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Abstract: 
 
We study pattern avoidance in the context of partial words. The problem of classifying the 
avoidable binary patterns has been solved, so we move on to ternary and more general patterns. 
Our results, which are based on morphisms (iterated or not), determine all the ternary patternsʼ 
avoidability indices or at least give bounds for them. 
 
Keywords: Combinatorics on words | Partial words | Pattern avoidance | Ternary pattern | 
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Article: 
 
1. Introduction 
 
Pattern avoidance is a topic of interest in Combinatorics on Words. A pattern is a sequence over 
an alphabet of variables, which are denoted by A, B, C, etc. We obtain an occurrence of the 
pattern if we replace the variables with arbitrary non-empty words in such a way that we replace 
each occurrence of the same variable with the same word. A pattern p is avoidable (resp., k-
avoidable) if there exists an infinite word (resp., infinite word over a k-sized alphabet) that 
contains no occurrence of p; otherwise, p is unavoidable (resp., k-unavoidable). The avoidability 
index of the pattern is the smallest integer k for which it is k-avoidable; if no such k exists, the 
index is ∞. 
 
The problem of deciding whether a given pattern is avoidable has been solved [1] and [14], but 
the one of deciding whether it is k-avoidable has remained open. An alternative is the problem of 
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classifying all the patterns over a fixed number of variables according to their avoidability 
indices. This classification has been completed for unary (those over one variable A), for binary 
(those over two variables A, B), as well as for ternary patterns (those over three 
variables A, B, C) [7], [11] and [12]. 
 
For the lower bounds, we use the so-called backtracking algorithm from [8], while for the upper 
bounds, we provide HD0L systems  . For a finite alphabet Σ  , a morphism f:Σ⁎→Σ⁎, and a0∈Σ, 
the tuple (Σ,f,a0)is called a D0L system (Deterministic 0-sided Lindenmeyer system)   and 
the D0L language   generated by the system is the set . For example, the Thue–
Morse morphism t(a)=ab and t(b)=bagives the D0L system ({a,b},t,a) generating the language 
{ε,a,ab,abba,abbabaab,abbabaabbaababba,…}. 
 
For a D0L system (Σ,f,a0), the fixed point   is , provided the limit exists. 
The Thue–Morse word is tω(a). Now, for a morphism  with alphabets Σ1,Σ2 and a 
D0L system(Σ1,f,a0), the tuple (Σ1,f,a0,Σ2,g) is called an HD0L system   whose generated 
language is the set{g∘fn(a0)|n∈N}. 
 
In [5], we have completed the classification of the avoidability indices of all the binary patterns 
in partial words (words with holes) that was started in [6]. The algorithms described in 
Section 5 of this paper have provided us with the morphisms necessary to complete this 
classification, which is recalled in the following theorem. 
 
Theorem 1. 
(See [5].) For partial words, binary patterns fall into three categories: 
 
1.The binary patterns ε, A, AA, AAB,  AABA,  AABAA, AB, ABA, and their complements, are 
unavoidable (or have avoidability index ∞). 
 
2.The binary patterns  AABAB,  AABB,  ABAB,  ABBA, their reverses, and complements, 
have avoidability index 3. 
 
3.All other binary patterns, and in particular all binary patterns of length six or more, have 
avoidability index 2. 
 
In this paper, we investigate the problem of classifying all the avoidable ternary patterns with 
respect to partial word avoidability. We identify the avoidability indices of almost all of the 
ternary patterns and show that only four are left in order to complete the classification (for those 
four we give lower and upper bounds). 
 
The contents of our paper are as follows: In Section 2, we give some background on partial 



words and patterns (for more information, see [2] and [11]). In Section 3, we discuss the 
classification of the ternary patterns. In Section 4, we make some observations for general 
pattern avoidance. In Section 5, we describe an algorithm to search for an HD0L system 
avoiding a given pattern. Finally in Section 6, we conclude with some remarks. Note that we 
have put in Appendix A a ternary lexicon which lists the partial word avoidability indices for the 
ternary patterns, or at least lists bounds for them. 
 
2. Preliminaries 
 
Let Σ   be a finite alphabet of letters. A partial word   over Σ   is a sequence of symbols 
from Σ⋄=Σ∪{⋄}, where Σ   is augmented with the “hole” symbol ⋄. A (full) word   is a partial 
word without holes. The symbol at position i   of a partial word u   is denoted by u[i], while 
the length   of u  , i.e., the number of symbols in u  , is denoted by |u|. The empty word ε   has 
length zero. The set of all full words (resp., non-empty full words) over Σ   is denoted 
by Σ⁎ (resp., Σ+), while the set of all partial words (resp., non-empty partial words) over Σ   is 
denoted by  (resp., ). The set of all full (resp., partial) words over Σ   of length n   is 
denoted by Σn(resp., ). 
 
A partial word u   is a factor   (resp., prefix  , suffix  ) of a partial word v   if there 
exist x  , y   such that v=xuy(resp., v=uy, v=xu). The factor, prefix, or 
suffix u   is proper   if u≠ε and u≠v. We denote by Pref(v)(resp., Suf(v)) the set of all prefixes 
(resp., suffixes) of v  . If u   and v   are two partial words of equal length, 
then u   is compatible   with v  , denoted by u↑v, if u[i]=v[i] whenever u[i],v[i]∈Σ. If u,v are non-
empty compatible partial words, then uv is a square. A full word compatible with a factor of a 
partial word v is a subword of v. 
 
Let Δ  , Σ∩Δ=∅, be an alphabet of pattern variables and denote them by A  , B  , C  , etc. 
A pattern   is a word over Δ  , e.g., AABAACACCBAACA is a ternary pattern. We denote 
by alph(p) the set of distinct variables in pattern p  . For a partial word  and pattern p∈Δ⁎, 
we say that w meets p   or p occurs in w   if there exists some non-erasing 
morphism φ:Δ⁎→Σ⁎ such that φ(p) is compatible with a factor of w  ; otherwise w avoids p  . 
These definitions also apply to infinite partial words over Σ   which are functions fromN to Σ⋄. 
A pattern p   is k-avoidable   if there is a partial word over a k  -sized alphabet with infinitely 
many holes that avoids p  . We say that p   is avoidable   if it is k  -avoidable for some k  . For a 
given pattern p  , theavoidability index  μ(p) is the minimal k   such that p   is k  -avoidable. 
If p   is unavoidable, μ(p)=∞. 
 
For a given pattern p  , can we determine μ(p)? A concept useful to answer this question 
is division of patterns  . If p   occurs in a pattern q  , then p divides q  . For 
instance,  divides (replacing C   by BC   gives q   from p  ). 



If p   divides q   and an infinite partial word avoids p   then it also avoids q  , and so μ(q)⩽μ(p). 
 
3. Classification of the ternary patterns 
 
In classifying the avoidability indices of the ternary patterns, it is useful to consider the directed 
tree of patterns T  , where the root of T   is labeled by ε   and each node has children labeled by 
every canonical pattern formed by appending A  , B  , C   to the parent nodeʼs pattern, with all 
edges directed from parent to child. We have a partial order relation defined on the set of 
canonical ternary patterns by q>p if there is a path in T   from the node labeled by pattern q   to 
the node labeled by pattern p  . Because q>p implies q|p, we have that μ(q)⩾μ(p). The 
classification is complete when every node of T is appended with the avoidability index of the 
pattern labeling it. 
 
First, we use unavoidability results to rule out known 2-unavoidable patterns, and proceed via a 
depth-first search to find 2-avoidable patterns which are identified as such using division 
arguments from the binary patterns and the HD0L finding algorithm described in Section 5. 
Once a pattern p is known to have avoidability index two, we know its children, grandchildren, 
etc., also have avoidability index two. We find by exhaustion that every ternary pattern with 
length twelve or greater is 2-avoidable. This leaves us with finitely many ternary patterns to 
classify. Next, for any remaining pattern p, we use division arguments and our results to establish 
bounds on the avoidability index of p. Finally, we try running the algorithms of Section 5 on 
successively larger outer alphabet sizes, starting at the known lower bound, and going up to one 
less than the known upper bound in search of an HD0L system which avoids p. Because the 
algorithm for finding HD0Ls has so many tuning parameters, the implementation used attempted 
to tweak these parameters, if no HD0L was found. 
 
Here, as an example, is one branch of the tree T  , starting with ABCABA: 
 

 
 
We end this section by describing how to modify backtracking to improve lower bounds. 
We consider AABCBAA first. Since we are looking for avoiding partial words with infinitely 
many holes, one of the length 11 factors that has a hole in its fifth position must occur infinitely 



often. This factor that occurs infinitely often must avoid all of the 
patterns {AAA,ABBA,AABAA}. If it did not, then we would easily be able to construct a 
meeting morphism. We are able to show by exhaustive backtracking that all 38 such words that 
have a hole in their fifth position and simultaneously avoid all these patterns have length less 
than 11. Similarly, we obtain for AABBCBAAB the set {ABBAA,AAAA}, which only allows 
220 words of length at most 34 that have a hole in their tenth position. This technique also gives 
us corresponding lower bounds for ABBCBBA and ABBACBBAA. 
Since it is not always easy to combine the two binary patterns on either side to be a simple binary 
pattern, we look instead at the equivalent formula for some patterns. Recall that a formula is a set 
of patterns {p0,…,pn} often written , which meet a word w   only if there is a 
morphism h   such that for each pi in the formula, h(pi) is a factor of w. Also, in order to avoid 
having to guess how far from the end of the factor the hole must be to make the formula 
unavoidable, we simply start with a hole in the middle and grow the hole out on either side. This 
gives us that the following patterns are 2-unavoidable: 
 
Pattern Formula Number Max length 
AABACAABB AABA .AABB 313 33 
AABBCAABA AABA .AABB 313 33 
AABACBABA AABA .BABA 199 20 
ABAACABAB AABA .BABA 199 20 
AABBCABA AABB .ABA 215 33 
AABBCABBA AABB .ABBA 129 18 
AABBCBAB AABB .BAB 223 34 
 
4. Observations for general pattern avoidance 
 
The following definitions are useful for our purposes. 
Let Σ   be an alphabet. For a letter a∈Σ and a subset I⊆N, we define the function , 
where for :  if w[i]=⋄ and i∈I,  otherwise. We write  as 
simplyfilla. For a word w∈Σ⁎ and a subset I⊆N, we define the function , 
where digI(w)[i]=⋄ if i∈I; digI(w)[i]=w[i] otherwise. By digj for j∈N, we mean dig{j}. 
 
4.1. Depth and shallowness 
 
In this section, we introduce the notions of depth and shallowness of patterns. Shallow patterns, 
which have small depth, share some properties with full word unavoidable patterns that higher-
depth patterns do not have. 
 
A k  -unavoidable pattern p   is (h,k)-deep   if there exists m∈N such that every partial 
word w   over a k  -sized alphabet meets p   whenever w   has at least h   holes separated pairwise 
from each other and from the first and final position of the word by factors of length m   or 



greater. We call h:N∖{0,1}→N the depth function   of an unavoidable pattern p   if for 
all k  , p   is (δ(k),k)-deep and is not (j,k)-deep for anyj<δ(k). When the depth function of p   is 
bounded, we call its supremum d  , the depth   of p  , and say that p   is d  -deep  . A 
pattern p   is k-shallow   if p   is (0,k)-deep or (1,k)-deep. If p is k-shallow for all k, we call p 
shallow. We say that p is k-non-shallow if it is not k-shallow. 
 
Every shallow pattern has depth 0 or 1. Naturally, any pattern which is k  -unavoidable in the full 
word case is(0,k)-deep and therefore k  -shallow. Further, if p   is a (h1,k)-deep pattern 
and p   meets pattern q   then q   is (h2,k)-deep for some h2⩽h1. In particular, if q|p and p   is k  -
shallow then q   is k  -shallow. If a patternp   is (h1,k1)-deep, then it is also (h2,k1)-deep for 
all h2⩾h1 and (h1,k2)-deep for all k2⩽k1. Hence the depth function is always non-decreasing, and 
if the depth exists, the depth function is ultimately constant. 
The following lemma gives the complete classification of the depths of the 2-unavoidable binary 
patterns. 
 
Lemma 1. 
 
The 2-unavoidable binary patterns fall into five categories with respect to depth: 
 
1.The patterns ε, A, AB, ABA, and their complements, are shallow with depth 0. 
 
2.The patterns AA, AAB, their reverses, and complements, are shallow with depth 1. 
 
3.The pattern  AABA, its reverse, and complements, is 3-shallow, 4-non-shallow, and has 
depth 2. 
 
4.The pattern  AABAA, and its complement, is   2-shallow and   3-non-shallow, and has depth 
function δ satisfying  δ(2)=0and, for all  k⩾3,  δ(k)=k+1. 
 
5.The patterns  AABAB,  AABB,  ABAB,  ABBA, their reverses, and complements, are 2-
shallow. 
 
Proof. 
 
For Statement 1, the patterns ε, A, AB, and ABA are unavoidable for full words, so they are 0-
deep. 
 
For Statement 2, it is known that in the full word case AA   and AAB   are 2-unavoidable but 3-
avoidable, hence they are (0,2)-deep, but not (0,k)-deep for any k⩾3. They are also (1,k)-deep 
for all k, and therefore shallow. 



For Statement 3, firstly, to show that AABA is 3-shallow, we show that it is (1,3)-deep. Assume 
to the contrary that for every m∈N there is some w  , an infinite ternary word with a hole in 
position m   which avoids AABA. Let a   be the letter immediately following that hole.  
 
