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Abstract: 

This paper develops methods of Bayesian inference in a sample selection model. The main 
feature of this model is that the outcome variable is only partially observed. We first present a 
Gibbs sampling algorithm for a model in which the selection and outcome errors are normally 
distributed. The algorithm is then extended to analyze models that are characterized by 
nonnormality. Specifically, we use a Dirichlet process prior and model the distribution of the 
unobservables as a mixture of normal distributions with a random number of components. The 
posterior distribution in this model can simultaneously detect the presence of selection effects 
and departures from normality. Our methods are illustrated using some simulated data and an 
abstract from the RAND health insurance experiment. 
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Article: 

1. Introduction 

In this paper we develop methods of Bayesian inference in a sample selection model. In general 
sample selection occurs when the data at hand is not a random sample from the population of 
interest. Instead, members of the population may have been selected into (or out of) the sample, 
based on a combination of observable characteristics and unobserved heterogeneity. In this case 
inference based on the selected sample alone may suffer from selection bias. 
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A selection model typically consists of two components. The first is an equation that determines 
the level of the outcome variable of interest. The second is an equation describing the selection 
mechanism: it determines whether we observe the outcome or not. The latter can sometimes be 
given a structural interpretation, in which the dependent variable in the selection equation 
represents an agent’s latent utility. If this utility crosses a certain threshold level, the agent acts in 
such a way that his or her outcome is observed. If the threshold is not crossed, the agent acts 
differently and the outcome remains unobserved. Thus, a selection model can be viewed as a 
model for potential outcomes that are only partially realized and observed. This interpretation 
applies most directly to the context of modeling a wage offer distribution. Here the wage offer is 
a potential outcome that is realized only when an individual actually participates in the labor 
force. 

The importance of selection issues in the analysis of labor markets was recognized early on by, 
among others, Gronau (1974) and Heckman (1974). In his seminal contribution Heckman 
(1979) treats sample selection as a potential specification error and proposes a two-step estimator 
that corrects for omitted variable bias. Both Heckman’s two-step procedure and full-information 
maximum likelihood have since been widely used in applied work, and are readily available 
routines in many statistical software packages. An obvious problem, however, is that these 
estimation methods rely on strong parametric assumptions about the distribution of 
unobservables. When these assumptions are violated the estimators may become inconsistent. To 
overcome this problem a number of semiparametric methods have been proposed. Examples 
include Cosslett (1991), Ichimura and Lee (1991), Ahn and Powell (1993) and Lee (1994). An 
excellent survey of this literature is Vella (1998). 

Despite the numerous contributions in classical econometrics, the Bayesian literature on 
selection models has remained relatively sparse. Bayarri and DeGroot, 1987 and Bayarri and 
Berger, 1998 and Lee and Berger (2001) consider inference based on a univariate selected 
sample. More recently, Chib et al. (2009)develop a Bayesian method of inference in regression 
models that are subject to sample selection and endogeneity of some of the covariates. They 
consider models that are potentially nonlinear, but have normally distributed structural errors. 

Our paper adds to this literature by developing a Bayesian approach to inference in a type 2 
Tobit model (e.g., Amemiya, 1985, Ch. 10). In this model the selection rule is binary: we only 
observe whether the latent selection variable crosses a threshold or not.1 Although we do not 
explicitly treat alternative selection mechanisms, it is relatively easy to modify the methods 
presented here to cover such cases. We provide Gibbs sampling algorithms that produce an 
approximate sample from the posterior distribution of the model parameters. Our paper differs 
from Chib et al. (2009) in that we also consider a model with a flexible distribution for the 
unobserved heterogeneity (i.e. the residuals or ‘errors’ in the two model equations). The starting 
point for our analysis is a bivariate normal distribution. Gibbs sampling in this case is fairly 
straightforward. The basic model may, of course, be misspecified. We therefore extend the 
analysis to a semiparametric model, based on the Dirichlet process prior of Ferguson, 



1973 and Ferguson, 1974. This prior implies that the unobserved heterogeneity follows a mixture 
distribution with a random number of components. It has become increasingly popular in 
Bayesian semiparametric analyses, and our contribution is to incorporate it into a sample 
selection framework.2 

A Bayesian approach to inference has two attractive features. First, the output of the sampling 
algorithm not only provides the Bayesian analogue of confidence intervals for the model 
parameters, it also gives an immediate indication of the presence (or absence) of a selection 
effect and departures from normality. Second, if the econometrician has prior information, 
e.g. restrictions on the parameters, then this information can be easily incorporated through the 
prior distribution. 

The remainder of this paper is organized as follows. Section 2 presents the selection model with 
bivariate normal errors and a Gibbs sampling algorithm. In Section 3 we develop the extension to 
a mixture model. We discuss identification issues, the Dirichlet process prior and present the 
corresponding algorithm to approximate the posterior. The use of the Dirichlet mixture model is 
illustrated in Section 4 with some simulated data, whereas Section 5 contains an application to 
estimating a model for health care expenditures, using an abstract of the RAND health insurance 
experiment. Section 6 concludes and details regarding the various Gibbs samplers are collected 
in Appendix. With regard to notation, Nk(μ,Σ)denotes a k-dimensional normal distribution with 
mean μ and variance Σ. Unless there is ambiguity about the dimension, we will usually omit the 
subscript k. We use TN(a,b)(μ,Σ) to denote a N(μ,Σ)distribution, truncated to the interval (a,b). 
The standard normal density and distribution functions areϕ(⋅) and Φ(⋅), respectively. 
Finally, G(c0,d0) denotes the gamma distribution with parameters(c0,d0) and expected value c0/d0. 

