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Abstract: 

Partial words are sequences over a finite alphabet that may contain some undefined positions 
called holes. We consider unavoidable sets of partial words of equal length. We compute the 
minimum number of holes in sets of size three over a binary alphabet (summed over all partial 
words in the sets). We also construct all sets that achieve this minimum. This is a step towards 
the difficult problem of fully characterizing all unavoidable sets of partial words of size three. 
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Unavoidable sets 

Article: 

1. Introduction 

An unavoidable   set of (full) words X   over a finite alphabet A   is one for which every two-
sided infinite word over A   has a factor in X   (when a word w   has no factor in X  , we say 
that w   avoids X  ). For example, the set X={aa,ba,bb} is unavoidable over the alphabet {a,b}, 
since avoiding aa and bb forces a word to be an alternating sequence of aʼ s and bʼ s. This 
fundamental concept was explicitly introduced in 1983 in connection with an attempt to 
characterize the rational languages among the context-free ones [8]. Since then it has been 
consistently studied by researchers in both mathematics and theoretical computer science (see for 
example [5], [6], [7], [9], [10], [12], [13] and [14]). 
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Partial words are sequences that may contain some undefined positions called holes, denoted by 
⋄ʼs, that match every letter of the alphabet (we also say that ⋄ is compatible   with each letter of 
the alphabet). For instance, a⋄bca⋄b is a partial word with two holes over {a,b,c}, 
while aabcabb is a full word over{a,b,c} built by filling in the first hole with an a and the second 
hole with a b. A set of partial words X over Ais unavoidable if every two-sided infinite full word 
over A has a factor compatible with an element in X. 

Unavoidable sets of partial words were introduced in [2], where the problem of characterizing 
such sets of cardinality n   over a k  -letter alphabet was initiated. Note that if X   is unavoidable, 
then every two-sided infinite unary word has a factor compatible with a member of X  ; 
thus X   cannot have fewer elements than the alphabet, and so k⩽n (note that the 
cases n=1 and k=1 are trivial). The characterization of all  unavoidable sets of 
cardinality n=2 was settled recently in [3] using deep arguments related to Cayley graphs. So our 
next long-term goal is to characterize unavoidable sets of cardinality n=3. Since in [2], all such 
sets over a three-letter alphabet were completely characterized (in fact, there are no non-trivial 
such sets), we need to focus on sets over a two-letter alphabet. 

In [2], a complete characterization of all three-word unavoidable sets over a binary alphabet 
where each partial word has at most two defined positions was given, and some special cases 
where one partial word has more than two defined positions were discussed, but general criteria 
for these sets had not been found. In this paper, among other things, we answer affirmatively a 
conjecture that was left open there. Our main goal however is to make another step towards the 
full n=3 characterization by computing the minimum number of holes in any unavoidable set of 
partial words of equal length and of cardinality three over a binary alphabet. We also construct 
all sets that achieve this minimum. 

Our paper is organized as follows: In Section 2, we present the basic definitions and terminology 
regarding unavoidable sets of partial words that we use throughout the paper. In Section 3, we 
formally state our main goal towards the major problem on unavoidable sets we are concerned 
with, that is, the characterization problem or the problem of characterizing unavoidable sets of 
partial words of cardinality n over a k-letter alphabet. In Sections 6 and 7, we make two steps 
towards this problem. More specifically, our first step is that we give an answer to the above 
mentioned conjecture on unavoidable sets of size three, while our second step is that we also 
compute the minimum number of holes in unavoidable sets of size three based on our 
characterization of these sets in two families (given in Sections 4 and 5). Finally in Section 8, we 
conclude with some remarks. 

2. Unavoidable sets of partial words 

In this section, we present the basics on unavoidable sets of partial words together with the 
notation that we use throughout the paper. We refer the reader to Ref. [1] for more background 
material. 



Let A   be a fixed non-empty finite set called an alphabet   whose elements we refer to 
as letters  . A finite  (full  ) word w   over A   is a finite sequence of letters of A  . The sequence of 
length zero, or the empty word  , is denoted by ε  . We write |w| to denote the length of w  , 
and w(i) to denote the letter at position i  . By convention, we begin indexing the positions with 
0, so a word w   of length m   can be represented asw=w(0)⋯w(m−1). Formally, a finite word of 
length m   is a function w:{0,…,m−1}→A. The number of occurrences of the letter a   in w   is 
denoted by |w|a. We denote by A⁎ the set of all finite words over A. 

A two-sided infinite   (full  ) word w   over A   is a function w:Z→A. For a positive 
integer p  , w   is p  -periodic   or is of period p  , if w(i)=w(i+p) for all i∈Z. We 
say w   is periodic   if it has a period. If v   is a non-empty finite word, then vZ denotes the unique 
two-sided infinite word w   with period |v| such thatv=w(0)⋯w(|v|−1). Similarly, a one-sided 
infinite   (full  ) word w   over A   is a function w:N→A. A finite word u   is a factor   of w   if 
some integer i   satisfies u=w(i)⋯w(i+|u|−1). An m-factor is a factor of length m. 

