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Abstract: 

This paper is concerned with developing accurate and efficient nonstandard discontinuous 
Galerkin methods for fully nonlinear second order elliptic and parabolic partial differential 
equations (PDEs) in the case of one spatial dimension. The primary goal of the paper to develop 
a general framework for constructing high order local discontinuous Galerkin (LDG) methods 
for approximating viscosity solutions of these fully nonlinear PDEs which are merely continuous 
functions by definition. In order to capture discontinuities of the first order derivative ux of the 
solution u, two independent functions q− and q+ are introduced to approximate one-sided 
derivatives of u. Similarly, to capture the discontinuities of the second order derivative uxx, four 
independent functions p−−,p−+,p+−, and p++ are used to approximate one-sided derivatives 
of q− and q+. The proposed LDG framework, which is based on a nonstandard mixed 
formulation of the underlying PDE, embeds a given fully nonlinear problem into a mostly linear 
system of equations where the given nonlinear differential operator must be replaced by a 
numerical operator which allows multiple value inputs of the first and second order 
derivatives ux and uxx. An easy to verify set of criteria for constructing “good” numerical 
operators is also proposed. It consists of consistency and generalized monotonicity. To ensure 
such a generalized monotonicity property, the crux of the construction is to introduce the 
numerical moment in the numerical operator, which plays a critical role in the proposed LDG 
framework. The generalized monotonicity gives the LDG methods the ability to select the 
viscosity solution among all possible solutions. The proposed framework extends a companion 
finite difference framework developed by Feng and Lewis (J Comp Appl Math 254:81–98, 2013) 
and allows for the approximation of fully nonlinear PDEs using high order polynomials and non-
uniform meshes. Numerical experiments are also presented to demonstrate the accuracy, 
efficiency and utility of the proposed LDG methods. 
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Article: 

1 Introduction 

This is the third paper in a series [12, 16] which is devoted to developing finite difference (FD) 
and discontinuous Galerkin (DG) methods for approximating viscosity solutions of the following 
general one-dimensional fully nonlinear second order elliptic and parabolic equations: 

F(uxx,ux,u,x)=0,x∈Ω:=(a,b)⊂R, 

(1.1) 

and 

ut+F(uxx,ux,u,x,t)=0,(x,t)∈ΩT:=Ω×(0,T), 

(1.2) 

which are complemented by appropriate boundary and initial conditions. 

Fully nonlinear PDEs, which are nonlinear in the highest order derivatives of the solution 
functions in the equations, arise in many applications such as antenna design, astrophysics, 
differential geometry, fluid mechanics, image processing, meteorology, mesh generation, optimal 
control, optimal mass transport, etc (cf. [11, section 5]), and, as a result, the solution of each of 
these application problems critically depends on the solution of their underlying fully nonlinear 
PDEs. In particular, it calls for efficient and reliable numerical methods for computing the 
viscosity solutions of these fully nonlinear PDEs. Currently, the availability of such numerical 
methods is very limited (cf. [11]). 

The goal of this paper is to design and implement a class of nonstandard local discontinuous 
Galerkin (LDG) methods for the fully nonlinear Eqs. (1.1) and (1.2). The more involved high 
dimensional generalizations of the nonstandard LDG methods of this paper will be reported 
elsewhere in [17]. The methods of this paper are designed to complement the interior penalty 
discontinuous Galerkin (IP-DG) methods for fully nonlinear second order equations developed in 
[16], where the focus is on approximating PDEs (1.1) and (1.2) whose viscosity solutions belong 
to C1. 

To present the main ideas of our nonstandard LDG methods, we first briefly describe the 
nonstandard LDG method proposed by Yan and Osher [22] for approximating the viscosity 
solution of the Hamilton-Jacobi equation: ut+H(∇u,u,x,t)=0. The main ideas of [22] are to 
approximate the “left” and “right” side first order derivatives of the viscosity solution and to 
judiciously combine them through a monotone and consistent numerical Hamiltonian such as the 
Lax-Friedrichs numerical Hamiltonian. We note that the idea of pulling the highest order 
derivative(s) outside fully nonlinear PDEs is essential because it allows one to take advantages of 



DG techniques to discretize the given fully nonlinear PDEs. Our nonstandard LDG methods to 
be presented below are exactly inspired by this idea, although the realization of this idea for fully 
nonlinear second order PDEs is more involved. Below we highlight the main steps/ideas of the 
construction of our nonstandard LDG framework. 

Because of the full nonlinearity, integration by parts, which is the necessary tool for constructing 
any DG method, cannot be performed on Eq. (1.1). The first key idea of this paper is to introduce 
the auxiliary variables p:=uxx and q:=ux and rewrite the original fully nonlinear PDE in the 
following nonstandard mixed form: 

F(p,q,u,x)=0, 

(1.3) 

q−ux=0, 

(1.4) 

p−qx=0. 

(1.5) 

Unfortunately, since ux and uxx may not exist for a viscosity solution u∈C0(Ω), the above mixed 
form may not make sense. To overcome this difficulty, our second key idea is to replace q=ux by 
two possible values of ux, namely, its left and right limits, and p=qx by two possible values for 
each possible q. Thus, we have the auxiliary 
variables q−,q+:Ω→R and p−−,p−+,p+−,p++:Ω→R such that 

q−(x)−ux(x−)=0, 

(1.6) 

q+(x)−ux(x+)=0, 

(1.7) 

p−−(x)−q−x(x−)=0, 

(1.8) 

p−+(x)−q−x(x+)=0, 

(1.9) 

p+−(x)−q+x(x−)=0, 

(1.10) 



p++(x)−q+x(x+)=0. 

(1.11) 

We remark that (1.6) paired with the Eq. (1.8) or (1.9), and (1.7) paired with Eq. (1.10) or (1.11), 
can each be regarded as a “one-sided” Poisson problem in u (in a mixed form) with source 
terms p−−,p−+,p+−,p++, respectively. 

To incorporate the multiple values of ux and uxx, Eq. (1.3) must be modified because F is only 
defined for single value functions p and q. To this end, we need the third key idea of this paper, 
that is, to replace (1.3) by 

Fˆ(p−−,p−+,p+−,p++,q−,q+,u,x)=0, 

(1.12) 

where Fˆ, which is called a numerical operator, should be some well-chosen approximation to F. 

Natural questions now arise regarding the choice of Fˆ. For example, what are criteria for Fˆ and 
how to construct such a numerical operator? These are two immediate questions which must be 
addressed. To do so, we need the fourth key idea of this paper, which is to borrow and adapt the 
notion of the numerical operators from our previous work [12] where a general finite difference 
framework has been developed for fully nonlinear second order PDEs. In summary, the criteria 
for Fˆ include consistency and g-monotonicity(generalized monotonicity), for which precise 
definitions can be found in Sect. 2. It should be pointed out that in order to construct the desired 
numerical operator Fˆ, a fundamental idea used in [12] is to introduce the concept of the 
numerical moment, which can be regarded as a direct numerical realization for the moment term 
in the vanishing moment methodology introduced in [10] (also see [11, section 4], [9]). 

Finally, we need to design a DG discretization for the mixed system (1.6)–(1.12) to complete the 
construction of our LDG method. This then calls for the fifth key idea of this paper, which is to 
use different numerical fluxes in the formulations of LDG methods for the four “one-sided” 
Poisson problems in their mixed forms described by (1.6)–(1.11). We remark that, to the best of 
our knowledge, this is one of a few scenarios in numerical PDEs where the flexibility and 
superiority (over other numerical methodologies) of the DG methodology makes a vital 
difference. 

