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Abstract: 
 
We complete the classification of binary patterns in partial words that was started in earlier 
publications by proving that the partial word avoidability index of the binary pattern ABABA is 
two and the one of the binary pattern ABBA is three. 
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Article: 
 
1. Introduction 
 
A pattern is a sequence over an alphabet of variables. An occurrence of a pattern is obtained by 
replacing the variables with arbitrary non-empty words, such that two occurrences of the same 
variable are replaced by the same word. A pattern p is unavoidable if every infinite word has an 
occurrence of p; otherwise, p is avoidable. More precisely, p is k-unavoidable if every infinite 
word over a k-letter alphabet has an occurrence of p; otherwise, p is k-avoidable. 
The avoidability index of p is the smallest integer k such that p is k-avoidable (if no such integer 
exists, the avoidability index is ∞). 
 
Deciding the avoidability of a pattern can be done easily [1] and [8], but deciding whether a 
given pattern is k  -avoidable has remained an open problem. An alternative is the problem of 
classifying all the patterns over a fixed number of variables, i.e., finding the avoidability indices 
of all the patterns over a fixed number of variables. This problem has been completely solved for 
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all the binary patterns, those over two variables A  and B   (see Chapter 3 of [7]). They fall into 
three categories: the patterns ε  , A  , AB  , ABA  , and their complements, are unavoidable (or 
have avoidability index ∞); the 
patterns AA  , AAB  , AABA, AABB,ABAB, ABBA, AABAA, AABAB, their reverses, and 
complements, have avoidability index 3; all other patterns, and in particular all binary patterns of 
length six or more, have avoidability index 2. 
 
Recently, Blanchet-Sadri et al. [3] and [5] determined all the “non-trivial” avoidability indices of 
the binary patterns in partial words  , or sequences that may have some undefined positions, 
called holes and denoted by ⋄ʼs, that match every letter of the alphabet over which they are 
defined (we also say that ⋄ is compatible  with each letter of the alphabet). For 
example, a⋄bca⋄b is a partial word with two holes over the alphabet{a,b,c}, and aabcabb is a full 
word created by filling in the first hole with a and the second one with b. They showed that, if no 
variable of the pattern is substituted by a partial word consisting of only one hole, the 
avoidability index of the pattern remains the same as in the full word case, and they started the 
classification in the non-restricted to non-trivial case. 
 
In this paper, we complete the classification of all the binary patterns that was started by 
Blanchet-Sadri et al., i.e., we prove that the avoidability index of the pattern ABABA is two and 
the one of the pattern ABBAis three. In Section 2, we give some background on partial words 
and patterns (for more information, see [2] and [7]) and in Section 3, we complete the 
classification of the avoidability indices of binary patterns. 
 
2. Preliminaries 
 
Let Σ   be an alphabet  , a non-empty finite set of symbols. Each element a∈Σ is a letter  . A 
(full  ) word  over Σ   is a concatenation of letters from Σ   while a partial word   over Σ   is a 
concatenation of symbols fromΣ⋄=Σ∪{⋄}, the alphabet Σ   being augmented with the “hole” 
symbol ⋄ (a full word is a partial word without holes). We denote by u[i] the symbol at 
position i   of a partial word u  . The length   of u  , |u|, is the number of symbols in u  . 
The empty word ε   is the unique word of length zero. The set of all full words (resp., non-empty 
full words) over Σ   is denoted by Σ⁎ (resp., Σ+), while the set of all partial words (resp., non-
empty partial words) over Σ   is denoted by  (resp., ). The set of all full (resp., partial) 
words over Σ   of length n   is denoted by Σn (resp., ). 
 
A partial word u   is a factor   of a partial word v   if there exist x  , y   such that v=xuy (the 
factor u   is proper  if u≠ε and u≠v). We say that u   is a prefix   of v   if x=ε and 
a suffix   of v   if y=ε. We denote by Pref(v)the set of all prefixes of v   and by Suf(v) the set of all 
suffixes of v  . If u   and v   are two partial words of equal length, then u   is compatible   with v  , 
denoted u↑v, if u[i]=v[i] whenever u[i],v[i]∈Σ. If u,vare non-empty compatible partial words, 



then uv   is called a square  . We say that u   is compatible withPref(v) if there 
exists u′∈Pref(v) such that u↑u′ (a similar statement holds for Suf(v)). Moreover, a full word 
compatible with a factor of a partial word v   is called a subword   of v  . For example, ⋄b⋄ is a 
factor of abb⋄b⋄⋄ba and bbb is a subword compatible with that factor. 
 