A partial word w   of length m   over A   is a function w:{0,…,m−1}→A⋄, 
where A⋄=A∪{⋄} with⋄∉A. For 0⩽i<|w|, if w(i)∈A, then i   belongs to the domain   of w  , 
denoted by D(w). Otherwise, i   is in the set of holes   of w  , denoted by H(w). We denote 
by  the set of all words over A⋄ (i.e. the set of all partial words over A  , including the empty 
word, ε  ). Note that full words are simply partial words without holes, that is, partial words 
whose domain is the entire set {0,…,|w|−1}. Two partial words u   and v   of equal length 
are compatible, denoted by u↑v, if u(i)=v(i) whenever i∈D(u)∩D(v). In this sense, we may view 
a hole as a “wildcard” character that can match any letter in A  . We denote by h(w) the number 
of holes in w  , thus, h(w)=|w|−|D(w)|. 

Let w   be a two-sided infinite word and let u   be a partial word. We say w meets u   if w   has a 
factor compatible with u  , and w avoids u   otherwise. Now, w   meets a set of partial words X   if 
it meets some u∈X, and w   avoids X   otherwise. If X   is avoided by some two-sided infinite 
word, then X   is avoidable  ; otherwise, X   is unavoidable   or every two-sided infinite word has 
a factor compatible with an element in X  . For example, the set X={a,b⋄b} is unavoidable 
over {a,b}, since avoiding a forces a word to be a sequence of bʼ s. We say X is m-uniform if 
every partial word in X has length m. 

The partial word u   is contained   in the partial word v  , denoted by u⊂v, if |u|=|v| and u(i)=v(i), 
for all i∈D(u). We say that v   is a strengthening   of u   if v   has a factor containing u  , and 
write v≻u (in other words, v has a factor built by “filling in” a number of holes in u). We also 
say that u is a weakening of v. The following illustrates an example: 

 

 



Note that if a two-sided infinite word w meets the partial word v, it also meets every weakening 
of v, and ifw avoids u then w avoids every strengthening of u. 

Let X,Y be sets of partial words. We extend the notions of strengthening and weakening as 
follows. We say that X   is a strengthening of Y   (written as X≻Y) if, for each v∈X, there 
exists u∈Y such that v≻u. We also say that Y is a weakening of X. For example, 

X={b⋄aab,bab⋄⋄aabbb}≻Y={b⋄⋄⋄a,b⋄a⋄b,aa}. 

It is not hard to see that if the two-sided infinite word w meets X, then it also meets every 
weakening of X, and if w avoids X then it avoids any strengthening of X. Hence if X is 
unavoidable, so are all weakenings of X, and if X is avoidable all strengthenings of X are 
avoidable. 

Two partial words u   and v   are conjugate  , denoted by u∼v, if there exist partial 
words x,y such thatu⊂xy and v⊂yx. It is well known that conjugacy on full words is an 
equivalence relation, and we usec(m,k) to denote the number of conjugacy classes of words of 
length m   over a k  -letter alphabet. However, in the case of partial words, conjugacy is no longer 
an equivalence relation [1]. We define two partial words u,v as being hole-conjugate   if there 
exist partial words x,y such that u=xy and v=yx; in this case we write u∼⋄v. 

We conclude with some number theoretic notation used in this paper. We 
write a|b if a   divides b  . Next, letp   be a prime and let e,m∈N. We write pe∥m if pemaximally 
divides m  , that is, if pe|m but pe+1∤m. Finally, we write i≡mj if i is congruent to j modulo m. 

3. The characterization problem on unavoidable sets 

In this paper, we are concerned with the characterization problem, that is, the problem of 
characterizing unavoidable sets of partial words of cardinality n   over a k  -letter alphabet. We 
make two steps towards this problem. As a first step, we answer affirmatively a conjecture by 
Blanchet-Sadri et al. regarding the maximum number of interior defined positions in unavoidable 
sets of the form {a⋄m−2a,b⋄m−2b,x}where x   is compatible with b⋄m−2a (Conjecture 2 of [2]). As a 
second step, as we are interested in unavoidable sets with the minimum number of holes, and 
strengthenings do not contain more holes than the original set, it is reasonable to investigate 
“maximal strength” unavoidable sets. So let X   be an unavoidable set. If, for all Y≻X, Y is 
avoidable, then we say X is maximal. We calculate the minimum number of holes in any 
unavoidable m-uniform set (summed over all partial words in the set) of cardinality three over a 
binary alphabet. We construct all sets that achieve this minimum, and then show that any 
unavoidable set with the stated number of holes is maximal. 

As discussed earlier, we can restrict our attention to the binary alphabet {a,b}. Hence, we may 
refer to a  and b   as complements of each other, so that  and . A two-sided infinite 



word w   is p  -alternating  if  for all i∈Z. Note that if w is p-alternating, it is also 
2p-periodic. 

We denote by Hm,n the minimum number of holes in any unavoidable m  -uniform set (summed 
over all partial words in the set) of cardinality n   over a binary alphabet. To have words of “real 
length” m  , we require that D(u)∋0,m−1 for each u   in any such set. The minimum number of 
elements in an unavoidable set of full words of length m   over {a,b} is known to be equal to the 
number c(m,2) of conjugacy classes of words of length m   over {a,b} [11] and [5]. 
Thus, Hm,c(m,2)=0 for m⩾1. 

Proposition 1. 

If every m-uniform unavoidable set of cardinality n having a total of h holes is maximal, 
then  Hm,n⩾h. 

Proof. 

If h=0 then the claim is clear, so assume h⩾1. Suppose that Hm,n<h, and let Y   be an m  -uniform 
unavoidable set of cardinality n   with h′<h holes for some h′∈N. Now add holes to words 
in Y   arbitrarily until the new set, Y′, has h   holes. Since Y′≺Y, Y′ is also unavoidable. 
Hence Y′ is an m-uniform unavoidable set that is not maximal.  □ 

We now state the main result and focus of this paper. 

