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ABSTRACT

JOSEPH M. WHITMEYER. [Mathematical analysis of Markov models for social
processes]. (Under the direction of Dr. STANISLAV MOLCHANOV. )

We present Markov models for two social processes: the spread of rumors and the

change in the spatial distribution of a population over time. For the spread of rumors,

we present two models. The first is for the situation in which all particles are identical

but one initially knows the rumor. The second is for a situation in which there are

two kinds of particles: spreaders, who can spread the rumor, and ordinary particles,

who only can learn the rumor. We find that the limiting distribution for the first

model is the convolution of two double exponential distributions and for the second

model is a double exponential distribution.

The stochastic dynamics for our model of the change in the spatial distribution of

a population over time include the four basic demographic processes: birth, death,

migration, and immigration. We allow interaction between particles only inasmuch

as the immigration rate can depend on the existing configuration of particles. We

focus on the critical case of constant mean density, under the conditions of long jumps

migration, immigration in which distant particles have a positive effect, or both. We

prove, under these conditions, the existence of ergodic limiting behavior: the point

process is stationary in space and time. Without the strong mixing due to these

conditions, the population vanishes due to infinite clusterization.
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INTRODUCTION

We present here Markov models of two social processes: two simple models of the

spread of rumors and a more complex model of the spatial distribution of a population

determined by the basic demographic processes of birth, death, migration, and im-

migration. We focus on situations and parameter settings in which the outcomes are

unclear in advance and the analysis more revealing. Our analysis of the rumors model,

therefore, focuses on the outcome as the population becomes large. Concerning the

demographic model, for some configurations of the birth, death, and immigration

rates, a population will degenerate, i.e., disappear, and for others a population will

explode. Our analysis concentrates accordingly on the model with critical settings of

the parameters that produce a situation in between those extremes. In both models

we are interested especially in asymptotic results: the outcomes that are approached

as the connected population grows large and as time increases, respectively.

We may note that the situations on which we focus are precisely those in which

mathematical models will be most useful and necessary. Policy makers, for exam-

ple, are likely to be interested in demographic processes associated with a stable

population, certainly more than in processes that lead to degeneration or explosion

of the population! In addition, there are some arguments and evidence that there

may even be a tendency for some social processes to evolve to a critical state (e.g.,

[Jensen (1998)], [Whitmeyer and Yeingst (2006)]), although this need not be true for

the models still to be informative and useful.

The use of mathematical models in the social sciences goes back at least to the nine-

teenth century, and we touch on some of this history in Chapter 2. In recent years,

however, the overwhelming emphasis in the social sciences (excluding economics) has

been on the use of statistical models, commonly some variant of linear regression

models. While these can be useful for some situations, there is reason to believe that

they are inadequate and inappropriate for an extensive variety of social processes



vi

[Whitmeyer (2009)]. A better alternative, often, is to create mathematical models

that embody the key elements of the processes and, although simplifications of em-

pirical processes and, correspondingly, abstract, illuminate the dynamics, outcomes,

and critical aspects of the processes. This is the approach that motivates our work

here.

In Chapter 1, we present two Markov models of the spreading of rumors. Specifi-

cally, we determine the limiting distribution as the population becomes large for the

time to spreading of the rumor to the full population. For the first model, all particles

are identical but one initially knows the rumor. The limiting distribution is the con-

volution of two double exponential distributions. For the second model, there are two

kinds of individuals: spreaders, who can spread the rumor, and ordinary individuals,

who can only learn the rumor. Here, the limiting distribution is simply a double

exponential distribution.

In Chapter 2, we present a Markov model of a population of particles for which the

stochastic dynamics include the basic demographic processes: birth, death, migration,

and immigration. Some interaction between particles is allowed: the immigration pro-

cess at a given location depends on the spatial configuration of existing particles. We

focus on the critical case of constant mean density and prove, under appropriate con-

ditions, the existence of ergodic limiting behavior: the point process is stationary in

space and time. These conditions are those that promote strong mixing: immigration

that is promoted by particles even a long distance from the immigration site, long

jump migration, or both. Without such strong mixing the population vanishes due

to infinite clusterization.

We begin with the background to the analysis. We note the Galton-Watson pro-

cess as the historical origin of the study of branching processes and motivate the

development of our model by noting that this model produces clusterization in stable

populations, which we wish to avoid. We describe the four demographic processes

mathematically and the summary process in infinitesimal time. For the two heavy tail
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processes, migration and immigration, we present evidence from empirical studies of

these processes, especially for humans, supporting the plausibility of our assumptions.

We continue with the analysis of the moments of the demographic model. We use

the forward equations to derive differential equations for the first three moments, and

present a recurrence equation from which the differential equations for all remaining

moments may be calculated. From the equations for the first two moments, we are

able to show the stationarity of the model under the critical setting of the rate pa-

rameters. Finally, we derive the aysmptotic of the variance of the number of particles

in a region as the size of the region increases.
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CHAPTER 1: TWO MARKOV MODELS OF THE SPREAD OF RUMORS

1.1 Introduction

The spread of rumors from person to person over a large group of people is a socially

important and mathematically interesting phenomenon. In times and places where

mass communication does not exist or is not available, rumors can travel quickly

with far-reaching consequences. Examples are the Great Fear that possessed much

of the French countryside in 1789, during the French Revolution [Goodwin (1966)],

and, more recently, the quick surge of public opposition to Communist governments

in Central Europe in 1989 [Ash (1993)]. The spread of rumors is the spread of one

kind of information or, even more generally, individual attribute. Thus, phenomena

such as the spread of information in general, innovations, or fashion may be similar

in their progression.

In mathematics, a sizable literature exists on the spread of rumors. Deterministic

models exist from the 1950s (e.g., [Rapoport and Rebhun (1952.)]). It is recognized,

however, that stochastic models are preferable [Pearce (2000)], especially as they

are more accurate near the absorption state, and the focus has been on stochastic

models since the work of Daley and Kendall [Daley and Kendall (1965)]. The Daley-

Kendall model has spawned many refinements and variations (e.g., [Watson (1988)],

[Pittel (1990)], [Maki and Thompson (1973.)], [Sudbury (1985)], [Lefèvre and Pi-

card (1994)] and [Pearce (2000)]). We should note that there are similarities between

the spread of rumors and the even more extensively studied phenomenon of epidemics

but, as Pearce [Pearce (2000)] points out, the processes are sufficiently different that

the models differ as well.

The Daley-Kendall model involves three kinds of individuals: susceptibles, who
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do not yet know the rumor; spreaders, who can pass the rumor on to others; and

immunes, who are former spreaders who can no longer pass along the rumor. The

processes involving immunes, who are produced by encounters between two spreaders

or a spreader and an immune, mean that the models do not have an exact solution.

Here we present a pair of models that do not allow for immunes and, thus, are simpler

than the Daley-Kendall model and its successors. Our models have the virtues of

being completely solvable and generating previously unobtained results.

1.2 The Models

Following Daley and Kendall, we call an individual that does not yet know the ru-

mor a susceptible and an individual that can pass the rumor on to others a spreader.

In our models, every susceptible is capable of learning the rumor. Our first model,

in fact, has only one kind of individual. We begin with one individual knowing the

rumor. Every other individual begins as a susceptible, and once an individual hears

the rumor it becomes a spreader. Our second model has two kinds of individuals,

spreaders and ordinary individuals. Only the spreaders can spread the rumor. Ordi-

nary individuals begin as susceptibles and can learn the rumor but cannot spread it.

We call an ordinary individual that has learned the rumor informed. To keep the sec-

ond model simple, we assume a fixed number m of spreaders. This might correspond

to a situation in which professional agents pass information to their clients, who are

not motivated or expert enough to pass on the information themselves. Examples are

physicians telling their patients about new medical results or treatments, sales agents

informing potential customers about a product, or political agents talking to people

they meet about some candidate or policy.

Our main interest is the full spreading time, the time until the rumor has reached

all susceptible individuals. In Model 1, we have N + 1 individuals and our initial

situation is that one individual knows the rumor and N are susceptibles. Again, in

this model when a susceptible learns the rumor it becomes a spreader. Model 2 has
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initial populations of m spreaders and N susceptibles. We denote the full spreading

time τN for Model 1 and TN for Model 2. We want to study the asymptotic behavior

of τN and TN .

We take the spread of rumors to be a Markov process. Using continuous time,

if there are k informed individuals the time to informing one additional individual

(denoted τk,k+1 and Tk,k+1) has an exponential distribution with parameter λk. That

is, in Model 1 the τk,k+1 and in Model 2 the Tk,k+1 are independent random variables

with distribution exp(λk). The generating matrix for this process is, therefore, [ajk]

where ajk = −λj for j = k, ajk = λj for k = j + 1, and ajk = 0 otherwise.

We derive the parameters λk as follows. Following Daley and Kendall [Daley and

Kendall (1965)] and Pierce [Pearce (2000)], we assume homogeneous mixing of the

population and random encounters between individuals. Let λ denote the basic rate

of rumor spreading, which may be thought of as the rate of spreading when there

is one spreader and any individual the spreader encounters is susceptible. Then the

basic rate is multiplied by the number of spreaders as well as by the probability that

an individual encountered by a spreader is susceptible. In our models this probability

is taken to be simply the proportion of susceptibles that are not already infected.

The number of spreaders in the first model is k, the number of informed individuals.

In the second model, the number of spreaders is fixed at m. This yields:

Model 1:

λk =
N + 1− k

N
kλ

.