Let {A,B} be the binary alphabet of pattern variables with Σ∩{A,B}=∅. In this paper, a pattern 
is a word over the alphabet Σ∪{A,B}. A factor u∈Σ+ of such pattern is called a pattern 
constant  . For example,AA   is the square pattern, aAaAa is the overlap pattern, and ABBA is 
one of the binary patterns. For a partial word  and pattern p∈(Σ∪{A,B})⁎, we say that w 
meets p   or p occurs in w   if there exists some non-erasing morphism φ:(Σ∪{A,B})⁎→Σ⁎, 
which acts as the identity over Σ  , such that φ(p)is compatible with a factor of w  . We say w 
avoids p   when it does not meet p  . For example, abab meetsAA  , acbcaba avoids aAaAa, 
and  meets ABBA. These definitions also apply to infinite partial 
words w   over Σ   which are functions from N to Σ⋄. 
 
A pattern p   is called k-avoidable   if there is a partial word over a k  -letter alphabet with 
infinitely many holes which avoids p  . We say that p   is avoidable   if it is k  -avoidable for 
some k  . For example, AB   is unavoidable, AA   is unavoidable in partial words, AA   is 3-
avoidable in full words, and AAA   is 2-avoidable [3]. For a given pattern p  , we define 
its avoidability index   as the minimal k   such that p   is k  -avoidable. If p   is unavoidable, it is 
∞. For example, the avoidability indices of AB  , AABB, and every binary pattern of length six or 
greater are ∞, 3, and 2, respectively [3]. 
 
3. Completion of the classification of binary patterns 
 
The following definitions are useful for our purposes. Let Σ1 and Σ2 be alphabets. For a 
word  and a morphism , we say that 
 

• w   is φ-injected from x   if  is a unique word of minimal length such that w   is a 
factor occurring once in φ(x) and for all  if w   is a factor of φ(y) then x is a factor 
of y. We say w is φ-injectedif such an x exists. 

 
• w   is φ-preinjected from a   (resp., φ-postinjected from a  ) if a∈Σ1 is such that w   is 

compatible withPref(φ(a)) (resp., Suf(φ(a))). 
 

• w   is φ-side-injected from a   if a∈Σ1 is such that the number 
ka=|{u∈Pref(φ(a))|u↑w}|+|{u∈Suf(φ(a))|u↑w}| 

 
is exactly one, and kb is zero for all other letters b∈Σ1. 
 



Let Σ={a,b}, let t:Σ⁎→Σ⁎ be the Thue–Morse morphism defined by t(a)=ab and t(b)=ba, and 
let  be the morphism defined by χ(a)=a and χ(b)=baaa⋄babbb. 
 
Theorem 1. 
 
The pattern  ABABAis   2-avoidable by  χ∘tω(a). 
 
Proof. 
 
Let Σ  , t  , and χ   be as defined above. Assume to the contrary that χ∘tω(a) meets the 
pattern p=ABABA. Then there is some non-erasing morphism h:{A,B}⁎→Σ⁎ and a 
factor w   of χ∘tω(a) such thath(p)↑w. It is well known that tω(a) avoids ABABA as well as 
overlaps and cubes [6]. We begin by noting that every factor of length five containing a hole 
is χ  -injected. Then for any factors y  , y′ of χ∘tω(a) of at least length 5 we have 
that y↑y′ implies y=y′. 
 
We may write w   in the form 
 
w=w1χ(x1)w2|w3χ(x2)w4|w5χ(x3)w6|w7χ(x4)w8|w9χ(x5)w10 
 
where w1χ(x1)w2, w5χ(x3)w6, and w9χ(x5)w10 are pairwise 
compatible, w3χ(x2)w4 andw7χ(x4)w8 are compatible, w1 suffixes χ(a1) for 
some a1∈Σ∪{ε}, w10 prefixes χ(a6) for somea6∈Σ∪{ε}, and 
 

 
 

 
 

 
 

 
 
Note that we have inserted “|” between variable images for ease of reading. 
 