At this point, it is clear why we use the word “nonstandard” to indicate the differences between 
our LDG methods and the standard LDG methods [6] for linear and quasilinear PDEs. In the 
standard LDG methods, one only needs to introduce one copy of the vector q:=∇u, and there is 
no need to introduce multiple copies of p:=D2u as independent unknowns to approximate. We 
also note that in the nonstandard IP-DG framework developed in [16], because u is assumed to 
be in C1, q:=∇u is not introduced as an unknown function, instead, ∇uh is hard computed in the 
IP-DG methods and the approximated sided Hessians p−−h,p−+h,p+−h,p++h are defined directly 



through uh. It is also interesting to point out that unlike the relationship between standard LDG 
and IP-DG methods (cf. [1]), due to fully nonlinear structure of the PDEs, no integration by parts 
can be performed, as a result, the “primal” forms of the nonstandard LDG methods of this paper 
are intrinsically different from the nonstandard IP-DG methods of [16] and they may exhibit 
different properties, especially in high dimensions (cf. [17]). 

This paper consists of four additional sections. In Sect. 2 we collect some preliminaries including 
the definition of viscosity solutions, the definitions of the consistency and g-monotonicity of 
numerical operators, and the concept of the numerical moment. In Sect. 3 we give the detailed 
formulation of LDG methods for fully nonlinear elliptic equation (1.1) following the outline 
described above. In Sect. 4 we consider both explicit and implicit in time fully discrete LDG 
methods for the fully nonlinear parabolic equation (1.2). The explicit four stage classical Runge-
Kutta method and the implicit trapezoidal method combined with the spatial LDG methods will 
be explicitly constructed. In Sect. 5 we present a number of numerical experiments for the 
proposed LDG methods for the fully nonlinear elliptic equation (1.1) and their fully discrete 
counterparts for the parabolic equation (1.2). These numerical experiments not only verify the 
accuracy of the proposed LDG methods but also demonstrate the efficiency and utility of these 
methods. 

2 Preliminaries 

Standard space notations are adopted in this paper. For 
example, B(Ω),USC(Ω) and LSC(Ω) denote, respectively, the spaces of bounded, upper semi-
continuous, and lower semicontinuous functions on Ω. For any v∈B(Ω), we define 

v∗(x):=lim supy→xv(y)andv∗(x):=lim infy→xv(y). 

Then, v∗∈USC(Ω) and v∗∈LSC(Ω), and they are called the upper and lower semicontinuous 
envelopes of v, respectively. If v is continuous, there obviously holds v=v∗=v∗. 

Let F:Sd×d×Rd×R×Ω¯¯¯→R be a bounded function, where Sd×d denotes the set 
of d×d symmetric real matrices. Then, the general second order fully nonlinear PDE takes the 
form 

F(D2u,∇u,u,x)=0in Ω¯¯¯. 

(2.1) 

Note that here we have used the convention of writing the boundary condition as a discontinuity 
of the PDE (cf. [3, p.274]). 

The following two definitions can be found in [3, 4, 13]. 

Definition 2.1 



Equation (2.1) is said to be elliptic if, for all (q,λ,x)∈Rd×R×Ω¯¯¯, there holds 

F(A,q,λ,x)≤F(B,q,λ,x)∀A,B∈Sd×d,A≥B, 

(2.2) 

where A≥B means that A−B is a nonnegative definite matrix. We note that when F is 
differentiable, the ellipticity also can be defined by requiring that the matrix ∂F∂A is negative 
semi-definite (cf. [13, p. 441]). 

Definition 2.2 

A function u∈B(Ω) is called a viscosity subsolution (resp. supersolution) of (2.1) if, for 
all φ∈C2(Ω¯¯¯), if u∗−φ (resp. u∗−φ) has a local maximum (resp. minimum) at x0∈Ω¯¯¯, then 
we have 

F∗(D2φ(x0),∇φ(x0),u∗(x0),x0)≤0 

(resp. F∗(D2φ(x0),∇φ(x0),u∗(x0),x0)≥0). The function u is said to be a viscosity solution of (2.1) 
if it is simultaneously a viscosity subsolution and a viscosity supersolution of (2.1). 

We note that if F and u are continuous, then the upper and lower ∗ indices can be removed in 
Definition 2.2. The definition of ellipticity implies that the differential operator F must be non-
increasing in its first argument in order to be elliptic. It turns out that ellipticity provides a 
sufficient condition for Eq. (2.1) to fulfill a maximum principle (cf. [4, 13]). From the above 
definition it is clear that viscosity solutions in general do not satisfy the underlying PDEs in a 
tangible sense, and the concept of viscosity solutions isnonvariational. Such a solution is not 
defined through integration by parts against arbitrary test functions; hence, it does not satisfy an 
integral identity. This nonvariational nature of viscosity solutions is the main obstacle that 
prevents direct construction of Galerkin-type methods, which require variational formulations to 
start. 

The following definitions are adapted from [12] in the case d=1. 

Definition 2.3 

(i) 

A function Fˆ:R8→R is called a numerical operator. 

  

(ii) 

A numerical operator Fˆ is said to be consistent (with the differential operator F) if Fˆ satisfies 



lim infpμν→p,μ,ν=+,−q±→q,λ1→λ,ξ1→ξFˆ(pp−−,p−+,p+−,p++,q−,q+,λ1,ξ1)≥FF∗(p,q,λ,ξ), 

(2.3) 

lim suppμν→p,μ,ν=+,−q±→q,λ1→λ,ξ1→ξFˆ(pp−−,p−+,p+−,p++,q−,q+,λ1,ξ1)≤FF∗(p,q,λ,ξ), 

(2.4) 

where F∗ and F∗ denote respectively the lower and the upper semi-continuous envelopes of F. 

  

(iii) 

A numerical operator Fˆ is said to be g-monotone if Fˆ(p−−,p−+,p+−,p++,q−,q+,λ, ξ) is 
monotone increasing in p−− and p++ and monotone decreasing in p−+ and p+−, that 
is, Fˆ(↑,↓,↓,↑,q−,q+,λ,ξ). 

  

We remark that the above consistency and g-monotonicity play a critical role in the finite 
difference framework established in [12]. They also play an equally critical role in the LDG 
framework of this paper. In practice, the consistency is easy to fulfill and to verify, but the g-
monotonicity is not. In order to ensure the g-monotonicity, one key idea of [12] is to 
introduce the numerical moment. The following is an example of a so-called Lax-Friedrichs-like 
numerical operator adapted from [12]: 

Fˆ(p−−,p−+,p+−,p++,q−,q+,λ,ξ):=F(p−++p+−2,q−+q+2,λ,ξ)+α(p−−−p−+−p+−+p++), 

(2.5) 

where α∈R is an undetermined positive constant and the last term in (2.5) is called the numerical 
moment. It is trivial to verify that Fˆ is consistent with F. By choosing α correctly, we can also 
ensure g-monotonicity. For example, suppose F is differentiable and there exists a positive 
constant M such that 

M>∣∣∣∂F∂uxx∣∣∣. 

(2.6) 

Then, it is trivial to check that the Lax-Friedrichs-like numerical operator is g-monotone 
provided that α≥M. 

We conclude this section with a few remarks about the above definitions. 

Remark 2.1 



(a) 

By the definition of the ellipticity for F, the monotonicity constraints on Fˆ with respect 
to p−+ and p+−in the definition of g-monotonicity are natural. 

  

(b) 

By choosing the numerical moment correctly, the numerical operator Fˆ then behaves like a 
uniformly elliptic operator, even if the PDE operator F is a degenerate elliptic operator. The 
consistency assumption then guarantees that the numerical operator is still a reasonable 
approximation for the PDE operator. 

  

(c) 

Sometimes it may not be feasible to globally bound ∂F∂uxx; however, it is sufficient to chose a 
value for α such that the g-monotonicity property is preserved locally over each iteration of the 
nonlinear solver for a given initial guess. 

