

OTU166 0.6318 243 0.9646 Rikenella 

OTU219 0.6379 244 0.96992 Parabacteroides 

OTU389 0.6418 245 0.97187 Clostridiaceae 1 

OTU135 0.6419 246 0.96807 Haemophilus 

OTU149 0.6421 247 0.96445 Alkalilimnicola 

OTU409 0.6428 248 0.96161 Lachnospiraceae Incertae Sedis 

OTU102 0.643 249 0.95804 
Peptostreptococcaceae Incertae 
Sedis 

OTU58 0.644 250 0.9557 Burkholderia 

OTU118 0.6467 251 0.95588 Parabacteroides 

OTU55 0.6552 252 0.9646 Parasporobacterium 

OTU328 0.6559 253 0.96181 Lachnospiraceae Incertae Sedis 

OTU238 0.6571 254 0.95978 Stenotrophomonas 

OTU75 0.6579 255 0.95718 Dorea 

OTU429 0.6587 256 0.9546 Peptococcaceae 1 

OTU422 0.6675 257 0.96359 Prevotella 

OTU122 0.6782 258 0.97524 Rheinheimera 

OTU203 0.6874 259 0.98465 Stenotrophomonas 

OTU418 0.6879 260 0.98158 Lachnospiraceae Incertae Sedis 

OTU463 0.6882 261 0.97825 Prevotella 

OTU217 0.6897 262 0.97664 Ruminococcaceae Incertae Sedis 

OTU179 0.69 263 0.97335 Dorea 

OTU353 0.6943 264 0.9757 Lachnospiraceae Incertae Sedis 

OTU20 0.6949 265 0.97286 Lachnospiraceae Incertae Sedis 

OTU6 0.6964 266 0.97129 Anaerovorax 

OTU456 0.6974 267 0.96905 Bacteroides 

OTU158 0.6984 268 0.96681 Alistipes 

OTU292 0.6998 269 0.96515 Lachnospiraceae Incertae Sedis 

OTU65 0.7036 270 0.9668 Butyrivibrio 
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OTU345 0.7042 271 0.96405 Lachnospiraceae Incertae Sedis 

OTU69 0.7079 272 0.96555 Parabacteroides 

OTU267 0.7093 273 0.96392 Sphingobium 

OTU474 0.7138 274 0.9665 Lachnospiraceae Incertae Sedis 

OTU184 0.7144 275 0.96379 Syntrophococcus 

OTU506 0.7161 276 0.96258 Lachnospiraceae Incertae Sedis 

OTU44 0.7174 277 0.96085 Roseburia 

OTU15 0.7254 278 0.96807 Bacteroides 

OTU105 0.7299 279 0.97058 Lachnospiraceae Incertae Sedis 

OTU374 0.7312 280 0.96884 Butyrivibrio 

OTU285 0.7314 281 0.96566 Methylobacterium 

OTU376 0.732 282 0.96302 Anaerotruncus 

OTU256 0.7326 283 0.9604 Lachnospiraceae Incertae Sedis 

OTU27 0.7346 284 0.95964 Parasporobacterium 

OTU423 0.7388 285 0.96174 Anaerovorax 

OTU287 0.7472 286 0.96927 Paludibacter 

OTU502 0.7498 287 0.96925 Lachnospiraceae Incertae Sedis 

OTU274 0.7517 288 0.96834 Lachnospiraceae Incertae Sedis 

OTU293 0.7548 289 0.96896 Pseudoalteromonas 

OTU101 0.7558 290 0.9669 Faecalibacterium 

OTU141 0.761 291 0.97021 Roseburia 

OTU129 0.7628 292 0.96917 Comamonas 

OTU264 0.7667 293 0.9708 Coprococcus 

OTU77 0.7678 294 0.96889 Lachnospiraceae Incertae Sedis 

OTU182 0.7731 295 0.97227 Corynebacterineae 

OTU355 0.7757 296 0.97225 Lachnospiraceae Incertae Sedis 

OTU90 0.777 297 0.9706 Lachnospiraceae Incertae Sedis 

OTU29 0.7788 298 0.96958 Lachnospiraceae Incertae Sedis 

OTU178 0.7861 299 0.97539 Veillonella 

OTU162 0.7889 300 0.97561 Dorea 

OTU83 0.7948 301 0.97964 Parabacteroides 

OTU25 0.7955 302 0.97725 Acetanaerobacterium 

OTU199 0.7962 303 0.97489 Dialister 

OTU204 0.808 304 0.98608 Anaerotruncus 

OTU354 0.8095 305 0.98467 Lachnospiraceae Incertae Sedis 
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OTU143 0.8198 306 0.99394 Roseburia 

OTU458 0.8218 307 0.99312 
Erysipelotrichaceae Incertae 
Sedis 

OTU187 0.8256 308 0.99447 Lachnospiraceae Incertae Sedis 

OTU54 0.8309 309 0.99762 Hallella 

OTU286 0.8311 310 0.99464 Comamonas 

OTU371 0.8371 311 0.9986 Lachnospiraceae Incertae Sedis 

OTU4 0.8391 312 0.99778 Micrococcineae 

OTU120 0.8398 313 0.99542 Alistipes 

OTU401 0.8408 314 0.99343 
Peptostreptococcaceae Incertae 
Sedis 

OTU111 0.8414 315 0.99098 Sutterella 

OTU50 0.8421 316 0.98867 Pseudomonas 

OTU38 0.8472 317 0.99152 Micrococcineae 

OTU338 0.8506 318 0.99237 Lachnospiraceae Incertae Sedis 

OTU80 0.8517 319 0.99054 
Erysipelotrichaceae Incertae 
Sedis 

OTU260 0.8519 320 0.98767 
Erysipelotrichaceae Incertae 
Sedis 

OTU32 0.8541 321 0.98714 Lachnobacterium 

OTU76 0.8553 322 0.98545 Delftia 

OTU56 0.8691 323 0.99825 Enterobacter 

OTU313 0.8702 324 0.99643 Faecalibacterium 

OTU411 0.871 325 0.99428 Succinispira 

OTU47 0.8731 326 0.99362 Azonexus 

OTU139 0.8742 327 0.99183 Roseburia 

OTU103 0.8747 328 0.98937 Lachnospiraceae Incertae Sedis 

OTU198 0.8811 329 0.99358 Sphingobium 

OTU70 0.8829 330 0.99259 Faecalibacterium 

OTU303 0.8873 331 0.99453 Novosphingobium 

OTU356 0.8948 332 0.99991 Turicibacter 

OTU407 0.8955 333 0.99769 Parabacteroides 

OTU132 0.8999 334 0.99959 Lachnospiraceae Incertae Sedis 

OTU79 0.9073 335 1.0048 Subdoligranulum 

OTU413 0.9088 336 1.00347 Sporobacter 

OTU272 0.9089 337 1.0006 Subdoligranulum 

OTU547 0.9101 338 0.99896 Erwinia 
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OTU176 0.9119 339 0.99798 Coriobacterineae 

OTU330 0.913 340 0.99624 Faecalibacterium 

OTU363 0.9162 341 0.9968 Coprococcus 

OTU396 0.9174 342 0.99519 Anaerotruncus 

OTU173 0.9183 343 0.99326 Staphylococcus 

OTU268 0.9239 344 0.99642 Lachnospiraceae Incertae Sedis 

OTU108 0.926 345 0.99579 Escherichia 

OTU17 0.9269 346 0.99387 Bacteroides 

OTU9 0.9287 347 0.99293 
Erysipelotrichaceae Incertae 
Sedis 

OTU14 0.9289 348 0.99029 Lachnospiraceae Incertae Sedis 

OTU148 0.9313 349 0.99001 Roseburia 

OTU155 0.9313 350 0.98718 Butyrivibrio 

OTU269 0.9376 351 0.99102 Coprococcus 

OTU31 0.9397 352 0.99042 Lachnospiraceae Incertae Sedis 

OTU499 0.9451 353 0.99329 Lachnospiraceae Incertae Sedis 

OTU33 0.9497 354 0.99531 Roseburia 

OTU322 0.9515 355 0.99438 Desulfovibrio 

OTU235 0.9547 356 0.99493 Sphingomonas 

OTU216 0.9582 357 0.99578 Naxibacter 

OTU117 0.9598 358 0.99465 Faecalibacterium 

OTU2 0.9697 359 1.00211 Faecalibacterium 

OTU152 0.9698 360 0.99943 Lachnospiraceae Incertae Sedis 

OTU43 0.9713 361 0.99821 Succinispira 

OTU270 0.9719 362 0.99606 Bacteroides 

OTU181 0.9731 363 0.99455 Ruminococcaceae Incertae Sedis 

OTU134 0.9734 364 0.99212 Faecalibacterium 

OTU159 0.9739 365 0.98991 Dorea 

OTU144 0.9784 366 0.99177 Bacillaceae 1 

OTU297 0.9809 367 0.99159 Methylobacterium 

OTU403 0.9815 368 0.9895 Coriobacterineae 

OTU242 0.9892 369 0.99456 Roseburia 

OTU442 0.9918 370 0.99448 Bryantella 

OTU400 0.9995 371 0.9995 Simkania 
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Supplementary Table 6: Regressions on log-normalized abundances of OTUs (97%) vs 
BMIs of all samples with RDP classifications of consensus sequences at genus level 
shown. Only OTUs which have at least 1 sequence assigned to them in 25% of the 
samples are shown. Regression p-Values were corrected for multiple testing1 using 
(n*p)/R where n = total number of taxa tested, p = raw p-Value and R = sorted rank of 
the taxon. 