We also allow xi to be empty, so long as w2i−1,xi, and w2i are not all simultaneously empty for 
any1⩽i⩽5. We also choose all xi to be maximal so that every wi is either empty or a proper affix. 
Note this means that wi is never a. 
 
We see many relations of the form u1χ(y1)u2↑u3χ(y2)u4. We consider solutions to the form for 
factors of χ∘tω(a). Every non-empty affix of χ(Σ) is χ  -preinjected or χ  -postinjected, so every 



pair of compatible suffixes are equal, and every pair of compatible prefixes are equal. Suppose 
that the lengths of the prefixes are not equal and assume towards a contradiction, and without 
loss of generality, that |u1|>|u3|. It is then clear that one of them must be length two or more, so to 
have compatible prefixes both u1 and u3 must be suffixes of χ(b). Then u3 is a suffix of u1 which 
must also be compatible with a prefix of u1. The possible values of u1 and u3 expressed as 
pairs (u1,u3) are 
 
{(bb,b),(bbb,b),(bbb,bb),(babbb,b),(⋄babbb,b),(⋄babbb,bb)}. 
 
Let v   be the suffix of χ(b) formed by deleting the u3-compatible prefix from u1. We 
havev∈{b,bb,abbb,babbb}. Note that a prefix of χ(y2) must be compatible with v  . No choice of 
the length two prefix of y2 forms a compatible prefix of χ(y2) for any of {bb,abbb,babbb}. 
So v=b andb   prefixes y2. It follows that the length three prefix of y1 is aaa  . But as the Thue–
Morse word avoids cubes, this cannot occur. It follows that |u1|=|u3|, and as both are either empty 
or suffixes of χ(b), we see that u1=u3. We can similarly show that u2=u4. 
We now have that u1=u3, u2=u4, and χ(y1)↑χ(y2). But note that either y1=y2=a, y1=y2=ε, 
or |χ(y1)|=|χ(y2)|⩾10. So χ(y1)=χ(y2). But as χ   is injective this yields y1=y2. We may 
rewrite w with fewer variables as 
 
w1χ(x1)w2|w3χ(x2)w4|w1χ(x1)w2|w3χ(x2)w4|w1χ(x1)w2. 
 
Because all the affixes of χ(Σ) are χ  -preinjected or χ  -postinjected, a1=a3=a5 and a2=a4=a6. 
Then w  occurs only as a factor of 
 
χ(a1x1a2x2a1x1a2x2a1x1a2). 
 
But this yields an instance of ABABA in tω(a) no matter which you choose to be empty, a 
contradiction. Hence no factor of χ∘tω(a) is an occurrence of ABABA.  □ 
Next, let Σ={a,b,c} and θ:Σ⁎→Σ⁎ be the generalized Thue–Morse morphism given 
by θ(a)=abc,θ(b)=ac, and θ(c)=b. 
 
Lemma 1. 
 
The generalized Thue–Morse word  θω(a)avoids both AA and  bAbcAb. 
 
Proof. 
 
Assume to the contrary that θω(a) meets the pattern bAbcAb. Then there are 
words x′,w∈Σ+ wherew=bx′bcx′b is a factor of θω(a). It is well known that the fixed 
point θω(a) avoids squares [6]. Observe that θω(a) is also an infinite word over the 



alphabet {abc,ac,b}. Because a   only occurs as a prefix in this set and c   only as a suffix, it 
follows that b   only occurs in either the factor abc   or cba  . Then x′=xa for 
some x∈Σ⁎ and w   is a subword of bxabcxabc. But this contains a square, which cannot appear 
inθω(a).  □ 
 
Now, ABBA is 2-unavoidable for full words, which must also be true for partial words. We can 
prove thatABBA is 3-avoidable by considering the morphism  given 
by φ(a)=cccbc,φ(b)=ca⋄bcbba, and φ(c)=baa. The proof, based on an analysis of cases, depends 
on Lemma 1,Lemma 2 and Lemma 3. 
 
