
SYSTEMATIC POLICY ANALYSIS AND MANAGEMENT

by

Wenjuan Xu

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information Technology

Charlotte

2010

Approved by:

Dr. Gail-Joon Ahn

Dr. Mohamed Shehab

Dr. Cem Saydam

Dr. Kimberly A. Warren

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345079972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c©2010
Wenjuan Xu

ALL RIGHTS RESERVED

iii

ABSTRACT

WENJUAN XU. Systematic policy analysis and management.
(Under the direction of DR. GAIL-JOON AHN AND DR. MOHAMED SHEHAB)

Determining whether a given policy meets a site’s high-level security goals has been

a challenging task, due to the low-level nature and complexity of the policy language,

various security requirements and the multiple policy violation patterns. In this dissertation,

we outline a systematic policy analysis and management approach that enables system

administrators to easily identify and resolve various policy violations. Our approach

incorporates a domain-based isolation model to address the security requirements and

visualization mechanisms to provide the policy administrator with intuitive cognitive sense

about the policy analysis and policy violations. Based on the domain-based isolation model

and the policy visualization mechanisms, we develop a visualization-based policy analysis

and management framework. We also describe our implementation of a visualization-based

policy analysis and management tool that provides the functionalities discussed in our

framework. In addition, a user study is performed and the result is included as part of

our evaluation efforts for the prototype system.

One important application of our policy analysis and management is to support

remote attestation. Remote attestation is an important mechanism to provide the

trustworthiness proof of a computing system by verifying its integrity. In our work, we

propose a remote attestation framework, called Dynamic Remote Attestation Framework

and Tactics (DR@FT), for efficiently attesting a target system based on our extended

visualization-based policy analysis and management approach. In addition, we adopt the

proposed visualization-based policy violation expression to represent integrity violations

with a ranked violation graph, which supports intuitive reasoning of attestation results. We

also describe our experiments and performance evaluation.

iv

ACKNOWLEDGEMENTS

First and foremost, I owe my deepest gratitude to my advisor Professor Gail-Joon Ahn.

He is always there to listen and to give advice. His great personality and dedication

to the research have taught me a lot in the past five years. His expert guidance and

support have made this work possible, sparked my interest in access control, and were the

foundation of a great graduate research experience. I also give great gratitude to Professor

Dr.Mohamed Shehab who as my co-advisor guided my work of policy visualization and

gave me numerous support in research.

Many thanks to the numerous individuals who worked with me on collaborative

papers, and on other topics related to my research over the last few years, including Dr.

Xinwen Zhang from Samsung Information Systems America, Professor Irini Kokkinou

from Indiana University, Professor Jean-Pierre Seifert from Deutsche Telekom Lab and

Technical University of Berlin and graduate students Hongxin Hu, Jing Jin and Moo Nam

Ko. Their feedback and criticism enriched my work and helped me to align it with other

research projects.

I also wish to express my deep appreciation to my PhD committee members, Professor

Gail-Joon Ahn, Professor Mohamed Shehab, Professor Cem Saydam and Professor

Kimberly A. Warren. The assistance and guidance they provided in the preparation of

this manuscript have been invaluable.

Furthermore, I want to acknowledge the multi-year funding I received for this work

via research grants from National Science Foundation (NSF-IIS-0242393) and Department

of Energy Early Career Principal Investigator Award (DE-FG02-03ER25565) to Professor

Gail-Joon Ahn.

Finally, I would like to thank my husband Willson Kwok. His support, encouragement,

patience and unconditional love enabled me to surpass hardships and complete this work.

I also thank my parents FengMei Liu and Ren Xu, my sisters Wenhong Xu and Wenping

Xu. They were always supporting me and encouraging me with their best wishes. Finally,

v

I would thank my son Ethan Kwok. He gives me the motivation and courage to get through

this work.

vi

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 Security Policy Analysis and Management Challenging 1

1.2 Statement of the Hypothesis 3

1.3 Summary of Contributions and Dissertation Organization 4

CHAPTER 2: BACKGROUND AND RELATED WORK 6

2.1 SELinux Overview 6

2.1.1 SELinux Policy Introduction 6

2.1.2 SELinux Policy Characteristics 8

2.1.3 SELinux Policy Types 8

2.1.4 SELinux Policy Security Goals 9

2.2 Information Flow Related Model 10

2.3 Information Flow-based Policy Analysis Tool 11

2.4 Visualization Technology Application in Security 13

2.5 Visualization Representable Technology 14

CHAPTER 3: DOMAIN-BASED ISOLATION MODEL 16

3.1 Domain-based Isolation Model Definition and Specification 16

3.1.1 Security Policies 16

3.1.2 Domain-based Isolation Model (DIM) 17

3.1.3 Policy Violation Resolution 21

3.2 Analyze Security Policies with CPN Against DIM 21

3.2.1 Policy Simulation with CPN 22

3.2.1.1 Policy in XML 22

3.2.1.2 Extended CPN to Express Policy 23

3.2.1.3 Policy in CPN Graph 24

3.2.2 Policy Violation Identification 25

3.2.2.1 Apache TCB and TCB(d) Identification 25

vii

3.2.2.2 Policy Violation Identification 27

3.2.2.3 Policy Violation Resolving 27

3.2.3 Discussion 30

CHAPTER 4: POLICY VISUALIZATION 32

4.1 Policy Related Graph Definition 32

4.1.1 Policy Graph 32

4.1.2 Information Flow Graph 33

4.1.3 Policy Violation Graph 33

4.2 Policy Visualization Mechanisms 33

4.2.1 Semantic Substrates-based Policy Visualization 34

4.2.2 Adjacency Matrix-based Visualization 36

4.3 Querying Security Policy 37

4.3.1 Basic Query Formulation 38

4.3.2 Query Classification 39

4.3.3 Join Query Construction 41

4.3.4 Query Execution 43

4.4 Policy Violations and Resolutions in Graph 44

CHAPTER 5: POLICY ANALYSIS AND MANAGEMENT FRAMEWORK 46

5.1 Visualization-based Policy Analysis and Management Framework 46

5.2 Visualization-based Policy Analysis and Management Tool (PVA) 46

5.2.1 Design Principles 46

5.2.2 PVA Tool Implementation Details 48

5.2.3 Policy Graph 49

5.2.3.1 Apache Domain Identification 50

5.2.3.2 Apache TCB(d) Identification 50

5.2.3.3 Policy Violation Queries 52

5.2.3.4 Policy Violation Resolution 52

viii

5.3 User Study 55

5.3.1 Participant Enrolling and Characteristics 55

5.3.2 Policy Used 56

5.3.3 Instruction 57

5.3.4 User Study Measurement 58

5.3.4.1 Ease of Constructing Policy Analysis 58

5.3.4.2 Ease of Understanding Policy Analysis Results 59

5.3.4.3 Overall Experience of Using the Tool Interface 59

5.3.5 Measurement for Semantic-substrates versus Adjacency-matrix 59

5.3.5.1 Ease of Identifying Policy Violations 59

5.3.5.2 Ease of Tracing Policy Violation Elements 60

5.3.5.3 Satisfaction With the Visualization Policy 60

5.3.6 Procedure 60

5.3.7 Data Collection 61

5.4 Results 61

5.4.1 PVM versus APOL Results 61

5.4.2 Semantic-substrates versus Adjacency-matrix Results 62

5.5 Lessons Learned 63

CHAPTER 6: DYNAMIC REMOTE ATTESTATION 65

6.1 Background 67

6.1.1 Attestation 67

6.1.2 Integrity Models 68

6.2 Design of DR@FT 69

6.2.1 System State and Trust Requirement 70

6.2.2 Attestation Procedures 71

6.3 Integrity Violation Analysis 76

6.3.1 Policy Violation Graph 77

ix

6.3.2 Ranking Policy Violation Graph 78

6.3.2.1 Ranking Subjects in TCBd 79

6.3.2.2 Ranking Direct Violation Path 80

6.3.2.3 Usage of Ranked Policy Violation Graph 81

6.3.3 Evaluating Trustworthiness 82

6.3.4 Attestee Reconfiguration 82

6.4 Implementation and Evaluation 83

6.4.1 Attestee Configuration 83

6.4.2 Attestation Implementation 83

6.4.3 Evaluation 84

6.4.4 Performance 88

6.5 Conclusion 89

CHAPTER 7: CONCLUDING REMARKS 90

7.1 Summary 90

7.2 Future Work 91

7.2.1 Issues in Security Requirements 91

7.2.2 Security Policy Analysis and Management for Mobile Device 92

7.2.3 Security Policy Management 92

Bibliography 93

CHAPTER 1: INTRODUCTION

Determining whether a system can be trusted or not is a critical problem in system

and network management. Particularly for security reason, a local or remote system

administrator typically needs to verify if a system meets information security objectives,

such as integrity, confidentiality, and availability requirements. For example, to deploy

applications in distributed and collaborative computing environments, one machine may

want to know if another machine is running a known-good version of an application

software on a well-configured, trusted operating system. Without this guarantee, a remote

machine may be running buggy or malicious application code, or may be improperly

configured such that the trusted application can be corrupted by untrustful programs or

users. For these purposes, formal and general security analysis is needed to trust a running

system based on its current security configurations, particularly, its security policies, which

outline the rules, laws and practices for the network access [5]. This dissertation addresses

the issues of security policy analysis and management.

1.1 Security Policy Analysis and Management Challenging

Information flow control is the foundation of many security requirements such as

integrity and confidentiality. The earliest information flow analysis work adopts a lattice

model to illustrate flow relationship between objects [26]. Those works assume that every

object is labeled with a security attribute, and checks information flow by examining the

security labels of the objects in a flow path. Especially, the lattice model requires that

information cannot flow from low integrity objects to high integrity objects. In practical

systems, under various circumstances, information flow is allowed from low integrity

subjects to high integrity subjects. Clark-Wilson model [25] attempts to capture this notion.

2

It states that through certain programs so-called transaction procedures (TP), information

can flow from low integrity objects to high integrity objects. Jaeger et al. [36] adopt this

notion and propose a CW-Lite model, where filters are deployed in all application interfaces

handling information flow from low integrity data to high integrity applications.

There are several related approaches and tools to analyze policies based on certain

information flow control [10, 36]. Most of these work focus on the identification of a

common and minimum system trusted computing base (TCB) [13, 12] which includes

trusted processes for an entire system. These approaches can analyze whether a policy

meets security requirements such as no information flow from low integrity processes

(e.g., unprivileged user processes) to system TCB (e.g., kernel and init). However, they

cannot identify integrity violations for high level services and applications that do not

belong to system TCB. In practical, other than system TCB protection, a high level

application or system service is required to achieve integrity assurance through controlling

any information flow from other applications. TCB community [65] clearly states such a

critical situation as follows: “a network server process under a UNIX-like operating system

might fall victim to a security breach and compromise an important part of the system’s

security, yet is not part of the operating system’s TCB.” Therefore, a more comprehensive

policy analysis for TCB identification and policy violations is desired.

Another issue in policy analysis is the large size and high complexity of typical policies

in contemporary systems. For example, an SELinux [42] policy has over 30,000 policy

statements in a desktop environment. Under these situations, several challenges exist for

system designers or administrators in the context of policy analysis. We enumerate such

challenges: (1) Understanding and querying a policy: All previous policy query tools lack

an effective mechanism for a user to understand a particular policy. Furthermore, without

understanding a policy, the user even cannot figure out what to query; (2) Recognizing

information flow paths: In the work of information flow based policy analysis [31, 55],

information flow paths are expressed with text-based expressions. However, primitive

3

text-based explanations cannot provide appropriate degree of clarity and visibility for

describing flow paths; and (3) Identifying integrity violation patterns, inducements, and

aftermaths: In the work of Jaeger et al. [36, 56], they elaborate violation patterns using

graphs. However, their approach does not leverage the features and properties of graphs for

analyzing policies and identifying the causes and effects of integrity violations.

In summary, we need to address several challenging questions for managing security

policy:

• How to express the security requirements comprehensively and accordingly?

• How to analyze the security policy and present the analysis result understandably?

• How to build a usable security policy analysis and management framework and how

to evaluate its usability?

These are the critical questions to be answered to systematically analyze and manage

the security policy. Even though some approaches have been proposed from various aspects

to address the policy analysis and management issues, our study clearly indicates that there

is a need to design a systematic policy analysis and management approach which is general

and flexible enough to reflect and cope with the various access control requirements as well

as solving the issues such as policy complexity. In this research, we would attempt to make

one step towards this direction.

1.2 Statement of the Hypothesis

Therefore, this research hypothesizes that:

A systematic policy analysis and management approach is critical for achieving system

assurance.

We first analyze and articulate the policy analysis requirements for a system in an open

environment. These requirements are then reflected and addressed in our proposed policy

4

analysis and management approach in terms of a domain-based isolation model that is

validated through a simulation tool, supportive method for visualizing and analyzing the

security policies against this model, and essential system components and architecture

with detailed policy visualization and enforcement mechanisms. In order to evaluate the

feasibility and usability of our approach, a proof-of-concept system is implemented for

supporting systematic policy analysis and management. Also, we analyze the usability

of this method and tool through the usability study. Furthermore, we extend the policy

analysis approach to realize efficient and effective remote attestation in a dynamic

environment.

1.3 Summary of Contributions and Dissertation Organization

The contributions of our policy analysis and management are summarized as follows:

• We articulate the access control requirements with a proposed domain-based

isolation model and prove it with a simulation tool CPN.

• We propose a visualization-based policy analysis method with graphical query-based

mechanisms to support the security policy analysis.

• Based on the proposed security model and visualization method, we develop a

visualization based policy analysis framework.

• We evaluate our proposed framework through performing the usability study on our

proof-of-concept prototype.

• The visualization-based policy analysis and management work is extended to support

the remote attestation in a dynamic environment.

The remainder of this dissertation is organized as follows. Chapter 2 reviews the issues

in managing complex security policy and discusses existing policy analysis approaches and

information visualization methods. In Chapter 3, we analyze the security requirements of

the security policy and define an information flow model to reflect these requirements.

5

Chapter 4 elaborates our method of policy visualization. Chapter 5 proposes the

visualization-based policy analysis and management framework, introduces our prototype

implementation based on the proposed framework and further proves the usability of our

framework by performing a user study. An extension of policy analysis approach to remote

attestation is explained in Chapter 6. Finally, Chapter 7 summarizes this dissertation and

presents some directions for future work.

CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 SELinux Overview

In this section, we briefly overview the SELinux policy [59], which is a typical example

of complex security policy.

2.1.1 SELinux Policy Introduction

Security-Enhanced Linux (SELinux) [59] enforces mandatory access control

(MAC)-based policies to enhance the security of Linux systems, where the MAC

mechanism is implemented through the Type-Enforcement (TE) policy model [21, 42].

In TE, domain types are used to label processes, while object types are used to label files

and other resources. In SELinux, there is no essential difference between domain types

and object types, and both are called types in general. SELinux associates a security

context with each subject or object (process, files, etc.). A security context is a tuple

that identifies a user, a role, and a type. A set of policy rules specify how subjects can

access objects based on relationships between their security contexts. For example, the

national security agency (NSA) SELinux example policy [3] defines a type security_t

and assigns to all files in directory /security. The policy also defines domain types

user_t and passwd_t, which are respectively associated with processes with a specified

set of executables for unprivileged users and processes for password management. There

is a policy rule allowing user_t to call (transit) the passwd_t and another rule allowing

passwd_t processes to directly operate on resources with type security_t. Hence, a

user_t subject can operate on a security_t object. An operation in SELinux is identified

by two pieces of information: a class (e.g., file, directory, process, and socket) and a

permission (e.g., read, unlink, signal, and sendto). Currently SELinux defines 28 classes

7

and approximately 120 permissions.

user joe roles { user_r };

role user_r types { user_t, passwd_t };

allow user_t bin_t { file dir } {read getattr search } ;

allow user_t passwd_exec_t : file {getattr execute}

type passwd_t, domain, privlog, auth_write, privowner;

Joe running as user_t needs to change his password. How does Joe
change his password? User_t executes the passwd_t entry file
passwd_exec_t and then can transit to domain passwd_t.

allow passwd_t security_t: file { getattr read write };

User declaration specifies user joe is
authorized with role user_r

Role declaration specifies role user_r is
authorized to run as untrusted user (user_t).

type user_t, domain, userdomain, unpriv_userdomain, nscd_client_domain, privfd;
Domain declarations separately specify
user_t domain and passwd_t domain.

type passwd_exec_t, file_type, sysadmfile, exec_type;

type bin_t, file_type, sysadmfile;

Types declarations separately specify types
passwd_exec_t, bin_t and security_t.

type security_t, fs_type;

These are domain-types allow rules. For example, domain
passwd_t is allowed on type security_t with operation {getattr,
read, write} of class file.

allow passwd_t passwd_exec_t : file entrypoint

allow user_t passwd_t : process transition

system_u:object_r:security_t

system_u:object_r:bin_t

system_u:object_r:passwd_exec_t Security context declarations separately specify the security context corresponding to
the type. It is used to correspond the type to the file system of the Linux system. For
example: bin/* : system_u: object_r:bin_t. This says that bin_t is used to label the file
under directoy bin.

user_u:user_r:user_t Security context declarations specifies the security context
corresponding to the domain type user_t.

Figure 2.1: SELinux policy example.

Other than TE model, SELinux also uses role-based access control (RBAC) model [60]

to help organize policy rules. A user is assigned with a role which is an abstraction designed

to make policy rules more concise. For example, if many users require the same set of

permissions, a role can be defined, a policy rule can be introduced to state that those users

can enter this role, and another rule is specified to associate permissions with the role.

The set of permissions associated with a role is expressed with types. For all object types,

SELinux uses a role object_r and a user system_u to specify their security contexts. A

domain type can be associated with different roles and users for different security contexts.

Figure 2.1 shows some policy structures with SELinux policies. A user Joe can only login

as role user_r, which is associated with types user_t and passwd_t. As passwd_t has

8

permissions of security_t: file {getattr read write}, Joe can read and modify the

password file in the system, which is labeled with security_t. Related policy rules for

type and security context declarations are also included in Figure 2.1.

2.1.2 SELinux Policy Characteristics

SELinux types are classified into different categorizations corresponding to the

functions performed by processes and the operations performed on the different

objects [59]. We first present the policy classification which is used in the subsequent

sections. The domain and type classifications are defined as follows:

• Domain Classification: According to SELinux policy configurations from

NSA [59], domain types in SELinux can be classified into system domains, user

program domains, and user login domains. System domains are composed of

domains labeled as system processes (e.g., kernel_t, initrc_t, and init_t)

or daemons (e.g., sendmail_t and ftpd_t). User program domains include

unprivileged user program domains (e.g., user_xserver_t), administrator program

domains (e.g., sysadm

_xserver_t), and some other program domains (e.g., logrotate_t and passwd_t).

User login domains are the domains used for user authorization such as user_t,

sysadm_t, and staff_t. Due to the large number of vulnerabilities that have been

found in daemons (e.g.,sendmail_t) we divide system domains into daemons and

general system domains.

• Type Classification: Types in SELinux can be classified into security types (e.g.,

security_t), device types (e.g., fixed_disk_device_t and device_t), file types

(e.g., etc_t), procfs types (e.g., sysctl_kernel_t and proc_t), devpts types (e.g.,

ptmx_t), nfs types (e.g., nfs_t), and network types (e.g., icmp_socket_t and

port_t).

The details of domain and type classifications are listed in Table 2.1.

9

Table 2.1: SELinux characteristics
SELinux Domains Classification

Domain
Classifications

Subjects Examples

System Domains (SD) domains defined for system
services

kernel_t, initrc_t

Daemons (DAE) domains for system daemons klog_t, sendmail_t
Program Domains
(PRO)

domains for user programs user_xserver_t,
passwd_t,
sysadm_xserver_t

User Login Domains
(ULO)

domains for authorization of
different users

user_t, staff_t,
sysadm_t

SELinux Types Classification
Types Objects Examples
security types (ST) policy configuration related files. security_t
device types (DT) files under /device fixed_disk_device_t
file types (FT) files under directory /root, /etc,

etc.
etc_t, root_t

procfs types (PT) pseudo files under /proc. proc_t
devpts types (DE) pseudo files under /dev/pts ptmx_t
NFS types (NF) files from an NFS server nfs_t
Network types (NE) files for network objects port_t

2.1.3 SELinux Policy Types

SELinux policy can be also classified into targeted policy and strict policy [44], where

the targeted policy is derived from the strict policy with the similar structure. However,

the strict policy attempts to specify policy rules for most programs, while the targeted

policy focuses on network and system services. The primary difference between strict and

targeted policies is the use of the unconfined domain types (unconfined_t) and removal

of any other user domain type (for example, sysadm_t, user_t).

