Computing the Partial Word Avoidability Indices of Binary Patterns

By: F. Blanchet-Sadri, Andrew Lohr, Shane Scott
Blanchet-Sadri, F., Lohr, A., Scott, S. (2013). Computing the Partial Word Avoidability Indices of Binary Patterns. Journal of Discrete Algorithms, 23, 113-118. doi: 10.1016/j.jda.2013.06.007

This is the author's version of a work that was accepted for publication in Journal of Discrete Algorithms. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Discrete Algorithms, 23, November, (2013) DOI: 10.1016/j.jda.2013.06.007

Made available courtesy of Elsevier: http://www.dx.doi.org/10.1016/j.jda.2013.06.007
***© Elsevier. Reprinted with permission. No further reproduction is authorized without written permission from Elsevier. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. ***

Abstract

:

We complete the classification of binary patterns in partial words that was started in earlier publications by proving that the partial word avoidability index of the binary pattern ABABA is two and the one of the binary pattern ABBA is three.

Keywords: Combinatorics on words | Partial words | Pattern avoidance | Binary pattern | Avoidability index

Article:

1. Introduction

A pattern is a sequence over an alphabet of variables. An occurrence of a pattern is obtained by replacing the variables with arbitrary non-empty words, such that two occurrences of the same variable are replaced by the same word. A pattern p is unavoidable if every infinite word has an occurrence of p; otherwise, p is avoidable. More precisely, p is k-unavoidable if every infinite word over a k-letter alphabet has an occurrence of p; otherwise, p is k-avoidable. The avoidability index of p is the smallest integer k such that p is k-avoidable (if no such integer exists, the avoidability index is ∞).

Deciding the avoidability of a pattern can be done easily [1] and [8], but deciding whether a given pattern is k-avoidable has remained an open problem. An alternative is the problem of classifying all the patterns over a fixed number of variables, i.e., finding the avoidability indices of all the patterns over a fixed number of variables. This problem has been completely solved for
all the binary patterns, those over two variables A and B (see Chapter 3 of [7]). They fall into three categories: the patterns $\varepsilon, A, A B, A B A$, and their complements, are unavoidable (or have avoidability index ∞); the
patterns $A A, A A B, A A B A, A A B B, A B A B, A B B A, A A B A A, A A B A B$, their reverses, and complements, have avoidability index 3 ; all other patterns, and in particular all binary patterns of length six or more, have avoidability index 2.

Recently, Blanchet-Sadri et al. [3] and [5] determined all the "non-trivial" avoidability indices of the binary patterns in partial words , or sequences that may have some undefined positions, called holes and denoted by Δ 's, that match every letter of the alphabet over which they are defined (we also say that \diamond is compatible with each letter of the alphabet). For example, $\mathrm{a} \diamond \mathrm{bca} \triangleright \mathrm{b}$ is a partial word with two holes over the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, and aabcabb is a full word created by filling in the first hole with a and the second one with b. They showed that, if no variable of the pattern is substituted by a partial word consisting of only one hole, the avoidability index of the pattern remains the same as in the full word case, and they started the classification in the non-restricted to non-trivial case.

In this paper, we complete the classification of all the binary patterns that was started by Blanchet-Sadri et al., i.e., we prove that the avoidability index of the pattern ABABA is two and the one of the pattern ABBAis three. In Section 2, we give some background on partial words and patterns (for more information, see [2] and [7]) and in Section 3, we complete the classification of the avoidability indices of binary patterns.

2. Preliminaries

Let Σ be an alphabet, a non-empty finite set of symbols. Each element a $\in \Sigma$ is a letter . A (full) word over Σ is a concatenation of letters from Σ while a partial word over Σ is a concatenation of symbols from $\Sigma_{0}=\Sigma \cup\{\diamond\}$, the alphabet Σ being augmented with the "hole" symbol $\stackrel{\text { (a full word is a partial word without holes). We denote by } u[i] ~ t h e ~ s y m b o l ~ a t ~}{\text { at }}$ position i of a partial word u. The length of u, |u|, is the number of symbols in u. The empty word ε is the unique word of length zero. The set of all full words (resp., non-empty full words) over Σ is denoted by Σ^{\square} (resp., Σ^{+}), while the set of all partial words (resp., nonempty partial words) over Σ is denoted by Σ_{ϕ}^{*} (resp., Σ_{ϕ}^{+}). The set of all full (resp., partial) words over Σ of length n is denoted by Σ^{n} (resp., Σ_{φ}^{n}).

A partial word u is a factor of a partial word v if there exist x, y such that $v=x u y$ (the factor u is proper if $u \neq \varepsilon$ and $u \neq v$). We say that u is a prefix of v if $x=\varepsilon$ and a suffix of v if $y=\varepsilon$. We denote by $\operatorname{Pref}(v)$ the set of all prefixes of v and by Suf(v) the set of all suffixes of v. If u and v are two partial words of equal length, then u is compatible with v, denoted $u \uparrow v$, if $u[i]=v[i]$ whenever $u[i], v[i] \in \Sigma$. If u,vare non-empty compatible partial words,
then $u v$ is called a square. We say that u is compatible withPref(v) if there exists $u^{\prime} \in \operatorname{Pref}(\mathrm{v})$ such that $u \uparrow u^{\prime}$ (a similar statement holds for $\operatorname{Suf}(\mathrm{v})$). Moreover, a full word compatible with a factor of a partial word v is called a subword of v. For example, $\diamond \mathrm{b} \diamond$ is a factor of abb \diamond b \diamond ba and $b b b$ is a subword compatible with that factor.

Let $\{A, B\}$ be the binary alphabet of pattern variables with $\Sigma \cap\{A, B\}=\varnothing$. In this paper, a pattern is a word over the alphabet $\Sigma \cup\{\mathrm{A}, \mathrm{B}\}$. A factor $\mathrm{u} \in \Sigma^{+}$of such pattern is called a pattern constant. For example, $A A$ is the square pattern, aAaAa is the overlap pattern, and $A B B A$ is one of the binary patterns. For a partial word $w \in \Sigma_{\circ}^{*}$ and pattern $p \in(\Sigma \cup\{A, B\})$, we say that w meets p or p occurs in w if there exists some non-erasing morphism $\varphi:(\Sigma \cup\{A, B\}) \rightarrow \Sigma^{\square}$, which acts as the identity over Σ, such that $\varphi(\mathrm{p})$ is compatible with a factor of w. We say w avoids p when it does not meet p. For example, abab meets $A A$, acbcaba avoids aAaAa, and $a b a b a a b c \diamond a \circ c d \circ \circ a b a$ meets ABBA. These definitions also apply to infinite partial words w over Σ which are functions from N to $\Sigma_{\text {。 }}$.

