
WRIGHT, PETRA C., M.S. Cytotoxicity Screening Matrix Assisted Laser Desorption Ionization 

Mass Spectrometry for Nanoparticle Biomarker Detection. (2014)  

Directed by Dr. N. H. Chiu. 54 pp. 

 Toxicology is a broad topic that aims to assess the risk of chemicals on living organisms. 

It has been acknowledged that everything is toxic to a living organism. What distinguishes a toxin 

from a remedy depends on the dose 
1
. Presently, there are toxicity assays that are implemented for 

human risk assessment studies such as, 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-

tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay; however, it has been 

shown that some toxins interfere with these assays. Carbon nanodots, an unknown toxicant has 

shown to interfere with the LDH assay. Therefore proper methods and techniques must be 

devised for the analysis of these unknown toxicants to enable the reliable risk assessment for 

humans. 

 In this study a new method was devised using, hydrogen peroxide and aflatoxin b1 as the 

known toxicants. The Cytotoxicity Screening Matrix Assisted Laser Desorption Ionization Time 

of Flight Mass Spectrometry (cs-MALDI-TOF-MS) technique was implemented as a viable 

approach to studying nanoparticle toxicity. Previously, Human liver (HepG2) cells were dosed 

with varying concentrations of these known toxicants and analyzed using cs-MALDI. In this 

study, Human monocyte (THP-1) cells were dosed with the same concentrations of these known 

toxicants as the HepG2 and analyzed. This study demonstrates that the two toxicants can be 

distinguished through the presence and absence of certain peaks using the cs-MALDI method. 

This method has been developed as a high throughput screening method that can lead to the 

future identification of biomarkers associated to each toxicant independently. 
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CHAPTER I 

REVIEW OF LITERATURE 

 Toxicity Assays 

 Toxicology is the process of chemicals exerting toxic effects in biological systems 
1
. 

There are many toxicity assays available that examine a specific mechanism such as oxidative 

stress, cell viability and cell death. These assays are utilized for risk assessment studies and are 

valuable methods for soluble chemicals. 2’7’-dichlorodihydrofluorescein is an assay that 

measures the formation of reactive oxygen species (ROS). This substrate penetrates cell 

membranes and gets hydrolyzed by cellular esterases. ROS converts the cleaved substrate to a 

fluorescent oxidation product. The amount of product detected correlates to the amount of ROS 

present. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) assay determines 

the cell viability by reducing the MTT salt to a purple MTT-formazan product. The amount of 

MTT-formazan present correlates to the metabolically active cells present. Lactate dehydrogenase 

(LDH) measures cellular necrosis by using a yellow tetrazolin salt (INT) as a substrate. When cell 

death occurs LDH is released from the cytosol and catalyzes the oxidation of INT to a red 

formazan product. The amount of INT detected correlates to cellular necrosis 
24, 26

.  

These assays are limited to the evaluation of a single biomarker like LDH while the same 

toxicant may also have adverse effects on the other cellular activities. Thus, multiple different 

assays are often used to perform the risk assessment of new chemicals. Furthermore, for testing 

chemicals that may cause an unknown cytotoxicity, all the existing cell-based assays may need to 

be further developed to determine the unknown cytotoxicity. 
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Nanoparticles 

 Nanomaterials have emerged rapidly since the early 90’s. They are small scale 

substances, usually <100 nm in size. Nanomaterials are engineered on the molecular level to 

achieve unique physical and chemical properties which make them useful in all types of 

environmental and medicinal products. These properties present new challenges to understanding 

the adverse effects of nanomaterials on human health 
39

. Humans are exposed to different forms 

of nanomaterials throughout the lifetime of that nanomaterial 
31

. The most common routes of 

exposure are ingestion, skin penetration, and inhalation 
39

. It is of eminent concern for adequate 

testing to assess the human risk under real life situations. The current approaches to assess these 

risks are based on the classical toxicology methods. However, these methods cannot fully assess 

the risks due to the unique properties of the nanomaterials 
31

.  

 In the literature, nanoparticles are known to adsorb the reagents or dyes associated with 

these available assays thus skewing the assay results. Twenty four engineered nanoparticles that 

are well characterized were investigated for their possible interference with the classical 

toxicological assays. All 24 nanoparticles were found to interfere with at least one of the 

toxicological assays present 
24

. Titanium dioxide (TiO2) was one of the nanoparticles examined. It 

is an engineered nanoparticle that has the unique property of blocking UV light. This physical 

property has led to TiO2 industrial use in sunscreens and water repellents. There are several forms 

of TiO2 that exist and one of the most commonly studied is anatase. Anatase TiO2 is a 

semiconductor that can generate reactive oxygen species which is detrimental to cells. In low 

concentrations, anatase TiO2 is known to penetrate the skin 
18, 39

. It has been observed that TiO2 

interferes with the detection of oxidation species, MTT and LDH assays at concentrations less 

than10 ug/mL. The limit of detection for these assays is 50 ug/mL 24. In contrast, TiO2 has shown 
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to have a high (100 ug/mL) and low (10 ug/mL) toxicity in THP-1 cell lines. Although the cell 

proliferation results indicated that both concentrations were toxic to THP-1 cells only the high 

concentration of 100 ug/mL was shown to have significant increases in LDH release 
24, 37

. These 

results indicate that the classical toxicity assays used to test these nanomaterials are not consistent 

thus a new method is needed for accurately assessing toxicity. In this study, carbon nanodots 

were the nanomaterial readily available. 