If a   occurs again infinitely many times inw  , then w=w′⋄aw″aw‴ for some 
factors w′, w″, w‴ of w  ; but this implies an occurrence of AABA. Otherwise, w   has an infinite 
binary partial word as a suffix. But AABA is 2-unavoidable, so this suffix must have an 
occurrence of AABA. Secondly, to show that AABA is 4-non-shallow, we show it is not (1,4)-
deep. Let w   be any ternary full word avoiding squares. Let a   be a letter which does not occur 
in w   and consider w′a⋄aw″, where w=w′w‴w″ and w‴ has length three. Neither w′ nor w″ contain 
squares so any square-compatible factor in w′a⋄aw″ must contain the letter a  . But a   never 
occurs in w  , so w′a⋄aw″ avoids AABA. Thirdly, if an infinite word w   has at least two holes 
separated by a factor with length at least two, then it may be written as w=w′⋄aw″⋄w‴, 
where a   is a letter; then w   has a clear occurrence of AABA. We have proved 
that AABA is (2,k)-deep for all k   but not (1,4)-deep. Hence its depth is 2. 
 
For Statement 4, the pattern AABAA is 2-unavoidable for full words, so it is (0,2)-deep and its 
depth function δ   satisfies δ(2)=0. Now, let w   be an infinite ternary full word avoiding squares 
and form the infinite partial word w′ from w   by replacing the letter in any position with a hole. 
Every square occurrence ofw′ must contain the hole, so there are no two non-overlapping square-
compatible factors. Hence w′ avoidsAABAA. So AABAA is (1,2)-deep, but it is not (1,3)-deep. 
Thus AABAA is 2-shallow and 3-non-shallow. 
 
Let k⩾3. To see that δ(k)⩽k+1, we first show that AABAA is (k+1,k)-deep. Let w   be any 
infinite word over k   letters with at least k+1 holes separated by factors of length three or 
greater. By the pigeonhole principle at least one letter occurs in positions adjacent to two distinct 
holes. This gives us two occurrences of the same length two square-compatible factor separated 
by a factor of at least length one, a clear occurrence of the pattern AABAA. 
We now show that AABAA is not (k,k)-deep by giving a construction with k   holes arbitrarily 
far apart overk   letters that avoids the pattern AABAA. We start with W=θω(a), 
where θ(a)=abc, θ(b)=ac andθ(c)=b. Let m   be the minimum spacing that we are requiring to be 
between holes. Select factors abcacb, abcbacabc and abcbac from W   in that order that are at 
least m   positions from each other and from the start of the word. Such factors have to exist 
because they appear first in θ2(a), θ4(a), and θ3(a)respectively, therefore, occur infinitely often 
in W  . Replace these factors with aa⋄acb, abcc⋄cabc, and ab⋄bac respectively, calling the new 
word w. We want to prove that any square subword we introduce can only occur once in w. To 
see this, it is enough to check that the square subwords that the three substitutions introduce are 
distinct. 
 
We treat the case when the squares are introduced by aa⋄acb (the other two cases are similar). 



These squares must include either the second a  , the ⋄, or both, because they are the only 
symbols changed by the substitution. In the case where the squared occurrence is suffixed by the 
second a  , suppose it were length greater than two. We would have it suffixed by aa  , which 
appears nowhere else to the left of aa⋄acb. So, the only square introduced in this case is the 
trivial occurrence aa. 
 
So consider the case where the squares introduced involve the ⋄. If ⋄ corresponds to an a  , we 
have the squares aa   and aaaa. Note that while we introduced two distinct occurrences of the 
square aa  , they have no letters in between, therefore, do not yield an occurrence of AABAA. If 
⋄ corresponds to a b  , suppose towards a contradiction that ⋄ is not the first or last letter of a 
squared subword. Then the subword aba  appears somewhere else in w   for a⋄a to correspond to. 
This only appears elsewhere in ab⋄bac. Now, suppose ⋄ is the last letter of a squared subword. 
This means that aab   suffixes the squared subword, but aa   appears nowhere else in w  . Finally, 
if ⋄ starts w  , any squared subword introduced would have to be prefixed by bacb. If ⋄ 
corresponds to a c  , then the square in question must involve the a   immediately to the left of 
the ⋄, otherwise the square would have been there before substituting the factor. If a single 
square occurrence extends more than one to the left of ⋄ then it contains the subword aac  , and 
therefore cannot appear again. This leaves us only with the possibility that it extends one to the 
left, so we get the squareacac and possibly one square prefixed by acacb. 
We get the following table for the squared subwords introduced: 
 
Substitution Possible squared subwords 
abcacb → aa⋄acb a aa ac bacb⋯ acacb⋯ 
abcbacabc → abcc⋄cabc c cc ca bcabc⋯ cacabc⋯ 
abcbac → ab⋄bac b ab ba – – 
 
Because each of the square subwords introduced by the three substitutions are distinct, w   must 
avoid the pattern AABAA. Then, just take the prefix of w   that ends at least m   letters after the 
substituted ab⋄bacto see that AABAA is not (3,3)-deep. 
 
Extending this construction to an avoiding word with k   holes over k   letters is simple. Start 
with w  , then pick k−3 occurrences of the subword bacab that are each at least m   apart after the 
occurrence ofab⋄bac. For the (i−3)rd of these, substitute it with bai⋄aib where {a4,…,ak} are 
letters distinct from a  , b  , and c  . For each of these substitutions, we see the squares of length 
greater than two introduced must have an ai as either the second or second to last position. 
However, ai appears nowhere else in the word, so, in a square occurrence, it must correspond to 
one of the holes that were inserted. Because the letter on the other side of ai from the hole is a b  , 
the only hole that the ai could correspond to is the one obtained by replacing abcbac with ab⋄bac. 
This means that any square occurrence of length greater than two that is introduced by this 
substitution must only appear once. Each also introduces the trivial squareaiai which must only 
appear once, because each hole has different letters surrounding it. Then, just trim the infinite 



word m   positions after the last hole insertion. We then have, for every m  , a word 
over k   letters withk   holes, each at least m   spaces away from each other and from the ends of 
the word that avoids AABAA. This means that AABAA is not (k,k)-deep for any k. 
For Statement 5, the patterns AABAB, AABB, ABAB, ABBA are 2-unavoidable for full words, 
and therefore (0,2)-deep. They are 3-avoidable for partial words. Hence they are not (h,k)-deep 
for any k⩾3and any h.  □ 
 
The following theorem gives a use of shallowness. 
 
Theorem 2. 
 
Let  p0,p1,…,pnbe k-unavoidable patterns over Δ and let  A1,…,Anbe variables which are not in 
Δ. Then  p0A1p1⋯Anpnis k-unavoidable if any of the following conditions hold: 
 
1.alph(pi)and  alph(pj)are pairwise disjoint for all  i≠j; 
 
2.there exists some k-shallow pattern p such that  p0,…,pnare factors of p  ; further, if p is  (0,k)-
deep, so is  p0A1p1⋯Anpn. 
 
Proof. 
 
For Condition 1, let p0, p1 be k  -unavoidable patterns over Δ   and let A1 be a variable not in Δ  . 
Let Σ   be ak  -sized alphabet and w   be a partial word over Σ   with infinitely many holes. 
Because p0 and p1 are k  -unavoidable, there must be an infinite number of occurrences of 
both p0 and p1 in w  . Then there is an occurrence of p0 followed by a non-overlapping 
occurrence of p1, i.e., there exist non-erasing morphismsh0,h1:Δ⁎→Σ⁎ and 
factors w0, w1, w′, w″, w‴ of w   such that h0(p0)↑w0, h1(p1)↑w1 andw=w′w0w″w1w‴. Consider the 
non-erasing morphism f:(Δ∪{A1})⁎→Σ⁎ defined by 
 

 
 
where a∈Σ. As alph(p0) and alph(p1) are disjoint, we are guaranteed that the function f   is well-
defined. Clearly f(p0A1p1)↑w0w″w1, so w   meets p0A1p1. The result then follows by induction on 
n. 
 
For Condition 2, let p0,p1,…,pn be k  -unavoidable patterns over Δ  , let p   be a k  -shallow 
pattern such that p0,…,pn are factors of p  , and let A1,A2,…,An be variables not in Δ  . Let Σ   be 
a k  -letter alphabet, and let w   be a partial word over Σ   with infinitely many holes. Let m∈N be 



the integer implied by the k  -shallowness of p  . Write , where the wiʼs are 
length m   factors with at least one hole. There are at most (k+1)m possible wi, so at least one 
must occur infinitely often; call it x  . Thenw=y0xy1xy2⋯xyn+1 for some yiʼs. Because p   is k  -
shallow, we have that x   meets pattern p  , so there is some non-erasing 
morphism h:(Δ∪{A1,…,An})⁎→Σ⁎ such that h(p) is compatible with a factor of x  . Thus, for 
some xi, , , we may write  where , 
and . This clearly has an occurrence of q=p0A1p1⋯Anpn, for 
let f:(Δ∪{A1,…,An})⁎→Σ⁎ be the morphism defined by  if B=Ai, 
andf(B)=h(B) otherwise, where a∈Σ. Then w   has factors compatible with f(q), so w   meets q  . 
If p   is(0,k)-deep, then the same argument holds with any filling of the holes in w   and 
with wi any length m  factor, and it follows that q   is (0,k)-deep.  □ 
 
Corollary 1. 
 
The sequence of patterns defined recursively by  p0=A0A0and  pn+1=pnAn+1pnis 2-unavoidable. 
 
Proof. 
 
It was shown in Lemma 1 that AA   is (0,2)-deep. Then the result follows by induction 
from Theorem 2.  □ 
 
Corollary 2. 
 
Let p be a pattern of only distinct variables over Δ and  i<|p|such that  p0,p1,…,pn∈Δ⁎are 
compatible with factors of  digi(p). If  A1,…,Anare distinct variables not in Δ, 
then  p0A1p1⋯Anpnis unavoidable. 
 
Proof. 
 
Let p   be any pattern where no variable occurs more than once in p  . Observe that any word of 
length |p|with a hole in position i   meets every pattern compatible with digi(p). It follows that 
every pattern  which is a factor of digi(p) is (1,k)-deep for all k  . By Theorem 2 we 
have that  is k  -unavoidable for all k  . Note that we can find an occurrence 
of  with the image of every variable in alph(p) of length 1. Then any 
completion p0A1p1⋯Anpn of  with variables from alph(p) (i.e., any filling in of 
the holes in  with variables from alph(p)) has an occurrence 
whenever  does, hence it is also unavoidable.  □ 
 
Applying Theorem 2 and its corollaries to the patterns in Lemma 1 imply, for instance, that the 
ternary patternAABAAC, its reversal, its permutations, and its factors are unavoidable; the 



pattern AABACAAB (resp.,AABAACAAB), its reversal, its permutations, and its factors are 3-
unavoidable (resp., 2-unavoidable). The pattern (AABA)C(AAB) is 3-unavoidable because 
both AABA and AAB   are factors of AABAwhich is 3-shallow. There are many patterns that can 
be classified this way! 
 
4.2. Rules of inference 
 
In this section, we construct partial words avoiding patterns avoidable for full words. Let p   be a 
pattern overΔ={A1,…,An}. When we discuss ternary patterns, we write A=A1, B=A2, and C=A3. 
Suppose that p   is avoided by w  , an infinite full word over a k  -letter alphabet Σ={a1,a2,…,ak}. 
There are a finite number of length three factors of w  , so at least one has infinitely many non-
overlapping occurrences. Then there exists an infinite integer sequence 〈im

〉 where |im−im
′|⩾3 and w[im−1..im+1]=w[im

′−1..im
′+1] for all distinct m,m′. Let 〈jm〉 be an 

infinite subsequence of 〈im〉 such that jm>2jm−1+5, and form the partial word w′ from w   by 
replacing w[jm−1..jm+1] with ak+1⋄ak+2. Then w′ is a partial word with infinitely many holes over 
the alphabet Σ∪{ak+1,ak+2}. It turns out that w′ and its reverse, rev(w′), have many useful 
properties and avoid many patterns between them. 
 
We refer to Ai,j as the j  th occurrence of Ai in p  , though we drop these subscripts when they are 
clear from the context. We define a relation on the set of factors of p  , Fact(p), by q⋖q′ if q   is 
an abelian factor of q′ and there are non-overlapping occurrences of q   and q′. For example, 
if p=ABCDCB then B⋖B, B⋖AB, BC⋖DCB, and CB⋖BC. 
Assume that for some non-erasing morphisms  we 
have w′=u1h(p)v1, where h(Ai,j)↑h(Ai,ℓ) for all 1⩽j,ℓ⩽|p|, and for some factor w″ of rev(w′) we 
havew″=u2g(p)v2. This is equivalent to w′ and rev(w′) meeting p  . If we arrive at a contradiction, 
after proving that w′ or rev(w′) avoid p  , we have shown that p   is (k+2)-avoidable. 
 
Write  when h(q) is a 
hole;  when ak+1 suffixes h(q);  when ak+2 prefixes h(q);  when ak+1⋄suffixes h(q);  when ⋄a
k+2 prefixes h(q);  when for some proper factor u   of w′, u   is a factor ofh(q) and h(q) is a factor 

of ⋄ak+2uak+1⋄ (when we have  we say that q   is horned  );  when h(q)has length one. 
 
Theorem 3. 
 
Let  q,q′be factors of pattern p over  {A1,…,An}. Let  qidenote an occurrence of q beginning at 
index i of p. The following rules of inference hold: 
 

(a)  



(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(j)  

(k)∃Ai,j: ,  , or   
(l)  

(m)  
 
Proof. 
 
For (a), it should be clear that as h(Ai,j)↑h(Ai,ℓ) for all j,ℓ, if h(Ai,j)=⋄ then |h(Ai,ℓ)|=1. 
For (b), (c), (d), by construction ⋄, ak+1, and ak+2 occur only in the factor ak+1⋄ak+2. 

For (e), suppose in the pattern that Ai,j satisfies . Because h(Ai,j)↑h(Ai,ℓ) for all ℓ  , we see 
thath(Ai,ℓ) must end with ak+1 or ⋄. But if it ends in ⋄, then it can only be that h(Ai,ℓ)=⋄, for 
if |h(Ai,ℓ)|⩾2 then h(Ai,j) is suffixed by aak+1 for some a∈Σ and ak+1⋄ suffixes h(Ai,ℓ). But 
thenaak+1↑̸ak+1⋄. The proof for (f) is similar. 
 