A pattern p is called k-avoidable if there is a partial word over a k-letter alphabet with infinitely many holes which avoids p. We say that p is avoidable if it is k-avoidable for some k. For example, $A B$ is unavoidable, $A A$ is unavoidable in partial words, $A A$ is 3avoidable in full words, and $A A A$ is 2 -avoidable [3]. For a given pattern p, we define its avoidability index as the minimal k such that p is k-avoidable. If p is unavoidable, it is ∞. For example, the avoidability indices of $A B$, AABB, and every binary pattern of length six or greater are $\infty, 3$, and 2, respectively [3].

3. Completion of the classification of binary patterns

The following definitions are useful for our purposes. Let Σ_{1} and Σ_{2} be alphabets. For a word $w \in \Sigma_{2}^{+}$and a morphism $\varphi: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$, we say that

- $\quad w$ is φ-injected from x if $x \in \Sigma_{1}^{+}$is a unique word of minimal length such that w is a factor occurring once in $\varphi(\mathrm{x})$ and for all $y \in \Sigma_{1}^{+}$if w is a factor of $\varphi(\mathrm{y})$ then x is a factor of y. We say w is φ-injectedif such an x exists.
- $\quad w$ is φ-preinjected from a (resp., φ-postinjected from a) if $\mathrm{a} \in \Sigma_{1}$ is such that w is compatible with $\operatorname{Pref}(\varphi(a))$ (resp., $\operatorname{Suf}(\varphi(a)))$.
- w is φ-side-injected from a if $\mathrm{a} \in \Sigma_{1}$ is such that the number $\mathrm{k}_{\mathrm{a}}=|\{\mathrm{u} \in \operatorname{Pref}(\varphi(\mathrm{a})) \mid \mathrm{u} \uparrow \mathrm{w}\}|+|\{u \in \operatorname{Suf}(\varphi(\mathrm{a})) \mid \mathrm{u} \uparrow \mathrm{w}\}|$
is exactly one, and k_{b} is zero for all other letters $\mathrm{b} \in \Sigma_{1}$.

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, let $\mathrm{t}: \Sigma^{\square} \rightarrow \Sigma^{\square}$ be the Thue-Morse morphism defined by $\mathrm{t}(\mathrm{a})=\mathrm{ab}$ and $\mathrm{t}(\mathrm{b})=\mathrm{ba}$, and let $\chi: \Sigma^{*} \rightarrow \Sigma_{\varphi}^{*}$ be the morphism defined by $\chi(\mathrm{a})=$ a and $\chi(\mathrm{b})=$ baaa \diamond babbb.

Theorem 1.

The pattern ABABAis 2-avoidable by $\chi \circ \mathrm{t}^{\omega}(\mathrm{a})$.

Proof.

Let Σ, t, and χ be as defined above. Assume to the contrary that $\chi^{\circ t^{\omega}}(\mathrm{a})$ meets the pattern $\mathrm{p}=\mathrm{ABABA}$. Then there is some non-erasing morphism $\mathrm{h}:\{\mathrm{A}, \mathrm{B}\}^{\square} \rightarrow \Sigma^{\square}$ and a factor w of $\chi \circ t^{\omega}(\mathrm{a})$ such thath $(\mathrm{p}) \uparrow \mathrm{w}$. It is well known that $\mathrm{t}^{\omega}(\mathrm{a})$ avoids ABABA as well as overlaps and cubes [6]. We begin by noting that every factor of length five containing a hole is χ-injected. Then for any factors y, y^{\prime} of $\chi \operatorname{~o~}^{\omega}(\mathrm{a})$ of at least length 5 we have that $\mathrm{y} \uparrow \mathrm{y}^{\prime}$ implies $\mathrm{y}=\mathrm{y}^{\prime}$.

We may write w in the form
$\mathrm{w}=\mathrm{w}_{1} \chi\left(\mathrm{x}_{1}\right) \mathrm{w}_{2}\left|\mathrm{w}_{3} \chi\left(\mathrm{x}_{2}\right) \mathrm{w}_{4}\right| \mathrm{w}_{5} \chi\left(\mathrm{x}_{3}\right) \mathrm{w}_{6}\left|\mathrm{w}_{7} \chi\left(\mathrm{x}_{4}\right) \mathrm{w}_{8}\right| \mathrm{w}_{9} \chi\left(\mathrm{x}_{5}\right) \mathrm{w}_{10}$
where $\mathrm{w}_{1} \chi\left(\mathrm{x}_{1}\right) \mathrm{w}_{2}, \mathrm{w}_{5} \chi\left(\mathrm{x}_{3}\right) \mathrm{w}_{6}$, and $\mathrm{w}_{9} \chi\left(\mathrm{x}_{5}\right) \mathrm{w}_{10}$ are pairwise compatible, $\mathrm{w}_{3} \chi\left(\mathrm{x}_{2}\right) \mathrm{w}_{4}$ andw $\mathrm{w}_{7} \chi\left(\mathrm{x}_{4}\right) \mathrm{w}_{8}$ are compatible, w_{1} suffixes $\chi\left(\mathrm{a}_{1}\right)$ for some $\mathrm{a}_{1} \in \Sigma \cup\{\varepsilon\}$, w_{10} prefixes $\chi\left(\mathrm{a}_{6}\right)$ for somea $\mathrm{a}_{6} \in \Sigma \cup\{\varepsilon\}$, and

```
\(w_{2} w_{3}=\chi\left(a_{2}\right)\) for some \(a_{2} \in \Sigma \cup\{\varepsilon\}\),
\(w_{4} w_{5}=\chi\left(a_{3}\right)\) for some \(a_{3} \in \Sigma \cup\{\varepsilon\}\),
\(w_{6} w_{7}=\chi\left(a_{4}\right)\) for some \(a_{4} \in \Sigma \cup\{\varepsilon\}\),
\(w_{8} w_{9}=\chi\left(a_{5}\right)\) for some \(a_{5} \in \Sigma \cup\{\varepsilon\}\).
```

Note that we have inserted """ between variable images for ease of reading.