 Carbon Nanodots 

 Carbon nanomaterials are present all around us. They are released upon incomplete 

combustion processes, inorganic dust from desert storms, candles and cigarettes. The most 

common route of exposure for carbon nanomaterials is inhalation. As with any nanomaterial, 

carbon based nanomaterials have many different forms of existence. Most of the carbon 

nanomaterials are known to induce cardiovascular toxicity and pulmonary toxicity patterns in 

humans. They can pass into the systemic circulation; induce inflammation in the lungs, fibrosis, 

and epithelioid granulomas. The ultrafine nanomaterials demonstrated increased pulmonary 

inflammation when compared to the fine-sized particulates. This indicates that there are more 

factors influencing toxicity other than particle size 
26, 39

.  

 Carbon nanodots are carbon based nanomaterials that are relatively new and are 

suspected to be non-toxic. They have good implication for bioimaging and have shown to be 

effective for cancer therapy 
20, 21

. Carbon nanodots induce apoptosis in cancer cells, and are more 

effective against cancer in conjunction with UV radiation 
19, 21

. Although these carbon nanodots 

are beneficial to the medicinal world, the toxicity is vastly unknown. Before these nanomaterials 

can be implicated in any type of treatment the risk assessment studies must be completed.  
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 Matrix Assisted Laser Desorption Ionization Mass Spectrometry 

 Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) is a 

powerful source attached to a mass spectrometer that produces intact gas phase ions for large, 

non-volatile, thermally liable compounds such as proteins 
2
. MALDI provides high throughput 

and high sensitivity analyses that can be readily automated. In comparison to other ionization 

methods, MALDI is non-destructive to large biomolecules and do not require chemical 

modifications 
22

. 

 In MALDI, the target analyte and matrix are co-crystallized onto the metal plate and a 

laser is fired onto the analyte/matrix crystals. The laser energy activates the matrix which 

vaporizes the analyte and they are both released into the gaseous phase. Once the transition to the 

gaseous phase occurs the sample is ionized by the matrix molecules. The matrix can accept and 

donate protons so the transfer of a proton can result in a positively charged sample ion or a 

negatively charged ion. Although MALDI is an efficient process there are still limitations 

associated with this method. It has a low efficiency to detect low mass ions due to the matrix ions 

generating strong signals usually below m/z 500. There is also a high molecular weight limitation 

where the sensitivity is lower due to the impact velocity of those high molecular weight ions. 

Another limitation is that the ionization of the sample can be suppressed when analyzing complex 

mixtures. Despite the limitations of MALDI, it has still proven to be one of the better techniques 

for protein analyses 
22

. 

 MALDI has been successful in identifying carcinoid tumor biomarkers and apoptotic 

biomarkers 
13, 25

. It can distinguish mammalian cell lines and different strains of bacteria 
5, 6, 30, 38

. 

MALDI has been used to detect the activation of macrophages and monitor viral proteins 
15, 32

. 

Aside from proteomic studies, MALDI has also been applied to lipid profiling 
7
. These varieties 
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of MALDI applications provide sufficient evidence to the diversity of the MALDI method. To 

this date, the MALDI method has not been used to detect toxicity of chemicals and particles. In 

this study, a MALDI method is devised for cytotoxicity studies of nanomaterials. MALDI seems 

to be the most viable approach to nanomaterial toxicity since there aren’t any reagents or products 

for interference. Nanomaterials such as carbon nanodots and titanium dioxide have been used as 

matrices for MALDI applications to address the limitations of the MALDI method 
12, 29, 35

. 

Therefore it is known that these nanomaterials won’t interfere with the MALDI method, they are 

in fact compatible. 
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CHAPTER II 

INTRODUCTION 

 Statement of Problem 

 Toxicology is a broad topic that aims to assess the risk of chemicals on living organisms. 

Presently, there are toxicity assays that are implemented for human risk assessment studies such 

as, 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay and lactate 

dehydrogenase (LDH) assay; however, it has been shown that some toxins interfere with these 

assays. Furthermore, since the current assays evaluate a single biomarker multiple assays are used 

for risk assessment studies. This represents both time and financial burden for many toxicological 

studies, even for the bigger companies in the pharmaceutical industry. Our goal was to further 

develop a method known as Cytotoxicity Screening Matrix Assisted Laser Desorption Ionization 

Time of Flight Mass Spectrometry (cs-MALDI-TOF-MS) to perform screening for cytotoxicity. 