Model 2:

λk =
N − k
N

mλ

.
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Because the τk,k+1 and the Tk,k+1 are independent, we can easily calculate the mean

and variance of the full spreading time. Using the fact that the sum of the harmonic

series through the Nth term for large N equals lnN + γ + o(1) (Euler’s γ ≈ .5771)

we obtain for the means:

Model 1:

EτN =
N∑
k=1

τk,k+1 =
N∑
k=1

λ−1
k =

N

λ(N + 1)

(
N∑
k=1

1

k
+

N∑
k=1

1

N + 1− k

)
=

2

λ
(lnN+γ)+o(1)

Model 2:

ETN =
N−1∑
k=0

Tk,k+1 =
N−1∑
k=0

λ−1
k =

N

mλ

N∑
k=1

k−1 =
1

mλ
N(lnN + γ) + o(N)

.

The variances are more interesting:

Model 1:

Var(τN) =
N∑
k=1

Var(τk,k+1) =
N∑
k=1

λ−2
k =

N∑
k=1

N2

(N + 1− k)2k2λ2

=
2N2

λ2(N + 1)2

(
N∑
k=1

1

k2
+

2

λN + 1

N∑
k=1

1

k

)
=

2

λ2

(
π2

6
+ o(1)

)
=

π2

3λ2
+ o(1).

Model 2:

Var(TN) =
N−1∑
k=0

Var(Tk,k+1) =
N−1∑
k=0

λ−2
k =

N2

m2λ2

N−1∑
k=0

1

(N − k)2
=

N2

m2λ2

(
π2

6
+ o(1)

)
.

We used, here, the well-known fact that
∞∑
k=1

1

k2
=
π2

6
, i.e.,

N∑
k=1

1

k2
=
π2

6
+ o

(
1

N

)
.

The central limit theorem applies to neither model. This is indicated in the first

model by the finite variance. In the second model, the third moment (not shown) in-

creases too quickly relative to the second moment, and thus the central limit theorem
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fails to apply here as well.

We can expect, however, that for each model the full spreading time approaches

a limiting distribution. That is, we seek the asymptotic distributions of random

variables ζ(1) and ζ(2), where:

τN − AN
law−−→ ζ(1),

TN − ÃN
BN

law−−→ ζ(2),

where AN →∞, ÃN →∞, and BN →∞ are appropriate normalization factors.

Theorem 1.1. Model 1. For N → ∞, λτN − 2 lnN
law
= ζ1 + ζ2, where ζ1 and ζ2 are

i.i.d. random variables with a double exponential distribution.

Model 2. For N → ∞, mλ
N
TN − lnN

law
= ζ, where ζ is a random variable with a

double exponential distribution.

To prove this, we use the following two lemmas.

Lemma 1.2. (From Feller ([Feller (1971)], Ch. 1). Let X1, X2, ..., Xn be i.i.d. ran-

dom variables, Xi ∼ Exp(1). Order them: X(1), X(2), ..., X(n). Then, X(1), X(2) −

X(1), ..., X(n) − X(n−1) are independent, exponentially distributed random variables,

with X(1) ∼ Exp(n) and X(i+1) −X(i) ∼ Exp(n− i).

We do not give the proof here but offer the following rationale. The underlying

explanation is the Markov property that the process is memoryless. We have that

X(1) = min(X1, X2, ..., Xn), thus, P (X(1) > a) = P (X1 > a,X2 > a, ..., Xn > a) =

(exp(−a))n = e−na. It follows that X(1) ∼ Exp(n) = η1/n, where η1 ∼ Exp(1).

We have, next, that X(2) − X(1) = min(X1 − X(1), X2 − X(1), ..., Xn − X(1)) (with

X(1)−X(1) removed from this list). Because the process is memoryless, P (X(2)−X(1) >

a) = P (X1 −X(1) > a,X2 −X(1) > a, ..., Xn −X(1) > a) = (exp(−a))n−1 = e−(n−1)a.

Thus, X(2) −X(1) ∼ Exp(n− 1) = η2/(n− 1), where η2 ∼ Exp(1). The distributions

for the remaining random variables follow in the same fashion.

Lemma 1.3. Let η1, η2, ηn be i.i.d. random variables, ηi ∼ Exp(1). Then, ζ :=
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∞∑
i=1

ηi − 1

i
+ γ has a double exponential distribution, characterized by the distribution

function F (x) = e−e
−x

.

Proof. Let X1, X2, , Xn be i.i.d. random variables, Xi ∼ Exp(1). Then, by Lemma

1.2, for i.i.d. random variables ηi with ηi ∼ Exp(1):

X(n) = max
i≤n

(Xi)
law
=

n∑
i=1

1

i
+

n∑
i=1

ηi − 1

i
.

Let X1, X2, , Xn be i.i.d. random variables, Xi ∼ Exp(1). Then,

X(n) − lnn
law−−→ ζ =

n∑
i=1

ηi − 1

i
+ γ <∞(p− a.s.). (1.1)

We also have, however, that:

P (X(n) − lnn < x) = P (X(n) < lnn+ x) = (P (X1 < lnn+ x))n

=

(
1− e−x

n

)n
−−−→
n→∞

e−e
−x
.

(1.2)

Together, (1.1) and (1.2) imply that ζ =
∑∞

i=1
ηi−1
i

+ γ has what we will call the

canonical double exponential distribution (with E(ζ) = γ). We will use this fact in

the form:
∑N

i=1
ηi
i

= lnN + ζN , ζN
law−−→ ζ∞ with the canonical double exponential

distribution.

We now give the proof of Theorem 1.1.

Proof. Model 1:

For i.i.d. random variables ηk with ηk ∼ Exp(1) we can write:

τN =
N∑
k=1

τk,k+1 =
N∑
k=1

N

(N + 1− k)kλ
ηk.

Then,

τN =
N

λ(N + 1)

(
N∑
k=1

1

k
ηk +

N∑
k=1

1

(N + 1− k)
ηk

)

=
N

λ(N + 1)

(
2

N∑
k=1

1

k
+

N∑
k=1

ηk − 1

k
+

N∑
k=1

ηk − 1

(N + 1− k)

)
.
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Because
∑∞

k=1
ηk−1
k

<∞(p− a.s.), we have, as N →∞:

N∑
k=1

ηk − 1

N + 1− k
=

N∑
k=N

2
+1

ηk − 1

N + 1− k
+ o(1) =

N
2∑

k=1

η̃k − 1

k
+ o(1) =

N∑
k=1

η̃k − 1

k
+ o(1),

where the η̃k are i.i.d. random variables with η̃k ∼ Exp(1).

Thus, as N →∞:

λτN − 2 lnN =
N

N + 1

(
2

N∑
k=1

1

k
+

N∑
k=1

ηk − 1

k
+

N∑
k=1

η̃k − 1

k
+ o(1)

)
− 2 lnN

=
N

N + 1

(
N∑
k=1

ηk − 1

k
+

N∑
k=1

η̃k − 1

k
+ 2γ + o(1)

)
law
= ζ1 + ζ2,

where ζ1 and ζ2 have canonical double exponential distributions.

Model 2:

For i.i.d. random variables ηk with ηk ∼ Exp(1) we can write:

TN =
N−1∑
k=0

Tk,k+1 =
N−1∑
k=0

N

(N − k)mλ
ηk =

N

mλ

N−1∑
k=0

ηk
N − k

=
N

mλ

N∑
k=1

η̃k
k
,

where the η̃k are i.i.d. random variables with η̃k ∼ Exp(1). Then, as N →∞:

mλ

N
TN =

N∑
k=1

η̃k − 1

k
+

N∑
k=1

1

k
law
= ζ + lnN,

where ζ has the canonical double exponential distribution.

1.3 Prediction Intervals

The results can be used to generate prediction intervals for the full spreading time

given the population of susceptibles. By prediction interval we mean the shortest

interval of time such that the probability that it contains the full spreading time is a

given percent. We illustrate the generation of prediction intervals here.

Finding prediction intervals is complicated by the fact, shown in Figure 1, that the

double exponential distribution (labeled “One”) and the convolution of two double
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exponential distributions (labeled “Two”) are asymmetric. This means that for a

given error, the bounds for the narrowest prediction interval may not be equidistant

from the mean.

Figure 1.1: Density Functions for Double Exponential Distributions.

It is easy to show, e.g., using the method of Lagrange multipliers, that the predic-

tion interval of narrowest width will occur when the heights of the density function at

the two bounds are equal. I.e., letting x1 and x2 denote the lower and upper bounds of

a prediction interval with a given error and letting f(x) denote the density function,

the width of the prediction interval x2 − x1 will be minimal when f(x1) = f(x2).

This can be used to determine the prediction interval for Model 2, in which the

normalized distribution of the full spreading time approaches simply a double expo-

nential distribution. There is no simple equation for the two bounds of a prediction

interval when the distribution is double exponential, but the constraint of the error

term plus the fact that f(x1) = f(x2) can be combined to find these points numer-

ically. For example, for a 95 percent prediction interval for the canonical double

exponential distribution, x1 = −1.56 and x2 = 3.16. The partition of the error is

strongly asymmetrical: .0085 on the left and .0415 on the right.

For the convolution of two double exponential distribution, the limiting distribution

in Model 1, the prediction interval is not as easy to determine. The convolution of

two double exponential distributions must be calculated numerically, and a search
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procedure, guided by the stipulation that f(x1) = f(x2), can find the prediction

interval of minimum width. For a 95 percent prediction interval for the convolution

of two canonical double exponential distributions, x1 = −2.06 and x2 = 4.81. The

partition of the error is asymmetrical here as well: .012 on the left and .038 on the

right.