  

(d) 

The role of the numerical moment as well as the interpretation of the numerical moment will be 
further discussed in Sect. 5.3. 

  

3 Formulation of LDG Methods for Elliptic Problems 

We first consider the elliptic problem (1.1) with boundary conditions 

u(a)=uaandu(b)=ub 

(3.1) 

for two given constants ua and ub. 

Let {xj}Jj=0⊂Ω¯¯¯ be a mesh for Ω¯¯¯ such that x0=a and xJ=b. 
Define Ij=(xj−1,xj) and hj=xj−xj−1 for all j=1,2,…,J,h0=hJ+1=0, and h=max1≤j≤Jhj. 
Let Th denote the collection of the intervals {Ij}Jj=1which form a partition of the domain Ω¯¯¯. 
We also introduce the broken H1-space and broken C0-space 

H1(Th):=∏I∈ThH1(I),C0(Th):=∏I∈ThC0(I¯), 



and the broken L2-inner product 

(v,w)Th:=∑j=1J∫Ijvwdx∀v,w∈L2(Ω). 

For a fixed integer r≥0, we define the standard DG finite element space Vh⊂H1(Th)⊂L2(Th) as 

Vh:=∏I∈ThPr(I), 

where Pr(I) denotes the set of all polynomials on I with degree not exceeding r. We also 
introduce the following standard jump notation: 

[vh(xj)]:=vh(x−j)−vh(x+j)for j=1,2,⋯,J−1. 

We now are ready to formulate our LDG discretizations for Eqs. (1.6)–(1.12). First, for (fully) 
nonlinear equation (1.12) we simply approximate it by its broken L2-projection into Vh, namely, 

a0(uh,q−h,q+h,p−−h,p−+h,p+−h,p++h;ϕ0h)=0∀ϕ0h∈Vh, 

(3.2) 

where 

a0(v,q−,q+,p−−,p−+,p+−,p++;ϕ)=(Fˆ(p−−,p−+,p+−,p++,q−,q+,v,⋅),ϕ)Th. 

Next, we discretize the four linear equations (1.8)–(1.11). Notice that for given 
“sources” {pμν}μ,ν=+,−, (1.6) and (1.8), (1.6) and (1.9), (1.7) and (1.10), and (1.7) and (1.11) are 
four (different) Poisson equations for u. Thus, we can use the mixed upwinding LDG 
formulation for the Laplacian operator to discretize these equations. The only difference in the 
four equations will be how we choose our upwinding numerical fluxes foruh,q−h and q+h. To 
realize the above strategy, we first define the element-wise LDG formulation, and we then define 
the whole domain LDG formulation afterward. 

3.1 Element-Wise LDG Formulation 

Suppose that values for uh(a−),uh(b+),q±h(a−), and q±h(b+) are given. We postpone explaining 
how these values are chosen until Sect. 3.2. Our LDG discretization of Eqs. (1.6)–(1.11) is 
defined as follows: for all ϕ±h∈Vh, 

∫Ijq±hϕ±hdx+∫Ijuh(ϕ±h)xdx=uh(x±j)ϕ±h(x−j)−uh(x±j−1)ϕ±h(x+j−1) 

(3.3) 

and, for all ψμνh∈Vh, 

∫Ijpμνhψμνhdx+∫Ijqμh(ψμνh)xdx=qμh(xνj)ψμνh(x−j)−qμh(xνj−1)ψμνh(x+j−1) 

(3.4) 



for μ,ν=+,−, for all j=1,2,⋯,J. Notice that the nodal values from the right or left and the choice 
of q±h in (3.4) follow directly from Eqs. (1.6)–(1.11). 

3.2 Boundary Numerical Fluxes 

To complete the construction, we must specify how the boundary numerical flux values 
for uh,q−h, and q+hare determined in the above formulation. Due to the inherent jumps of 
piecewise constant functions, which corresponds to the case r=0, we shall consider the two 
cases r≥1 and r=0 separately. 

When r≥1, we have freedom to control how the functions uh, q−h, and q+h approach the 
boundary. Thus, we can assume continuity across the boundary for uh,q−h, and q+h. Considering 
the boundary conditions given by (3.1), the continuity requirement naturally leads to 

uh(a±)=ua,uh(b±)=ub. 

(3.5) 

On the other hand, since no boundary data for q−h or q+h is given, any choice of the boundary 
numerical fluxes for them is a guess (unless one already knows the exact solution u). Here we 
choose 

q±h(a−)=q±h(a+),q±h(b+)=q±h(b−). 

(3.6) 

It is important to note that both q±h(a+) and q±h(b−) are treated as unknowns in the above LDG 
formulation. The choice (3.6) is equivalent to requiring that q±h is continuous at the boundary 
nodes x=a and x=b. 

We now consider the case r=0. To define the boundary numerical fluxes, we first examine the 
consequences of the interior flux choices represented by the above LDG formulation. 
Suppose Th is a uniform mesh and denote the midpoint of Ij by x^j for all Ij∈Th. 
Define Uj:=uh(x^j). Then, it follows from (3.3) and (3.4) that 

q−h(x^j)=Uj−Uj−1h:=δ−xUj, 

(3.7) 

q+h(x^j)=Uj+1−Ujh:=δ+xUj, 

(3.8) 

p−−h(x^j)=q−h(x^j)−q−h(x^j−1)h=Uj−2−2Uj−1+Ujh2:=δ2xUj−1, 

(3.9) 



p−+h(x^j)=q−h(x^j+1)−q−h(x^j)h=Uj−1−2Uj+Uj+1h2:=δ2xUj, 

(3.10) 

p+−h(x^j)=q+h(x^j)−q+h(x^j−1)h=Uj−1−2Uj+Uj+1h2:=δ2xUj, 

(3.11) 

p++h(x^j)=q+h(x^j+1)−q+h(x^j)h=Uj−2Uj+1+Uj+2h2:=δ2xUj+1, 

(3.12) 

for j=3,4,…,J−2. Thus, in order to define boundary values for uh,q−h, and q+h, we need to 
define ghost values U−1,U0,UJ+1, and UJ+2 that are equivalent to extending the solution u to 
the outside of the domainΩ. Below we describe a natural way to do such an extension that is 
consistent with the interpretation of the auxiliary variables. 

From the Dirichlet boundary data for u, a natural choice is that U0=ua and UJ+1=ub. This is 
equivalent to assuming 

uh(a−)=ua,uh(b+)=ub. 

(3.13) 

In other words, we extend the boundary data for u away from the boundary over an interval of 
length h. Due to the inherent discontinuities of the piecewise constant 
functions, uh(a+) and uh(b−) are treated as unknowns. Otherwise, the boundary data would be 
extended into the interior of the domain over an interval of length h. 

From (3.7) and (3.8) we see that q+h(x^j)=q−h(x^j+1) and q−h(x^j)=q+h(x^j−1) in the interior of 
the domain. Extending this relationship to the boundary yields 

q+h(a−)=q−h(a+),q−h(b+)=q+h(b−), 

(3.14) 

where both q−h(a+) and q+h(b−) are treated as unknowns in the above LDG formulation. 

Finally, we need to define values for q−h(a−) and q+h(b+). Using [10] as a guide, we are led to 
choosing 

q−h(a−)=q−h(a+),q+h(b+)=q+h(b−). 

(3.15) 

We note that this is consistent with discretizing the auxiliary boundary conditions 



(q−h)x(a)=(q+h)x(b)=0. 

(3.16) 

In order words, we require that q−h and q+h are constant across the boundary. Using ghost 
values, the above requirements are equivalent to imposing the constraints 

U−1=2ua−U1,UJ+2=2ub−UJ. 