Hypothesis 

 With the ability to detect multiple peptides and/or proteins simultaneously in a single 

MALDI-TOF MS measurement, we hypothesize that there is sufficient resolving power from 

using MALDI-TOF MS measurements to distinguish various cellular responses that result from 

the exposure of a specific cell line to different toxic chemicals. 
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Specific Aim 1 

Our first aim was to identify an approach to determine the cytotoxicity of carbon 

nanodots, an unknown toxicant. Simultaneously, we attempted to define the toxicity of the carbon 

nanodots utilizing the conventional lactate dehydrogenase (LDH) assay and cell counting method.    

Specific Aim 2 

 The second aim was to establish a high throughput screening method to differentiate a 

mammalian cell line exposed to different toxicants using cs-MALDI-TOF-MS. 
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CHAPTER III 

 CYTOTOXICITY OF CARBON NANODOTS 

 Introduction 

 Carbon nanomaterial production has increased globally in the past few years and risk 

assessment for carbon nanomaterials is not completely understood 
39

. Their physical and chemical 

properties allow them to be great candidates for imaging, photocatalysis, cancer cell inhibition, 

and disease diagnosis 
6, 19, 21, 36

. Although carbon nanodots (CD) are considered to be 

biocompatible, there have been cases where CD is identified as toxic agent for various biological 

tissues 
6, 19

. Therefore, it is important that the risk assessment is thoroughly examined before 

administering them for medicinal use. The correlation between exposure to nanoparticles and 

vascular diseases is of particular concern 
3
. Monocytes are known to play a crucial role in 

development of inflammable vascular diseases and have been suggested to be significant targets 

for nanoparticle exposure 
4
. 

 Currently, various toxicity assays that are used for known toxins have been applied to 

nanomaterials where the toxicity is unknown 
24

. Lactate dehydrogenase (LDH) assay has been 

considered a gold standard for measuring cytotoxicity. This common enzyme is shared amongst 

all cells and is released upon damage to the cell membrane. The LDH assay had been used to 

access the toxicity of CD, as support to CD inducing apoptosis versus necrosis 
19

. The toxicity of 

CD was assessed utilizing the LDH assay and the cell counting method. This study investigates 

the possible interference of the carbon nanodots on the LDH assay in human monocyte THP-1 

cells. 
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Materials and Methods 

 All reagents were of HPLC grade and obtained from Sigma-Aldrich. 

Carbon Nanodots 

 Carbon nanodots used in this study were synthesized by Dr. Martin Choi and his research 

group in the Department of Chemistry at the University of Hong Kong Baptist University in 

Hong Kong, China. The CD has an approximate molecular weight of 2500-3200 g/mol and is 

approximately 2.2-5.0 nm in size. The CD’s are comprised of a carbon core with amine, amide 

and carboxylic acid moieties covering its surfaces (Figure 1).  
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  Figure 1. Carbon Nanodot                        

  

 

 

 

  

 

 Carbon Nanodot comprised of carbon core, carboxylic acid, amine and amide moieties.  
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Cell Culture and Treatment 

 The human monocyte (THP-1) cells (ATCC, Manassas, VA) were maintained in RPMI-

1640 medium supplemented with 10 % fetal bovine serum, 1 % penicillin-streptomycin antibiotic 

in 5 % CO2 at 37 
◦
C. Prior to confluence, the cells were collected and centrifuge at 4 

◦
C, 1000 g 

for 10 min. The supernatant was decanted and the cell pellet was re-suspended in 10 mL 

Dulbecco’s Modified Eagles Medium (DMEM). The cells were seeded in a 24-well plate at a 

density of 4.0x10
5
 cells per well. CD (0.60 mg) were mixed with 1 mL DMEM, an aliquot (400 

uL) of this mixture was added to each well, which was incubated for 24 h. 

 LDH Assay 

 The cytotoxic effects of CD were first measured by quantitating the release of lactate 

dehydrogenase (LDH) from the THP-1 cells. Following incubation, an aliquot (200 uL per well) 

of treated cells were centrifuged at 4 
◦
C, 3.4 rpm for 5 min. The untreated cells (200 uL per well) 

were sonicated then centrifuged. The supernatants were collected for LDH measurements. 

Reagents for LDH assay were added 60 uL of 0.8 mg/mL pyruvate, 60 uL of 3 mg/mL NADH. 