2. A sample selection model 

2.1. Likelihood and prior 

We use the following selection model for an individual member i of the population: 

 

equation(1) 

 

 

where I{⋅} denotes the indicator function. The row 
vectors  and  contain k1 and k2 variables, respectively. If xi denotes the vector of distinct 
covariates in , the econometrician observes an i.i.d. sample  of size n from the 
population model.3 Note that the outcome yi is observed if and only if si=1. We 



define N1={i:si=1} and N0={i:si=0} as the index sets of the observed and missing outcomes, 
respectively. 

Letting ui=(ui1,ui2)′ be the vector of errors, a simple parametric model is obtained when we 
assume that ui|xi∼N(0,Σ). This rules out the case where some of the covariates in xi are 
endogenous. Provided valid instrumental variables are available, the selection model can be 
expanded with a set of reduced-form equations that relate instruments to endogenous variables. 
A parametric model then specifies a joint distribution (e.g. multivariate normal) for ui and the 
reduced-form errors. This approach to modeling endogeneity is taken by Chib et al. (2009), and 
can be adapted for the models we discuss in this paper. To save space and keep the notation 
relatively simple, we do not present such an extension here. 

Similar to Koop and Poirier (1997), we parameterize the covariance matrix of ui as 

equation(2) 

 

where σ12 is the covariance and ξ2 the conditional variance of ui2, given ui1. When the covariance 
is zero, ui1 is independent of  and we can conduct inference about β2 based on the subsample 
indexed by N1. This strategy would lead to selection bias when σ12≠0. Setting the variance 
of ui1equal to one is the typical identification constraint for a binary choice model. It should be 
noted that in a Bayesian treatment of this model it is not necessary to impose this constraint. We 
could proceed with an unrestricted covariance matrix and conduct inference in a way similar 
to McCulloch and Rossi (1994). The main difficulty, however, lies with selecting a prior for the 
unidentified parameters. This prior will induce a prior for the identified parameters, and needs to 
be carefully checked to ensure that it appropriately reflects a researcher’s beliefs. The advantage 
of the current model formulation is that a prior is placed directly on the identified parameters; 
see Li (1998) and McCulloch et al. (2000), who proposed this strategy before. 

In what follows let  be the vector of model parameters. For the observed 
outcomes we know that .4 It follows from the bivariate normality 
assumption that 

 

On the other hand, when the outcome is missing it does not contribute to the likelihood, and the 
probability that this occurs is 

 



If y and s are the n-dimensional sample vectors of (yi,si) values, the likelihood is given by 

equation(3) 

 

It remains to specify a prior distribution f(θ). For computational convenience we 
take β1,β2 and(σ12,ξ2) to be independent in the prior and 
use β1∼N(b1,B1),β2∼N(b2,B2),ξ2∼IG(c0,d0)and σ12|ξ2∼N(0,τξ2). Here IG denotes the inverse-
gamma distribution.5 The prior dependence between σ12 and ξ2 through τ>0 allows various 
shapes of the prior on the correlation between ui1and ui2.6 

2.2. Posterior 

An application of Bayes’ rule leads to the joint posterior distribution: 

f(θ|y,s)∝f(y,s|θ)f(θ). 

Given the likelihood function in (3), however, the posterior does not belong to any well-known 
parametric family. It is therefore relatively difficult, for example, to generate random draws from 
the posterior or calculate its marginals. Fortunately, a number of simulation algorithms can be 
used to approximate the posterior. Chen et al. (2000) provide an excellent overview and 
discussion of available methods. In this paper we approximate the posterior distribution of θ via 
Gibbs sampling, when the data is augmented with the vector of latent selection 
variables . Data augmentation, first proposed by Tanner and Wong (1987), has 
become a useful tool in Bayesian treatments of latent variable models. Examples include Albert 
and Chib (1993), McCulloch and Rossi (1994) and Munkin and Trivedi (2003). If θ is partitioned 
into M ’blocks’ of parameters , then the joint posterior f(θ,s∗|y,s) is approximated by 
generating random draws of  and s∗ from their respective conditional posteriors, and 
repeating this cycle many times. The advantage of data augmentation is that, given a natural 
conjugate prior, the conditional posteriors are standard parametric distributions. This, in turn, 
makes Gibbs sampling straightforward.7 

Sampling of s∗ is based on 

 



Note that for i∈N0 the outcome yi is missing, so that only (si,θ) determines the conditional 
distribution of . If θ−m=θ∖{θm} is the collection of parameters, excluding θm, then sampling 
of θmfor m=1,…,M is based on 

 

The equality in the first line holds because s is a function of s∗. We can now formulate a Gibbs 
sampler for this model. Additional details and expressions for the parameters of the various 
posteriors are given in the Appendix. 

Algorithm 1 Normal Selection Model. 

For given starting values of θ and s∗: 

1. sample  for i=1,…,n from 

 

 

2. sample β1 from 

 

3. sample (β2,σ12) from 

 

4. sample ξ2 from 

 

5. return to Step 1 and repeat. 