Theorem 1. 

For  m⩾4,  Hm,3=2m−5if m is even, and  Hm,3=2m−6if m is odd. 

Remark 1. 

As long as we are discussing an m  -uniform unavoidable set of size three, say X={x1,x2,x3}, we 
may always assume, without loss of generality: 

• x1(0)=x1(m−1)=a, and only a  ʼs and ⋄ʼs appear in x1; 
• x2(0)=x2(m−1)=b, and only b  ʼs and ⋄ʼs appear in x2; 
• x3(0)=b and x3(m−1)=a; 
• h(x1)⩽h(x2). 

We call this the standard form   of an m  -uniform three-element unavoidable set of partial 
words. The presence of x1,x2 is justified since any unavoidable set over {a,b} must contain words 
compatible withaZ and bZ, respectively. Now, x3 must have complementary ends, since 
otherwise X≻{a⋄m−2a,b⋄m−2b} and as the latter set is avoidable so is X  . Next, if h(x1)>h(x2), we 
may consider instead the set . This “switches” the identity of x1 and x2 so 



that h(x1)⩽h(x2). Finally, we may fix the orientation of x3 by taking the reverse of each word, if 
necessary. 

In the next two sections, we give constructions of sets that achieve the proposed minimum 
of Theorem 1. 

4. The C-sets 

In this section, we define and completely characterize the unavoidable C-sets. 

Definition 1. 

Let Λ⊂{1,…,m−2}. We denote by Cm(Λ) the m  -uniform set {x1,x2,x3} where x1=am,x2=b⋄m−2b, 
and x3 is defined as follows: 

 

Remark 2. 

If Λ={i1,i2,…,is}, we often write Cm(i1,i2,…,is) instead of Cm({i1,i2,…,is}). By convention, we 
order the arguments of Cm(i1,i2,…,is) in increasing order, so that i1<i2<⋯<is. 

Remark 3. 

We have Cm(Λ)≺Cm(Γ) precisely when Λ⊂Γ. 

For the characterization of the unavoidable C-sets, we start with one position filled in. 

Proposition 2. 

The set  Cm(i)is unavoidable if and only if  i|m−1. 

Proof. 

Suppose i|m−1 with li=m−1 for some l∈N, and suppose to the contrary that w   is a two-sided 
infinite word that avoids X=Cm(i). The word w   must contain a b   in order to avoid x1; say, 
without loss of generality, that w(0)=b. To avoid x2, it must be that w(m−1)=a. This, however, 
forces w(i)=b, or else w   meets x3. We may repeat the argument to conclude that w(l′i)=b for 
all l′∈N. This yields a contradiction, as we claimed that w(li)=w(m−1)=a. Conversely, if i∤m−1, 
then let w=(bai−1)Z. Now, w   clearly avoids x1 and x3 as it is i  -periodic. Finally, all indices 
containing b   are congruent to each other modulo i  . Thus, w   does not meet x2, since any two 
positions m−1 apart are not congruent modulo i, and so cannot both be b. Hence, X is avoidable.  
□ 



Next, for two positions filled in, we have the following result. 

Proposition 3. 

The set  Cm(i,j)is unavoidable if and only if  i,j|m−1and  j=2i. 

Proof. 

Suppose i,j|m−1 with li=m−1 for some l∈N and 2i=j, and suppose to the contrary that w   is a 
two-sided infinite word that avoids X=Cm(i,j). Note that every b   in w   must be followed by 
an a   after m−1positions (to avoid x2), and be followed by a b   after either i   or j   positions (to 
avoid x3). It is impossible that every consecutive pair of b  ʼ s be separated by j   positions, for if 
so w   meets x2 (as j|m−1). Hence, some pair of b  ʼ s are separated by i   positions; 
say w(0)=w(i)=b. This implies that w(m−1)=w(m−1+i)=a. Now, if w(m−1−i)=b, 
then w   meets x3 (since that b   has a  ʼ s both i   and 2i=j positions later). This argument 
cascades backwards since we once again have a  ʼ s separated by i   positions. 
Thusw(m−1−l′i)=a for all l′∈N, but this is a contradiction since w(m−1−li)=w(0)=b. Hence no 
word wavoids X. 

On the other hand, if i∤m−1 then Cm(i,j)≻Cm(i), where the latter set is avoidable by Proposition 
2, and so Cm(i,j) is also avoidable (similarly, for the case when j∤m−1). Finally, 
if 2i≠j and i,j|m−1, put lj=m−1 for some l∈N. Let u=bai−1(baj−1)l−1. Then we claim w=uZ is a two-
sided infinite word avoiding X  . Clearly w   avoids x1 and x3 (for every b   is followed by another 
one after either i   or j   positions). Now let v   be any m  -factor of w   with v(0)=b. We claim 
that v(m−1)=a and so w   avoids x2. Note that b  ʼ s appear in positions congruent to 0 
modulo j   until the first factor of bai−1 appears, after which they appear in positions congruent 
to i   modulo j  . The next time a factor of bai−1 appears, bʼ s start appearing in indices congruent 
to 2i modulo j, and so on. 