For (g), (h), if for some factor qi of the pattern we have  or , then for 
some proper factor u   of w′, h(qi) is a factor of ⋄ak+2uak+1⋄ but not of uak+1⋄ nor ⋄ak+2u. 
Then u   must be a factor of h(qi). 
 
For (i), if for some factor qi of p   we have ⋄ak+2∈Pref(h(qi)) or ak+1⋄∈Suf(h(qi)), then 
eitherh(qℓ)∈{⋄ak+2,ak+1⋄} or h(qi)=h(qℓ). 
 
For (j), note that as neither ak+1 or ak+2 occur in w   and w   has no holes, the 
factors ak+1⋄ and ⋄ak+2can only be compatible with factors which overlap ak+1⋄ak+2. It is easy to 
see that ak+1⋄ or ⋄ak+2 are only compatible with themselves and each other. Then if  and , it 
must be that for all ℓ   eitherh(qℓ)∈{⋄ak+2,ak+1⋄} or h(qℓ)=⋄ak+2uak+1⋄ for some factor u   of w′. 
For (k), assume towards a contradiction that |h(Ai,j)|>2 for all Ai∈alph(p). Note first that 
because w  avoids p  , if w′ meets p   then for some Ai∈alph(p), there are two distinct occurrences 
of Ai in p   such that h(Ai,j)↑h(Ai,ℓ) but h(Ai,j)≠h(Ai,ℓ). To see this write , 
where . Let the corresponding subwords of w   be wi obtained by the 



mapping ak+1↦w[j0−1],⋄↦w[j0], and ak+2↦w[j0+1], which undoes our original replacement. 
If , then wi=wj, so ifp   occurs in w′ without any compatible but unequal variable images 
then p   would also occur in w  . So there must be a pair of factors  such 
that  but . Consider then length 3 factors of w′ with holes. They are 

 
 
where ai,aj∈Σ. We see that none of these are compatible, so the only distinct, compatible factors 
of w′are ⋄ with any letter, and the length two factors ak+1⋄ and ⋄ak+2. Then there is some 
occurrence of some Ai in p  , Ai,j, such that h(Ai,j)∈{⋄,⋄ak+2,ak+1⋄} and |h(Ai,j)|⩽2, a contradiction. 
For (l), assume to the contrary that there are factors q′ and q″ of the pattern with non-overlapping 
occurrences such that  and q′⋖q″. Note that |h(q′)|⩽|h(q″)| and |g(q′)|⩽|g(q″)|. Further since , it 
must be the case that h(q′) extends from near one hole to near the next hole, or more 
precisely, h(q′) occupies at least every position of w′ from position jn+2 to position jn+1−2 for 
some n  . Suppose thath(q′) occurs after jn, the index of the (n+1)th hole. Then if q   is a factor of 
the pattern which occurs before q′ and does not overlap with q′, we see 
that |h(q′)|⩾jn+1−jn−3>jn+2⩾|h(q)|. As |h(q″)|⩾|h(q′)|, it must be that q″ occurs after q′. But we 
similarly have that |g(q)|<|g(q′)| whenever q  occurs after q′, so |g(q″)|<|g(q′)|. 
But q′⋖q″ implies |g(q′)|⩽|g(q″)|. This is a contradiction. 
 

For (m), assume to the contrary that we have . Then we have . By (g) 
we have , but Ai,j+2⋖Ai,j which is in contradiction with (l).  □ 
Several constructions, nearly identical to the construction from Theorem 3, can avoid many 
patterns with specific structures occurring in their factors. 
 
Theorem 4. 
 
Let p be a pattern over alphabet Δ with a squared variable factor AA for some  A∈Δ. Then the 
following hold: 
 
1. If there are factors  Aq′Aand  q″of p such that  q′⋖q″, then either the image of  q′consists of a 
single letter or p is 4-avoidable. 
2. If there are factors  q″and  AAq′Aor  Aq′AAof p such that  q′⋖q″, then p is 4-avoidable. 
3. If there are factors  q″and  AAq′BBof p such that  q′⋖q″for some  B∈Δ, then p is 3-avoidable. 
 
Proof. 
 
Let Σ={a,b,c}. Let θ:Σ⁎→Σ⁎ be the generalized Thue–Morse morphism defined 
by θ(a)=abc,θ(b)=ac, and θ(c)=b. Define the morphism  as θ3 with the 



factor bab   of θ3(a) changed to d⋄d, i.e., 
 

 
 
Let w=ϕ∘θω(a) and let 〈in〉 be the sequence of indices of holes of w  , i.e., w[i]=⋄ if and only 
ifi∈〈in〉. Let 〈jn〉 be any subsequence of 〈in〉 such that jn+1>2jn+7. We form w′ from w  by 
replacing w[in−1..in+1] with d⋄d if in∈〈jn〉 or with bab   if not. Let f   be the identity map 
onΣ   and f(d)=b. Note that f∘filla(w)=f∘filla(w′)=θω(a) which is known to be square-free [10]. It 
follows that any square-compatible factor of w′ must contain both ⋄ and d  . We show that the set 
of square subwords of w′ is exactly {dd,cdcd,dcdc}. Note that any length four or greater factor 
of w′is always equal whenever it is compatible, as the length four factors of w′ containing d   or ⋄ 
are 

 
 
which are all pairwise incompatible. It follows that if there exists any length eight or greater 
square-compatible factor s=s1s2 where s1↑s2, then s1=s2 which implies f∘filla(s1)=f∘filla(s2), 
sof∘filla(s) is a square factor of θω(a), a contradiction. Then every square-compatible factor has 
length six or smaller and must be a factor of ϕ(a). It is easy to see from ϕ(a) that the only square 
subwords have length two or four and are dd  , cdcd, dcdc. 
Let p∈Δ⁎ and A∈Δ. For Statement 1, suppose that AA  , Aq′A, and q″ are factors of p   such 
that q′⋖q″. Suppose that h,g:Δ⁎→Σ⁎ are non-erasing morphisms with h(p) compatible with a 
factor of w′, andg(p) compatible with a factor of rev(w′), i.e., both w′ and its reverse meet p  . 
Observe that h(A) must contain a d   and that h(q′) only occurs at position jn, jn+1, or jn+2 for 
some n  . It follows that h(Aq′A)↑d⋄d or for some n   we 
have |h(Aq′A)|⩾jn+1−jn−1 so |h(q′)|⩾jn+1−jn−5>jn+2⩾|h(q)|, where q   is any factor of p   non-
overlapping with q′ and occurring before q′. Note that because q′⋖q″ we have |h(q′)|⩽|h(q″)|, 
so q″ cannot occur before q′. A similar argument shows that |g(q′)|>|g(q)|whenever q   is a factor 
of p   non-overlapping with q′ occurring after q′. As q″ occurs after q′, we have |g(q′)|>|g(q″)|. 
But q′⋖q″ implies that |g(q′)|⩽|g(q″)|. This is a contradiction, so h(Aq′A)↑d⋄d and|h(q′)|=1. For 
Statement 2, if the factor AAq′A or the factor Aq′AA occurs in p   then |h(q′)|≠1 ash(A) must 
contain d  , |h(A)|⩽2, and three d  ʼs do not occur in any length seven factors of w′. 
For Statement 3, let w′ and f   be as above and define w″=f(w′). We show that the set of square 
subwords of w″ is {bb,cbcb,bcbc}. Observe that the length five factors of w″ containing a hole 
are 



 
 
and all of these are pairwise incompatible. This means any square-compatible factor has length 
eight or less, but it is easy to check that the set of square-compatible factors 
of ϕ(ax) and ϕ(xa) forx∈{b,c} is exactly {bb,bcbc,cbcb}. Suppose that p   has 
factors AAq′BB and q″ such that q′⋖q″. Assuming to the contrary that 
both w″ and rev(w″) meet p, we argue as in the previous case.  □ 
 
Theorem 5. 
The pattern  AABCBAAhas avoidability index 4. 
 
Proof. 
 
The pattern AABCBAA is 3-unavoidable by backtracking. We claim that it is 4-avoidable. We 
proceed similarly as in the proof of Theorem 4. Let Σ={a,b,c}. Let θ:Σ⁎→Σ⁎ be the generalized 
Thue–Morse morphism defined by θ(a)=abc, θ(b)=ac, and θ(c)=b. Define the 
morphism  as θ3 with the factor cacba of θ3(a) changed to ⋄dcbd, i.e., 

 
 
Let w=ϕ∘θω(a) and let 〈in〉 be the sequence of indices of holes of w  , i.e., w[i]=⋄ if and only 
ifi∈〈in〉. Let 〈jn〉 be any subsequence of 〈in〉 such that jn+1>2jn+8. We form w′ from w  , 
for all in replacing w[in..in+4] with ⋄dcbd if in∈〈jn〉 or with cacba if not. Let f   be the identity 
map on Σ   and f(d)=a. Note that f∘fillc(w)=f∘fillc(w′)=θω(a) which is known to be square-free 
[10]. It follows that any square-compatible factor of w′ must contain ⋄. We show that the set of 
square subwords of w′ is exactly {bb,dd,baba}. Note that any length three or greater factors 
of w′ are equal whenever compatible, as the length three factors of w′ containing ⋄ are 

 
 
which are all pairwise incompatible. It follows that any length six or greater square-compatible 
factors=s1s2 of w′, where s1↑s2, satisfies s1=s2. This implies f∘fillc(s1)=f∘fillc(s2), sof∘fillc(s) is a 
square factor of θω(a), a contradiction. Therefore, every square-compatible factor of w′has length 
four or smaller and must contain ⋄. It is easy to see from ϕ(a) that the only square subwords that 
have length two or four are bb  , dd  , baba, the last of which occurring in ϕ(c)ϕ(a). Assume 
towards a contradiction that w′ meets AABCBAA with meeting morphism h. 



 
Case 1  . We have h(A)=d. In this case, note that the h(AA) occurrences happen only in one of 
the substituted strings, in the positions occupied by ⋄d  . Therefore, if h(B) were length one or 
two, then it clearly would not work, because c≠b and cb≠ab. So, we consider h(B) to be length 
three or greater. Therefore, h(B) must have d   in its third position, so, for each h(B), the first 
letter in h(B) is either one position to the left or two positions to the right of a hole. 
 
Case 2  . We have h(A)=b. Because the word that we are substituting into is square-free except 
for factors containing ⋄, the h(AA) occurrences can happen only in the positions occupied 
by b  ⋄. Therefore, the first letter of h(B) is a d, so, the left end of any image of B is either one or 
four positions to the right of a hole. 
 
Case 3  . We have h(A)=ba. The only occurrence of this is in ϕ(c)ϕ(a). Therefore, the first letter 
of h(B)is a d, so, the left end of any image of B is either one or four positions to the right of a 
hole. 
 
Since BAA   is a factor of AABCBAA then the right side of the image of the B   in BAA   must be 
either one, two, or four positions to the left of a hole, depending on what h(A) is. So, we have 
that there are distinct holes within four positions of either side of the second image of B  . So, the 
distance between these two holes is then at most 8+|h(B)| but, since it happens after an 
occurrence of h(B), this gap of length at most8+|h(B)| is starting after index |h(B)|. This 
contradicts the restriction we placed on the positions of holes by our definition of jn. So, the 
word w′ avoids AABCBAA.  □ 
 
A similar argument to that in Theorem 5 shows that ABBCBBA has avoidability index 4. 
 
Theorem 6. 
 
The pattern  AABCABAhas avoidability index 5. 
 
Proof. 
 
Let W   be a 4-letter word with infinitely many holes. We know that the full word avoidability 
index ofAABCABA is 3 (hence it is 2-unavoidable) [8]. This means that there is a maximal 
length of avoiding words on two letters, say n  . Define w   to be the word obtained from W   by 
starting at the beginning and filling in a hole if it is less than n+5 positions away from the most 
recent hole that has not been filled in. Note that in w  , all holes are then separated by a distance 
of at least n+5. Since W   is then w   with the possible replacement of some letters with holes, if 
we can show that w   meets AABCABA, then W   will as well. Then, since there are only 16 
configurations of the adjacent letters surrounding each hole, at least one of them has to occur 



infinitely often, say a⋄b. In all cases to follow, we construct h   a non-erasing morphism 
taking AABCABA to a subword of w. 
 
Case 1  . We have a=b. Because a⋄a occurs infinitely often, it occurs twice separated by at least 
one letter, so, there exists a finite non-empty partial word w0 such that a⋄aw0a⋄a is a factor 
of w   then, just let h(A)=a,h(B)=a,h(C)=w0. 
 
Case 2  . We have a≠b. Let c   and d   denote the remaining two letters in alph(w). Since there are 
at most2n words on {c,d} that avoid AABCABA, and infinitely many occurrences of a⋄b, there 
must be somew0 such that a⋄bw0 occurs infinitely often, followed either by a or b. 
First, suppose that a⋄bw0a occurs infinitely often. We can find two occurrences whose starting 
positions are at least n+5 positions apart, meaning that for some w1≠ϵ, a⋄bw0aw1a⋄bw0a is a 
factor of w  . So, let h(A)=a,h(B)=bw0,h(C)=aw1a. Now, suppose that a⋄bw0b occurs infinitely 
often withw0=ϵ. Then a⋄bb occurs infinitely often, in particular it occurs twice at least four 
positions apart, so, for some w2, w   has the factor a⋄bbw2a⋄bb. Take h(A)=b,h(B)=b,h(C)=w2a. 
Next, suppose thata⋄bw0b occurs infinitely often with w0≠ϵ. Then, in particular, it occurs starting 
in two positions that are separated by at least n+5 positions, so there is some w3≠ϵ by length 
considerations such that w   has the factor a⋄bw0bw3a⋄bw0b, so, let h(A)=b,h(B)=w0, 
and h(C)=bw3aa. 
 
So, any word with infinitely many holes on an alphabet of size four has to meet the 
pattern AABCABA. 
 