We also allow x_{i} to be empty, so long as $\mathrm{w}_{2 \mathrm{i}-1}, \mathrm{X}_{\mathrm{i}}$, and $\mathrm{w}_{2 \mathrm{i}}$ are not all simultaneously empty for any $1 \leqslant i \leqslant 5$. We also choose all x_{i} to be maximal so that every w_{i} is either empty or a proper affix. Note this means that w_{i} is never a.

We see many relations of the form $\mathrm{u}_{1} \chi\left(\mathrm{y}_{1}\right) \mathrm{u}_{2} \uparrow \mathrm{u}_{3} \chi\left(\mathrm{y}_{2}\right) \mathrm{u}_{4}$. We consider solutions to the form for factors of $\chi{ }^{\circ} \mathrm{t}^{\omega}(\mathrm{a})$. Every non-empty affix of $\chi(\Sigma)$ is χ-preinjected or χ-postinjected, so every
pair of compatible suffixes are equal, and every pair of compatible prefixes are equal. Suppose that the lengths of the prefixes are not equal and assume towards a contradiction, and without loss of generality, that $\left|u_{1}\right|>\left|u_{3}\right|$. It is then clear that one of them must be length two or more, so to have compatible prefixes both u_{1} and u_{3} must be suffixes of $\chi(b)$. Then u_{3} is a suffix of u_{1} which must also be compatible with a prefix of u_{1}. The possible values of u_{1} and u_{3} expressed as pairs $\left(\mathrm{u}_{1}, \mathrm{u}_{3}\right)$ are
\{(bb,b),(bbb,b),(bbb,bb),(babbb,b),(॰babbb,b),(॰babbb,bb)\}.

Let v be the suffix of $\chi(b)$ formed by deleting the u_{3}-compatible prefix from u_{1}. We havev $\in\{b, b b, a b b b, b a b b b\}$. Note that a prefix of $\chi\left(\mathrm{y}_{2}\right)$ must be compatible with v. No choice of the length two prefix of y_{2} forms a compatible prefix of $\chi\left(y_{2}\right)$ for any of $\{b b, a b b b, b a b b b\}$. So $\mathrm{v}=\mathrm{b}$ and b prefixes y_{2}. It follows that the length three prefix of y_{1} is $a a a$. But as the ThueMorse word avoids cubes, this cannot occur. It follows that $\left|\mathrm{u}_{1}\right|=\left|\mathrm{u}_{3}\right|$, and as both are either empty or suffixes of $\chi(b)$, we see that $u_{1}=u_{3}$. We can similarly show that $u_{2}=u_{4}$. We now have that $\mathrm{u}_{1}=\mathrm{u}_{3}, \mathrm{u}_{2}=\mathrm{u}_{4}$, and $\chi\left(\mathrm{y}_{1}\right) \uparrow \chi\left(\mathrm{y}_{2}\right)$. But note that either $\mathrm{y}_{1}=\mathrm{y}_{2}=\mathrm{a}, \mathrm{y}_{1}=\mathrm{y}_{2}=\varepsilon$, or $\left|\chi\left(y_{1}\right)\right|=\left|\chi\left(y_{2}\right)\right| \geqslant 10$. So $\chi\left(y_{1}\right)=\chi\left(y_{2}\right)$. But as χ is injective this yields $y_{1}=y_{2}$. We may rewrite w with fewer variables as
$\mathrm{w}_{1} \chi\left(\mathrm{x}_{1}\right) \mathrm{w}_{2}\left|\mathrm{w}_{3} \chi\left(\mathrm{x}_{2}\right) \mathrm{w}_{4}\right| \mathrm{w}_{1} \chi\left(\mathrm{x}_{1}\right) \mathrm{w}_{2}\left|\mathrm{w}_{3} \chi\left(\mathrm{x}_{2}\right) \mathrm{w}_{4}\right| \mathrm{w}_{1} \chi\left(\mathrm{x}_{1}\right) \mathrm{w}_{2}$.

Because all the affixes of $\chi(\Sigma)$ are χ-preinjected or χ-postinjected, $\mathrm{a}_{1}=\mathrm{a}_{3}=\mathrm{a}_{5}$ and $\mathrm{a}_{2}=\mathrm{a}_{4}=\mathrm{a}_{6}$. Then w occurs only as a factor of
$\chi\left(\mathrm{a}_{1} \mathrm{X}_{1} \mathrm{a}_{2} \mathrm{X}_{2} \mathrm{a}_{1} \mathrm{X}_{1} \mathrm{a}_{2} \mathrm{X}_{2} \mathrm{a}_{1} \mathrm{X}_{1} \mathrm{a}_{2}\right)$.

But this yields an instance of ABABA in $t^{\omega}(a)$ no matter which you choose to be empty, a contradiction. Hence no factor of $\chi \circ t^{\omega}(a)$ is an occurrence of ABABA.
Next, let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\theta: \Sigma \rightarrow \Sigma^{\square}$ be the generalized Thue-Morse morphism given by $\theta(a)=a b c, \theta(b)=a c$, and $\theta(c)=b$.

Lemma 1.

The generalized Thue-Morse word $\theta^{\omega}(\mathrm{a})$ avoids both $A A$ and bAbcAb.

Proof.