From the organization of the security policy, SELinux policy can be further classified

into original policy and reference policy [44], where the traditional policy is a combination

of sets of rules specifying the security policy. On the other hand, reference policy is targeted

to re-engineer the existing policies by organizing most program policies into .te file, .if file

or .fc file, which brings the flexibility for policy design.

2.1.4 SELinux Policy Security Goals

Six critical security goals are outlined in SELinux policies [16]: (G1) limiting raw

access to data, (G2) protecting kernel integrity, (G3) protecting system file integrity,

(G4) confining privileged processes, (G5) separating processes, and (G6) protecting the

10

administrator domain. Among these goals, G2, G3 and G6 are mainly about integrity

protection such as boot files, proc files and security policy related objects. As a more

complex goal, G1 is to protect both the integrity and confidentiality of system resources.

For example, a write operation to fixed disk devices is restricted to fsck for checking

file system consistency. G4 and G5 deal with least privilege properties through restricting

accesses to certain domain types. For instance, a mail server program can only access

certain resources such as mail spool file, and a user program is prohibited from interfering

with administrator programs.

2.2 Information Flow Related Model

Biba integrity model [20, 26] is a widely cited information flow based integrity model.

In Biba model, integrity is preserved for a subject if all high integrity objects meets integrity

requirements and all information flows from subjects with equal or higher integrity. Hence,

Biba property is fulfilled if a high integrity process cannot read lower integrity data, execute

lower integrity programs, nor obtain lower integrity data in any other manner.

Similar to Biba, Low-Water Mark Integrity (LOMAC) [62] allows information flow

from high integrity to low integrity without restrictions. However, information is

unescapable from low integrity to high integrity in certain cases. For example, in a UNIX

system, when a root user logs in, the root user may command the subject executing emacs()

to observe low-integrity objects. In this case, the proper privilege set for the eamcs subject

is to prohibit modification of high-integrity objects. On the other hand, the root user may

command the emacs subject to observe and modify only high-integrity objects. In this

case, the privilege set which prohibits modification of high-integrity objects would be

inappropriate. For solving such ambiguous, LOMAC supports high-integrity process to

read low integrity data, while downgrading the process’s integrity level to the lowest level

that it has ever read. For example, when the root user observes low-integrity objects, this

process needs to be downgraded.

Different from Biba model, Clark-Wilson [25, 54] model provides a different view of

11

dependencies, which states that through certain programs so-called transaction procedures

(TP), information can flow from low integrity objects to high integrity objects. Based on

Clark-Wilson model, the concept of TP is evolved into filters in CW-Lite [56] model. A

filter can be a Firewall, an authentication process, or a program interface for downgrading

or upgrading the privileges of a process. In CW-Lite model, information can flow from low

integrity processes to high integrity processes through filters.

Usable Mandatory Integrity Protection (UMIP) [41] is an integrity model which states

that low integrity processes are not allowed to flow to high integrity processes with several

exceptions. For example, information flow from low integrity process (i.e., network)

to high integrity process (administration) through remote administration such as sshd is

allowed in the model. Furthermore, low integrity process (unprivileged user) can flow to

high integrity process (administration) through a process such as su.

Trusted Computing Base (TCB) protection is proposed [27], where TCB is the total

combination of protection mechanisms within a computer system, which includes the

hardware, software and firmware that are trusted to enforce a security policy. They propose

to separate TCB from the remainder of the system and a trust path must also exist so that a

user can access TCB without being compromised by other processes or users.

Domain isolation [24] is another way to specify the security requirements in the

system. The main purpose of domain isolation is to state the web security requirements,

for considering appropriate enforcement of the same-origin principle. This same-origin

principle can be interpreted as “a script originated from one Internet domain should not be

able to read, manipulate or infer the contents originated from another domain.” Failures

to enforce this principle may result in severe security consequences such as information

leakage or identity theft.

2.3 Information Flow-based Policy Analysis Tool

The closest existing work to ours include Jaeger et al. [36] and Shankar et al. [56]. In

these work, they use a tool called Gokyo for checking the integrity of a proposed TCB for

12

SELinux [59]. Also, they propose to implement their idea in an automatic way. Gokyo

mainly identifies a common TCB in SELinux but a typical system may have multiple

applications and services with various trust relationships. However, achieving the integrity

assurance for these applications and services has not been addressed in Gokyo.

SETools [9] are a set of tools developed by Tresys Technology to provide support for

SELinux policy. Among them, seaudit is used to analyze audit messages from SELinux;

seaudit-report generates highly-customized audit log reports; sechecker-command line tool

performs modular checks on an SELinux policy; sediff identifies the policy difference

in SELinux policy; and secmds is a command-line tool to analyze and search SELinux

policy. APOL is a graphical user interface based tool to analyze a SELinux policy

file [6]. A lot of functions are supported in APOL such as browsing and searching policy

components (e.g., types, attributes, object classes, roles, users, and booleans), searching

through type enforcement and other rules, and viewing file contexts from a filesystem. In

addition, APOL allows policy administrator to perform domain transition, file relabel, types

relationship, and information flow analysis.

SLAT (Security Enhanced Linux Analysis Tool) [31] defines an information flow model

and policies are analyzed based on this model. Especially, SLAT has a policy query

mechanism which are written in a special-purpose language. A SLAT query is, roughly

speaking, a kind of regular expression that specifies the expected form of information flow

paths between two specific security contexts. SLAT determines whether all information

flow paths between those endpoints meet the expected form. If the answer is “no”, SLAT

provides a counterexample. SLAT queries can be converted into a finite automata that can

easily be expressed as logic programs. However, SLAT does not support policy editing and

only provides text-based interface which is hard for the policy administrator to understand.

PAL (Policy Analysis using Logic Programming) [55] uses SLAT information flow

model to implement a framework for analyzing SELinux policies. The main difference

between PAL and SLAT is their query language. PAL is realized with logic programs, and

13

is more flexible than SLAT. For example, PAL can answer queries whose results are sets of

security contexts, relations between security contexts, etc. Also, PAL can answer high-level

queries such as “find all security contexts from which information can flow to security

context c without passing through security context d.” Although PAL is more flexible than

SLAT with respect to the policy query, it also has the problem such as complexity in editing

policy and lack of user-friendliness.

SELinux Policy Editor (Seedit) [7] is a tool originally developed by Hitachi Software.

The main purpose of Seedit is to over-come the above mentioned problems. In Seedit, it

provides a simplified policy specification called Simplified Policy Description Language

(SPDL) for the policy administrator to manage the security policy. Also, it has a graphical

interface to generate simplified policies so administrators do not have to remember the

syntax of SPDL. However, Seedit also has two challenges to solve: (1) Integrating

object classes and access vector does not allow to support a fine-grained configuration

specification. (2) Seedit compiler compiles the simplified policy into SElinux policy

configuration file. However, the compiler needs to be updated whenever new version of

SELinux is released.

In summary, all the existing tools attempt to provide a query-based policy analysis for

policy developers or security administrators. However, they all display policies and policy

query results in text-based expressions, which are difficult to understand and accommodate

the analysis results.

2.4 Visualization Technology Application in Security

Information visualization [34] enables users to explore, analyze, reason and explain

abstract information by taking advantage of its visual cognitive effects. Several disciplines

have adopted information visualization mechanisms to better understand and reason about

the collected data.

There are several work to leverage information visualization for network security.

Lakkaraju et al. [69] presents a visualization design to enhance the ability of an

14

administrator to detect and investigate anomalous traffic between a local network and

external domains. NCSA [70] shows the network data information such as IP addresses

is visualized to present better view for system administrators. Event Correlation for

Cyber-Attack Recognition System [43] performs aggregation and correlation of the security

events based on their semantic content to visualize attack tracks in a real-time manner.

Several intrusion detection work also focus on visualization of intrusions. In addition,

Robert et al. [28] proposes a methodology for analyzing network and computer log

information with visual analytics of user behaviors. Thompson et al. [63] attempts to

determine whether a graphical interface or a standard textual interface is more affective

for intrusion detection.

Also, an interactive visualization framework [68] is designed for the automated trust

negotiation protocol. This framework provides capabilities to perform the interactive

visualization of a trust negotiation session, display credentials and policies, analyze the

relations of negotiated components, and refine access control policies and negotiation

strategies.

Some efforts in firewall policy visualization are also performed [40, 46, 64].

VisualFirewall [40] seeks to aid in the configuration of firewalls and monitoring of networks

by providing four simultaneous views that display packet details and corresponding firewall

reactions. Fireviz [46] incorporates a peripheral mapping of the network on a user’s screen

and displays network events along this periphery. Policyvis [64] visualizes firewall policies

to enable a user to place general inquiry such as “does my policy do what I intend to do

unrestrictedly? ”

2.5 Visualization Representable Technology

The typical visualization technology in this dissertation can be classified into two main

streams such as node-link and adjacency matrix methods.

There are a lot of different node-link based visualization method. Semantic

Substrates [18] is a visualization method based on node-link targeting to visualize the social

15

network based on semantic substrates. The basic idea is that the graph layouts are based on

user-defined semantic substrates, that are non-overlapping regions in which node placement

is based on node attributes. Also, users interactively control link visibility to limit clutter

and thus ensure comprehensibility of source and destination. Semantic substrates are

effective only if there are some categorical attributes or if a numerical attribute can be

combined to form categories. A small number of categories is convenient for effectively

visualizing the results. Although there are limitations in the implementation, the utility of

semantic substrates cope with a large number of nodes and links. Also, with the node-link

based diagram, semantic substrates method is very useful to support a small number of

graphs. However, in many situations, the graph maybe very large and dense.

Adjacency matrix [39] is a square matrix-based information visualization method. In

the adjacency matrix, a non-zero entry means that there is a link from the vertex represented

by a column of the matrix to the vertex represented by a row. On the other hand, the

non-zero entries in the adjacency matrix are usually visualized as colored blocks and

zero entries as blank blocks. Adjacency matrix is widely used in graph visualization

because they can effectively display a large and complex graph by interpreting the structural

information in a matrix view to a graph. Although adjacency matrix can be used to visualize

both directed and undirected graphs, it may cause some difficulties in finding the path from

one node to another node in the directed graph.

CHAPTER 3: DOMAIN-BASED ISOLATION MODEL

To comprehensively and effectively analyze the security requirements focusing on

access control, in this chapter, we first introduce a domain-based isolation model. Then,

we validate through a case study with SELinux security policy for identifying the policy

violations.

3.1 Domain-based Isolation Model Definition and Specification

3.1.1 Security Policies

A security policy is composed of a set of subjects, a set of objects, and a set of policy

statements or rules which states that a subject can perform what kind of actions on an

object. For information flow purpose, all operations between subjects and objects can be

classified as write_like or read_like [31] and operations between subjects can be expressed

as calls.

x y
write_like

Figure 3.1: Write

x y
read_like

Figure 3.2: Read

x
call

y

Figure 3.3: Call

Depending on the types of operations, information flow relationships can be identified.

If subject x can write to object y, then there is information flow from x to y (shown in

17

Figure 3.1), which is denoted as write(x,y). On the other hand, if subject x can read object

y, then there is information flow from y to x denoted as read(y,x) (shown in Figure 3.2).

Another situation is that if subject x can call another subject y, then there is information

flow from y to x, which is denoted as call(y,x) (shown in Figure 3.3).

Moreover, the information flow relationships between subjects and objects can be

further described through flow transitions. In a policy, if a subject s1 can write to an object

o which can be read by another subject s2, then it implies that there is an information

flow transition from a subject s1 to a subject s2, denoted as f lowtrans(s1,s2). Also, if a

subject s2 can call a subject s1, there is a flow transition from s1 to s2. A sequence of flow

transitions between two subjects represents an information flow path.

3.1.2 Domain-based Isolation Model (DIM)

Retrospecting the integrity models introduced in related work, one-way information

flow with Biba would not be sufficient for many cases as communication and collaboration

between application or service domains are frequently required in most systems. Although

filters between high and low integrity data are sufficient enough for TCB and NON-TCB

isolations, it is not suitable for application or service domain isolations. For example,

processes of user applications and staff applications are required to be isolated since both

are beyond the minimum and common TCB boundaries. With that reason, we develop a

domain-based isolation model, in which a concept called domain TCB is defined to describe

subjects and objects required to be isolated for an information domain. To be clear, the

minimum and common TCB of a system is called system TCB in our work. Also, for a

subject in a system, if it neither belongs to the system TCB, nor belongs to the domain

TCB of a particular application or service, then it is in the NON-TCB of the system.

System TCB System TCB is a concept same as the concept of TCB [12]. To identify

system TCB, reference monitor-based approach is proposed in [17], where system TCB is

identified through the identification of subjects functioning as reference monitor. Applying

this idea to SELinux, subjects functioning as reference monitor such as checkpolicy

18

and loading policy belong to system TCB. Also, subjects used to support reference

monitor such as kernel and initial, should be included into system TCB. After reference

monitor-based identification of initial system TCB is completed, other subjects such as lvm,

restorecon should also be added into system TCB based on their relationships with initial

system TCB. Other optional methods for identifying system TCB are proposed in [36].

Information Domain As mentioned above, an application or service information domain

consists of a set of subjects and objects. Here, we propose two steps to identify an

information domain.

• Step1: Keyword-based domain identification Generally, subjects and objects in a

security policy are described based on their functions, e.g., http is always the prefix

for describing web server subjects and objects in SELinux. Hence, to identify the

web server domain, we use keyword http to identify the initial set of subjects and

objects.

• Step2: Flow-based domain identification In a security policy, some subjects or

objects cannot be identified through keyword prefix. However, they can flow to

initially identified domain subjects and objects, influencing the integrity of this

domain. Therefore, we also need to include these subjects and objects into the

domain. For instance, in a Linux system, var files can be read by web server subjects

such as httpd. Hence they should be included in the web server domain.

Domain TCB To protect the integrity of an information domain, a domain TCB is

defined. TCB(d) (domain d’s TCB) is composed of a set of subjects and objects in domain

d which has the same level of security sensitivity. In other words, a web server domain

running in a system consists of many subjects–such as processes, plugins, and tools, and

other objects including data files, configuration files, and logs. We consider all of these

subjects and objects as TCB of this domain, while its network object such as tcp : 80

(http_port_t) is not considered as TCB since it may accept low integrity data from low

19

integrity subjects. In a system, the integrity of an object is determined by the integrity of

subjects that have operations on this object. Hence, we need to identify TCB(d) subjects of

each information domain and verify the assurance of their integrity.

To ease this task, a minimum TCB(d) is preferred. However, in the situation that

the minimum TCB(d) subjects have dependency relationships with other subjects, these

subjects should be added to domain TCB or dependencies should be removed. Based on

these principles, we first identify initial TCB(d) subjects which are predominant subjects

for domain d. We further discover TCB(d) considering subject dependency relationships

with the initial TCB(d) through flow transition-based identification and violation-based

adjustment.

• Step1: Initial TCB(d) identification In an information domain, there always exist

one or several predominant subjects, which launch all or most of other subjects

functioning in the same domain. Here, we identify the initial TCB(d) subjects based

on such subject launching relationships and the number of subjects that those subjects

can cascadingly launch. For example, for web server domain, httpd launches all other

processes such as httpd_script, hence it belongs to the initial TCB(d) of this domain.

• Step2: Flow transition-based TCB(d) identification The subjects that can flow only

to and from the initial TCB(d) are included into domain TCB. For instance, if subject

httpd_php can flow only to and from httpd, then httpd_php should be included into

TCB(d).

• Step3: TCB(d) adjustment by resolving policy violations After identifying

policy violations, we adjust the identified TCB(d) to exclude or include subjects

accordingly. For example, a subject awstats_script (web server statistics script) is

initially excluded from TCB(d). After identifying policy violations caused to web

server TCB(d) by awstats_script, we can figure out that these violations can be

ignored. Hence, the TCB(d) should be adjusted to include awstats_script.

20

DIM Definition To protect the identified TCBs and TCBd , we develop domain-based

isolation model, whose principles are similar to those in Clark-Wilson [54]. Clark-Wilson

leverages transaction procedures (TP) to allow information flow from low integrity to high

integrity processes. We also adopt the concept of filter. With the identifications of TCBs,

TCBd and filters, for information domain d, all other subjects in a system are categorized

as NON-TCB.

Based on the concept of system TCB and TCB(d), a domain-based isolation model is

defined as follows.

Definition 1 : Domain-based isolation model is satisfied for an information domain d if

for any information flow to TCB(d), the information flow path is within TCB(d); or the

information flow path is from the system TCB to TCB(d); or the information flow path is

from another domain TCB and it is filtered.

Through this definition, domain-based isolation model achieves the integrity of an

information domain by isolating information flow to TCB(d). This model requires that

any information flow happening in a domain d adheres within the TCB(d), from system

TCB to the TCB(d), or from another domain TCB via filter(s). In this work we do

not discuss the integrity of filters, which can be ensured with other mechanisms such as

formal verification or integrity measurement and attestation [52]. Filters can be processes

or interfaces that normally is a distinct input information channel and is created by a

particular open(), accept() or other call that enables data input. For example, Linux su

process allows a low integrity process (e.g., staff) to be high integrity process (e.g., root)

through calling passwd process thus passwd can be regarded as a filter for processes run

by root privilege. For another example, high integrity process (e.g., httpd administration)

can accept low integrity information (e.g, network data) through the secure channel such

as sshd. Consequently, sshd can be treated as another example of filter for higher privilege

processes. Normally, it is the developer’s tasks to build filtering interfaces and prove

effectiveness to the community [49]. Generally, without viewing system application codes,

21

an easier way for policy administrator to identify filters is to declare filters with clear

annotations during policy development [56]. Here, we assume that filters can be identified

through annotations. Also, in our work, initially we do not have a set of predefined filters.

After detecting a possible policy violation, we identify or introduce a subject as a filter to

resolve policy violations.

Policy Violation Detection Based on the domain-based isolation model, we treat a

TCB(d) as an isolated information domain. We propose the following rules for articulating

possible policy violations for system TCB and TCB(d) protections.

Rule 1 : If there is information flow to a system TCB from its subjects without passing any

filter, there is a policy violation for protecting the system TCB.

Rule 2 : If there is information flow from TCB(dx) to TCB(dy) without passing any filter,

there is a policy violation in protecting TCB(dy).

3.1.3 Policy Violation Resolution

After possible policy violations are identified with violation detection rules, we take

systematic strategies to resolve them. Basically, for a violation, we first evaluate if it can

be resolved by adding or removing related subjects to/from system or domain TCBs. This

causes no change to the policy. Secondly, we try to identify if there is a filter along with

the information flow path that causes the violation. If a filter can be identified, then the

violation is a false alarm and there is no change to the policy graph. Thirdly, we attempt to

modify policy, either by excluding subjects or objects from the violated information flow

path, or by replacing subjects or objects with more restricted privileges. In addition, we

can also introduce a filter subject that acts as a gateway between unauthorized subjects and

protected subjects.

3.2 Analyze Security Policies with CPN Against DIM

Colored Petri Nets (CPN) is a powerful graph-based analysis tool for system

modeling [37]. A Petri Nets includes three basic components: places, transitions, and

22

arcs. Arc expressions specify a collection of tokens, which are added to or removed from

places. If a transition input contains at least one token that is equal to the corresponding

arc expression, the transition is enabled. The difference between CPN and Petri Nets is the

inclusion of color sets in CPN, which can be viewed as abstract data types in a programming

language. These types determine data attributes and operations used in arcs, guards, and

initialization expression functions. CPN can support graph hierarchy, zoom in, zoom out,

color expression, and so on. Also, CPN has a simulator to support execution of specified

models. The simulation is to validate whether the system works correctly reflecting the

design principles. It supports both interactive and automatic simulations. In the interactive

simulation, a user can set breakpoints, choose between enabled binding elements, change

markings of places, and study the tokens in detail. However, in the automatic simulation,

the simulator makes random choices of the enabled binding elements and automatically

executes the whole CPN models.