OTUname R2 p-value Rank n*p/R RDP Genus level Assignment 

OTU16 0.12079 0.00320 1 1.18672 Lachnospiraceae Incertae Sedis 

OTU492 0.08200 0.01624 2 3.01333 Coriobacterineae 

OTU39 0.07881 0.01857 3 2.29692 Coriobacterineae 

OTU306 0.07825 0.01901 4 1.76333 Oligotropha 

OTU40 0.07472 0.02204 5 1.63559 Lachnospiraceae Incertae Sedis 

OTU43 0.07415 0.02257 6 1.39583 Lachnospiraceae Incertae Sedis 

OTU305 0.07331 0.02339 7 1.23956 Lachnospiraceae Incertae Sedis 

OTU357 0.07070 0.02609 8 1.20976 Coprococcus 

OTU4 0.06895 0.02808 9 1.15764 Lachnospiraceae Incertae Sedis 

OTU138 0.06863 0.02846 10 1.05595 Simkania 

OTU277 0.06168 0.03817 11 1.28733 Lachnospiraceae Incertae Sedis 

OTU237 0.05815 0.04432 12 1.37034 Prevotella 

OTU131 0.05790 0.04479 13 1.27825 Lachnospiraceae Incertae Sedis 

OTU372 0.05470 0.05141 14 1.36242 Allomonas 

OTU329 0.05378 0.05339 15 1.32046 Methanohalobium 

OTU105 0.05349 0.05406 16 1.25351 Bacteroides 

OTU172 0.05309 0.05498 17 1.19992 Marinilabilia 

OTU370 0.05290 0.05540 18 1.14185 Lactobacillus 

OTU397 0.05190 0.05789 19 1.13039 
Peptostreptococcaceae Incertae 
Sedis 

OTU27 0.05132 0.05932 20 1.10034 Lachnospiraceae Incertae Sedis 

OTU67 0.05116 0.05973 21 1.05515 Lactobacillus 

OTU439 0.05040 0.06178 22 1.0418 Algibacter 

OTU110 0.04969 0.06362 23 1.02621 Lachnospiraceae Incertae Sedis 

OTU210 0.04921 0.06494 24 1.00386 Allobaculum 

OTU380 0.04900 0.06547 25 0.9715 Sporobacter 

OTU401 0.04780 0.06903 26 0.98507 Alistipes 

OTU204 0.04685 0.07191 27 0.98812 Dialister 

OTU288 0.04564 0.07576 28 1.00382 Ruminococcaceae Incertae Sedis 

OTU66 0.04482 0.07851 29 1.00441 Streptococcus 

OTU432 0.04450 0.07967 30 0.98528 Paludibacter 

OTU72 0.04432 0.08022 31 0.96009 Aquabacterium 
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OTU151 0.04226 0.08778 32 1.01767 Subdoligranulum 

OTU167 0.04143 0.09100 33 1.02308 Allobaculum 

OTU80 0.04059 0.09443 34 1.03038 Lachnospiraceae Incertae Sedis 

OTU153 0.04043 0.09509 35 1.00798 Roseburia 

OTU146 0.03945 0.09927 36 1.02302 Vibrio 

OTU95 0.03897 0.10141 37 1.01683 Ruminococcus 

OTU420 0.03810 0.10547 38 1.02974 Dorea 

OTU547 0.03780 0.10677 39 1.01571 Subdoligranulum 

OTU352 0.03760 0.10776 40 0.99945 Saprospira 

OTU164 0.03704 0.11044 41 0.99931 Faecalibacterium 

OTU26 0.03681 0.11160 42 0.98578 Dorea 

OTU180 0.03632 0.11402 43 0.98373 Roseburia 

OTU373 0.03570 0.11708 44 0.98718 Sporobacter 

OTU23 0.03559 0.11780 45 0.97118 Lachnospiraceae Incertae Sedis 

OTU230 0.03428 0.12490 46 1.00738 Butyrivibrio 

OTU350 0.03420 0.12520 47 0.98831 Coprococcus 

OTU88 0.03418 0.12545 48 0.96966 Streptococcus 

OTU241 0.03414 0.12570 49 0.95172 Chryseobacterium 

OTU309 0.03300 0.13230 50 0.98164 Paludibacter 

OTU154 0.03088 0.14566 51 1.05962 Faecalibacterium 

OTU499 0.03070 0.14702 52 1.04891 Lachnospiraceae Incertae Sedis 

OTU21 0.03053 0.14799 53 1.03595 Finegoldia 

OTU452 0.03010 0.15062 54 1.03479 Butyrivibrio 

OTU399 0.02990 0.15230 55 1.02734 Ralstonia 

OTU96 0.02898 0.15887 56 1.05251 Diaphorobacter 

OTU195 0.02838 0.16331 57 1.06294 Pseudoalteromonas 

OTU186 0.02821 0.16461 58 1.05293 Faecalibacterium 

OTU470 0.02760 0.16933 59 1.06475 Lachnospiraceae Incertae Sedis 

OTU84 0.02759 0.16939 60 1.04742 Marinomonas 

OTU229 0.02747 0.17030 61 1.03575 Coriobacterineae 

OTU566 0.02738 0.17105 62 1.02355 Dorea 

OTU98 0.02716 0.17278 63 1.01746 Lachnospiraceae Incertae Sedis 

OTU104 0.02705 0.17369 64 1.00683 Syntrophococcus 

OTU111 0.02684 0.17532 65 1.00067 
Peptostreptococcaceae Incertae 
Sedis 

OTU59 0.02682 0.17553 66 0.98668 Acinetobacter 

OTU267 0.02664 0.17697 67 0.97997 Parabacteroides 

OTU157 0.02651 0.17809 68 0.97165 Marinilabilia 

OTU182 0.02499 0.19123 69 1.02819 Lachnospiraceae Incertae Sedis 
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OTU231 0.02456 0.19512 70 1.03411 Anaerotruncus 

OTU30 0.02451 0.19561 71 1.02215 Bryantella 

OTU214 0.02440 0.19663 72 1.0132 Roseburia 

OTU538 0.02330 0.20675 73 1.05076 Lachnospiraceae Incertae Sedis 

OTU464 0.02320 0.20799 74 1.04277 Marinilabilia 

OTU356 0.02290 0.21102 75 1.04383 Novosphingobium 

OTU376 0.02220 0.21838 76 1.06602 Methylobacterium 

OTU3 0.02217 0.21861 77 1.05332 Lachnospiraceae Incertae Sedis 

OTU416 0.02120 0.22887 78 1.0886 Lachnospiraceae Incertae Sedis 

OTU358 0.02080 0.23330 79 1.09562 Roseburia 

OTU197 0.02052 0.23674 80 1.0979 Lactobacillus 

OTU200 0.02050 0.23707 81 1.08584 Helicobacter 

OTU495 0.02040 0.23841 82 1.07867 Streptococcus 

OTU65 0.01999 0.24295 83 1.08596 Lachnospiraceae Incertae Sedis 

OTU454 0.02000 0.24329 84 1.07452 Paludibacter 

OTU425 0.01990 0.24367 85 1.06355 Enhydrobacter 

OTU46 0.01953 0.24861 86 1.07251 Bacillaceae 1 

OTU155 0.01951 0.24887 87 1.06126 Roseburia 

OTU240 0.01947 0.24930 88 1.05105 Weissella 

OTU266 0.01923 0.25225 89 1.05153 Bacteroides 

OTU463 0.01920 0.25304 90 1.04308 Lachnospiraceae Incertae Sedis 

OTU107 0.01902 0.25492 91 1.03928 Ruminococcus 

OTU101 0.01890 0.25641 92 1.03401 Pseudoalteromonas 

OTU102 0.01859 0.26038 93 1.03872 Lachnospiraceae Incertae Sedis 

OTU82 0.01851 0.26140 94 1.03169 Roseburia 

OTU115 0.01843 0.26242 95 1.02482 Roseburia 

OTU51 0.01794 0.26901 96 1.0396 Klebsiella 

OTU392 0.01770 0.27267 97 1.04288 Lachnospiraceae Incertae Sedis 

OTU198 0.01753 0.27460 98 1.03955 Lachnospiraceae Incertae Sedis 

OTU334 0.01747 0.27545 99 1.03225 Citrobacter 

OTU423 0.01720 0.27857 100 1.03349 Parasporobacterium 

OTU371 0.01710 0.28002 101 1.02858 Comamonas 

OTU365 0.01710 0.28007 102 1.01868 Succinispira 

OTU367 0.01670 0.28614 103 1.03066 Pseudomonas 

OTU378 0.01660 0.28836 104 1.02867 Bacillaceae 1 

OTU12 0.01642 0.29042 105 1.02615 Bryantella 

OTU47 0.01639 0.29086 106 1.01801 Succinispira 

OTU124 0.01633 0.29173 107 1.01152 Lactobacillus 
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OTU212 0.01631 0.29201 108 1.00313 Coprobacillus 