Several remarks are in order. First, all conditional posteriors are standard distributions from 
which it is easy to generate a random draw. Running the algorithm for a large number of 
iterations yields a realization from a Markov chain. Under standard regularity conditions 
(Tierney, 1994) the stationary distribution of this chain is the joint posterior of θ and s∗. In 
practice one can monitor the simulated values of θ to assess convergence of the chain. For 
inference the first part of the simulated chain is often discarded as a so-called burn-in period, to 
ensure that the chosen starting values have a negligible impact. Also, when multiple chains are 



simulated from different starting values, certain diagnostic statistics can be calculated to monitor 
convergence (Gelman et al., 1995, Chapter 11). 

Second, the algorithm given above only augments the data with the selection variable . An 
alternative Gibbs sampler can be based on also simulating the missing outcomes. Instead of 
sampling  for i∈N0, we could generate a random draw  from a bivariate normal 
distribution. This yields a balanced augmented sample. The subsequent steps for 
sampling θ in Algorithm 1 should then be modified by deriving conditional posteriors that also 
condition on the generated values {yi:i∈N0}. As noted by Chib et al. (2009), however, there are 
three advantages to not simulating unobserved outcomes. First, the computational and storage 
demands of Algorithm 1 are lower. Second, less data augmentation is likely to improve the 
mixing behavior of the Markov chain. Finally, Algorithm 1 is applicable when some or all of the 
covariates in xi2 are unobserved for i∈N0. An algorithm based on full data augmentation would 
also require a model for xi2 and hence, a way to generate missing values.8 

Third, it is often of interest to determine whether the covariance σ12 is zero or not. In the classical 
approach to inference this can be done via a t-test on the coefficient of the inverse Mills ratio 
(e.g. Wooldridge, 2002, Chapter 17). An alternative is to compute the Bayes factor. 
Let M0 and M1 be the restricted (σ12=0) and unrestricted models, respectively. If θj∈Θj is the set 
of parameters in model Mj with prior distribution f(θj|Mj), the Bayes factor is the ratio of 
marginal likelihoods: 

 

 

Small values of B01 are evidence for the presence of a selection effect. Chib (1995) shows how to 
estimate the marginal likelihood from the output of the Gibbs sampler.9 Note that Gibbs 
sampling in the restricted model is considerably easier than in Algorithm 1, because the 
likelihood in (3) is then separable in β1 and (β2,ξ2). Provided that these parameters are 
independent in the prior, we can combine the Gibbs sampler of Albert and Chib (1993) for the 
Probit model with a standard Gibbs sampler for a normal linear model. 

3. A Bayesian semiparametric model 

3.1. Mixtures of normal distributions 

The assumption of bivariate normality in (1) is convenient but often has no theoretical 
justification. Moreover, if the model is misspecified the posterior distribution may provide little 
information about the parameters of interest. Starting with Cosslett (1991), the classical literature 
on selection models has provided estimators that are consistent under much weaker, 
semiparametric restrictions on the distribution of ui. In particular, the distribution of ui does not 



have to belong to a parametric family. Suppose that ui is independent of xi, that ui2 has 
density fu2, and let Fu1 and Fu1|u2 be the marginal and conditional CDFs of ui1, respectively. The 
likelihood for model (1) is then 

 

The method of inference in our paper–similar in spirit to the work of Gallant and Nychka 
(1987) and Van der Klaauw and Koning (2003)–is based on a likelihood function that is a 
mixture of normal distributions: 

equation(4) 

 

Here μ(j) and Σ(j) are the cluster-specific parameters and γ=(γ1,…,γk) contains the mixing 
weights. Mixtures of normals form a very flexible family of distributions: even a small 
number k of components can generate distributions with skewness, excess kurtosis and 
multimodality. In some applications the mixture distribution has a clear structural interpretation. 
The clusters then correspond to heterogeneous groups within a larger population. Such an 
interpretation is absent here: the mixture distribution is used purely as a flexible modeling 
device. 

3.2. Identification 

In the absence of any information about the clusters, it is immediate that the distribution 
in (4) can at most be identified up to permutations of the cluster indices. For example, consider a 
two-component mixture where clusters 1 and 2 are characterized by {γ,μ,Σ} and , 
respectively. An alternative model with parameters  for cluster 1 and {γ,μ,Σ} for 
cluster 2 has the same likelihood function. Hence, without further restrictions the cluster labels 
are not identified. Teicher (1963) andYakowitz and Spragins (1968) show that except for the 
cluster labels the parameters of finite Gaussian mixtures are identified. The results in these 
papers, however, do not account for the presence of covariates. In particular, they do not imply 
that Gaussian mixtures of regression models are identified.10 For linear models Hennig (2000, 
Theorem 2.2) shows that identification–or the lack thereof–is determined by the richness of the 
support of xi relative to the number of mixture components. In the selection model considered 
here the assumed independence between ui and xi has identifying power, as illustrated by the 
following example adapted from Hennig (2000). 

Example. 