We now show that AABCABA is 5-avoidable. Our claim is that the word w′ from Theorem 4, 
except with the factor bab   replaced with d⋄e instead of d⋄d avoids AABCABA. We will be 
making use of the notation and inference rules given in Theorem 3. We first introduce a new 
rule: 
 

 
 
To see this, note that the image of Ai,j and Al,m are each length one and within one of the position 
of a hole. This means that there is some u   such that d⋄eud⋄e is a factor of w′ and Ai,j maps to 
either the d  , ⋄, or e   on the left and Al,m maps to either the d  , ⋄, or e   on the right. Then, the 
image of q   is a factor of ⋄eud⋄ and must have u   as a factor, meaning . 
Suppose that w′ meets AABCABA with meeting morphism h  . Since the only square 
occurrences in w′are {dd,ee}, we consider the following cases: 
 
Case 1  . We have h(A)=d. Here  which means that, by rule (e  ), the factor 
of ABA   will be either , , , or . In any case, by (n  ), we get . Then, 
since B⋖B, by rule (l  ) we get a contradiction, so w′ avoids the pattern. 



Case 2  . We have h(A)=e. Here  which means that, by rule (f  ), the factor 
of ABA   will be either , , , or . In any case, by (n  ) we get that . Then, 
since B⋖B, by rule (l  ) we get a contradiction, so w′ avoids the pattern. 
Thus, the avoidability index is five.  □ 
 
Theorem 6 is interesting because in order to get a full word avoidability index of five, the only 
pattern we know of is far more complicated, using nine variables (not just three) in the 
pattern:ABVACWBAXBCYCDAZDCD [9]. Also, a similar argument shows 
that ABACAAB has avoidability index 5. 
 
Theorem 7. 
 
The pattern  AABACBAAhas avoidability index 3. 
 
Proof. 
Applying both Theorem 2 and Lemma 1 imply that the pattern AABACBAA is 2-unavoidable 
becauseAABA and BAA   are factors of AABAA which is 2-shallow. 
To show that it is 3-avoidable, recall that aba   does not appear as a subword in θω(a) because 
any occurrence of a   is followed by either c   or bc  . Let S   be the set of positions of a   in θω(a). 
Form the sequence J={jn}n∈N defined as follows: j0=1∈J and jn∈J if jn∈S and jn>2jn−1+8. Then, 
we claimϕ∘θω(a) avoids the pattern AABACBAA, where, in the following definition of ϕ   we 
use the subscript to denote the position of the letter: 
 

 
 
Note that ϕ(b)=θ5(b) and ϕ(c)=θ5(c). Also note that the positions where ϕ(a) differs from θ5(a)are 
underlined. Let w′=ϕ(ai) where ai=a and i∈J. We first confirm that any factors of w′ of length at 
least three that are compatible are equal, noticing the following are pairwise incompatible: 

 
 
Thus the only square occurrences that arise as a result of the ⋄ are {aa,cc,caca}. The only other 
squares that could have been introduced are a result of the subwords aca or a that we 
replaced cac and cwith respectively. 
Assume towards a contradiction that ϕ∘θω(a) meets AABACBAA with meeting morphism h. 
 



Case 1  . We have h(A)=a, h(A)=ca, or h(A)=c. 
 

 
These each only have one square occurrence, occurring to the left of every occurrence of aba  . 
Each occurrence of h(A) that occurs to the right of h(AA) but before the subword aba   would 
require h(B)to be a subword that cannot appear to the right of h(AA) in ϕ(ua) for any u∈Σ. 
So, aba   is a factor ofh(B). Then the left side of B is one or two positions to the right of a hole, 
horning B, which gives us a contradiction, because B appears twice. 
Case 2  . We have h(A)=ab. 

 
 
There are two occurrences of h(AA) in w′, but, we note that the first time that ab   appears later 
so that the letters before it are the same as the letters before either occurrence of abab is further 
than 4 positions, meaning that h(B) has a factor of aba   on its right end, requiring that any 
occurrence ofh(AABA) spans two occurrences of w′, horning B. 
Case 3  . We have h(A)=ba. 

 
 
There is a single occurrence of h(AA) in w′. Note that the next occurrence of h(A) cannot work 
because that would require h(B) to be something that is not compatible with a factor appearing 
immediately to the left of h(AA). This means that |h(B)|>5 so, h(B) has aba   within four 
positions of its right end. Since aba   does not appear to the right of any occurrence 
of h(AA), h(AABA) has to span two occurrences of w′. 
 
Case 4  . We have that h(A) contains the substituted a   and extends at least one position on one 
side and more than one position on the other side. Either abab or baba is a factor of h(A). But 
these subwords do not have two non-overlapping occurrences in w′, and they appear nowhere 
else in θω(a) because they have aba   as a subword. So, h(AA) has to span two occurrences of w′, 
horning AA. 
 
Case 5  . We have that h(A) has the substituted a   as its first position, |h(A)|>2. Here aba   is a 
prefix ofh(A). This means that the other h(A) that makes up h(AA) must either correspond to a 
different occurrence of w′ in which case we are done, or to one of the other two non-overlapping 
occurrences of aba  in the same occurrence of w′ which it clearly cannot. 
 
Case 6  . We have that h(A) has the substituted a   as its last position, |h(A)|>4. Similarly to the 
previous case, the suffix aba   of h(A) has to correspond to the first aba   in the same occurrence 
of w′, which can be seen not to work because bcbacaba≠cabacaba so, the other occurrence 
of h(A) has to be in another occurrence of w′. 
 



Case 7  . We have that h(A)=caba, h(A)=baca, or h(A)=acab. 
 

 
There are two overlapping occurrences of h(AA), there is no occurrence of h(A) to the right of 
either one by at least one position, until the next occurrence of w′. This means that h(AABA) has 
to span two occurrences of w′. 
 
Case 8  . We have that h(A) contains a letter of the substituted aca   and |h(A)|>4. This means 
thath(A) has aba   as a factor. If, in the other h(A) that makes up h(AA), this does not correspond 
to anotheraba   in the same occurrence of w′ then we are done. Note that the aba   occurrences 
created by the substituted aca   are only a single letter apart, so, because |h(A)|>4, they cannot be 
the two aba  occurrences we need for h(AA). Because the aba   occurrences introduced by the 
substituted a   are both followed by a b   instead of a c   like the aba   occurrences introduced by 
the aca  , we only have to consider when h(A) ends in the first a   of the substituted aca  . We 
check up to length 9, after which point, it cannot work because the two occurrences 
of h(A) would be overlapping. 
 
Case 9  . We have that h(A)=abac. 

 
 
In this case, abac only occurs twice in w′, so, h(AABA) has to overlap with two different 
occurrences of w′.  □ 
 
Note that a similar argument to that of Theorem 7 shows that the pattern ABBCBBAB has 
avoidability index 3, and by divisibility, two more 
patterns, ABAACAABA and AABACABAA have indices of 3. 
 
5. An algorithm to search for an HD0L system avoiding a given pattern 
We describe an algorithm to search for an HD0L system (Σ1,f,a,Σ2,g) that avoids a given 
pattern p. The algorithm works as follows: 
 

• It begins by generating a list of D0L systems using Algorithm 1. Algorithm 1 first 
generates a list of all full words of a given fixed length that avoid p using the 
backtracking algorithm of [8]. 

 



 
 
Algorithm 1.  Generating D0L systems to avoid a pattern 
 
Then, for each of these words, say w  , it calculates all possible morphisms, say f  , such 
thatw∈Pref(fω(a)) using Algorithm 2. It determines f   by iterating over all legal lengths of 
images of letters under f  , for which w   uniquely defines the morphism. As w   is only a finite 
prefix of fω(a), the algorithm does not consider many D0Ls which do avoid p  , but have letter 
images on the order of or larger than w  . This restriction also means that, so long as the first 
letter, w[0], appears somewhere in the image of a letter other than as the first letter of its image, 
then every letter on which f   is defined appears infinitely often in fω(a). At this point, the 
algorithm has found many thousands of D0Ls which avoid p   for a finite prefix, but may not 
avoid p   in general. Though these could be verified by the HD0L system checking algorithm 
of [8], it would be entirely unfeasible to check each of these individually. However, checking the 
length n   prefix of fω(a) for an occurrence of p   takes our algorithm O(nl+2)time, where l   is the 
number of variables. By continuing to check while letting n   grow very large, there are multiple 
rounds of elimination, each one considering longer and longer prefixes. This means that for the 
longest length prefixes that is checked, very few morphisms are left, offsetting the much greater 
computational cost for each. Typically by length n=1000, only a handful are left due to the length 
restriction on the word w that is used to generate the morphisms. Once only the morphisms 
whose fixed point avoid p for a very long length are left, the algorithm runs the HD0L system 
checking algorithm of [8] on these remaining D0Ls to ensure that they avoid p. Note that for the 
computationally complex steps of this procedure, there is very little shared data, and none of it is 
being modified during those steps, so, concurrency is very good. 



 
Algorithm 2. Generating morphisms with given fixed point 
 
To generate an HD0L system avoiding p  , it first runs the D0L generation algorithm on an 
alphabet of a greater size, since the inner morphism must avoid p   on its own if there is any hope 
of the HD0L system avoiding p  . It then, using Algorithm 3, separately generates outer 
morphisms by generating a set of long “seed” words with holes avoiding p   using a modification 
of the backtracking algorithm in which it starts with a hole in the middle and tries to add letters 
alternating sides. If in this generation phase, it is unable to add any letter to one side, then p   is 
not avoidable by infinitely many holes. Each seed word w   is paired with each D0L morphism, 
say f  . By iterating image sizes for the letters of w  , an outer morphism g   is determined such 
that w   is a finite prefix of g∘fω(a). 
 

 
Algorithm 3. Generating HD0L systems to avoid a pattern 
 
Then, it applies a refining procedure similar to the D0L case, Algorithm 4, in which a longer and 
longer prefix of g∘fω(a) is checked for an occurrence of p  . After greatly reducing the number of 
HD0L systems it has generated, it verifies those remaining with the partial word HD0L system 
checking algorithm described in [3]. Note, in order to assure that the generated HD0L system 
contains infinitely many holes, it suffices to know that the seed word contains at least (in 
practice, exactly) one hole, meaning that the image on one of the letters in the inner 
alphabet Σ1 contains at least one hole, and that every letter of the underlying D0L system occurs 
infinitely often. 

http://www.sciencedirect.com/science/article/pii/S1570866713000464?np=y


 

 
Algorithm 4. Generating HD0L systems to avoid a pattern, given a D0L system and a prefix 
word 
 
6. Concluding remarks, conjectures, and open problems 
 
Referring to our ternary lexicon in Appendix A, our results have shown that there are 69 
unavoidable patterns, 4 patterns with avoidability index 5, 24 patterns with index 4, between 209 
and 216 patterns with index 3, and all other patterns have index 2. In particular, all patterns with 
length greater than 11 have index 2. Since patterns have the same index as their reverse, this 
reduces to having to find 4 more patternsʼ avoidability 
indices: ABACBC, AABCCAB, AABACABBA, and ABBACAABA. 
A few comments on the remaining 4 patterns: We know by 1-deep backtracking that any infinite 
binary word with infinitely many holes that avoids AABACABBA or ABBACAABA must have 
only finitely many holes that are not surrounded by either 
 

 
 
or 
babaaabbbaaabbaba⋄abbaaabbababaaabbbaaabbabab 
 
up to swapping a   and b  . For the pattern ABACBC, we similarly get that only finitely many 
holes cannot be surrounded by aaa⋄bbb up to swapping a and b. 
Note that there are ternary patterns with avoidability index 4 or 5 for partial words (for 
instance,AABACAAB has index 4 and AABCABA has index 5), while no such ternary pattern 
exists for full words[8]. Indeed, to our knowledge the only known patterns with an avoidability 
index of 4 for full words require at least seven variables (for instance, the 
pattern ABDACEBAFCAGCB from [13]), and the only known patterns with an index of 5 for 
full words require at least nine variables (for instance, the 
patternABVACWBAXBCYCDAZDCD from [9]). 

http://www.sciencedirect.com/science/article/pii/S1570866713000464?np=y


 
Frequently, the lower bound is provided by Theorem 2 from patterns of known depth. The 
conditions on Theorem 2 can most likely be significantly weakened. We conjecture in particular 
that if p   is k  -shallow andp0 and p1 are (h0,k)-deep and (h1,k)-deep respectively, 
then p0Ap1 is (h0+h1,k)-deep. In general, what relation does the depth of p0Ap1 have with the 
depth of p0 and p1? Classification of the depths of patterns may give insight. 
 
Every 0-deep pattern that is unavoidable may be seen to be written in the form of Corollary 2. 
We conjecture that every unavoidable pattern may be written in this form and that Corollary 
2 may be implemented into an algorithm which decides the partial word avoidability of a pattern. 
We believe the sequence of Corollary 1 has maximal length 2-unavoidable 
pattern pn with |pn|=3×2n−1−1. This would mean that any classification of the patterns 
using k   variables by our method would need never explicitly calculate morphisms for any 
pattern 3×2k−1 or longer. 
 
In addition, a World Wide Web server interface at 
 
www.uncg.edu/cmp/research/patterns2 
 
has been established for automated use of our Pattern Avoidance Automated Archive. Given as 
input a pattern over any alphabet of variables, the Archive attempts to determine the avoidability 
index or bounds of it, using the algorithms described in our paper. The Archive first checks for 
unavoidability. If no reason to suspect unavoidability is found, it attempts to generate HD0Ls 
which avoid it. Note that the HD0L finder is not implemented for patterns with more than three 
distinct variables. Suggested HD0Ls are also output, and can be verified using our HD0L 
verification algorithm found there. 
 
Appendix A.  
 