Lemma 2. 
 
Let u and v be length five or greater factors of  φ(x), with x a full word over Σ. If u and v are 
compatible, then they are also equal. 
 
Proof. 
 
Let u   and v   be length five or greater compatible factors of φ(x) with x∈Σ+. We assume to the 
contrary that one, say v  , has a hole in position i   while u[i] is a letter. Note that for any 
word φ(x) there are only holes in images of b   and will be separated by at least seven letters. 
Then the factors u[j..j+4] andv[j..j+4] have at most one hole for any j⩽|u|−5. 
If i=0 then v[0..4]=⋄bcbb. But bcbb is φ  -injected. It follows that u[0..4]=⋄bcbb. 
If i=|u|−1 then v[|u|−3..|u|−1]=ca⋄. But ca⋄ is φ  -injected, so it can only be 
that u[|u|−3..|u|−1]=ca⋄. For any other i   we can see that v[i−1..i+1]=a⋄b, but this factor is 
also φ-injected. Then no such i can exist and the words are equal.  □ 
 
Corollary 1. 
 
For all  x,x′∈Σ+, if  φ(x)and  φ(x′)are compatible then x and  x′are equal. 
 
Proof. 
 
If |φ(x)|<5 then |φ(x)|=3, and x=x′=c. Otherwise by Lemma 2 we have that φ(x)=φ(x′). As φ   is 
injective, it is clear that x=x′.  □ 
 
Lemma 3. 
 
The set of square subwords of  φ∘θω(a) is  
{aa,bb,cc,acac,baba,cbcb}. 
 



Proof. 
 
Let alphabet Σ={a,b,c}, set S={aa,bb,cc,acac,baba,cbcb}, and morphisms θ   and φ   be as 
defined above. Let  for n∈N be the set of length n   square-free words of Σ+. Naturally, 
as θω(a) avoids squares we know that  contains all its subwords of length n  . One may easily 
check that S   is the set of square subwords of  and that there are no additional squares 
in . We will see that there are no other square-compatible factors of φ∘θω(a). Assume to 
the contrary that s   is such a factor of φ∘θω(a), i.e., s=s1s2 where s1↑s2. Since s   is not a factor 
of , it must be of the form s=w1φ(x)w2 for some subword x   of θω(a) of length four or 
greater and w1 and w2 are respectively a suffix and prefix (possibly empty) of φ(Σ). We examine 
cases according to which, if any, of w1, w2 are empty. It is evident from the possible lengths 
of w1, w2, and φ(x) that |w1|<|s1|<|w1φ(x)|. So the last letter of s1 and the first letter of s2 occur in 
the image under φ   of one or two adjacent letters of x  . Then we may 
writes=w1φ(x1)v1v2φ(x2)w2 where φ(x)=φ(x1)v1v2φ(x2) and w1φ(x1)v1↑v2φ(x2)w2. 
Herex1 and x2 are non-empty subwords of θω(a). We choose maximal lengths for x1 and x2 so 
that v1, v2are either the empty word or there is some ai∈Σ with v1 a proper prefix and v2 a proper 
suffix of φ(ai). The length restrictions imposed on s   guarantee by Lemma 
2 that w1φ(x1)v1=v2φ(x2)w2. This allows us to also write s   in the convenient form 
 
s=w1φ(y1)u1w2|w1u2φ(y2)w2, 
 
where u1w2w1u2=φ(z) for some  such that φ(y1)u1=u2φ(y2). Choose y1 and y2 of 
maximum length so u1 and u2 are empty or a proper prefix or, respectively, a suffix of φ(Σ). We 
proceed by considering the cases for which, if any, of w1 and w2 are the empty word. 
 