3.2.1 Policy Simulation with CPN

3.2.1.1 Policy in XML

Based on the definition of policy graph, we design a scheme to express policies in

eXtensible Markup Language (XML) so that our policy can be specified in a standard

form. As shown in Figure 3.4, the XML file generated from a parsed SELinux policy has

two elements: DT and DD. The DT element includes three sets of subelements: (1) non

replicated operation relationships between types, (2) the types that can flow to and from

other types, and (3) the starting domain types which can not be flown into by any other

types. Also, it may contain the types that can only be flown into. The DD element specifies

information about non-replicated transition relationships between types.

In our experiments, we parse a real world binary policy file, policy.19 into a defined

policy structure based on the source package of APOL [10] with our parsing engine.

Then, we retrieve the information about domain types, types and related rules. Using

LibXML2 [47], we transform these information into a XML file in the defined template.

23

domain--domain transition

relationship

types involved in the domain-type related path

domains that are the starting points of the domain-type related paths

domains involved in the domain-type related paths

domain—type relationships

 <?xml version="1.0"? encoding="UTF-8"?>

-<policy>

-<section type="DT">

 <dtoperation start="user_t" direction="write_like" end="devtty_t" />

<dtoperation start="user_mozilla_t" direction="write_like" end="devtty_t" />

<dtoperation start="user_games_t" direction="write_like" end="devtty_t" />

<dtoperation start="sendmail_t" direction="write_like" end="devtty_t" />

<dtoperation start="sysadm_t" direction="write_like" end="devtty_t" />

<dtoperation start="mount_t" direction="write_like" end="devtty_t" />

<dtoperation start="fsadm_t" direction="write_like" end="devtty_t" />

<dtoperation start="mount_t" direction="read_like" end="devtty_t" />

.......

<dlist d="user_t" />

<dlist d="user_mozilla_t" />

.......

<dslist d="kernel_t" />

.......

<tlist d="devtty_t" />

.......

 </section>

-<section type ="DD">

<domaintrans start="sysadm_t" transdomain="mount_t"/>

<domaintrans start="initrc_t" transdomain="mount_t"/>

<domaintrans start="staff_su_t" transdomain="sysadm_t"/>

<domaintrans start="newrole_t" transdomain="sysadm_t"/>

........

</section>

 </policy>

Figure 3.4: Example SELinux policy rules in XML

3.2.1.2 Extended CPN to Express Policy

name allow

Tlist

1'[“name”]

TlistTlist

tl^^[“name”]

tl

tl

1

(b) DrawFO(name)

name

allowname

(a) DrawSP(name)

(c) DrawFI(name) (d) DrawOP(name)

Figure 3.5: Graph drawing

To automatically visualize a policy, we use eXtensible Stylesheet Language (XSL) [33]

to transform the policy in XML to CPN graph. The following basic functions are designed

for the CPN graph generation with standard ML [8] as shown in Figure 3.5.

24

• DrawSP(name) is to draw the types that no information can flow into. This function

draws a place that contains the initial marking whose value is the name of the place,

and the arc that has a variable to express information contained in the place and the

transition called allow. We define dlist as a color set of the place, which is a form of

a string list containing one or more type names.

• DrawFO(name) is to draw the places for types from which information can flow out.

It is similar to DrawSP(name), but the places generated with this function do not

have the initial marking.

• DrawFI(name) defines the function for drawing places containing the types that no

information can flow out from them.

• DrawOP(name) is to draw an arc that connects types. The expression on the arc is

to generate a list expressing flow transitions caused by domain type transitions or

operations between types.

3.2.1.3 Policy in CPN Graph

Hierarchical graph for

SELinux policies

Policy

violations

Figure 3.6: Policy visualization with hierarchy

25

With the above extended CPN functions, XML-based SELinux policy rules are parsed

into a CPN graph. In order to perform the process of detecting policy violations in CPN, the

TCB related definitions, filter information and the rules for policy violation identification

are also expressed in XML and transformed into CPN graphs. Figures 3.6 and 3.7 illustrate

policy visualization results.

Input of the

policies graph
Output of the

policies graph

Figure 3.7: Policy visualization details

3.2.2 Policy Violation Identification

In this section, we specify how to identify the policy violations from the CPN graph.

Due to the complexity of the policy and potential policy violations, we take Apache as the

example to show how to identify the policy violations related to Apache from the CPN

graph, instead of demonstrating our framework with an entire system.

3.2.2.1 Apache TCB and TCB(d) Identification

Based on our TCB identification strategy mentioned in the previous sections, we carry

out the system TCB identification and the result is shown in Table 3.1. The collection of the

TCB(d) for Apache information domain is performed based on our TCB(d) identification

26

method defined in DIM section. Table 3.1 shows the comprehensive list of TCBs that our

tool successfully identified. As stated in DIM part, filters are hard to identify, so we set

initial filter values to null and put this information into the policy XML file. Later, when

possible policy violations are detected, filters are identified and added to the XML file

through CPN.

Table 3.1: Apache information domain
System TCB

kernel_t load_policy_t initrc_t bootloader_t
mount_t ipsec_mgmt_t useradd_t automount_t
hwclock_t admin_passwd_exec_t cardmgr_t checkpolicy_t
kudzu_t sshd_login_t restorecon_t newrole_t
syslogd_t sysadm_t getty_t apt_t
dpkg_t logrotate_t snmpd_t ldconfig_t
lvm_t local_login_t setfiles_t sshd_t
quota_t passwd_t fsadm_t klogd_t
init_t

Identified Key word-based Apache Subjects and Objects
Apache Subjects

httpd_staff_script_t httpd_awstats_script_t httpd_t httpd_rotatelogs_t
httpd_unconfined_script_t httpd_php_t httpd_sysadm_script_t httpd_sys_script_t
httpd_prewikka_script_t httpd_apcupsd_cgi_script_t httpd_user_script_t httpd_suexec_t
httpd_helper_t

Apache Objects
httpd_staff_script_ra_t httpd_unconfined_script_ro_t httpd_cache_t httpd_user_script_rw_t
httpd_user_script_exec_t httpd_prewikka_script_ro_t httpd_exec_t httpd_apcupsd_cgi_script_ra_t
httpd_user_htaccess_t httpd_apcupsd_cgi_htaccess_t httpd_lock_t http_port_t
httpd_sys_script_rw_t httpd_apcupsd_cgi_script_rw_t httpd_tmpfs_t httpd_awstats_script_ra_t
httpd_helper_exec_t http_cache_client_packet_t httpd_log_t httpd_awstats_script_ro_t
httpd_awstats_htaccess_t httpd_awstats_script_exec_t httpd_user_content_t http_cache_port_t
httpd_awstats_script_rw_t httpd_apcupsd_cgi_script_exec_t httpd_staff_htaccess_t httpd_sysadm_script_rw_t
httpd_sys_script_ra_t httpd_prewikka_script_exec_t httpd_suexec_exec_t httpd_sysadm_script_ro_t
httpd_user_script_ro_t httpd_unconfined_script_ra_t httpd_php_tmp_t httpd_php_exec_t
httpd_prewikka_content_t httpd_prewikka_htaccess_t httpd_staff_content_t httpd_staff_script_ro_t
httpd_rotatelogs_exec_t httpd_prewikka_script_ra_t httpd_squirrelmail_t httpd_unconfined_script_rw_t
http_server_packet_t httpd_prewikka_script_rw_t httpd_sys_htaccess_t httpd_modules_t
httpd_staff_script_rw_t httpd_sysadm_script_exec_t httpd_tmp_t httpd_sys_script_ro_t
httpd_sysadm_htaccess_t httpd_staff_script_exec_t httpd_sys_content_t httpd_apcupsd_cgi_script_ro_t
httpd_sys_script_exec_t httpd_unconfined_script_exec_t httpd_config_t httpd_suexec_tmp_t
httpd_sysadm_content_t httpd_unconfined_content_t http_client_packet_t httpd_unconfined_htaccess_t
httpd_sysadm_script_ra_t httpd_apcupsd_cgi_content_t httpd_var_lib_t httpd_user_script_exec_t
httpd_awstats_content_t http_cache_server_packet_t httpd_var_run_t

Identified Flow-based Apache Subjects and Objects
Apache Subjects

applications staff application sysadm application services
user application

Apache Objects
*_node_t (10 types) *_port_t (116 types) *_fs_t (38types) *_home_dir_t (4 types)
others

Identified Apache TCB(d)
httpd_suexec_t httpd_awstats_script_t httpd_t httpd_helper_t
httpd_sysadm_script_t httpd_prewikka_script_t httpd_rotatelogs_t httpd_apcupsd_cgi_script_t
httpd_php_t

27

3.2.2.2 Policy Violation Identification

Simulation is a technique supported by CPN to analyze a system by conducting

controlled experiments [37]. In our experiments, we utilize the simulation feature to

generate policy violations with text expressions. To better understand the violations, we

visualize the generated expressions with another XML transformation. In our simulation,

policy analysis result is stored in a simulation report. Through parsing the simulation

report, we generate the information about policy violation specifications and produce a

new XML file with the similar XSL algorithm. The generated XML file is transformed

into another CPN graph for visualization. Figure 3.8 partially shows the identified policy

violations, specifying that some NON-TCB domain types can write to the type devtty_t,

which can be read by some TCB types.

3.2.2.3 Policy Violation Resolving

Due to the limitation of CPN graph expression, it is not easy to view and understand the

policy and policy violations. In other words, we can only give several example resolutions

of policy violations. Based on the identified policy violations, the integrity of TCB and

TCB(d) is identified since NON-TCB subjects have write_like operations on objects that

can be read by TCB(d) subjects. Retrieving the method of policy violation resolution, we

resolve the policy violations with following methods.

• Modify Policy Rules: Many policy violations are caused because related subjects

or objects have too much privileges. Hence, rather than just removing related

policy statements, we also need to replace these subjects or objects with more

restricted rights. For example, for policy violations caused by read and write

accesses to device_t, our resolution is to redefine device_t by introducing

staff_device_t, user_device_t, and http_device_t. Corresponding policy

rules are also modified as follows:

allow httpd_t device_t:chr_file {ioctl read getattr lock write

28

NON-TCB Apache TCB(d)Violation bridge
Figure 3.8: Policy violations

append}; is changed to

allow httpd_t http_device_t:chr_file {ioctl read getattr lock

write append};

• Add Filter: Based on the domain-based integrity model, a filter can be introduced into

policies to remove policy violations. For example, to remove the violations caused

by port_t, we introduce a network filter subject as follows:

allow user_xserver_t networkfilter_t:process transition;

allow networkfilter_t port_t:tcp_socket {recv_msg send_msg};

After the modification is applied, the original policy violations are eliminated. In

29

NON-TCB Apache TCB(d)Filtered bridge

Violation bridge removed

Figure 3.9: Policy violation resolution

general, to validate the result of a policy modification, we recheck the relationships

between the policy violation related domains and types. Comparing Figure 3.9 with

Figure 3.8, we can observe that all read operations between TCB(d) and type port_t

are removed. Also, the write operations between NON-TCB and port_t are also

removed. Instead, a new domain networkfilter_t is added, which has write and

read operations on port_t. Also, all TCB(d) and NON-TCB subjects can transit to

this new domain type.

30

3.2.3 Discussion

In this Chapter, we have proposed a domain-based isolation model to describe the

access control requirements. In particular, our general method showed how we can identify

system TCBs and domain TCBs regard to information domains in a system, and present

a set of rules to detect all possible policy violations from NON-TCB to system TCB and

between domain TCBs based on domain-based isolation model. We also automated the

analysis processes using CPN as well as visualized graph-based violation detection. We

used SELinux policy as an example to show the functionality and effectiveness of our

methodology.

However, there are several limitations about using CPN for policy analysis.

• Manual identification of TCB and TCB(d) CPN does not provide an effective way

for identifying the information domain and domain TCB which are proposed in

the domain-based isolation model. Hence, we need to manually identify those

information, which are very hard for the policy administrator to handle.

• Limited graph view of policy and policy violation, and difficulty of policy violation

resolution Due to the huge size of the policy and policy violations, the CPN

graphs get complicated, the lines in the graph are crossed and difficult to view.

Hence, the CPN graph view cannot clearly give the policy administrator the

intuitive understanding about policy and policy violations. Consequently, the policy

administrator is difficult to effectively resolve policy violations.

• Difficult to generate the policy graph: Although we have successfully designed and

implemented the functions for automatically generating the policy CPN graph, due

to the complexity of policy, the generation of policy CPN graph was very exhausted.

• Difficult to identify the policy violations: Due to the limitation of CPN, the generated

policy violations are expressed in a plain text. It has to be transformed into

31

CPN graph again based on our designed functions. This brings an unexpected

overhead in terms of policy violation generation and policy transformation costs,

e.g., the generation of policy violation information costs around 6 minutes and the

transformation of policy violation information costs around 1 minutes.

CHAPTER 4: POLICY VISUALIZATION

Information visualization leverages highly-developed human visual systems to achieve

rapid uptake of abstract information. In our framework we use information visualization

techniques to visualize the policy to enable the system administrator to better understand

the configured policy. In this Chapter, we first define the policy graphs, information flow

graphs and policy violation graphs. Based on these definitions, we present our proposed

semantic substrates and adjacency matrix-based policy visualization mechanisms. To

facilitate the policy violation identification, we develop a graph-based query mechanism

based on the policy visualization graphs.

4.1 Policy Related Graph Definition

4.1.1 Policy Graph

As defined in Chapter 3, a security policy consists of a set of subjects, objects, and

operations including write, read and call. Hereby, we define a policy graph as follows:

Definition 2 : A Policy Graph of a system is a directed graph G=(V,E), where the set of

vertices V represents all subjects and objects in the system, and the set of edges E=V × V

represents all information flow relations between subjects and objects. That is,

• V=Vo
⋃

Vs, where Vo and Vs are the sets of nodes that represent objects and subjects,

respectively;

• E=Er
⋃

Ew
⋃

Ec. Given the vertices vs1,vs2 ∈ Vs separately representing subject

s1 and s2, and vertices vo ∈ Vo representing object o, (vs1,vo) ∈ Ew if and only if

write(s1,o), (vo,vs2) ∈ Er if and only if read(o,s2), and (vs1,vs2) ∈ Ec if and only if

call(s1,s2).

33

4.1.2 Information Flow Graph

Based the specification of information flow in domain-based isolation model, here we

arrive the definition of flow transitions and flow path as follows.

Definition 3 : In a policy graph G=(V,E), for any s1,s2 ∈V , an information flow transition

f lowtrans(s1,s2) exists if:

• ∃o ∈V,write(s1,o)∧ read(o,s2); or

• call(s1,s2) .

We also say that predicate f lowtrans(s1,s2) is true if f lowtrans(s1,s2) exists.

Definition 4 : In a policy graph G=(V,E), an information flow path f lowpath(s1,sn) exists

(and predicate f lowpath(s1,sn) is true) if:

• there exists f lowtrans(s1,sn); or

• ∃si ∈V , f lowpath(s1,si)∧ f lowpath(si,sn).

4.1.3 Policy Violation Graph

Based on the definition of policy graph and information flow path, we also arrive the

policy violation graph definition as follows.

Definition 5 : Given a policy graph G = (V,E), the subject vertices belonging to

NON-TCB, system TCB, and TCB(d) are represented by VNTCB, VTCB, and VTCBd ,

respectively. A violation policy graph Gv = (V v,Ev) for domain d is a subgraph of G

where

• V v = {v : v ∈VNTCB,∃u : u ∈VTCB∪VTCBd ∧ (v,u) ∈ E}

• Ev = {(u,v) : u,v ∈V v∧ (u,v) ∈ E}

34

4.2 Policy Visualization Mechanisms

To visualize the policy and policy violations based on the above definitions, we mainly

adopt two kinds of mechanisms including semantic substrates-based policy visualization

and adjacency matrix-based policy visualization.

4.2.1 Semantic Substrates-based Policy Visualization

Policy Graph: Links between S2 and O2 represents

write operation; between S3 and O2 expresses read

operation; between S4 and S3 denotes call operation

S

O

Sc1 Sc2 Sc3

Oc1 Oc2 Ocm

s1
s3

o1

Scn

s4

s5

o2o3

s2

Untrusted subjectTrusted subject object

Figure 4.1: Semantic substrate-based policy visualizationAlgorithm 1: [Building Semantic-based Policy Graph]Input: The Policy file Policy, the Policy Explanation File Fe , the Permission Mapping File Fp , the Subject Classification File Fs, the Object Classification File Fo.Output: A Semantic-based Policy Graph GMethod:(1) Policy_t: = policyParsing(Policy,Fe, Fp, Fs, Fo);/* parsing the policies files into subjects, objects and relationships , and mapping the classification into the parsed policies.(2) G = drawCanvas (Policy_t); /* constructing the canvas for drawing the graphs and also dividing the graphs into different areas. (3) G = drawNodes (G , Policy_t); /* reading the entities for the policies and drawing them in nodes into the classified areas based on the Policy_t structure.(4) G = drawLines (Policy_t, G , n); /* drawing the link from the node to the other nodes and setting the attribute for the link.
Figure 4.2: Algorithm for building semantic substrate-based policy graph

Several visualization studies concluded that humans perceive data coded in spatial

dimensions far more easily than those coded in non-spatial ones [30, 18]. Based on

35

this concept, we use semantic substrates to display policies. We divide a canvas into

different areas based on the classification of entities (subjects and objects) and then

layout nodes expressing the entities into corresponding areas. We also use non-spacial

cues (e.g., color or shape) to emphasize certain nodes or a group of nodes. Figure 4.1

shows the semantic substrates-based graph design. The Y-axis is divided into regions,

where each region contains nodes representing entities such as subjects and objects.

Furthermore, in each region, nodes representing entities of different classifications are

placed in different spaces along with the X-axis. For subjects and objects in a policy,

Sc1...Scn and Oc1...Ocm separately represent certain classifications. Different colors and

shapes are used to distinguish the identification of different nodes. Circles and rectangles

are used to represent subjects and objects, respectively. Relationships between subjects

and objects are expressed with lines in different colors or shapes. For instance, the write

operation between a subject s2 and an object o2 is expressed with a red link.

Different security policies have different formats and components. To give a uniformed

way for policy analysis, we need to preprocess a primitive policy. Figure 4.2 summarizes

the procedures of policy graph representation. First, a policy file Policy is parsed and

mapped through a policy explanation file Fe and a permission mapping file Fp. Fe includes

meta information such as the format of the policy and subject/object attributes in the policy.

The policy format can be binary or text and is organized in a certain order. The subjects

are users or processes and objects are system resources such as files, data, port or labels

specifying these resources. Fp states operations between subjects and objects that are

mapped to write(), read(), or call(). For instance, if a subject has an operation to get

the attribute of an object, the operation is mapped to read(). In addition, Fs and Fo files

separately define subject and object classifications in the system. After parsing the policy,

a canvas is drawn and divided into different areas, on which nodes representing policy

entities are drawn and relationships between them are expressed with arrows. Also, during

the execution of this algorithm, policy rules are stored as attributes for corresponding graph

36

nodes and arrows.

In addition, different colors and shapes in the policy violation graphs are used to help

the identification of different nodes, for example, red circles, black circles and red squares

are used to represent trusted domains (TCB and TCB(d)), untrusted domains and protected

types respectively.

4.2.2 Adjacency Matrix-based Visualization

The semantic substrates is a very good choice for path finding for the case that the

links are not heavily crossed or tangled. For visualizing a path in a dense policy graph

we propose to use an adjacency matrix approach [58, 39]. We further enhance the path

visualization capabilities of the adjacency matrix approach by adding new characteristics

of direction. We also develop a direction based detection that enables the administrator to

intuitively trace the visualized paths.

s7s6s5s4s3s2s1o5o4o3o2o1

o1

o2

o3

o4

o5

s1

s2

s3

s4

s5

s6

s7

1

23

4

Trusted Untrusted
Object-Object or
Subject-Subject

Subject-Object or
Object-Subject

Figure 4.3: Adjacency matrix-based policy visualization

The adjacency matrix is based on the policy graph definitions. Figure 4.3 shows our

proposed adjacency matrix visualization template. The nodes are arranged on both the

37

X-axis and the Y-axis. To visualize a path P = {v0,v1, . . . ,vn} in the adjacency matrix, we

highlight entries (vi,vi) and (vi,vi+1), for i = 0, . . . ,n− 1. We draw an arc from entries

(vi,vi) and (vi,vi+1) for i = 0, . . . ,n− 1, and we draw an arc from entries (vi−1,vi) and

(vi,vi+1) for i = 1, . . . ,n−1. Figure 4.3 shows the visualization of path P = {s2,o2,s4,o1}.