• A note on reading the following classification: 
• Patterns are not listed if the canonical form of their reverse is listed, as the two have 

equivalent avoidability indices; 
• Oftentimes, the upper bound is gained implicitly from an upper bound of a prefix/reverse 

of a prefix; 
• Backtracking means that the lower bound was obtained because for smaller alphabet 

sizes, there were only finitely many words that avoided the pattern; 
• The full word case gave us a lower bound for many of the patterns, because introducing 

infinitely many holes can only cause more occurrences of the pattern; 
 

• In reading the HD0Lʼs used to get an upper bound, f   represents the inner morphism 



and g   the outer one, so that g∘fω(a) avoids the pattern (a tuple notation is used, where the 
image of a is the first element of the tuple, image of b the second, etc.); 

• When a pattern is given as a reason for an upper bound, it means the current pattern is 
divisible by the given one; 

• Any pattern that is neither listed nor has a listed reverse is 2-avoidable, according to 
division as explained in Section 3; 

 
All indices of ∞ are determined by Corollary 2. 
 
1.A ∞ 
2.AA ∞ 
3.AAB ∞ 
4.AABA ∞ 
5.AABAA ∞ 
6.AABAAB 2 Upper: ABAAB 
7.AABAAC ∞ 
8.AABAACA ∞ 
9.AABAACAA ∞ 
10.AABAACAAB 3 Lower: Theorem 2 Upper: Theorem 4 
11.AABAACAABA 3 Lower: Theorem 2 Upper: Theorem 4 
12.AABAACAABAA 3 Lower: Theorem 2 Upper: Theorem 4 
13.AABAACAABAAB 2 Upper: AABAAB 
14.AABAACAABAAC 2 Upper: ABBCABBC 
15.AABAACAABAB 2 Upper: AABAACABAB 
16.AABAACAABAC 2 Upper: ABBCABC 
17.AABAACAABB 2 Upper: AABAACABB 
18.AABAACAABC 2 Upper: ABAACABC 
19.AABAACAAC 2 Upper: AABAAB 
20.AABAACAB 3 Lower: Theorem 2 Upper: Theorem 4 
21.AABAACABA 3 Lower: Theorem 2 Upper: Theorem 4 
22.AABAACABAA 3 Lower: Theorem 2 Upper: Theorem 4 
23.AABAACABAAB 2 Upper: AABAACBAAB 
24.AABAACABAAC 2 Upper: ABBCABBC 
25.AABAACABAB 2 Upper: AABAACBAB 
26.AABAACABAC 2 Upper: ABBCABC 
27.AABAACABB 2 Upper: AABAACBB 
28.AABAACABC 2 Upper: ABAACABC 
29.AABAACAC 3 Lower: Full word case Upper: ABAB 
30.AABAACACA 2 Upper: AABABA 
31.AABAACACB 2 Upper: ABAACACB 



32.AABAACACC 2 Upper: AABABB 
33.AABAACB 3 Lower: Theorem 2 Upper: Theorem 4 
34.AABAACBA 3 Lower: Theorem 2 Upper: Theorem 4 
35.AABAACBAA 3 Lower: Theorem 2 Upper: Theorem 4 
36.AABAACBAAB 2 Upper:g=(baa,aabb⋄,ababab),f=(acb,c,ab) 
37.AABAACBAAC 2 Upper: AABACBAC 
38.AABAACBAB 2 Upper:g=(aabab,b⋄a,aabb),f=(acb,c,ab) 
39.AABAACBAC 2 Upper: ABBCABC 
40.AABAACBB 2 Upper:g=(ba,abb⋄aabab),f=(ab,ba) 
41.AABAACBC 2 Upper:g=(abaaaa⋄bbaa,bab),f=(ab,ba) 
42.AABAACC 3 Lower: Full word case Upper: AABB 
43.AABAACCA 2 Upper: AABBA 
44.AABAACCB 2 Upper:g=(ab,baba⋄a,bbbaa),f=(acb,c,ab) 
45.AABAB 3 Lower: Full word case Upper: ABAB 
46.AABABA 2 Upper: AABCBC 
47.AABABB 2 Upper:g=(ab,⋄baa),f=(abbb,a) 
48.AABABC 3 Lower: Full word case Upper: ABAB 
49.AABABCA 3 Lower: Full word case Upper: ABAB 
50.AABABCAA 3 Lower: Full word case Upper: ABAB 
51.AABABCAAB 3 Lower: Full word case Upper: ABAB 
52.AABABCAABA 3 Lower: Full word case Upper: ABAB 
53.AABABCAABAA 2 Upper: AABABCABAA 
54.AABABCAABAB 3 Lower: Full word case Upper: ABAB 
55.AABABCAABABA 2 Upper: AABABA 
56.AABABCAABABB 2 Upper: AABABB 
57.AABABCAABABC 2 Upper: ABBCABBC 
58.AABABCAABAC 2 Upper: ABCAABAC 
59.AABABCAABB 2 Upper: AABABCBB 
60.AABABCAABC 2 Upper: ABBCABC 
61.AABABCAAC 2 Upper: ABABCAAC 
62.AABABCAB 3 Lower: Full word case Upper: ABAB 
63.AABABCABA 3 Lower: Full word case Upper: ABAB 
64.AABABCABAA 2 Upper:g=(aabaaa⋄bb,b,aba),f=(acb,c,ab) 
65.AABABCABAB 3 Lower: Full word case Upper: ABAB 
66.AABABCABABA 2 Upper: AABABCBABA 
67.AABABCABABB 2 Upper: AABACACC 
68.AABABCABABC 2 Upper: AABCABC 
69.AABABCABAC 2 Upper: ABABCABAC 
70.AABABCABB 2 Upper: AABABCBB 
71.AABABCABC 2 Upper: ABABCABC 



72.AABABCAC 2 Upper: ABABCAC 
73.AABABCB 3 Lower: Full word case Upper: ABAB 
74.AABABCBA 3 Lower: Full word case Upper: ABAB 
75.AABABCBAA 3 Lower: Full word case Upper: ABAB 
76.AABABCBAAB 2 Upper: ABABCBAAB 
77.AABABCBAAC 2 Upper: ABACABBC 
78.AABABCBAB 3 Lower: Full word case Upper: ABAB 
79.AABABCBABA 2 Upper: ABABCBABA 
80.AABABCBABB 2 Upper: AABACBABB 
81.AABABCBABC 2 Upper: AABACBAC 
82.AABABCBAC 2 Upper: ABABCBAC 
83.AABABCBB 2 Upper:g=(aabaa⋄bb,abb),f=(abbb,a) 
84.AABABCBC 2 Upper: ABABCBC 
85.AABABCC 2 Upper: ABABCC 
86.AABAC ∞ 
87.AABACA ∞ 
88.AABACAA ∞ 
89.AABACAAB 4 Lower: Theorem 2 Upper: Theorem 4 
90.AABACAABA 4 Lower: Theorem 2 Upper: Theorem 4 
91.AABACAABAA 3 reverse of AABAACABAA 
92.AABACAABAAB 2 Upper: AABAAB 
93.AABACAABAAC 2 Upper: ABCAABAC 
94.AABACAABAB 3 Lower: Full word case Upper: ABAACAC 
95.AABACAABABA 2 Upper: AABABA 
96.AABACAABABB 2 Upper: AABABB 
97.AABACAABABC 2 Upper: ABACABBC 
98.AABACAABAC 2 Upper: ABCBBABC 
99.AABACAABB 3 Lower: only 313 binary words with hole in middle avoid AABA.AABB of 
longest length 33 Upper: AABB  
100.AABACAABBA 2 Upper: AABBA 
101.AABACAABBC 2 Upper: ABCBBAAC 
102.AABACAABC 2 Upper: ABACAABC 
103.AABACAAC 2 Upper: ABAAB 
104.AABACAB 4 Lower: Theorem 2 Upper: Theorem 4 
105.AABACABA 4 Lower: Theorem 2 Upper: Theorem 4 
106.AABACABAA 3 Lower: Theorem 2 Upper: AABACBAA 
107.AABACABAAB 2 Upper: ABAAB 
108.AABACABAAC 2 Upper: ABACBAAC 
109.AABACABAB 3 Lower: Full word case Upper: AABACAC 
110.AABACABABA 2 Upper: AABACACA 



111.AABACABABB 2 reverse of AABABCBABB 
112.AABACABABC 2 Upper: ABCBABAC 
113.AABACABAC 2 Upper: AABCABC 
114.AABACABB 3 Lower: Full word case Upper: AABACBB 
115.AABACABBA either 2 or 3 Upper: AABACBBA 
116.AABACABBAA 2 Upper: ABBAA 
117.AABACABBAB 2 Upper: ABBAB 
118.AABACABBAC 2 Upper: AABCABBC 
119.AABACABBC 2 Upper: ABACABBC 
120.AABACABC 2 reverse of ABCACBCC 
121.AABACAC 3 Lower: Full word case Upper: ABAB 
122.AABACACA 2 Upper: ABABA 
123.AABACACB 2 Upper:g=(abbb,aaa⋄bbaba,bba), 
f=(acb,c,ab) 
124.AABACACC 2 reverse of AABABCBB 
125.AABACB 4 Lower: Theorem 2 Upper: Theorem 4 
126.AABACBA 4 Lower: Theorem 2 Upper: Theorem 4 
127.AABACBAA 3 Lower: Theorem 2 Upper: Special argument 
128.AABACBAAB 3 Lower: Full word case Upper: ABBA 
129.AABACBAABA 2 Upper: ABBAB 
130.AABACBAABB 2 Upper: ABBAA 
131.AABACBAABC 2 Upper: ABCABBAC 
132.AABACBAAC 2 Upper: ABACBAAC 
133.AABACBAB 3 Lower: Full word case Upper: HD0L:g=(bb,a⋄c,cba),f=(acb,c,ab) 
134.AABACBABA 3 Lower: only 199 binary words with hole in middle avoid AABA.BABA of 
longest length 20 Upper: AABACBAB 
135.AABACBABAA 2 reverse of AABABCABAA 
136.AABACBABAB 2 Upper: ABABA 
137.AABACBABAC 2 Upper: AABCBABC 
138.AABACBABB 2 HD0L:g=(abbabb⋄a,bbbaa),f=(ab,aa) 
139.AABACBABC 2 Upper: ABACBABC 
140.AABACBAC 2 Upper: AABCBC 
141.AABACBB 3 Lower: Full word case Upper: HD0L:g=(b,a,b⋄aac),f=(acb,c,ab) 
142.AABACBBA 3 Lower: Full word case Upper: AABACBB 
143.AABACBBAA 2 Upper: Equivalent to AABBCBBAB 
144.AABACBBAB 2 HD0L:g=(abb,⋄aabb),f=(ab,baab) 
145.AABACBBAC 2 Upper: ABAAB 
146.AABACBBC 2 Upper: ABACBBC 
147.AABACBC 2 HD0L:g=(aaab,bbb⋄aa,bababa),f=(acb,c,ab) 
148.AABACC ∞ 



149.AABACCA 3 Lower: Full word case Upper: ABBA 
150.AABACCAA 2 Upper: ABBAA 
151.AABACCAB 2 HD0L:g=(aab,abab⋄baaa,bba),f=(ac,ca,ba) 
152.AABACCAC 2 Upper: ABBAB 
153.AABACCB 2 HD0L:g=(ababb,aaaabbba,ba⋄bba),f=(ab,ca,ba) 
154.AABB 3 Lower: Full word case HD0L:g=(abac,⋄c,babc),f=(acb,c,ab) 
155.AABBA 2 Upper: Theorem 1 
156.AABBC 3 Lower: Full word case 
157.AABBCA 3 Lower: Full word case Upper: AABB 
158.AABBCAA 3 Lower: Full word case 
159.AABBCAAB 3 Lower: Full word case 
160.AABBCAABA 3 Lower: only 313 binary words with hole in middle avoid AABA.AABB of 
longest length 33 
161.AABBCAABAA 2 Upper: AABCCACC 
162.AABBCAABAB 2 Upper: AABBCABAB 
163.AABBCAABAC 2 Upper: AABCCACB 
164.AABBCAABB 3 Lower: Full word case 
165.AABBCAABBA 2 Upper: AABBA 
166.AABBCAABBC 2 Upper: ABBCABBC 
167.AABBCAABC 2 Upper: ABBCABC 
168.AABBCAAC 2 HD0L: g=(abba,baa⋄aaabbbab),f=(ab,ba) 
169.AABBCAB 3 Lower: Full word case 
170.AABBCABA 3 Lower: only 215 binary words with hole in middle avoid AABB.ABA of 
longest length 33 
171.AABBCABAA 2 reverse of AABACBBAA 
172.AABBCABAB 2 HD0L: g=(aaab,b⋄abbaab), f=(ab,aa) 
173.AABBCABAC 2 Upper: AABCACB 
174.AABBCABB 3 Lower: Full word case 
175.AABBCABBA 3 Lower: Only 219 binary words simultaneously 
avoid {AABBA,AAAA} with hole in ninth position 
176.AABBCABBAA 2 Upper: ABBAA 
177.AABBCABBAB 2 Upper: ABBAB 
178.AABBCABBAC 2 Upper: AABCAACB 
179.AABBCABBC 2 Upper: ABBCABBC 
180.AABBCABC 2 Upper: ABBCABC 
181.AABBCAC 2 HD0L: g=(aabba⋄babbb,aaab,baabab),f=(abc,ac,b) 
182.AABBCB 3 Lower: Full word case 
183.AABBCBA 3 Lower: Full word case 
184.AABBCBAA 3 Lower: Full word case 
185.AABBCBAAB 3 Lower: Only 220 binary words simultaneously 



avoid {ABBAA,AAAA} with hole in tenth position 
186.AABBCBAABA 2 Upper: ABBAB 
187.AABBCBAABB 2 Upper: ABBAA 
188.AABBCBAABC 2 Upper: AABACCAB 
189.AABBCBAAC 2 Upper: ABBCBAAC 
190.AABBCBAB 3 Lower: only 223 binary words with hole in middle avoid AABB.BAB of 
longest length 34 
191.AABBCBABA 2 HD0L: g=(bbabb⋄aa,bbab), f=(abb,a) 
192.AABBCBABB 3 reverse of AABACAABB 
193.AABBCBABBA 2 Upper: ABAAB 
194.AABBCBABBC 2 Upper: AABCBABC 
195.AABBCBABC 2 Upper: AABCBAC 
196.AABBCBAC 2 Upper: ABBCBAC 
197.AABBCBB 3 reverse of AABAACC 
198.AABBCBBA 3 Lower: Full word case 
199.AABBCBBAA 2 HD0L: g=(abaa,ba⋄babbbaa), f=(aba,abb) 
200.AABBCBBAB 2 HD0L: g=(aaba,bbabbab, aaba⋄babbabbbab), f=(ab,ca,ba) 
201.AABBCBBAC 2 Upper: AABCBAC 
202.AABBCBBC 2 Upper: AABCBC 
203.AABBCBC 2 HD0L: g=(abab,abbb⋄aaabbb,aba), f=(acb,c,ab) 
204.AABBCC 3 Lower: Only 226 avoiding binary words with hole in eighth position 
205.AABBCCA 2 reverse of ABBCCAA 
206.AABBCCB 2 Upper: AABBA 
207.AABC ∞ 
208.AABCA ∞ 
209.AABCAA ∞ 
210.AABCAAB ∞ 
211.AABCAABA 4 Lower: Theorem 2 Upper: Theorem 4 
212.AABCAABAA 3 reverse of AABAACBAA 
213.AABCAABAAB 2 Upper: AABAAB 
214.AABCAABAAC 2 Upper: ABCABAAC 
215.AABCAABAB 3 Lower: Full word case Upper: AABAB 
216.AABCAABABA 2 Upper: AABABA 
217.AABCAABABB 2 Upper: AABABB 
218.AABCAABABC 2 Upper: ABCCACAB 
219.AABCAABAC 2 Upper: ABCAABAC 
220.AABCAABB 3 reverse of AABBCABB 
221.AABCAABBA 2 Upper: AABBA 
222.AABCAABBC 2 Upper: ABCAABBC 
223.AABCAABC 2 Upper: AABAAB 