Assume to the contrary that $\theta^{\omega}(a)$ meets the pattern $b A b c A b$. Then there are words $\mathrm{x}^{\prime}, \mathrm{w} \in \Sigma^{+}$wherew= $\mathrm{bx}^{\prime} \mathrm{bc} \mathrm{x}^{\prime} \mathrm{b}$ is a factor of $\theta^{\omega}(\mathrm{a})$. It is well known that the fixed point $\theta^{\omega}(\mathrm{a})$ avoids squares [6]. Observe that $\theta^{\omega}(\mathrm{a})$ is also an infinite word over the
alphabet \{abc,ac,b\}. Because a only occurs as a prefix in this set and c only as a suffix, it follows that b only occurs in either the factor $a b c$ or $c b a$. Then $\mathrm{x}^{\prime}=\mathrm{xa}$ for some $\mathrm{x} \in \Sigma$ and w is a subword of bxabcxabc. But this contains a square, which cannot appear $\operatorname{in} \theta^{\omega}(a)$.

Now, ABBA is 2-unavoidable for full words, which must also be true for partial words. We can prove thatABBA is 3-avoidable by considering the morphism $\varphi: \Sigma^{*} \rightarrow \Sigma_{\odot}^{*}$ given by $\varphi(a)=\operatorname{cccbc}, \varphi(b)=c a \diamond b c b b a$, and $\varphi(c)=b a a$. The proof, based on an analysis of cases, depends on Lemma 1,Lemma 2 and Lemma 3.

Lemma 2.

Let u and v be length five or greater factors of $\varphi(\mathrm{x})$, with x a full word over Σ. If u and v are compatible, then they are also equal.

Proof.

Let u and v be length five or greater compatible factors of $\varphi(\mathrm{x})$ with $\mathrm{x} \in \Sigma^{+}$. We assume to the contrary that one, $\operatorname{say} v$, has a hole in position i while $u[i]$ is a letter. Note that for any word $\varphi(\mathrm{x})$ there are only holes in images of b and will be separated by at least seven letters. Then the factors $u[j . . j+4]$ andv $[j . . j+4]$ have at most one hole for any $j \leqslant|u|-5$. If $\mathrm{i}=0$ then $v[0 . .4]=\diamond \mathrm{bcbb}$. But bcbb is φ-injected. It follows that $\mathrm{u}[0 . .4]=\diamond \mathrm{bcbb}$. If $\mathrm{i}=|\mathrm{u}|-1$ then $\mathrm{v}[|\mathrm{u}|-3 . .|\mathrm{u}|-1]=\mathrm{ca} \diamond$. But ca॰ is φ-injected, so it can only be that $\mathbf{u}[|\mathbf{u}|-3 . .|\mathbf{u}|-1]=\mathrm{ca} \bullet$. For any other i we can see that $v[i-1 . . i+1]=a \bullet b$, but this factor is also φ-injected. Then no such i can exist and the words are equal.

Corollary 1.

For all $\mathrm{x}, \mathrm{x}^{\prime} \in \Sigma^{+}$, if $\varphi(\mathrm{x})$ and $\varphi\left(\mathrm{x}^{\prime}\right)$ are compatible then x and x^{\prime} are equal.

Proof.

If $|\varphi(\mathrm{x})|<5$ then $|\varphi(\mathrm{x})|=3$, and $\mathrm{x}=\mathrm{x}^{\prime}=\mathrm{c}$. Otherwise by Lemma 2 we have that $\varphi(\mathrm{x})=\varphi\left(\mathrm{x}^{\prime}\right)$. As φ is injective, it is clear that $\mathrm{x}=\mathrm{x}$.

Lemma 3.

The set of square subwords of $\varphi \circ \theta^{\omega}(a)$ is \{aa,bb,cc,acac,baba,cbcb\}.

Proof.

Let alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, set $\mathrm{S}=\{\mathrm{aa}, \mathrm{bb}, \mathrm{cc}, \mathrm{acac}, \mathrm{baba}, \mathrm{cbcb}\}$, and morphisms θ and φ be as defined above. Let Σ_{s}^{n} for $n \in N$ be the set of length n square-free words of Σ^{+}. Naturally, as $\theta^{\omega}($ a $)$ avoids squares we know that Σ_{s}^{n} contains all its subwords of length n. One may easily check that S is the set of square subwords of $\varphi\left(\Sigma_{\mathrm{s}}^{2}\right)$ and that there are no additional squares in $\varphi\left(\Sigma_{\mathrm{s}}^{4}\right)$. We will see that there are no other square-compatible factors of $\varphi \circ \theta^{\omega}$ (a). Assume to the contrary that s is such a factor of $\varphi \circ \theta^{\omega}(a)$, i.e., $s=s_{1} s_{2}$ where $s_{1} \uparrow s_{2}$. Since s is not a factor of $\varphi\left(\Sigma_{s}^{4}\right)$, it must be of the form $\mathrm{s}=\mathrm{w}_{1} \varphi(\mathrm{x}) \mathrm{w}_{2}$ for some subword x of θ^{ω} (a) of length four or greater and w_{1} and w_{2} are respectively a suffix and prefix (possibly empty) of $\varphi(\Sigma)$. We examine cases according to which, if any, of $\mathrm{w}_{1}, \mathrm{w}_{2}$ are empty. It is evident from the possible lengths of $\mathrm{w}_{1}, \mathrm{w}_{2}$, and $\varphi(\mathrm{x})$ that $\left|\mathrm{w}_{1}\right|<\left|\mathrm{s}_{1}\right|<\left|\mathrm{w}_{1} \varphi(\mathrm{x})\right|$. So the last letter of s_{1} and the first letter of s_{2} occur in the image under φ of one or two adjacent letters of x. Then we may writes $=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{v}_{1} \mathrm{v}_{2} \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$ where $\varphi(\mathrm{x})=\varphi\left(\mathrm{x}_{1}\right) \mathrm{v}_{1} \mathrm{v}_{2} \varphi\left(\mathrm{x}_{2}\right)$ and $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{v}_{1} \uparrow \mathrm{v}_{2} \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. Herex x_{1} and x_{2} are non-empty subwords of $\theta^{\omega}(a)$. We choose maximal lengths for x_{1} and x_{2} so that $\mathrm{v}_{1}, \mathrm{v}_{2}$ are either the empty word or there is some $\mathrm{a}_{\mathrm{i}} \in \Sigma$ with v_{1} a proper prefix and v_{2} a proper suffix of $\varphi\left(\mathrm{a}_{\mathrm{i}}\right)$. The length restrictions imposed on s guarantee by Lemma 2 that $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{v}_{1}=\mathrm{V}_{2} \varphi\left(\mathrm{x}_{2}\right) \mathrm{W}_{2}$. This allows us to also write s in the convenient form
$\mathrm{s}=\mathrm{W}_{1} \varphi\left(\mathrm{y}_{1}\right) \mathrm{u}_{1} \mathrm{~W}_{2} \mid \mathrm{w}_{1} \mathrm{u}_{2} \varphi\left(\mathrm{y}_{2}\right) \mathrm{w}_{2}$,
where $\mathrm{u}_{1} \mathrm{~W}_{2} \mathrm{~W}_{1} \mathrm{u}_{2}=\varphi(\mathrm{z})$ for some $z \in \Sigma \cup \Sigma_{\mathrm{S}}^{2}$ such that $\varphi\left(\mathrm{y}_{1}\right) \mathrm{u}_{1}=\mathrm{U}_{2} \varphi\left(\mathrm{y}_{2}\right)$. Choose y_{1} and y_{2} of maximum length so u_{1} and u_{2} are empty or a proper prefix or, respectively, a suffix of $\varphi(\Sigma)$. We proceed by considering the cases for which, if any, of w_{1} and w_{2} are the empty word.