Case   1. Both w1 and w2 are the empty word. 
The square-compatible factor has the form s=φ(x1)v1v2φ(x2). From Corollary 1, it is clear 
that v1 andv2 must be non-empty or we would have x1=x2 and s=φ(x1x1) which would contradict 
the claim of Lemma 1 that θω(a) contains no squares. Then φ(x1) must have a prefix compatible 
with v2 and φ(x2)must have a suffix compatible with v1, and there is some ai∈Σ such 
that φ(ai)=v1v2. For any ai∈Σ, a factorization of φ(ai) into v1v2 implies that either v1 or v2 is φ  -
side-injected, except for v1=ba withv2=a (ba   is a proper suffix of φ(b) and a proper prefix 
of φ(c) while a   is a proper suffix of both φ(b) andφ(c)). However, v2 cannot equal a   as it is not 
compatible with Pref(φ(Σ)). Note that v1 must be both a proper prefix of φ(Σ) compatible with a 
suffix of φ(Σ) and v2 must also be both a proper suffix of φ(Σ)compatible with a prefix of φ(Σ), 
which means neither is φ-side-injected. This is a contradiction. 
 
Case   2. Both w1 and w2 are non-empty words. 
Consider s=w1φ(y1)u1w2|w1u2φ(y2)w2 where u1w2w1u2=φ(z) for some  such 
that φ(y1)u1=u2φ(y2). Clearly u1 and u2 are both prefixes and suffixes of φ(Σ). We easily compute 



the set of words both prefixing and suffixing φ(Σ) to be 
W=Pref(φ(Σ))∩Suf(φ(Σ))={ε,c,ba}. 
 
If both u1 and u2 are empty then w1w2=φ(ai) for some ai∈Σ. That would mean w1 and w2 are also 
in W  , but then they clearly cannot satisfy w2w1=φ(z). So at least one of u1 or u2 must be non-
empty. 
 
Suppose u2 is non-empty. Recall that u2∈W. Then for w1u2 to be a suffix of φ(z) we must have 
that w1is a suffix of cccb,ca⋄bcb. But as w1 is a suffix of φ(Σ) it cannot end in b  . Then it must 
be empty, a contradiction. So u2 is empty, thus u1 is non-empty. Then for u1w2 to be a prefix 
of φ(z) we must havew2 a prefix of {ccbc,a⋄bcbba,a} since u1∈W. But as w2 is also a prefix 
of φ(Σ) we see thatw2∈{c,cc} and the first letter of z   must be a  . So w1 can only be a three- or 
two-letter suffix of φ(a)depending on the choice of w2. 
Then s=cbcφ(x1)cc|cbcφ(x2)c or s=bcφ(x1)ccc|bcφ(x2)cc. But either case forces x2 to end in a  , 
and that forces the last letter of φ(x1) to be b  , which is impossible. Then either w1 or w2 is 
empty. 
 
Case   3. One of w1,w2 is empty. 
 
Suppose that w2=ε. We have s=w1φ(y1)u1|w1u2φ(y2) where u1w1u2=φ(z) for 
some  and φ(y1)u1=u2φ(y2). Clearly u1 and u2 are both prefixes and suffixes 
of φ(Σ) and so must lie in W  . Note that w1 is a proper suffix, so both u1 and u2 cannot be empty 
or we would have φ(z)=w1. Suppose that u2 is non-empty. Then as w1u2 must suffix φ(z) we 
must havew1∈{cccb,ca⋄bcb}, depending on the choice of u2. But w1 is a proper suffix 
of φ(Σ) and neithercccb nor ca⋄bcb is such suffix. This is a contradiction. So it can only be 
that u2 is empty and u1 is non-empty, i.e., φ(y1)u1=φ(y2). If u1 is c   then the last letter of y2 can 
only be a  . But this would forceφ(y1) to end in b  , which is not a suffix of φ(Σ). So u1=ba. Then 
the last letter of y2 must be b  . But this would force φ(y1) to end in b  . We can conclude 
that w2 is not empty. The argument is symmetric ifw1=ε. 
 
We have exhausted every case and we see that the only squares are those appearing as subwords 
of , which we know to be S.  □ 
 
Theorem 2. 
 
The pattern  ABBAis   3-avoidable by  φ∘θω(a). 
 
Proof. 
 