Consider a numerical example. Suppose the population of susceptibles N = 106

and suppose the expected number of contacts per person per unit of time is 1, i.e.,

1
λ

= 1. For model 1, then, the 95 percent prediction interval for the full spreading

time is between 25.57 and 32.44 time units. For model 2, with m the number of

spreaders, the 95 percent prediction interval for the full spreading time is between

12.25 · 106/m and 16.98 · 106/m time units.

1.4 The Future: Model 3

Our next step, which we do not carry out here, will be to develop a third model

by removing the assumption in the second model that the number of spreaders is

fixed. The third model again has two kinds of individuals, spreaders and ordinary

individuals. In Model 3, however, spreaders, like ordinary individuals, can be either

susceptible or informed. The process begins with a small number of informed spread-

ers who then spread the rumor to susceptible spreaders and ordinary individuals.

Once a susceptible spreader hears the rumor, it becomes informed and can spread the

rumor itself. Only an informed spreader can spread the rumor.

Mathematically, this means the third model concerns a two-dimensional Markov

process. There are two basic rates of rumor spreading, one (λ) for ordinary individ-

uals and one (µ) for spreaders. For ordinary individuals, therefore, the τk,k+1, the

times to inform one more person, are independent random variables with distribution

Exp(λk,m) and for the spreaders the times to inform one more person, say, the νm,m+1,

are independent random variables with distribution Exp(µm). Letting N denote the

total number of ordinary individuals and M the total number of spreaders and letting
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k denote the number of informed ordinary individuals and m the number of informed

spreaders, these parameters are given by:

Ordinary individuals:

λk,m =

(
N − k
N +M

)
mλ

Spreaders:

µm =

(
M −m
N +M

)
mλ.

As can be seen from the formulas, the process for ordinary individuals does not

affect the process for the spreaders. The converse is not true, as the spread of rumors

among spreaders affects the spread of rumors among ordinary individuals, indicated

by them in the formula for λk,m. The third model, therefore, is a step up in complexity

from the first two models.

1.5 Conclusion

In this study we used simple models of the spread of rumors to find the limiting

distributions for the full spreading time, the time for the rumors to spread to the

entire population. We treated two scenarios: when everyone in the population spreads

the rumor and when only a fixed set of individuals spread the rumor. In the first

scenario the full spreading time is 2 lnN + ζN and the limiting distribution for ζN is

a convolution of two double exponential distributions. In the second scenario the full

spreading time is much greater, n
m

(lnN + ζ̃N), and the limiting distribution for ζ̃N)

is simply a double exponential distribution.

To put these results more fully in context: if we have a classical branching process

with no deaths with continuous time, then the expected time until N particles exist

is lnN
λ

. In model 1, the full spreading time is twice as slow, an effect due mainly

to the extremes of the process. That is, the parameter, λk =
(
N+1−k

n

)
kλ, becomes

small when the number of spreaders, k, is small or when it is close to N. The slowing
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down effect is much stronger in model 2. In this scenario, as can be seen from the

parameter λk =
(
N−k
n

)
mλ, the spreading process slows down at the extreme when

there are few susceptibles, i.e., k is close to N . These contrasts are illuminated by

the numerical example given above for a population of N = 106 (lnN ≈ 13.8).



CHAPTER 2: CRITICAL BRANCHING PROCESS ON Z2

2.1 Introduction

In 1873, Francis Galton posed a problem in the Educational Times [Galton (1

April 1873)] concerning the extinction of surnames, i.e., the extinction of male lines

of descendants. He wanted to know, given the probability of a given number of male

offspring per male, what proportion of surnames would disappear and how many peo-

ple would hold a surname that survived. When he received no satisfactory solution

to his problem, he persuaded the Reverend Henry William Watson, mathematician,

clergyman, and alpinist, to take it up, and in 1874, they published the first mathe-

matical treatment of what has become known as the Galton-Watson process [Galton

and Watson (1874)]. After that point, progress was made on the problem most no-

tably by J. B. S. Haldane [Haldane (1927)] and J. F. Steffenson [Steffenson (1930)],

and the final solution was determined by 1950 with contributions by D. Hawkins and

S. Ulam [Hawkins and Ulam (1944)], T. E. Harris [Harris (1963)], and A. M. Yaglom

[Yaglom (1947)]. A. J. Lotka [Lotka (1931)] applied this model to the U.S. population,

using data from the 1920 Census.

The Galton-Watson process is a simple example of a branching process [Kolmogorov

and Dmitriev (1947)], a term for stochastic processes arising from incorporating prob-

ability theory into population processes [Kendall (1966.)]. In the continuous time

version of the Galton-Watson process, an individual or particle, the term we will use,

in an infinitesimal period of time dt produces one offspring with probability βdt and

disappears (dies) with probability µdt. If it produced an offspring, then, there are two

particles, each of which can produce an offspring or die, and the process continues in

the same fashion. It is well known that the entire population, encompassing all lines,
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becomes extinct with probability 1 for µ ≥ β. Only when β > µ (the supercritical

case) is there a positive probability that extinction does not occur. In fact, in this

case the population follows the predictions of the Reverend Malthus [Malthus (1826.)]

and grows exponentially: En(t) = N0e
(β−µ)t, where n(t) denotes the population at

time t and N0 is the initial population [Harris (1963)].

Current questions in what we might call mathematical ecology, of course, have

moved on from Galton’s original interest. In particular, we are seeking models that

can generate and thereby provide possible explanations for two phenomena that have

been observed empirically. First, biopopulations, including human populations, may

exhibit stationarity in space and time. Roughly, this means that the stochastic process

in question depends neither on the time we begin observing it nor on the place where

we observe it. Mathematically, we will take this to mean that the mean and the

variance of the number of particles at a given location do not depend on either the

location or the time.

Although stationarity in space and time is seen among some populations of organ-

isms, clearly it has not been a feature of human populations for most of recorded

history. It may, however, hold for some human populations before the invention

of agriculture in the Neolithic period and some contemporary developed countries.

More importantly, some modern societies may have stationarity, at least in time, as

a goal. They may seek to maintain current population levels without any more pop-

ulation increase. One question that our model addresses is what the ensuing spatial

distribution of such a population will be.

This leads to the second empirically observed phenomenon. The spatial distribu-

tions of many species deviate strongly from a Poissonian point field, or more generally,

patches, meaning a pattern of mostly empty space with sporadic, isolated concentra-

tions of population. A patches pattern is what would result either from the random

assignment of particles independently at each point in space or from the simplest

demographic processes, as we describe below. The absence of this pattern in many
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populations, including some human populations, is another condition on the model

we seek.

A model of population processes in space may be obtained by extending the Galton-

Watson process by considering independent GW processes occurring in space. Specif-

ically, we can consider a random point field n(t, x) in the lattice Zd (or in the space

Rd), with a critical GW process at each occupied point and no interaction or spatial

dynamics. Assume, therefore, that n(0, x) is the initial point field on Zd, given by

the Bernoulli law: for any independent x ∈ Zd, P{n(0, x) = 1} = ρ0, P{n(0, x) =

0} = 1 − ρ0, where ρ0 is the initial density of the particles. Assume now that each

initial particle (located at x for n(0, x) = 1) generates its own family, concentrated

at the same location x ∈ Zd. The result is a field n(t, x) with independent values and

constant density: En(t, x) ≡ ρ0.

For large t, in this model, the majority of the cells x ∈ Zd will be empty because

P{n(t, x) = 0} = βt
1+βt

= 1 − 1
βt

+ O( 1
t2

) (which gives the formula P{n(t, x) =

0 | n(0, x) = N0} ∼ e−N0/βt) [Gikhman and Skorokhod (1974)]. The populated points,

moreover, are increasingly sparse (of order 1
βt

) and contain increasingly large families

(of order βt). This is the phenomenon of clusterization: the population consists of

large dense groups of particles separated by large distances (the distances must be of

order t1/α!). As t→∞ the clusterization becomes stronger and stronger.

In order to avoid a patches pattern, as desired, the process must fill out empty

space to compensate for the degenerating families. The simplest way to accomplish

this is to add a simple random walk to nearest neighbors to the branching process.

In other words, this model includes diffusion with generator κ∆, where κ is the rate

of diffusion and ∆ is the discrete or lattice Laplacian:

∆f(x) =
∑

x′:|x′−x|=1

(f(x′)− f(x))

In high dimensions (d ≥ 3) this simple random walk (diffusion) with generator κ∆ is

sufficient to eliminate clusterization. It is a remarkable fact, however, that for d =



15

2, the most appropriate condition for demographic or most ecological applications,

such local diffusion is not sufficient and the clusterization will increase infinitely. If,

however, we modify the simple random walk to allow for long jumps with certain

conditions then we can eliminate clusterization even in two dimensions. We call this

modified random walk “migration,” as “diffusion” is no longer appropriate. Such

migration, with the addition of a similar immigration process, gives us the model we

analyze here.

2.2 Description of the model

Our central goal is to introduce a discrete mathematical model describing two

well-known empirical facts from ecology: the stationarity of particle fields in space

and time and strong deviations from the classical Poissonian picture, i.e., spatial

intermittency in the distribution of species (clusterization or “patches”). We are

talking about an isolated population that is not involved in complex multispecies

interaction (such as a predator-prey scheme). We exclude direct interaction between

particles (the typical assumption in the theory of branching processes), but the birth-

death mechanism will create a kind of mean field attractive potential.

Notation. Let n(t, x) be the number of particles at the site x ∈ Zd and at the

moment t > 0 (time is continuous). We call n(t, ·) : Zd → Zd+ the configuration of

the system at the moment t. The configurations will be locally finite in the following

strong sense: Enk(t, x) ≤ ck0k! for all x ∈ Zd, all k ≥ 1, and appropriate time

independent constant c0. The last (Carleman’s) estimation will give us the possibility

of constructing the field n(t, ·) and studying its limiting behaviors t → ∞ using

the moments (correlation functions): kt(x1, ..., xl) = En(t, x1)...n(t, xl), l ≥ 0, t >

0, x1, ..., xl ∈ Zdl.