Consider a two-component location mixture with . With probability  the 
model is given by 

 

 

where Di∈{0,1} is binary, (εi1,εi2)∼N2(0,Σ) and Σ contains unit variances and correlation ρ. The 

unknown mixture parameters are . The likelihood of (si,yi) is then 

 

 

Consider a competing set of mixture parameters , where ,  and . 
For observations with Di=0 both θ and  generate the same likelihood. If (β1,β2) and  are 
such that 

 

 

then the same is true when Di=1. Hence, θ is not identified. Note also that  is not obtained 
from θ by a relabeling of clusters. If Di had a multinomial distribution instead, then θ would be 
identified. The same is true when βj does not vary across j: in that case we cannot find a –apart 
from relabeling clusters–that generates the same likelihood for almost all yi. Put differently, we 
can define ui=(αj+εi1,δj+εi2) with probability γj. Then ui has a mixture distribution and is 
independent of Di. □ 

In this example the independence between ui and the covariate leads to identification, but this 
may not be true in general. Parameters in the two parts of the model, namely the selection and 
outcome equations, face distinct identification issues. First, in a semiparametric binary choice 
model where ui1 is independent of xi1, the vector β1 is at most identified up to scale. Moreover, 
without further restrictions on the distribution of ui1, an intercept in β1 is generally not identified; 
see Manski (1988) for a detailed discussion. Second, classical analyses of semiparametric 



identification in selection models have focused on the regression function for observed 
outcomes: 

 

where  is the selection correction. If g(⋅) is unrestricted, an intercept 
inβ2 is not identified. Moreover, if g(⋅) is (close to) linear, the vector β2 is not identified without 
an exclusion restriction.11 

Although strictly speaking a semiparametric identification analysis does not apply to a mixture 
model, we believe that such an analysis is relevant for our purpose as well. Many distributions 
for the structural errors can be closely approximated by a normal mixture, provided the number 
of clusters is sufficiently large. If one or more of the aforementioned identification conditions is 
violated, e.g. the absence of an exclusion restriction in the outcome equation, we expect that 
some parameters in a mixture model may be poorly identified. 

3.3. Prior and likelihood 

Given a prior distribution for the parameters in  and (4), and with a fixed and known value of k, a 
suitable MCMC algorithm can often be constructed to approximate the posterior. See Früwirth-
Schnatter (2006) for a thorough discussion and examples. An obvious complication is that in 
many cases k is not known. To infer the most likely number of mixture components, the 
econometrician could estimate the mixture model for various values of k and select a model on 
the basis of Bayes factors. In practice, however, such calculations can be quite complex and 
time-consuming. 

We propose to estimate the selection model using a Dirichlet process (DP) prior, originally 
developed by Ferguson (1973) and Antoniak (1974). This prior introduces an additional layer of 
uncertainty into a Bayesian model, relative to the fixed prior used in Section 2. Detailed 
expositions of the DP prior are given in Escobar and West (1998) and MacEachern (1998). In 
our context the DP prior gives rise to an error distribution which is a mixture of normals with a 
random number of components. The resulting posterior distribution has the advantage that we 
can directly infer the likely number of mixture components, thereby circumventing the need to 
estimate many different models.12 

In what follows, let  and μi=(μi1,μi2)′. Our selection model based on the DP prior 
is given by (1) and 

 

equation(5) 

ϑi|G∼G, 



 

where DP(α,G0) denotes the Dirichlet process with precision α>0 and continuous base 
measure G0. The variance Σi is parameterized in terms of σ12i and , as in Eq. (2). Here the ui’s 
are potentially drawn from distinct normal distributions, and  are i.i.d. draws from G. In 
addition G itself is treated as unknown and given a DP prior. Thus, G can be viewed as a random 
probability measure.13 Recall from our earlier discussion that an intercept in (β1,β2) and the mean 
of ui are not separately identifiable. In Section 2 the intercept was included in (β1,β2) and the 
mean of ui was normalized to zero. Here, for reasons that will be explained shortly, the constants 
are excluded from (β1,β2) and absorbed into the mean of ui. 

A sample  from a Dirichlet process can be generated as follows. First, sample a 
value ϑ1 from the base distribution. Then, for i>1: 

equation(6) 

 

That is, ϑi either equals an existing value or is a new value drawn from G0. The full-sample 
likelihood is therefore a random mixture: the number of mixture components Zn is equal to the 
number of unique values in . Note that if μi=0 for all i, the mixture becomes a unimodal 
distribution, symmetric around zero. In order to also allow for multiple modes and asymmetry, 
we therefore do not restrict μi to be zero. 

The representation in (6) highlights the role of the precision parameter and base measure. 
As α increases,Zn is likely to be large and  will start to resemble an i.i.d. sample from G0. 
On the other hand, as αdecreases, Zn tends to be small; in the limit as α approaches zero, all ϑi’s 
will be equal, Zn=1 and the ui’s all follow the same normal distribution. Antoniak (1974) shows 
that 

 

where Γ is the gamma function and s(n,k) is a Stirling number of the first kind. For any fixed 
value of αthis distribution is easily calculated. 

The choice of a prior for α is related to identification. If the prior places a large probability on 
large values ofα, there is a risk of overfitting. In this case, for example, the absence of an 
exclusion restriction may lead to identification problems for β2. This problem can be ‘solved’ by 
introducing identifying information via the prior. A prior that concentrates its mass around small 
values of α would lead with high probability to an error distribution that contains fewer mixture 



components. In the limit as α→0 the model becomes identified (though, of course, it may then be 
misspecified). 