Let p=ABBA and let the alphabet Σ   and morphisms θ   and φ   be as defined above. Let S   be 



the set of square-compatible factors of φ∘θω(a)  which has been computed in Lemma 3. Assume 
to the contrary that the word φ∘θω(a) meets p  , i.e., there is some non-erasing 
morphism h:{A,B}⁎→Σ⁎ and factor w   ofφ∘θω(a) such that h(p)↑w. 
We proceed by examining the possible instances of p=ABBA with the knowledge 
that h(BB)=s for somes∈S. Let R   be the minimal set with every s∈S a subword of φ(R), i.e., 

 
 
For r∈R, we write φ(r)=v1s1s2v2 where s1↑s2 and v1,v2 are (possibly empty) affixes of φ(r).Table 
1 lists the elements of φ(R), the corresponding square-compatible factors, and their affixes. The 
final column lists the affixes which are φ-injected. We investigate each row of the table as a 
separate case, but we first make some observations. 
 
Table 1. Elements of φ(R), the corresponding square-compatible factors, and their affixes. 

 φ(r) v1 s1s2 v2 φ-injected 
1 φ(c) b aa ε  
2 φ(b) c a⋄ bcbba bcbba 
3 φ(b) ca ⋄b cbba ca, cbba 
4 φ(b) ca⋄bc bb a ca⋄bc 
5 φ(a) ε cc cbc  
6 φ(a) c cc bc  
7 φ(ab) cccb cc a⋄bcbba cccb,a⋄bcbba 
8 φ(cb) ba aca⋄ bcbba bcbba 
9 φ(bc) ca⋄bcb baba a ca⋄bcb 
10 φ(b) ca ⋄bcb ba ca 
11 φ(ac) cc cbcb aa  

 
Armed with S  , it is straightforward to check for any occurrence of ABBA in . There are 
none. Then we can write w=w1φ(x1rx2)w2 where r∈R and w1, w2 are (possibly empty) suffix and 
prefix of φ(Σ), respectively, and x1rx2 is a subword of θω(a) such that w1φ(x1)v1↑v2φ(x2)w2. 
By Lemma 2 we have w1φ(x1)v1=v2φ(x2)w2. When |r|=2, we write r=aiaj with ai,aj distinct letters 
of Σ. 
 
When |r|=1 consider if v1 is φ  -injected. Then w2=v1 is a factor of φ(r) and w1φ(x1)=v2φ(x2), and 
we would have that w   is a factor of w1φ(x1rx2r). But we see this may be written as 
 
w1φ(x1rx2r)=w1φ(x1)v1s1s2w1φ(x1)v1s1s2v2. 
 
This would yield a square-compatible factor of φ∘θω(a) outside of S  , in contradiction to Lemma 
3. This precludes the necessity to check Cases 3, 4, and 10. Symmetrically, w   cannot exist 
if |r|=1 and v2 isφ-injected. This precludes the necessity to check Cases 2 and 3. 



If both v1 and v2 are φ  -injected then a contradictory square in θω(a) is guaranteed regardless of 
the length of r  . For if |r|=1 then w   is a factor of φ(rx1rx1r), and if |r|=2 then w   is a factor 
ofφ(ajx1aiajx1ai). This precludes the necessity for Cases 3 and 7. 
 
Case   1. We have w=w1φ(x1)b|aa|φ(x2)w2 and w1φ(x1)b=φ(x2)w2. Note that for ease of reading 
and clarity we inserted | to separate the square-compatible factor from the rest of w  . Recall 
that w2is a prefix of φ(Σ). The final letter of w2 must be b  , 
so w2∈{b,cccb,ca⋄b,ca⋄bcb,ca⋄bcbb}. But none of {ccc,ca⋄,ca⋄bc,ca⋄bcb} can be a suffix 
of φ(Σ), so w2=b. Thenw1φ(x1)=φ(x2). We see that w1 is both a prefix and suffix 
of φ(Σ) so w1∈{ε,c,ba}. If w1=ε we would have x1=x2 and w   would be a factor of φ(x1cx1c), a 
contradiction. If w1=ba then the first letter of x2 is c  , and we would need φ(x1) to be prefixed 
by a  . It must be that w1=c and the first letter of x2 is either a   or b  . Then φ(x1) is prefixed 
by ccbc or a⋄bcbba, which are not in Pref(φ(Σ)). 
 