The series of arcs carry all information of the original path. In our template the subjects

and objects are arranged on both the X-axis and the Y-axis. Furthermore, the grid is divided

into four quadrants:

• Quadrant 1: A slot (si,o j) signifies that a subject si can write to an object o j. We

refer to this quadrant as the write quadrant.

• Quadrant 2: A slot (si,s j) signifies that a subject si can call a subject s j.

• Quadrant 3: A slot (oi,s j) signifies that an object oi can read by a subject s j. We

refer to this quadrant as the read quadrant.

• Quadrant 4: A slot (oi,oi) is used to enable the transition.

Based on the above assignments, the path P = {s2,s2,s4,o1} represents the information

flow write(s2,o2), read(s4,o2) and write(s4,o1). Referring to definitions of flow transition

and information flow paths, an information flow path is a sequence of write operations

followed by a read operation, in our proposed adjacency matrix template. This requires the

path visiting the write quadrant then the read quadrant. Therefore, information flow paths

always follow a clock-wise direction. Using this property, an administrator can easily find

the directed path information by scanning the adjacency matrix template.

Furthermore, we use different colors to represent trusted, and non-trusted entities in the

adjacency matrix to express the policy violation graph. For example, red and grey represent

the trusted and non-trusted entities respectively.

38

4.3 Querying Security Policy

Users have difficulty in writing or formulating a query [61]. The idea of the visual

query formulation is to help system administrators specify precise queries on the policy

base using an interactive querying technique which is based on visualization. Using an

approach similar to the Query-by-Example (QBE) method for querying relational data [50,

51], a graphical user interface allows users to write queries. Our approach provides a user

interface and a policy graph that enables the administrator to create and run queries against

the policy base. The queries are generated by connecting our proposed query operators

to formulate the intended information flows. The query operators are designed to provide

functionalities adopted by the previous policy analysis mechanisms [10, 55].

NTCB TCBObjectSubjectLabel

(a) Element Nodes (a’) Element Nodes Examples

(b) Operator Edge

label

write read have

Indirectly flow to

call

Indirectly flow from Indirectly have

(c) Element Annotation

text

text

(d) Operator Annotation

(b’) Operator Edge Examples

(c’) Element Annotation Examples

(d’) Operator Annotation Example

* ? “user_r” “dpkg_*” {“user_t”, “staff_t”, “sysadm_t”}1) 2) 3) 4) 5)

1) * 2) 5 3) >=5 4) shortest 5) time limited <1min

(f) Basic Join Construction

(g) Example of Combined Join Construction

B D F A

B

C1) simple join 2) tuple-sharing join 3) merge join

F

D

E

A

B

C

F

D

E

TCB(d)

Figure 4.4: Query construction

39

4.3.1 Basic Query Formulation

Our framework provides an interactive drag and drop query platform that enables

the administrators to issue information flow queries by simply connecting the provided

components. Our proposed graphical query language is designed to cope with usability

issues that the current policy analysis frameworks suffer [10, 55]. We define the basic

visual components shown in Figure 4.4, as follows:

• Element Nodes (E-Nodes) are shaped as labeled circles; their label represents the

attributes of the element such as subject, object, TCB, TCB(d) or NON-TCB.

• Operator Edge (O-Edge) is represented as the curve that connects the element nodes

to another element nodes. The label of the operator edges represents the query

classification of the query. Based on the query classification, the operator edges

include write, read, call, have, indirect have, indirect flow to, SOD and indirect SOD.

• Element Nodes Annotation (EN-Annotation) is to specify the element nodes value.

It can be a single value such as subject name, or a set of value, e.g.,{subject1,

subject2....subjectn}. When the policy administrator draws the query, this value can

not be omitted but can be partially specified as the wildcards “?” and “*” denote any

character and any sequence of characters respectively.

• Operator Edges Annotation (OE-Annotation) is to specify the query requirement and

determines the return graph of the query. For example, to query the information flow

path from one node to the other node, we can specify to find shortest path, all the path

or partial path. Here, the default (null) value represents to find all the path, which is

the same as “*”.

4.3.2 Query Classification

Based on the proposed domain-based isolation model, we are required to identify the

domain TCB and possible information flows from NON-TCB to TCB or TCB(d). In

40

(a) Node to node information flow query (b) Group to groups information flow query

s1

S

O

Sc1 Sc2 Sc3

Oc1 Oc2 Ocm

s1

s3

o1

(a’) Node to node information flow query result

Scn

s2

s4

s5

o2
o3

(b’) Group to groups information flow query result

S

O

Sc1 Sc2 Sc3

Oc1 Oc2 Ocm

s1

s3

o1

Scn

s2

s4

s5

o2
o3

ObjectSubject

write

o2

NTCB

TCB

TCB(d)
*

*

*

(c) Node (group) to group (node) information flow query (d) Node to node through another node query

*

(d’) Node to node flow through another node query result

S

O

Sc1 Sc2 Sc3

Oc1 Oc2 Ocm

s1

s3

o1

Scn

s2

s4

s5

o2
o3

TCBNTCB

write

s4

(c’) Node (group) to group (node) information flow query

S

O

Sc1 Sc2 Sc3

Oc1 Oc2 Ocm

s1

s3

o1

Scn

s2

s4

s5

o2
o3

(e’) Element node query result example

S

O

Sc1 Sc2 Sc3

Oc1 Oc2 Ocm

s1

s3

Scn

ObjectNTCB

write

TCB

read

NTCB

ObjectSubject

write

SubjectSubject

call

(e) Element node query example

*

s1 o1

s1 s2

s2

s1 s5o3

Figure 4.5: Example query classification and results

41

addition, for the other existing query-based policy analysis tools [55], they also mainly

focus on identifying information flow relationships between different nodes. Based on our

formulation mechanisms, we provide a set of basic query classes that can be enabled by

the policy administrator to query the policy base. These supported query classifications

can satisfy the requirements including the policy analysis based on domain-based isolation

model and can support the basic information flow query supported by other existing policy

analysis tools.

C1. Node to Node information flow paths. This would enable to query an information

flow from a specific subject such as NON-TCB subject to a specific object such as

TCB object. The example in Figure 4.5(a’) shows the query result in the form of the

information flow path from a subject s1 to an object o2 (shown in Figure 4.5(a)).

C2. Group to Groups information flow paths. This would enable to query an information

flow from NON-TCB subjects to TCB and TCB(d) subjects. The example in

Figure 4.5(b) and (b’) respectively shows a path query and the query result from

NON-TCB to TCB and TCB(d).

C3. Node (Group) to Group (Node) information flow paths. This would enable to query

an information flow from one subject such as NON-TCB subject to the objects

such as TCB(d) objects, or from the NON-TCB to other subject. The example in

Figure 4.5(c) and (c’) respectively shows a query and the query result of finding

information flow paths from all NON-TCB to the TCB subject s4.

C4. Node to Node information flow paths through another Node. To find information flow

from one type to another type through a certain type, where types can be subjects or

objects. The example in Figure 4.5(d) and (d’) respectively shows a query and the

query result of finding an information flow path from a subject s1 to a subject s5

through an object o3.

42

C5. Element query. This would enable to query the information domain subjects and

objects and domain TCB subjects and objects. The example in Figure 4.5(e) and (e’)

shows a query and the query result of finding NON-TCB subjects.

4.3.3 Join Query Construction

Based on the construction of the basic policy query, we describe the join query modes

which are constructed based on the shared E-Nodes. The policy administrator can use the

join query to construct more complex queries such as finding the domain that can both write

and read the goal protected objects. Also, using the join query the policy administrator can

accumulate several query results on a single graph. Here, we summarize three main join

query modes: Simple Join, Merge Join and Tuple-sharing Join.

• Simple Join specifies that a set of E-Nodes is connected in sequence through the

O-Edges; Given E-Nodes ni, n j, nk and O-Edges oi,o j, if oi(ni,n j) and o j(n j,nk),

then we say there is a simple join.

• Tuple-sharing Join specifies that two or more E-Nodes are connected from the

same E-Node through the O-Edges; Given E-Nodes ni, n j, nk and O-Edges oi,o j,

if oi(ni,nk) and o j(ni,n j), then we say there is a tuple-sharing join.

• Merge Join specifies that two or more E-Nodes are merged into one E-Node through

the O-Edges; Given E-Nodes ni, n j, nk and O-Edges oi,o j, if oi(ni,n j) and o j(nk,n j),

then we say there is a merge join.

Based on the three identified join modes, the policy query can be further constructed

into more complex structure as shown in Figure 4.4(f).

4.3.4 Query Execution

Based on the definitions of the join query construction, the identification of the different

join format can facilitate the query execution. The paths are simply computed using the

shortest path algorithm such as Dijkstra algorithm. The query execution makes use of

43

Algorithm [Execute Policy Query]

Input: The Policy Query graph Gq

Output: The Policy graph G with query result

Method:

(1) Nlist = getElementNodes(Gq) /* get all the nodes in query graph

(2) FOR each na ∈ Nlist DO

(3) Elist= getConnectEdges(na, Gq) /* get all the edges of node na

(4) FOR each e ∈ Elist DO

(5) nb=findConnectNode(e, na, Gq) /* get the connected node of na

(6) If nb. getMergeNodes(nb) !=NULL Then

(7) na = na - nb. getMergeNodes(nb, e) /* na remove the duplication

caused by merge join

(8) If na. getTupleNode(na) !=NULL Then

(9) nb = nb - na. getTupleNode(na, e) /* nb remove the duplication caused

by tuple-sharing join

(10) If na !=NULL && nb !=NULL Then

(11) queryExecution(na, e, nb, Gq) /* execute the query

(12) na.addTupleNode (nb , e) /* save the data of nb to na for the tuple-sharing

(13) nb.addMergeNode (na, e) /* save the data of na to nb for the merge join

Figure 4.6: Query execution algorithm

the shared nodes between group nodes. For example, in the tuple-sharing join (shown in

Figure 4.4), suppose A is NTCB, B is TCB, C is fsadm_t and the O-Edges have the same

annotation. Since fsadm_t belongs to TCB, the query only needs to be executed from A to

B. Similarly, in the merge join, if D is NTCB and E is a subset of NTCB (e.g. xdm_t) or

shares labels with the NTCB. In this case the query evaluates paths from D to F then the

paths from E - (E ∩ D) to F.

As the algorithm shown in Figure 4.6, the policy query execution algorithm is mainly

composed of two main parts. In the first part, the algorithm identifies all the E-Nodes from

the query graph using the function getElementNodes(Gq), then for each E-Node na, it finds

all the outgoing O-Edges connected to node na using getConnectEdges(na,Gq). In the

second part, for each of the identified edges e in the previous step, the algorithm identifies

the connected nodes of nb which is retrieved by the function f indConnectNode(e,na,Gq).

The two cases of merge query and tuple sharing are checked and the duplication is removed.

If na and nb are part of the merge query, the duplicated nodes are removed from na by using

the expression na−nb.getMergeNodes(nb,e) and the merge join nodes are stored in the nb

attribute and can be retrieved with the expression nb.getMergeNodes(nb,e). On the other

44

hand, if na and nb are part of tuple-sharing, the duplication of nb with the expression nb−
na.getTupleNode(na,e), where the tuple-sharing nodes are maintained in the na attribute

and can be retrieved with the expression na.getTupleNode(na,e). After the information

duplication is removed, the query from na to nb with an operator e is executed. Finally, the

executed queries are added to the graph by adding the nodes and edge information into na

and nb respectively using functions na.addTupleNode(nb) and nb.addMergeNode(na).

(c) Policy Violation Graph Solving through adding new object O2 which can be read by subject s3 (d) Policy Violation Graph Solving through removing read operation between TCB or TCB(d) subject S3 and O1
SO Sc1 Sc2 Sc3Oc1 Oc2 Ocms1s3 o1 Scns2 SO Sc1 Sc2 Sc3Oc1 Oc2 Ocms1s3 o1 Scns2o2
(a) Policy Violation Graph: S1 and S2 are NON-TCB subject which can flow to TCB or TCB(d) subject S3 through object O1 (b) Policy Violation Graph Solving through Filter, which can be transited by NON-TCB and TCB subjects and can read, write object O1

SO Sc1 Sc2 Sc3Oc1 Oc2 Ocms1s3 o1 Scns2 SO Sc1 Sc2 Sc3Oc1 Oc2 Ocms1s3 o1 Scns2

Figure 4.7: Policy violation and modification example graphs

4.4 Policy Violations and Resolutions in Graph

With a generated policy violation graph, we introduce different approaches to modify

the policy graph, remove policy violations and illustrate the expected graph-based result

after the modification. Based on the policy violation resolution strategies discussed in

DIM, other than ignoring a policy violation through adding related subjects to system or

domain TCBs, we can remove the violation by importing a filter subject. Comparing with

45

Figure 4.7 (a) with violation resolved graph in Figure 4.7 (b), write and read operations

by the NON-TCB and TCB are removed, transition relationships between subjects and the

filter are added, and the policy violations caused by NON-TCB subjects S1 and S2 are

resolved. Another optional way for resolving policy violations is to import new subjects or

objects to restrict original subjects or objects privileges. As shown in Figure 4.7 (c), new

object o2 is introduced so the information flows between NON-TCB and TCB are removed.

Also, we can resolve the policy violations through deleting related policy statements. As

shown in Figure 4.7 (d), the read operation between an object o1 and TCB subject S3 is

removed to resolve policy violations between NON-TCB and TCB.

CHAPTER 5: POLICY ANALYSIS AND MANAGEMENT FRAMEWORK

In this Chapter, we discuss the implementation details of our proposed framework policy

visualization analysis tool (PVA). We then discuss how PVA tool can be used to identify the

policy violations in the SELinux policy. Finally, we prove the usability of our tool through

performing a user study.

5.1 Visualization-based Policy Analysis and Management Framework

Our policy analysis framework includes Policy Analysis Modules, System Components,

and Data Flow for policy analysis as shown in Figure 6.1. Policy Analysis Modules

are composed of several analysis components such as TCB Domain Identification,

Domain-based Isolation Model, and Resolution of Policy Violation that are designed based

on the policy analysis methodology in Chapter 3. For the System Components, the Policy

Parsing Module is to parse and map the operations between types to write_like, read_like,

and call operations. For example, the operation like getattr can be mapped to a read_like

operation. TCB(d) is discovered and inserted into the policies using the TCB Domain

Identification module in Policy Analysis Modules. In the Policy Visualization Module,

the policies are visualized into different graphs based on the User Input Event. Then

through executing the designed policy queries, t he Analysis Report Module generates

the Policy Violations Express in Graph. In addition, this module supports the policy

modification performed by Policy Violation module. The Decision Flows components

govern all processes in our framework.

47

Policy
Permission

Mapping

TCB Domain Identification Resolution of Policy Violation
Domain-based Isolation

Model

Policy violations represented in graph

Analysis Report Module

Policy Visualization Module

Policy in Graph

Policy Parsing Module

Policy Checking Rules

Policy Analysis Modules

Policy Modification

inputinput

input

System Components

input

transform

execute modify

Policy parsed into entities and entities

relationship

Policy mapped with TCB, TCB(d)

definition

Load the

policy

Policy

administrator

Visualize

the policy

Analyze the

policy graph

OK

Policy

Violation

Visualize

the policy

violation

support

Modify the

 policy in graph or

text mode

parsed policies

policy graph

simulation report

Yes

Yes

No

modification

No

policy binary file

Modify the

policy in graph

modified policy

 graph

Modify the policy

file

modified policy file

support

Decision Flow

Figure 5.1: Policy visualization-based analysis and management framework

48

5.2 Visualization-based Policy Analysis and Management Tool (PVA)

5.2.1 Design Principles

The PVA tool is based on a self-explanatory graphical user interface. To enhance the

cognition and understanding of the policy information, we provide implementations of

both semantic substrates-based and adjacency matrix-based visualization layouts. Another

important aspect of our design is to be expressive and directly mapped to the real system

policy analysis. By providing a visualization based policy query platform, our design

enables the administrator to build a query by example.

5.2.2 PVA Tool Implementation Details

Our implementation is based on the Java JDK1.6 and supporting libraries. The graph

drawing modules are based on our extensions to the open source package Piccolo [19]. Our

parsing tool is based on the policy structure adopted by the APOL [10] tool. Figure 5.2(a)

shows a snapshot of the our tool. The policy administrator can interactively import,

analyze, query and modify the policy. The left window is composed of two parts: semantic

substrates-based visualization and adjacency matrix-based visualization, and each window

includes the tabs for view, analysis, and violation. The view tab provides the GUI for

the policy graph overview, content view and detail view including zoom in and zoom out

features. The analysis tab supports the analysis of the policy by enabling the administrator

to select the security goals of interest and ultimately locate the policy violation with the help

of the query function. The violation tab displays all the policy statements that are involved

in security violations. Furthermore, in this tab the policy administrator can directly modify

the policy by using the text editor or directly editing the policy graph. In the main window,

the policy graphs, query results, goal related policy graphs and the policy violation graphs

are displayed.

49

Figure 5.2: Policy visualization-based analysis and management tool

5.2.3 Policy Graph

The main window in Figure 5.2(a) shows the visualized SELinux policy based on our

semantic substrates design, in which there are 1,337 nodes, and 11,134 links. The Y-axis is

divided into four regions including USER (3 nodes), ROLE (6 nodes), DOMAINS(308

nodes) and TYPES(1,092 nodes). The X-axis is labeled with the domain and type

classifications as we discussed in SELinux overview. The domain regions are divided

into four different areas SD (System Domain), DAE (Daemons Domain), PRO (Program

Domain) and ULO (User Login Domain). The type regions are divided into seven different

50

areas ST (security types), DT (devpts types), FT (file types), PT (procfs types), DE (devpts

types), NF (nfs types), and NE (network types). To help a policy administrator to easily

identify the different regions, the elements in non-neighboring regions are represented as

different shapes, for example users and domains are expressed with circle, and roles and

types are expressed with rectangle. The edges between different regions are represented

by different colored lines, for example the write operation between a domain and type are

represented by red edges and the read operations by green edges. Also, policy administrator

can view node attributes by clicking on the specific nodes. Figure 5.2(b), shows the

adjacency matrix-based policy visualization method, which was compiled by selecting a

subset of the nodes in the semantic substrates overlay.

As an example, we use Apache web server as a target service domain to achieve high

integrity. We first identify subjects and objects belonging to Apache domain. We then

specify Apache TCB(d), list the policy violations identified against our integrity model,

and resolve them with different principles.

5.2.3.1 Apache Domain Identification

To identify subjects and objects for Apache domain, we have the following queries

constructed for Apache information domain identification.

• Key word-based policy subjects or objects query As discussed earlier, we use

http as a keyword prefix. As a result, subjects and objects such as httpd_t and

httpd_php_t are included into Apache domain. Figure 5.3.I.(a) shows the query.

• Direct flow-based subjects or objects query To investigate Apache domain subjects

and objects based on direct flows, we construct the query shown in Figure 5.3.I.(b). In

this query, we discover all subjects and objects that have a direct flow to the initially

identified Apache subjects and objects and include them into Apache domain.

Table 3.1 shows a selected list of subjects and objects that we detected.

51

(III). Policy violation caused by http_port_t is solved through

adding networkfilter into the related policies.

(II). Policy violations caused by NON-TCB subjects flow to

TCB(d) subjects through httpd_port_t

(I).Query examples for Apache domain

Subject

write

http?

Object

http?

Subject

http*

Object

?

write

Subject

?

Object

http*

(a) : Keyword-based Apache domain identification (b): Flow-based Apache domain identification

call

Subject

http*

Object

?

Indirect flow to

Subject

?

Object

http*

(c) : Transition-based Apache TCB(d) identification (d) : Flow-based Apache TCB(d) identification

(e) : Apache domain violation identification

Indirect flow to

NTCB

?

TCB(d)

http*

Figure 5.3: Policy violation identification and modification for Apache

5.2.3.2 Apache TCB(d) Identification

For domain TCB identification steps described in DIM, we query TCB(d) for an

information domain according to the following steps.

• Transition-based subjects query To query a TCB(d), we first identify TCB(d) based

on subject dependencies considering all associated entities. Running the query shown

52

in Figure 5.3.I.(c), we get initial TCB(d) subjects from Apache information domain.

Specifically, our analysis shows that all subject domains in Apache related policy

rules include a set of domain relationships since a domain httpd_t can transit to

other httpd domains such as httpd_php_t and so on. Thus, a subject labeled with

httpd_t is a predominant subject which launches other subjects in Apache server.