It remains to specify G0, and the prior of (α,β1,β2). Excluding the intercept from β1 and β2, we use 
(as before) β1∼N(b1,B1),β2∼N(b2,B2). For the base measure G0 we take μi to be independent 
of , and use and . This is the same prior 
as in Section 2. The DP selection model therefore reduces to the normal model as α goes to zero. 
Finally, by placing a prior distribution on α it is possible to update beliefs about the distribution 
of Zn. For computational convenience we follow Escobar and West (1995) and use α∼G(c1,c2), 
independent of(β1,β2).14 

3.4. Posterior 

Define  and let k be the number of distinct values in ϑ. 
The set of distinct values in ϑ is indexed by j and denoted by . The vector of cluster 
indicators is ζ=(ζ1,…,ζn), where ζi=j if and only if . Finally, nζi is the number of 
observations belonging to cluster ζi. The strategy for approximating the posterior is the same as 
before: the data is augmented withs∗, and the model parameters are sampled consecutively from 
their conditional posterior distributions. This leads to the following MCMC algorithm. 
Additional details and formulas for the posterior parameters are given in the Appendix. 

Algorithm 2 Semiparametric Selection Model. 

For given starting values of θ,ϑ and s∗: 

1. sample  for i=1,…,n from 

 

 

2. sample β1 from 

 

3. sample β2 from 

 

4. sample an auxiliary variable η∼Beta(α+1,n) and sample α from the mixture distribution 

α|k∼pηG(c1+k,c2−logη)+(1−pη)G(c1+k−1,c2−logη), 



where pη is the mixing probability, 

5. for i∈N1: 

(a) if nζi>1 sample an auxiliary value . Sample ϑi according to 

 

where C is a normalizing constant, 

(b) if nζi=1, sample ϑi according to 

 

For i∈N0: sample ϑi according to (a) and (b), with the bivariate likelihoods replaced by the 
univariate ones of , 

6. for j=1,…,k: either sample the entire vector  from  in one step, or blocks 
of from their conditional posterior, 

7. return to Step 1 and repeat. 

Regarding Algorithm 2 we remark the following. First, Steps 1–3 are largely similar to those in 
Algorithm 1, except that observation-specific parameters appear in Step 1, and the posterior 
means and variances of β1 and β2 are different (formulas are given in Appendix). In Step 4 we 
update α, and hence the probability distribution of the number of mixture components. 
Since G0 is not a natural conjugate distribution, we cannot directly sample ϑi from its conditional 
posterior. Algorithm 8 of Neal (2000) is therefore used to update the collection  in Step 5. 
In Step 6 the set of unique parameter values ϑ∗ that determine the clusters are resampled, or 
‘remixed’. Strictly speaking this is not necessary, but a Markov chain without remixing may 
converge very slowly. The reason for this is that clusters of ‘similar’ observations can get stuck 
at a fixed value of , when ϑ is only updated one observation at a time. Remixing allows an 
entire cluster of observations to change parameters at once, which leads to a better exploration of 
the posterior of ϑ and ϑ∗. 

The Dirichlet process selection model can accommodate departures from normality, 
since Algorithm 2 provides information about the number of components in the mixture 
distribution of ui. At each iteration we can determine and store the number k of unique elements 



in ϑ. The sampled values of k provide an approximate sample from the posterior. The ratio of the 
posterior to prior probability of k=1 then quantifies any evidence of non-normality. 

The Dirichlet process selection model can also be used to approximate the posterior predictive 
distribution of ui. This is the Bayesian analogue of a classical density estimate. At 
iteration t∈{1,…,T} of the Markov chain, and given the current state , generate an out-of-
sample value ϑn+1,t according to the procedure in (6): 

 

An estimate of the posterior predictive distribution is then 

 

which can be calculated on a two-dimensional grid. 

Finally, it is possible to make inference about the degree of dependence between ui1 and ui2. 
Dependence implies that selection into the sample is related to the outcome, even after 
controlling for observables. In Algorithm 2 at iteration t we can add the step of generating a 
pseudo-sample , where ui,t∼N(μi,t,Σi,t), and calculating a dependence 
measure.15 The T realizations of this measure are then an approximate sample from its posterior 
distribution. 

4. Simulation evidence 

We now estimate a semiparametric selection model using Algorithm 2 and some simulated data. 
A sample of size n=1000 is generated from (1) with 

 

yi=1+0.5xi2,1−0.5xi2,2+ui2, 

where xi1,1∼N(0,3),xi1,2∼U(−3,3), xi2,1∼N(0,3) and xi2,2=xi1,2. Let  be the fraction of the sample 
in which yi is missing. We consider two distributions for ui. The first is a bivariate normal with 
mean zero, σ12=0.5 and ξ2=0.75. Hence, the correlation is 0.5. The second distribution is a 
location-mixture of two normals: 

 

where γ=0.3,μ1=(0,−2.1)′ and μ2=(0,0.9)′. The correlation between ui1 and ui2 in this case is again 
0.5. The base measure G0 we use is defined by 



. The priors for (β1,β2)–excluding the intercept–
and α are β1∼N(0,10I2),β2∼N(0,10I2) and α∼G(2,2). The implied prior of the number of mixture 
components is given in Fig. 1 and Fig. 2: it is fairly diffuse between 1 and 10 mixture 
components. For values larger than 10 the prior probability rapidly approaches zero. We are 
therefore confident that we are not overfitting, while at the same time allowing for significant 
departures from normality (k=1). For each data set Algorithm 2 is run for 20,000 iterations. The 
first 2500 draws are discarded as a burn in period. In addition, the algorithm is started from three 
sets of initial values. The total approximate sample from the posterior thus contains 52,500 
values. 