Case   5. We have r=a and w=w1φ(x1)|cc|cbcφ(x2)w2. As cbc   is φ  -postinjected from a   we 
havew1=cbc and φ(x1)=φ(x2)w2. Then w   is a factor of φ(ax1ax1), contradicting that θω(a) is 
square-free. 
 
Case   6. We have r=a, w=w1φ(x1)c|cc|bcφ(x2)w2, and w1φ(x1)c=bcφ(x2)w2. Recall thatw1 is a 
suffix of φ(Σ) prefixed by bc  . Then w1∈{bc,bcbba}. But w1≠bcbba as bba   is not compatible 
with any prefix of φ(x2). Then w1=bc is a suffix of φ(a). We have that w   is a factor 
ofφ(ax1ax2)w2. Recall that w2 is a prefix of φ(Σ) ending in c  . Then w2∈{c,cc,ccc,ca⋄bc}. 
Ifw2=c then by Corollary 1x1=x2 and w   must be a factor of φ(ax1ax1)w2, which implies there is a 
square subword of θω(a) contradictory to Lemma 1. We also see w2 cannot be ccc   or ca⋄bc as 
neithercc   nor ca⋄b can suffix φ(x1). So w2=cc and the last letter of x1 must be a  , write . 
But thenw   must be a factor of , which implies that θω(a) has a square subword. 
 
Case   8. We have r=cb. Note that v2 is φ  -injected from b  . So 
 
w=bcbbaφ(x1)ba|aca⋄|bcbbaφ(x2)w2 
 
and φ(x1)ba=φ(x2)w2. Recall that w2 is a prefix of φ(Σ) suffixed by ba  . The only choice 
isw2=ba. By Corollary 1 we see that x1=x2. Then w   is a factor of φ(bx1cbx1c). This shows a 
square factor in θω(a) contradicting Lemma 1. 
 
Case   9. We have r=bc. Note that v1 is φ  -injected from b  . So 
w=w1φ(x1)ca⋄bcb|baba|aφ(x2)ca⋄bcb 
 
and w1φ(x1)=aφ(x2). Recall that w1 is a suffix of φ(Σ) prefixed by a   sow1∈{a,aa,a⋄bcbba}. 
If w1 is aa   or a⋄bcbba this leaves no choice for the first letter of x2, as 



neither a   nor ⋄bcbba prefix φ(Σ). We are left with the possibility that w1=a, implying x1=x2. We 
see that a   is a suffix of either φ(b) or φ(c). This means that w   is a factor 
of φ(bx1bcx1b) orφ(cx1bcx1b). However either contradicts Lemma 1, which shows θω(a) avoids 
both the patternbAbcAb and squares. 
 
Case   11. We have r=ac, w=w1φ(x1)cc|cbcb|aaφ(x2)w2, and w1φ(x1)cc=aaφ(x2)w2. Recall 
that w1 is a suffix of φ(Σ) beginning with aa  . As aa   is φ  -postinjected we have w1=aa is a 
suffix of φ(c) and φ(x1)cc=φ(x2)w2. Recall that w2 is a prefix of φ(Σ) suffixed by cc  . Then it 
must be a prefix of φ(a) and w2∈{cc,ccc}. By Corollary 1 if w2=cc then x1=x2, and, as w2 only 
prefixesφ(a), we see that w   must be a factor of φ(cx1acx1a), a contradictory square in θω(a). 
So w2=ccc. Then the last letter of x1 must have its image suffixed by c   so . We 
have . But this would require the square aa   as a subword of θω(a) in 
contradiction with Lemma 1.  □ 
 
Taken together with the results of [3] and [5], the complete classification of the binary patterns is 
summarized in the following theorem. 
 
Theorem 3. 
 
For partial words, binary patterns fall into three categories: 
 
1. The binary patterns ε, A, AA, AAB,  AABA,  AABAA, AB, ABA, and their complements, are 
unavoidable (or have avoidability index ∞). 
 
2. The binary patterns  AABAB,  AABB,  ABAB,  ABBA, their reverses, and complements, 
have avoidability index 3. 
 
3. All other binary patterns, and in particular all binary patterns of length six or more, have 
avoidability index 2. 
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