Case 1. Both w_{1} and w_{2} are the empty word.
The square-compatible factor has the form $\mathrm{s}=\varphi\left(\mathrm{x}_{1}\right) \mathrm{v}_{1} \mathrm{v}_{2} \varphi\left(\mathrm{x}_{2}\right)$. From Corollary 1, it is clear that v_{1} andv v_{2} must be non-empty or we would have $x_{1}=x_{2}$ and $s=\varphi\left(x_{1} x_{1}\right)$ which would contradict the claim of Lemma 1 that θ^{ω} (a) contains no squares. Then $\varphi\left(\mathrm{x}_{1}\right)$ must have a prefix compatible with v_{2} and $\varphi\left(\mathrm{x}_{2}\right)$ must have a suffix compatible with v_{1}, and there is some $\mathrm{a}_{\mathrm{i}} \in \Sigma$ such that $\varphi\left(a_{i}\right)=v_{1} v_{2}$. For any $a_{i} \in \Sigma$, a factorization of $\varphi\left(a_{i}\right)$ into $v_{1} v_{2}$ implies that either v_{1} or v_{2} is φ -side-injected, except for $\mathrm{v}_{1}=$ ba with $v_{2}=$ ($b a$ is a proper suffix of $\varphi(\mathrm{b})$ and a proper prefix of $\varphi(\mathrm{c})$ while a is a proper suffix of both $\varphi(\mathrm{b})$ and $\varphi(\mathrm{c})$). However, v_{2} cannot equal a as it is not compatible with $\operatorname{Pref}(\varphi(\Sigma))$. Note that v_{1} must be both a proper prefix of $\varphi(\Sigma)$ compatible with a suffix of $\varphi(\Sigma)$ and v_{2} must also be both a proper suffix of $\varphi(\Sigma)$ compatible with a prefix of $\varphi(\Sigma)$, which means neither is φ-side-injected. This is a contradiction.

Case 2. Both w_{1} and w_{2} are non-empty words.
Consider $\mathrm{s}=\mathrm{W}_{1} \varphi\left(\mathrm{y}_{1}\right) \mathrm{u}_{1} \mathrm{~W}_{2} \mid \mathrm{w}_{1} \mathrm{u}_{2} \varphi\left(\mathrm{y}_{2}\right) \mathrm{w}_{2}$ where $\mathrm{u}_{1} \mathrm{~W}_{2} \mathrm{~W}_{1} \mathrm{u}_{2}=\varphi(\mathrm{z})$ for some $z \in \Sigma \cup \Sigma_{\mathrm{s}}^{2}$ such that $\varphi\left(\mathrm{y}_{1}\right) \mathrm{u}_{1}=\mathrm{u}_{2} \varphi\left(\mathrm{y}_{2}\right)$. Clearly u_{1} and u_{2} are both prefixes and suffixes of $\varphi(\Sigma)$. We easily compute
the set of words both prefixing and suffixing $\varphi(\Sigma)$ to be $\mathrm{W}=\operatorname{Pref}(\varphi(\Sigma)) \cap \operatorname{Suf}(\varphi(\Sigma))=\{\varepsilon, \mathrm{c}, \mathrm{ba}\}$.

If both u_{1} and u_{2} are empty then $w_{1} w_{2}=\varphi\left(a_{i}\right)$ for some $a_{i} \in \Sigma$. That would mean w_{1} and w_{2} are also in W, but then they clearly cannot satisfy $\mathrm{w}_{2} \mathrm{~W}_{1}=\varphi(\mathrm{z})$. So at least one of u_{1} or u_{2} must be nonempty.

Suppose u_{2} is non-empty. Recall that $u_{2} \in W$. Then for $w_{1} u_{2}$ to be a suffix of $\varphi(z)$ we must have that w_{1} is a suffix of cccb, ca \diamond bcb. But as w_{1} is a suffix of $\varphi(\Sigma)$ it cannot end in b. Then it must be empty, a contradiction. So u_{2} is empty, thus u_{1} is non-empty. Then for $u_{1} w_{2}$ to be a prefix of $\varphi(z)$ we must havew ${ }_{2}$ a prefix of $\{c c b c, a \diamond b c b b a, a\}$ since $u_{1} \in W$. But as w_{2} is also a prefix of $\varphi(\Sigma)$ we see thatw ${ }_{2} \in\{\mathrm{c}, \mathrm{cc}\}$ and the first letter of z must be a. So w_{1} can only be a three- or two-letter suffix of $\varphi(a)$ depending on the choice of w_{2}.
Then $\mathrm{s}=\operatorname{cbc} \varphi\left(\mathrm{x}_{1}\right) \mathrm{cc} \mid \operatorname{cbc} \varphi\left(\mathrm{x}_{2}\right) \mathrm{c}$ or $\mathrm{s}=\mathrm{bc} \varphi\left(\mathrm{x}_{1}\right) \operatorname{ccc} \mid \mathrm{bc} \varphi\left(\mathrm{x}_{2}\right) \mathrm{cc}$. But either case forces x_{2} to end in a, and that forces the last letter of $\varphi\left(\mathrm{x}_{1}\right)$ to be b, which is impossible. Then either w_{1} or w_{2} is empty.