 

Fig. 1. Posterior of k and predictive distribution of ui; normal DGP. 

 

Fig. 2. Posterior of k and predictive distribution of ui; mixture DGP. 



Results for the normal sample ( ) are given in Table 1. The values of β2,1,β2,2 and ρ used 
to generate the data all lie well within the 95% highest posterior density (HPD) interval.16 The 
Gelman–Rubin statistic suggests that the Markov chain is mixing well. In particular, the 
autocorrelation function ofβ2,1,β2,2 decreases rapidly, leading to a low value of the inefficiency 
factor.17 The simulated draws of the correlation coefficient ρ display more autocorrelation, but its 
posterior offers strong evidence that ui1 andui2 are dependent. The prior and posterior 
distributions of k, the number of mixture components, are plotted in Fig. 1. The posterior 
probability of a single normal component is more than 70%, and the ratio of the posterior to prior 
probability that k equals one is 15.7. The density contours of the posterior predictive distribution 
of ui are given in the same figure. The plot suggests that the distribution of ui is unimodal and 
elliptical. Note also that the contours are centered around the point (2,1), which is the intercept in 
our simulation design. 

Table 1. Posterior summary, normal DGP. 

Parameter Mean Std. 
dev. 

95% HPD GR a AC(1) b AC(2) AC(3) IF c 

β2,1(0.5) 0.5184 0.0197 [0.4789, 
0.5560] 

1.0000 0.2342 0.0517 0.0202 1.4130 

β2,2(−0.5) −0.4945 0.0240 [−0.5415, 
−0.4474] 

1.0000 0.4234 0.2269 0.1714 4.2766 

ρ(0.5) 0.5016 0.0994 [0.3053, 
0.6865] 

1.0001 0.8651 0.8082 0.7551 17.5626 

a Gelman–Rubin statistic. 

b Autocorrelation. 

c Inefficiency factor. 

Results for the mixture data ( ) are given in Table 2. The posterior standard deviations 
of β2,1and β2,2 are slightly larger compared to the normal case, but again the true parameter 
values lie well within the 95% HPD. From Fig. 2 it is clear that the Dirichlet model 
overwhelmingly fits two (42%) or three (32%) mixture components to the data, whereas the 
posterior probability of normality (k=1) is effectively zero. The contour plot also reveals 
bimodality in the posterior predictive distribution of ui. 

Table 2. Posterior summary, mixture DGP. 

Parameter Mean Std. 95% HPD GR a AC(1) b AC(2) AC(3) IF c 



dev. 

β2,1(0.5) 0.4778 0.0279 [0.4225, 
0.5315] 

1.0001 0.5923 0.3627 0.2336 4.2189 

β2,2(−0.5) −0.5345 0.0281 [−0.5895, 
−0.4796] 

1.0000 0.5928 0.3651 0.2381 4.3225 

ρ(0.5) 0.4101 0.0959 [0.2234, 
0.5964] 

1.0018 0.8456 0.7905 0.7400 23.2745 

a Gelman–Rubin statistic. 

b Autocorrelation. 

c Inefficiency factor. 

5. Empirical application 

The RAND Health Insurance Experiment (RHIE), conducted in the period 1974–1982, was a 
large scale experimental study of health care costs and utilization. Individuals were randomly 
assigned to different health insurance plans, with the goal of determining the causal effect of 
insurance characteristics on patients’ use of health care services. The data we use is the same as 
in Deb and Trivedi (2002), except that we restrict our analysis to the second year of data. This 
yields a cross section of 5574 individuals. Medical expenditures are zero for 23.3% of the 
sample, and a selection model is estimated for the logarithm of medical expenditures. The list of 
covariates we use, together with the variable definitions, are given in Deb and Trivedi (2002, 
Table 1). Since it is not immediately clear that there is a variable that affects selection, but not 
the level of expenditures, we do not impose an exclusion restriction. Hence, the 
vectors xi1 andxi2 in (1) are the same. 

We estimate the normal and Dirichlet mixture models and report results for selected coefficients 
of the outcome equation below. In particular, we focus on the effects of insurance variables (LC, 
IDP, LPI, FMDE) and health status variables (PHYSLIM, NDISEASE, HLTHG, HLTHF, 
HLTP) on the logarithm of medical expenditures, and on the correlation between ui1 and ui2. The 
priors used are the same as in the previous section.18 

Fig. 3 shows that there is clear evidence of nonnormality: the posterior probability of normal 
errors is effectively zero, whereas around 35% of the time the error distribution is a mixture of 7 
or 8 components.19 Comparing Table 3 and Table 4 we see that the posterior standard deviations 
of the coefficients–with the exception of NDISEASE–are smaller when the assumption of 
normal errors is relaxed. This results in narrower 95% HPD intervals. Conley et al. (2008) report 
a similar finding in an instrumental variables model. For some coefficients, most notably that of 
HLTHP, the posterior mean is substantially different as well. Finally, we note that the normal 



model suggests the presence of a selection effect: the 95% HPD of ρis [0.6342,0.7840]. In the 
model with the Dirichlet process prior on the other hand, there is no strong evidence of a nonzero 
correlation between ui1 and ui2. The large posterior standard deviation and inefficiency factor 
of ρ suggest that the posterior uncertainty about ρ is similar to the prior uncertainty. 