The PBS (1 X, pH 7.4) volume varied according to sample volume. NADH was added last, for a 

total volume of 600 uL, to start the reaction and the cuvette was immediately placed in the 

spectrophotometer. In the spectrophotometer, the LDH reaction (Figure 2) is related to the 

oxidation of the NADH compound which absorbs at 340 nm, the reduced NAD does not absorb at 

this wavelength. The absorbance was recorded over 5 min. 

 Figure 2. LDH Reaction 

                                   H
+
 + pyruvate + NADH                 L-lactate + NAD

+    
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Trypan Blue Viability Assay 

The cell number and cell viability were determined using cell counting method. Cells 

(100 uL per well) were mixed with trypan blue dye (100 uL) and 20 uL of this cell dye mixture 

was loaded onto a hemacytometer. For this study, each well was counted four times using both 

chambers of the hemacytometer. An aliquot (10 uL) of the cell dye mixture was added onto a 

microscope slide and observed using an EVOS
®
 digital microscope. 

Measurement of CD interference with LDH 

 The CD (0.15 mg/mL) was dissolved in diH2O (0.25 mL) for absorbance measurements. 

Serial dilutions were performed for concentrations of 0.45, 0.30, 0.15, 0.075 mg/mL. The CD 

solution (10 uL) was added to the LDH reagents 60 uL NADH, 60 uL pyruvate, 490 uL 1X PBS, 

and absorbance was read at 340 nm. 

 Results and Discussion 

 The lactate dehydrogenase (LDH) assay is widely used to detect cytotoxicity of various 

nanoparticles. In this study, the cytotoxicity of monocytes, after exposure to CD in concentrations 

ranging from 0.075 to 0.60 mg/mL, was determined by using the LDH assay. Figure 3 displays 

the LDH absorbance in the presence and absence of CD. There was a pronounced effect of LDH 

release in the cell lysate (Figure 3, positive control) indicating LDH was utilizing NADH in its 

conversion to pyruvate. The decrease in NADH absorbance over time confirmed that the reagents 

and instrument were operating properly. However, after 24 h incubation with 0.15 mg/mL and 

0.30 mg/mL of CD, the CD did not cause an increase in the release of LDH in the THP-1 cells 

and the 0.30 mg/mL treatment was higher than the 0.15 mg/mL treatment (Figure 3). 
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Figure 3. Carbon Nanodot Toxicity using LDH assay 

 

Carbon Nanodot toxicity using LDH assay. Blank contains 1 X PBS, positive control (PC) 

contains supernatant from lysed THP-1 cells, and treatment (TC) contains 0.15 and 0.30 mg/mL 

of carbon nanodots respectively.  
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To validate the results of LDH assay, the cell count method with trypan blue staining was 

used. This method was optimized by counting the chambers of a hemacytometer four times for 

each cell culture of THP-1 cells. The living and dead cells were both counted and averaged to get 

the total number of cells (Figure 4).  Incubation of cells with various concentrations of CD for 24 

h caused a significant decrease in cell viability measured by trypan blue staining (Figure 5). The 

cell morphology changes by CD were further examined with a digital microscope (Figure 6). 

Compared to control, the cells treated with CD display significant changes in cell morphology 

including a loss of uniformity and detritus surrounding the cell clusters as indicated by the arrows 

in Figure 6. The inconsistency results between Figure 3 (LDH assay) and Figures 5-6 (trypan blue 

staining and digital microscope) by CD treatment lead us to propose that the CD was interfering 

with the NADH absorbance of the LDH assay in Figure 3. 

  

  

 

 

 

 

 

 

 



15 

 

Figure 4. Cell Counting Accuracy 

 

 Cell Counting Accuracy determined by cell counting with trypan blue staining and 

hemacytometer. Live cells and dead cells were counted and averaged (n=4). The values are mean 

± standard deviation. 
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Figure 5. Carbon Nanodot Toxicity using Cell Counting Method 

 

Carbon Nanodot Toxicity determined by trypan blue staining and hemacytometer. The percentage 

of viable cells from 0.30 mg/mL CD treatment was normalized to negative control. The reported 

values are mean ± standard deviation with n=4 and p < 0.05.   
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Figure 6. THP-1 Cell Death Morphology 

       A) CD treated           B) Control 

 

 

 

 

THP-1 Cell Death Morphology. A) Presence of cellular debris and loss of uniformity for THP-1 

cells exposed to CD, indicated by the blue arrows. B) THP-1 cells under normal cell culture 

conditions, cells appear to maintain their uniformity.  
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The absorbance of CD at 340 nm was measured to further study the interference with the 

LDH assay (Figure 7). The absorbance of CD in the absence of THP-1 cells was measured in 

concentrations ranging from 0.075 to 0.60 mg/mL. The absorbance of the CD at 340 nm 

increased as the concentrations increased (R
2
= .9883, Figure 7). This trend was observed in the 

LDH measurement, suggesting that there was interference on the NADH absorbance (340 nm) by 

the CD. 
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Figure 7. CD Absorbance at 340 nm 