Case 3. One of $\mathrm{w}_{1}, \mathrm{w}_{2}$ is empty.

Suppose that $\mathrm{w}_{2}=\varepsilon$. We have $\mathrm{s}=\mathrm{w}_{1} \varphi\left(\mathrm{y}_{1}\right) \mathrm{u}_{1} \mid \mathrm{w}_{1} \mathrm{u}_{2} \varphi\left(\mathrm{y}_{2}\right)$ where $\mathrm{u}_{1} \mathrm{~W}_{1} \mathrm{u}_{2}=\varphi(\mathrm{z})$ for some $z \in \Sigma \cup \Sigma_{s}^{2}$ and $\varphi\left(\mathrm{y}_{1}\right) \mathrm{u}_{1}=\mathrm{u}_{2} \varphi\left(\mathrm{y}_{2}\right)$. Clearly u_{1} and u_{2} are both prefixes and suffixes of $\varphi(\Sigma)$ and so must lie in W. Note that w_{1} is a proper suffix, so both u_{1} and u_{2} cannot be empty or we would have $\varphi(z)=w_{1}$. Suppose that u_{2} is non-empty. Then as $w_{1} u_{2}$ must suffix $\varphi(z)$ we must havew $w_{1} \in\{$ cccb,ca $\triangleright b c b\}$, depending on the choice of u_{2}. But w_{1} is a proper suffix of $\varphi(\Sigma)$ and neithercccb nor ca॰bcb is such suffix. This is a contradiction. So it can only be that u_{2} is empty and u_{1} is non-empty, i.e., $\varphi\left(\mathrm{y}_{1}\right) \mathrm{u}_{1}=\varphi\left(\mathrm{y}_{2}\right)$. If u_{1} is c then the last letter of y_{2} can only be a. But this would force $\varphi\left(\mathrm{y}_{1}\right)$ to end in b, which is not a suffix of $\varphi(\Sigma)$. So $\mathrm{u}_{1}=$ ba. Then the last letter of y_{2} must be b. But this would force $\varphi\left(\mathrm{y}_{1}\right)$ to end in b. We can conclude that w_{2} is not empty. The argument is symmetric if $\mathrm{w}_{1}=\varepsilon$.

We have exhausted every case and we see that the only squares are those appearing as subwords of $\varphi\left(\Sigma_{s}^{4}\right)$, which we know to be S.

Theorem 2.

The pattern ABBAis 3-avoidable by $\varphi \circ \theta^{\omega}(\mathrm{a})$.

Proof.

Let $\mathrm{p}=\mathrm{ABBA}$ and let the alphabet Σ and morphisms θ and φ be as defined above. Let S be
the set of square-compatible factors of $\varphi \circ \theta^{\omega}(\mathrm{a})$ which has been computed in Lemma 3. Assume to the contrary that the word $\varphi \circ \theta^{\omega}(\mathrm{a})$ meets p, i.e., there is some non-erasing morphism $\mathrm{h}:\{\mathrm{A}, \mathrm{B}\}^{\square} \rightarrow \Sigma^{\square}$ and factor w of $\varphi \circ \theta^{\omega}(\mathrm{a})$ such that $\mathrm{h}(\mathrm{p}) \uparrow \mathrm{w}$.
We proceed by examining the possible instances of $\mathrm{p}=\mathrm{ABBA}$ with the knowledge that $h(B B)=s$ for somes $\in S$. Let R be the minimal set with every $s \in S$ a subword of $\varphi(R)$, i.e., $R=\bigcup_{s \in S}\left\{x \in \Sigma^{*} \mid s\right.$ is a subword of $\varphi(x)$ but not of $\varphi(y)$ for any proper subword y of $\left.x\right\}$.

For $r \in R$, we write $\varphi(r)=v_{1} s_{1} s_{2} v_{2}$ where $s_{1} \uparrow s_{2}$ and v_{1}, v_{2} are (possibly empty) affixes of $\varphi(r)$.Table 1 lists the elements of $\varphi(\mathrm{R})$, the corresponding square-compatible factors, and their affixes. The final column lists the affixes which are φ-injected. We investigate each row of the table as a separate case, but we first make some observations.

Table 1. Elements of $\varphi(R)$, the corresponding square-compatible factors, and their affixes.

	$\varphi(r)$	v_{1}	$\mathrm{~s}_{1} \mathrm{~s}_{2}$	v_{2}	φ-injected
1	$\varphi(c)$	b	$a a$	ε	
2	$\varphi(b)$	c	$a \diamond$	$b c b b a$	$b c b b a$
3	$\varphi(b)$	$c a$	$\diamond b$	$c b b a$	$c a, c b b a$
4	$\varphi(b)$	$c a \diamond b c$	$b b$	a	$c a \diamond b c$
5	$\varphi(a)$	ε	$c c$	$c b c$	
6	$\varphi(a)$	c	$c c$	$b c$	
7	$\varphi(a b)$	$c c c b$	$c c$	$a \diamond b c b b a$	$c c c b, a \diamond b c b b a$
8	$\varphi(c b)$	$b a$	$a c a \diamond$	$b c b b a$	$b c b b a$
9	$\varphi(b c)$	$c a \diamond b c b$	$b a b a$	a	$c a \diamond b c b$
10	$\varphi(b)$	$c a$	$\diamond b c b$	$b a$	$c a$
11	$\varphi(a c)$	$c c$	$c b c b$	$a a$	

Armed with S, it is straightforward to check for any occurrence of ABBA in $\varphi\left(\Sigma_{s}^{4}\right)$. There are none. Then we can write $\mathrm{w}=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1} \mathrm{rx}_{2}\right) \mathrm{w}_{2}$ where $\mathrm{r} \in \mathrm{R}$ and $\mathrm{w}_{1}, \mathrm{w}_{2}$ are (possibly empty) suffix and prefix of $\varphi(\Sigma)$, respectively, and $x_{1} r x_{2}$ is a subword of $\theta^{\omega}(a)$ such that $w_{1} \varphi\left(x_{1}\right) v_{1} \uparrow v_{2} \varphi\left(x_{2}\right) w_{2}$. By Lemma 2 we have $w_{1} \varphi\left(x_{1}\right) v_{1}=v_{2} \varphi\left(x_{2}\right) w_{2}$. When $|r|=2$, we write $r=a_{i} a_{j}$ with a_{i}, a_{j} distinct letters of Σ.