 

Fig. 3.  Posterior of k and predictive distribution of ui, RHIE data. 

Table 3. RHIE data, normal model. 

Variable Mean Std 
dev 

95% HPD GR AC(1) AC(2) AC(3) IF 

LC −0.0733 0.0335 [−0.1378, 
−0.0075] 

1.0000 0.4684 0.2080 0.0913 2.0923 

IDP −0.1468 0.0656 [−0.2761, 
−0.0197] 

1.0001 0.4563 0.2033 0.0844 1.9299 

LPI 0.0144 0.0104 [−0.0059, 
0.0347] 

1.0003 0.4704 0.2141 0.1020 1.9706 

FMDE −0.0240 0.0193 [−0.0624, 
0.0136] 

1.0000 0.4709 0.2094 0.0939 1.9627 

PHYSLIM 0.3519 0.0755 [0.2014, 
0.4990] 

1.0000 0.4962 0.2505 0.1204 2.2112 

NDISEASE 0.0283 0.0038 [0.0207, 
0.0355] 

1.0000 0.4947 0.2545 0.1279 2.2239 



HLTHG 0.1559 0.0519 [0.0540, 
0.2572] 

1.0001 0.4657 0.2004 0.0824 1.9401 

HLTHF 0.4418 0.0958 [0.2562, 
0.6322] 

1.0001 0.4797 0.2144 0.0861 1.9771 

HLTHP 0.9887 0.1880 [0.6261, 
1.3651] 

1.0000 0.5039 0.2538 0.1218 2.2310 

ρ 0.7120 0.0390 [0.6342, 
0.7840] 

1.0006 0.9592 0.9230 0.8885 34.5570 

 

Table 4. RHIE data, Dirichlet mixture model. 

Variable Mean Std 
dev 

95% HPD GR AC(1) AC(2) AC(3) IF 

LC −0.049 0.0320 [−0.1108, 
0.0149] 

1.0031 0.547 0.3855 0.3135 23.871 

IDP −0.0941 0.0601 [−0.2106, 
0.0251] 

1.0028 0.4872 0.3128 0.2367 7.1989 

LPI 0.0052 0.0096 [−0.0136, 
0.0242] 

1.005 0.5038 0.3374 0.2571 8.0127 

FMDE −0.0196 0.0171 [−0.0530, 
0.0138] 

1.0001 0.4754 0.2946 0.2164 4.8717 

PHYSLIM 0.2519 0.0683 [0.1181, 
0.3849] 

1.0038 0.4973 0.3244 0.2507 11.9877 

NDISEASE 0.0217 0.0038 [0.0145, 
0.0294] 

1.0142 0.5698 0.4182 0.3545 73.814 

HLTHG 0.1223 0.0451 [0.0327, 
0.2094] 

1.0003 0.4546 0.2789 0.195 4.3471 

HLTHF 0.402 0.0857 [0.2287, 
0.5656] 

1.0002 0.4879 0.3136 0.2408 7.4734 

HLTHP 0.5985 0.1725 [0.2615, 
0.9374] 

1.0008 0.5243 0.3596 0.2772 19.0882 



ρ 0.0493 0.2182 [−0.3509, 
0.4761] 

1.0544 0.8641 0.8288 0.8042 313.1993 

 

6. Conclusion 

In this paper we have developed Gibbs sampling algorithms that enable a Bayesian analysis of a 
model with sample selectivity. Such a model essentially consists of a latent structure, which is 
only partially observed. This paper has treated a model with exogenous covariates and a binary 
selection rule. The methods developed here, however, can be readily adapted to accommodate 
endogeneity and more complicated selection rules. 

If the distribution of the unobserved heterogeneity is assumed to be normal, Gibbs sampling is 
straightforward. Without this assumption, a more flexible semiparametric Bayesian model can be 
based on the Dirichlet process prior. This prior implies that the error distribution is a mixture 
with an unknown number of components. In particular, we use mixtures of normal distributions, 
as a natural extension of the simple normal model. This paper develops a Gibbs sampling 
algorithm for the Dirichlet model that does not require the use of natural conjugate distributions, 
or augmenting the data with the missing outcomes. 

The use of the Dirichlet process prior in a Bayesian model of sample selection is appealing for 
two main reasons. First, the unobserved heterogeneity follows a mixture distribution with a 
random number of components. From Bayes’ rule we can make inference about the likely 
number of mixture components. The posterior distribution of this number can then be used to 
detect departures from the parametric normal model. Second, the posterior provides information 
about the potential dependence, after controlling for observables, between the selection 
mechanism and outcome process. 

We have illustrated the use of the Dirichlet process prior with some simulated data. In these 
cases the posterior distribution assigns a high probability to the number of mixture components 
in the true data generating process. We have also estimated two models for individual medical 
expenditures, using a subset of the RHIE data. In the bivariate normal model there is evidence 
for the presence of a selection effect. The correlation coefficient in the distribution of the 
unobserved heterogeneity is positive with large posterior probability. The model based on the 
Dirichlet process prior, however, finds substantial evidence for nonnormality. Relaxing the 
assumption of normality results in smaller posterior standard deviations and narrower 95% HPD 
intervals for most parameters. Moreover, the posterior distribution of the correlation coefficient 
now has its probability mass centered around zero. This does not imply that there is no selection 
effect. Rather, in highly nonnormal distributions there may be forms of dependence (e.g., tail 
dependence) that are not easily detected by a simple correlation. 
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Appendix. Gibbs sampling in the normal model 