Similarly, a subject labeled with httpd_suexec_t is also a predominant subject

since this domain can transit to most entities in other httpd domains. Naturally,

httpd_t and httpd_suexec_t are included into Apache TCB(d).

• Indirect flow-based subjects query To identify all subjects that can transit

only to the initially identified TCB(d), we construct the query as shown in

Figure 5.3.I.(d)). Based on the generated query results, httpd_sysadm_script_t,

httpd_rotatelogs

_t and httpd_php_t can transit only to httpd_t and httpd_suexec_t other than

system TCB subjects.

5.2.3.3 Policy Violation Queries

To generate the policy violation graph, a query is constructed as shown in

Figure 5.3.I.(e), where we try to identify the policy violations from NON-TCB to TCB

caused by indirect information flow. Figure 5.3 II shows the details of policy violation

graph generation based on query. The query operations, NON-TCB, TCB and TCB(d) are

elaborated in a file Ftcb. Also, NON-TCB, TCB and TCB(d) subject nodes are separately

colored. Then we discover all flow transitions from NON-TCB subjects to system TCB

subjects or TCB(d) subjects. Note that it is optional for a policy administrator to specify

queries from NON-TCB to TCBs through specifying the exact subject names rather than

using “*”.

As an example of system TCB isolation violations, Table 5.1 includes all identified

policy violations caused by NON-TCB subjects flowing into TCB subjects fsadm_t,

snmpd_t, and mount_t. Also, Table 5.2 shows all policy violations identified for protecting

53

Apache information domain.

Table 5.1: Fsadm_t related policy violations example

Subject Type:Class Subject Resolution
200 network fsadm_t Filter

rhgb_t, smpmount_t mnt_t:dir fsadm_t Modify
hotplug_t etc_runtime_t:file fsadm_t Ignore

33 unpriv_userdomain:fd use fsadm_t Modify
134 initrc_t:fifo_file fsadm_t Modify
16 removable_device_t:chr_file fsadm_t Modify

sysadm_cdrecord_t, user_cdrecord_t, staff_cdrecord_t scsi_generic_device_t:chr_file fsadm_t Modify
200 network snmpd_t Filter

rhgb_t, smpmount_t mnt_t:dir snmpd_t Modify
hotplug_t etc_runtime_t:file snmpd_t Ignore

200 devtty_t:chr_file snmpd_t Modify
134 initrc_t:fifo_file snmpd_t Modify
131 initrc_devpts_t:chr_file snmpd_t Modify
200 network mount_t Filter

rhgb_t, smbmount_t mnt:dir mount_t Ignore
hotplug_t etc_runtime_t:file mount_t Ignore

16 removable_device_t:chr_file mount_t Modify
200 devtty_t: chr_file mount_t Modify
134 initrc_t:fifo_file mount_t Modify
3 sysadm_tty_device_t: chr_file mount_t Modify

131 initrc_devpts_t:chr_file mount_t Modify
25 sysadm_devpts_t:chr_file mount_t Modify
16 removable_device_t:chr_file mount_t Modify

5.2.3.4 Policy Violation Resolution

Based on the identified policy violations, TCB and TCB(d) integrity are violated

because NON-TCB subjects have write_like operations on objects that can be read by

TCB(d) subjects. Retrieving the method of policy violation resolution, we resolve the

policy violations with the following methods.

Adjust TCB(d) After policy violations are identified, Apache TCB(d) is required to be

adjusted and policy violations should be removed. As shown in Table 5.2, httpd_awstat

s_script_t can flow to TCB(d) subjects through httpd_awstats_script_rw_t. At

the same time, it is flown in by many NON-TCB subjects through some common types

such as devtty_t. Hence, we ignore the violations caused by this awstats_script and

include it into TCB(d). Similar situation occurs for httpd_apcupsd_cgi_script_t and

httpd_prewikka_script_t. However, httpd_staff_script_t cannot be included into

TCB(d) since it would lead the unlimited file access for the staff services such as staff_t,

54

Table 5.2: Policy violations of Apache domain
Policy Violations

NON-TCB Type:Class TCB(d) Subject Solve
270 *_node_t: node TCB(d) subjects Filter
270 *_port_t: tcp_socket TCB(d) subjects Filter
270 netif_t: netif TCB(d) subjects Filter
6 subjects dns_client_packet_t :packet TCB(d) subjects Filter
6 subjects dns_port_t:packet TCB(d) subjects Filter
25 sysadm_devpts_t:chr_file httpd_t Modify
104 initrc_devpts_t: chr_file httpd_t,httpd_rotatelogs_t Modify
16 console_device_t: chr_file httpd_t,httpd_suexec_t Modify
270 devlog_t :sock_file httpd_t,httpd_suexec_t Modify
270 device_t:chr_file TCB(d) subjects Modify
270 devtty_t:chr_file TCB(d) subjects Modify
3 sysadm_tty_device_t:chr_file httpd_t Modify
5 urandom_device_t:chr_file httpd_t Modify
270 zero_device_t:chr_file TCB(d) subjects Modify
134 initrc_t:fifo_file TCB(d) subjects Modify
5 var_run_t:dir httpd_t Modify
72 var_log_t: dir httpd_t Modify
72 tmpfs_t:dir httpd_t Modify
httpd_staff_script_t httpd_staff_script_*_t:file httpd_t Modify
httpd_user_script_t httpd_user_script_*_t:file httpd_t Modify
httpd_sys_script_t httpd_sys_script_*_t:file httpd_t Modify
httpd_unconfined_script_t httpd_unconfined_script_*_t:file httpd_t Modify
webalizer_t httpd_sys_content_t:file httpd_t Modify
httpd_apcupsd_cgi_script_t httpd_apcupsd_cgi_script_*_t:file httpd_t Ignore
httpd_awstats_script_t httpd_awstats _script_*_t:file httpd_t Ignore
httpd_prewikka_script_t httpd_prewikka_script_*_t:file httpd_t Ignore

Further Policy Violations Example
NON-TCB Type:Class Adjusting Subject Solve
270 devtty_t:chr_file httpd_prewikka_script_t Modify
270 devtty_t:chr_file httpd_awstats_script_t Modify
270 devtty_t:chr_file httpd_apcupsd_cgi_script_t Modify

staff_mozilla_t, and staff_mplayer_t.

Remove Policy Rules Another way for resolving policy violations is to remove the

related policy statements. For example, webalizer_t is to label a tool for analyzing the

log files of web server and is not necessary to modify the information of web server. To

resolve the policy violations caused due to the write access to httpd_sys_content_t,

we remove the policy rule stating write_like operations between webalizer_t and

httpd_sys_content

_t.

Modify Policy Rules Many policy violations are caused because related subjects or

objects are given too much privileges. Hence, rather than just removing related policy

statements, we also need to replace these subjects or objects with more restricted rights. For

example, for policy violations caused by read and write accesses to initrc_devpts_t, our

55

solution is to redefine initrc_devpts_t by introducing initrc_devpts_t, system_ini

trc_devpts_t, and *_daemon_initrc_devpts_t(* representing the corresponding

service name). Corresponding policy rules are also modified as follows:

allow httpd_t initrc_devpts_t:chr_file {ioctl read getattr lock

write append}; is changed to

allow httpd_t httpd_daemon_initrc_devpts_t:chr_file {ioctl read

getattr lock write append};

Add Filter Based on the domain-based integrity model, a filter is introduced into

policies to remove policy violations. For example, to remove the violations caused by

http_port_t, we introduce a network filter subject as follows:

allow user_xserver_t networkfilter_t:process transition;

allow networkfilter_t http_port_t:tcp_socket {recv_msg send_msg};

After the modification is applied, the original policy violations are eliminated. In

general, to validate the result of a policy modification, we recheck the relationships

between domains and types associated with the policy violations. Comparing Figure 5.3.II

with Figure 5.3.I, we can observe that all read operations between TCB(d) and type

http_port_t are removed. Also, the write operations between NON-TCB and

http_port_t are also removed. Instead, a new domain networkfilter_t is added, which

has write and read operations on http_port_t. Also, all TCB(d) and NON-TCB subjects

can transit to this new domain type.

5.3 User Study

To investigate the usability of PVM, we performed the user study from two perspectives.

One is to focus on PVM functionality for browsing and analyzing the security policy. For

this viewpoint, APOL is the only existing tool for policy browsing and analysis. Hence

we compared APOL with PVM to prove the policy browsing and analysis ability of PVM.

56

In addition, based on DIM, PVM can identify policy violations and display them with

semantic-substrates and adjacency-matrix methods, respectively. Thus, we also asked the

participants to compare semantic-substrates and adjacency-matrix methods in visualizing

SELinux security policies and policy violations.

5.3.1 Participant Enrolling and Characteristics

We first contacted some student participants for the participant enrollment after giving

a guest lecture in the access control class. Other participants were enrolled after we invited

people from the information security lab, the network lab, the visualization lab, the human

computer interaction lab and system administrator office of the College of Computing and

Informatics. In addition, we emailed some people and get some participants who are Linux

experts or system administrators.

The sample for this study is consisted of 33 system administrators (15.2%), graduate

students (72.7%), and undergraduate students (12.1%) with different specializations within

computer science (69.7% information security; 6.1% computer networking; 6.1% database

systems; 6.1% computer graphics and visualization; and 12.1% other) of various ages

[12.1% were 18 2̃2 years old (y. o.), 42.4% are 22 2̃6 y. o., 30.3% are 26 3̃0 y. o.,

and 15.2% are 30 4̃0 y. o.]. Participants differ in terms of their most frequently used

OS (15.2% Linux; 72.7% Windows; and 12.1% Mac OS), the frequency with which they

change OS configuration settings (27.3% never; 54.5% monthly; 12.1% weekly; and 6.1%

daily), the frequency with which they configure or check their OS security policies (30.3%

never; 54.5% monthly; 6.1% weekly; and 9.1% daily), whether or not they use special

software tools to manage their OS security policies (21.2% use special software tools;

63.6% do not use special software tools; and 15.2% do not know whether or not they use

special software tools), the extent to which they agree that configuring security policies

is an important task (3% strongly disagree; 0% disagree; 0% neither agree not disagree;

45.5% agree; and 51.5% strongly agree), and the amount of time they would be willing to

spend on configuring a security policy (6.1% no time; 33.3% up to 15 minutes; 30.3% up

57

to 30 minutes; 6.1% up to 1 hour; 3% up to 2 hours; and 21.2% more than 2 hours).

5.3.2 Policy Used

The participants were asked to analyze the same security policies with APOL and PVM.

The policy we choose is real SELinux policies from major publisher. We chose this policy

for the following reasons:

• It would be necessary to to simulate the realistic situation that the policy

administrator might counter in practice.

• It would also essential to consider the reasonable size of security policies so that the

user study in both APOL and PVM would be more convenient to the participants.

The size of the security policy in our user study is approximately 200KB.

5.3.3 Instruction

Execute the policy

analysis

View the policy

analysis details
Analysis result tree

Policy analysis

options

Policy browsing

and analysis

Figure 5.4: APOL tool introduction

58

To give ideas about how to use APOL and PVM and how to compare the two

visualization mechanisms in PVM, other than communicating the SELinux policy

knowledge to the participants, an instruction was provided with screen shots in two main

parts (APOL and PVM sample results are shown in Figures 5.2 and 5.4), instead of

explaining the SELinux policy to all participants.

In the first part of the instruction, we described how to use APOL and PVM to browse

and analyze the security policy with the same tasks. The participants were instructed

to load the security policy and browse any contents they were interested in. Then the

participants were required to follow the instructions to complete the tasks including (1)

identifying the information types containing gcon, (2) identifying all the direct information

flow flowing out from jvm_t , (3) identifying direct information flow from jvm_t to

java_t, (4) identifying indirect information flow from test_t to user_install_t ,

(5) identifying direct information flow from jvm_t, test_t to root_t , (6) identifying

information flow from jvm_t to sysxo_t through root_t , (7) identifying direct

information flow from group1= {test_t, jvm_t} to group 2={xo_t, root_t} and

group 3={user_install_var_t, user_install_exec_t}, (8) repeating step 6 and step

7 to see the combined result of analysis. In addition, the participants were asked to play

the tool freely to see such as how the interface was designed, how the security policy was

composed, and other experimental interests.

The second part of the instruction mainly elaborated how to use semantic-substrates and

adjacency-matrix methods separately to visualize the security policy, read information from

the visualized policy, generate and display security policy violations against predefined

security goals, and identify the reasons of the existing policy violation such as why an

untrusted domain user_install_t can flow to a trusted domain sysxo_t (semantic

substrates and adjacency matrix sample figures shown in Figure 5.2).

59

5.3.4 User Study Measurement

In the questionnaire, we design the total 20 items to get the participant attitude towards

measurements including the ease of constructing queries, the ease of understanding policy

analysis results and the overall ease of using the tool interface. Among these measurement,

the first two items are to measure PVM and APOL in policy analysis aspect and the

latter is to focus on policy browsing, understanding and the overall experience of the tool

interface. For each measurement, since we designed the same items for APOL and PVM,

we summarize our measurement items with one of methods-APOL–as follows.

5.3.4.1 Ease of Constructing Policy Analysis

Ease of constructing queries (α = .90) using APOL and PVM for policy analysis was

measured with 4 items. Participants were asked to rate how easy the processes described in

the items using the APOL and the PVM functions are with a 5-point rating scale (1= very

complicated to 5 = very easy). The four items for APOL were listed as “ combining several

analysis requests are: ” “ composing a policy analysis in APOL was:” “ using APOL to

analyze was:” and “ figuring out what to analyze with APOL was:”

5.3.4.2 Ease of Understanding Policy Analysis Results

Ease of understanding the query results (α = .81) using APOL and PVM for policy

analysis was measured by 3 items with a 5-point rating scale (1= strongly disagree to 5 =

strongly agree). The items are composed of “ the analysis result in APOL can be easily

investigated,” “ the entities relationship in the analysis can be identified easily,” and “ the

different analysis result can be easily combined.”

5.3.4.3 Overall Experience of Using the Tool Interface

Overall ease of use for APOL and PVM interfaces (α = .90) was measured by 3 items

with a 5-point scale (1= strongly disagree to 5 = strongly agree). The sample items include

“ browsing and understanding the security policy using APOL is:” “ you would like to use

APOL interface for policy analysis,” and “ the APOL interface shows how the different

60

types and domains are inter-connected.”

5.3.5 Measurement for Semantic-substrates versus Adjacency-matrix

To get the idea of participants experience to our visualization methods, we designed the

total 18 items focusing on three aspects including ease of identifying policy violations, ease

of tracing policy violation elements, and satisfaction with the policy visualization. For each

measure, the same items were developed for semantic-substrates and adjacency-matrix

methods. In the following, we summarize the measurement items of our user study for

those visualization methods.

5.3.5.1 Ease of Identifying Policy Violations

Ease of identifying policy violations (α = .75) using the semantic-substrates and

adjacency-matrix methods were measured by 3 items with a 5-point rating scale (1=

strongly disagree to 5 = strongly agree). The sample items are composed of “ the policy

violation identification of semantic-substrates is easy to perform,” “ the untrusted domain

and trusted domain in semantic-substrates are easy to identify,” and “ it is very flexible in

semantic-substrates for identifying different policy violations.”

5.3.5.2 Ease of Tracing Policy Violation Elements

Ease of tracing policy violation elements (α = .72) using the semantic-substrates

and adjacency-matrix method were measured by 3 items with a 5-point rating scale (1=

strongly disagree to 5 = strongly agree). The items include “ semantic-substrates is easy

to trace back domains and types included in a policy violation,” “ it is easy to identify

transitions between trusted and untrusted domains in semantic-substrates,” and “ it is easy

to understand the policy violation in semantic-substrates.”

5.3.5.3 Satisfaction With the Visualization Policy

Satisfaction with the visualization policy (α = .73) using the semantic-substrates and

adjacency-matrix methods were measured by 3 items. Participants were asked to rate the

degree to which they liked different aspects of the two policy visualization methods with a

61

5-point rating scale (1= do not like at all to 5 = like it very much). The sample items are “

viewing specific policy element relationships (domains and types),” “ this visualization is

intuitive and is easy to use,” and “ the visualization is clear, not crowded and not cluttered.”

5.3.6 Procedure

To perform the user study, we installed APOL and PVM in our lab machine in an

independent room without having any unexpected interruptions to the participants. The

participants were required to come to our lab for the experiments. They first opened and

browsed the security policies, which were then analyzed using APOL and PVM based

on our instructions. Then the participants were required to visualize and identify security

policy violations with semantic-substrates and adjacency-matrix methods. With these steps,

the participants were required to use the same example SELinux policy.

After completing the policy analysis, participants were asked to complete a post-session

questionnaire to assess their experience with the two tools and two visualization methods,

their experiences with security policy analysis, their general control inclinations, and their

demographic characteristics.

5.3.7 Data Collection

In our questionnaire design, we implemented the questionnaire using the lime survey

tool [2] and posted it on our lab server. For each participant, our lab sever recorded their

answers to the questions, whether or not they finished the questions. All these answers

were stored and could be exported through a database for the later analysis.

5.4 Results

5.4.1 PVM versus APOL Results

APOL PVM
Measure items Mean SD Mean SD
Ease of constructing queries 2.78 .94 4.36 .41
Ease of understanding query results 3.13 .78 4.32 .40
Overall ease of using the interface 2.41 .86 4.42 .43

Table 5.3: PVM versus APOL.

62

Paired samples t-tests [4] were conducted in order to compare participants’ experience

towards the two approaches to policy analysis. Corresponding to each measurement, we

obtained the following results (shown in Table 5.3).

• Ease of constructing queries: Through calculating the answers from the participants

for this measurement, the satisfaction tendency for APOL is (M=2.78, SD= .94),

compared to PVM (M = 4.36, SD = .41). Therefore, constructing queries with PVM

is perceived to be significantly easier than constructing queries with APOL (t(32) =

-9.67, p < .001)

• Ease of understanding query results: Based on the three answers from the

participants for this measurement, the satisfaction tendency for APOL is (M = 3.13,

SD = .78), compared to PVM (M = 4.32, SD = .40). Hence, understanding query

results with PVM is also perceived to be significantly easier than understanding

queries with APOL (t(32) = -9.07, p < .001).

• Overall ease of using the interface: The user study indicates that the satisfaction

tendency for APOL is (M=2.41, SD = .86), compared to PVM (M=4.42, SD = .43).

Hence, the overall PVM interface is perceived to be significantly easier to use than

the APOL interface (t(32) = -11.82, p < .001).

In summary, the participants clearly indicated that all examined aspects of the PVM

approach to policy analysis are easier than the corresponding aspects of the APOL

approach.

5.4.2 Semantic-substrates versus Adjacency-matrix Results

semantic-substrates adjacency-matrix
Measure items Mean SD Mean SD
Satisfaction with the visualization policy 4.36 .50 4.11 .65
Ease of identifying policy violations 4.40 .40 4.17 .64
Interpretability of visualization results 4.23 .64 3.99 .70

Table 5.4: Semantic-substrates comparing Adjacency-matrix

63

Paired samples t-tests [4] were also conducted in order to compare participants’

experience towards two visualization methods for policy analysis and policy violation

visualization. Based on the measurement criteria, we obtained the following results (shown

in Table 5.4) with a 5-point rating score (1= do not like at all to 5 = like it very much).

• Ease of identifying policy violations: Through calculating the answers from the

participants for this measurement, the satisfaction tendency for semantic-substrates is

(M=4.40, SD= .40), compared to adjacency-matrix (M = 4.17, SD = .64). Therefore,

identifying policy violations with the semantic-substrates visualization is perceived

to be significantly easier than identifying policy violations with the adjacency-matrix

visualization (t(32) = 2.21, p < .05).

• Satisfaction with the visualization policy: Based on the answers from the participants

for this measurement, although there is a tendency for participants to be more

satisfied with the semantic-substrate visualization (M = 4.36, SD = .50), compared

to the adjacency-matrix visualization (M = 4.11, SD = .65), this tendency is not

significant (t(32) = 1.98, p = .056).

• Interpretability of visualization results: The user study also indicates that the

satisfaction tendency for semantic-substrates is (M=4.23, SD= .64), compared to

adjacency-matrix (M = 3.99, SD = .70). Therefore, interpreting the visualization

results with both methods is perceived to be similar (t(32) = 1.98, p < .056).

In summary, although there is a tendency for participants’ perceptions of the

semantic-substrates visualization to be more favorable, compared to their perceptions of

the adjacency-matrix visualization, this tendency is only significant with regards to the

ease of identifying policy violations.