 

CD absorbance at 340 nm. Control contains 1 X PBS. The reported values are mean ± standard 

deviation, n=3 with p < 0.05.  
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In this study, we are the first to report that the CD was found to interfere with the NADH 

absorbance of the LDH assay at 340 nm in a dose-dependent manner supporting our speculation 

that CD interferes with the LDH assay. Our results suggest that the lactate dehydrogenase assay 

should not be used to evaluate the cytotoxicity of CD that potentially leads to a false conclusion 

on the cytotoxicity of carbon nanodots as reported in the literature. The traditional trypan blue 

staining method proved to be a viable approach for evaluating the cytotoxicity of nanomaterials, 

whose chemical and physical properties may not be known. This method has been used to access 

the cytotoxicity of multi-walled carbon nanotubes, however, it is fairly time consuming. 

Therefore, an improved method is needed to determine the risk assessment of CD for future use. 
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CHAPTER IV 

CYTOTOXICITY SCREENING MATRIX ASSISTED LASER DESORPTION 

IONIZATION MASS SPECTROMETRY   

Introduction 

Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) has been 

applied extensively to the proteomic field 
15, 23

. This technique has been used to define biomarkers 

specific to apoptotic cell death, to differentiate primary blood cells, and to study activation of 

macrophages 
8, 23

. To the best of our knowledge, as MALDI-MS applications tend to diversify, it 

has yet to be used to examine cytotoxicity in mammalian cells. In this study, we evaluate 

MALDI-MS as a new methodology to examine cytotoxicity (cs-MALDI-MS). 

The sample preparation is critical for successful cs-MALDI-MS analysis. In generating 

cs-MALDI mass spectra from the human monocyte (THP-1) cell line, there are many 

experimental factors that can influence the quality of mass spectra produced. For optimum cs-

MALDI-MS analyses of THP-1 cells each parameter of our protocol was optimized. The work 

flow consists of harvesting the cells, washing the cells, and mixing the cells with matrix for direct 

analysis.  

Materials and Methods 

 All of the reagents used were of HPLC grade and purchased from Sigma-Aldrich. 
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Cell Culture and treatment 

The cell culture harvest method, see Chapter III. After harvesting the cells, the 

supernatant was decanted and the cell pellet was re-suspended in RPMI-1640 for a density of 

1.0x10
7
 cells per mL. The cells were seeded in a 6-well plate and treatments were added to the 

proper wells, which was incubated for 24 h. Aflatoxin b1 (10 mg) was dissolved in DMSO (.8 

mL), it was administered to THP-1 cells in 100 uM and 400 uM concentrations. Hydrogen 

peroxide (9.5 M, 1mL) was diluted in 1 X PBS (9 mL) and was administered in 100 uM and 500 

uM concentrations. 

 Trypan Blue Viability Assay 

 The cell viability was determined using cell counting method. Cells (10 uL) per well 

were mixed with trypan blue dye (90 uL) and 20 uL of this cell dye mixture was loaded onto a 

hemacytometer. Each well was counted four times using all four grids of the hemacytometer 

chamber. 

 cs-MALDI sample preparation 

 The THP-1 cells (~1 mL) were collected from each well and centrifuged at 4 
◦
C, 3.4 rpm 

for 10 min. The supernatant was decanted and the cell pellet was re-suspended in 1 mL PBS (1 X, 

pH 7.4). The cells were centrifuged at 4 
◦
C, 3.4 rpm for 10 min, for the completion of one wash. 

This was repeated two times with 1 X PBS (1 mL) and two times with 150 mM ammonium 

acetate (1 mL). THP-1 cell pellet was re-suspended in 150 mM ammonium acetate with a final 

concentration around 10
7 
cells per microliter. The matrix, α-CHCA (10 mg) was dissolved in 1 

mL of 50 % acetonitrile and 0.1 % trifluoracetic acid. Serial dilutions with α-CHCA and THP-1 

cells were performed with a final cell concentration of 120,000 per uL. One microliter of 
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cell/matrix solution was spotted onto MALDI plate, and the solvent was evaporated at room 

temperature. 

 cs-MALDI analysis 

 cs-MALDI-MS mass spectra of THP-1 cells were obtained using a Waters Synapt G2 

HDMS Optics MALDI-MS. A pulsed nitrogen laser (337 nm) was used for desorption/ ionization 

and mass spectra were acquired in positive linear mode. The instrument was operated with an 

acceleration potential of 25 kV. The quad profile was set to favor the low mass and the external 

mass calibration was performed using insulin and ATCH fragment from the Proteo-Mass Peptide 

and Protein MALDI-MS Calibration Kit. Spectra were obtained by accumulating data collected 

from 80 scans with 0.5 sec scan time. 