OTU203 0.01613 0.29472 109 1.00314 Rheinheimera 

OTU456 0.01590 0.29808 110 1.00533 Anaerovorax 

OTU19 0.01563 0.30240 111 1.01072 Syntrophococcus 

OTU268 0.01537 0.30653 112 1.01537 Staphylococcus 

OTU60 0.01513 0.31036 113 1.01896 Subdoligranulum 

OTU50 0.01506 0.31153 114 1.01382 Sutterella 

OTU75 0.01487 0.31460 115 1.01494 Stenotrophomonas 

OTU192 0.01447 0.32129 116 1.02757 Sphingomonas 

OTU36 0.01438 0.32279 117 1.02354 Bacteroides 

OTU389 0.01430 0.32348 118 1.01705 Parabacteroides 

OTU28 0.01423 0.32534 119 1.01429 Bacteroides 

OTU6 0.01415 0.32671 120 1.01009 Lachnospiraceae Incertae Sedis 

OTU292 0.01378 0.33313 121 1.0214 Alistipes 

OTU282 0.01372 0.33422 122 1.01634 Streptococcus 

OTU194 0.01359 0.33650 123 1.01497 Alistipes 

OTU15 0.01342 0.33965 124 1.01622 Roseburia 

OTU37 0.01340 0.33987 125 1.00874 Cloacibacterium 

OTU300 0.01337 0.34042 126 1.00234 Lachnospiraceae Incertae Sedis 

OTU165 0.01333 0.34119 127 0.9967 Alistipes 

OTU188 0.01329 0.34201 128 0.99129 Lachnospiraceae Incertae Sedis 

OTU156 0.01310 0.34551 129 0.99369 Lachnospiraceae Incertae Sedis 

OTU304 0.01300 0.34727 130 0.99105 Faecalibacterium 

OTU299 0.01299 0.34741 131 0.98388 Lachnospiraceae Incertae Sedis 

OTU406 0.01300 0.34761 132 0.97701 Bacteroides 

OTU177 0.01289 0.34929 133 0.97433 Butyrivibrio 

OTU553 0.01251 0.35656 134 0.98718 Syntrophococcus 

OTU190 0.01250 0.35680 135 0.98053 Ruminococcaceae Incertae Sedis 

OTU429 0.01210 0.36396 136 0.99285 Dorea 

OTU149 0.01212 0.36424 137 0.98637 Haemophilus 

OTU24 0.01209 0.36477 138 0.98066 Lachnospiraceae Incertae Sedis 

OTU42 0.01196 0.36740 139 0.98061 Prevotella 

OTU136 0.01194 0.36780 140 0.97468 Micrococcineae 

OTU286 0.01183 0.37015 141 0.97395 Hallella 

OTU33 0.01131 0.38093 142 0.99523 Lachnospiraceae Incertae Sedis 

OTU455 0.01130 0.38152 143 0.98982 Finegoldia 

OTU418 0.01100 0.38698 144 0.997 Stenotrophomonas 

OTU91 0.01089 0.38984 145 0.99745 Lactobacillus 



138 
 

OTU256 0.01057 0.39700 146 1.00883 Anaerotruncus 

OTU41 0.01030 0.40320 147 1.0176 Subdoligranulum 

OTU126 0.01009 0.40791 148 1.02254 Aeromonas 

OTU134 0.01007 0.40846 149 1.01703 Ruminococcaceae Incertae Sedis 

OTU396 0.00984 0.41387 150 1.02364 Coprococcus 

OTU244 0.00967 0.41805 151 1.02712 Prevotella 

OTU403 0.00966 0.41823 152 1.02081 Methylobacterium 

OTU344 0.00957 0.42046 153 1.01954 Carnobacteriaceae 1 

OTU17 0.00947 0.42293 154 1.01888 Escherichia 

OTU491 0.00942 0.42407 155 1.01503 Clostridiaceae 1 

OTU44 0.00929 0.42739 156 1.01641 Lachnospiraceae Incertae Sedis 

OTU29 0.00920 0.42964 157 1.01526 Lachnospiraceae Incertae Sedis 

OTU79 0.00897 0.43556 158 1.02274 Lachnospiraceae Incertae Sedis 

OTU284 0.00891 0.43701 159 1.01969 Rubritepida 

OTU324 0.00890 0.43714 160 1.01362 Faecalibacterium 

OTU366 0.00888 0.43768 161 1.00857 Coprococcus 

OTU248 0.00884 0.43878 162 1.00486 Lachnospiraceae Incertae Sedis 

OTU476 0.00881 0.43963 163 1.00062 Streptococcus 

OTU94 0.00876 0.44084 164 0.99725 Anaerotruncus 

OTU319 0.00861 0.44499 165 1.00054 Agrobacterium 

OTU87 0.00860 0.44510 166 0.99478 Propionibacterineae 

OTU11 0.00856 0.44623 167 0.99133 Bacteroides 

OTU404 0.00834 0.45223 168 0.99867 Hallella 

OTU45 0.00830 0.45326 169 0.99502 Xenohaliotis 

OTU61 0.00826 0.45441 170 0.99169 Papillibacter 

OTU283 0.00824 0.45488 171 0.9869 Anaerophaga 

OTU22 0.00814 0.45764 172 0.98711 Acidovorax 

OTU144 0.00814 0.45765 173 0.98144 Dorea 

OTU347 0.00805 0.46007 174 0.98094 Vitellibacter 

OTU285 0.00766 0.47129 175 0.99914 Butyrivibrio 

OTU424 0.00762 0.47244 176 0.99589 Streptococcus 

OTU189 0.00739 0.47908 177 1.00417 Acidovorax 

OTU417 0.00736 0.47998 178 1.0004 Lachnobacterium 

OTU34 0.00734 0.48061 179 0.99612 Dorea 

OTU525 0.00724 0.48367 180 0.99691 Catonella 

OTU7 0.00717 0.48574 181 0.99564 Bacteroides 

OTU32 0.00699 0.49123 182 1.00136 
Erysipelotrichaceae Incertae 
Sedis 

OTU168 0.00696 0.49246 183 0.99838 Roseburia 
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OTU265 0.00694 0.49309 184 0.99422 Sphingomonas 

OTU445 0.00686 0.49542 185 0.99352 Corynebacterineae 

OTU272 0.00661 0.50356 186 1.00441 Sporobacter 

OTU143 0.00640 0.51031 187 1.01243 Lachnospiraceae Incertae Sedis 

OTU31 0.00633 0.51268 188 1.01172 Coprococcus 

OTU48 0.00615 0.51875 189 1.01829 Bacteroides 

OTU184 0.00604 0.52262 190 1.02049 Lachnospiraceae Incertae Sedis 

OTU361 0.00599 0.52411 191 1.01804 Succinivibrio 

OTU243 0.00590 0.52745 192 1.01919 Anaerotruncus 

OTU159 0.00582 0.53006 193 1.01892 Faecalibacterium 

OTU400 0.00581 0.53056 194 1.01464 Bryantella 

OTU458 0.00574 0.53301 195 1.01409 Roseburia 

OTU253 0.00565 0.53639 196 1.01531 Uruburuella 

OTU74 0.00557 0.53901 197 1.01509 Ruminococcus 

OTU139 0.00546 0.54311 198 1.01765 Azonexus 

OTU199 0.00544 0.54396 199 1.01411 Acetanaerobacterium 

OTU364 0.00541 0.54523 200 1.0114 Exiguobacterium 

OTU129 0.00538 0.54619 201 1.00815 Roseburia 

OTU71 0.00534 0.54778 202 1.00608 Lachnospiraceae Incertae Sedis 

OTU317 0.00530 0.54939 203 1.00405 Prevotella 

OTU52 0.00529 0.54965 204 0.99961 Lachnospiraceae Incertae Sedis 

OTU53 0.00528 0.54981 205 0.99502 Succinivibrio 

OTU62 0.00497 0.56195 206 1.01205 Ruminococcus 

OTU9 0.00494 0.56331 207 1.00961 Bacteroides 

OTU311 0.00484 0.56729 208 1.01184 Lachnospiraceae Incertae Sedis 

OTU76 0.00483 0.56755 209 1.00747 Lachnobacterium 

OTU89 0.00483 0.56764 210 1.00282 Bacteroides 

OTU216 0.00471 0.57232 211 1.0063 Sphingomonas 

OTU58 0.00470 0.57286 212 1.00251 
Peptostreptococcaceae Incertae 
Sedis 

OTU133 0.00469 0.57321 213 0.99841 Faecalibacterium 

OTU493 0.00435 0.58737 214 1.01829 Lachnospiraceae Incertae Sedis 

OTU327 0.00434 0.58810 215 1.01482 Pelomonas 

OTU49 0.00427 0.59075 216 1.01466 Sutterella 

OTU242 0.00427 0.59078 217 1.01005 Coriobacterineae 

OTU359 0.00427 0.59097 218 1.00573 Faecalibacterium 

OTU316 0.00424 0.59231 219 1.00341 Alistipes 

OTU73 0.00421 0.59368 220 1.00116 Lactococcus 

OTU2 0.00416 0.59600 221 1.00053 Faecalibacterium 
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OTU484 0.00410 0.59856 222 1.00029 Effluviibacter 

OTU297 0.00408 0.59957 223 0.99749 Bacillaceae 1 

OTU150 0.00406 0.60032 224 0.99428 Ruminococcaceae Incertae Sedis 

OTU239 0.00388 0.60851 225 1.00337 Succinispira 

OTU205 0.00376 0.61391 226 1.00778 
Erysipelotrichaceae Incertae 
Sedis 

OTU38 0.00375 0.61436 227 1.00408 Pseudomonas 

OTU117 0.00370 0.61669 228 1.00347 Naxibacter 

OTU274 0.00366 0.61881 229 1.00253 Lachnospiraceae Incertae Sedis 

OTU341 0.00361 0.62128 230 1.00214 Prevotella 

OTU170 0.00359 0.62208 231 0.9991 Bacteroides 

OTU207 0.00358 0.62246 232 0.9954 Succinispira 

OTU90 0.00346 0.62846 233 1.00069 Lachnospiraceae Incertae Sedis 

OTU296 0.00337 0.63322 234 1.00396 Papillibacter 

OTU238 0.00333 0.63519 235 1.00279 Lachnospiraceae Incertae Sedis 

OTU227 0.00333 0.63529 236 0.9987 Lachnospiraceae Incertae Sedis 

OTU374 0.00321 0.64151 237 1.00423 Lachnospiraceae Incertae Sedis 

OTU114 0.00320 0.64157 238 1.0001 Megamonas 

OTU152 0.00316 0.64412 239 0.99986 Faecalibacterium 

OTU395 0.00315 0.64466 240 0.99653 Subdoligranulum 

OTU326 0.00296 0.65473 241 1.0079 Lachnospiraceae Incertae Sedis 

OTU226 0.00293 0.65630 242 1.00615 Rikenella 

OTU56 0.00271 0.66884 243 1.02115 Delftia 

OTU57 0.00270 0.66907 244 1.01731 Lachnospiraceae Incertae Sedis 

OTU249 0.00269 0.66999 245 1.01456 Faecalibacterium 

OTU187 0.00262 0.67379 246 1.01616 
Erysipelotrichaceae Incertae 
Sedis 

OTU173 0.00255 0.67803 247 1.01842 Anaerotruncus 

OTU77 0.00255 0.67813 248 1.01446 Coprococcus 

OTU519 0.00254 0.67847 249 1.01089 Catonella 

OTU313 0.00252 0.67991 250 1.00899 Enterobacter 

OTU233 0.00249 0.68143 251 1.00722 Syntrophococcus 

OTU179 0.00241 0.68654 252 1.01074 Ruminococcaceae Incertae Sedis 

OTU506 0.00237 0.68930 253 1.01079 Syntrophococcus 

OTU103 0.00225 0.69653 254 1.01738 Roseburia 

OTU407 0.00223 0.69779 255 1.01521 Turicibacter 

OTU269 0.00222 0.69851 256 1.0123 Butyrivibrio 

OTU222 0.00220 0.69989 257 1.01035 Prevotella 

OTU193 0.00215 0.70341 258 1.01149 Xylanibacter 
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OTU132 0.00199 0.71391 259 1.02263 Parabacteroides 