Assume that the initial configuration has a Poissonian structure, i.e., n(t, x), x ∈ Zd

are i.i.d. r.v.s with the Poissonian law and the parameter ρ0 = En(0, ·) > 0 (the initial

density of the population). Obviously, Carleman estimation is true for n(0, x). The
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random dynamics of the point field includes four components:

a) The death of the particles has rate µ > 0. That is, a particle, independently of

others, dies during the time interval (t, t+ dt) with probability µdt.

b) The birth of the particles has rate β > 0. In this study we do not consider param-

eters of particles such as mass, size, etc., and changes in them in the process of

the birth of a new particle or splitting of a particle, although such changes pose

interesting problems. We also consider only binary splitting, i.e., the reaction

P → P + P.

c) Migration of the particles. This process depends on the probability kernel a(z), z ∈

Zd, z 6= 0,
∑
z 6=0

a(z) = 1 and the rate of migration λ. Each particle, located at

time t in some site x ∈ Zd can jump to the point (x+ z) ∈ Zd with probability

λa(z)dt (independently of the other particles).

d) Immigration depends on the local configuration, the probability kernel q(z), z ∈

Zd,
∑
z

q(z) = 1 and the coefficient of intensity κ. If n(t, x + z) is the configu-

ration centered at x ∈ Zd, then during time interval (t, t + dt) a new particle

immigrates to the site x with probability κ
∑
z∈Zd

n(t, x+ z)q(z)dt.

We will see later that the condition µ = β + κ is necessary and sufficient for

the criticality of the field n(t, x), i.e., for the conservation of the mean density:

E(n(t, x)) ≡ ρ0, t ≥ 0. Note that we need not consider emigration because its ef-

fect on our population will be indistinguishable from that of death.

In Section 2.3 we develop the moment theory for the critical case and, under addi-

tional assumptions (that stochastic dynamics are active enough for d ≤ 2) we prove
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the existence of the limiting distribution. Roughly speaking, we assume that for d = 2

one or both of the densities a(z) and q(z) belong to the domain of attraction of a

stable symmetric distribution with parameter 0 < α < 2 (note that symmetric for

d = 2 does not mean isotropic). For d = 1 the density must be from the domain

of attraction of a stable symmetric law with parameter 0 < α < 1. We prove that

for d = 2 and heavy tails spatial dynamics (i.e., infinite second moment of the spa-

tial distribution) the density of the second correlation function k(2)(t, x1, x2) has a

nontrivial limit k(2)(∞, x1, x2), t → ∞. Together with the conservation of the first

moment (density), k(1)(t, x) ≡ ρ0, it establishes the fundamental fact of tightness for

the finite dimensional distributions of the point field n(t, ·). In any limit theorem

about the ergodicity (existence of the limit distribution) for the Markov process the

proof of tightness is the first and most important step.

For d ≤ 2 we also derive the asymptotic for the variance of particles in a region,

with an eye toward establishing a central limit theorem, although we do not do that

here.

The heavy tails assumption for the migration process warrants some discussion. It

means that even if much population movement is to immediately proximate places

(see [Ravenstein (1885)]), that is, occurs as diffusion, some population movement

takes place over long distances, no matter how far. Our model assumes a distribution

of population over a field that is infinite in all directions and assumes a positive

probability of migration beyond any given distance. These assumptions obviously

cannot hold for the environments of humans or other organisms, yet, as idealizations

they reflect empirical situations. Within the continental United States, for example,

there is considerable variation in migration distance: it is easy to calculate that the

longest migrations in the continental United States are five or six orders of magnitude

greater than the shortest. Relevant specifically to our assumption for the form of a(z),

according to Greenwood and Hunt [Greenwood and Hunt (2003)], the most popular

modeling framework in the empirical analysis of geographic migration is the gravity
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model ([Lee (2006)], [Lowry (1966.)]), which models movement between two sites as

inversely proportional to the square of the distance between the sites. There seems to

have been little or no exploration of the fit of models in which the distance is raised

to a power higher than two.

It is true, also, that many of the features that affect human population movement

in the United States or any country, including geographic features, the distribution

of economic opportunities, kinship ties, and various other push and pull factors (see

[Lee (2006)]) create an asymmetric and heterogeneous migration environment that

is absent from the migration process in our model. Similar heterogeneities exist in

the environments of other organisms as well. The coarse features of such influences,

however, probably can be accommodated with the variation that occurs in the spatial

distribution q(z), which, note, we assume to be symmetric but not isotropic. We also

note support from other sources for such effects of heavy tail distributions. Biologists,

recently, have become interested in the effects of long distance migration and have

found that it may be able to make a qualitative difference in the global characteristics

of the population and its development. For example, long distance dispersal can affect

the spatial genetic structure, reducing genetic drift and the loss of genetic diversity

[Fayard, Klein and Lefevre (2007)]. A number of social scientists, including the

social psychologist George Herbert Mead, the Russian historian Lev Gumilev, and

social movement researchers such as Timothy Wickham-Crowley, have argued for the

importance of a few mobile, active individuals in stimulating change and altering

global patterns.

Immigration consists of the appearance of a new particle at a given location, which

may be populated already or may be empty. We assume that this process depends

positively on the presence of other particles, as a probabilistic function of the number

of particles at different distances from the location. This introduces some interaction

between particles, namely, in their combined influence on the appearance of a new

particle. This distinguishes immigration from birth, death, and migration, which



19

occur for each particle independently of the other particles. Although the negative of

the presence of particles on immigration is plausible–particles may avoid moving to

locations that are overly crowded, for example–we assume here only a positive effect.

The process we call immigration differs from components labeled immigration in

earlier models of branching processes. Several studies have added a random immi-

gration process to the Galton-Watson process or other branching process without

incorporating space (e.g., [Kawazu and Watanabe (1971)], [Pakes (1971b) Journal

of the Australian Mathematical Society], [Pakes (1986) Advances in Applied Prob-

ability], [Li (2006)]). Other models have made immigration state-dependent, still

without a spatial aspect (e.g., [Foster (1971)], [Pakes (1971a) Advances in Applied

Probability],[Yamazato (1975)]). In these models, obviously, immigration cannot be

affected by the spatial configuration of particles. Ivanov [Ivanov (1980)] and Milos

[Milos (2009)] incorporate immigration into a process that includes both branching

and movement that is uniformly stochastically continuous in Rd. Immigration, how-

ever, occurs in time and space randomly according to a homogenous Poisson random

field and, again, is not dependent on the spatial configuration of particles. Birkner

[Birkner (2003)] considers immigration in a system consisting of independent Markov

chains on a lattice. This immigration occurs at a constant rate at a single point x0,

and is locally dependent in that if x0 is occupied at the instant that immigration is

to take place then no immigration occurs. In contrast, we allow immigration at any

point in the lattice and it is never blocked.

2.3 Derivation of the moment equations

To implement the heavy tails assumption for migration and immigration, we assume

that a(z) and q(z) take the forms:

a(z) =
h1(θ)

|z|2+α

(
1 +O(|z|−2)

)
, z 6= 0

q(z) =
h2(θ)

|z|2+α

(
1 +O(|z|−2)

)
, z 6= 0
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with 0 < α < 2, θ = arg z
|z| ∈ (−π, π] = T 1, h1, h2 ∈ C2(T 1), h1, h2 > 0. The second

moments of the spatial distributions a(z), q(z) are infinite; that is, these distributions

have heavy tails. This is easily seen. Using the l1 norm for z (with, therefore, 4n

locations at distance |z| = n), for some constant c > 0, noting also that h1 and h2

are bounded, and letting f(z) represent either a(z) or q(z):

∑
z∈Z2

|z|2f(z) =
h(θ)

|z|α
(
1 +O(|z|−2)

)
≥ c

∑
z∈Z2

|z|−α
(
1 +O(|z|−2)

)
= 4c

∞∑
n=1

n1−α (1 +O(|z|−2
)
) =∞.

The stipulation that
∑
z 6=0

a(z) = 1 and
∑
z

q(z) = 1 may be met by appropriate

scaling of the bounded functions h1 and h2. This is because, again letting f(z)

represent either a(z) or q(z), the sum
∑
z 6=0

f(z) = 4
∞∑
n=1

h(θ)

n1+α
(1 +O(n−2)) ∼ ζ(1 + α),

where ζ(s) is Riemann’s zeta function, which converges for s > 1.

We summarize the process through the following expression:

n(t+ dt, x) = n(t, x) + ξdt(t, x)

where the r.v. ξ is defined:

ξdt(t, x) =



+1 βn(t, x)dt+ λ
∑
z 6=0

a(z)n(t, x+ z)dt+ κ
∑
z

q(z)n(t, x+ z)dt

−1 µn(t, x)dt+ λ
∑
z 6=0

a(z)n(t, x)dt

0 1− (β + µ)n(t, x)dt− λ
∑
z 6=0

a(z)n(t, x+ z)dt− λ
∑
z 6=0

a(z)n(t, x)dt

−κ
∑
z

q(z)n(t, x+ z)dt

(2.1)

In words, in an infinitesimal time interval dt, n(t, x), the number of particles at

time t and at location x in the two-dimensional lattice, may increase by 1 due to one
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of the particles giving birth or due to migration of a particle from some point or due

to immigration. It may decrease by 1 due to one of the n(t, x) particles dying or due

to one of them migrating elsewhere on the lattice. Last, it will remain the same if

none of the listed changes occur. Note that the probability of more than one change

occurring in the infinitesimal interval dt will be O(dt2) and can be ignored.