Results and Discussion 

1. Effect of Washing 

The THP-1 cell growth reached ~90% confluence at 3 days and were harvested for 

treatment. Although cs-MALDI-MS is known to produce good quality spectra in the presence of 

salts, the presence of serum in the supplemented growth media can interfere with the spectral 

interpretation. Therefore, prior purification of the cell culture is needed to improve the quality of 

the mass spectra. To remove cellular debris, the cell culture must undergo several numbers of 

washing steps, three washes with 1X PBS (pH 7.4) and two washes with 150 mM ammonium 

acetate. To minimize the osmosis process during each washing step, which may lead to the 

cellular disruption, the use of different washing solutions were evaluated. In order to simulate the 

washing process, 1 mL of cells were collected and re-suspended in 1 mL solution for a time 

period of 30 minutes. The cellular integrity was evaluated every 5 min by comparing the cells in 



24 

 

solutions with the cells that were kept under the normal cell culturing conditions. The ammonium 

acetate and 1 X PBS solutions provided the best conditions for the time period. 

During the washing process, the cells were counted after each washing step to determine 

the amount of loss (Figure 8). This step was critical to ensuring there was enough sample for cs-

MALDI analysis. Before seeding the cells into the incubation plate, the cell loss was subtracted, 

approximately 20 % for 1 X PBS and approximately 65 % for ammonium acetate. 
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Figure 8. Effect of Washes on Cell Concentration 

 

Effect of Washes on Cell Concentration. An initial cell count was performed before washing 

steps were performed. Cells were counted after each washing step and normalized the percentage 

of viable cells were normalized to the initial cell count. The reported values are mean ± standard 

deviation, n=4. 
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2. Effect of Cell Concentration 

The cellular sample in this study is co-crystallized with the matrix and spotted onto the 

MALDI plate. For MALDI analysis it is necessary to have the proper ratio of matrix to target 

analyte(s). The number of matrix molecules should exceed the number of target analyte(s) such 

that the target analyte(s) don’t cluster together, which would decrease desorption/ionization 

efficiency during the MALDI process. On the other hand, there must be enough number of target 

molecules in the MALDI sample. To ensure having the optimal ratio of matrix to intact cells, 

different number of cells were used ranging from 10
3
 to 10

9
 cells per spot were examined for cs-

MALDI analysis (Figure 9). The results indicated that to achieve the highest signal with the 

lowest signal to noise ratio, 120,000 cells per spot was the best for this cell line. Any cell number 

higher than 120,000 cells per spot interfered with the desorption process.  
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Figure 9. Effect of Cell Concentrations on cs-MALDI Spectra 

A) 1 million, 100 thousand, and 10 thousand cells per spot 

 

B) 120 thousand cells per spot 
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3. Effect of Different Matrices that have been used for measuring cellular samples 

Selecting the appropriate matrix for optimum cs-MALDI analyses is an important issue. 

The matrix is used to minimize the damage inflicted by the laser on the cells. This ensures that 

the cellular integrity is not compromised and that the change in protein expression is caused by 

the exposure to the toxin and not the infliction from the laser. The matrix increases the energy of 

transfer from the laser to the cells thus increasing the sensitivity. 4-hydroxy-α-cyanocinnamic 

acid (α-CHCA) and sinapinic acid (SA) have both been reported in the literature as good matrices 

for large biomolecules. Both α-CHCA and SA were tested with the protein/peptide standards 

from a Proteo-Mass Peptide and Protein MALDI-MS Calibration Kit (Sigma Aldrich), and the 

spectrum for SA contained sodium adducts. Therefore the best matrix for our studies that 

produced a clean spectrum was the α-CHCA. 

4. cs-MALDI analysis 

The samples were analyzed with a Waters Synapt G2 HDMS Optics MALDI-MS. The 

MALDI-MS instrumental parameters were varied in their settings to favor low mass and high 

mass (Table 1). These parameters were selected based on our own experience as well as the 

recommendation from the manufacturer. Emphasis was put on optimizing the efficiency on 

transmitting various ions through the quadrupole at the front end of the instrument. However, the 

high mass settings wouldn’t produce a good, consistent signal without high background noise, 

and lower signals were obtained when the peaks were detected above 7 kDa (Figure 10). After 

many attempts we shifted to the low mass settings with the quad profile favoring a mass range of 

1 kDa to 6 kDa. These settings provided the better quality spectra for cs-MALDI analysis (Figure 

9b). Although we tried adjusting many of the instrumental parameters using the peptide/protein 

standards to favor the high mass, the ionization efficiencies varied and the detection was low. 
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This could be attributed to larger proteins having lower ionization efficiencies or that the smaller 

proteins and peptides are more abundant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

