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 This dissertation examined the overall effects of routing and scoring within a 

computer adaptive multi-stage framework (ca-MST).  Testing in a ca-MST environment 

has become extremely popular in the testing industry.  Testing companies enjoy its 

efficiency benefits as compared to traditionally linear testing and its quality-control 

features over computer adaptive testing (CAT).  Test takers enjoy being able to go back 

and change responses in review time before being assigned to the next module.  Lord 

(1980) outlined a few salient characteristics that should be investigated before the 

implementation of multi-stage testing.  Of these characteristics, decisions on routing 

mechanisms have received the least attention.  This dissertation varied both item pool 

characteristics such as the location of information, and ca-MST configuration 

characteristics such as the ca-MST configuration design (e.g., 1-3, 1-2-3, 1-2-3-4).  The 

results from this study hope to show that number correct scoring can serve as a capable 

surrogate for IRT calibrations at each step and that even if three-parameter scoring 

models are used at the end that the number correct method will not misroute as compared 

to traditional methods. 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345079362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
THE EFFECTS OF ROUTING AND SCORING WITHIN A COMPUTER 

 
ADAPTIVE MULTI-STAGE FRAMEWORK 

 
 
 
 
 

by 
 

Andrew Dallas 
 
 
 
 
 

A Dissertation Submitted to 
the Faculty of The Graduate School at 

The University of North Carolina at Greensboro 
in Partial Fulfillment 

of the Requirements for the Degree 
Doctor of Philosophy 

 
 
 
 
 

Greensboro 
2014 

 
 
 
 
 

 Approved by 
 
 Richard M. Luecht    
 Committee Chair 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2014 Andrew Dallas 
  



ii 

APPROVAL PAGE 
 
 

This dissertation, written by Andrew Dallas, has been approved by the following 

committee of the Faculty of The Graduate School at The University of North Carolina at 

Greensboro. 

 

 

 Committee Chair Richard Luecht  
 
 Committee Members Terry A. Ackerman  
 
  Robert Henson  
 
  John Willse  
   
 
 
 
 
 
 
 
 
 
 
 
 
  
Date of Acceptance by Committee 
 
  
Date of Final Oral Examination 

  



iii 

ACKNOWLEDGMENTS 

 I am grateful to my committee, family, friends, and colleagues who endured my 

questions, comments and frustrations.  I received immense support throughout the course 

of my graduate school career from all four members of my committee.  Dr. Richard 

Luecht assisted me both professionally and personally and through his mentorship has 

opened more doors for me than I could have imagined, even despite the constant ribbing 

that I endured for being a Bears fan.  Dr. John Willse and I served on a grant together 

where I picked up enormous amounts of experience and ran more analyses than I could 

have ever possibly learned in the classroom, (even if many of them came up fruitless).  

Dr. Robert Henson served as my master’s advisor and ensured that I was able to follow 

my own path in crafting the graduate school experience through the department.  He also 

was able to see connections in the work that I was not able to see at the time.  Finally I 

would like to thank Dr. Terry Ackerman whose door was never shut, even though I often 

would walk into his office simply to discuss events outside of academics.  I could not 

have gotten nearly as far as I have without the tremendous support that I have received 

from my committee. 

 

 

 

 



iv 

TABLE OF CONTENTS 
 

Page 
 
LIST OF TABLES ............................................................................................................. vi 
 
LIST OF FIGURES .......................................................................................................... vii 
 
CHAPTER 
 
 I. INTRODUCTION  ...............................................................................................1 
 

An Overview of Some Relevant Test Delivery Models ..............................1 
Elements of ca-MST ....................................................................................4 
Benefits of ca-MST ......................................................................................7 
Purpose and Rationale................................................................................11 
Study Variables, Factors, and Issues..........................................................15 
Research Questions ....................................................................................18 
Summary and Organization .......................................................................19 

 
 II. REVIEW OF THE LITERATURE ....................................................................21 
 

Lord’s Six Areas of Research ....................................................................21 
Comparison of Test Delivery Models ........................................................26 
Item Response Theory ...............................................................................28 
Strategies for Item Pooling ........................................................................35 

Methods of Determining the Central Location for  
 the Item Pool ............................................................................35 

Methods for performing Automated Test  
 Assembly (ATA) ..........................................................40 