Remark 3.1 

From the imposed boundary conditions we can see that the relationship p−+h=p+−h has been 
extended to the boundaries. Thus, using the ghost values defined above and substituting the 
equations (3.7)–(3.12) into (3.2), we successfully recover the convergent finite difference 
method defined in [12] for the grid function U. Hence, for r=0, the convergence of the proposed 
LDG method is obtained. Heuristically, using higher order elements should increase the rate 
and/or accuracy of convergence. 

3.3 Whole Domain LDG Formulation 

Using the above element-wise LDG formulation (3.3) and (3.4), and substituting the boundary 
numerical flux values from Sect. 3.2, we get the following whole domain LDG discretization of 
(1.6)–(1.11): 

(q±h,ϕ±h)Th+a±(uh,ϕ±h)=f±(ϕ±h),∀ϕ±h∈Vh, 

(3.17) 

(pμνh,ψμνh)Th+bμν(q−h,q+h;ψμνh)=0,∀ψμνh∈Vh,μ,ν=+,−, 

(3.18) 

where 

a−(v,φ)a+(v,φ)b−−(v−,v+;φ)b++(v−,v+;φ)b−+(v−,v+;φ)b+−(v−,v+;φ)=(v,φx)Th−(1−κr)v(b−)φ(b−
)−∑j=1J−1v(x−j)[φ(xj)],=(v,φx)Th+(1−κr)v(a+)φ(a+)−∑j=1J−1v(x+j)[φ(xj)],=(v−,φx)Th+v−(a+)
φ(a+)−v−(b−)φ(b−)−∑j=1J−1v−(x−j)[φ(xj)],=(v+,φx)Th+v+(a+)φ(a+)−v+(b−)φ(b−)−∑j=1J−1v+
(x+j)[φ(xj)],=(v−,φx)Th+v−(a+)φ(a+)−(1−κr)v+(b−)φ(b−)−κrv−(b−)φ(b−)−∑j=1J−1v−(x+j)[φ(xj)
],=(v+,φx)Th+(1−κr)v−(a+)φ(a+)+κrv+(a+)φ(a+)−v+(b−)φ(b−)−∑j=1J−1v+(x−j)[φ(xj)], 

and 

f−(ϕ)f+(ϕ)=κrubϕ(b−)−uaϕ(a+),=ubϕ(b−)−κruaϕ(a+), 

for 

κr={01if r=0,otherwise. 



(3.19) 

In summary, our nonstandard LDG methods for the fully nonlinear Dirichlet problem (1.1) and 
(3.1) are defined as seeking (uh,q−h,q+h,p−−h,p−+h,p+−h,p++h)∈(Vh)7 such that (3.2), (3.17), 
and (3.18) hold. 

We conclude the section with a few remarks. 

Remark 3.2 

(a) 

Looking backwards, (3.17) and (3.18) provide a proper interpretation for each 
of q±h and pμνh for μ,ν=+,−, for a given function uh. Each q±h defines a discrete derivative 
for uh and each pμνh defines a discrete second-order derivative for uh. The 
functions q−h and q+h should be very close to each other if uxexists. Similarly, the 
functions p−−h,p−+h,p+−h, and p++h should be very close to each other if uxx exists. However, 
their discrepancies are expected to be large if ux or uxx, respectively, do not exist. The auxiliary 
functions q±h defined by (3.17) and the auxiliary functions pμνh defined by (3.18) can be 
regarded as high order extensions of their lower order finite difference counterparts defined in 
[12]. 

  

(b) 

It is easy to check that the linear equations defined by (3.17)–(3.18) are linearly independent. 

  

(c) 

Notice that (3.2), (3.17), and (3.18) form a nonlinear system of equations, with the nonlinearity 
only appearing in a0. Thus, a nonlinear solver is necessary in implementing the above scheme. In 
Sect. 5, an iterative method is used with initial guess given by the linear interpolant of the 
boundary data. Since a good initial guess is essential for most nonlinear solvers to converge, 
another possibility is to first linearize the nonlinear operator and solve the resulting linear system 
first. However, we show in our numerical tests that the simple initial guess works well in many 
cases. We suspect that the g-monotonicity of Fˆ enlarges the domain of “good” initial guesses 
over which the iterative method converges. 

  

4 Formulation of Fully Discrete LDG Methods for Parabolic Problems 



The goal of this section is to extend the LDG methods for elliptic problems to solving the initial-
boundary value problem (1.2) using the method of lines. Let the initial condition be given by 

u(x,0)=u0(x),∀x∈Ω, 

(4.1) 

and the boundary conditions be given by 

u(a,t)=ua(t),u(b,t)=ub(t),∀t∈(0,T]. 

(4.2) 

We shall consider both the implicit trapezoidal rule and the (explicit) fourth order classical 
Runge–Kutta method (i.e., RK4) for the time-discretization. In practice, the time-discretization 
scheme should be chosen to match the order of the spatial discretization. Thus, when using a 
piecewise constant element, a sufficient choice for the time discretization would be forward or 
backward Euler. However, when using higher order elements, a higher order scheme such as 
RK4 should be chosen. 

We first formulate the semi-discrete in space discretization for Eq. (1.2), which is a 
straightforward adaptation of the one described in Sect. 3. Let ϕ∈Vh. Replacing the PDE operator 
with a numerical operator in (1.2), and using the LDG framework of Sect. 3, we obtain the semi-
discrete equation 

((uh)t,ϕh)Th=−(Fˆ(p−−h,p−+h,p+−h,p++h,q−h,q+h,uh,⋅,t),ϕh)Th,∀ϕh∈Vh, 

(4.3) 

where, given uh at time t, corresponding values for q±h and pμνh can be found using the 
methodology below. 

We now describe a full discretization procedure for (1.2) by applying an ODE solver to the semi-
discrete equations given in (4.3). For a fixed integer M>0, let Δt=TM and tk:=kΔt for k∈(0,M]. 
Notationally, unh(x)∈Vh will be an approximation for u(x,tn) for n=0,1,…,M. We define the 
initial value u0h to be the L2-projection of u0, namely, 

(u0h,ϕh)Th=(u0,ϕh)Th,∀ϕh∈Vh. 

(4.4) 

Next, we introduce several “one-sided” discrete differential operators, which will be used to 
define explicit time-stepping schemes and to define the auxiliary variables at time t=0 in implicit 
time-stepping schemes. We first define two “one-sided” first-order discrete 
derivatives Q−,khv,Q+,khv∈Vh for a given function v(⋅,tk)∈H1(Th) by 



(Q−,khv,ϕh)Th=κrub(tk)ϕh(b−)−ua(tk)ϕh(a+)+(1−κr)v(b−)ϕh(b−)−(v,(ϕh)x)Th+∑j=1J−1v(x−j)[ϕ
h(xj)],∀ϕh∈Vh, 

(4.5) 

(Q+,khv,ϕh)Th=ub(tk)ϕh(b−)−κrua(tk)ϕh(a+)−(1−κr)v(a+)ϕh(a+)−(v,(ϕh)x)Th+∑j=1J−1v(x+j)[ϕ
h(xj)],∀ϕh∈Vh. 

(4.6) 

The above definitions are inspired by (3.17). The super-index k on Q±,kh indicates that the 
definitions are t-dependent because of the boundary terms. 