Table 1. cs-MALDI-MS Settings 

  Low Mass 
1-6 kDa 

 High Mass 
2-12 kDa 

Source   

Sample Plate 10.0 kV 20.0 kV 

Hexapole 15.0 kV 5.0 kV 

Auto Values   

Detector 2925 2925 

RF Settings   

Trap 350 320 

IMS TOF 350 380 

Transfer 350 380 

Hexapole 550 600 

TriWave   

Source Wave Height Disabled 1.0 V 

Transfer Wave Height Disabled 3.0 V 

Collision Energy   

Trap CE Disabled 40.0 

Transfer CE Disabled 10.0 

Trap DC   

Bias Disabled 22 

IMS DC   

Entrance Disabled 2 

Quad Profile   

Mass 1 (dwell time) 
[ramp time] 

1000 (2) [95] 1000 (2) [95] 

Mass 2 (dwell time) 6000 (2) 8000 (2) 

Mass 3 6000 8000 
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Figure 10. High Mass cs-MALDI Spectrum  

 

cs-MALDI Spectrum obtained from 10,000 THP-1 cells with no prior treatment using High Mass 

settings in Table 1. 
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5. cs-MALDI Analysis of Different Toxic Chemicals 

MALDI-MS is widely used in distinguishing cell lines. In this study, a method for direct, 

cMALDI-MS was established and evaluated. To optimize the cMALDI direct analysis of THP-1 

cells suspended in matrix, the cells were treated with hydrogen peroxide and analyzed. Hydrogen 

peroxide is a reactive oxygen species (ROS) that can generate more toxic ROS and induce 

oxidative stress in most cell types 
1
. Hydrogen peroxide was administered to THP-1 cells in 100 

uM and 500 uM concentrations and analyzed using cs-MALDI-MS and the standard trypan blue 

staining method. The cell viability was determined post exposure (Figure 11) confirming cellular 

death had occurred after 24 h incubation. Replicate experiments were performed from three 

independent cell cultures, and the same peak pattern is obtained each time (Figure 12). The cs-

MALDI method developed in this study demonstrates the possibility to distinguish the variations 

in protein expression by simply comparing the differences in the spectral patterns which can be 

obtained directly from untreated and treated cells. 
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Figure 11. Hydrogen Peroxide Cell Viability 

 

Cell Viability determined using trypan blue staining and hemacytometer. Cell count was 

performed post 24 h exposure to hydrogen peroxide. The percentage of viable cells post exposure 

was normalized to the control. The values are mean ± standard deviation, n=4.  
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Figure 12. cs-MALDI-MS for Hydrogen Peroxide 

 

cs-MALDI spectra post 24 h incubation with hydrogen peroxide. Replicates were performed from 

different cell cultures, n=3. Spectra were obtained in positive linear mode using low mass 

settings.  
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To demonstrate the applicability of the cs-MALDI-MS method, THP-1 cells were treated 

with aflatoxin b1 from the Aspergillus species. Aflatoxin B1 is commonly found in food products 

such as nuts and corn. It is the most toxic metabolite in the aflatoxin family and is known to affect 

the liver 
25

. In this study, aflatoxin b1 was administered to the THP-1 cells in concentration of 100 

uM and 400 uM. The cell viability was determined post exposure (Figure 13) indicating cellular 

death had occurred after 24 h incubation. The mass spectra obtained from cs-MALDI-MS 

analysis of aflatoxin exhibited a number of discrete peaks in the m/z range that were different 

from the hydrogen peroxide mass spectra.  

To confirm the differences in mass spectra, THP-1 cells were analyzed using cs-MALDI-

MS with no prior treatment. These results indicated that THP-1 cells treated with aflatoxin and 

hydrogen peroxide will produce a unique mass spectral pattern (Figure 14). As shown in Figure 

14, profiles for aflatoxin b1 and hydrogen peroxide are easily distinguished by visual inspection 

and the spectral patterns are reproducible. While many of the major peaks observed for all 

conditions are common, there are also a number of unique peaks (Figure 14, solid red arrow) and 

missing peaks (Figure 14, dotted red arrow). Visual inspection is enhanced by the zooming in on 

specific regions of the mass spectra to better identify peaks (Figure 15). Table 2 summarizes these 

common peaks, the peaks specific to each condition and the relative intensities observed during 

cs-MALDI-MS analysis. Principal component analysis was performed using the peaks 

summarized in Table 2. The results indicated that although there is little overlap in the spectral 

pattern of aflatoxin b1 and hydrogen peroxide, they can be separated into three segments (Figure 

16). The blue dots in Figure 16 correspond to the peaks and the circles correspond to the group of 

peaks for each toxicant. This pattern can be used to distinguish which toxin is responsible for 

initiating a particular cellular response and is beneficial for screening purposes. 
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Figure 13. Aflatoxin B1 Cell Viability 

 