Routing and Scoring Methods for ca-MSTs ..............................................45 
Summary ....................................................................................................51 

 
 III. DATA AND METHODOLOGY ........................................................................53 
 

Data Generation and Simulation Process ...................................................53 
Study Design Conditions ...........................................................................57 
Data Analysis .............................................................................................62 
Review of Research Questions ..................................................................63 
Conclusion .................................................................................................65 

 
 
 



v 

 IV. RESULTS ...........................................................................................................66 
 

Creation of the MIFs ..................................................................................66 
Differences in Routing ...............................................................................72 
Residuals and Recovery .............................................................................76 

Item Pool Characteristics ...............................................................77 
Ca-MST Configuration Characteristics .........................................82 
Routing and Scoring Methods .......................................................87 
Summary ........................................................................................94 

 
 V. DISCUSSION .....................................................................................................95 
 

Impact of Routing and Scoring Methods ...................................................95 
Impact of ca-MST Configuration and Item Pool Variables .......................98 
Impact of Item Pool Characteristics on Psychometric 
 Quality of Forms .................................................................................102 
Comparison of the Baseline versus the Routing/Scoring 
 Methods ...............................................................................................105 
Further Research ......................................................................................106 
Summary ..................................................................................................107 
 

REFERENCES ................................................................................................................110 
 
APPENDIX A. BIAS AND RMSE BY CONFIGURATION TABLES .......................120 
  



vi 

LIST OF TABLES 
 

Page 
 
Table 1.1. Table of Routing and Scoring Conditions .......................................................17 
 
Table 3.1. Summary of Study Design Conditions ............................................................60 
 
Table 4.1. RMSE of ATA-created MIFs vs. Target Functions for 1-3  
  Configurations ...........................................................................................69 
 
Table 4.2. RMSE of ATA-created MIFs vs. Target Functions for 1-2-3  
  Configurations ...........................................................................................70 
 
Table 4.3. RMSE of ATA-created MIFs vs. Target Functions for 1-2-3-4  
  Configurations ...........................................................................................70 
 
Table 5.1 Number of Items Available and Used by ca-MST Configuration  
  and Module Length ...................................................................................104 
  



vii 

LIST OF FIGURES 
 

Page 
 
Figure 1.1. Two ca-MST Panels ......................................................................................5 
 
Figure 4.1. Example of 1-3 MIF design .........................................................................67 
 
Figure 4.2. Example configuration TIF to target plot ....................................................68 
 
Figure 4.3. Proportion of routing by method .................................................................73 
 
Figure 4.4. Proportion of routing by configuration .......................................................74 
 
Figure 4.5. Proportion of routing scores by method in the 1-2-3  
  configuration ...........................................................................................75 
 
Figure 4.6. Bias by method and pool difficulty .............................................................78 
 
Figure 4.7. RMSE by pool difficulty and routing/scoring method ................................79 
 
Figure 4.8. Bias by method and average discrimination ................................................80 
 
Figure 4.9. RMSE by method and average discrimination ............................................81 
 
Figure 4.10. Bias by method and module length .............................................................83 
 
Figure 4.11. RMSE by method and module length .........................................................84 
 
Figure 4.12. Bias by configuration and method ...............................................................85 
 
Figure 4.13. RMSE by configuration and method ...........................................................86 
 
Figure 4.14. Bias by routing method ...............................................................................87 
 
Figure 4.15. RMSE by routing method ............................................................................88 
 
Figure 4.16. Bias by scoring method ...............................................................................89 
 
Figure 4.17. RMSE by scoring method ...........................................................................90 
 
Figure 4.18. Boxplots of the interaction between the routing and scoring  
  methods...................................................................................................91 



viii 

Figure 4.19. Boxplots of the average bias by each of the ten replications  
  in the study for each condition ...............................................................92 
 
Figure 4.20. RMSE by condition .....................................................................................93 
 
 
 
 
 
 
 
 
 



1 
 

 

 
CHAPTER I 

 
INTRODUCTION 

  

 This chapter discusses the past and current state of computer adaptive multi-stage 

testing (ca-MST).  Furthermore, this paper places ca-MST in the spectrum of other 

popular test delivery models.  Next, some terminology of ca-MST is discussed, as well 

as, some of the key variables for constructing a study on ca-MST.  Finally, a gap 

statement and relevant research questions are discussed. 