We also define four discrete “one-sided” second order discrete derivatives Pμν,khv∈Vh,μ,ν=+,−, 
at timetk by 

(P−−,khv,ψh)Th=Q−,khv(b−)ψh(b−)−Q−,khv(a+)ψh(a+)−(Q−,khv,(ψh)x)Th+∑j=1J−1Q−,khv(x−
j)[ψh(xj)],∀ψh∈Vh, 

(4.7) 

(P++,khv,ψh)Th=Q+,khv(b−)ψh(b−)−Q+,khv(a+)ψh(a+)−(Q+,khv,(ψh)x)Th+∑j=1J−1Q+,khv(x+
j)[ψh(xj)],∀ψh∈Vh, 

(4.8) 

and 

(P−+,khv,ψh)Th=(1−κr)Q+,khv(b−)ψh(b−)+κrQ−,khv(b−)ψh(b−)−Q−,khv(a+)ψh(a+)−(Q−,khv,(
ψh)x)Th+∑j=1J−1Q−,khv(x+j)[ψh(xj)],∀ψh∈Vh, 

(4.9) 

(P+−,khv,ψh)Th=Q+,khv(b−)ψh(b−)−(1−κr)Q−,khv(a+)ψh(a+)−κrQ+,khv(a+)ψh(a+)−(Q+,khv,(
ψh)x)Th+∑j=1J−1Q+,khv(x−j)[ψh(xj)],∀ψh∈Vh, 

(4.10) 

where κr is defined by (3.19). The above four definitions are motivated by (3.18). 

Lastly, to simplify the presentation, we introduce the operator notation 

Fˆk[v]:=Fˆ(P−−,khv,P−+,khv,P+−,khv,P++,khv,Q−,khv,Q+,khv,v,x,tk). 

(4.11) 

Using the new notation, the semi-discrete equation can be rewritten compactly as 



((uh)t(⋅,tk),ϕh)Th=−(Fˆk[uh(⋅,tk)],ϕh)Th,∀ϕh∈Vh,k∈(0,M]. 

(4.12) 

4.1 The Fourth Order Classical Runge–Kutta Method 

A straightforward application of the fourth order classical Runge–Kutta (RK4) method to (4.12) 
yields 

(unh,ϕh)Th=(un−1h,ϕh)Th+16(ξ1+2ξ2+2ξ3+ξ4,ϕh)Th,∀ϕ∈Vh,n=1,2,…,M, 

where 

(ξ1,ϕh)Th(ξ2,ϕh)Th(ξ3,ϕh)Th(ξ4,ϕh)Th=−Δt(Fˆn−1[un−1h],ϕh)Th,=−Δt(Fˆn−12[un−1h+12ξ1],ϕ
h)Th,=−Δt(Fˆn−12[un−1h+12ξ2],ϕh)Th,=−Δt(Fˆn[un−1h+ξ3],ϕh)Th. 

Notice that in the above explicit time-stepping scheme, the function unh is defined as an L2-
projection of the source data based on un−1h. However, the boundary conditions are not 
enforced in the definition for unh. To take care of the boundary conditions, we choose to enforce 
them weakly, which requires the introduction of a modified L2-projection. Specifically, for 
any v∈L2(Ω), we recall that the standard L2-projection Phv∈Vh of v is defined by 

(Phv,ϕh)Th=(v,ϕh)Th,∀ϕh∈Vh. 

(4.13) 

For any v∈C0(Th), we introduce a modified L2-projection Pkh:L2(Ω)∩C0(Th)→Vh at 
time tk∈(0,T] by 

(Pkhv,ϕh)Th+1h√(Pkhv(a)ϕh(a)+Pkhv(b)ϕh(b))=(v,ϕh)Th+1h√(ua(tk)ϕh(a+)+ub(tk)ϕh(b−)),∀ϕh
∈Vh. 

(4.14) 

Clearly, the boundary conditions (4.2) are weakly enforced in (4.14) via a penalty technique, an 
idea which dates back to Nitsche [20]. 

Using the above discrete differential operators Q±,kh and Pμν,kh for μ,ν=+,−, the projection 
operators Pkhand Ph, and using the notation given in (4.11), our fully-discrete RK4 method for 
the initial-boundary value problem (1.2), (4.2), and (4.1) is defined as follows: for n=1,2,…,M, 

unh=Pnh(un−1h+16(ξn−11+2ξn−12+2ξn−13+ξn−14)), 

(4.15) 

ξn−11=−ΔtPhFˆn−1[un−1h], 



(4.16) 

ξn−12=−ΔtPhFˆn−12[un−1h+12ξn−11], 

(4.17) 

ξn−13=−ΔtPhFˆn−12[un−1h+12ξn−12], 

(4.18) 

ξn−14=−ΔtPhFˆn[un−1h+ξn−13], 

(4.19) 

u0h=Phu0. 

(4.20) 

We remark that it is easy to verify that the value ξn−14 actually already takes into account the 
boundary conditions at time tn because of the evaluation calls Q−,nh and Q+,nh, which in turn 
have the boundary conditions built-in. Thus, in the above formulation, the boundary condition 
enforcement can actually be successfully relaxed by replacing Pnh with Ph in (4.15). However, 
for other explicit methods a weak boundary condition enforcement method such as the above 
modified L2-projection is necessary, especially if the boundary conditions are not consistent with 
the initial condition. For example, in the forward Euler method, defined by 

unh=Pnh(un−1h−ΔtFˆn−1[un−1h]), 

(4.21) 

we can see that the approximation at time tn relies upon the modified L2-projection in order to 
see the Dirichlet boundary condition at the current time. 

4.2 The Trapezoidal Method 

Applying the trapezoidal rule to (4.12), we obtain 

(unh+Δt2Fˆn[unh],ϕh)Th=(un−1h−Δt2Fˆn−1[un−1h],ϕh)Th,∀ϕh∈Vh, 

and n=1,2,…,M. Thus, using the trapezoidal rule to discretize (4.12), and using the implicit 
equalities 

q−,nh=Q−,nhunh,q+,nh=Q+,nhunh, 

and 

p−−,nh=P−−,nhunh,p−+,nh=P−+,nhunh,p+−,nh=P+−,nhunh,p++,nh=P++,nhunh, 



for n=1,2,…,M, the fully discrete trapezoidal LDG method for approximating solutions to (1.2), 
(4.1), and (4.2) is defined by 
seeking (unh,q−,nh,q+,nh,p−−,nh,p−+,nh,p+−,nh, p++,nh)∈(Vh)7 such that 

(unh+Δt2Fˆn[unh],ϕ0h)Th=(un−1h−Δt2Fˆn−1[un−1h],ϕ0h)Th,∀ϕ0h∈Vh, 

(4.22) 

(q±,nh,ϕ±h)Th+aˆ±(unh,ϕ±h)=g±(tn,ϕ±h),∀ϕ±h∈Vh, 

(4.23) 

(pμν,nh,ψμνh)Th+bˆμν(q−,nh,q+,nh;ψμνh)=0,∀ψμνh∈Vh,μ,ν=+,−, 

(4.24) 

where u0h=Phu0,q±,0h=Q±,0hu0h, pμν,0h=Pμν,0hu0h for μ,ν=+,−, and 

aˆ−(vn,φ)aˆ+(vn,φ)bˆ−−(v−,n,v+,n;φ)bˆ++(v−,n,v+,n;φ)bˆ−+(v−,n,v+,n;φ)bˆ+−(v−,n,v+,n;φ)g−(tn,
ϕ)g+(tn,ϕ)=(vn,φx)Th−(1−κr)vn(b−)φ(b−)−∑j=1J−1vn(x−j)[φ(xj)],=(vn,φx)Th+(1−κr)vn(a+)φ(a+
)−∑j=1J−1vn(x+j)[φ(xj)],=(v−,n,φx)Th+v−,n(a+)φ(a+)−v−,n(b−)φ(b−)−∑j=1J−1v−,n(x−j)[φ(xj)],
=(v+,n,φx)Th+v+,n(a+)φ(a+)−v+,n(b−)φ(b−)−∑j=1J−1v+,n(x+j)[φ(xj)],=(v−,n,φx)Th+v−,n(a+)φ(
a+)−(1−κr)v+,n(b−)φ(b−)−κrv−,n(b−)φ(b−)−∑j=1J−1v−,n(x+j)[φ(xj)],=(v+,n,φx)Th+(1−κr)v−,n(
a+)φ(a+)+κrv+,n(a+)φ(a+)−v+,n(b−)φ(b−)−∑j=1J−1v+,n(x−j)[φ(xj)],=κrub(tn)ϕ(b−)−ua(tn)ϕ(a+
),=ub(tn)ϕ(b−)−κrua(tn)ϕ(a+). 