224.AABCAAC 3 Lower: Full word case Upper: ABBA 
225.AABCAACA 2 Upper: ABBAB 
226.AABCAACB 2 HD0L:g=(bab,abbb⋄bba,abaa),f=(acb,c,ab) 
227.AABCAACC 2 Upper: ABBAA 
228.AABCAB ∞ 
229.AABCABA 5 Lower: special argument Upper: special argument 
230.AABCABAA 3 reverse of AABACBAA 
231.AABCABAAB 2 Upper: ABAAB 
232.AABCABAAC 2 Upper: ABCABAAC 
233.AABCABAB 3 Lower: Full word case Upper: AABACAC 
234.AABCABABA 2 Upper: AABACACA 
235.AABCABABB 2 reverse of AABABCABB 
236.AABCABABC 2 Upper: ABCACAB 
237.AABCABAC 2 HD0L:g=(aaba,aaa⋄bab,bbba),f=(acb,c,ab) 
238.AABCABB ∞ 
239.AABCABBA 3 Lower: Full word case Upper: AABACCA 
240.AABCABBAA 2 Upper: ABBAA 
241.AABCABBAB 2 Upper: ABBAB 
242.AABCABBAC 2 Upper: ABCABBAC 
243.AABCABBC 2 Upper: ABCABBC 
244.AABCABC 2 Upper: ABCABC 
245.AABCAC ∞ 
246.AABCACA 3 Lower: Full word case Upper: ABAB 
247.AABCACAA 3 reverse of AABABCAA 
248.AABCACAAB 2 Upper: ABCACAAB 
249.AABCACAAC 2 Upper: ABABBA 
250.AABCACAB 2 Upper: ABCACAB 
251.AABCACAC 2 Upper: ABABA 
252.AABCACB 2 Upper: g=(bbbbabbaaaaa,abab,bbbbbabaaa⋄a),f=(acb,c,ab) 
253.AABCACC 3 reverse of AABACBB 
254.AABCACCA 2 Upper: ABAAB 
255.AABCACCB 2 Upper: ABCACCB 
256.AABCB ∞ 
257.AABCBA ∞ 
258.AABCBAA 4 Lower: only 94 ternary words with hole in middle 
avoid {AAA,AABAA,ABBA} of longest length 10 Upper: special argument, similar to Theorem 
4 
259.AABCBAAB 3 Lower: Full word case Upper: ABBA 
260.AABCBAABA 2 Upper: ABBAB 
261.AABCBAABB 2 Upper: ABBAA 



262.AABCBAABC 2 Upper: ABCBAABC 
263.AABCBAAC 2 Upper: ABCBAAC 
264.AABCBAB ∞ 
265.AABCBABA 3 Lower: Full word case Upper: CBABA 
266.AABCBABAA 3 reverse of AABABCBAA 
267.AABCBABAAB 2 Upper: ABABBA 
268.AABCBABAAC 2 Upper: ABACACCB 
269.AABCBABAB 2 Upper: ABABA 
270.AABCBABAC 2 Upper: ABCBABAC 
271.AABCBABB 3 reverse of AABACABB 
272.AABCBABBA 2 Upper: ABAAB 
273.AABCBABBC 2 Upper: ABCBABBC 
274.AABCBABC 2 Upper: ABCBABC 
275.AABCBAC 2 HD0L:g=(abbbb,aaaa⋄abb,bbabaab),f=(acb,c,ab) 
276.AABCBB ∞ 
277.AABCBBA 3 Lower: Full word case HD0L:g=(a,b,bc⋄abac),f=(ac,ca,ba) 
278.AABCBBAA 3 reverse of AABBCBAA 
279.AABCBBAAB 2 Upper: AABBA 
280.AABCBBAAC 2 Upper: ABCBBAAC 
281.AABCBBAB 3 Lower: Full word case 
282.AABCBBABA 2 Upper: AABCCACA 
283.AABCBBABB 2 reverse of AABAACABB 
284.AABCBBABC 2 Upper: ABCBBABC 
285.AABCBBAC 2 HD0L:g=(ababa,a⋄bb,abbaa),f=(ab,c,ca) 
286.AABCBBC 2 Upper: ABAAB 
287.AABCBC 2 Upper: ABCBC HD0L:g=(abbbaa,abbabaaa,abbaababb⋄a),f=(acb,c,ab) 
288.AABCC ∞ 
289.AABCCA ∞ 
290.AABCCAA 3 reverse of AABBCAA 
291.AABCCAAB 2 HD0L:g=(abba,abaa⋄bbbb,bbab),f=(acb,c,ab) 
292.AABCCAAC 2 Upper: AABBA 
293.AABCCAB either 2 or 3 Upper: ABBA 
294.AABCCABA 2 Upper: ABCCABA 
295.AABCCABB 2 HD0L:g=(ababa⋄bbb,baa),f=(abaa,bbab) 
296.AABCCABC 2 Upper: ABBAB 
297.AABCCAC 3 Lower: Full word case HD0L:g=(ab,c⋄,bba),f=(acb,c,ab) 
298.AABCCACA 2 reverse of ABABBCAA 
299.AABCCACB 2 HD0L:g=(aaabab⋄aab,aabb),f=(abb,a) 
300.AABCCACC 2 reverse of AABAACBB 
301.AABCCB 3 Lower: Full word case Upper: ABBA 



302.AABCCBA 2 HD0L:g=(aab,abbb,aba,ab⋄aaabbbbbabba),f=(abc,d,cba,b) 
303.AABCCBB 2 Upper: ABBAA 
304.AABCCBC 2 Upper: ABBAB 
305.AB ∞ 
306. ABA ∞ 
307.ABAA ∞ 
308.ABAAB 2 Theorem 1 
309.ABAAC ∞ 
310.ABAACA ∞ 
311.ABAACAA ∞ 
312.ABAACAAB 3 Lower: Theorem 2 Upper: Equivalent to AABCABAA 
313.ABAACAABA 3 Lower: Theorem 2 Upper: ABAACAAB 
314.ABAACAABAA 3 reverse of AABAACAABA 
315.ABAACAABAAB 2 Upper: AABAAB 
316.ABAACAABAAC 2 Upper: ABCBBABC 
317.ABAACAABAB 2 Upper: HD0L: g=(aabaaa⋄bb,b,aba), f=(acb,c,ab) 
318.ABAACAABAC 2 Upper: ABACAABC 
319.ABAACAABB 2 reverse of AABBCBBAB 
320.ABAACAABC 2 Upper: ABBCBBAC 
321.ABAACAAC 2 Upper: AABAAB 
322.ABAACAB 4 Lower: Theorem 2 Upper: Theorem 4 
323.ABAACABA 4 Lower: Theorem 2 Upper: Theorem 4 
324.ABAACABAA 4 reverse of AABACAABA 
325.ABAACABAAB 2 Upper: ABAAB 
326.ABAACABAAC 2 Upper: ABBCABBC 
327.ABAACABAB 3 Lower: only 267 binary words with hole in middle avoid ABAA.ABAB of 
longest length 19 Upper: ABAB 
328.ABAACABABA 2 Upper: AABACACA 
329.ABAACABABB 2 Upper: AABACACC 
330.ABAACABABC 2 Upper: AABACACB 
331.ABAACABAC 2 Upper: ABBCABC 
332.ABAACABB 3 reverse of AABCBBAB 
333.ABAACABBA either 2 or 3 reverse of ABAACABBA 
334.ABAACABBAA 2 Upper: ABBAA 
335.ABAACABBAB 2 Upper: ABBAB 
336.ABAACABBAC 2 Upper: ABACABBC 
337.ABAACABBC 2 Upper: ABBCBAAC 
338.ABAACABC 2 Upper: ABBCBAC 
339.ABAACAC 3 Lower: Full word case Upper: ABAB 
340.ABAACACA 2 Upper: AABABA 



341.ABAACACB 2 Upper: g=(aabbb,⋄bab,baa),f=(acb,c,ab) 
342.ABAACACC 2 Upper: AABABB 
343.ABAACB 4 Lower: Theorem 2 Upper: Theorem 4 
344.ABAACBA 4 Lower: Theorem 2 Upper: Theorem 4 
345.ABAACBAA 4 reverse of AABCAABA 
346.ABAACBAAB 3 Lower: Full word case Upper: ABBA 
347.ABAACBAABA 2 Upper: ABBAB 
348.ABAACBAABB 2 Upper: ABBAA 
349.ABAACBAABC 2 Upper: AABCAACB 
350.ABAACBAAC 2 Upper: ABBCABBC 
351.ABAACBAB 3 Lower: Full word case HD0L:g=(cabb,cbbb,a⋄a),f=(acb,c,ab) 
352.ABAACBABA 3 Lower: Theorem 2 
353.ABAACBABAA 3 reverse of AABABCAABA 
354.ABAACBABAAB 2 Upper: ABABBA 
355.ABAACBABAAC 2 Upper: ABCACAAB 
356.ABAACBABAB 2 Upper: ABABA 
357.ABAACBABAC 2 Upper: ABACBABC 
358.ABAACBABB 2 reverse of AABACBBAB 
359.ABAACBABC 2 Upper: AABCACB 
360.ABAACBAC 2 Upper: ABBCABC 
361.ABAACBB 3 reverse of AABCCAC 
362.ABAACBBA 3 Lower: Full word case 
363.ABAACBBAA 3 reverse of AABBCAABA 
364.ABAACBBAAB 2 Upper: AABBA 
365.ABAACBBAAC 2 Upper: AABCCAAB 
366.ABAACBBAB 2 HD0L:g=(abbabb⋄a,bbbaa),f=(ab,aa) 
367.ABAACBBAC 2 Upper: ABBCAABC 
368.ABAACBBC 2 HD0L:g=(aabab⋄,aabbba),f=(ab,baa) 
369.ABAACBC 2 HD0L:g=(abb,bb⋄aabab,bbbbaaaa),f=(abc,ac,b) 
370.ABAACC 3 reverse of AABBCB 
371.ABAACCA 2 Upper: AABBA 
372.ABAACCB 2 HD0L:g=(aab⋄babaaabba,baabba,ababba,abbba),f=(ab,cd,ad,cb) 
373.ABAACCBA 2 HD0L:g=(bbbb,bba,aa⋄aabaaba),f=(abc,ac,b) 
374. ABAACCBB 2 Upper: ABBCCAA 
375.ABAACCBC 2 HD0L: g=(abaabba⋄,ababbba), f=(ab,ba) 
376.ABAB 3 Lower: Full word case HD0L: g=(aa,b⋄,cca), f=(acb,c,ab) 
377.ABABA 2 Upper: ABABC HD0L: g=(abaa,aabba,aababbbb,aabbb⋄a), f=(ab,dc,ac,ad) 
378.ABABB 3 reverse of AABAB 
379.ABABBA 2 Upper: ABAAB 
380.ABABBC 3 Lower: Full word case 