OTU411 0.00192 0.71867 260 1.02548 Faecalibacterium 

OTU109 0.00191 0.71934 261 1.02251 Turicibacter 

OTU181 0.00189 0.72104 262 1.02101 Bacteroides 

OTU413 0.00183 0.72484 263 1.0225 Subdoligranulum 

OTU508 0.00183 0.72503 264 1.01889 Lachnospiraceae Incertae Sedis 

OTU127 0.00172 0.73283 265 1.02596 Lachnospiraceae Incertae Sedis 

OTU219 0.00164 0.73945 266 y.03134 Rikenella 

OTU202 0.00152 0.74899 267 1.04073 Lachnospiraceae Incertae Sedis 

OTU158 0.00145 0.75455 268 1.04455 Bacteroides 

OTU113 0.00145 0.75468 269 1.04084 Rikenella 

OTU291 0.00143 0.75607 270 1.0389 Syntrophococcus 

OTU35 0.00138 0.75983 271 1.0402 Bryantella 

OTU69 0.00138 0.76032 272 1.03706 Lachnospiraceae Incertae Sedis 

OTU360 0.00138 0.76046 273 1.03345 Faecalibacterium 

OTU270 0.00137 0.76063 274 1.0299 Succinispira 

OTU569 0.00136 0.76170 275 1.0276 Erwinia 

OTU148 0.00121 0.77482 276 1.04151 Lachnospiraceae Incertae Sedis 

OTU206 0.00118 0.77735 277 1.04114 Paludibacter 

OTU338 0.00110 0.78478 278 1.04732 Micrococcineae 

OTU25 0.00110 0.78564 279 1.04471 Parabacteroides 

OTU108 0.00109 0.78588 280 1.04129 Lachnospiraceae Incertae Sedis 

OTU328 0.00104 0.79060 281 1.04382 Parasporobacterium 

OTU419 0.00104 0.79110 282 1.04078 Micrococcineae 

OTU225 0.00104 0.79121 283 1.03725 Prevotella 

OTU123 0.00104 0.79133 284 1.03375 Papillibacter 

OTU460 0.00098 0.79703 285 1.03754 Lachnospiraceae Incertae Sedis 

OTU70 0.00094 0.80105 286 1.03913 Sphingobium 

OTU1 0.00093 0.80167 287 1.0363 Bacteroides 

OTU387 0.00093 0.80206 288 1.03321 Coprococcus 

OTU345 0.00090 0.80526 289 1.03374 Butyrivibrio 

OTU137 0.00090 0.80547 290 1.03045 Prevotella 

OTU10 0.00089 0.80605 291 1.02764 Coprobacillus 

OTU312 0.00083 0.81254 292 1.03237 Coriobacterineae 

OTU307 0.00080 0.81611 293 1.03337 Megamonas 

OTU353 0.00079 0.81796 294 1.03218 Dorea 

OTU196 0.00078 0.81801 295 1.02875 Bacteroides 

OTU8 0.00078 0.81824 296 1.02556 Dorea 
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OTU178 0.00072 0.82507 297 1.03064 Lachnospiraceae Incertae Sedis 

OTU106 0.00072 0.82581 298 1.02811 Lachnospiraceae Incertae Sedis 

OTU437 0.00071 0.82714 299 1.02632 Marinilabilia 

OTU393 0.00069 0.82865 300 1.02476 Micrococcineae 

OTU502 0.00067 0.83190 301 1.02536 Paludibacter 

OTU349 0.00066 0.83311 302 1.02345 Syntrophococcus 

OTU343 0.00065 0.83398 303 1.02115 Lachnobacterium 

OTU354 0.00064 0.83515 304 1.01921 Anaerotruncus 

OTU120 0.00064 0.83562 305 1.01644 Micrococcineae 

OTU368 0.00060 0.83993 306 1.01835 Ruminococcaceae Incertae Sedis 

OTU330 0.00060 0.84109 307 1.01643 Coriobacterineae 

OTU18 0.00058 0.84311 308 1.01557 Faecalibacterium 

OTU379 0.00055 0.84661 309 1.01647 Roseburia 

OTU355 0.00052 0.85194 310 1.01958 Corynebacterineae 

OTU169 0.00048 0.85685 311 1.02216 Streptococcus 

OTU217 0.00044 0.86299 312 1.02619 Prevotella 

OTU97 0.00044 0.86362 313 1.02365 Pseudomonas 

OTU315 0.00043 0.86508 314 1.02211 Coriobacterineae 

OTU453 0.00041 0.86851 315 1.02292 Faecalibacterium 

OTU293 0.00041 0.86858 316 1.01975 Lachnospiraceae Incertae Sedis 

OTU160 0.00039 0.87159 317 1.02006 Lachnospiraceae Incertae Sedis 

OTU93 0.00038 0.87290 318 1.01839 Alistipes 

OTU303 0.00037 0.87374 319 1.01617 Faecalibacterium 

OTU128 0.00036 0.87555 320 1.01509 Prevotella 

OTU86 0.00035 0.87754 321 1.01423 Fusobacterium 

OTU264 0.00035 0.87829 322 1.01195 Comamonas 

OTU171 0.00034 0.87891 323 1.00952 Bacteroides 

OTU100 0.00032 0.88369 324 1.01187 Xylanibacter 

OTU176 0.00032 0.88369 325 1.00877 Erwinia 

OTU235 0.00030 0.88760 326 1.01013 Desulfovibrio 

OTU142 0.00027 0.89298 327 1.01314 Lachnospiraceae Incertae Sedis 

OTU183 0.00025 0.89598 328 1.01344 Bacteroides 

OTU391 0.00024 0.89806 329 1.01271 Aquiflexum 

OTU85 0.00024 0.89815 330 1.00974 Bacteroides 

OTU224 0.00023 0.90135 331 1.01028 Prevotella 

OTU55 0.00023 0.90176 332 1.00769 Parabacteroides 

OTU166 0.00022 0.90242 333 1.00539 Lachnospiraceae Incertae Sedis 

OTU322 0.00021 0.90433 334 1.00451 Roseburia 
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OTU14 0.00020 0.90785 335 1.0054 
Erysipelotrichaceae Incertae 
Sedis 

OTU408 0.00019 0.90951 336 1.00425 Bryantella 

OTU54 0.00018 0.91151 337 1.00347 Lachnospiraceae Incertae Sedis 

OTU64 0.00017 0.91495 338 1.00428 Erwinia 

OTU83 0.00017 0.91541 339 1.00182 Dorea 

OTU68 0.00016 0.91804 340 1.00175 Dorea 

OTU5 0.00015 0.92125 341 1.0023 Sphingomonas 

OTU145 0.00014 0.92320 342 1.00149 Afipia 

OTU119 0.00014 0.92370 343 0.9991 Lachnobacterium 

OTU442 0.00011 0.93035 344 1.00337 Roseburia 

OTU412 0.00011 0.93055 345 1.00068 Sphingomonas 

OTU474 0.00011 0.93058 346 0.99781 Sphingobium 

OTU20 0.00011 0.93225 347 0.99673 Lachnospiraceae Incertae Sedis 

OTU254 0.00010 0.93343 348 0.99512 Lachnospiraceae Incertae Sedis 

OTU260 0.00010 0.93363 349 0.99248 
Erysipelotrichaceae Incertae 
Sedis 

OTU287 0.00010 0.93561 350 0.99175 Anaerovorax 

OTU250 0.00009 0.93893 351 0.99243 Paludibacter 

OTU422 0.00009 0.93947 352 0.99018 Peptococcaceae 1 

OTU140 0.00008 0.94086 353 0.98883 Faecalibacterium 

OTU421 0.00008 0.94289 354 0.98817 Streptococcus 

OTU161 0.00006 0.94925 355 0.99203 Prevotella 

OTU135 0.00006 0.94978 356 0.9898 Clostridiaceae 1 

OTU375 0.00005 0.95255 357 0.98991 Pseudomonas 

OTU191 0.00005 0.95294 358 0.98754 Subdoligranulum 

OTU122 0.00004 0.95860 359 0.99064 Prevotella 

OTU162 0.00004 0.95894 360 0.98824 Veillonella 

OTU501 0.00004 0.95986 361 0.98645 Ruminococcaceae Incertae Sedis 

OTU275 0.00004 0.96063 362 0.98452 Lachnospiraceae Incertae Sedis 

OTU213 0.00004 0.96094 363 0.98212 Lactococcus 

OTU141 0.00003 0.96233 364 0.98084 Faecalibacterium 

OTU363 0.00003 0.96649 365 0.98238 Faecalibacterium 

OTU130 0.00002 0.97345 366 0.98675 Lachnospiraceae Incertae Sedis 

OTU409 0.00001 0.97609 367 0.98673 Alkalilimnicola 

OTU471 0.00001 0.97787 368 0.98584 Lachnospiraceae Incertae Sedis 

OTU247 0.00000 0.98560 369 0.99095 Xylanibacter 

OTU118 0.00000 0.99027 370 0.99295 Burkholderia 

OTU92 0.00000 0.99641 371 0.99641 Rubrobacterineae 
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Supplementary Table 7: Regressions on log-normalized abundances of OTUs (97%) vs. 
WHRs of all samples with RDP classification of consensus sequences at genus level 
shown. Only OTUs which have at least 1 sequence assigned to them in 25% of the 
samples are shown. Regression p-Values were corrected for multiple testing1 using 
(n*p)/R where n = total number of taxa tested, p = raw p-Value and R = sorted rank of 
the taxon. 