The generators for the migration process, λLa, and for the immigration process,

κLq, are generalizations of the discrete Laplacian. The operators, La and Lq, are

defined:

Laf(x) :=
∑
z 6=0

a(z)(f(x+ z)− f(x))

Lqf(x) :=
∑
z

q(z)(f(x+ z)− f(x))

2.3.1 First moment

The differential equation and initial condition for the first moment k
(1)
t (x) are:

∂k
(1)
t (x)

∂t
= (λLa + κLq)k(1)

t (x)) + (β − µ+ κ)k
(1)
t (x) (2.2)

k
(1)
0 (x) = ρ0

Because of translation invariance, we have:

∂k
(1)
t (x)

∂t
= (β − µ+ κ)k

(1)
t (x)

which has the solution:

k
(1)
t (x) = ρ0e

(β−µ+κ)t

The critical case, therefore, is when µ = β + κ, giving a model stationary in space

and time for the first moment:

k
(1)
t (x) = ρ0

The differential equation is derived as follows. Let F≤t denote the σ-algebra in the

probability space corresponding to time t. Using the Kolmogorov forward equations
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with ξdt defined as in (2.1):

k
(1)
t+dt(x) = E[E[n(t, x) + ξdt|F≤t]]

= E[k
(1)
t (x) + (β − µ)n(t, x)dt+ λ

∑
z 6=0

a(z)(n(t, x+ z)− n(t, x))dt

+κ
∑
z

q(z)n(t, x+ z)dt+O(dt2)]

= k
(1)
t (x) + (β + κ− µ)k

(1)
t (x)dt+ λ

∑
z 6=0

a(z)(k
(1)
t (x+ z)− k(1)

t (x))dt

+κ
∑
z

q(z)(k
(1)
t (x+ z)− k(1)

t (x))dt+O(dt2)]

This gives differential equation (2.2).

2.3.2 Second moment

The differential equation and initial condition for the second moment k
(2)
t (x, y) are:

∂k
(2)
t (x, y)

∂t
= [λ(Lax + Lay) + κ(Lqx + Lqy)]k(2)

t (x, y))

+ 2(β − µ+ κ)k
(2)
t (x, y) + s2

(2.3)

k
(2)
0 (x, y) = ρ2

0 + δ0(x− y)ρ0

where s2, a source, is a function of the first moment:

s2 = δ0(x− y)[(β + µ+ κ+ 2λ)k
(1)
t (x) + (λLa + κLq)k(1)

t (x))

− a(y − x)λ(k
(1)
t (x) + k

(1)
t (y))

defining a(0) = 0.

Substituting for the first moment and using translation invariance:

s2 = [δ0(x− y)(β + µ+ κ+ 2λ)− 2a(y − x)λ]ρ0e
(β−µ+κ)t

In the critical case (µ = β + κ), therefore:
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∂k
(2)
t (x, y)

∂t
= [λ(Lax + Lay) + κ(Lqx + Lqy)]k(2)

t (x, y)) + s2 (2.4)

k
(2)
0 (x, y) = ρ2

0 + δ0(x− y)ρ0

where s2 = 2[δ0(x− y)(µ+ λ)− a(y − x)λ]ρ0.

Below we derive differential equation (2.3) from the forward equations. Because

the forward equations for k
(2)
t (x, y) differ for the cases x = y and x 6= y we treat them

separately. Subsequently, we use Fourier analysis to analyze equation (2.4).

Case 1, x = y

k
(2)
t+dt(x, x) = E[E[(n(t, x) + ξdt(t, x))(n(t, x) + ξdt(t, x))|F≤t]]

= k
(2)
t (x, x) + E[2(β − µ)n(t, x)2dt

+2λn(t, x)
∑
z 6=0

a(z)(n(t, x+ z)− n(t, x))dt+ 2κn(t, x)
∑
z

q(z)n(t, x+ z)dt

+(β + µ)n(t, x)dt+ λ
∑
z 6=0

a(z)(n(t, x+ z) + n(t, x))dt

+κ
∑
z 6=0

q(z)n(t, x+ z)dt+O(dt2)]

Thus,

∂k
(2)
t (x, x)

∂t
= (2λLax + 2κLqx)k(2)

t (x, x)) + 2(β − µ+ κ)k
(2)
t (x, x)

+ (λLa + κLq)k(1)
t (x) + (β + µ+ κ+ 2λ)k

(1)
t (x)

k
(2)
0 (x, x) = ρ2

0 + ρ0
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Case 2, x 6= y

k
(2)
t+dt(x, y) = E[E[(n(t, x) + ξdt(t, x))(n(t, y) + ξdt(t, y))|F≤t]]

= k
(2)
t (x, y) + E[2(β − µ)n(t, x)n(t, y)dt

+λn(t, x)
∑
z 6=0

a(z)(n(t, y + z)− n(t, y))dt+ κn(t, x)
∑
z

q(z)n(t, y + z)dt

+λn(t, y)
∑
z 6=0

a(z)(n(t, x+ z)− n(t, x))dt+ κn(t, y)
∑
z

q(z)n(t, x+ z)dt

−λa(x− y)(n(t, x) + n(t, y))dt+O(dt2)]

Thus,

∂k
(2)
t (x, y)

∂t
= [λ(Lax + Lay) + κ(Lqx + Lqy)]k(2)

t (x, y)) + 2(β − µ+ κ)k
(2)
t (x, y)

− λa(x− y)(k
(1)
t (x) + k

(1)
t (y))

k(2)(0, x, y) = ρ2
0

2.3.3 Third moment

The differential equation and initial condition for the third moment k
(3)
t (x, y, w)

are:

∂k
(3)
t (x, y, w)

∂t
= [λ(Lax + Lay + Law) + κ(Lqx + Lqy + Lqw)]k

(3)
t (x, y, w))

+ 3(β − µ+ κ)k
(3)
t (x, y, w) + s3

(2.5)
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k
(3)
0 (x, y, w) = ρ3

0 + [δ0(x− y) + δ0(x−w) + δ0(y−w)]ρ2
0 + [δ0(x− y)δ0(x−w)]ρ0

where s3, a source, is a function of the first and second moments:

s3 = (β + µ+ κ+ 2λ)
(
δ0(x− y)[k

(2)
t (x,w) + (λLax + κLqx)k(2)

t (x,w)]

+ δ0(x− w)[k
(2)
t (x, y) + (λLax + κLqx)k(2)

t (x, y)]

+ δ0(y − w)[k
(2)
t (x, y) + (λLax + κLqx)k(2)

t (x, y)]
)

− λ
(
a(x− w) + a(y − w)

)
k

(2)
t (x, y)− λ

(
a(x− y) + a(y − w)

)
k

(2)
t (x,w)

− λ
(
a(x− w) + a(y − x)

)
k

(2)
t (w, y) + δ0(x− y)δ0(x− w)(β − µ+ κ)k

(1)
t (x))

defining a(0) = 0.

In the critical case (µ = β + κ):

∂k
(3)
t (x, y, w)

∂t
= [λ(Lax + Lay + Law) + κ(Lqx + Lqy + Lqw)]k

(3)
t (x, y, w)) + s3

(2.6)

k
(3)
0 (x, y, w) = ρ3

0 + [δ0(x− y) + δ0(x−w) + δ0(y−w)]ρ2
0 + [δ0(x− y)δ0(x−w)]ρ0

where s3, a source, is a function of the first and second moments:

s3 = 2(µ+ λ)
(
δ0(x− y)[k

(2)
t (x,w) + (λLax + κLqx)k(2)

t (x,w)]

+ δ0(x− w)[k
(2)
t (x, y) + (λLax + κLqx)k(2)

t (x, y)]

+ δ0(y − w)[k
(2)
t (x, y) + (λLax + κLqx)k(2)

t (x, y)]
)

− λ
(
a(x− w) + a(y − w)

)
k

(2)
t (x, y)− λ

(
a(x− y) + a(y − w)

)
· k(2)

t (x,w)− λ
(
a(x− w) + a(y − x)

)
k

(2)
t (w, y)

Below we derive differential equation (2.5) from the forward equations. There are

three cases to consider, x = y = w, x = y 6= w, and x 6= y 6= w 6= x.
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Case 1, x = y = w

k
(3)
t+dt(x, x, x) = E[E[(n(t, x) + ξdt(t, x))(n(t, x) + ξdt(t, x))(n(t, x) + ξdt(t, x))|F≤t]]

= k
(3)
t (x, x, x) + E[3(β + κ− µ)n(t, x)3dt

+3λn(t, x)2
∑
z 6=0

a(z)(n(t, x+ z)− n(t, x))dt

+3κn(t, x)2
∑
z

q(z)(n(t, x+ z)− n(t, x))dt

+3(β + µ)n(t, x)2dt+ 3λn(t, x)
∑
z 6=0

a(z)(n(t, x+ z) + n(t, x))dt

+3κn(t, x)
∑
z

q(z)n(t, x+ z)dt+ (β − µ)n(t, x)dt

+λ
∑
z 6=0

a(z)(n(t, x+ z)− n(t, x))dt+ κ
∑
z

q(z)n(t, x+ z)dt+O(dt2)]

Thus,

∂k
(3)
t (x, x, x)

∂t
= (3λLax + 3κLqx)k(3)

t (x, x, x)) + 3(β − µ+ κ)k
(3)
t (x, x, x)

+ 3(β + µ+ κ+ 2λ)k
(2)
t (x, x) + (3λLax + 3κLqx)k(2)

t (x, x)