Now, recall that i<j, and so m=lj+1>lj+i−j=(l−1)j+i=|u|. Furthermore, since j<m−1, we know 
thatl⩾2. It follows that 

m<m−1+2i⩽m−1+2i+(l−2)j=lj+2i+lj−2j=2((l−1)j+i)=2|u|. 

Therefore, any m  -factor v   of w   contains more than one but less than two full copies of u  . 
Hence there are either one or two occurrences of bai−1 (which appear once per u  ). So b  ʼ s 
appear at the end of v   in positions congruent to i   or 2i   modulo j  . Now, the only way 
for v(m−1)=b is if m−1≡ji or m−1≡j2i. But j|m−1, so m−1≡j0. It is easy to see that i≡j0 is 
impossible since i<j, and 2i≡j0implies 2i=lj for some l  . As i<j, this forces l=1 and so 2i=j, 
contrary to hypothesis. Hence if v   is anm  -factor of w   with v(0)=b, then v(m−1)=a. 
So, w   avoids x2 and hence the set X.  □ 

Finally, for at least three positions filled in, we get the following as a corollary. 



Corollary 1. 

If  Λ⊂{1,…,m−2}with  |Λ|⩾3, then  Cm(Λ)is avoidable. 

Proof. 

Put Λ={i1,…,is} with s⩾3. Now, Cm(Λ)≻Cm(i1,i2) and Cm(Λ)≻Cm(i1,i3), and since i2≠i3at least 
one of Cm(i1,i2) and Cm(i1,i3) is avoidable by Proposition 3. Hence, so is the set Cm(Λ).  □ 

5. The D-sets 

In this section, we define and completely characterize the unavoidable D-sets. 

Definition 2. 

Let Λ⊂{1,…,m−2}. We denote by Dm(Λ) the m  -uniform 
set {x1,x2,x3} where x1=a⋄m−2a,x2=b⋄m−2b, and x3 is defined as follows: 

 

As before, if Λ={i1,i2,…,is}, we often write Dm(i1,i2,…,is) instead of Dm({i1,i2,…,is}), and we 
order the arguments of Dm(i1,i2,…,is) in increasing order, so that i1<i2<⋯<is. 

We now characterize the unavoidable D  -sets with one position filled in. However, this process 
is much more difficult than the corresponding task for C  -sets, owing to the stricter requirements 
imposed by x1. 

Lemma 1. 

(See   [2].) Let  X={a⋄ma,b⋄nb}. Set  2s∥m+1and  2t∥n+1. Then X is unavoidable if and only 
if  s≠t. 

Lemma 2. 

The sets  X={a⋄m−2a,b⋄n−2b},  Y={a⋄m−2a,b⋄n−2b,a⋄n−2a}have the same avoidability. 

Proof. 

Suppose X   is avoidable, say by the two-sided infinite word w  . Suppose that w   meets a⋄n−2a, 
so thatw(i)=w(i+n−1)=a for some i∈Z. Then w(i+m−1)=w(i+n−1+m−1)=b, 
since w   avoids a⋄m−2a, but this contradicts the fact that w   avoids b⋄n−2b. 
Hence w   avoids a⋄n−2a and so avoids Y  . But clearly X≻Y, and so if X is unavoidable so is Y.  
□ 



Proposition 4. 

If  2s∥m−1and  2t∥i, then  Dm(i)is unavoidable if and only if  t⩽s. 

Proof. 

Let X={b⋄m−2b,a⋄m−2−ia}. We first show that X   has the same avoidability as Dm(i). For 
supposeX   is avoidable. Then so is Y=X∪{a⋄m−2a}, by Lemma 2. As Y   is an avoidable 
weakening of Dm(i), we conclude that Dm(i) is avoidable. On the other hand, suppose X   is 
unavoidable. Let w   be any two-sided infinite word. If w   meets b⋄m−2b, then it also meets Dm(i). 
If it does not, then w(j)=w(j−m+1+i)=a for some j∈Z. Now, if w(j−m+1)=a, then w   meets x1, 
and if w(j−m+1)=b, it meetsx3. In either case, w   meets Dm(i), and so Dm(i) is unavoidable. 
Hence X   has the same avoidability asDm(i). 

Next, let 2s∥m−1,2t∥i,2r∥m−1−i. We show that r≠s if and only if t⩽s. Set 2sp=m−1,2tq=i for 
odd p,q. Now, if t<s, then 2s−tp−q is odd, and so 2t∥2t(2s−tp−q)=2sp−2tq=m−1−i and r=t≠s. If t=s, 
then, since p−q is even, we have 2s+1|2s(p−q)=2sp−2tq=m−1−i. Thus r⩾s+1 and so r  cannot be 
equal to s  . Finally, if t>s, then p−2t−sq is odd. It follows that 2s∥2s(p−2t−sq)=2sp−2tq=m−1−i and 
so r=s. Hence r≠s if and only if t⩽s. Recall that by Lemma 1, X   is unavoidable if and only 
if r≠s. Therefore, Dm(i) is unavoidable if and only if t⩽s.  □ 

We now turn our attention to D  -sets with two positions filled in. A previous result gives 
necessary conditions for the unavoidability of Dm(i,j), provided that i,j,m−1 are relatively prime. 

Theorem 2. 