Again, κr is defined by (3.19). Notice that the above fully discrete formulation amounts to 
approximating a non-homogeneous fully nonlinear elliptic equation at each time step using the 
LDG method defined in Sect. 3. 

5 Numerical Experiments 

In this section, we present a series of numerical tests to demonstrate the utility of the proposed 
LDG methods for fully nonlinear PDEs of the types (1.1) and (1.2). In all of our tests we shall 
use uniform spatial meshes as well as uniform temporal meshes for the time-dependent 
problems. To solve the resulting nonlinear algebraic systems, we use the Matlab built-in 
nonlinear solver fsolve. For the elliptic problems we choose the initial guess as the linear 
interpolant of the boundary data. For parabolic problems, we let u0h=Phu0, and then define all 
auxiliary variables by q±,0h=Q±,0hu0h and pμν,0h=Pμν,0hu0h for μ,ν=+,−. Also, the initial 
guess forfsolve at the nth time step will be chosen as the computed solution at the previous time 
step when using implicit methods. The role of the numerical moment will be further explored in 
Sect. 5.3. 

For our numerical tests, errors will be measured in the L∞ norm and the L2 norm, where the 
errors are measured at the current time step for the time-dependent problems. For both elliptic 



and parabolic test problems where the error is dominated by the spatial discretization errors, it 
appears that the spatial errors are of optimal order O(hs) for most problems, 
where s=min{r+1,k} for the viscosity solution u∈Hk(Ω). However, for a couple of problems, we 
observe less than optimal rates of convergence. We note that the actual convergence rates have 
not yet been analyzed, and may also depend on the regularity of the operator F in addition to the 
regularity of u. 

5.1 Elliptic Test Problems 

We first present the results for four test problems of type (1.1). Both Monge–Ampère and 
Bellman types of equations will be tested. 

Test 1 Consider the elliptic Monge–Ampère problem 

−u2xx+1u(0)=0,u(1)=0,0<x<1,=12. 

It is easy to check that this problem has exactly two classical solutions: 

u+(x)=12x2,u−(x)=−12x2+x, 

where u+ is convex and u− is concave. Note that u+ is the unique viscosity solution which we 
want our numerical schemes to converge to. In Sect. 5.3 we shall give some insights about the 
selectiveness of our schemes. 

We approximate the given problem for various degree elements (r=0,1,2) to see how the 
approximation converges with respect to h. Note, when r=0,1, the solution is not in the DG 
space Vh. The numerical results are shown in Fig. 1. We observe that the approximations 
using r=2 are almost exact for each mesh size. This is consistent with the fact u+∈Vh when r=2. 



 

Fig. 1 Test 1 with α=10 

Test 2 Consider the problem 

−u3xx+uxx+S(x)3−S(x)=0,−1<x<1,u(−1)=−sin(1)−8cos(0.5)+9,u(1)=sin(1)−8cos(0.5)+9, 

where 

S(x)=⎧⎩⎨⎪⎪⎪⎪2x|x|cos(x2)−4x2sin(x|x|)+2cos(x2)+2,−4x2sin(x|x|)+2cos(x2)+2,x≠0,x=0. 

This problem has the exact solution u(x)=sin(x|x|)−8cos(x2)+x2+8∈H2(−1,1). Note that this 
problem is not monotone decreasing in uxx, and the exact solution is not twice differentiable 
at x=0. However, the derivative of F with respect to uxx is uniformly bounded. The numerical 
results are shown in Fig. 2. As expected, we can see from the plot that the error appears largest 
around the point x=0, and both the accuracy and order of convergence improve as the order of 
the element increases. For finer meshes, we see the rates of convergence begin to deteriorate. 
Theoretically, we expect the rates of convergence to be bounded by two for high-order bases due 
to the lower regularity of the solution. 



 

Fig. 2 Test 2 with α=6 

Test 3 Consider the stationary Hamilton-Jacobi-Bellman problem with finite dimensional control 
set 

minθ(x)∈{1,2}{−θuxx+ux−u+S(x)}u(−1)=−1,u(1)=0,−1<x<1,=1, 

where 

S(x)={−12x2−4|x|3+x|x|3,24x2−4|x|3+x|x|3,x<0x≥0. 

This problem has the exact solution u(x)=x|x|3∈H4(−1,1) corresponding 
to θ∗(x)=1 for x<0 and θ∗(x)=2 for x≥0. Approximating the problem using various order 
elements, we have the following results recorded in Fig. 3. Due to the low regularity of the 
solution, we expect the rates of convergence to be bounded by four for high-order bases. We 
observe that the rates of convergence for r=0,1,2 appear to be optimal on average, while the rates 
of convergence for r=3 appear to be limited to three. However, we still see increased accuracy 
for r=3 when compared to r=2. 

http://link.springer.com/article/10.1007/s10915-013-9763-3/fulltext.html#Fig3


 

Fig. 3 Test 3 with α=4 

Test 4 Consider the stationary Hamilton-Jacobi-Bellman problem with infinite dimensional 
control set 

inf0≤θ(x)≤1{−θuxx+θ2x2ux+1xu+S(x)}u(1.2)=1.44ln1.2,u(4)=0,1.2<x<4,=16ln4, 

where 

S(x)=4ln(x)2+12ln(x)+9−8x4ln(x)2−4x4ln(x)4x3[2ln(x)+1]. 

This problem has the exact solution u(x)=x2lnx corresponding to the control 
function θ∗(x)=2ln(x)+32x3[2ln(x)+1]. Approximating the problem using various order elements, 
we obtain the results recorded in Fig. 4. 



 

Fig. 4 Test 4 with α=4 

5.2 Parabolic Test Problems 

We now implement the proposed fully discrete RK4 and trapezoidal LDG methods for 
approximating fully nonlinear parabolic equations of the form (1.2). While the above formulation 
makes no attempt to formally quantify a CFL condition for the RK4 method, for the tests we 
assume a CFL constraint of the form Δt=κth2, and note that the constant κt appears to decrease as 
the order of the element increases. Below we implement both the RK4 method and the 
trapezoidal method for each test problem. However, we make no attempt to classify and compare 
the efficiency of the two methods. Instead, we focus on testing and demonstrating the usability of 
both fully discrete schemes and their promising potentials. For explicit scheme tests, we record 
the parameter κt, and for implicit scheme tests, we record the time step size Δt. Note that the 
row 0∗ in the figures corresponding to the RK4 method refers to elements with r=0 that use the 
standard L2 projection operator in (4.15). 

Test 5 Let Ω=(0,1),ua(t)=t4,ub=12+t4, and u0(x)=12x2. We consider the problem (1.2), (4.1), 
and (4.2) with 

F(uxx,ux,u,t,x)=−uxxu+12x2+t4−4t3+1. 

It is easy to verify that this problem has a unique classical solution u(x,t)=0.5x2+t4+1. Notice 
that the PDE is actually quasi-linear, but does provide a measure of the effectiveness of the 
implementation. The numerical results for RK4 are presented in Fig. 5 and the results for the 

http://link.springer.com/article/10.1007/s10915-013-9763-3/fulltext.html#Fig5


trapezoidal method are shown in Fig. 6. As expected, RK4 appears to recover the exact solution 
when r=2. 