When $|\mathrm{r}|=1$ consider if v_{1} is φ-injected. Then $\mathrm{w}_{2}=\mathrm{v}_{1}$ is a factor of $\varphi(\mathrm{r})$ and $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right)=\mathrm{v}_{2} \varphi\left(\mathrm{x}_{2}\right)$, and we would have that w is a factor of $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1} \mathrm{rX}_{2} \mathrm{r}\right)$. But we see this may be written as
$\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1} \mathrm{rx}_{2} \mathrm{r}\right)=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{v}_{1} \mathrm{~s}_{1} \mathrm{~s}_{2} \mathrm{~W}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{v}_{1} \mathrm{~s}_{1} \mathrm{~s}_{2} \mathrm{~V}_{2}$.

This would yield a square-compatible factor of $\varphi \circ \theta^{\omega}$ (a) outside of S, in contradiction to Lemma 3. This precludes the necessity to check Cases 3 , 4, and 10. Symmetrically, w cannot exist if $|r|=1$ and v_{2} is φ-injected. This precludes the necessity to check Cases 2 and 3.

If both v_{1} and v_{2} are φ-injected then a contradictory square in $\theta^{\omega}(\mathrm{a})$ is guaranteed regardless of the length of r. For if $|r|=1$ then w is a factor of $\varphi\left(\mathrm{rx}_{1} \mathrm{rx}_{1} r\right)$, and if $|\mathrm{r}|=2$ then w is a factor of $\varphi\left(a_{j} X_{1} a_{i} a_{j} X_{1} a_{i}\right)$. This precludes the necessity for Cases 3 and 7 .

Case 1. We have $\mathrm{w}=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{b}|\mathrm{aa}| \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$ and $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{b}=\varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. Note that for ease of reading and clarity we inserted | to separate the square-compatible factor from the rest of w. Recall that w_{2} is a prefix of $\varphi(\Sigma)$. The final letter of w_{2} must be b, so $w_{2} \in\{b, c c c b, c a \diamond b, c a \diamond b c b, c a \diamond b c b b\}$. But none of $\{c c c, c a \diamond, c a \diamond b c, c a \diamond b c b\}$ can be a suffix of $\varphi(\Sigma)$, so $\mathrm{w}_{2}=\mathrm{b}$. Thenw $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right)=\varphi\left(\mathrm{x}_{2}\right)$. We see that w_{1} is both a prefix and suffix of $\varphi(\Sigma)$ so $\mathrm{w}_{1} \in\{\varepsilon, \mathrm{c}, \mathrm{ba}\}$. If $\mathrm{w}_{1}=\varepsilon$ we would have $\mathrm{x}_{1}=\mathrm{x}_{2}$ and w would be a factor of $\varphi\left(\mathrm{x}_{1} \mathrm{Cx}_{1} \mathrm{c}\right)$, a contradiction. If $w_{1}=$ ba then the first letter of x_{2} is c, and we would need $\varphi\left(\mathrm{x}_{1}\right)$ to be prefixed by a. It must be that $\mathrm{w}_{1}=\mathrm{c}$ and the first letter of x_{2} is either a or b. Then $\varphi\left(\mathrm{x}_{1}\right)$ is prefixed by ccbc or a \diamond bcbba, which are not in $\operatorname{Pref}(\varphi(\Sigma)$).

Case 5. We have $\mathrm{r}=\mathrm{a}$ and $\mathrm{w}=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right)|\operatorname{cc|}| \operatorname{cbc} \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. As $c b c$ is φ-postinjected from a we havew ${ }_{1}=c b c$ and $\varphi\left(\mathrm{x}_{1}\right)=\varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. Then w is a factor of $\varphi\left(\mathrm{ax}_{1} \mathrm{ax}_{1}\right)$, contradicting that $\theta^{\omega}(\mathrm{a})$ is square-free.

Case 6. We have $\mathrm{r}=\mathrm{a}, \mathrm{w}=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{c}|\mathrm{cc}| \mathrm{bc} \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$, and $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{c}=\mathrm{bc} \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. Recall thatw w_{1} is a suffix of $\varphi(\Sigma)$ prefixed by $b c$. Then $\mathrm{w}_{1} \in\{\mathrm{bc}, \mathrm{bcbba}\}$. But $\mathrm{w}_{1} \neq \mathrm{bcbba}$ as $b b a$ is not compatible with any prefix of $\varphi\left(\mathrm{x}_{2}\right)$. Then $\mathrm{w}_{1}=\mathrm{bc}$ is a suffix of $\varphi(\mathrm{a})$. We have that w is a factor of $\varphi\left(\mathrm{ax}_{1} \mathrm{ax}_{2}\right) \mathrm{w}_{2}$. Recall that w_{2} is a prefix of $\varphi(\Sigma)$ ending in c. Then $\mathrm{w}_{2} \in\{\mathrm{c}, \mathrm{cc}, \mathrm{ccc}, \mathrm{ca} \diamond \mathrm{bc}\}$. If $w_{2}=c$ then by Corollary $1 x_{1}=x_{2}$ and w must be a factor of $\varphi\left(\mathrm{ax}_{1} \mathrm{ax}_{1}\right) \mathrm{w}_{2}$, which implies there is a square subword of $\theta^{\omega}(\mathrm{a})$ contradictory to Lemma 1 . We also see w_{2} cannot be ccc or ca॰bc as neithercc nor ca \diamond b can suffix $\varphi\left(\mathrm{x}_{1}\right)$. So $\mathrm{w}_{2}=\mathrm{cc}$ and the last letter of x_{1} must be a, write $x_{1}=x_{1}^{\prime} a$. But thenw must be a factor of $\varphi\left(\sigma x_{1}^{\prime} a a x_{2} a\right)$, which implies that $\theta^{\omega}(\mathrm{a})$ has a square subword.