An Overview of Some Relevant Test Delivery Models 

Computer-based testing (CBT) is becoming widely accepted across multiple 

venues and platforms, with testing applications in military selection and placement, 

psychological assessment, educational assessment, language assessment and professional 

certification/licensure.  There are many types of CBT delivery models, although most can 

be characterized by several key test delivery features: (a) whether the tests are pre-

assembled or assembled in real-time (while or immediately prior to the examinee starting 

the test); (b) whether the test length is variable or fixed; and (c) the degree to which the 

test is made adaptive.  Real-time test assembly, variable-length, and item adaptation 

features are most often associated with computerized adaptive testing (CAT).  This 

section discusses the spectrum of CBT models available and places ca-MST along that 

spectrum. 
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CAT is typically advocated as a way to make a test more efficient (i.e., improve 

the stability of estimated proficiency scores over a non-adaptive test of the same length or 

maintain a prescribed level of score estimation stability or “standard errors of estimate” 

using a shorter test).  A CAT works by essentially targeting the difficulty of each test 

item to the estimated proficiency of the examinee, updating the proficiency score 

estimate after each item is administered.  The targeting algorithm provides the adaptive 

feature and occurs in real-time.  In addition, a CAT can be variable length (e.g., stopping 

when a prescribed standard error of estimate is reached). 

Pre-assembled, linear fixed tests (LFT) tend to be fixed in length and are non-

adaptive.  LFTs contain a fixed collection of items that every examinee assigned that 

form sees.  They may be administered as a CBT or in paper-and-pencil format.  What 

LFTs lose in efficiency by being non-adaptive, they tend make up for in terms of 

providing many important quality control (QC) and quality assurance (QA) advantages—

including the capability to review and change (if necessary) the mix of items selected for 

each test form. 

An alternative CBT delivery model that is gaining steady support in operational 

testing circles is called a computerized adaptive multi-stage test (ca-MST).  Ca-MST 

blends the efficiency of CAT with the strong QC/QA capabilities of a LFT.  The Uniform 

Certified Public Accountants Examination (American Institute for Certified Public 

Accountants Exam) was one of the first large-scale, high-stakes organizations to 

implement a ca-MST platform in 2004.  More recently, the Graduate Record Examination 

(GRE®, Educational Testing Service) has replaced its CAT versions with ca-MST 
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versions.  Other testing companies are also considering the transition to ca-MST because 

this test delivery models offers many practical benefits. 

The simplest definition of ca-MST is that it is an adaptive test that employs pre-

assembled, carefully structured test assembly units called modules that are comprised of 

multiple items and panels that are comprised of multiple modules.  Each ca-MST panel is 

fully capable of self-adapting an examination form to each examinee—similar to a 

CAT—based on his or her performance over a series of two or more testing stages.  The 

adaptivity is controlled by the routes, which guide examinees from module to module.  

Unlike CAT, which adapts at the item level, ca-MST adapts at the module level—but in a 

highly structured way.  The design of the modules and panels achieves a certain amount 

of statistical efficiency via adaptive routing to a specific set of modules along the 

allowable routes in the panel.  Furthermore, the pre-construction of every panel allows 

direct QC review and control over all of the content across any route (test form) in the 

panel (Luecht, 2000; Luecht & Nungester, 1998).  The same level of strong QC 

capabilities is simply not feasible in CAT because of the real-time test assembly. 

Despite its growing popularity, there are still some important technical research 

issues that need to be addressed for the full potential of ca-MST to be realized.  These 

technical research issues include determining the appropriate number of stages and the 

number of difficulty levels per stage for various test purposes (i.e., optimal ca-MST 

configurations), measurement information targeting strategies, automated test assembly 

mechanisms and the impact of severe content balancing and item pool supply limitations, 

balancing information demands with item security and over- or under-exposure, 
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provisional scoring and routing mechanisms, and optimal pretest and calibration designs 

(e.g., Luecht, 2012; Willse, Ackerman, & Luecht, 2012; Zenisky, Hambleton, & Luecht, 

2010).  The present study focuses on one very pragmatic issue that has important 

operational ramifications for ca-MST: an investigation of provisional scoring and routing 

mechanisms.  Additional details are provided further on in this chapter (see Purpose and 

Rationale). 