We provide some additional details about Algorithm 1. With regard to the selection variable: 

equation(7) 

 

Conditioning on si yields the distributions in Step 1 of the algorithm. Next, consider β1. 
Since β1 is a priori independent of (β2,σ12,ξ2), its posterior satisfies 

 

The two components of the likelihood are given in (7). With a normal prior distribution for β1, 
the posterior is a  distribution with 

 

 

and  are two least squares estimators: 

 

 



For the conditional posteriors of (β2,σ12) and ξ2, note that only the observations with i∈N1 are 
informative about these parameters. From Bayes’ rule and the prior independence 
between β1 and the remaining parameters, we get 

 

The likelihood in the previous display follows from the fact that for i∈N1: 

 

is a normal linear regression model with ηi|xi∼N(0,ξ2). Given the natural conjugate priors 
for(β2,σ12) and ξ2, their conditional posteriors are completely standard. Let W be 
the n1×(k2+1)matrix with rows  and 

 

The conditional posterior of (β2,σ12) is then given in Step 3 of the algorithm, where 

  

and  is the least squares estimator. Finally, given the prior ξ2∼IG(c0,d0), the 
posterior of ξ2 is an inverse-gamma distribution with  and 

 

Gibbs sampling in the Dirichlet mixture model 

Updating (α,β1,β2) 

Here we provide additional details and the posterior parameters for Algorithm 2. For conciseness 
we will write ui1 instead of , and ui2 instead of   for i∈N1. The distributions 
in Step 1 follow directly from the fact that ui|ϑi∼N2(μi,Σi). The conditional posterior of β1 can be 
found through 

 

Given the normal prior for β1, the posterior is , where 

 



 

 

 

 

and  is the conditional variance of  given yi, when i∈N1. The conditional 
posterior of β2 follows from 

 

 

Given the normal prior, some tedious algebra now yields the normal distribution in Step 3, with 

 

 

 

Next, consider Step 4 in the algorithm. Conditioning on (β1,β2) and ϑ, the distributions 
of  (wheni∈N0) and  (when i∈N1) do not depend on α. Also, from (6) it is clear 
that α determines the number of unique values k in ϑ, but not the actual values. It then follows 
that 

 

 



From the identity  , the posterior can be written as 

 

It corresponds to the joint posterior of α and a latent variable η∈(0,1), given by 

 

From this it is clear that η|α,k∼Beta(α+1,n). With a G(c1,c2) prior for α, we find 

 

This is a mixture of the G(c1+k,c2−logη) and G(c1+k−1,c2−logη) distributions. The mixing 
proportion pη can be solved from the relation 

 

Updating ϑ and remixing 

From (6) we write the prior of ϑi given ϑ−i as 

 

where δϑj(⋅) is the measure with unit mass at ϑj. Then for i∈N0: 

equation(8) 

  

The conditional posterior of ϑi therefore also takes the Pólya urn form. With probability 
proportional to the likelihood  , set ϑi equal to an existing value ϑj in the sample. With 
probability proportional to the marginal likelihood  , sample a value ϑi from  , 
where 

 

 



Similarly, for i∈N1: 

equation(9) 

 

With a natural conjugate measure G0, the marginal likelihood can be explicitly calculated, 
and  takes a standard form. As a result one can directly sample from (8) or (9); see for 
example Conley et al. (2008). Without a natural conjugate measure, however, there is no closed-
form solution for  and direct sampling from  is not possible. This is the 
case for our choice ofG0(ϑi). We therefore use Algorithm 8 of Neal (2000). As can be seen from 
step 5, this algorithm only requires likelihood evaluations and the ability to sample from G0. It 
has the obvious advantage that one is not restricted to use natural conjugate priors. 

To describe the remixing in Step 6, recall that ζi=j if and only if . The model can therefore 
be parameterized by ϑ or {ϑ∗,ζ}. The latter is used for remixing. The distinct values in ϑ∗ are a 
priori independent and drawn from G0 (see Antoniak (1974)). Hence, the ’s are (conditionally) 
independent in the posterior. Define the sets N0j≡{i:ζi=j,si=0} and N1j={i:ζi=j,si=1}. We next 
consider three cases. 

First, suppose j is such that N1j=∅. Let . Then 

 

 

It is then clear that 

 

A new draw  from the posterior can be obtained by sampling from the following distributions: 

 

 



 

 

where  and m11,m12,m22 are the elements of the prior covariance matrix M. 

Second, suppose j is such that N0j=∅. Then exact sampling of  from the posterior is not 
feasible, but the conditional posteriors (for a Gibbs iteration) are easily found. The likelihood is 
determined by 

 

so that 

equation(10) 

 

Also, 

 

so that 

equation(11) 

 

 

and 

equation(12) 



 

 

The remixing step now involves sampling  from (10),  from (11) and  from (12). 

Finally, suppose j is such that N0j≠∅ and N1j≠∅. Then 

equation(13) 

 

where . The posterior can then be factored as 

 

and 

equation(14) 

 

The remaining parameters cannot be sampled in a single step. The conditional posteriors follow 
easily from (13): 

equation(15) 

 

 



 

equation(16) 

 

 

 

equation(17) 

 

 

The remixing in Step 6 of Algorithm 2 now involves sampling from (14), ,  and . 
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