OTUname R2 p-value Rank n*p/R RDP Genus level Assignment 

OTU4 0.16058 0.00053 1 0.19811 Lachnospiraceae Incertae Sedis 

OTU492 0.16000 0.00054 2 0.09998 Coriobacterineae 

OTU305 0.15413 0.00071 3 0.08756 Lachnospiraceae Incertae Sedis 

OTU79 0.09585 0.00861 4 0.79813 Lachnospiraceae Incertae Sedis 

OTU476 0.09510 0.00890 5 0.66061 Streptococcus 

OTU132 0.09057 0.01076 6 0.66561 Parabacteroides 

OTU123 0.09019 0.01094 7 0.57987 Papillibacter 

OTU31 0.07537 0.02050 8 0.95086 Coprococcus 

OTU249 0.07253 0.02314 9 0.9537 Faecalibacterium 

OTU416 0.06910 0.02679 10 0.99377 Lachnospiraceae Incertae Sedis 

OTU471 0.06680 0.02958 11 0.99774 Lachnospiraceae Incertae Sedis 

OTU3 0.06375 0.03364 12 1.04016 Lachnospiraceae Incertae Sedis 

OTU54 0.06336 0.03421 13 0.97625 Lachnospiraceae Incertae Sedis 

OTU36 0.06000 0.03952 14 1.0472 Bacteroides 

OTU282 0.05870 0.04177 15 1.03316 Streptococcus 

OTU162 0.05520 0.04858 16 1.12656 Veillonella 

OTU11 0.05483 0.04936 17 1.07724 Bacteroides 

OTU420 0.05420 0.05065 18 1.04393 Dorea 

OTU2 0.05334 0.05265 19 1.02803 Faecalibacterium 

OTU306 0.05307 0.05327 20 0.98819 Oligotropha 

OTU14 0.05298 0.05347 21 0.94458 Erysipelotrichaceae Incertae Sedis 

OTU122 0.04952 0.06214 22 1.04792 Prevotella 

OTU65 0.04587 0.07291 23 1.17604 Lachnospiraceae Incertae Sedis 

OTU242 0.04413 0.07870 24 1.21653 Coriobacterineae 

OTU199 0.04234 0.08517 25 1.26385 Acetanaerobacterium 

OTU330 0.04207 0.08618 26 1.22971 Coriobacterineae 

OTU239 0.04187 0.08696 27 1.19491 Succinispira 

OTU197 0.04077 0.09130 28 1.20971 Lactobacillus 

OTU229 0.03893 0.09909 29 1.26763 Coriobacterineae 

OTU149 0.03824 0.10219 30 1.26381 Haemophilus 

OTU28 0.03786 0.10396 31 1.24416 Bacteroides 

OTU49 0.03752 0.10553 32 1.2235 Sutterella 

OTU237 0.03741 0.10605 33 1.19224 Prevotella 
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OTU29 0.03739 0.10616 34 1.15839 Lachnospiraceae Incertae Sedis 

OTU27 0.03664 0.10980 35 1.16391 Lachnospiraceae Incertae Sedis 

OTU74 0.03641 0.11095 36 1.14341 Ruminococcus 

OTU284 0.03627 0.11165 37 1.11954 Rubritepida 

OTU198 0.03622 0.11189 38 1.09235 Lachnospiraceae Incertae Sedis 

OTU329 0.03581 0.11399 39 1.08437 Methanohalobium 

OTU283 0.03545 0.11583 40 1.07435 Anaerophaga 

OTU72 0.03517 0.11730 41 1.06145 Aquabacterium 

OTU309 0.03504 0.11804 42 1.04269 Paludibacter 

OTU59 0.03413 0.12299 43 1.06115 Acinetobacter 

OTU470 0.03410 0.12300 44 1.03708 Lachnospiraceae Incertae Sedis 

OTU173 0.03391 0.12420 45 1.02394 Anaerotruncus 

OTU454 0.03280 0.13051 46 1.05262 Paludibacter 

OTU16 0.03271 0.13118 47 1.03546 Lachnospiraceae Incertae Sedis 

OTU356 0.03220 0.13429 48 1.03794 Novosphingobium 

OTU46 0.03150 0.13869 49 1.05007 Bacillaceae 1 

OTU98 0.03113 0.14105 50 1.04662 Lachnospiraceae Incertae Sedis 

OTU288 0.03108 0.14138 51 1.02847 Ruminococcaceae Incertae Sedis 

OTU474 0.03040 0.14608 52 1.04224 Sphingobium 

OTU104 0.02913 0.15475 53 1.08326 Syntrophococcus 

OTU429 0.02890 0.15635 54 1.07418 Dorea 

OTU41 0.02856 0.15889 55 1.07178 Subdoligranulum 

OTU117 0.02834 0.16052 56 1.06347 Naxibacter 

OTU96 0.02828 0.16096 57 1.04767 Diaphorobacter 

OTU143 0.02795 0.16346 58 1.04555 Lachnospiraceae Incertae Sedis 

OTU367 0.02760 0.16620 59 1.04507 Pseudomonas 

OTU34 0.02734 0.16820 60 1.04003 Dorea 

OTU200 0.02721 0.16926 61 1.02946 Helicobacter 

OTU525 0.02660 0.17395 62 1.04092 Catonella 

OTU42 0.02657 0.17443 63 1.02721 Prevotella 

OTU376 0.02630 0.17634 64 1.02221 Methylobacterium 

OTU128 0.02590 0.18004 65 1.02761 Prevotella 

OTU368 0.02540 0.18463 66 1.03784 Ruminococcaceae Incertae Sedis 

OTU58 0.02536 0.18466 67 1.0225 
Peptostreptococcaceae Incertae 
Sedis 

OTU349 0.02528 0.18537 68 1.01137 Syntrophococcus 

OTU268 0.02473 0.19030 69 1.02319 Staphylococcus 

OTU88 0.02472 0.19038 70 1.00902 Streptococcus 

OTU327 0.02412 0.19593 71 1.02381 Pelomonas 

OTU370 0.02370 0.19945 72 1.02772 Lactobacillus 

OTU134 0.02349 0.20191 73 1.02617 Ruminococcaceae Incertae Sedis 
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OTU150 0.02343 0.20256 74 1.01552 Ruminococcaceae Incertae Sedis 

OTU203 0.02326 0.20419 75 1.01007 Rheinheimera 

OTU391 0.02320 0.20459 76 0.99874 Aquiflexum 

OTU363 0.02250 0.21188 77 1.02088 Faecalibacterium 

OTU413 0.02250 0.21201 78 1.00838 Subdoligranulum 

OTU231 0.02211 0.21589 79 1.01386 Anaerotruncus 

OTU66 0.02207 0.21626 80 1.00289 Streptococcus 

OTU350 0.02190 0.21793 81 0.99816 Coprococcus 

OTU269 0.02141 0.22340 82 1.01077 Butyrivibrio 

OTU131 0.02120 0.22564 83 1.0086 Lachnospiraceae Incertae Sedis 

OTU61 0.02022 0.23682 84 1.04596 Papillibacter 

OTU235 0.02020 0.23709 85 1.03484 Desulfovibrio 

OTU343 0.02019 0.23722 86 1.02337 Lachnobacterium 

OTU172 0.01971 0.24294 87 1.03601 Marinilabilia 

OTU299 0.01952 0.24515 88 1.03353 Lachnospiraceae Incertae Sedis 

OTU425 0.01920 0.24895 89 1.03778 Enhydrobacter 

OTU213 0.01908 0.25071 90 1.0335 Lactococcus 

OTU25 0.01902 0.25143 91 1.02507 Parabacteroides 

OTU140 0.01892 0.25267 92 1.01892 Faecalibacterium 

OTU403 0.01870 0.25498 93 1.01717 Methylobacterium 

OTU204 0.01831 0.26054 94 1.02831 Dialister 

OTU157 0.01811 0.26320 95 1.02788 Marinilabilia 

OTU359 0.01780 0.26799 96 1.03568 Faecalibacterium 

OTU214 0.01759 0.27025 97 1.03365 Roseburia 

OTU566 0.01752 0.27111 98 1.02633 Dorea 

OTU37 0.01740 0.27290 99 1.02267 Cloacibacterium 

OTU371 0.01740 0.27331 100 1.01397 Comamonas 

OTU18 0.01721 0.27546 101 1.01184 Faecalibacterium 

OTU146 0.01721 0.27553 102 1.00216 Vibrio 

OTU354 0.01710 0.27690 103 0.99738 Anaerotruncus 

OTU357 0.01690 0.27932 104 0.99642 Coprococcus 

OTU334 0.01680 0.28133 105 0.99405 Citrobacter 

OTU352 0.01630 0.28894 106 1.0113 Saprospira 

OTU274 0.01605 0.29249 107 1.01413 Lachnospiraceae Incertae Sedis 

OTU326 0.01598 0.29346 108 1.0081 Lachnospiraceae Incertae Sedis 

OTU1 0.01594 0.29407 109 1.00092 Bacteroides 

OTU191 0.01560 0.29941 110 1.00983 Subdoligranulum 

OTU40 0.01507 0.30780 111 1.02877 Lachnospiraceae Incertae Sedis 

OTU226 0.01504 0.30832 112 1.0213 Rikenella 

OTU48 0.01480 0.31210 113 1.02469 Bacteroides 
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OTU39 0.01476 0.31278 114 1.0179 Coriobacterineae 