Elements of ca-MST 

 This section intends to further define the elements that comprise a ca-MST and 

use a specific terminology introduced by Luecht and Nungester (1998).  Figure 1.1 

depicts multiple 1-3 panels at the left and multiple 1-2-3 panels at the right.  Multiple 

items are assigned to pre-constructed modules.  The length of each module can range 

from small (e.g., 5 to 10 items) to large blocks (e.g., 50 or more items).  In addition, 

modules can be entirely or partially comprised of computerized performance-based tasks 

or simulations.  In turn, the modules are assigned to difficulty-based slots in a self-

contained test-administration unit called a panel.  Each panel has a fixed number of 

stages in its design and each stage has a fixed number of difficulty levels (e.g., one to five 

levels of difficulty is common).  For example, a two-stage 1-3 ca-MST configuration 

would have one module at Stage 1 and three modules (easy, medium, and difficult) at 

Stage 2.  A 1-2-3 panel would have three stages: one level of module difficulty at Stage 

1, two levels of module difficulty at Stage 2, and three levels of module difficulty at 

Stage 3.  In addition, multiple panels are pre-assembled under the chosen configuration 

for security purposes—similar to have multiple test forms or versions of a test. 
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Figure 1.1.  Two ca-MST Panels. (Left) A 2-Stage 1-3 Design; (Right) A 3-Stage 1-2-3 

Design. 

 
Each rounded-corner rectangle in Figure 1.1 is a module comprised of a fixed 

number of items.  The letters and numbers respectively denote the difficulty level (E = 

easy, M = moderate, H = hard or difficult, ME = moderately easy, and MH = moderately 

hard).  The solid lines dictate the allowable routes through the panel.  Other auxiliary 

routes can be allowed as a matter of policy.  Auxiliary routes allow examinees to jump in 

difficulty.  In practices, all of the modules and all of the panels would be pre-assembled 

to meet fairly precise statistical targets, content requirements, and item-exposure 

restrictions.  The parallel or near-parallel panels can then be randomly assigned to 

examinees, filtering out for repeat test takers any panels containing previously seen 
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modules.  Once assigned, the ca-MST panel becomes a self-adapting test, justifying the 

“ca” in the acronym. 

Scoring and routing is handled within each specific route.  For example, a high-

ability examinee might take the first (moderate) module in a 2-stage, 1-3 panel 

configuration design, and then be adaptively routed to the most difficult module on the 

second stage.  Each examinee is routed through the stages to modules targeted in average 

difficulty to their proficiency as estimated from all modules administered up to that point 

in the test.  Therefore, routing is synonymous with adaptation under ca-MST.  Students 

that perform well on previous modules will be routed to more difficult modules; students 

who perform poorly on previous modules will tend be routed to the less difficult modules 

in that panel.  Primary routes in each panel are the expected trajectories taken by most 

examinees that perform at a consistent proficiency level across all of the stages.  

Auxiliary routes allow for the possibility of recovery for an examinee near the routing cut 

points, or for examinees that for whatever reason exhibit somewhat more erratic 

performance from stage to stage.  The extent to which an examinee can recover can be 

limited as a matter of policy by turning off particular routes.  For example, to reduce the 

incentive for examinees taking to the test in order to memorize sets of items, examinees 

may be precluded from jumping from the moderately easy module at Stage 2 (2ME in the 

1-2-3 panel configuration shown in Figure 1.1) to the most difficult module at Stage 3 

(3H) as a matter of test security policy.  The highly structured data design of each panel 

configuration makes these types of policy rules very simple to implement. 
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Benefits of ca-MST 

 This section describes some of the benefits of switching to a ca-MST including a 

balance between adaptivity and QC/QA processes found in LFT.  This section also places 

ca-MST within the spectrum of assessment types. 