+ (β − µ+ κ)k
(1)
t (x) + (λLa + κLq)k(1)

t (x)

k
(3)
0 (x, x, x) = ρ3

0 + 3ρ2
0 + ρ0



27

Case 2, x = y 6= w

k
(3)
t+dt(x, x, w) = E[E[(n(t, x) + ξdt(t, x))(n(t, x) + ξdt(t, x))(n(t, w) + ξdt(t, w))|F≤t]]

= k
(3)
t (x, x, w) + E[3(β − µ)n(t, x)2n(t, w)dt

+2λn(t, x)n(t, w)
∑
z 6=0

a(z)(n(t, x+ z)− n(t, x))dt

+λn(t, x)2
∑
z 6=0

a(z)(n(t, w + z)− n(t, w))dt

+2κn(t, x)n(t, w)
∑
z

q(z)n(t, x+ z)dt+ κn(t, x)2
∑
z

q(z)n(t, w + z)dt

−2λn(t, x)a(x− w)
(
n(t, x) + n(t, w)

)
+ (β + µ)n(t, x)n(t, w)

+λn(t, w)
∑
z 6=0

a(z)(n(t, x+ z) + n(t, x))dt

+κn(t, w)
∑
z

q(z)n(t, x+ z)dt+ λa(x− w)(n(t, x)− n(t, w))dt+O(dt2)]

Thus,

∂k
(3)
t (x, x, w)

∂t
=
(
λ(2Lax + Law) + κ(2Lqx + Lqw)

)
k

(3)
t (x, x, w))

+ 3(β − µ+ κ)k
(3)
t (x, x, w)− 2λa(w − x)(k

(2)
t (x, x) + k

(2)
t (x,w)

+ (β + µ+ κ+ 2λ)k
(2)
t (x,w) + (λLax + κLqx)k(2)

t (x,w)

+ λa(w − x)(k
(1)
t (x)− k(1)

t (w))

k
(3)
0 (x, x, w) = ρ3

0 + ρ2
0
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Case 3, x 6= y 6= w 6= x

k
(3)
t+dt(x, y, w) = E[E[(n(t, x) + ξdt(t, x))(n(t, y) + ξdt(t, y))(n(t, w) + ξdt(t, w))|F≤t]]

= k
(3)
t (x, y, w) + E[3(β − µ)n(t, x)n(t, y)n(t, w)dt

+λn(t, x)n(t, y)
∑
z 6=0

a(z)(n(t, w + z)− n(t, w))dt

+λn(t, x)n(t, w)
∑
z 6=0

a(z)(n(t, y + z)− n(t, y))dt

+λn(t, y)n(t, w)
∑
z 6=0

a(z)(n(t, x+ z)− n(t, x))dt

+κn(t, x)n(t, y)
∑
z

q(z)n(t, w + z)dt+ κn(t, x)n(t, w)
∑
z

q(z)n(t, y + z)dt

+κn(t, y)n(t, w)
∑
z

q(z)n(t, x+ z)dt

−λa(x− w)n(t, y)
(
n(t, x) + n(t, w)

)
dt− λa(y − w)n(t, x)

·
(
n(t, y) + n(t, w)

)
dt− λa(x− y)n(t, w)

(
n(t, x) + n(t, y)

)
dt+O(dt2)]

Thus,

∂k
(3)
t (x, y, w)

∂t
=
(
λ(Lax + Lay + Law) + κ(Lqx + Lqy + Lqw)

)
k

(3)
t (x, y, w))

+ 3(β − µ+ κ)k
(3)
t (x, y, w)− λ

(
a(w − x) + a(y − w)

)
k

(2)
t (x, y)

− λ
(
a(x− y) + a(y − w)

)
k

(2)
t (x,w)− λ

(
a(x− w) + a(y − x)

)
k

(2)
t (w, y)

k
(3)
0 (x, y, w) = ρ3

0

2.3.4 Recursive moment equations

It is clear, by inspecting the differential equations and their derivation for the

first three moments, that the differential equations for all moments can be stated.

The differential equations take a recursive form; specifically, the differential equation

for the nth moment involves only the nth and (n − 1)th moments. The differential

equations become more complicated as n increases. For x1, x2, ..., xn distinct, however,

the recursive form for the differential equations for k
(n)
t (x1, · · · , xn) may be written
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simply in the critical case (µ = β + κ):

∂k
(1)
t (x)

∂t
= (β + κ− µ)k

(1)
t (x) = 0⇒ k1

t (x) ≡ ρ0

∂k
(n)
t (x1, ..., xn)

∂t
=

(
λ

n∑
j=1

Laxj + κ
n∑
j=1

Lqxj

)
k

(n)
t (x1, ..., xn)

− λ
n∑
i=1

(
k

(n−1)
t (x1, ..., xi−1, xi+1, ..., xn)

∑
j 6=i

a(xi − xj)

)

with initial conditions

k
(n)
0 (x1, ..., xn) = ρn0 , n ≥ 1.

2.4 Fourier analysis of the second moment

We begin by determining the Fourier transforms of La and Lq. Define Φa(ϕ) :=∑
z 6=0

a(z)(1− cos(ϕ · z)) and Φq(ϕ) :=
∑
z 6=0

q(z)(1− cos(ϕ · z)). Then

−L̂af(x) = f̂(ϕ)Φa(ϕ)

−L̂qf(x) = f̂(ϕ)Φq(ϕ)

This follows from:

−L̂af(x) = −
∑
x

ei(ϕ·x)
∑
z 6=0

a(z)(f(x+ z)− f(x))

= −
∑
z 6=0

a(z)

(
e−i(ϕ·z)

∑
x

ei(ϕ·(x+z))(f(x+ z)−
∑
x

ei(ϕ·x)f(x))

)

= −
∑
z 6=0

a(z)(e−i(ϕ·z) − 1)f̂(ϕ) = f̂(ϕ)
∑
z 6=0

a(z)(1− cos(ϕ · z)).

Note that the Fourier transform of δ0(x− y) is:

∑
x,y

δ0(x− y)ei(ϕ1·x)+i(ϕ2·y) =
∑
x

1 · ei((ϕ1+ϕ2)·x) = (2π)2δ0(ϕ1 + ϕ2).
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We will need, also, letting < x, y > denote a point in Z2 x Z2:

â(x− y) =
∑
<x,y>

ei((ϕ1·x)+(ϕ2·y))a(y − x) =
∑
<x,z>

ei((ϕ1·x)+(ϕ2·(x+z)))a(z)

=
∑
<x,z>

ei(((ϕ1+ϕ2)·x)+(ϕ2·z))a(z) =
∑
x

ei((ϕ1+ϕ2)·x)
∑
z

ei(ϕ2·z)a(z)

=
∑
x

ei((ϕ1+ϕ2)·x)
∑
z

a(z)cos(ϕ2 · z) = 4π2δ0(ϕ1 + ϕ2)(1− Φa(ϕ2)).

Define ψt(x, y) := k
(2)
t (x, y) − ρ2

0. Then, using equation (2.4), we get the Fourier

transform:

∂ψ̂(t, ϕ1, ϕ2)

∂t
= − (λ(Φa(ϕ1) + Φa(ϕ2)) + κ(Φq(ϕ1) + Φq(ϕ2))) ψ̂(t, ϕ1, ϕ2) + ŝ2

ψ̂(0, ϕ1, ϕ2) = 4π2ρ0δ0(ϕ1 + ϕ2). (2.7)

This has the solution:

ψ̂(t, ϕ1, ϕ2) =

(
4π2ρ0δ0(ϕ1 + ϕ2)− ŝ2

A

)
e−At +

ŝ2

A
,

where A := λ(Φa(ϕ1) + Φa(ϕ2)) + κ(Φq(ϕ1) + Φq(ϕ2)).

Also:

ŝ2 = 2ρ0

(
(µ+ λ)δ̂0(x− y)− λâ(y − x)

)
= 8π2ρ0δ0(ϕ1 + ϕ2)(µ+ λΦa(ϕ2)).

Thus, for ϕ1 + ϕ2 = 0:

ψ̂(t, ϕ1, ϕ2) =

(
4π2ρ0 −

4π2ρ0(µ+ λΦa(ϕ1))

λΦa(ϕ1) + κΦq(ϕ2)

)
e−2(λΦa(ϕ1)+κΦq(ϕ2))t+

4π2ρ0(µ+ λΦa(ϕ1))

λΦa(ϕ1) + κΦq(ϕ2)
,

and for ϕ1 + ϕ2 6= 0: ψ̂(t, ϕ1, ϕ2) = 0.

This shows that the process is stationary in space, because ψ(t, x, y) and, therefore,

k(2)(t, x, y) are functions of y − x only.

Define ψ̂(ϕ1, ϕ2) := lim
t→∞

ψ̂(t, ϕ1, ϕ2). Then if
∫
T 2

∫
T 2

dϕ1dϕ2

λΦa(ϕ1)+κΦq(ϕ2)
<∞,

ψ̂(ϕ1, ϕ2) = δ0(ϕ1 + ϕ2)
4π2ρ0(µ+ λΦa(ϕ1))

λΦa(ϕ1) + κΦq(ϕ2)
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Taking the inverse Fourier transform:

ψ(x, y) =
1

(2π)4

∫
T 2

∫
T 2

δ0(ϕ1 + ϕ2)
4π2ρ0(µ+ λΦa(ϕ1))

λΦa(ϕ1) + κΦq(ϕ2)
e−i(ϕ1·x)−i(ϕ2·y)dϕ1dϕ2

=
ρ0

(2π)2

∫
T 2

µ+ λΦa(ϕ)

λΦa(ϕ) + κΦq(ϕ)
e−i(ϕ·(y−x))dϕ.