OTU364 0.01470 0.31323 115 1.0105 Exiguobacterium 

OTU178 0.01467 0.31438 116 1.00547 Lachnospiraceae Incertae Sedis 

OTU113 0.01446 0.31778 117 1.00765 Rikenella 

OTU32 0.01434 0.31990 118 1.0058 Erysipelotrichaceae Incertae Sedis 

OTU296 0.01416 0.32295 119 1.00685 Papillibacter 

OTU153 0.01415 0.32311 120 0.99894 Roseburia 

OTU502 0.01410 0.32410 121 0.99373 Paludibacter 

OTU324 0.01390 0.32745 122 0.99577 Faecalibacterium 

OTU110 0.01387 0.32801 123 0.98936 Lachnospiraceae Incertae Sedis 

OTU315 0.01382 0.32888 124 0.98397 Coriobacterineae 

OTU102 0.01344 0.33568 125 0.99631 Lachnospiraceae Incertae Sedis 

OTU193 0.01339 0.33664 126 0.99121 Xylanibacter 

OTU15 0.01337 0.33695 127 0.98432 Roseburia 

OTU103 0.01314 0.34116 128 0.98882 Roseburia 

OTU184 0.01280 0.34746 129 0.99928 Lachnospiraceae Incertae Sedis 

OTU169 0.01267 0.34993 130 0.99865 Streptococcus 

OTU23 0.01263 0.35081 131 0.99351 Lachnospiraceae Incertae Sedis 

OTU53 0.01249 0.35340 132 0.99326 Succinivibrio 

OTU247 0.01237 0.35585 133 0.99263 Xylanibacter 

OTU7 0.01232 0.35687 134 0.98806 Bacteroides 

OTU20 0.01229 0.35738 135 0.98213 Lachnospiraceae Incertae Sedis 

OTU77 0.01223 0.35855 136 0.97811 Coprococcus 

OTU358 0.01210 0.36096 137 0.97748 Roseburia 

OTU423 0.01200 0.36253 138 0.97464 Parasporobacterium 

OTU508 0.01190 0.36508 139 0.97443 Lachnospiraceae Incertae Sedis 

OTU322 0.01160 0.37141 140 0.98423 Roseburia 

OTU84 0.01152 0.37297 141 0.98135 Marinomonas 

OTU210 0.01152 0.37298 142 0.97447 Allobaculum 

OTU22 0.01147 0.37410 143 0.97058 Acidovorax 

OTU380 0.01120 0.37870 144 0.97568 Sporobacter 

OTU553 0.01109 0.38216 145 0.97781 Syntrophococcus 

OTU389 0.01090 0.38598 146 0.9808 Parabacteroides 

OTU392 0.01060 0.39195 147 0.98921 Lachnospiraceae Incertae Sedis 

OTU344 0.01063 0.39231 148 0.98343 Carnobacteriaceae 1 

OTU506 0.01060 0.39366 149 0.98018 Syntrophococcus 

OTU177 0.01020 0.40194 150 0.99414 Butyrivibrio 

OTU399 0.01000 0.40554 151 0.99638 Ralstonia 

OTU300 0.00991 0.40888 152 0.99798 Lachnospiraceae Incertae Sedis 

OTU316 0.00972 0.41345 153 1.00255 Alistipes 
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OTU456 0.00959 0.41661 154 1.00364 Anaerovorax 

OTU293 0.00946 0.41960 155 1.00433 Lachnospiraceae Incertae Sedis 

OTU21 0.00935 0.42250 156 1.0048 Finegoldia 

OTU361 0.00922 0.42574 157 1.00604 Succinivibrio 

OTU202 0.00914 0.42775 158 1.00439 Lachnospiraceae Incertae Sedis 

OTU366 0.00895 0.43267 159 1.00957 Coprococcus 

OTU35 0.00884 0.43540 160 1.00958 Bryantella 

OTU275 0.00833 0.44901 161 1.03468 Lachnospiraceae Incertae Sedis 

OTU126 0.00830 0.44997 162 1.03049 Aeromonas 

OTU189 0.00828 0.45054 163 1.02547 Acidovorax 

OTU158 0.00826 0.45096 164 1.02016 Bacteroides 

OTU43 0.00807 0.45634 165 1.02607 Lachnospiraceae Incertae Sedis 

OTU105 0.00801 0.45787 166 1.02332 Bacteroides 

OTU9 0.00797 0.45913 167 1.01997 Bacteroides 

OTU297 0.00745 0.47430 168 1.04742 Bacillaceae 1 

OTU80 0.00741 0.47546 169 1.04376 Lachnospiraceae Incertae Sedis 

OTU277 0.00732 0.47801 170 1.04318 Lachnospiraceae Incertae Sedis 

OTU395 0.00727 0.47963 171 1.04061 Subdoligranulum 

OTU365 0.00727 0.47972 172 1.03475 Succinispira 

OTU67 0.00726 0.47982 173 1.02898 Lactobacillus 

OTU372 0.00714 0.48370 174 1.03133 Allomonas 

OTU419 0.00701 0.48759 175 1.03368 Micrococcineae 

OTU101 0.00697 0.48875 176 1.03027 Pseudoalteromonas 

OTU10 0.00692 0.49053 177 1.02818 Coprobacillus 

OTU154 0.00685 0.49266 178 1.02683 Faecalibacterium 

OTU93 0.00677 0.49515 179 1.02626 Alistipes 

OTU62 0.00672 0.49684 180 1.02404 Ruminococcus 

OTU404 0.00645 0.50544 181 1.03602 Hallella 

OTU406 0.00645 0.50564 182 1.03073 Bacteroides 

OTU241 0.00635 0.50892 183 1.03175 Chryseobacterium 

OTU151 0.00634 0.50932 184 1.02695 Subdoligranulum 

OTU307 0.00629 0.51093 185 1.02461 Megamonas 

OTU155 0.00621 0.51362 186 1.02448 Roseburia 

OTU264 0.00619 0.51413 187 1.02 Comamonas 

OTU124 0.00607 0.51856 188 1.02333 Lactobacillus 

OTU227 0.00595 0.52273 189 1.0261 Lachnospiraceae Incertae Sedis 

OTU12 0.00581 0.52761 190 1.03023 Bryantella 

OTU442 0.00580 0.52800 191 1.02559 Roseburia 

OTU187 0.00572 0.53082 192 1.0257 Erysipelotrichaceae Incertae Sedis 

OTU45 0.00570 0.53138 193 1.02145 Xenohaliotis 
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OTU240 0.00562 0.53429 194 1.02176 Weissella 

OTU95 0.00533 0.54511 195 1.03711 Ruminococcus 

OTU87 0.00532 0.54540 196 1.03237 Propionibacterineae 

OTU129 0.00524 0.54849 197 1.03295 Roseburia 

OTU243 0.00519 0.55054 198 1.03156 Anaerotruncus 

OTU133 0.00517 0.55109 199 1.02741 Faecalibacterium 

OTU401 0.00516 0.55153 200 1.0231 Alistipes 

OTU421 0.00511 0.55354 201 1.02171 Streptococcus 

OTU152 0.00508 0.55466 202 1.01871 Faecalibacterium 

OTU253 0.00503 0.55669 203 1.0174 Uruburuella 

OTU171 0.00501 0.55767 204 1.01419 Bacteroides 

OTU109 0.00499 0.55827 205 1.01034 Turicibacter 

OTU445 0.00483 0.56471 206 1.01703 Corynebacterineae 

OTU137 0.00471 0.56939 207 1.0205 Prevotella 

OTU100 0.00458 0.57482 208 1.02527 Xylanibacter 

OTU130 0.00454 0.57648 209 1.02333 Lachnospiraceae Incertae Sedis 

OTU328 0.00454 0.57671 210 1.01885 Parasporobacterium 

OTU378 0.00452 0.57768 211 1.01573 Bacillaceae 1 

OTU183 0.00442 0.58181 212 1.01816 Bacteroides 

OTU26 0.00438 0.58344 213 1.01623 Dorea 

OTU432 0.00438 0.58352 214 1.01161 Paludibacter 

OTU317 0.00426 0.58867 215 1.01579 Prevotella 

OTU256 0.00424 0.58935 216 1.01226 Anaerotruncus 

OTU353 0.00424 0.58952 217 1.00789 Dorea 

OTU114 0.00424 0.58957 218 1.00335 Megamonas 

OTU453 0.00421 0.59104 219 1.00126 Faecalibacterium 

OTU94 0.00411 0.59542 220 1.0041 Anaerotruncus 

OTU460 0.00405 0.59791 221 1.00373 Lachnospiraceae Incertae Sedis 

OTU194 0.00393 0.60353 222 1.0086 Alistipes 

OTU159 0.00384 0.60749 223 1.01066 Faecalibacterium 

OTU141 0.00369 0.61465 224 1.01802 Faecalibacterium 

OTU90 0.00369 0.61470 225 1.01357 Lachnospiraceae Incertae Sedis 

OTU217 0.00367 0.61566 226 1.01066 Prevotella 

OTU397 0.00363 0.61788 227 1.00983 
Peptostreptococcaceae Incertae 
Sedis 

OTU374 0.00353 0.62263 228 1.01314 Lachnospiraceae Incertae Sedis 

OTU148 0.00345 0.62636 229 1.01476 Lachnospiraceae Incertae Sedis 

OTU19 0.00337 0.63044 230 1.01693 Syntrophococcus 

OTU422 0.00334 0.63195 231 1.01495 Peptococcaceae 1 

OTU418 0.00309 0.64516 232 1.0317 Stenotrophomonas 

OTU33 0.00308 0.64573 233 1.02818 Lachnospiraceae Incertae Sedis 
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OTU38 0.00307 0.64629 234 1.02467 Pseudomonas 