 

Fig. 5 Test 5: Computed solutions at T=1 using κt=0.001,α=2 



 

Fig. 6 Test 5: Computed solution at T=1 using Δt=0.001 and α=2 

Test 6 Let Ω=(0,2),ua(t)=1,ub=e2(t+1), and u0(x)=ex. We consider the problem (1.2), (4.1), and 
(4.2) with 

F(uxx,ux,u,t,x)=−uxln(uxx+1)+S(x,t), 

and 

S(x,t)=e(t+1)x(x−(t+1)ln((t+1)2e(t+1)x+1)). 

It is easy to verify that this problem has a unique classical solution u(x,t)=e(t+1)x. Notice that 
this problem is nonlinear in both uxx and ux. Furthermore, the exact solution u cannot be factored 
into the form u(x,t)=G(t)Y(x) for some functions G and Y. Results for RK4 are given in Fig. 7, 
and results for the trapezoidal method are shown in Fig. 8. We note that RK4 was unstable 
without using the very restrictive values for κt recorded in Fig. 7. However, for RK4, we observe 
optimal rates of convergence in the spatial variable while the rates for the trapezoidal method 
appear to be limited by the lower rate of convergence for the time-stepping scheme. 



 

Fig. 7 Test 6: Computed solutions at 
time T=0.5 using κt=0.005,0.001,0.0005,0.0001 for r=0,1,2,3, respectively, and α=4. Left 
figure uses the standard L2 projection operator 



 

Fig. 8 Test 6: Computed solutions at time T=0.5 using Δt=0.005 and α=4 

Test 7 Let Ω=(0,2π),ua(t)=0,ub=0, and u0(x)=sin(x). We consider the problem (1.2), (4.1), and 
(4.2) with 

F(uxx,ux,u,t,x)=−minθ(t,x)∈{1,2}{Aθuxx−c(x,t)cos(t)sin(x)−sin(t)sin(x)}, 

where A1=1,A2=12, and 

c(x,t)=⎧⎩⎨⎪⎪⎪⎪1,12,if 0<t≤π2 and 0<x≤π or π2<t≤π and π<x<2π,otherwise. 

It is easy to check that this problem has a unique classical solution u(x,t)=cos(t)sin(x). Notice that 
this problem has a finite dimensional control parameter set, and the optimal control is given by 

θ∗(t,x)=⎧⎩⎨1,2,if c(x,t)=1,if c(x,t)=12. 

The numerical results are reported in Fig. 9 for RK4 and in Fig. 10 for the trapezoidal method. 



 

Fig. 9 Test 7: Computed solutions at 
time T=3.10 using κt=0.05,0.005,0.001,0.0005 for r=0,1,2,3, respectively, and α=2. Left plot uses 
the standard L2 projection operator 



 

Fig. 10 Test 7: Computed solutions at time T=3.10 using Δt=0.031 and α=2 

Test 8 Let Ω=(0,3),ua(t)=e−t,ub=8e−t, and u0(x)=|x−1|3. We consider the problem (1.2), (4.1), 
and (4.2) with 

F(uxx,ux,u,t,x)=−inf−1≤θ(t,x)≤1{|x−1|uxx+θux}−|x−1|2(|x−1|−3)e−t, 

It is easy to verify that the problem has the exact solution u(t,x)=|x−1|3e−t. Notice that the above 
operator is not elliptic for x=1. For each value of t, we have u∈H3(0,3). Also, this problem has a 
bang-bang type control with the optimal control given by 

θ∗(t,x)={1,−1,if x<1,if x>1. 

We can see from the results for the RK4 method in Fig. 11 and the results for the trapezoidal 
method in Fig. 12 that the spatial rates of convergence appear to be limited to two instead of the 
optimal rate of three forr≥2, while the accuracy appears to increase with respect to the element 
degree. 



 

Fig. 11 Test 8: Computed solutions at time T=1 using κt=0.05,0.005,0.001,0.0005 for r=0,1,2,3, 
respectively, and α=2 



 

Fig. 12 Test 8: Computed solutions at time T=1 using Δt=0.001 and α=2 

5.3 The Role of the Numerical Moment 

In this section, we focus on understanding the role of the numerical moment. We first give two 
ways to interpret the numerical moment, and then we explore the utility of the numerical 
moment. The role of the numerical moment can heuristically be understood as follows when the 
numerical moment is rewritten in the form 

h2α(p−−h−p−+h−p+−h+p++hh2). 

Letting r=0, we see that p−−h−p−+h−p+−h+p++hh2 is an O(h2) approximation to uxxxx. Then, 
we can see that the numerical moment acts as a centered difference approximation 
for Δ2u multiplied by a factor that tends to zero with rate O(h2). Thus, at the PDE level, we are 
in essence approximating the fully nonlinear second order elliptic operator 

F(uxx,ux,u,x) 

by the quasilinear fourth order operator F˜ρ, where 

F˜ρ(uxxxx,uxx,ux,u,x)=ρuxxxx+F(uxx,ux,u,x). 



In the limit as ρ→0, we heuristically expect that the solution of the fourth order problem 
converges to the unique viscosity solution of the second order problem. Using a convergent 
family of fourth order quasilinear PDEs to approximate a fully nonlinear second order PDE has 
previously been considered for PDEs such as the Monge–Ampère equation, the prescribed Gauss 
curvature equation, the infinity-Laplace equation, and linear second order equations of non-
divergence form. The method is known as the vanishing moment method and serves as an 
analogue to the vanishing viscosity method for first order Hamilton-Jacobi equations where the 
PDE is perturbed by a second order derivative term. We refer the reader to [9, 11] for a detailed 
exposition. 

We now express the numerical moment using jumps defined on the interior nodes. Observe, by 
equations (3.18), 

(p−−h−p−+h−p+−h+p++h,φh)Th=−b−−(q−h,q+h;φh)+b−+(q−h,q+h;φh)+b+−(q−h,q+h;φh)−b++
(q−h,q+h;φh)=(1−κr)(q−h(a+)−q+h(a+))φh(a+)+(1−κr)(q−h(b−)−q+h(b−))φh(b−)+∑j=1J−1([q−
h(xj)]−[q+h(xj)])[φh(xj)] 

for all φh∈Vh, where κr is defined in (3.19). Thus, the Lax-Friedrichs-like numerical operator 
with a numerical moment amounts to the addition of nonstandard jump/stabilization terms to 
an L2 projection of the fully nonlinear PDE operator into Vh. The jump/stabilization terms 
penalize the differences in q−h and q+h. For comparison, the numerical moment using the IP-DG 
formulation in [16] takes the form 

∑j=1J−1[uh(xj)][φh(xj)], 

a standard jump/stabilization term. Due to only having a single approximation for ∇u in the IP-
DG framework, a standard jump/stabilization term that corresponds to q−h and q+h would take 
the form 

∑j=1J−112[q−h(xj)+q+h(xj)][φh(xj)], 

where we penalize the sum of q−h and q+h. Therefore, the above nonstandard LDG formulation 
that uses two independent approximations for ∇u allows for the formulation of a new 
jump/stabilization term that is not analogous to penalty terms from the IP-DG literature. We also 
note that while the numerical moment can be rewritten using jumps, numerical experiments 
indicate generic solvers such as fsolve appear to succeed in finding a root more frequently when 
using the presented mixed formulation with the numerical moment implemented as a function of 
the various second-order derivative approximations. 

For the remainder of the section, we focus on observed consequences of the numerical moment 
in our test problems. In particular, we observe that the proposed schemes using a numerical 
moment can eliminate the numerical artifacts that arise as consequences from using a standard 
discretization, and in certain cases when the numerical artifacts are not fully eliminated, the 



algebraic system has enough structure to design solvers that emphasize the monotonicity 
in p−+h+p+−h2 and are consistent in searching for solutions at which the nonlinear PDE 
problem is elliptic. 