(See   [3].) Let  l,n1,n2be non-negative integers such that  n1⩽n2and  gcd(l+1,n1+1,n2+1)=1. If the 
set  {a⋄la,b⋄lb,a⋄n

1a⋄n
2a,b⋄n

1b⋄n
2b}is unavoidable, then at least one of the following conditions 

hold: 

(i) l=6and  (n1,n2)∈{(1,3),(3,7),(1,7)}; 
(ii) n1+1≡2l+20; 
(iii) n2+1≡2l+20; 
(iv) n1+n2+2≡2l+20; 
(v) 2n1+n2+3≡2l+2l+1; 
(vi) 2n2+n1+3≡2l+2l+1; 
(vii) n2−n1≡2l+2l+1. 

Corollary 2. 

If  Dm(i,j)is unavoidable and  gcd(m−1,i,j)=1, then  j=2i, or  i+j=m−1, or the three 
conditions  m=8,i=1, and  j∈{3,5}hold. 

Proof. 



Suppose Dm(i,j) is unavoidable. Put l=m−2,n1=j−i−1,n2=m−j−2 and 
let Y={a⋄la,b⋄lb,a⋄n

1a⋄n
2a,b⋄n

1b⋄n
2b}. Note that Y   is also unavoidable 

since Y≺Dm(i,j)={a⋄la,b⋄lb,b⋄i−1a⋄n
1a⋄n

2a}; moreover, gcd(l+1,n1+1,n2+1)=1. Hence, l,n1,n2 must 
satisfy one of the conditions given in Theorem 2. However, as i>0 we have that n1+n2+1<l; this 
forces one of (i), (v), or (vi) to hold. It is easy to verify that these conditions are equivalent to the 
ones stated aboutm,i,j.  □ 

The following proposition shows that we do not gain any new unavoidable sets by considering 
cases wherem−1,i,j are not relatively prime. Thus we may extend the above result to all i,j,m. 

Proposition 5. 

For any  Λ={i1,…,is}, let  dΛ={di|i∈Λ}. Then  Dm(Λ)is avoidable if and only if  Dd(m−1)+1(dΛ)is. 

Proof. 

Let Λ={i1,…,is}⊂{1,…,m−2}. Let Y=Dm(Λ)={y1,y2,y3} and Z=Dd(m−1)+1(dΛ)={z1,z2,z3}, 
where y1=a⋄m−2a, y2=b⋄m−2b, z1=a⋄d(m−1)−1a, z2=b⋄d(m−1)−1b. If w   is a word avoiding Y  , then we 
claim the word w′=⋯w(−1)dw(0)dw(1)d⋯ avoids Z  . To see this, note that as w   is (m−1)-
alternating, w′ is d(m−1)-alternating and so avoids z1,z2. Now, if w′ meets z3, then there 
exists l   such that w′(l)=b, w′(l+di1)=⋯=w(l+dis)=w(l+d(m−1))=a. But if we put , 
then w(h)=b, w(h+i1)=⋯=w(h+is)=w(h+m−1)=a so w   meets y3. This is a contradiction, so w′ in 
fact avoids z3 and hence Z  . The reverse direction is analogous, except that if w   is a word 
avoiding Z  , then the word w′=⋯w(−d)w(0)w(d)⋯ avoids Y.  □ 

Corollary 3. 

If  Dm(i,j)is unavoidable, then  j=2i, or  i+j=m−1, or both  m=7i+1and  j∈{3i,5i}. 

Proof. 

This is an immediate consequence of Corollary 2 and Proposition 5.  □ 

We now show that the above conditions are sufficient. 

Lemma 3. 

Let  m,n∈N,  2s∥mand  2t∥n. If  s⩾t,  gcd(m,n)=gcd(2m,n). 

Proof. 

Since s⩾t, we know that the power of 2 maximally dividing gcd(m,n) is just min(s,t)=t. But the 
power of 2 maximally dividing gcd(2m,n) is min(s+1,t)=t. It is clear that the other prime factors 
ofgcd(m,n) are unaffected by doubling m, and the result follows.  □ 



Proposition 6. 

Let  2s∥m−1,2t∥i, and  2r∥j. Then the set  Dm(i,j)is unavoidable if and only if (iv) holds in addition 
to one of (i), (ii), or (iii): 

(i) j=2i; 
(ii) i+j=m−1; 
(iii) m=7i+1and  j∈{3i,5i}; 
(iv) s⩾t,r. 

Proof. 

If t>s, then Dm(i) is avoidable by Proposition 4. Hence Dm(i,j) is avoidable, as Dm(i,j)≻Dm(i). A 
similar argument applies if r>s. Together with Corollary 3, we have one direction of the proof. 

It remains to show that the above conditions are sufficient. We assume for the remainder of the 
proof that (iv) holds. 

Suppose (i) holds, and that w   is a word avoiding Dm(i,j). We show that this leads to a 
contradiction. Sincew   avoids x1, we have |w|b⩾1 and we may take without loss of 
generality w(0)=b. To avoid x2, w(m−1)=a, and to avoid x3, w(i)=b or w(j)=b. Similarly, for 
every b  , there must be a b   that occurs i   orj=2i positions later. Suppose that w(i)=b. 
Then w(m−1+i)=a. Now, note that w(m−1−i)=a, for there are a  ʼ s that occur i   positions 
and j=2i positions after m−1−i. Thus w(−i)=b. Since we have another two a  ʼ s separated 
by i   positions (at m−1 and m−1−i), we may apply the same argument to conclude 
that w(−2i)=b. We may repeat this to get w(li)=b for all l⩽0. Now, w   is (m−1)-alternating since 
it avoids {x1,x2}, and so it is (2m−2)-periodic. Hence w(x)=b whenever x≡2m−2li for somel⩽0. 