5.5 Lessons Learned

Our evaluations of PVM were carried out through the steps presented in the previous

sections. We summarize some lessons that we have learned from the user study.

64

Lesson 1: Ensure that participants understand the assigned task .

Communicating clearly with survey participants and confirming the participants with

the proper information before the survey were crucial. We found out that the best way to

perform the user study is to repeatedly remind the participants what they understood and

what they needed to do.

Lesson 2: Test materials before sending out It is very important to run a pre-test before

starting the survey. In our experiment, the researchers tested all the materials including

instruction, tools and questionnaire first. Then we invited few participants to test our

materials and setup, so that the design of the overall experiment could be fully debugged,

modified and validated.

Lesson 3: Use as little paper work as possible Initially, we designed the paper-based

questionnaire but the paper work caused significant overhead for analyzing and maintaining

user study data. Hence, we changed the questionnaire to be the online-based one, which

brought the benefits of taking care of answering sessions, data collection, analysis, and

backup.

Lesson 4: Minimize the chances that participants may make mistake Minimizing the

chances that participants may make mistakes unrelated to the user study is a challenging

problem. For example, some participants were confused with PVM since it displays the

results on two display panes.

Lesson 5: Understand Limitations of User Study Due to the availability of current policy

analysis tool and survey participants, we identified several limitations. First, we could only

use the most sophisticated tool APOL to measure the effectiveness and efficiency of our

PVM tool. This biased attempt would not be a fair to PVM. Second, since APOL does not

have trusted and untrusted concepts in the tool, we were not able to compare this important

characteristics of PVM with APOL.

CHAPTER 6: DYNAMIC REMOTE ATTESTATION

In distributed computing environments, it is crucial to measure whether remote parties

run buggy, malicious application codes or are improperly configured by rogue software.

Remote attestation techniques have been proposed for this purpose through analyzing

the integrity of remote systems to determine their trustworthiness. Typical attestation

mechanisms are designed based on the following steps. First, an attestation requester

(attester) sends a challenge to a target system (attestee), which responds with the evidence

of integrity of its hardware and software components. Second, the attester derives runtime

properties of the attestee and determines the trustworthiness of the attestee. Finally and

optionally, the attester returns the attestation result, such as integrity measurement status,

to the attestee. Remote attestation can help reduce potential risks that are caused by a

tampered system.

Various attestation approaches and techniques have been proposed. Trusted Computing

Group (TCG) [11] specifies trusted platform module (TPM) which can securely store

and provide integrity measurements of systems to a remote party. Integrity measurement

mechanisms have been proposed to facilitate the capabilities of TPM at application level.

For instance, Integrity Measurement Architecture (IMA) [53] is an implementation of

TCG approach to provide verifiable evidence with respect to the current run-time state

of a measured system. However, IMA does not provide a comprehensive attestation

mechanism, which evaluates the trustworthiness of a target system with the measurements.

Several attestation methods have been proposed to accommodate privacy properties [23],

system behaviors [32], and information flow model [35]. However, these existing

approaches still need to cope with the efficiency when attesting a platform where its

system state frequently changes due to system-centric events such as security policy

66

updates and software package installations. In addition, an efficient attestation mechanism

should be especially considered for dealing with such a dynamic nature of systems

since the frequency of system changes and the volume of system state information

would be tremendously increased due to the recent technological innovation of distributed

computing. Last but not least, existing attestation mechanisms do not have an effective and

intuitive way for presenting attestation results and reflecting such results while resolving

identified security violations.

Due to these attestation requirements, our policy analysis and management work is

required to be extended. First, based on our original analysis and management framework,

we are required to extend this tool to realize policy updates rather than analyzing a

whole policy. Second, based on the policy violation graph identified through our policy

management work, a ranking mechanism is required to prioritize the policy violations,

and thus provides the method for describing the trustworthiness of different system states

with risk levels. Other than these extension work, remote attestation mechanisms are also

required to be proposed and developed, e.g., how the attestee can measure its codes and

data and generate the policy updates, and how the attester can reliably get these attestee

information.

As a summary, the following lists the objectives we would like to achieve for this part

of research.

• Extend existing policy visualization-based analysis and management framework,

develop a dynamic attestation framework built based on this extension, and solve

the issues including verifying the system efficiently and describing the attestation

result effectively.

• Demonstrate the feasibility of proposed approach through prototype

implementations, which incorporate a component extended from the

visualization-based policy analysis and management tool, and other remote

attestation related components.

67

• Evaluate the performance of the attestation prototype, and prove the efficiency and

effectiveness of our dynamic attestation framework.

In the follows, Section 6.1 overviews existing attestation work and system integrity

models. Section 6.2 presents the design requirements and attestation procedures of

DR@FT, followed by policy analysis methods and their usages in Section 6.3. We elaborate

the implementation details and evaluation results in Section 6.4, and conclude this Chapter

in Section 6.5.

6.1 Background

6.1.1 Attestation

The TCG specification [11] defines mechanisms for a TPM-enabled platform to report

its current hardware and software configuration status to a remote challenger. A TCG

attestation process is composed of two steps: (i) an attestee platform measures hardware

and software components starting from BIOS block and generates a hash value. The hash

value is then stored into a TPM Platform Configuration Register (PCR). Recursively, it

measures BIOS loader and operating system (OS) in the same way and stores them into

TPM PCRs; (ii) an attester obtains the attestee’s digital certificate with an attestation

identity key (AIK), AIK-signed PCR values, and a measurement log file from the attestee

which is used to reconstruct the attestee platform configuration, and verifies whether this

configuration is acceptable. From these steps we notice that TCG measurement process

is composed of a set of sequential steps up to the bootstrap loader. Thus, TCG does not

provide effective mechanisms for measuring a system’s integrity beyond the system boot,

especially considering the randomness of executable contents loaded by OS.

IBM IMA [53] extends TCG’s measurement scope to application level. A measurement

list M is stored in OS kernel and composed of m0 ... mi corresponding to loaded executable

application codes. For each loaded mi, an aggregated hash Hi is generated and loaded into

TPM PCR, where H0=H(m0), and Hi=H(Hi−1 || H(mi)). Upon receiving the measurements

68

and TPM-signed hash value, the attester proves the authentication of measurements by

verifying the hash value, which helps determine the integrity level of the platform. Also,

it strives to maintain the measurement performance by caching the measurement results

unless the executable contents are altered. However, IMA has the following limitations.

First, IMA requires to verify the entire components of the attestee platform while the

attestee may only demand the verification of certain applications. Second, the integrity

status of a system is validated by testing each measurement entry independently, focusing

on the high integrity processes. However, it is impractical to disregard newly installed

untrusted applications or data from the untrusted network.

PRIMA [35] is an attestation work based on IMA and CW-Lite integrity model [57].

PRIMA attempts to improve the efficiency of attestation by only verifying codes, data, and

information flows related to trusted subjects. On one hand, PRIMA needs to be extended

to capture the dynamic nature of system states such as software and policy updates, which

could be an obstacle for maintaining its efficiency. On the other hand, PRIMA represents

an attestation result with binary decision (trust or distrust) and does not give semantic

information about how much the attestee platform can be trusted or untrusted.

Property-based attestation [23] is an effort to protect the privacy of a platform by

collectively mapping related system configurations to attestation properties. For example,

“SELinux-enabled” is a property which can be mapped to a system configuration indicating

that the system is protected with an SELinux policy. That is, this approach prevents the

configurations of a platform from being disclosed to a challenger. However, due to the

immense configurations of the hardware and software of the platform, mapping all system

configurations to properties is infeasible and impractical. Semantic remote attestation [32]

is proposed with a trusted virtual machine running on a platform. Through monitoring

the policy attached to a running software, its behavior is verified. But this approach does

not define the correct behavior of a security policy with respect to integrity, which leads

the attestation to be intractable. Behavior-based attestation [15] attempts to attest system

69

behaviors based on an application level policy model. Such a model-based approach may

not comprehensively realize the complex behaviors of dynamic systems.

6.1.2 Integrity Models

As described in Chapter 2, there exist several different integrity models. However,

there is a gap between concrete measurements of a system’s components and verification

of its integrity status. We believe an application-oriented and domain-centric approach

accommodates the requirements of attestation evaluation better than advocating an

abstract-level models. For example, in a Linux system, a subject in one of traditional

integrity models can correspond to a set of processes, belonging to a single application

domain. For instance, an Apache domain may include various process types such as

httpd_t, http_sysadm_devpts_t, and httpd_ prewikka_script_t. All of these

types can have information flows among them, which should be regarded as a single

integrity level. Also, sensitive objects in a domain should share the same integrity

protection of its subjects. To comprehensively describe the system integrity requirements,

in this attestation work, we use the previous proposed domain-based isolation approach as

our system integrity requirements.

6.2 Design of DR@FT

TPM

Policy Analysis

Attester

Policy Updates

Attestee Measurements

Rule 1'

Rule 2'

1

6

Known

Fingerprints

Attestee

3

4

5
Initial Trusted

System State

Codes and Data

Verification

2

IMA

Initial Trusted System

State

New System State

System State

Changes

Reporting Process

Authentication

AIKpub /

AIkpvt

Trusted Authority

PKs /

Sks

Subject 1

Subject 2

Subject 3

TSL Code and Data

m(tsl)

Code 1

Code 2

Code 3

m(cd)

Rule 1

Rule 2

Rule 3

m(policy)

Filter 1

Filter 2

Filter 3

m(filter)

Rprocess 1

Rprocess 2

Rprocess 3

m(rprocess)

Policy Filter Rprocess
Reporting Daemon

Figure 6.1: Overview of DR@FT

70

DR@FT consists of three main parties: an attestee (the target platform), an attester

(attestation challenger), and a trusted authority, as shown in Figure 6.1. The attestee is

required to provide its system state information to the attester to be verified. Here, we

assume that an attestee initially is in a trusted system state. After certain system behaviors,

the system state is changed to a new state. An attestation reporting daemon on the attestee

gets the measured new state information (step 1) with IMA, and generates the policy

updates (step 2). This daemon then gets AIK-signed PCR value(s) and sends to the attester.

After the attester receives and authenticates the information, with the attestee’s AIK public

key certificate from the trusted authority, it verifies the attestee integrity through codes and

data verification (step 3), reporting process authentication (step 4) and policy analysis (step

5).

6.2.1 System State and Trust Requirement

For the attestation purpose, the system state is a snapshot of an attestee system at a

particular moment, where the factors characterizing the state can influence the system

integrity in any future moment of the system. Based on the domain-based isolation, the

attestee system integrity can be represented via information flows, which are characterized

by the trusted subject list, filters, policies, and the trustworthiness of TCBs. Based on these,

we define the system state of the attestee as follows.

Definition 6 : A system state at the time period i is a tuple Ti={ T SLi, CDi, Policyi, Filteri,

RProcessi }, where

• T SLi={s0, s1....sn} represents a trusted subject list containing a set of subjects s0,

s1....sn in TCBs and TCBd . The purpose of this trusted subject list is to specify

the high integrity processes or application processes that should be protected on this

platform.

• CDi={cd (s0), cd (s1)....cd (sn)} is a set of codes and data for loading a subject s j ∈
T SLi.

71

• Policyi is the security policy currently configured on the attestee.

• Filteri is a set of processes that are defined to allow information flow from low

integrity processes to high integrity processes.

• RProcessi represents a list of processes that measure, monitor, and report the current

T SLi, CDi, Filteri and Policyi information. IMA agent and the attestation reporting

daemon are the examples of the RProcessi.

According to this definition, a system state does not include a particular application’s

running state such as its memory page and CPU context (stacks and registers). It only

represents the security configuration or policy of an attestee system. A system state

transition indicates one or more changes in T SLi, CDi, Policyi , Filteri, or RProcessi.

A system state Ti is trusted if

• T SLi belongs to TCBs and TCBd;

• CDi does not contain untrusted codes and data;

• Policyi satisfies domain-based isolation;

• Filteri belongs to the defined filter in domain-based isolation; and

• RProcessi codes and data do not contain malicious codes and data and these

RProcessi processes are integrity protected from the untrusted processes via Policyi.

As mentioned, we assume there exists an initial trusted system state T0 which satisfies.

Through changing the variables in T0, the system transits to states T1, T2 ... Ti. The

attestation purpose is to verify if any of these states is trusted.

6.2.2 Attestation Procedures

Attestee Measurements The measurement at the attestee side has two different forms,

depending on how much the attestee system changes. In case any subject in TCBs is

72

updated, the attestee must be fully remeasured from the system reboot and the attester

needs to attest it completely, as this subject may affect the integrity of subjects in RProcess

of the system such as the measurement agent and reporting daemon. After the reboot and

all TCBs subjects are remeasured, a trusted initial system state T0 is built. To perform this

re-measurement, the attestee measures a state Ti and generates the measurement list Mi

containing each measurement.

• Trusted subject list (T SLi) measurement: With TPM and measurement mechanisms

such as IMA, trusted subject list T SLi is measured with a result mtsl , which is added

to a measurement list by Mi = Mi||mtsl . H (Mi) is extended to a particular PCR of

the TPM, where H is a hash function such as SHA1.

• Codes and data (CDi) measurement: For every subject s j in T SLi, its codes and

data cd(s j) are measured. To specify the mapping relationship, measurement mcds j

consists of the information of cd(s j) and s j. After mcds j is generated, it is added to

the measurement by Mi=Mi||mcds j and its hash value is extended to PCR.

• Policy (Policyi) measurement: Corresponding to Policyi, the attestee generates

the measurement mp, which is added to a measurement list with Mi=Mi||mp, and

corresponding PCR is extended with its hash value.

• Filter (Filteri) measurement: The codes and data of Filteri are measured as m f ,

which is extended to a measurement list Mi=Mi||m f , and the PCR is extended.

• Attestation Process (RProcessi) measurement: The codes and data of AProcessi are

measured as mr, which is added to a measurement list Mi=Mi||mr, and the PCR is

also extended.

In another case, where there is no TCBs subject updated and the T SLi or Filteri subjects

belonging to TCBd are updated, the attestee only needs to measure the updated codes and

data loading the changed TSL or filter subject, and generates a measurement list Mi. The

73

generation of this measurement list is realized through the run-time measurement supported

by the underlying measurement agent.

To support both types of measurements, we develop an attestation reporting daemon

which monitors the run-time measurements of the attestee. In case the run-time

measurements for the TCBs are changed, the attestee is required to be rebooted and fully

measured with IMA. The measurements values are then sent to the attester by the daemon.

On the other side, the changed measurement value is measured by IMA and captured

with the reporting daemon only if the measurement for TCBd is changed. Obviously, this

daemon should be trusted and is included as part of TCBs. That is, its codes and data are

required to be protected with integrity policy and corresponding hash values are required

to be stored at the attester side.

Policy Updates To analyze if the current state of the attestee satisfies domain-based

integrity property, the attester requires information about the current security policy loaded

at the attestee side. Due to the large volume of policy rules in a security policy, sending

all policy rules in each attestation and verifying all of them by the attester may cause the

performance overhead. Hence, in DR@FT, the attestee only generates policy updates from

the latest attested trusted state and sends them to the attester for the attestation of such

updates.

To support this mechanism, we have the attestation reporting daemon monitor any

policy update on attestee system and generate a list of updated policy rules. The algorithm

of this operation is shown in Algorithm 1. With a function threadMonitor, upon the system

policy Policyi−1 is changed on state Ti−1, the daemon process reads the policy rules in the

stored security policy Policy0 of the trusted system state T0 and the current policy Policyi

separately, and compares these rules with a function compareResult. Then the daemon

finds the added, changed and deleted rules through functions added, changed, deleted

separately, and saves them into the policy update file. Note that the policy comparison

is performed between the current updated policy and the stored trusted security policy

74

Policy0 or previously attested and trusted Policyi−1. The complexity of this policy update

algorithm is O(nr), where nr represents the number of the policy rules in the new policy

file Policyi.

Algorithm 1: Generating Policy Updates

Input: Currently configured policy file Pi, stored trusted policy file P0 , currently
running updates thread Us

Output: Policy updates file Pupdates
state := threadMonitor(Us,Pi)1

if isChanged(state) then2

f ileFlow := Initialize(Pupdates)3

Rlist := readPolicy(Pi)4

foreach ri ∈ Rlist do5

compareResult := (ri,P0)6

if compareResult == 1 then7

added(f ileFlow,ri)8

else9

if compareResult == 2 then10

changed(f ileFlow,P0,ri)11

markPolicy(P0,ri)12

else13

markPolicy(P0,ri)14

Rlist := readPolicy(P0)15

foreach ri ∈ Rlist do16

if isnotMarked(P0,ri) then17

deleted(f ileFlow,ri)18

Codes and Data Verification With received measurement list Mi and AIK-signed

PCRs, the attester first verifies the measurement integrity by re-constructing the hash

values and compares with PCR values. After this is passed, the attester performs the

analysis. Specifically, it obtains the hash values of CDi and checks if they corresponds to

known-good fingerprints. Also, the attester needs to assure that the T SLi belongs to TCBs

and TCBd . In addition, the attester also gets the hash value of Filteri and ensures that they

belong to the filter list defined on the attester side. In case this step successes, the attester

has the assurance that target processes on attestee side are proved without containing any

75

untrusted code or data, and the attester can proceed to next steps. On the other side, if this

step fails, the attester sends a proper attestation result denoting this situation.

Authenticating Reporting Process To prove that the received measurements and updated

policy rules are from the attestee, the attester authenticates them by verifying that all

the measurements, updates and integrity measurement agent processes in the attestee are

integrity protected. That is, the RProcessi does not contain any untrusted codes or data

and its measurements correspond to PCRs in the attester. Also, there is no integrity

violated information flow to these processes from subjects of T SLi, according to the domain

isolation rules. Note that these components can also be updated, but after any update of

these components, the system should be fully re-measured and attested from boot time as

aforementioned, i.e., to re-build a trusted initial system state T0.

Policy Analysis by Attester DR@FT analyzes policy using a graph-based analysis

method [14, 66, 67]. In this method, a policy file is first visualized into a graph, then

this policy graph is analyzed against pre-defined security model such as our domain-based

isolation, and a policy violation graph is generated. The main goal of this approach is to

give semantic information of attestation result to the attestee, such that its system or security

administrator can quickly and intuitively obtain any violated integrity configuration.

Note that verifying all the security policy rules in each attestation request decrease the

efficiency, as loading policy graph and checking all the policy rules one by one cost a lot

of time. Thus, we need to develop an efficient way for analyzing the attestee policy. In our

method, the attester stores the policy of initial trusted system state T0 or the latest trusted

system state Ti, and its corresponding policy graph is loaded without any policy violation.

Upon receiving the updated information from the attestee, the attester just needs to analyze

these updates to see if there is new information flow violating integrity.

Algorithm 2 realizes this policy analysis method with a policy graph constructed

from a complete policy file [14]. First, a function policyParse parses the updated

policy information into subjects, objects, and their relationships with permission mapping.

76

Second, we load this information onto the previously generated Policy0 graph with

functions changeNodes and changeLinks, respectively. Then it determines if there is new

information flow generated on this graph with a function getnewFlow. Third, we need

to check if this new information flow violates our domain-based isolation rules using a

function identifyViolation. Through this algorithm, rather than analyzing all the policy

rules and all information flows for each attestation, we verify the new policy through

only checking the updated policy rules and the newly identified information flow. The

complexity of this policy analysis algorithm is O(nn +nl +nt), where nn represents the

number of changed subjects and objects, nl is the number of changed subjects and objects

relationship in the policy update file; and nt represents the number of changed TCB in the

TSL file.

Algorithm 2: Finding Integrity Violations with Policy Graph and Updates

Input: Initial trusted policy graph G0, policy updating file Pu, TSL file Tlisti, policy
explanation file Fe, permission mapping File Fp, subject classification file Fs,
object classification file Fo

Output: Policy violation graph G f low
Policyu := policyParse(Pu,Fe ,Fp,Fs,Fo)1

Nlist := getU pdateSO(Policyu)2

foreach ri ∈ Rlist do3

changeNodes(na,G0)4

Llist := getU pdateLink(Policyu)5

foreach la ∈ Llist do6

changeLinks(la,G0)7

getnewFlow(la,G0)8

foreach ta ∈ Tlist do9

changeTCB(ta,G0)10

G f low := identi f yViolation(ta,G0)11

Attestation Result Sending to Attester In case the attestation is successful, a new

trusted system state is developed and the corresponding information is stored at the attester

side for subsequent attestations. On the other hand, if the attestation fails, there are

several possible attestation results including CDi Integrity Fail, CDi Integrity Success,

77

RProcessi Unauthenticated, and Policyi Fail/Success, and CDi Integrity Success, RProcessi

Authenticated, and Policyi Fail /Success. To assist the attestee reconfiguration, the attester

also sends a representation of the policy violation graph to the attestee. Moreover, with this

policy violation graph, the attester specifies the violation ranking and the trustworthiness

of the attestee, which is explained in next section.