381.ABABBCA 3 Lower: Full word case Upper: ABAB 
382.ABABBCAA 2 Upper:g=(aaabb,a⋄baabb), f=(ab,aa) 
383.ABABBCAB 3 Lower: Full word case 
384.ABABBCABA 3 Lower: Full word case 
385.ABABBCABAA 2 Upper: ABABBCAA 
386.ABABBCABAB 3 Lower: Full word case 
387.ABABBCABABA 2 Upper: ABABBCBABA 
388.ABABBCABABB 3 reverse of AABABCAABAB 
389.ABABBCABABBA 2 Upper: ABABCABBA 
390.ABABBCABABBC 2 Upper: ABCACAAB 
391.ABABBCABABC 2 Upper: ABBCABC 
392.ABABBCABAC 2 Upper: AABCACB 
393.ABABBCABB 3 reverse of AABCAABAB 
394.ABABBCABBA 2 Upper: ABABCABBA 
395.ABABBCABBC 2 Upper: ABBCABBC 
396.ABABBCABC 2 Upper: ABBCABC 
397.ABABBCAC 2 HD0L:g=(abb,aab⋄babbbaa), f=(ab,bbaa) 
398.ABABBCB 3 reverse of ABAACAC 
399.ABABBCBA 3 Lower: Full word case 
400.ABABBCBAA 2 reverse of AABCBBABA 
401.ABABBCBAB 3 Lower: Full word case 
402.ABABBCBABA 2 Upper: ABABCBABA 
403.ABABBCBABB 3 reverse of AABACAABAB 
404.ABABBCBABBA 2 Upper: ABABCABBA 
405.ABABBCBABBC 2 Upper: ABABCBABC 
406.ABABBCBABC 2 Upper: ABBCABC 
407.ABABBCBAC 2 Upper: ABAACABC 
408.ABABBCBB 3 reverse of AABAACAC 
409.ABABBCBBA 3 Lower: Full word case 
410.ABABBCBBAA 2 Upper: ABABBCBAA 
411.ABABBCBBAB 2 reverse of ABAACAABAB 
412.ABABBCBBAC 2 Upper: ABBCBBAC 
413.ABABBCBBC 2 Upper: AABAAB 
414.ABABBCBC 2 Upper: AABCBC 
415.ABABBCC 2 reverse of AABBCBC 
416.ABABC 3 Lower: Full word case 
417.ABABCA 3 Lower: Full word case 
418.ABABCAA 3 reverse of AABCACA 
419.ABABCAAB 3 Lower: Full word case 
420.ABABCAABA 3 reverse of ABAACBABA 



421.ABABCAABAA 2 Upper: ABACBBABB 
422.ABABCAABAB 3 reverse of ABABBCABAB 
423.ABABCAABABA 2 Upper: AABABA 
424.ABABCAABABB 2 Upper: AABABB 
425.ABABCAABABC 2 Upper: ABCCACAB 
426.ABABCAABAC 2 Upper: ABCAABAC 
427.ABABCAABB 2 reverse of AABBCABAB 
428.ABABCAABC 2 Upper: ABAAB 
429.ABABCAAC 2 Upper: ABACBBC 
430.ABABCAB 3 Lower: Full word case 
431.ABABCABA 3 Lower: Full word case 
432.ABABCABAA 3 reverse of AABACBABA 
433.ABABCABAAB 2 Upper: ABABCBAAB 
434.ABABCABAAC 2 Upper: ABCABAAC 
435.ABABCABAB 3 Lower: Full word case 
436.ABABCABABA 2 Upper: ABABA 
437.ABABCABABB 3 reverse of AABABCABAB 
438.ABABCABABBA 2 Upper: ABABCABBA 
439.ABABCABABBC 2 Upper: ABACBABAAC 
440.ABABCABABC 2 Upper: AABAAB 
441.ABABCABAC 2 Upper: ABACBABC 
442.ABABCABB 3 reverse of AABCABAB 
443.ABABCABBA 2 HD0L: g=(aaabba⋄b,aaabbb), f=(abb,a) 
444.ABABCABBC 2 Upper: ABACBAAC 
445.ABABCABC 2 Upper: ABCABC 
446.ABABCAC 2 HD0L: g=(aab,bbbb⋄aa,bbabaa), f=(acb,c,ab) 
447.ABABCB 3 Lower: Full word case 
448.ABABCBA 3 Lower: Full word case 
449.ABABCBAA 3 reverse of AABCBABA 
450.ABABCBAAB 2 HD0L: g=(aabbba⋄aba,bbba),f=(abb,a) 
451.ABABCBAAC 2 Upper: ABACABBC 
452.ABABCBAB 3 Lower: Full word case 
453.ABABCBABA 2 HD0L: g=(ba,baaab⋄abb,baab), f=(acb,c,ab) 
454.ABABCBABB 3 reverse of AABACABAB 
455.ABABCBABBA 2 Upper: ABABCABBA 
456.ABABCBABBC 2 Upper: ABACBABC 
457.ABABCBABC 2 Upper: ABACABAC 
458.ABABCBAC 2 reverse of ABCACBCB 
459.ABABCBB 3 reverse of AABACAC 
460.ABABCBBA 3 Lower: Full word case 



461.ABABCBBAA 2 reverse of AABBCBABA 
462.ABABCBBAB 3 reverse of ABAACABAB 
463.ABABCBBABA 2 reverse of ABABBCBABA 
464.ABABCBBABB 2 reverse of AABAACABAB 
465.ABABCBBABC 2 Upper: ABCBBABC 
466.ABABCBBAC 2 Upper: ABACAABC 
467.ABABCBBC 2 Upper: ABAAB 
468.ABABCBC 2 HD0L: g=(ab,aaabb⋄aba,bbaa), f=(acb,c,ab) 
469.ABABCC 2 reverse of AABCBC 
470.ABAC ∞ 
471.ABACA ∞ 
472.ABACAA ∞ 
473.ABACAAB 5 Lower: special argument Upper: special argument 
474.ABACAABA 4 reverse of ABAACABA 
475.ABACAABAA 3 reverse of AABAACABA 
476.ABACAABAAB 2 Upper: AABAAB 
477.ABACAABAAC 2 Upper: ABCAABAC 
478.ABACAABAB 3 reverse of ABABBCBAB 
479.ABACAABABA 2 Upper: AABABA 
480.ABACAABABB 2 Upper: AABABB 
481.ABACAABABC 2 Upper: ABAACACB 
482.ABACAABAC 2 Upper: ABCBBABC 
483.ABACAABB 3 reverse of AABBCBAB 
484.ABACAABBA 2 Upper: AABBA 
485.ABACAABBC 2 Upper: ABCBBAAC 
486.ABACAABC 2 HD0L: g=(aaa,abbb⋄,bababab), f=(acb,c,ab) 
487.ABACAAC 2 Upper: ABAAB 
488.ABACAB ∞ 
489.ABACABA ∞ 
490.ABACABAA 4 reverse of AABACABA 
491.ABACABAAB 2 Upper: ABAAB 
492.ABACABAAC 2 Upper: ABCBABBC 
493.ABACABAB 3 reverse of ABABCBAB 
494.ABACABABA 2 Upper: ABABA 
495.ABACABABB 3 reverse of AABABCBAB 
496.ABACABABBA 2 Upper: ABABBA 
497.ABACABABBC 2 Upper: ABACACCB 
498.ABACABABC 2 Upper: ABCBABAC 
499.ABACABAC 2 Upper: ABCBABC 
500.ABACABB ∞ 



501.ABACABBA 3 Lower: Full word case Upper: ABBA 
502.ABACABBAA 2 Upper: ABBAA 
503.ABACABBAB 2 Upper: ABBAB 
504.ABACABBAC 2 Upper: ABCBAABC 
505.ABACABBC 2 Upper: ABCBAAC 
506.ABACABC 2 HD0L: g=(abba,aaaa,bbb, b⋄abaababb), f=(ab,cd,cb,ad) 
507.ABACAC 3 reverse of ABABCB 
508.ABACACA 2 Upper: ABABA 
509.ABACACB 2 HD0L: g=(aabb,aaabbbab,⋄aababbbbbaaa), f=(abc,ac,b) 
510.ABACACC 3 reverse of AABABCB 
511.ABACACCA 2 Upper: ABABBA 
512.ABACACCB 2 HD0L: g=(baabbaa⋄aba,aabbb),f=(ab,ba) 
513.ABACB ∞ 
514.ABACBA ∞ 
515.ABACBAA 5 reverse of AABCABA 
516.ABACBAAB 3 Lower: Full word case Upper: ABBA 
517.ABACBAABA 2 Upper: ABBAB 
518.ABACBAABB 2 Upper: ABBAA 
519.ABACBAABC 2 Upper: ABCABBAC 
520.ABACBAAC 2 Upper: ABCABBC 
521.ABACBAB 3 Lower: Full word case HD0L: g=(bb,caabc, aab⋄acbaabc,ac), f=(ad,ab,db,c) 
522.ABACBABA 3 reverse of ABABCABA 
523.ABACBABAA 3 reverse of AABABCABA 
524.ABACBABAAB 2 Upper: ABABBA 
525.ABACBABAAC 2 Upper: ABCACAAB 
526.ABACBABAB 2 Upper: ABABA 
527.ABACBABAC 2 Upper: ABCACAB 
528.ABACBABB 3 reverse of AABACBAB 
529.ABACBABBA 2 Upper: ABAAB 
530.ABACBABBC 2 Upper: ABCABAAC 
531.ABACBABC 2 HD0L: g=(baa,ab,aa⋄abbbbbb), f=(ac,ba,b) 
532.ABACBAC 2 Upper: ABCABC 
533.ABACBB ∞ 
534.ABACBBA ∞ 
535.ABACBBAA 3 reverse of AABBCABA 
536.ABACBBAAB 2 Upper: AABBA 
537.ABACBBAAC 2 Upper: ABCAABBC 
538.ABACBBAB 3 reverse of ABAACBAB 
539.ABACBBABA 3 reverse of ABABBCABA 
540.ABACBBABAA 2 Upper: AABABB 



541.ABACBBABAB 2 Upper: AABABA 
542.ABACBBABAC 2 Upper: ABCCACAB 
543.ABACBBABB 2 reverse of AABAACBAB 
544.ABACBBABC 2 Upper: ABCAABAC 
545.ABACBBAC 2 Upper: ABAAB 
546.ABACBBC 2 reverse of ABBACBC 
547. ABACBC either 2 or 3 HD0L: g=(ab,ccbbc⋄ca,cc,bbb), f=(ab,cd,cb,ad) 
548.ABACBCA 2 HD0L: g=(aaaabb,baa, bb⋄babb,bbaaba), f=(ab,c,d,da) 
549.ABACBCB 2 reverse of ABABCAC 
550.ABACBCC 2 reverse of AABACBC 
551.ABACC ∞ 
552.ABACCA 3 Lower: Full word case Upper: ABBA 
553.ABACCAA 2 Upper: ABBAA 
554.ABACCAB 2 HD0L: g=(aaa⋄bababb,bbbaa,babaaa,aabbb), f=(ab,cd,cb,ad) 
555.ABACCAC 2 Upper: ABBAB 
556.ABACCB 3 Lower: Full word case HD0L:g=(aba,cb⋄cc,abc),f=(acb,c,ab) 
557.ABACCBA 2 HD0L: g=(babbaa,bbba,aab⋄abbab), f=(abc,ac,b) 
558.ABACCBB 2 reverse of AABBCAC 
559.ABACCBC 2 reverse of ABAACBC 
560.ABB ∞ 
561.ABBA 3 backtracking for lower HD0L:g=(bcc,ca⋄abb,cba),f=(acb,c,ab) 
562.ABBAA 2 reverse of AABBA 
563.ABBAB 2 reverse of ABAAB 
564.ABBAC 3 Lower: Full word case 
565.ABBACA 3 reverse of ABACCA 
566.ABBACAA 3 reverse of AABACCA 
567.ABBACAAB 3 Lower: Full word case 
568.ABBACAABA either 2 or 3 reverse of ABAACABBA 
569.ABBACAABAA 2 Upper: AABCCACC 
570.ABBACAABAB 2 Upper: ABBACABAB 
571.ABBACAABAC 2 Upper: ABCBBABC 
572.ABBACAABB 3 reverse of AABBCBAAB 
573.ABBACAABBA 2 Upper: AABBA 
574.ABBACAABBC 2 Upper: AABCBBAAC 
575.ABBACAABC 2 Upper: AABCBBAC 
576.ABBACAAC 2 Upper: ABAAB 
577.ABBACAB 3 Lower: Full word case 
578.ABBACABA 3 reverse of ABACABBA 
579.ABBACABAA either 2 or 3 reverse of AABACABBA 
580.ABBACABAAB 2 Upper: ABAAB 



581.ABBACABAAC 2 Upper: AABCBABBC 
582.ABBACABAB 2 reverse of ABABCBAAB 
583.ABBACABAC 2 Upper: ABBCABC 
584.ABBACABB 3 reverse of AABCBAAB 
585.ABBACABBA 3 Lower: Full word case 
586.ABBACABBAA 2 Upper: ABBAA 
587.ABBACABBAB 2 Upper: ABBAB 
588.ABBACABBAC 2 Upper: AABCBAABC 
589.ABBACABBC 2 Upper: ABCBAAC 
590.ABBACABC 2 Upper: AABCBAC 
591.ABBACAC 2 reverse of ABABCCB 
592.ABBACB 3 Lower: Full word case 
593.ABBACBA 3 Lower: Full word case 
594.ABBACBAA 3 reverse of AABCABBA 
595.ABBACBAAB 2 HD0L:g=(bbaab,⋄babaab), f=(aba,ab) 
596.ABBACBAAC 2 Upper: AABCABBC 
597.ABBACBAB 3 reverse of ABACBAAB 
598.ABBACBABA 2 reverse of ABABCABBA 
599.ABBACBABB 3 reverse of AABACBAAB 
600.ABBACBABBA 2 Upper: ABAAB 
601.ABBACBABBC 2 Upper: ABCABAAC 
602.ABBACBABC 2 Upper: AABCABAC 
603.ABBACBAC 2 Upper: AABCABC 
604.ABBACBB 3 reverse of AABCAAC 
605.ABBACBBA 3 Lower: Full word case 
606.ABBACBBAA 3 reverse of AABBCABBA 
607.ABBACBBAAB 2 Upper: ABBACBAAB 
608.ABBACBBAAC 2 Upper: ABACBAAC 
609.ABBACBBAB 3 reverse of ABAACBAAB 
610.ABBACBBABA 2 reverse of ABABBCABBA 
611.ABBACBBABB 2 reverse of AABAACBAAB 
612.ABBACBBABC 2 Upper: ABCAABAC 
613.ABBACBBAC 2 Upper: AABAAB 
614.ABBACBBC 2 HD0L: g=(aaabbb,ab⋄baabaaab), f=(abb,aab) 
615.ABBACBC 2 Upper: g=(baaab,bbbb⋄aaaa,bbaba), f=(acb,c,ab) 
616.ABBACC 3 reverse of AABCCB 
617.ABBACCA 2 HD0L:g=(abbbaab,abb⋄baaaba,abbaa), f=(acb,c,ab) 
618.ABBACCB 2 HD0L: g=(bab,baaba,baabba⋄baabbababbbaaaa),f=(abc,ac,b) 
619.ABBC ∞ 
620.ABBCA ∞ 