Let d=gcd(m−1,i). Then d|m−1, say with dq=m−1, and furthermore d=gcd(2m−2,i) by Lemma 3. 
By Bezoutʼ s theorem, we may write d=xi+y(2m−2) for some x,y∈Z (x   negative). 
Hence xi≡2m−2d. It follows that w(m−1)=w(dq)=b, as dq≡2m−2xqi. This contradicts our previous 
assertion thatw(m−1)=a. 

It remains to consider the case where b   appears in every position congruent 
to lj   modulo 2m−2 for somel∈Z (that is, when no two b  ʼ s are separated by i   positions), but 
this leads to a contradiction in the same way, since r⩽s. Hence we may represent m−1 as a 
multiple of j   modulo 2m−2 and so reach a contradiction. We conclude that Dm(i,j) is 
unavoidable when (i) holds. 

Now suppose (ii) holds. Again, let w   be a word that avoids Dm(i,j), and take without loss of 
generalityw(0)=b. Suppose that w(i)=b. Then w(m−1)=w(m−1+i)=a. Now, the b   in 
position i   already has an a  m−1−i=j positions later, so it must have a b i   positions later. 
Hence w(2i)=b, and now w(m−1+2i)=a. Repeating this argument gives us that w(li)=b for 



all l⩾0. Since w   is (2m−2)-periodic, we have w(x)=b whenever x≡2m−2li for some l  . A 
contradiction is obtained in a manner identical to the previous case, since (iv) holds. 
Hence Dm(i,j) is unavoidable when (ii) holds. Finally, note that there are only a finite number of 
words that are (m−1)-alternating, for any fixed m  . Thus we may show the unavoidability 
of D8(1,3) and D8(1,5) (and hence the unavoidability of D7i+1(i,3i) and D7i+1(i,5i), by Proposition 
5) via an exhaustive search. It follows that Dm(i,j) is unavoidable if (iii) holds.  □ 

Finally, we show that, like the C  -sets, the D  -sets are always avoidable when x3 has at least 
three positions filled in. 

Proposition 7. 

If  Λ⊂{1,…,m−2}with  |Λ|⩾3, then  Dm(Λ)is avoidable. 

Proof. 

It suffices to show that Dm(i,j,l) is avoidable, as if |Λ|>3 we can choose a weakening with exactly 
three positions filled in x3. Moreover, by Proposition 5, we only need to consider the cases 
when gcd(m−1,i,j,l)=1. 

If Dm(i,j,l) is unavoidable, then it is necessary that each of the sets Dm(i,j), Dm(j,l), and Dm(i,l) be 
unavoidable. Hence each weakening must satisfy Proposition 6. Suppose some of these three 
weakenings satisfies (iii). If m=8 it is easy to see that one of the above weakenings of Dm(i,j,l) is 
avoidable, asD8(1,3) and D8(1,5) are the only unavoidable D  -sets. On the other hand, 
suppose m=7d+1 withd>1. If Dm(i,j) satisfies (iii), then l   is also a multiple of d   regardless of 
which condition Dm(i,l)satisfies. This contradicts our claim of relative primeness. An analogous 
argument shows that Dm(i,l)cannot satisfy (iii). 

Now suppose Dm(j,l) satisfies (iii). Then j=d and l=pd for p∈{3,5}. If Dm(i,j) satisfies (ii) then 
againi   is a multiple of d   and we have a contradiction. Hence Dm(i,j) satisfies (i) and j=2i. 
If i>1 we again contradict relative primeness (since gcd(m−1,i,j,l)=i), and if i=1, we have d=2. 
But bothD15(1,6),D15(1,10) are avoidable, so Dm(i,j,l) has the avoidable weakening Dm(i,l). 
Hence if any of the three weakenings satisfy (iii), Dm(i,j,l) is avoidable. 

Next suppose none of the three weakenings satisfies (iii). Set 2s∥m−1,2t∥i,2r∥l. It is impossible 
that all three weakenings satisfy (i), just as it is impossible for more than one weakening to 
satisfy (ii). Hence it must be that two weakenings satisfy (i) and one weakening satisfies (ii). It is 
easy to see that we must havej=2i,l=2j, and i+l=m−1. But this implies l=4i, and so 5i=m−1. It 
follows that s=t. Hence we haver>s, which is a contradiction as we assumed (iv) holds. 
Therefore, Dm(i,j,l) is avoidable.  □ 

With our characterization of unavoidable C-sets and D-sets, we may begin to prove Theorem 1. 
We first prove Conjecture 2 from [2]. 



6. Answer to a conjecture on unavoidable sets of size three 

Corollary 4 answers the following conjecture. 

Conjecture 1. 

(See   [2].) If the set  X={a⋄m−2a,b⋄m−2b,x}is unavoidable, where  x↑b⋄m−2a, then x has at most 
two interior defined positions. 

We begin with a lemma. 

Lemma 4. 

Let  i1<⋯<is<j1<⋯<jrbe elements of  {1,…,m−2}. Let x be defined as 
follows  : x(i)=bif  i∈{0,i1,…,is},  x(i)=aif  i∈{j1,…,jr,m−1}, and  x(i)=⋄otherwise. Then the 
set  X={a⋄m−2a,b⋄m−2b,x}has the same avoidability as some D-set  Dm(Λ)with  |Λ|=s+r. 

Proof. 