OTU75 0.00303 0.64841 235 1.02366 Stenotrophomonas 

OTU138 0.00287 0.65749 236 1.0336 Simkania 

OTU396 0.00276 0.66333 237 1.03838 Coprococcus 

OTU311 0.00274 0.66482 238 1.03634 Lachnospiraceae Incertae Sedis 

OTU73 0.00270 0.66679 239 1.03505 Lactococcus 

OTU455 0.00255 0.67552 240 1.04424 Finegoldia 

OTU407 0.00250 0.67877 241 1.04492 Turicibacter 

OTU238 0.00247 0.68035 242 1.04301 Lachnospiraceae Incertae Sedis 

OTU501 0.00245 0.68189 243 1.04107 Ruminococcaceae Incertae Sedis 

OTU6 0.00241 0.68430 244 1.04047 Lachnospiraceae Incertae Sedis 

OTU225 0.00236 0.68772 245 1.04141 Prevotella 

OTU347 0.00233 0.68910 246 1.03925 Vitellibacter 

OTU355 0.00229 0.69179 247 1.03909 Corynebacterineae 

OTU135 0.00229 0.69192 248 1.03508 Clostridiaceae 1 

OTU8 0.00225 0.69454 249 1.03483 Dorea 

OTU417 0.00225 0.69474 250 1.031 Lachnobacterium 

OTU30 0.00217 0.69963 251 1.03412 Bryantella 

OTU484 0.00210 0.70453 252 1.03722 Effluviibacter 

OTU265 0.00199 0.71215 253 1.04431 Sphingomonas 

OTU24 0.00195 0.71462 254 1.04379 Lachnospiraceae Incertae Sedis 

OTU224 0.00194 0.71545 255 1.04092 Prevotella 

OTU219 0.00181 0.72457 256 1.05005 Rikenella 

OTU499 0.00174 0.72958 257 1.0532 Lachnospiraceae Incertae Sedis 

OTU192 0.00171 0.73229 258 1.05302 Sphingomonas 

OTU212 0.00169 0.73349 259 1.05067 Coprobacillus 

OTU312 0.00164 0.73726 260 1.05202 Coriobacterineae 

OTU55 0.00163 0.73794 261 1.04895 Parabacteroides 

OTU286 0.00163 0.73815 262 1.04524 Hallella 

OTU142 0.00158 0.74217 263 1.04693 Lachnospiraceae Incertae Sedis 

OTU106 0.00155 0.74467 264 1.04648 Lachnospiraceae Incertae Sedis 

OTU161 0.00144 0.75323 265 1.05452 Prevotella 

OTU165 0.00141 0.75569 266 1.05399 Alistipes 

OTU186 0.00139 0.75723 267 1.05218 Faecalibacterium 

OTU439 0.00136 0.76031 268 1.05251 Algibacter 

OTU291 0.00135 0.76100 269 1.04956 Syntrophococcus 

OTU108 0.00123 0.77123 270 1.05973 Lachnospiraceae Incertae Sedis 

OTU424 0.00123 0.77154 271 1.05624 Streptococcus 

OTU176 0.00120 0.77451 272 1.05641 Erwinia 

OTU119 0.00117 0.77710 273 1.05605 Lachnobacterium 
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OTU338 0.00116 0.77791 274 1.0533 Micrococcineae 

OTU206 0.00106 0.78756 275 1.06249 Paludibacter 

OTU182 0.00105 0.78893 276 1.06048 Lachnospiraceae Incertae Sedis 

OTU118 0.00104 0.78945 277 1.05735 Burkholderia 

OTU57 0.00104 0.78976 278 1.05395 Lachnospiraceae Incertae Sedis 

OTU17 0.00098 0.79508 279 1.05725 Escherichia 

OTU60 0.00096 0.79778 280 1.05705 Subdoligranulum 

OTU89 0.00094 0.79996 281 1.05618 Bacteroides 

OTU111 0.00092 0.80186 282 1.05493 
Peptostreptococcaceae Incertae 
Sedis 

OTU144 0.00088 0.80648 283 1.05726 Dorea 

OTU181 0.00087 0.80664 284 1.05375 Bacteroides 

OTU411 0.00081 0.81405 285 1.0597 Faecalibacterium 

OTU127 0.00080 0.81495 286 1.05715 Lachnospiraceae Incertae Sedis 

OTU91 0.00069 0.82817 287 1.07056 Lactobacillus 

OTU285 0.00068 0.82973 288 1.06886 Butyrivibrio 

OTU195 0.00067 0.83061 289 1.06628 Pseudoalteromonas 

OTU379 0.00067 0.83079 290 1.06284 Roseburia 

OTU266 0.00065 0.83282 291 1.06177 Bacteroides 

OTU145 0.00063 0.83611 292 1.06231 Afipia 

OTU56 0.00062 0.83641 293 1.05907 Delftia 

OTU76 0.00062 0.83735 294 1.05666 Lachnobacterium 

OTU292 0.00057 0.84278 295 1.05991 Alistipes 

OTU168 0.00056 0.84464 296 1.05865 Roseburia 

OTU179 0.00056 0.84494 297 1.05546 Ruminococcaceae Incertae Sedis 

OTU538 0.00046 0.85925 298 1.06974 Lachnospiraceae Incertae Sedis 

OTU319 0.00043 0.86444 299 1.07259 Agrobacterium 

OTU360 0.00042 0.86578 300 1.07068 Faecalibacterium 

OTU120 0.00041 0.86755 301 1.06931 Micrococcineae 

OTU188 0.00040 0.86888 302 1.0674 Lachnospiraceae Incertae Sedis 

OTU50 0.00040 0.86920 303 1.06427 Sutterella 

OTU387 0.00040 0.86939 304 1.061 Coprococcus 

OTU493 0.00038 0.87259 305 1.06141 Lachnospiraceae Incertae Sedis 

OTU167 0.00036 0.87483 306 1.06066 Allobaculum 

OTU375 0.00036 0.87558 307 1.05811 Pseudomonas 

OTU412 0.00035 0.87630 308 1.05554 Sphingomonas 

OTU250 0.00033 0.87983 309 1.05636 Paludibacter 

OTU409 0.00032 0.88166 310 1.05514 Alkalilimnicola 

OTU136 0.00032 0.88268 311 1.05298 Micrococcineae 

OTU51 0.00031 0.88342 312 1.05047 Klebsiella 

OTU373 0.00029 0.88727 313 1.05168 Sporobacter 
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OTU164 0.00029 0.88754 314 1.04866 Faecalibacterium 

OTU115 0.00028 0.89031 315 1.04859 Roseburia 

OTU260 0.00028 0.89035 316 1.04532 Erysipelotrichaceae Incertae Sedis 

OTU491 0.00028 0.89058 317 1.04229 Clostridiaceae 1 

OTU97 0.00027 0.89157 318 1.04016 Pseudomonas 

OTU408 0.00025 0.89598 319 1.04204 Bryantella 

OTU207 0.00023 0.90106 320 1.04466 Succinispira 

OTU107 0.00023 0.90113 321 1.04149 Ruminococcus 

OTU452 0.00020 0.90578 322 1.04362 Butyrivibrio 

OTU341 0.00020 0.90713 323 1.04193 Prevotella 

OTU287 0.00020 0.90727 324 1.03888 Anaerovorax 

OTU156 0.00019 0.90839 325 1.03696 Lachnospiraceae Incertae Sedis 

OTU216 0.00016 0.91636 326 1.04285 Sphingomonas 

OTU86 0.00016 0.91719 327 1.0406 Fusobacterium 

OTU92 0.00016 0.91754 328 1.03783 Rubrobacterineae 

OTU205 0.00013 0.92564 329 1.04381 Erysipelotrichaceae Incertae Sedis 

OTU180 0.00013 0.92568 330 1.04068 Roseburia 

OTU230 0.00012 0.92648 331 1.03844 Butyrivibrio 

OTU196 0.00012 0.92666 332 1.03552 Bacteroides 

OTU166 0.00012 0.92794 333 1.03383 Lachnospiraceae Incertae Sedis 

OTU139 0.00011 0.93013 334 1.03317 Azonexus 

OTU83 0.00011 0.93076 335 1.03078 Dorea 

OTU82 0.00010 0.93505 336 1.03245 Roseburia 

OTU254 0.00009 0.93617 337 1.03062 Lachnospiraceae Incertae Sedis 

OTU304 0.00009 0.93661 338 1.02806 Faecalibacterium 

OTU222 0.00009 0.93812 339 1.02667 Prevotella 

OTU5 0.00008 0.93979 340 1.02547 Sphingomonas 

OTU85 0.00008 0.94221 341 1.0251 Bacteroides 

OTU313 0.00006 0.94976 342 1.0303 Enterobacter 

OTU233 0.00006 0.94995 343 1.0275 Syntrophococcus 

OTU569 0.00005 0.95462 344 1.02955 Erwinia 

OTU463 0.00004 0.95591 345 1.02795 Lachnospiraceae Incertae Sedis 

OTU345 0.00004 0.95812 346 1.02735 Butyrivibrio 

OTU190 0.00004 0.96018 347 1.02659 Ruminococcaceae Incertae Sedis 

OTU68 0.00004 0.96091 348 1.02442 Dorea 

OTU519 0.00003 0.96198 349 1.02262 Catonella 

OTU44 0.00003 0.96309 350 1.02087 Lachnospiraceae Incertae Sedis 

OTU71 0.00003 0.96365 351 1.01856 Lachnospiraceae Incertae Sedis 

OTU64 0.00003 0.96397 352 1.016 Erwinia 

OTU464 0.00002 0.97445 353 1.02414 Marinilabilia 
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OTU495 0.00001 0.97451 354 1.02131 Streptococcus 

OTU248 0.00001 0.97479 355 1.01873 Lachnospiraceae Incertae Sedis 

OTU70 0.00001 0.97564 356 1.01675 Sphingobium 

OTU160 0.00001 0.97732 357 1.01564 Lachnospiraceae Incertae Sedis 

OTU244 0.00001 0.97775 358 1.01325 Prevotella 

OTU272 0.00001 0.97876 359 1.01147 Sporobacter 

OTU267 0.00001 0.97889 360 1.0088 Parabacteroides 

OTU170 0.00001 0.98074 361 1.00791 Bacteroides 

OTU303 0.00001 0.98274 362 1.00717 Faecalibacterium 

OTU458 0.00000 0.98693 363 1.00868 Roseburia 

OTU270 0.00000 0.98704 364 1.00602 Succinispira 

OTU393 0.00000 0.98709 365 1.00331 Micrococcineae 

OTU400 0.00000 0.98754 366 1.00103 Bryantella 

OTU547 0.00000 0.98883 367 0.99961 Subdoligranulum 

OTU52 0.00000 0.99158 368 0.99966 Lachnospiraceae Incertae Sedis 

OTU69 0.00000 0.99172 369 0.9971 Lachnospiraceae Incertae Sedis 

OTU47 0.00000 0.99456 370 0.99725 Succinispira 

OTU437 0.00000 0.99660 371 0.9966 Marinilabilia 
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Supplementary  Figures 
 

 
Supplementary Figure 1: Richness (left panel) and evenness (right panel) at the phylum 
level in cases (n=33) vs. controls (n=38). By the Wilcoxon test, cases had a significantly 
higher richness (p= 0.0041) than controls, but there was no significant difference in 
evenness (p = 0.75). 