6.3 Integrity Violation Analysis

As we discussed above, existing attestation solutions such as TCG and IMA lack the

expressiveness of the attestation result. In addition to their boolean-based response for

attestation result, DR@FT adopts a graph-based policy analysis mechanism, where a policy

violation graph can be constructed for identifying all policy violations on the attestee side.

We further introduce a risk model built on a ranking scheme, which gives the implication

of how severe the discovered policy violations are, and how to efficiently resolve them.

Figure 6.2: Example policy violation graph and rank

6.3.1 Policy Violation Graph

Information flow represents how data flows among system subjects, both trusted and

untrusted. A sequence of information flow transitions between two subjects shows an

information flow path. Applying our domain-based isolation approach, policy violations

can be detected to identify information flows from low integrity subjects to high integrity

subjects. Corresponding information flow paths representing such policy violations are

named violated information flow paths (simply violation paths).

Obviously, we can find out two kinds of violation paths, direct violation paths and

78

indirect violation paths. A direct violation path is a one-hop path through which an

information flow can go from a low integrity subject to a high integrity subject. We observe

that information flows are transitive in general. Therefore, there may exist information

flows from a low integrity subject to a high integrity subject via several other subjects.

This multi-hop path is called indirect violation path. All direct and indirect violation paths

belonging to a domain can construct a policy violation graph for this domain.

Definition 7 : A policy violation graph for a domain d is a directed graph Gv = (V v,Ev)

where

• V v ⊆ V v
NTCB ∪V v

TCBd ∪V v
TCB where V v

NTCB, V v
TCBd and V v

TCB are subject vertices

containing in direct or indirect violation paths of domain d and belong to NON-TCB,

TCBd , and TCBs, respectively.

• Ev ⊆ Ev
Nd ∪ Ev

dT ∪ Ev
NT ∪ Ev

NTCB ∪ Ev
TCBd ∪ Ev

TCB where Ev
Nd ⊆ (V v

NTCB ×V v
TCBd),

Ev
dT ⊆ (V v

TCBd×V v
TCB), Ev

NT ⊆ (V v
NTCB×V v

TCB), Ev
NTCB ⊆ (V v

NTCB×V v
NTCB), Ev

TCBd ⊆
(V v

TCBd ×V v
TCBd), and Ev

TCB ⊆ (V v
TCB×V v

TCB), and all edges in Ev are contained in

direct or indirect violation paths of domain d.

Figure 6.2 (a) shows an example of policy violation graph which examines information

flows between NON-TCB and TCBd
1. Five direct violation paths are identified in this

graph: <S′1, S1>, <S′2, S2>, <S′3, S2>, <S′4, S4>, and <S′5, S4>, crossing all the boundaries

between NON-TCB and TCBd . Also, eight indirect violation paths exist. For example,

<S′2, S5> is a four-hop violation path passing through other three TCBd subjects S2, S3, and

S4.

6.3.2 Ranking Policy Violation Graph

In order to explore more features of policy violation graphs and facilitate efficient policy

violation detection and resolution, we introduce a scheme for ranking policy violation

1Similarly, the information flows between NON-TCB and TCBs, and between TCBd and TCBs can be
examined accordingly.

79

graphs. There are two steps to rank a policy violation graph. First, TCBd subjects in

the policy violation graph are ranked based on dependency relationships among them. The

rank of a TCBd subject shows reachable probability of low integrity information flows from

NON-TCB subjects to the TCBd subject. In addition, direct violation paths in the policy

violation graph are evaluated based on the ranks of TCBd subjects to indicate severity of

these paths which allow low integrity information to reach TCBd subjects. The ranked

policy violation graphs are valuable for a system administrator as they need to estimate the

risk level of a system and provide a guide for choosing appropriate strategies for resolving

policy violations efficiently.

6.3.2.1 Ranking Subjects in TCBd

Our notation of SubjectRank (SR) in policy violation graphs is a criterion that indicates

the likelihood of low integrity information flows coming to a TCBd subject from NON-TCB

subjects through direct or indirect violation paths. The ranking scheme we introduce in

this section adopts a similar process of rank analysis applied in hyper-text link analysis

system, such as Google’s PageRank [22] that utilizes a link structure provided by hyper

links between web pages to gauge their importance. Comparing with PageRank which

focuses on analyzing a web graph where the entries are any web pages contained in the

web graph, the entries of low integrity information flows to TCBd subjects in a policy

violation graph are only identified NON-TCB subjects.

Consider a policy violation graph with N NON-TCB subjects, and si is a TCBd subject.

Let N(si) be the number of NON-TCB subjects from which low integrity information

flows could come to si, N
′
(si) the number of NON-TCB subjects from which low integrity

information flows could directly reach to si, In(si) a set of TCBd subjects pointing to si,

and Out(s j) a set of TCBd subjects pointed from s j. The probability of low integrity

information flows reaching a subject si is given by:

SR(si) =
N(si)

N
(

N
′
(si)

N(si)
+(1− N

′
(si)

N(si)
) ∑

s j∈In(si)

SR(s j)
|Out(s j)|) (6.1)

80

SubjectRank can be interpreted as a Markov Process, where the states are TCBd

subjects, and the transitions are the links between TCBd subjects which are all evenly

probable. While a low integrity information flow attempts to reach a high integrity subject,

it should select an entrance (a NON-TCB subject) which has the path(s) to this subject.

Thus, the possibility of selecting correct entries to a target subject is N(si)
N . After selecting

correct entries, there still exist two ways, through direct violation paths or indirect violation

paths, to reach a target subject. Therefore, the probability of flow transition from a subject

is divided into two parts: N
′
(si)

N(si)
for direct violation paths and 1− N

′
(si)

N(si)
for indirect violation

paths. The 1− N
′
(si)

N(si)
mass is divided equally among the subject’s successors s j, and SR(s j)

|Out(s j)|

is the rank value derived from s j.

Figure 6.2 (b) displays a result of applying Equation (1) to the policy violation graph

showing in Figure 6.2 (a). Note that even though subject s4 has two direct paths from

NON-TCB subjects like subject s2, the rank value of s4 is higher than the rank value of s2,

because there is another indirect flow path to s4 (via s3).

6.3.2.2 Ranking Direct Violation Path

We further define PathRank (PR) as the rank of a direct violation path2, which

is a criterion reflecting the severity of the violation path through which low integrity

information flows may come to TCBd subjects. Direct violation paths are regarded as

the entries of low integrity data to TCBd in policy violation graph. Therefore, the ranks

of direct violation paths give a guide for system administrator to adopt suitable defense

countermeasures for solving identified violations.

To calculate PathRank accurately, three conditions are needed to be taken into account:

(1) the number of TCBd that low integrity flows can reach through this direct violation

path; (2) SubjectRank of reached TCBd subjects; and (3) the number of hops to reach a

TCBd subject via this direct violation path.

2It is possible that a system administrator may also want to evaluate indirect violation paths for violation
resolution. In that case, our ranking scheme could be adopted to rank indirect violation paths as well.

81

Suppose < s
′
i,s j > is a direct violation path from a NON-TCB subject s

′
i to a TCBd

subject s j in a policy violation graph. Let Reach(< s
′
i,s j >) be a function returning a set of

TCBd subjects to which low integrity information flows may go through a direct violation

path < s
′
i,s j >, SR(sl) the rank of a TCBd subject sl , and Hs(s

′
i,sl) a function returning the

hops of the shortest path from a NON-TCB subject s
′
i to a TCBd subject sl . The following

equation is utilized to compute a rank value of the direct violation path < s
′
i,s j >.

PR(< s
′
i ,s j >) = ∑

sl∈Reach(<s′i ,s j>)

SR(sl)
Hs(s

′
i ,sl)

(6.2)

Figure 6.2 (c) shows the result using the above-defined equation to calculate the

PathRank of the example policy violation graph. For example, < s
′
2,s2 > has a higher

rank than < s
′
1,s1 >, because < s

′
2,s2 > may result in low integrity information flows to

reach more or important TCBd subjects than < s
′
1,s1 >.

6.3.2.3 Usage of Ranked Policy Violation Graph

We achieve the following benefits with our ranked policy violation graph for security

analysis.

• Policy violation resolution: A system administrator is able to adopt different

countermeasures to resolve identified violations with respect to the different rank

values of violation paths. For example, a system administrator may apply a

strong defense countermeasure, such as adding more strict filters, even disabling

an information flow, to resolve a highly ranked violation path. On the other hand, it

would be better for a system administrator to first eliminate highly ranked violation

paths, because higher ranked violation paths, in general, involve in more policy

violations and threat more TCBd subjects.

• Security measurement: The total rank of all violation paths provides a measurement

of risk level of a system. Regarding attestation process, even though an attestation

may be failed, such rank value could reflect the trustworthiness of attested system

82

accurately.

• Assistance in visual policy analysis: An entire policy violation graph may be in

a huge size and very complicated. Thus, it is hard for system administrators to

understand and analyze the whole piece of a policy violation graph. Ranks aid in

selectively showing certain important parts of a policy violation graph based on the

priority. Therefore, a system administrator could only concentrate on portions of a

policy violation graph containing highly ranked information flow paths, which make

the analysis and resolution of policy violation more effective.

6.3.3 Evaluating Trustworthiness

Let Pd be a set of all direct violation paths in a policy violation graph. The entire rank,

which can be considered as a risk level of the system, can be computed as follows:

RiskLevel = ∑
<s′i ,s j>∈Pd

PR(< s
′
i ,s j >) (6.3)

The calculated risk level could reflect the trustworthiness of an attestee. Generally,

the lower risk level indicates the higher trustworthiness of a system. When an attestation

is successful and there is no violation path being identified, the risk level of the attested

system is zero, which means an attestee has the highest trustworthiness. On the other

hand, when an attestation is failed, corresponding risk level of a target system is computed.

A selective service could be achieved based on this fine-grained attestation result. That

is, the number of services provided by a service provider to the target system may be

decided with respect to the trust level of the target system. On the other hand, a system

administrator could refer to this attestation result as the evaluation of his system as well

as security guidelines since this quantity response would give her a proper justification to

select security countermeasures for improving the trustworthiness of a system.

83

6.3.4 Attestee Reconfiguration

When the current state of an attestee does not satisfy integrity requirements, a system

administrator needs to change system configuration based on the attestation result to

enhance a system’s integrity and improve its trust level. There are two ways to reconfigure

a system:

• Changing CDi and T SLi: In case an attestation is failed because of loading malicious

or unknown codes or data into the system, removing such root causes can change the

system state to be attested successfully.

• Changing Policyi: Based on the violated information flow paths and corresponding

ranks, a system administrator needs to first eliminate highly ranked violation

paths since they generally involve more violations and more TCBd subjects.

Through modifying policy rules, P f lowi is changed to satisfy our domain isolation

requirement. In other words, an attestee can maintain integrity requirements by

modifying system policies properly for a newly installed software which interacts

with T SL subjects.

6.4 Implementation and Evaluation

We have implemented DR@FT to evaluate its effectiveness and performance. This

section first describes our experimentation setup, followed by implementation details and

effectiveness evaluation, and performance study.

6.4.1 Attestee Configuration

Our attestee platform is a Lenovo ThinkPad X61 with Intel Core 2Duo Processor L7500

1.6GHz, 2 GB RAM, and Atmel TPM, and Fedora Core 6 is installed. We enable SELinux

with the default policy based on the current distribution of SELinux [42]. To measure the

attestee system with TPM, we update the Linux kernel to 2.6.26.rc8 with the latest IMA

implementation [1], where SELinux hooks and IMA functions are enabled.

84
....

10 033e4f559247b256b5a163568275d7901ebe3734 GBK.so

10 041789c808648eac2d7a20c5105f7996f55a6c56 GEORGIAN-PS.so

10 4d019ac9fd103d42f2f7f7d081becc3dd5beb806 IBM850.so

10 73b86a44681c8d778bb143bdd233a6477dc19884 IBM852.so

10 9348eeafbbe7fe8627330b543c3f88d028c7e16f ECMA-CYRILLIC.so

....

10 38f30a0a967fcf2bfeele3b2971de540115048c8 initrc

....

(a) Measurement example (b) Measurement after installing rootkit

....

10 033e4f559247b256b5a163568275d7901ebe3734 GBK.so

10 041789c808648eac2d7a20c5105f7996f55a6c56 GEORGIAN-PS.so

10 4d019ac9fd103d42f2f7f7d081becc3dd5beb806 IBM850.so

10 73b86a44681c8d778bb143bdd233a6477dc19884 IBM852.so

10 9348eeafbbe7fe8627330b543c3f88d028c7e16f ECMA-CYRILLIC.so

....

10 d63d12ced978aca120bfe6ee7683e394c2ffaef0 initrc

....

Figure 6.3: Example of the DR@FT measurement list

Having IMA enabled, we configure the measurement of the attestee information.

Specifically, after the attestee system kernel is booted, we mount the sysfs file

system and inspect the measurement list values in ascii_runtime_measurements and

ascii_bios_measur

ements. Figure 6.3(a) shows a sample of the measurement list. The fields include the PCR

which is extended with the hash, the hash of the file, and the file name.

6.4.2 Attestation Implementation

We start from a legitimate attestee and make measurements of the attestee system for

the later verification. To invoke a new attestation request from the attester, the attestation

reporting daemon runs in the attestee and monitors the attestee system. This daemon

is composed of two main threads. One is to monitor and get the new system state

measurements and the other is to monitor and obtain the policy updates of the attestee.

In case the attestee system state is updated due to new software installation, changing

policy, and so on. An appropriate thread of the daemon automatically obtains the new

measurement values as discussed in 6.2. The daemon then securely transfers the attestation

information to the attester based on the security mechanisms supported by the trusted

authority.

After receiving the updated system information from the attestee, the measurement

module of the attester checks the received measurements against the stored PCR to

prove its integrity. To analyze the possible revised attestee policy, the policy analysis

module is developed as a daemon, which is ported from a policy analysis engine. We

extend the engine to identify violated information flows from the updated policy rules

85

based on domain-based isolation rules. We also accommodate the algorithm presented

in Section 6.2.2, as well as our rank scheme to evaluate the trustworthiness of the attestee.

6.4.3 Evaluation

To assess the proposed attestation framework, we attest our testbed platform with

Apache web server installed. To configure the trusted subject list of the Apache domain, we

first identify the TCBs based on the reference monitor-based TCB identification, including

the integrity measurement, monitoring agents, and daemon. For TCBd of the Apache, we

first identify the Apache information domain subjects and objects with keyword http in the

policy. Subjects such as httpd_t, httpd_ssh_t, and objects such as httpd_cache_t are

regarded as Apache domain subjects and objects. We then identify the subjects and objects

that can flow to these subjects and objects. Within the identified information domain, we

discover Apache TCBd such as httpd_t and httpd_suexec_t through the domain-based

isolation principles. In addition, for Apache domain, we identify the initial filters including

sshd_t, passwd_t, su_t. After this, we install the unverified codes and data to evaluate

the effectiveness of our attestation framework. The detail process can be seen in Chapter 3

for how to identify the information of apache and TCB(d) of Apache.

Installing Malicious Code We first install a Linux rootkit, which is designed to

compromise critical system processes and leave Trojan horse into it. Here, we assign

the rootkit with the domain unconfined_t that enables information flows to domain

initrc_t labeling initrc process, which belongs to TCBs of the attestee.

Following the framework proposed in Section 6.2, the attestee system is measured

from the bootstrap with IMA. After getting the new measurement values, the reporting

daemon sends these measurements to the attester. Note that there is no policy update in

this experiment. After getting the measurements from the attestee, attester verifies them by

trying to match the measured hash values. Figure 6.3 shows the initial measurements of

the initrc (in a trusted initial system state) and the changed value because of the installed

rootkit. The difference between these two measurements indicates the original initrc is

86

altered, and the attester confirms that the attestee is not in a trusted state.

Table 6.1: Mplayer policy information

Mplayer Subjects
staff_mencoder_t staff_mplayer_t
user_mplayer_t sysadm_mencoder_t
sysadm_mplayer_t user_mencoder_t

Mplayer Objects
mencoder_exec_t mplayer_etc_t
mplayer_exec_t staff_mplayer_client_xevent_t
staff_mplayer_xproperty_t staff_mplayer_property_xevent_t
staff_mplayer_default_xevent_t staff_mplayer_focus_xevent_t
staff_mplayer_home_t staff_mplayer_input_xevent_t
staff_mplayer_tmpfs_t staff_mplayer_manage_xevent_t
user_mplayer_default_xevent_t user_mplayer_focus_xevent_t
user_mplayer_home_t user_mplayer_input_xevent_t
user_mplayer_xproperty_t user_mplayer_client_xevent_t
user_mplayer_manage_xevent_t user_mplayer_property_xevent_t
sysadm_mplayer_default_xevent_t sysadm_mplayer_focus_xevent_t
user_mplayer_tmpfs_t sysadm_mplayer_client_xevent_t
sysadm_mplayer_home_t sysadm_mplayer_input_xevent_t
sysadm_mplayer_manage_xevent_t sysadm_mplayer_property_xevent_t
sysadm_mplayer_xproperty_t sysadm_mplayer_tmpfs_t

Installing Vulnerable Software In this experimentation, we install a vulnerable software

called Mplayer on the attestee side. Mplayer is a media player and encoder software

which is susceptible to several integer overflows in the real video stream dumuxing code.

These flaws allow an attacker to cause a denial of service or potentially execution of the

arbitrary code by supplying a deliberately crafted video file. After a Mplayer is installed,

a Mplayer policy module is also loaded into the attestee policy. In this policy module,

there are several different subjects such as staff_mplayer_t, sysadm_mplayer_t, and

so on. Also, some objects are defined in security policies such as user_mplayer_home_t

and staff_mplayer_home_t. A complete list of these subjects and objects is shown in

Table 6.1.

After the Mplayer is installed, the attestation daemon finds that the new measurement

of Mplayer is generated and the security policy of the system is changed. As the Mplayer

does not belong to TCBs and Apache TCBd , the attestation daemon does not need to send

the measurements to the attester. Consequently, the daemon only computes the security

policy updates and sends the information to the attester.

87

staff_mencoder_t

user_mencoder_t

sysadm_mencoder_t

sysadm_mplayer_t

user_mplayer_t

staff_mplayer_t

httpd_t

httpd_suexec_t

httpd_prewikka_script_thttpd_awstats_script_t

httpd_rotatelogs_t

ncsd_var_run_t

sysadm_devpts_t

cifs_t
0.1713

0.1713 0.12963

0.12963
0.5269

0.3889

0.3426

0.26345

0.26345

0.3426

0.3889

0.3333

0.0556

0.1713

0.12963

Figure 6.4: Information flow verification of Mplayer

Table 6.2: Attestation performance analysis (in seconds)

Policy Change Dynamic Static
Size TPupdate Tsend TPanalysis Overhead TPsend TPanalysis Overhead
0 0.23 0 0 0.23 14.76 90.13 104.89
-0.002MB (Reduction) 0.12 0.002 0.02 0.14 14.76 90.11 104.87
-0.019MB (Reduction) 0.08 0.01 0.03 0.12 14.74 89.97 104.34
-0.024MB (Reduction) 0.04 0.02 0.03 0.09 14.74 89.89 104.23
0.012MB (Addition) 0.37 0.01 0.03 0.41 14.77 90.19 104.96
0.026MB (Addition) 0.58 0.02 0.03 0.63 14.78 90.33 105.11
0.038MB (Addition) 0.67 0.03 0.04 0.74 14.79 90.46 105.25

Upon receiving the updated policies, we analyze these updates and obtain a policy

violation graph as shown in Figure 6.4, where the filled circle nodes representing subjects

and objects related to Mplayer; unfilled circle nodes representing subjects and objects

related to Apache; and unfilled rectangle nodes representing other objects. The links

show the information flow from Mplayer to Apache. The rank values on the paths

indicate the severity of the corresponding violation paths.Through objects such as cifs_t,

sysadm_devtps_t, ncsd_var_run_t, information flows from Mplayer can reach

Apache domain. In addition, rank values are calculated and shown in the policy violation

graph, which guides effective violation resolutions. For example, there are three higher

ranked paths including path from sysadm_devpts_t to httpd_t, from ncsd_var_run_t

to httpd_rotatelogs_t, and from cifs_t to httpd_prewikka_script_t. Meanwhile,

a risk level value (1.2584) reflecting the trustworthiness of the attestee system is computed

based on the ranked policy violation graph.