Case 8. We have $\mathrm{r}=\mathrm{cb}$. Note that v_{2} is φ-injected from b. So
$\mathrm{w}=\operatorname{bcbba\varphi }\left(\mathrm{x}_{1}\right) \mathrm{ba}|\mathrm{aca} \diamond| \operatorname{bcbba} \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$
and $\varphi\left(\mathrm{x}_{1}\right) \mathrm{ba}=\varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. Recall that w_{2} is a prefix of $\varphi(\Sigma)$ suffixed by $b a$. The only choice isw $_{2}=b a$. By Corollary 1 we see that $x_{1}=x_{2}$. Then w is a factor of $\varphi\left(\mathrm{bx}_{1} \mathrm{cbx}_{1} \mathrm{c}\right)$. This shows a square factor in $\theta^{\omega}(a)$ contradicting Lemma 1.

Case 9. We have $\mathrm{r}=\mathrm{bc}$. Note that v_{1} is φ-injected from b. So $\mathrm{w}=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{ca} \triangleleft \mathrm{bcb}|\mathrm{baba}| \mathrm{a} \varphi\left(\mathrm{x}_{2}\right) \mathrm{ca} \diamond \mathrm{bcb}$
and $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right)=\mathrm{a} \varphi\left(\mathrm{x}_{2}\right)$. Recall that w_{1} is a suffix of $\varphi(\Sigma)$ prefixed by $a \operatorname{sow}_{1} \in\{\mathrm{a}, \mathrm{aa}, \mathrm{a} \odot \mathrm{bcbba}\}$. If w_{1} is $a a$ or a \diamond bcbba this leaves no choice for the first letter of x_{2}, as
neither a nor \diamond bcbba prefix $\varphi(\Sigma)$. We are left with the possibility that $\mathrm{w}_{1}=\mathrm{a}$, implying $\mathrm{x}_{1}=\mathrm{x}_{2}$. We see that a is a suffix of either $\varphi(\mathrm{b})$ or $\varphi(\mathrm{c})$. This means that w is a factor of $\varphi\left(\mathrm{bx}_{1} \mathrm{bcx}{ }_{1} \mathrm{~b}\right) \operatorname{or} \varphi\left(\mathrm{cx}_{1} \mathrm{bcx}_{1} \mathrm{~b}\right)$. However either contradicts Lemma 1, which shows $\theta^{\omega}(\mathrm{a})$ avoids both the patternbAbcAb and squares.

Case 11. We have $\mathrm{r}=\mathrm{ac}, \mathrm{w}=\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \operatorname{cc}|\operatorname{cbcb}| \operatorname{aa\varphi } \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$, and $\mathrm{w}_{1} \varphi\left(\mathrm{x}_{1}\right) \mathrm{cc}=\operatorname{aa\varphi } \varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. Recall that w_{1} is a suffix of $\varphi(\Sigma)$ beginning with $a a$. As $a a$ is φ-postinjected we have $\mathrm{w}_{1}=$ aa is a suffix of $\varphi(c)$ and $\varphi\left(\mathrm{x}_{1}\right) \mathrm{cc}=\varphi\left(\mathrm{x}_{2}\right) \mathrm{w}_{2}$. Recall that w_{2} is a prefix of $\varphi(\Sigma)$ suffixed by $c c$. Then it must be a prefix of $\varphi(a)$ and $w_{2} \in\{c c, c c c\}$. By Corollary 1 if $\mathrm{w}_{2}=\mathrm{cc}$ then $\mathrm{x}_{1}=\mathrm{x}_{2}$, and, as w_{2} only prefixes $\varphi(a)$, we see that w must be a factor of $\varphi\left(\operatorname{cx}_{1} \operatorname{acx}_{1} \mathrm{a}\right)$, a contradictory square in $\theta^{\omega}(\mathrm{a})$. So $w_{2}=c c c$. Then the last letter of x_{1} must have its image suffixed by c so $x_{1}=x_{1}^{\prime} a$. We have $w=a a \varphi\left(x_{1}^{\prime} \sigma a c x_{2}\right) c c c$. But this would require the square $a a$ as a subword of $\theta^{\omega}(\mathrm{a})$ in contradiction with Lemma 1.

Taken together with the results of [3] and [5], the complete classification of the binary patterns is summarized in the following theorem.

Theorem 3.

For partial words, binary patterns fall into three categories:

1. The binary patterns $\varepsilon, A, A A, A A B$, $\mathrm{AABA}, \mathrm{AABAA}, A B, A B A$, and their complements, are unavoidable (or have avoidability index ∞).
2. The binary patterns $\mathrm{AABAB}, \mathrm{AABB}, \mathrm{ABAB}, \mathrm{ABBA}$, their reverses, and complements, have avoidability index 3.
3. All other binary patterns, and in particular all binary patterns of length six or more, have avoidability index 2.

References

[1] D.R. Bean, A. Ehrenfeucht, G. McNulty, Avoidable patterns in strings of symbols, Pacific Journal of Mathematics 85 (1979) 261-294.
[2] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words, Chapman \& Hall/CRC Press, Boca Raton, FL, 2008.
[3] F. Blanchet-Sadri, R. Merca s, S. Simmons, E. Weissenstein, Avoidable binary patterns in partial words, Acta Informatica 48 (2011) 25-41.
[4] F. Blanchet-Sadri, A. Lohr, S. Scott, Computing the partial word avoidability indices of ternary patterns, in: S. Arumugam, B. Smyth (Eds.), IWOCA 2012, 23rd International Workshop on Combinatorial Algorithms, Tamil Nadu, India, in: Lecture Notes in Computer Science, vol. 7643, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 206-218.
[5] F. Blanchet-Sadri, R. Merca ss, S. Simmons, E. Weissenstein, Erratum to: Avoidable binary patterns in partial words, Acta Informatica 49 (2012) 53-54.
[6] M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
[7] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.
[8] A.I. Zimin, Blocking sets of terms, Mathematics of the USSR. Sbornik 47 (1984) 353-364.