621.ABBCAA ∞ 
622.ABBCAAB ∞ 
623.ABBCAABA 3 reverse of ABAACBBA 
624.ABBCAABAA 2 Upper: AABCCACC 
625.ABBCAABAB 2 Upper: AABCCACA 
626.ABBCAABAC 2 Upper: AABCCACB 
627.ABBCAABB 3 reverse of AABBCAAB 
628.ABBCAABBA 2 Upper: AABBA 
629.ABBCAABBC 2 Upper: AABCCAAB 
630.ABBCAABC 2 Upper: ABBA HD0L: g=(baaaaa,b⋄bb,aabba), f=(acb,c,ab) 
631.ABBCAAC 2 reverse of ABBACCB 
632.ABBCAB ∞ 
633.ABBCABA ∞ 
634.ABBCABAA 3 reverse of AABACBBA 
635.ABBCABAAB 2 Upper: ABAAB 
636.ABBCABAAC 2 Upper: AABCACCB 
637.ABBCABAB 3 reverse of ABABCAAB 
638.ABBCABABA 2 Upper: ABABA 
639.ABBCABABB 3 reverse of AABABCAAB 
640.ABBCABABBA 2 Upper: ABABBA 
641.ABBCABABBC 2 Upper: ABCACAAB 
642.ABBCABABC 2 Upper: ABCACAB 
643.ABBCABAC 2 Upper: AABCACB 
644.ABBCABB ∞ 
645.ABBCABBA 3 reverse of ABBACBBA 
646.ABBCABBAA 2 Upper: ABBAA 
647.ABBCABBAB 2 Upper: ABBAB 
648.ABBCABBAC 2 Upper: AABCAACB 
649.ABBCABBC 2 Upper: ABCABC 
650.ABBCABC 2 HD0L: g=(aaaab,ab⋄bb,bababa), f=(acb,c,ab) 
651.ABBCAC 3 reverse of ABACCB 
652.ABBCACA 2 reverse of ABABCCA 
653.ABBCACB 2 HD0L: g=(bbaaba,bbbb⋄aaaaa,baabba), f=(acb,c,ab) 
654.ABBCACC 2 reverse of AABACCB 
655.ABBCB ∞ 
656.ABBCBA ∞ 
657.ABBCBAA 3 reverse of AABCBBA 
658.ABBCBAAB 3 reverse of ABBACAAB 
659.ABBCBAABA 2 Upper: ABBAB 
660.ABBCBAABB 2 Upper: ABBAA 



661.ABBCBAABC 2 Upper: AABACCAB 
662.ABBCBAAC 2 reverse of ABBCACCB 
663.ABBCBAB 5 reverse of ABACAAB 
664.ABBCBABA 3 reverse of ABABCBBA 
665.ABBCBABAA 2 Upper: AABACACC 
666.ABBCBABAB 2 Upper: AABACACA 
667.ABBCBABAC 2 Upper: AABACACB 
668.ABBCBABB 4 reverse of AABACAAB 
669.ABBCBABBA 2 Upper: ABAAB 
670.ABBCBABBC 2 Upper: ABCBABC 
671.ABBCBABC 2 HD0L: g=(ababab,a⋄aaaa,bbb), f=(acb,c,ab) 
672.ABBCBAC 2 HD0L: g=(ababbb,aaaaa⋄bbbbbaa,baab), f=(acb,c,ab) 
673. ABBCBB ∞ 
674.ABBCBBA 4 Lower: only 94 ternary words with hole in middle 
avoid {AAA,AABAA,ABBA} of longest length 10 Upper: special argument, similar to Theorem 
4 
675.ABBCBBAA 3 reverse of AABBCBBA 
676.ABBCBBAAB 2 Upper: AABBA 
677.ABBCBBAAC 2 Upper: AABAACCB 
678.ABBCBBAB 3 reverse of ABAACAAB 
679.ABBCBBABA 3 reverse of ABABBCBBA 
680.ABBCBBABAA 2 Upper: AABABB 
681.ABBCBBABAB 2 Upper: AABABA 
682.ABBCBBABAC 2 Upper: AABAACACB 
683.ABBCBBABB 3 reverse of AABAACAAB 
684.ABBCBBABBA 2 Upper: AABAAB 
685.ABBCBBABBC 2 Upper: ABCBBABC 
686.ABBCBBABC 2 HD0L: g=(abbba⋄,aba,bba), f=(abc,b,aba) 
687.ABBCBBAC 2 HD0L: g=(baaa,b,ba⋄bbbaaba), f=(abc,ac,b) 
688.ABBCBBC 2 Upper: AABAAB 
689.ABBCBC 3 reverse of ABABBC 
690.ABBCBCA 2 HD0L: g=(bbaababa,baa⋄b,baaaabbaba), f=(acb,c,ab) 
691.ABBCBCB 2 Upper: AABABA 
692.ABBCBCC 2 Upper: AABABB 
693.ABBCC 3 reverse of AABBC 
694.ABBCCA 3 Lower: Full word case 
695.ABBCCAA 2 Upper: g=(babaabbb,b⋄baab,aaabbb) f=(acb,c,ab) 
696.ABBCCAB 2 HD0L: g=(a⋄aaabbbab,abbaabbab,bbbbaab), f=(abc,ac,b) 
697.ABBCCAC 2 reverse of ABAACCB 
698.ABBCCACA 2 reverse of ABABBCCA 



699.ABBCCACB 2 HD0L: g=(abb,aaba,⋄babbaba), f=(abc,b,cba) 
700.ABBCCACC 2 reverse of AABAACCB 
701.ABBCCB 2 Upper: AABBA 
702.ABC ∞ 
703.ABCA ∞ 
704.ABCAA ∞ 
705.ABCAAB ∞ 
706.ABCAABA 4 reverse of ABAACBA 
707.ABCAABAA 3 reverse of AABAACBA 
708.ABCAABAAB 2 Upper: AABAAB 
709.ABCAABAAC 2 Upper: ABCACCB 
710.ABCAABAB 3 reverse of ABABBCAB 
711.ABCAABABA 2 Upper: AABABA 
712.ABCAABABB 2 Upper: AABABB 
713.ABCAABABC 2 Upper: ABCCACAB 
714.ABCAABAC 2 HD0L: g=(bababab,⋄bbba,aaaa),f=(acb,c,ab) 
715.ABCAABB 3 reverse of AABBCAB 
716.ABCAABBA 2 Upper: AABBA 
717.ABCAABBC 2 reverse of ABBCCABC 
718.ABCAABC 2 Upper: ABAAB 
719.ABCAAC 3 reverse of ABBACB 
720.ABCAACA 2 Upper: ABBAB 
721.ABCAACB 2 HD0L: g=(a⋄aba,bbabbbaaa,baa,bbbbba), f=(abc,d,cba,b) 
722.ABCAACC 2 Upper: ABBAA 
723.ABCAB ∞ 
724.ABCABA ∞ 
725.ABCABAA 4 reverse of AABACBA 
726.ABCABAAB 2 Upper: ABAAB 
727.ABCABAAC 2 Upper: ABCACCB 
728.ABCABAB 3 reverse of ABABCAB 
729.ABCABABA 2 Upper: ABABA 
730.ABCABABB 3 reverse of AABABCAB 
731.ABCABABBA 2 Upper: ABABBA 
732.ABCABABBC 2 Upper: ABCBCCA 
733.ABCABABC 2 Upper: ABCACAB 
734.ABCABAC 2 HD0L: g=(aab,abaa⋄bbb,abb,aaaa), f=(ab,cd,cb,ad) 
735.ABCABB ∞ 
736.ABCABBA 3 reverse of ABBACBA 
737.ABCABBAA 2 Upper: ABBAA 
738.ABCABBAB 2 Upper: ABBAB 



739.ABCABBAC 2 HD0L: g=(abbbaaa,⋄ab,abbbbb), f=(acb,c,ab) 
740.ABCABBC 2 reverse of ABBCABC 
741.ABCABC 2 Upper: ABAB HD0L: g=(aaabab,⋄bbba,baa), f=(acb,c,ab) 
742.ABCAC ∞ 
743.ABCACA 3 reverse of ABABCA 
744.ABCACAA 3 reverse of AABABCA 
745.ABCACAAB 2 Upper: ABCBCCA 
746.ABCACAAC 2 Upper: ABABBA 
747.ABCACAB 2 HD0L: g=(baaaababab,⋄bbbaab,aaabb), f=(acb,c,ab) 
748.ABCACAC 2 Upper: ABABA 
749.ABCACB 3 Lower: Only 446 avoiding binary words with hole in tenth position HD0L: 
g=(aa,ccc⋄c,bb,cba), f=(adc,d,abc,b) 
750.ABCACBA 2 HD0L: g=(a⋄bb,aaaa,babab,bbba), f=(ab,cd,cb,ad) 
751.ABCACBB 2 reverse of AABCBAC 
752.ABCACBC 2 reverse of ABACABC 
753.ABCACC 4 reverse of AABACB 
754.ABCACCA 2 Upper: ABAAB 
755.ABCACCB 2 reverse of ABBCBAC 
756.ABCB ∞ 
757.ABCBA ∞ 
758.ABCBAA ∞ 
759.ABCBAAB 3 reverse of ABBACAB 
760.ABCBAABA 2 Upper: ABBAB 
761.ABCBAABB 2 Upper: ABBAA 
762. ABCBAABC 2 HD0L: g=(bbaa,abbb⋄ba,baaabab), f=(acb,c,ab) 
763.ABCBAAC 2 reverse of ABBCACB 
764.ABCBAB ∞ 
765.ABCBABA 3 reverse of ABABCBA 
766.ABCBABAA 3 reverse of AABABCBA 
767.ABCBABAAB 2 Upper: ABABBA 
768.ABCBABAAC 2 Upper: ABACACCB 
769.ABCBABAB 2 Upper: ABABA 
770.ABCBABAC 2 HD0L: g=(baaabb,aba⋄bbaabbabaa), f=(abbba,baaab) 
771.ABCBABB 4 reverse of AABACAB 
772.ABCBABBA 2 Upper: ABAAB 
773.ABCBABBC 2 reverse of ABBCBABC 
774.ABCBABC 2 HD0L:g=(aabaab,bb⋄b,aaaa,abb), f=(adb,c,ab,d) 
775.ABCBAC 3 reverse of ABCACB 
776.ABCBACA 2 reverse of ABACBCA 
777.ABCBACB 2 reverse of ABCABAC 



778.ABCBACC 2 reverse of AABCACB 
779.ABCBB ∞ 
780.ABCBBA ∞ 
781.ABCBBAA 3 reverse of AABBCBA 
782.ABCBBAAB 2 Upper: AABBA 
783.ABCBBAAC 2 reverse of ABBCCACB 
784.ABCBBAB 4 reverse of ABAACAB 
785.ABCBBABA 3 reverse of ABABBCBA 
786.ABCBBABAA 2 Upper: AABABB 
787.ABCBBABAB 2 Upper: AABABA 
788.ABCBBABAC 2 Upper: ABAACACB 
789.ABCBBABB 3 reverse of AABAACAB 
790.ABCBBABBA 2 Upper: AABAAB 
791.ABCBBABBC 2 reverse of ABBCBBABC 
792.ABCBBABC 2 Upper: ABBA HD0L:g=(bbaaba,b⋄baaa,abb), f=(acb,c,ab) 
793.ABCBBAC 2 HD0L: g=(abbab,baaa⋄aab,bbbbbaaab),f=(abc,ac,bb) 
794.ABCBBC 2 Upper: ABAAB 
795.ABCBC 3 reverse of ABABC 
796.ABCBCA 3 Lower: Full word case Upper: ABAB 
797.ABCBCAA 2 Upper: ABBAA 
798.ABCBCAB 2 reverse of ABCACAB 
799.ABCBCAC 2 reverse of ABACACB 
800.ABCBCB 2 Upper: ABABA 
801.ABCBCC 3 reverse of AABABC 
802.ABCBCCA 2 reverse of ABBCBCA 
803.ABCBCCB 2 Upper: ABABBA 
804.ABCC ∞ 
805.ABCCA ∞ 
806.ABCCAA 3 reverse of AABBCA 
807.ABCCAAB 2 reverse of ABBCCAB 
808.ABCCAAC 2 Upper: AABBA 
809.ABCCAB 3 Lower: Full word case Upper: ABBA 
810.ABCCABA 2 reverse of ABACCBA 
811.ABCCABB either 2 or 3 reverse of AABCCAB 
812.ABCCABBA 2 Upper: ABBCAAC 
813.ABCCABBC 2 reverse of ABBCAABC 
814.ABCCABC 2 reverse of ABCAABC 
815.ABCCAC 4 reverse of ABAACB 
816.ABCCACA 3 reverse of ABABBCA 
817.ABCCACAA 2 Upper: AABABB 



818.ABCCACAB 2 reverse of ABCBCCAB 
819.ABCCACAC 2 Upper: AABABA 
820.ABCCACB 2 reverse of ABCBBAC 
821.ABCCACC 3 reverse of AABAACB 
822.ABCCACCA 2 Upper: AABAAB 
823.ABCCACCB 2 reverse of ABBCBBAC 
824.ABCCB 3 reverse of ABBAC 
825.ABCCBA 3 Lower: Full word case Upper: ABBA 
826.ABCCBAA 2 reverse of AABCCBA 
827.ABCCBAB 2 reverse of ABACCAB 
828.ABCCBAC 2 reverse of ABCAACB 
829.ABCCBB 2 Upper: ABBAA 
830.ABCCBC 2 reverse of ABAABC 
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