There are several different ways to operationalize a CBT once the decision has 

been made to move in the direction.  Each has its benefits and drawbacks.  In terms of 

adaptivity on one end of the continuum is LFT, which includes both CBT and paper-and-

pencil test forms.  LFT is non- adaptive and every examinee assigned a particular form 

typically sees exactly the same test items.  A real-time assembled LFT is called linear-on-

the-fly testing (LOFT, see Folk & Smith, 2002).  LOFT gives each candidate a unique set 

of items that fit content and statistical specifications.  The test assembly process is carried 

out in real-time and usually combines a test assembly algorithm with item exposure 

control mechanisms—the latter of which add a random selection aspect to the test 

assembly process, making it impossible to exactly determine beforehand which items a 

particular examinee will see.  The primary advantage to implementing a LOFT is its test 

security advantages insofar as preventing any examinees from being able to predict which 

test form or items they will see.  However, LOFT is non-adaptive and the real-time 

assembly further precludes many QC/QA features available for LFTs (and ca-MSTs). 

 On the other end of the adaptive test assembly continuum lies CAT.  As noted 

earlier, CAT is completely adaptive at the supposedly lowest unit of test delivery—the 

item (although, some have even advocated for self-adaptive items—see Luecht, 2009, 

2012).  An initial item or small set of items is administered by some random or other 
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mechanism to begin the CAT.  Once the CAT sequence begins, each subsequent item is 

specifically selected from the item pool to maximize the measurement information 

(reciprocal of the error variance of estimation) for that examinee’s current proficiency 

estimate.  The CAT heuristic can incorporate content balancing constraints or other 

mechanisms, and provides a variety of stopping options, such as stopping when a desired 

level of score stability or decision accuracy is reached (Jodoin, Zenisky, & Hambleton, 

2006; van der Linden, 2005; Veerkamp & Berger, 1997).  However, because CAT 

performs all of the test assembly operations in real-time, it provides test developers the 

least amount of control over the actual quality of test forms.  At best, simulations can be 

carried out to mimic the adaptive process and/or post-test administration reviews of test 

forms can be conducted by subject matter experts.  In addition, because of the tendency 

for the CAT heuristic to always choose the statistically “best” items, item-exposure 

control mechanisms or item-exposure constraints are usually needed to offset the 

continued reuse of the same high-demand items for large numbers of examinees.  These 

item-exposure controls partially solve an inherent item security risk problem associated 

with CAT, but then may choose statistically suboptimal items (Revuelta & Ponsoda, 

1998; Stocking & Lewis, 2002; van der Linden & Veldkamp, 2004).  Other exposure 

control methods such as the Weiss (1973) match-to-b or Chang, Qian, and Ying (2001) 

which combined a-stratification with Weiss’s b-blocking have shown promise of 

reducing item exposure while maintaining efficiency.  Chang et al. (2001) acknowledge 

that further work needs to be done in exploring what types of item bank would be 

acceptable for match to b stratification, also, the number of strata to be used.  While these 
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are all legitimate limitations under CAT, it still remains the single-best way to optimize 

the statistical precision of the score estimates—at least as measured by the error variance 

of estimate or amount of statistical measurement information provided. 

 Ca-MST flexibly lies somewhere in the middle of the adaptive continuum, ideally 

combining the best features of each extreme.  In fact, ca-MST configurations and 

measurement information targets can be designed for almost any application or test 

purpose.  For example, ca-MST designs with many stages and levels of difficulty (e.g., a 

5-stage 1-2-3-4-5 panel design) would move closer along the continuum toward item-

level CAT.  A simple 2-stage 1-2 panel design would be less adaptive and closer to a 

LFT. 

The apparent benefits of ca-MST can be realized because of two important design 

features: (a) high-integrity, hierarchically oriented data structures and (b) pre-assembly of 

all of the test units (modules and panels).  High-integrity data structures provide for 

seamless control of how the modules are constructed, referenced and controlled from 

initial test assembly through processing of the response data.  Pre-assembly of the 

modules and panels also affords any desired level of “content review” as well as 

automated QC/QA procedures to determine exactly which items appear in every finalized 

module and panel, how items are shared across modules (if at all), how modules are 

shared across panels, how the routing within a panel occurs, and even allows test 

administration features such as timing controls, item sequencing within modules and item 

review to be precisely controlled. 
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From a strict psychometric perspective of statistical efficiency, these two design 

features may seem to be somewhat trivial, however, for large-scale, operational CBT they 

most assuredly are very important by challenges from subject matter experts.  For 

example, the same typical subject-matter expert (SME) review processes that are often 

used for LFT can be used with ca-MST.  The panels can be completely content-balanced 

and checked for relevant statistical qualities before any panel is released for operational 

use.  Also, item exposure can be completely controlled with risks known a priori (Dallas, 