We proceed by induction on s  . The base case of s=0 is trivial as then X   is itself a D  -set. Now 
let s⩾1. Note that a word w   meets x   if and only if it meets x′ defined as 

b⋄i
2
−i

1
−1b⋯b⋄i

s
−i

s−1
−1b⋄j

1
−i

s
−1a⋄j

2
−j

1
−1a⋯a⋄j

r
−j

r−1
−1a⋄m−1−j

r
−1a⋄i

1
−1a 

since w   must be (m−1)-alternating. Hence X   has the same avoidability 
as X′={a⋄m−2a,b⋄m−2b,x′} which has one fewer b  . Applying the induction hypothesis to X′ yields 
the claim.  □ 

Corollary 4. 

Conjecture 1 is true. 

Proof. 

If x   has any a   appearing before a b  , then the set X   is avoided by (bm−1am−1)Z. Otherwise, 
if x   has at least three interior defined positions, then by Lemma 4 it has the same avoidability as 
some set Dm(Λ) with|Λ|⩾3. But all such D-sets are avoidable, by Proposition 7, and so X is 
avoidable.  □ 

7. Minimum number of holes in unavoidable sets of size three 

First, we show that the C  -sets are the only unavoidable sets with the minimum number of holes. 
We divide the sets into multiple cases, conditioning on the quantity h(x1)+h(x2). 

Corollary 5. 



Let m be odd   (resp., even  ). Let X be an m-uniform set of size three of the form described 
in   Remark 1. Suppose  h(x1)+h(x2)>m−2 (resp.,  m−1). Then if X 
has  2m−6 (resp.,  2m−5) holes in total, X is avoidable. 

Proof. 

There are at most m−5 holes in x3, and so x3 has at least three positions other than 0 
and m−1 defined. Then we may weaken x1,x2 to a⋄m−2a,b⋄m−2b. The resulting set is avoidable 
by Corollary 4, and therefore so is X.  □ 

Note that we did not treat the case where h(x1)+h(x2)=m−1 for even m. This case is covered by 
the following proposition. 

Proposition 8. 

Let  m⩾4be even, and let X be an m-uniform set of size three of the form described 
in   Remark 1with  h(x1)+h(x2)=m−1. Then if X has  2m−5holes in total, X is avoidable. 

Proof. 

First, suppose that h(x1)>1. Assume that m⩾8. We find a two-sided infinite word w   with 
period m−1that avoids X  . Since w   is (m−1)-periodic, any m  -factor of w   begins and ends 
with the same letter, and so w   immediately avoids x3. Moreover, we only have to consider 
whether w   meets  (and ), as any m  -
factor v   with v(0)=a necessarily hasv(m−1)=a (analogously, every m-factor that begins 
with b has to end with b). 

Now consider the set B  , which contains all conjugacy classes of length m−1 over {a,b}, with 
exactlyh(x1)b  ʼ s and h(x2)a  ʼ s. Since m⩾8, it follows that |B|>2. Choose a 
representative u   of a conjugacy class not covered by  and . By considering the number 
of a  ʼ s and b  ʼ s in u  , we see that if w=uZ were to meet  via the (m−1)-factor v  , the ⋄ʼs 
in  need to align with the b  ʼ s in v  . However, for any factor v  of w   this is impossible, 
since  and v∼u. Thus, it follows that v   cannot be compatible with . A similar argument 
shows that w   avoids . Hence w   avoids x1 and x2, and therefore avoids X  . We may check the 
cases for m⩽6 easily via a computer program. 

Now, suppose that h(x1)=1. In this case we know that x1∼⋄am−1⋄ and x2=b⋄m−2b. Moreover, x3has 
precisely two interior positions defined. First, if both the interior positions have letter b  , then 
the wordw1=(babam−3)Z avoids X   since each m  -factor of w1 contains exactly two occurrences 
of the letter b  , and so cannot be compatible with either x1 or x3. The word w1 avoids x2 as well 
since both m  -factors that begin with b   end with a  . Second, if the interior positions have 
letters, from left to right, a,b, then the word(bm−1am−1)Z avoids X  . Third, if the interior positions 



have letters, from left to right, b,a, and the b  occurs in position 1, then (babam−3)Z avoids X  . 
Otherwise, the word (bbam−1)Z avoids X  , since in any m  -factor which contains two instances 
of b  , these letters appear in consecutive positions, and so cannot be compatible with x2 or x3. 

Finally, if both the interior positions i,j, i<j, have letter a  , then we proceed as follows. 
If i,j|m−1, then, since m−1 is odd it cannot be that j=2i. Therefore the 
word w2=(bai−1(baj−1)l−1)Z (where jl=m−1) avoids the set Cm(i,j) by Proposition 3, and so 
avoids x2 and x3. Since w2 has at least two occurrences of b   in each m  -factor, w2 avoids x1 as 
well. Hence w2 avoids X. 

If i   and j   do not simultaneously divide m−1, let l∈{i,j} be an index that does not divide m−1. 
Now,(bal−1)Z avoids x2 and x3, but it might meet x1 if the number of a  ʼ s on either side of the ⋄ 
in x1 are both less than l  . This can happen only if , which in turn implies 
that  (either l=j or l=i<j). Hencej∤m−1 as well. Then the j  -periodic 
word w3=(bbaj−2)Z avoids x1 and x3 (consider the number of instances of b   in w3 and its period, 
respectively). Unless either j+1=m−1 or 2j−1=m−1, the word w3avoids x2 as well. However, in 
both of these last cases the word (babaj−3)Z avoids X.  □ 

Proposition 9. 