88

Once receiving the attestation result shown in Figure 6.4, the attestee administrator

solves the violation that has the higher rank than others. Thus, the administrator can first

resolve the violation related to httpd_t through introducing httpd_sysadm_devpts_t.

allow httpd_t httpd_sysadm_devtps_t:chr_file {ioctl read write

getattr lock append};

After the policy violation resolution, the risk level of the attestee system is lowered

to 0.7315 . Continuously, after the attestee resolves all the identified policy violations

and the risk level is decreased to be zero, the attestation daemon gets a new policy update

file and sends it to the attester. Upon receiving this file, the attester verifies whether these

information flows violate domain-based isolation integrity rules since these flows are within

the NON-TCB–even though there are new information flow compared to the stored Policy0.

Thus, an attestation result is generated which specifies the risk level (in this case, zero) of

the current attestee system. Consequently, a new trusted system state is built for the attestee.

In addition, the information of this new trusted system state is stored in the attester side for

the later attestation.

6.4.4 Performance

To examine the scalability and efficiency of DR@FT, we investigate how well the

attestee measurement agent, attestation daemon, and the attester policy analysis module

scale along with the increased complexity, and how efficiently DR@FT performs by

comparing it with the traditional approaches.

In DR@FT, the important situations influencing the attestation performance include

system updates and policy changes. Hence, we evaluate the performance of DR@FT

by changing codes and data to be measured and modifying the security policies. Based

on our study, we observe that normal policy increased or decreased no more than 40KB

when installing or uninstalling software. Also, a system administrator does not make the

enormous changes over the policy. Therefore the performance is measured with the range

89

from zero to around 40KB in terms of policy size.

Performance on the attestee side Based on DR@FT, the attestee has three main factors

influencing the attestation performance. (1) Time spent for the measurement: Based on our

experimentation, the measurement time increases roughly linearly with the size of the target

files. For example, measuring policy files with 17.2MB and 20.3MB requires 14.63 seconds

and 18.26 seconds, respectively. Measuring codes around 27MB requires 25.3sec. (2) Time

spent for identifying policy updates TPupdate: Based on the specification in Section 6.2,

policy updates are required to be identified and sent to the attester. As shown in Table 6.2,

for a system policy which is the size of 17.2MB at its precedent state, the increase of the

policy size requires more time for updating the policy and vice versa. (3) Time spent for

sending policy updates TPsend: Basically, the more policy updates, the higher overhead was

observed.

Performance on the attester side In DR@FT, the measurement verification is relatively

straightforward. At the attester side the time spent for policy analysis TPanalysis mainly

influences its performance. As shown in Table 6.2, the analysis time roughly increases

when the policy change rate increases.

Comparison of dynamic and static attestation To further specify the efficiency of

DR@FT, we compare the overhead of DR@FT with a static attestation. In the static

approach, the attestee sends all system state information to an attester, and the attester

verifies the entire information step by step. As shown in Table 6.2, the time spent for

static attestation is composed of TPsend and TPanalysis, which represent the time for sending

policy module and analyzing them, respectively. Obviously, the dynamic approach can

dramatically reduce the overhead compared to the static approach. It shows that DR@FT

is an efficient way when policies on an attestee are updated frequently.

90

6.5 Conclusion

Through extending visualization-based policy analysis and management approach, w

have presented a dynamic remote attestation framework called DR@FT for efficiently

verifying if a system satisfies integrity protection property and indicates integrity violations

which determine its trustworthiness level. The integrity property of our work is based

on an DIM, which is utilized to describe the integrity requirements and identify integrity

violations of a system. To achieve the efficiency and effectiveness of remote attestation,

DR@FT focuses on system changes on the attestee side. We have extended a powerful

policy analysis engine to represent integrity violations with the rank scheme. In addition,

our results showed that our dynamic approach can dramatically reduce the overhead

compared to static approach. We believe such an intuitive evaluation method would

help system administrators reconfigure the system with more efficient and strategic

manner. DR@FT provides a fine-grained remote attestation not only for TCBs but also

for user-space domains. For our future work, we would further investigate how our

attestation framework can be applied to open network environments dealing with a trusted

and delegated attestation service for the attester. We also plan to optimize DR@FT and

release it to open source community.

CHAPTER 7: CONCLUDING REMARKS

7.1 Summary

To analyze and manage the security policy, a fundamental question is to understand

the security requirements of the security policy in an open and distributed environment.

Instead of focusing on analyzing the security requirements for a specific policy, in general,

a trusted computing base is required to be protected in every system. From this aspect,

we need to analyze the requirements for protecting the trusted computing base followed by

the requirements of protecting other system components. Another important issue is how

to provide a usable security policy analysis and management approach to the stakeholders.

The usability includes how to present the security policy in an understandable way, how to

provide an easy and understandable policy analysis method, and how to provide an efficient

way for identifying policy violations such as how to conveniently identify the root causes

for the policy violations.

To tackle the above mentioned issues, we proposed a domain-based isolation model

to specify how to protect the system trusted computing base and how to protect other

system applications by realizing application isolations. Based on this model, several

rules were proposed to identify the policy violations. This model was first proved

based on a CPN simulation tool by analyzing the SELinux example policies. Also, we

proposed the semantic substrates-based and adjacency matrix-based visualization methods

to visualize the security policies for addressing usability issues. To provide an easy way

for the policy analysis, we developed a graphical query mechanisms for querying the

security policy and identifying policy violations. Still using semantic substrates-based

and adjacency matrix-based method to represent the policy violations, the critical points

and violation path are marked out with different color, shape and route to specify the

92

origin of the policy violations. In addition, we implemented a tool called PVM based

on our visualization-based policy analysis and management framework. To measure the

effectiveness and efficiency of our tool, we also successfully performed the user study that

produced the favorable results. Finally, we extended our policy analysis and management

framework to support remote attestation for proving the trustworthiness of the system in an

open and distributed environment.

In addition to the above contributions, we strongly believe this work has several

potential impacts to the information security community. As an information flow-based

security model, DIM has significantly demonstrated the applicability of information flow

analysis in open and distributed environments. The method of using CPN also provides

the possibility of using such a system modeling tool for proving other security models

such as RBAC. Also, our information visualization methods bring the first-hand practical

experience for analyzing different security policies–such as policies for firewall policies

and other security appliance–with visual analytics. By sharing our experience with the

information security community, we hope to further improve a method for evaluating the

usability of technologies in information security.

7.2 Future Work

This ground-breaking work also has several future research directions:

7.2.1 Issues in Security Requirements

In our proposed approach, a domain-based isolation method was proposed, in which the

system TCB and TCB(d) are identified through specific strategies. This layouts high-level

requirements of the security policy. However, in case that the security policy is not that

well organized, it is very hard to identify such items to be protected. In addition, the filter

is normally based on a certain information flow. One process can work as a filter in one

situation but cannot work as a filter in the other situation. Hence, the filter identification

should be based on the policy violations as we proposed in our work. This would be a big

93

challenge for the security policy architect. In the future, we would further investigate the

security model to handle this dilemma.

7.2.2 Security Policy Analysis and Management for Mobile Device

A possible application domain of our work would be security policy analysis and

management on mobile devices. However, due to the different security models such as

delegation models are applied into the mobile device policy, a more comprehensive security

policy analysis model is needed.

In addition, the performance of policy analysis is a big challenge since mobile devices

require a more efficient policy analysis tool. Also, for mobile devices, an owner would

be the policy architect, thus the policy specification and policy violation should be

convenient and easy for them to figure out. Due to these specific requirements, it is

tremendously necessary to extend and improve our proposed policy visualization methods

and a corresponding tool in both design and performance aspects. Furthermore, our

dynamic attestation work still has many unsolved issues to accommodate those issues on

mobile devices [48, 29, 72].

7.2.3 Security Policy Management

We will also continuously discover novel ways in effectively generating and managing

security policy for computing systems including operating systems and mobile devices as

well as new emerging infrastructures such as smart grid [45] and cloud computing [38,

71]. Especially identifying the security requirements related to access control for these

new infrastructures and developing new security policy framework would advance the

field of information technology security and help establish more trustworthy computing

environments for organizational users to safeguard sensitive and critical information.

94

BIBLIOGRAPHY

[1] LIM Patch. http://lkml.org/lkml/2008/6/27.

[2] Lime Survey Tool. http://www.limesurvey.org/.

[3] NSA Security-Enhanced Linux Example Policy. http://www.nsa.gov/selinux/.

[4] Paired Samples T-tests. http://www.statisticssolutions.com/methods-chapter/statistical-tests/paired-sample-t-test/.

[5] Security Policy. http://en.wikipedia.org/wiki/Securitypolicy.

[6] SELinux Example Policy. http://www.nsa.gov/research/selinux/code/download-stable.shtml.

[7] SELinux Policy Editor. http://www.selinux.hitachi-sk.co.jp/en/tool/selpe/selpe-top.html.

[8] Standard ML. http://www.smlnj.org/sml.html.

[9] STOOLS. http://oss.tresys.com/projects/setools/wiki/download.

[10] Tresys Technology Apol. http://www.tresys.com/selinux/.

[11] Trusted Computing Group. https://www.trustedcomputinggroup.org/home.

[12] Trusted Computer System Evaluation Criteria. United States Government
Department of Defense (DOD), Profile Books, 1985.

[13] System management concepts: Operating system and devices, 1999. 1 edition.

[14] Gail-Joon Ahn, Wenjuan Xu, and Xinwen Zhang. Systematic policy analysis for
high-assurance services in selinux. In POLICY ’08: Proceedings of the 2008 IEEE
Workshop on Policies for Distributed Systems and Networks, pages 3–10, Washington,
DC, USA, 2008. IEEE Computer Society.

[15] Masoom Alam, Xinwen Zhang, Mohammad Nauman, Tamleek Ali, and Jean-Pierre
Seifert. Model-based behavioral attestation. In SACMAT ’08: Proceedings of the
13th ACM symposium on Access control models and technologies, pages 175–184,
New York, NY, USA, 2008. ACM.

[16] Peter A.Loscocco and Stephen D.Smalley. Meeting critical security objectives with
security-enhanced linux. In In Proceedings of the Ottawa Linux Symposium, 2001.

[17] AMJ. P. Anderson. Computer security technology planning study. Technical Report
ESD-TR-73-51, II, 1972.

[18] Aleks Aris. Network visualization by semantic substrates. IEEE Transactions on
Visualization and Computer Graphics, 12(5):733–740, 2006. Senior Member-Ben
Shneiderman.

[19] Human Computer Interaction Lab at University of Maryland. Piccolo. Available from
http://www.cs.umd.edu/hcil/jazz/download/index.shtml.

95

[20] K. J. Biba. Integrity consideration for secure compuer system. Technical report, Mitre
Corp. Report TR-3153, Bedford, Mass., 1977.

[21] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies.
In Proceedings of the Eighth National Computer Security Conference, Gaithersburg,
Maryland, 1985.

[22] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[23] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-Reza Sadeghi,
and Christian Stüble. A protocol for property-based attestation. In STC ’06:
Proceedings of the first ACM workshop on Scalable trusted computing, pages 7–16,
New York, NY, USA, 2006. ACM.

[24] Shuo Chen, David Ross, and Yi-Min Wang. An analysis of browser domain-isolation
bugs and a light-weight transparent defense mechanism. In CCS ’07: Proceedings
of the 14th ACM conference on Computer and communications security, pages 2–11,
New York, NY, USA, 2007. ACM.

[25] David D. Clark and David R. Wilson. A comparison of commercial and military
computer security policies. Proceedings of the IEEE symposium on security and
privacy, 1987.

[26] D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5), May 1976.

[27] DOD. Department of Defense trusted computer system evaluation criteria. in the
glossary under entry Trusted Computing Base (TCB), 1985.

[28] R.F. Erbacher. Intrusion behavior detection through visualization. In IEEE
International Conference on Systems, Man and Cybernetics, pages 2507–2513, Oct
2003.

[29] Andy Green. Management of security policies for mobile devices. In InfoSecCD
’07: Proceedings of the 4th annual conference on Information security curriculum
development, pages 1–4, New York, NY, USA, 2007. ACM.

[30] Marc Green. Toward a perceptual science of multidimensional data visualization:
Bertin and beyond. Available from http://www.ergogero.com/dataviz/dviz2.html,
1998.

[31] J. Guttman, A. Herzog, and J. Ramsdell. Information flow in operating systems: Eager
formal methods. In Workshop on Issues in the Theory of Security (WITS), 2003.

[32] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote attestation: a
virtual machine directed approach to trusted computing. In VM’04: Proceedings of
the 3rd conference on Virtual Machine Research And Technology Symposium, pages
3–3, Berkeley, CA, USA, 2004. USENIX Association.

96

[33] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller, and R. Lutz. Software fault
tree and colored petri net based specification, 2000.

[34] I. Herman, G. Melancon, and M.S. Marshall. Graph visualization and navigation
in information visualization: Asurvey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, 2000.

[35] Trent Jaeger, Reiner Sailer, and Umesh Shankar. Prima: policy-reduced integrity
measurement architecture. In SACMAT ’06: Proceedings of the eleventh ACM
symposium on Access control models and technologies, pages 19–28, New York, NY,
USA, 2006. ACM.

[36] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing integrity protection in the
selinux example policy. In SSYM’03: Proceedings of the 12th conference on USENIX
Security Symposium, pages 5–5, Berkeley, CA, USA, 2003. USENIX Association.

[37] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
1997. Three Volumes.

[38] Lori M. Kaufman. Data security in the world of cloud computing. IEEE Security and
Privacy, 7:61–64, 2009.

[39] René Keller, Claudia M. Eckert, and P. John Clarkson. Matrices or node-link
diagrams: which visual representation is better for visualising connectivity models?
Information Visualization, 5(1):62–76, 2006.

[40] C.P. Lee, J. Trost, N. Gibbs Beyah Raheem, and J.A. Copeland. Visual firewall:
Real-time network security monitor. In IEEE Workshops Visualization for Computer
Security, pages 129–136, 2005.

[41] Ninghui Li, Ziqing Mao, and Hong Chen. Usable mandatory integrity protection for
operating systems. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, pages 164–178, 2007.

[42] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies
into the linux operating system. In USENIX Annual Technical Conference, FREENIX
Track, pages 29–42, 2001.

[43] S. Mathew, R. Giomundo, S. Upadhyaya, M. Sudit, and A. Stotz. Understanding
multistage attacks by attack-track based visualization of heterogeneous event streams.
In VizSEC ’06: Proceedings of the 3rd international workshop on Visualization for
computer security, pages 1–6, New York, NY, USA, 2006. ACM.

[44] Frank Mayer, Karl MacMillan, and David Caplan. SELinux by Example: Using
Security Enhanced Linux (Prentice Hall Open Source Software Development Series).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[45] Patrick McDaniel and Stephen McLaughlin. Security and privacy challenges in the
smart grid. IEEE Security and Privacy, 7:75–77, 2009.

97

[46] Sharma Nidhi. Fireviz: A personal firewall visualizing tool. In Thesis (M. Eng.),
Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science, 2005.

[47] XML Organization. The xml c parser and toolkit of gnome. http://xmlsoft.org/.

[48] Anand Patwardhan, Vlad Korolev, Lalana Kagal, and Anupam Joshi. Enforcing
policies in pervasive environments. Mobile and Ubiquitous Systems, Annual
International Conference on, 0:299–308, 2004.

[49] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation.
12th USENIX Security Symposium, page 11, August 2003.

[50] H. Reiterer and G. Muler. A visual information seeking system for web search. In
Proceedings of the Oberquelle H, Oppermann R, Krause J (eds) Mensch & Computer
conference, pages 297–306, March 2001.

[51] H. Reiterer, G. Tullius, and T. Mann. Insyder: a content-based
visual-informationseeking system for the web. Springer-Verlag GmbH , International
Journal on Digital Libraries, 2005.

[52] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of
a TCG-based integrity measurement architecture. In USENIX Security Symposium,
pages 223–238, 2004.

[53] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and
implementation of a tcg-based integrity measurement architecture. In SSYM’04:
Proceedings of the 13th conference on USENIX Security Symposium, pages 16–16,
Berkeley, CA, USA, 2004. USENIX Association.

[54] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–19,
1993.

[55] Beata Sarna-Starosta and Scott D. Stoller. Policy analysis for security-enhanced linux.
In Proceedings of the 2004 Workshop on Issues in the Theory of Security (WITS),
pages 1–12, April 2004.

[56] Umesh Shankar, Trent Jaeger, and Reiner Sailer. Toward automated information-flow
integrity verification for security-critical applications. In NDSS. The Internet Society,
2006.

[57] Umesh Shankar, Trent Jaeger, and Reiner Sailer. Toward automated information-flow
integrity verification for security-critical applications. In NDSS. The Internet Society,
2006.

[58] Z. Shen and K. Ma. Path visualization for adjacency matrices. In In Proceedings of
Eurographics/IEEE Symposium on Visualization (EuroVis), May 2007.

98

[59] Stephen Smalley. Configuring the selinux policy.
http://www.nsa.gov/SELinux/docs.html, 2003.

[60] Ravi S.Sandhu, EdwardJ.Coyne, Hal L.Feinstein, and Charles E.Youman. Role-based
access control models. IEEE Computer, 29(2), February 1996.

[61] A. G. Sutcliffe, M. Ennis, and S. J. Watkinson. Empirical studies of end-user
information searching. Journal of the American Society for Information Science,
51(13):1211–1231, November 2000.

[62] T.Fraser. Lomac: Low water-mark integrity protection for cots environment. In
Proceedings of the IEEE Symposium on Security and Privacy, May 2000.

[63] Ramona Su Thompson, Esa M. Rantanen, William Yurcik, and Brian P. Bailey.
Command line or pretty lines?: comparing textual and visual interfaces for intrusion
detection. In CHI ’07: Proceedings of the SIGCHI conference on Human factors in
computing systems, page 1205, New York, NY, USA, 2007. ACM.

[64] Tung Tran, Ehab S. Al-Shaer, and Raouf Boutaba. Policyvis: Firewall security policy
visualization and inspection. In LISA, pages 1–16, 2007.

[65] WIKIPEDIA. Trusted computing base. Available at
http://en.wikipedia.org/wiki/Tusted_Computing_Base.

[66] Wenjuan Xu, Mohamed Shehab, and Gail-Joon Ahn. Visualization based policy
analysis: case study in selinux. In SACMAT ’08: Proceedings of the 13th ACM
symposium on Access control models and technologies, pages 165–174, New York,
NY, USA, 2008. ACM.

[67] Wenjuan Xu, Xinwen Zhang, and Gail-Joon Ahn. Towards system integrity protection
with graph-based policy analysis. In DBSec, pages 65–80, 2009.

[68] Danfeng Yao, Michael Shin, Roberto Tamassia, and William H. Winsborough.
Visualization of automated trust negotiation. In VizSEC 05: IEEE Workshop on
Visualization for Computer Security, Oct 2005.

[69] Xiaoxin Yin, William Yurcik, Michael Treaster, Yifan Li, and Kiran Lakkaraju.
Visflowconnect: netflow visualizations of link relationships for security situational
awareness. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, pages 26–34, New York, NY,
USA, 2004. ACM.

[70] William Yurcik. Visualizing netflows for security at line speed: the sift tool
suite. In LISA’05: Proceedings of the 19th conference on Large Installation
System Administration Conference, pages 16–16, Berkeley, CA, USA, 2005. USENIX
Association.

99

[71] Xinwen Zhang, Joshua Schiffman, Simon Gibbs, Anugeetha Kunjithapatham, and
Sangoh Jeong. Securing elastic applications on mobile devices for cloud computing.
In CCSW ’09: Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 127–134, New York, NY, USA, 2009. ACM.

[72] Imran A. Zualkernan, Sina Nikkhah, and Mohammad Al-Sabah. A lightweight
distributed implementation of ims ld on google’s android platform. In ICALT ’09:
Proceedings of the 2009 Ninth IEEE International Conference on Advanced Learning
Technologies, pages 59–63, Washington, DC, USA, 2009. IEEE Computer Society.