We again consider the Monge–Ampère type problem from Test 1 in Sect. 5.1. The given 
problem has two classical PDE solutions u+ and u−. However, there exists infinitely 
many C1 functions that satisfy the PDE and boundary conditions almost everywhere, as seen 
by μˆ in (5.1). These almost everywhere solutions will correspond to what we call numerical 
artifacts in that algebraic solutions for a given discretization may correspond to these functions. 
It is well known that using a standard discretization scheme for the Monge–Ampère problem can 
yield multiple solutions, many of which are numerical artifacts that do not correspond to PDE 
solutions [11]. For example, let μ∈H2(0,1)∖C2(0,1) be defined by 

μˆ(x)=⎧⎩⎨⎪⎪⎪⎪12x2+14x,−12x2+54x−14,for x<0.5,for x≥0.5. 

(5.1) 

Furthermore, suppose xj=0.5 for some j=2,3,…,J−1. Then, when using a standard central 
difference discretization, μˆ corresponds to a numerical solution, yielding a numerical artifact. 

We now consider our discretization that uses a numerical moment. When α=0, we have no 
numerical moment. As a result, we have numerical artifacts as in the standard central difference 
discretization case. Suppose r=0. Then, for α≠0, inspection of (3.9)–(3.12) yields the fact 
that p−+h cannot jump from a value of 1 to a value of −1 when going across xj=0.5. Thus, the 
numerical moment penalizes discontinuities in pμνh,μ,ν=+,−, and, as a result, the numerical 
moment eliminates numerical artifacts such as μˆ. Similarly, for r=1, we can see that μˆ does not 
correspond to a numerical solution. However, in this case, the algebraic system does have a small 
residual that may trap solvers such as fsolve. Thus, for r=0 and r=1, the numerical moment 
penalizes differences in pμνh,μ,ν=+,−, that arise from discontinuities in uh,q−h, and q+h. Hence, 
it eliminates numerical artifacts such as μˆ. We note that the same test using the IP-DG 
framework in [16] does appear to have a numerical artifact corresponding to μˆ when using r=1. 
Thus, the LDG formulation is more successful at removing numerical artifacts for this example 
when using r=1. Furthermore, the IP-DG formulation does not allow for r=0. 

We now consider r≥2, in which case μˆ∈Vh. Furthermore, since μˆ∈C1, we will end up 
with uh=μˆ,q−h=q+h, and p±∓h=p±±h being a numeric solution, where 

q−h(x)=⎧⎩⎨⎪⎪⎪⎪x+14,−x+54,for x<0.5,for x>0.5,andp−−h(x)={1,−1,for x<0.5,for x>0.5. 

Thus, by the equalities of pμνh,μ,ν=+,−, the numerical moment is always zero and we do have 
numerical artifacts. These equalities are a consequence of the continuity of uh, q−h, and q+h. 
With the extra degrees of freedom for r≥2, we allow C1 to be embedded into our approximation 
space Vh, thus creating possible solutions with a zero-valued numerical moment. The numerical 



moment acts as a penalty term for differences in pμνh,μ,ν=+,−, which are a consequence of 
differences in q−h and q+h that naturally arise for nontrivial functions when r=0 or r=1. 

Even with the possible presence of numerical artifacts for the above discretization when r≥2, the 
numerical moment can be exploited at the solver level. We now present a splitting algorithm for 
solving the resulting nonlinear algebraic system that uses the numerical moment to strongly 
emphasize the fact that the viscosity solution of the PDE should preserve the monotonicity 
required by the definition of ellipticity. Again, we emphasize that the following algorithm is 
based upon the mixed formulation where the numerical moment is a function of the various 
second-order derivative approximations. 

Algorithm 5.1 

(1) Pick an initial guess for uh. 

(2) Form initial guesses for q−h,q+h,p−−h,p−+h,p+−h, and p++h using equations (3.17) and 
(3.18). 

(3) Solve Eq. (3.2) for p−+h+p+−h2. 

(4) Solve Eq. (3.17) for + and − and the equation formed by averaging (3.18) 
for μ=−,ν=+ and μ=+,ν=− for uh,q−h, and q+h. 

(5) Solve Eq. (3.18) for μ,ν=+,− for p−−h,p−+h,p+−h, and p++h. 

(6) Repeat Steps 3–5 until the change in p−+h+p+−h2 is sufficiently small. 

We note that step (3) requires solving a nonlinear equation. However, the nonlinear equation is 
both monotone and entirely local with respect to the unknown function. Also, step (4) of 
Algorithm 5.1 requires solving a nonstandard Poisson discretization. The analysis for the 
corresponding Poisson discretization can be found in [18]. 

For the next numerical tests, we will show that using Algorithm 5.1 with a sufficiently large 
coefficient for the numerical moment destabilizes numerical artifacts such as μˆ and steers the 
approximation towards the viscosity solution of the PDE. Let u¯(x)=x2. Then, u¯ is the secant 
line formed by the boundary data for the given boundary value problem. We now approximate 
the solution of the Monge–Ampère type problem from Test 1 in Sect. 5.1 by using 100 iterations 
of Algorithm 5.1 followed by using fsolve on the full system to solve the global discretization 
given by (3.2), (3.17), and (3.18). We take the initial guess to be 

u(0)h=34μˆ+14u¯, 

where, for r=0,u0h is first projected into Vh. From Fig. 13, we see that the numerical moment 
drives the solution towards the viscosity solution u+ when r=0 and α is positive. From Fig. 14, 
we see that the numerical moment also drives the solution towards the viscosity 



solution u+ when r=2 and α is positive, despite the presence of numerical artifacts. From Fig. 15, 
we see that the moment drives the solution towards the viscosity solution 
of F(uxx,ux,u,x):=u2xx−1 given by u− for r=0 and r=2 when α is chosen to be negative. In each 
figure, the middle graph corresponds to μˆ. Clearly, we recover the numerical artifact 
corresponding to μˆ when α=0. Thus, the numerical moment plays an essential role in either 
eliminating numerical artifacts at the discretization level or handling numerical artifacts at the 
solver level. 

 

Fig. 13 Left α=40,h=1/40, and r=0. Right α=0,h=1/40, and r=0 

 

Fig. 14 Left α=20,h=1/20, and r=2. Right α=0,h=1/20, and r=2 



 

Fig. 15 Left α=−40,h=1/40, and r=0. Right α=−20,h=1/20, and r=2 

The IP-DG framework presented in [16] has similar behavior for the preceding numerical tests 
when using r=2 with a solver analogous to Algorithm 5.1, where again we have a numerical 
artifact corresponding to μˆ. However, due to the wider availability of IP-DG Poisson solvers in 
the literature, there is currently greater potential to speed up step (4) in Algorithm 5.1 using the 
IP-DG formulation. Again, we see that the IP-DG formulation has potential for increased speed 
at the solver level over the corresponding LDG formulation. 

We make one final note about using the iterative solver given by Algorithm 5.1. Using fsolve to 
solve the full system with the initial guess given by u(0)h resulted in either not finding a root for 
many tests (r=1) or converging to a numerical artifact with a discontinuous second order 
derivative at another node in the mesh (r=2). In order to use fsolve for the given test problem, the 
initial guess should either be restricted to the class of functions where p−+h and p+−h preserve 
the ellipticity of the nonlinear operator, the initial guess should be preconditioned by first 
using fsolve with r=0,1, or the initial guess should be preconditioned using Algorithm 5.1. When 
using r=0 and a non-ellipticity-preserving initial guess, solving the full system of equations 
with fsolve still has the potential to converge to u− even for α>0. The strength of Algorithm 5.1 
is that it strongly enforces the requirement that Fˆ is monotone decreasing in p−+ and p+− over 
each iteration. Thus, a sufficiently large value for α drives the approximation towards the class of 
ellipticity-preserving functions if the algorithm converges. 
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