Let X be an m-uniform set of three partial words of the form described in  Remark 1. 
If  h(x1)+h(x2)=m−2, then either X is a C-set or X is avoidable. 

Proof. 

Suppose h(x1)=0. Then if |x3|b⩾2, the two-sided infinite word w=(bam−1)Z avoids X  ; 
otherwise, X  is a C  -set. Therefore, for the remainder of this proof we may assume that h(x1)⩾1. 
For brevity, leth(x1)=i−2. Then h(x2)=m−i. 

First, suppose that x2≁⋄bi⋄m−i. The word w=(bi−1am−i)Z avoids X  . Note that w   is (m−1)-periodic, 
so w   does not meet x3 (any m  -factor of w   has the same symbol in its first and last position). 
Since any m  -factor of w   has at least i−1b  ʼ s, while x1 contains only i−2 ⋄ʼs, we can conclude 
that w  avoids x1. Finally, let v   be any m  -factor of w   with v(0)=b. 
Then v(m−1)=b as w   is (m−1)-periodic, and v(0)⋯v(m−2)∼bi−1am−i. This implies that there 
exists a contiguous block of m−ia  ʼ s within v  . It is now clear that v↑̸x2, as x2 has 
precisely m−i ⋄ʼs to match the a  ʼ s, but they do not form a contiguous block. By 
assumption v   is any m  -factor of w   that begins with a b  , we can therefore conclude 
that w  avoids x2 and hence the set X. 

Now, suppose that x2∼⋄bi⋄m−i. The word w1=(bi−2abam−i−1)Z avoids X  . It avoids x1 and x3 for the 
same reasons w   does. Now, if v   is any m  -factor of w1 beginning (and ending) with b  , 
thenv(0)⋯v(m−2)∼bi−2abam−i−1. This implies that there are m−i occurrences of a   in v  , not 



situated in a contiguous block. It is now clear that v↑̸x2, as x2 has only m−i ⋄ʼs to align with 
the a  ʼ s, however, all appearing in a single contiguous block. Thus w1 avoids x2.  □ 

Corollary 6. 

Let X be an m-uniform set of three partial words of the form described in Remark 1. 
If  h(x1)+h(x2)<m−2, then X is avoidable. 

Proof. 

Insert holes into x1,x2 so that 1⩽h(x1)⩽h(x2),h(x1)+h(x2)=m−2. The new set, X′, is still in 
standard form, and is not a C  -set since h(x1)⩾1. Hence it is avoidable by Proposition 9, and thus 
so isX≻X′.  □ 

Before we apply Proposition 1 to prove Theorem 1, it remains to show that the unavoidable C-
sets are maximal. 

Proposition 10. 

If m is even (resp., odd), then the unavoidable C-sets described 
in Proposition 2 (resp., Proposition 3) are maximal. 

Proof. 

Let m   be even, and let X=Cm(i) be an unavoidable C  -set. We cannot strengthen x2, for the 
resulting set would be avoidable by Corollary 6. If we strengthen x3 with a b  , then the resulting 
set is avoidable by Proposition 9 (as it is no longer a C  -set). Finally, suppose we 
strengthen x3 with an a   in position j  . Let i′=min(i,j) and j′=max(i,j). Then Cm(i′,j′) is avoidable 
by Proposition 3, since either j′≠2i′, or j′=2i′∤m−1 (since m−1 is odd). Hence X   is maximal. Now 
let m   be odd, and let Y=Cm(Λ) an unavoidable C  -set where |Λ|=2. Again, we cannot 
strengthen x2 at all, nor can we strengthen x3 with a b  . Now suppose we strengthen x3 with 
an a  . Then the resulting set is of the form Cm(i,j,l), which is avoidable by Corollary 1. 
Hence Y is maximal.  □ 

We now complete the proof of Theorem 1. 

Proof of Theorem 1. 

Let m   be odd (resp., even), and let X   be an m  -uniform unavoidable set of three partial words, 
with 2m−6(resp., 2m−5) total holes. Now, Corollary 5 and Corollary 6 (resp., along 
with Proposition 8) together tell us that h(x1)+h(x2)=m−2, and moreover Proposition 9 gives 
that X   is necessarily a C  -set. But we know that unavoidable C  -sets with 2m−6 (resp., 2m−5) 
holes are maximal, by Proposition 10, and hence X   is. 
Therefore, Hm,n⩾2m−6 (resp., Hm,n⩾2m−5) by application of Proposition 1. On the other 



hand,Cm(1,2) (resp., Cm(1)) is always unavoidable, and so we can in fact 
achieve 2m−6 (resp., 2m−5) holes in an unavoidable set. This yields the reverse inequality, that 
is, Hm,n⩽2m−6 (resp., Hm,n⩽2m−5).  □ 

8. Conclusion 

In this paper, we have answered affirmatively a conjecture left open by Blanchet-Sadri et al. 
(Conjecture 2 of Ref. [2]). We have computed the minimum number of holes in any 
unavoidable m-uniform set of size three over a binary alphabet (summed over all partial words in 
the set). We have also constructed all sets that achieve this minimum, and have shown that any 
unavoidable set with the stated number of holes is maximal. However, the characterization of the 
unavoidable sets of partial words of size three over a binary alphabet remains an open problem, 
even when we restrict our attention to m-uniform sets. 
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