When this integral exists—the issue is the singularity at ϕ = 0—k(2)(x, y) will be

finite and, therefore, the process will be transient and patches will not occur.

The integral exists if
∫
D2

dϕ
λΦa(ϕ)+κΦq(ϕ)

< ∞ for some region D2 ⊂ T 2 around (0, 0).

We show this is true if λΦa(ϕ) + κΦq(ϕ) = O(|ϕ|α) for 0 < α < 2. First, however, we

prove the following lemma.

Lemma 2.4. Suppose the migration process or immigration process has the spatial

distribution

f(z) =
h(θ)

|z|2+α

(
1 +O

(
1

|z|2

))
, z 6= 0

with 0 < α < 2, θ = arg z
|z| ∈ [−π, π) = T 1, h ∈ C2(T 1), h > 0 and so satisfies the

heavy tails assumption. Then, as |ϕ| → 0, Φf (ϕ) = O(|ϕ|α).

Proof. We have Φf (ϕ) :=
∑
z 6=0

f(z)(1 − cos(ϕ · z)). Let us consider the following

integral I(ϕ), which will give a good approximation of Φf (ϕ), ϕ ∈ [−π, π)2 = T 2:

I(ϕ) =

∫
R2−A(0)

d~x

|~x|2+α
h(

~x

|~x|
)(1− cos(ϕ · ~x))

Here, A(0) = {~x : |x1| ≤ 1
2
, |x2| ≤ 1

2
} and, in general, A(~n) = {~x : |x1 − n1| ≤

1
2
, |x2 − n2| ≤ 1

2
}, ~n = (n1, n2) ∈ Z2. Note that in I(ϕ), argϕ ∈ T 1 can be arbitrary,

but because of the singularity at ϕ = 0 we are concerned primarily with the situation

|ϕ| << 1.

Put I~n(ϕ) =
∫

A(n)

h( ~x|~x| )

|~x|2+α (1−cos(ϕ·~x))dx, I(ϕ) =
∑
~n6=0

I~n(ϕ), and make the substitution
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~x = ~n+ ~w, ~w ∈ A(0). Then, |~x| = (|~n|2 + 2(~n · ~w) + |~w|2)1/2. It gives

~x

|~x|
=

~n

|~n|
+

~w

|~n|
− ~n(~n · ~w)

|~n|3
+O

(
1

|~n|2

)
and

1

|~x|2+α
=

1

|~n|2+α

(
1− (2 + α)(~n · ~w)

|~n|2
+O

(
1

|~n|2

))
Using the Taylor series expansion of the integrant we can present I~n(ϕ) in the form

I~n(ϕ) =
1

|~n|2+α

∫
A(0)

[h

(
~n

|~n|

)
+

1

|~n|
Oh

(
~n

|~n|

)
· ~w − (~n · Oh)(~n · ~w)

|~n|3
+O(

1

|~n|2
)]

·[1− (2 + α)(~n · ~w)

|~n|2
+O

(
1

|~n|2

)
][1− cos(~n · ϕ) cos(~w · ϕ) + sin(~n · ϕ) sin(~w · ϕ)]d~w

=
1

|~n|2+α

∫
A(0)

[h

(
~n

|~n|

)
+

Oh · ~w
|~n|

− (~n · Oh)(~n · ~w)

|~n|3
− h

(
~n

|~n|

)
(2 + α)(~n · ~w)

|~n|2
+O

(
1

|~n|2

)
]

·[(1− cos(~n · ϕ)) + cos(~n · ϕ)(1− cos(~w · ϕ))− sin(~n · ϕ) sin(~w · ϕ)]d~w

For large |~n|, the leading term in the expansion of I~n(ϕ) is equal to

ψ~n(ϕ) :=
1

|~n|2+α
h

(
~n

|~n|

)
(1− cos(~n · ϕ))

and
∑
~n6=0

ψ~n(ϕ) = Φf (ϕ).

Let us note also that the integrals containing linear functions of ~w are vanishing:∫
A(0)

(~c · ~w)d~w = 0, ∀~c ∈ R2

∫
A(0)

(1− cos(~w · ~ϕ))(~c · ~w)d~w = 0

The integrals
∫

A(0)

sin(~w · ~ϕ)(~c · ~w)d~w are non-vanishing but they have ahead the odd

over ~n factor sin(~n·~ϕ) and after summation over ~n 6= 0 the corresponding contribution

is equal to zero.
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The remainders O( 1
|~n|2 ) will give a contribution of order O(|ϕ|2), |ϕ| → 0 (since

∑
~n6=0

1

|~n|4+α
(1− cos(~n · ϕ)) ∈ C2(T 2) ∀(α > 0).

Finally,

Φf (ϕ) = I(ϕ) +O(|ϕ|2), |ϕ| → 0

with

I(ϕ) =

∫
R2−A(0)

h( ~x
|~x|)

|~x|2+α
(1− cos(ϕ · ~x))d~x

=

∫
|~x|≥1

h( ~x
|~x|)

|~x|2+α
(1− cos(ϕ · ~x))d~x

If ~x = (x1, x2) = r(cos θ, sin θ), ϕ = |ϕ|(cos γ, sin γ), then

Φf (ϕ) =

∞∫
1

dr · r
r2+α

π∫
−π

h(θ)(1− cos(r|ϕ| · | cos(θ − γ)|))dθ +O(|ϕ|2)

=

π∫
−π

h(θ)

∞∫
1

dr

r1+α
(1− cos(εr))dθ +O(|ϕ|2)

where ε = |ϕ|| cos(θ − γ)|. Using the substitution t = εr we obtain

Φf (ϕ) = O(|ϕ|2) + |ϕ|α
π∫

−π

dθh(θ)| cos(θ − γ)|α ·
∞∫

|ϕ|| cos(ϕ−θ)|

1− cos t

t1+α
dt

But
∞∫

|ϕ|| cos(ϕ−θ)|

1−cos t
t1+α

dt = cα−O(|ϕ|2−α), with cα :=
∞∫
0

1−cos t
t1+α

dt. SetH(γ) :=
π∫
−π
h(θ)| cos(θ−

γ)|αdθ, γ = argϕ, H(γ) ∈ C(T 1), H(γ) > 0. Then:

Φf (ϕ) = cα|ϕ|αH(γ) +O(|ϕ|2), |ϕ| → 0

Under the assumptions of the Lemma, therefore, in some region D2 ⊂ T 2 around

(0, 0), we have Φa(ϕ) ∼ |ϕ|α or Φq(ϕ) ∼ |ϕ|α, 0 < α < 2. It follows that
∫
D2

dϕ
αΦa(ϕ1)+κΦq(ϕ2)

<

∞ for the region D2, and, therefore that the inverse Fourier transform ψ(x, y) exists.
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This, in turn, means that the process for d = 2 is transient for 0 < α < 2 and so

clusterization does not occur.

For d = 1, with appropriate adjustments, such as setting a(z) or q(z) to c
|z|2+α for

some constant c, 0 < c < ∞, the process is transient if 0 < α < 1. The proof is

nearly identical.

2.5 The variance of the population of a region Qr

We consider the critical branching process with migration and immigration in one or

two dimensions, as described previously. In this section we derive the asymptotic for

the variance of the number of particles in a region as the size of the region increases.

Qr denotes a ball of radius r with the center at the origin, let n(Qr) denote the

number of particles in Qr as t→∞. We have the following theorem:

Theorem 2.5. Assume the critical branching process with migration and immigration

analyzed above. In particular, assume 0 < α < d for dimension d ≤ 2. Then, for

d ≤ 2, if Qr denotes a ball of radius r with the center at the origin, then as r increases,

the variance of the number of particles in Qr grows as rd+α.

Proof. Let n(Qr) denote the number of particles in Qr as t → ∞ and, as earlier,

define ψt(x, y) := k
(2)
t (x, y)− ρ2

0. Then, the variance of n(Qr) is:

Var (n(Qr)) =
∑
x,y∈Qr

k(2)(x, y)−
∑
x,y∈Qr

ρ2
0 =

∑
x,y∈Qr

ψ(x, y).

Because of the spatial invariance of k(2) and ψ, we set B(x− y) := ψ(x, y).

As r increases,
∑
x,y∈Qr

ψ(x, y)→
∫
Qr

∫
Qr

B(x− y)dxdy. Calling this V , we use Fourier

transforms to obtain its asymptotic as r grows large.



35

V : =

∫
Qr

∫
Qr

B(x− y)dxdy =

∫
Rd

∫
Rd

IQr(x)IQr(y)B(x− y)dxdy

=

∫
Rd

∫
Rd

dxdy
1

(2π)3d

∫
T d

∫
T d

∫
T d

ÎQr(ϕx)e
−i(ϕx·x)ÎQr(ϕy)e

−i(ϕy ·y)B̂(ϕz)e
−i(ϕz ·(x−y))dϕxdϕydϕz

=

∫
Rd

∫
Rd

dxdy
1

(2π)3d

∫
T d

∫
T d

∫
T d

ÎQr(ϕx)ÎQr(ϕy)B̂(ϕz)e
−i((ϕx+ϕz)·x)e−i((ϕy−ϕz)·y)dϕxdϕydϕz

=
1

(2π)d

∫
T d

∫
T d

∫
T d

δ0(ϕx + ϕz)δ0(ϕy − ϕz)ÎQr(ϕx)ÎQr(ϕy)B̂(ϕz)dϕxdϕydϕz

=
1

(2π)d

∫
T d

ÎQr(−ϕz)ÎQr(ϕz)B̂(ϕz)dϕz.