Cell Viability determined using trypan blue staining and hemacytometer. Cell count was 

performed post 24 h exposure to aflatoxin b1. The percentage of viable cells post exposure was 

normalized to the control. The values are mean ± standard deviation, n=4. 
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Figure 14. cs-MALDI-MS  

A) Case #1 

 

B) Case #2: Replication of Case #1 
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Figure 15. cs-MALDI-MS  Expanded View 

A) Zoom in view of 1 kDa- 3 kDa 

 

B)  Replication of A 
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C) Zoom in view of 3000 Da - 3560 Da 

 

D) Replication of C 
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Table 2. List of cs-MALDI Peaks 
 
Key:    √     = peak present 

- = peak not present 
√-    = peak intensity decreased compared to control 
√+   = peak intensity increased compared to control 

            ()     = (intensity) 

 

Peaks (m/z) Untreated H2O2 Aflatoxin B1 

1058 - (0) √    (70) √- (40) 

1096 -  (0) √    (35) -      (0) 

1404 √    (30) -    (0) -     (0) 

1447 √    (20) -     (0) -     (0) 

1587 -     (0) -     (0) √    (30) 

1640  -     (0) -     (0) √    (40) 

1923  √    (70) √    (90) √    (100) 

2510 -  (0) √    (70) -    (0) 

2559 √      (30) √    (20) √    (40) 

2687 -      (0) -    (0) √    (30) 

2822 -       (0) -     (0) √    (30) 

3321 √     (10)  -     (0) -     (0) 

3349 √     (10)  -     (0) -     (0) 

3411 √     (10)  -     (0) -     (0) 

3454 -  (0) √    (20) -  (0) 

3477 -      (0) -     (0) √     (20)  

3507 -      (0) -    (0) √     (15)  

4620 √     (75) √+  (100) √+   (90) 

4686 - (0) √    (30) √    (40) 

4950 √     (100) √-   (30) √-   (37) 
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Figure 16. PCA of Common Peaks  

 

 Principal Component Analysis of common peaks. Blue dots represent peaks from Table 2. 

Circles represent peaks associated with toxic chemical in quadrants.  
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The specific peaks for each condition can be utilized as a “fingerprint.” It is important to 

note that further identification of the protein/peptide peaks can be accomplished by using the 

standard proteomic method, and may lead to the discovery of novel biomarkers that correspond to 

aflatoxin or hydrogen peroxide treatment with THP-1 cells or equivalence. The cs-MALDI 

method has been applied using HepG2 cells and the same toxic chemicals, differences in mass 

spectral patterns were observed there as well. This is the first time a MALDI method has been 

used to distinguish the cellular responses resulted from exposure to known toxic chemicals. These 

results provide sufficient support for using the cs-MALDI methodology in other toxicology 

studies including the nanoparticle toxicity studies 

 

 

 

 

 

 

 

 

 

 

 



43 

 

CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

Conclusion 

 This study successfully demonstrated a novel application of cs-MALDI-MS for the 

detection of cytotoxicity. As shown, the cs-MALDI mass spectra of untreated, aflatoxin b1 and 

hydrogen peroxide were significantly different. These results provided significant evidence that 

the mass spectra of carbon nanodots can be different with some peaks in common, assuming CD 

cause different type of stress to THP-1. This method requires minimal sample preparation and 

volume, and avoids the use of reagents or dyes that is known to interfere with nanoparticles. The 

analytical process can be completed within 5 min. after sample preparation and can be readily 

automated for high-throughput analysis.  

 Significance of Study 

 Nanoparticle toxicity is of particular concern. Humans are exposed to carbon based 

nanomaterials daily and they have been found to induce cardiovascular toxicity. Although their 

unique properties have advantages in cancer therapy, their adverse effects are unknown. Carbon 

nanodots have been shown to interfere with the toxicological assay, lactate dehydrogenase, 

eliminating its use for toxicity studies. To the best our knowledge, there aren’t any current assays 

that can accurately assess the risk of nanoparticles without interference. Information obtained 

from cs-MALDI-MS can be used to characterize nanoparticle effects on human health whether 

it’s adverse or advantageous. The identification of biomarkers can increase the efficacy of 

treatment and monitoring of nanoparticle toxicity.
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Future Work 

 In the future, it would be beneficial to administer carbon nanodots as treatment in a dose 

dependent manner and analyze with cs-MALDI-MS. THP-1 cells were studied in this work, and 

previously HepG2 cells, however they are not the only cell lines that can be affected by carbon 

nanodots. It is interesting to further study the effect of carbon nanodots on other cancer cell lines. 

Quantitation work of the biomarkers is important and can be easily achieved using dose-

dependent treatments. Quantitation results can give insight to the complexity of cs-MALDI-MS 

method and provide useful information about the extent of damage due to nanoparticle toxicity. 

Such work would optimize cs-MALDI-MS as a universal screening method for chemicals and 

particles.  
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