 

 

 

 
Supplementary Figure 2: Richness (left panel) and evenness (right panel) at the genus 
level, in cases (n=33) vs. controls (n=38).  By the Wilcoxon test, cases had a significantly 
higher richness (p= 0.0013) than controls, but there was no significant difference in 
evenness (p = 0.56). 
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Supplementary Figure 3: PCoA generated from Fast UniFrac analysis on the tree 
displayed in Figure. 2.  (Cases- blue squares; controls- red circles).   

 

 
Supplementary Figure 4: Regressions between q-PCR results and results from 
pyrosequencing data for genera Helicobacter, Acidovorax and Cloacibacterium. We 
obtained reasonable correlations between the two methods; by linear regression: 
Acidovorax R= 0.6, p< 0.001; Cloacibacterium R= 0.61, p<0.001 and Helicobacter R= 
0.56, p < 0.0001. 
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Supplementary Figure 5: Maximum likelihood tree generated from the top 371 OTUs 
using RaxXML EPA server. Leaf nodes are labeled with the RDP call of the consensus 
sequence at 80%.  Branches are colored red if the OTU was significantly different 
between case and control and blue if not significant (at 10% FDR). 
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Supplementary Figure 6: Rank-abundance curve in which the x-axis is the log abundance 
rank of the top 371 OTUs and the y-axis is the average log normalized sequence count 
across all samples. The OTU is marked by red squares if the difference between cases 
and controls is significant at 10% FDR and by black circles if the difference is not 
significant at 10% FDR. 
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Supplementary Figure 7: Regressions on log-normalized abundance of OTU16 (top 
ranking OTU based on regression p-Value) vs. BMI of all samples.  Note that after 
correction for multiple hypothesis testing, this regression is not significant at a 10% FDR 
threshold (see Appendix A: Supplementary table 6). 
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Supplementary Figure 8: Regressions on log-normalized abundance of OTU4 (top 
ranking OTU based on regression p-Value) vs. WHR of all samples.  Note that after 
correction for multiple hypothesis testing, this regression is not significant at a 10% FDR 
threshold (see Appendix A: Supplementary table 7). 
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APPENDIX B: SUPPLEMENTARY MATERIALS FOR CHAPTER 4 
 
 

Supplementary Tables 

Supplementary Table 1: Wastewater dataset: Spearman’s correlations and p-Values 
between the PCR 16S gene sequence based and whole genome sequence based methods 
at all taxonomic levels.  
 

PHYLUM V1-V2 
V1-V2 

p-Value V6-V7 
V6-V7 

p-Value V6 
V6  

p-Value 16sMerged 

16s 
Merged 
p-Value 

BlastBestHit 0.4129 0.0562 0.3655 0.0944 0.3959 0.0682 0.4318 0.0448 

Megan 0.3543 0.0894 0.099 0.6455 0.1965 0.3574 0.185 0.3869 
WebCARM

A 0.5558 0.0002 0.5325 0.0004 0.6091 0.0001 0.6901 0.0001 

16sMined 0.639 0.0018 0.6208 0.0027 0.5848 0.0054 0.7766 0.0001 

CLASS V1-V2 
V1-V2  

p-Value V6-V7 
V6-V7p-
Value V6 

V6  
p-Value 16sMerged 

16s 
Merged 
p-Value 

BlastBestHit 0.1613 0.2957 0.0851 0.5827 0.2134 0.1642 0.1126 0.4668 

Megan 0.4018 0.0056 0.1584 0.293 0.2625 0.078 0.2508 0.0927 
WebCARM

A 0.0414 0.7661 0.0372 0.7892 0.1473 0.288 0.0116 0.9335 

16sMined 0.7272 0.0001 0.5141 0.0061 0.6347 0.0004 0.7637 0.0001 

ORDER V1-V2 
V1-V2 

 p-Value V6-V7 
V6-V7p-
Value V6 

V6  
p-Value 16sMerged 

16s 
Merged 
p-Value 

BlastBestHit 0.2813 0.0152 0.3644 0.0014 0.3213 0.0052 0.3504 0.0022 

Megan 0.3964 0.0003 0.3065 0.0057 0.2701 0.0154 0.3698 0.0007 
WebCARM

A 0.3454 0.0113 0.253 0.0676 0.2455 0.0764 0.3751 0.0057 

16sMined 0.7253 0.0001 0.5226 0.0003 0.5712 0.0001 0.7688 0.0001 

FAMILY V1-V2 
V1-V2  

p-Value V6-V7 
V6-V7 

p-Value V6 
V6  

p-Value 16sMerged 

16s 
Merged 
p-Value 

BlastBestHit 0.2079 0.0141 0.2127 0.0119 0.1669 0.0496 0.1625 0.0559 

Megan 0.0663 0.4096 0.004 0.9604 
-

0.0005 0.9948 -0.0121 0.8807 
WebCARM

A 0.0626 0.5693 0.081 0.4614 0.1114 0.3102 0.0639 0.5611 

16sMined 0.5574 0.0001 0.3971 0.0005 0.4308 0.0001 0.6097 0.0001 

GENUS V1-V2 
V1-V2 

 p-Value V6-V7 
V6-V7 

p-Value V6 
V6  

p-Value 16sMerged 

16s 
Merged 
p-Value 

BlastBestHit 
-

0.2742 0.0001 
-

0.3021 0.0001 
-

0.3229 0.0001 -0.4554 0.0001 

Megan 
-

0.3514 0.0001 
-

0.3252 0.0001 
-

0.3712 0.0001 -0.5329 0.0001 
WebCARM

A 0.0363 0.6497 
-

0.0455 0.569 
-

0.0971 0.2234 -0.1075 0.1774 
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16sMined 0.3433 0.0001 0.184 0.0262 0.1125 0.1764 0.3553 0.0001 

 
Supplementary Table 2: Human gut microbiome dataset: Spearman’s correlations and p-
Values between the PCR 16S gene sequence based and whole genome sequence based 
methods at all taxonomic levels. 
 

PHYLUM V6 V6 p-Value V2 V2 p-Value 16sMerged 16s Mergedp-Value 

BlastBestHit 0.636 0.0108 0.8166 0.0002 0.6441 0.0096 

Megan 0.6289 0.0213 0.8104 0.0008 0.6469 0.0169 

WebCARMA 0.6293 0.0001 0.5745 0.0002 0.6301 0.0001 

16s Mined 0.7748 0.0408 0.955 0.0008 0.8829 0.0085 

CLASS V6 V6 p-Value V2 V2 p-Value 16sMerged 16s Mergedp-Value 

BlastBestHit -0.0536 0.7864 -0.0661 0.7381 -0.0592 0.7647 

Megan -0.0488 0.825 -0.0584 0.7912 -0.0558 0.8005 

WebCARMA 0.236 0.1276 0.1274 0.4154 0.233 0.1328 

16s Mined 0.9174 0.0001 0.943 0.0001 0.9344 0.0001 

ORDER V6 V6 p-Value V2 V2 p-Value 16sMerged 16s Mergedp-Value 

BlastBestHit -0.1095 0.3967 -0.0298 0.8181 -0.0705 0.586 

Megan -0.4385 <.0001 -0.5327 <.0001 -0.6112 <.0001 

WebCARMA 0.1862 0.2208 0.2966 0.0479 0.2354 0.1196 

16s Mined 0.892 0.0001 0.8619 0.0001 0.9077 0.0001 

FAMILY V6 V6 p-Value V2 V2 p-Value 16sMerged 16s Mergedp-Value 

BlastBestHit -0.2677 0.0063 -0.2025 0.0402 -0.2916 0.0028 

Megan -0.2674 0.0133 -0.1743 0.1107 -0.2863 0.0079 

WebCARMA 0.2161 0.1239 0.3424 0.013 0.2112 0.1328 

16s Mined 0.8734 0.0001 0.8451 0.0001 0.9177 0.0001 

GENUS V6 V6 p-Value V2 V2 p-Value 16sMerged 16s Mergedp-Value 

BlastBestHit -0.395 0.0001 -0.4939 0.0001 -0.564 0.0001 

Megan -0.4385 0.0001 -0.5327 0.0001 -0.6112 0.0001 

WebCARMA -0.0627 0.6034 -0.1438 0.2315 -0.2103 0.0783 

16s Mined 0.5096 0.0003 0.6992 0.0001 0.779 0.0001 
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Supplementary Figures 
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Supplementary Figure 1a: Wastewater dataset: Correlations between the PCR 16S gene 
sequence based and whole genome sequence based methods at the Phylum level. 
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Supplementary Figure 1b: Human gut microbiome dataset: Correlations between the PCR 
16S gene sequence based and whole genome sequence based methods at the Phylum 
level.  
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Supplementary Figure 2a: Wastewater dataset: Correlations between the PCR 16S gene 
sequence based and whole genome sequence based methods at the Genus level. 
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Supplementary Figure 2b: Human gut microbiome dataset: Correlations between the PCR 
16S gene sequence based and whole genome sequence based methods at the Genus level.     

 
 