We can write the Fourier transform of the indicator function I as: :

ÎQr(ϕ) =

∫
Qr

ei(ϕ,x)dx =

(
2πr

|ϕ|

)d/2
Jd/2(r|ϕ|),

where Jd/2 is the Bessel function of the first kind of order d
2

[Gikhman and Sko-

rokhod (1974)]. Also including the result for B̂(ϕz) = ρ0
µ+λΦa(ϕ)

λΦa(ϕ)+κΦq(ϕ)
from section

2.4, we obtain:

V = ρ0r
d

∫
T d

1

|ϕ|d
(
Jd/2(r|ϕ|)

)2 µ+ λΦa(ϕ)

λΦa(ϕ) + κΦq(ϕ)
dϕ. (2.8)

For d = 2, we have from Lemma 2.1 that there is some ε > 0 such that for |ϕ| < ε

either Φa(ϕ) ∼ |ϕ|α or Φq(ϕ) ∼ |ϕ|α or both. Together with the symmetry of Φa and

Φq, this means we can write λΦa(ϕ) + κΦq(ϕ) = |ϕ|αA(|ϕ|), where for |ϕ| < ε we

have A(|ϕ|) ∼ 1 and for |ϕ| ≥ ε we have 0 < A(|ϕ|) ≤ 2(λ+κ)
εα

.

We now can write (2.8) in polar coordinates. This gives:

V ∼ ρ0r
d

R∫
0

cd
|ϕ|1+α

(
Jd/2(r|ϕ|)

)2 µ+ λΦa(|ϕ|)
A(|ϕ|)

d|ϕ|,
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where cd = dπd/2

Γ( d
2

+1)
.

We set x := r|ϕ| to get:

V ∼ ρ0cdr
d+α

rR∫
0

1

x1+α

(
Jd/2(x)

)2 µ+ λΦa(
x
r
)

A(x
r
)

dx.

Then, as r →∞ we have A(x
r
)→ A(0) ∼ 1 and Φa(

x
r
)→ 0. Consequently, as r →∞,

V =
ρ0cdµ

A(0)
rd+α

∞∫
0

1

x1+α

(
Jd/2(x)

)2
dx.

Finally, for small x,
(
Jd/2(x)

)2 ≤ cxd and as x becomes large,
(
Jd/2(x)

)2
< 1

x
, which

means that
∞∫
0

1
x1+α

(
Jd/2(x)

)2
dx converges, giving that:

V −−−→
r→∞

c0r
d+α

where c0 = ρ0cdµ
A(0)

∞∫
0

1
x1+α

(
Jd/2(x)

)2
dx.

Except for a different c0 the same argument holds for dimension d = 1.

Note that the result for our process in Theorem 2.2 contrasts with case of indepen-

dent particles in a region. There, the variance of the number of particles grows simply

as rd. Our result can be used to establish a central limit theorem for our process,

although we do not do so in this paper.

2.6 The subcritical case (µ > β + κ)

Unsurprisingly, in the subcritical case the population degenerates everywhere. We

establish this by showing that the first and second moments tend to 0 as t increases.

Theorem 2.6. Assume the branching process with migration and immigration ana-

lyzed above, but in the subcritical condition. That is, assume that µ > β + κ. Then,

as t→∞, the first moment k(1)(t, x)→ 0 and the second moment k(2)(t, x, y)→ 0.
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Proof. For the first moment we have:

k(1)(t, x) = ρ0e
−(µ−β−κ)t −−−→

t→∞
0.

The Fourier transform of the differential equation for the second moment, using

equation (2.3) and the subsequent equation for s2, is:

∂k̂(2)(t, ϕ1, ϕ2)

∂t
=− (λ(Φa(ϕ1) + Φa(ϕ2)) + κ(Φq(ϕ1) + Φq(ϕ2))) k̂(2)(t, ϕ1, ϕ2)

+ 2(β + κ− µ)k̂(2)(t, ϕ1, ϕ2) + ŝ2

k̂(2)(0, ϕ1, ϕ2) = 2πρ2
0 + 4π2ρ0δ0(ϕ1 + ϕ2).

Here,

ŝ2 = 4π2δ0(ϕ1 + ϕ2)ρ0(β + µ+ κ+ 2λΦa(ϕ2))e−(µ−β−κ)t.

To simplify the calculation, set:

A := − (λ(Φa(ϕ1) + Φa(ϕ2)) + κ(Φq(ϕ1) + Φq(ϕ2))) k̂(2)(t, ϕ1, ϕ2)− 2(µ− β − κ) < 0,

B := 4π2δ0(ϕ1 + ϕ2)ρ0(β + µ+ κ+ 2λΦa(ϕ2)),

C := µ− β − κ > 0.

We have ∂k̂(2)(t,ϕ1,ϕ2)
∂t

= Ak̂(2)(t, ϕ1, ϕ2) +Be−Ct, which has the solution:

k̂(2)(t, ϕ1, ϕ2) =
−B
A+ C

e−Ct +

(
k̂(2)(0, ϕ1, ϕ2) +

B

A+ C

)
eAt.

Noting that −∞ < A+ C < 0, that C > 0 and A < 0, and that B is finite, we have

that:

k̂(2)(∞, ϕ1, ϕ2) := lim
t→∞

k̂(2)(t, ϕ1, ϕ2) = 0.
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2.7 Conclusion

For the critical case (µ = β + κ), the existence of the inverse Fourier transform

ψ(∞, x, y), shown in section 2.4, means that the correlation function,

k(2)(∞, x, y) = ρ2
0 + ρ0

∫
T 2

µ+ λΦa(ϕ)

λΦa(ϕ) + κΦq(ϕ)
e−i(ϕ·(y−x))dϕ,

is finite. This means that for the critical case in two dimensions the demographic

process does not lead to clusterization; it will not produce patches.

In more detail, if Φa(ϕ) ∼ |ϕ|α, 0 < α < 2, then the key underlying process

is migration with long jumps, which is transient and, therefore, does not produce

patches. If Φq(ϕ) ∼ |ϕ|α, 0 < α < 2, then the key underlying process is immigration

with long-distance effects. This process cannot be transient in the usual sense but it

is analogous to a transient random walk in that the probability of infinite occurrences

of immigration at a particular site is 0. It, too, does not produce patches.

Thus, under the conditions of heavy tails migration, immigration influenced by

particles at distant locations, or both, the population will reach a stable distribution

without clusterization. The distribution that results will depend on the initial density

of the population, ρ0. In particular, as ρ0 increases we have:

k(2)(∞, x, y) −−−→
t→∞

ρ2
0.

Finally, on a more general level, we note that a common element of the models

of both social processes is the effect of a small proportion of exceptionally active

particles. The dynamics of the second model of the spread of rumors are governed

by the presence of a minority of spreaders, particles that are the only ones that

can spread a rumor. Clusterization in the demographic model is avoided if there are

particles that make long jumps when they migrate to a new location, or if immigrants

are positively affected by particles at a long distance, one interpretation of which is

that some exceptional particles are capable of having long-distance effects.
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Lefèvre, C. and Picard, P. (1994): Distribution of the final extent of a rumour process.
Journal of Applied Probability, 31, 244–249

Li, Z. (2006): A Limit Theorem for Discrete Galton-Watson Branching Processes
with Immigration. Journal of Applied Probability, 43, 289–295

Lotka, A. J. (1931): The extinction of families. I. J. Washington Acad. Sci. 21, 377–
380

Lowry, I. (1966.): Migration and metropolitan growth: two analytical models. San
Francisco: Chandler

Maki, D. P. and Thompson, M. (1973.): Mathematical Models and Applications.
Englewood Cliffs, NJ: Prentice-Hall

Malthus, T. (1826.): An Essay on the Principle of Population. 6th edition. London:
John Murray

Milos, P. (2009): Occupation times of subcritical branching immigration systems with
Markov motions. Stochastic Processes and their Applications, 119, 3211–3237

Pakes, A. (1971a): A Branching Process with a State-Dependent Immigration Com-
ponent. Advances in Applied Probability, 3, 301–314

Pakes, A. (1971b): On the critical Galton-Watson process with immigration. Journal
of the Australian Mathematical Society, 12, 476–482

Pakes, A. (1986): Some Properties of a Branching Process with Group Immigration
and Emigration. Advances in Applied Probability, 18, 628–645

Pearce, C. E. M. (2000): The Exact Solution of the General Stochastic Rumour.
Mathematical and Computer Modelling, 31, 289–298

Pittel, B. (1990): On a Daley-Kendall model of random rumours. Advances in Applied
Probability, 27, 14–27

Rapoport, A. and Rebhun, L. J. (1952.): On the mathematical theory of rumour
spread. Bulletin of Mathematical Biophysics, 14, 375–383

Ravenstein, E. G. (1885): The Laws of Migration. Journal of the Statistical Society
of London, 48, 167–235

Steffenson, J. F. (1930): On Sandsynligheden for at Afkommet uddr. Matem. Tiddskr.
B,, 19–23



41

Sudbury, A. (1985): The proportion of the population never hearing a rumour. Jour-
nal of Applied Probability, 22, 443–446

Watson, R. (1988): On the size of a rumour. Stochastic Processes and Applications,
27, 141–149

Whitmeyer, J. M. (2009): The perils of assuming a single equilibrium. Sociological
Perspectives, 52, 557–579

Whitmeyer, J. M. and Yeingst, C. (2006): Modeling Coleman’s friendly association
networks. Social Science Research, 35, 642–667

Yaglom, A. (1947): Certain limit theorems of the theory of branching random pro-
cesses. Doklady Akad. Nauk USSR, 56, 795–798

Yamazato, M. (1975): Some Results on Continuous Time Branching Processes with
State Dependent Immigration. J. Math. Soc. Jpn, 27, 479–496