Wang, Furter, & Luecht, 2012; Luecht, 2003; Luecht & Burgin, 2003).  Unlike CAT, 

which has the potential to overexpose particular “high demand” items (e.g., items with 

high discrimination parameter estimates when the two- or three-parameter IRT models 

are used), ca-MST modules and panels are pre-constructed to match prescribed 

measurement information targets and simultaneously control item exposure within a 

particular population of examinees.  The routing through the ca-MST panels also 

precludes certain types of behaviors by examinees who attempt to “game the system” 

(e.g., performing poorly early on in hopes of getting easier test items and then streaking 

to the finish with near perfect performance).  Finally, ca-MST is adaptive and therefore 

results in more precise (stable) score estimates than LFT.  While perhaps not as precise as 

item-level CAT, a practical level of precision can be achieved easily by using sensible ca-

MST test assembly measurement information targets and sound item writing/inventory 

control to ensure that the supplies fulfill the demands. 
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Purpose and Rationale 

 This section outlines the state of research in the field of ca-MST and discusses the 

current gap that this study attempts to fill.  In addition, this section outlines the rationale 

for examining number correct scoring in practice. 

Most of the foundational research on ca-MST to date has focused on basic ca-

MST designs features and efficiency comparisons with both LFT and CAT (e.g., Jodoin 

et al., 2006; Luecht, 2000; Luecht, Hadadi, & Nungester, 1996; Luecht & Nungester, 

1998; Reese, Schnipke, & Luebke, 1999; Schnipke & Reese, 1999; Xing, 2001; Xing & 

Hambleton, 2004).  There are relevant findings from that research.  For example, as the 

length of the test gets longer precision increases (Luecht et al., 1996; Luecht & 

Nungester, 1998; Jodoin et al., 2006; Wang, Fluegge, & Luecht, 2012).  In fact, Luecht et 

al. (1996) demonstrated that three-stage ca-MST was practically as efficient as an item-

level CAT when “typical” test lengths of 30 or more items were used.  Similarly, Jodoin 

et al. (2006) found that there are upper limits on efficiency gains from increasing the test 

length beyond 40 items.  More specifically, he show that a 40-item ca-MST performed 

almost as well as 60 item tests in terms of measurement precision (standard errors and 

score accuracy).  Other research studies have also compared the relative efficiency of ca-

MST versus CAT or LFT (Jodoin et al., 2006; Kim & Plake, 1993; Luecht, 2006; Reese 

et al., 1999; Schnipke & Reese, 1999; Xing, 2001; Xing & Hambleton, 2004).  These 

studies typically employ large-scale computer simulation to both compare the test 

delivery models, statistical targeting strategies for test assembly, and test lengths, as well 
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as to highlight the conditions under which particular LFT or ca-MST designs or CBT 

delivery models produce inaccurate scores or decisions. 

Zenisky et al. (2010) indicated two important areas of needed future research: (a) 

better understanding the inherent interactions between the ca-MST panel test assembly 

demands and the available distribution of item information and content in the item pool 

(supply), and (b) understanding the impact of different test routing and scoring strategies 

on examinees’ scores.  Recently some researchers have begun to take on these two issues 

as part of a more elaborate research agenda.  For example, Luecht (2012), Willse et al. 

(2012), Wang et al. (2012), and Dallas et al. (2012) manipulated large numbers of ca-

MST design configurations ranging from two to five stages, included assembling and 

administering variable numbers of panel replications from finite sized item banks and for 

multiple test lengths, and introducing various item pool characteristics (i.e., item 

discrimination and difficulty parameter distributions plausibly modeled after existing 

item pools to specifically look at the interactions between ca-MST design demands and 

item pool inventory supply issues).  These studies found that the item pool characteristics 

can directly or indirectly affect how well the ca-MST assessment system operates to 

achieve efficient test administration and scoring.  Most notably these researchers 

discovered some important item pool design conditions under which ca-MST might start 

to operate at a suboptimal level—from a psychometric perspective.  For example, if the 

test information function for the item pool is highly leptokurtic at some point of the 

proficiency scale, a more adaptive 1-3-5 panel design might not be the best design since 

supply of measurement information will be insufficient to support five distinct levels of 
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difficulty at the third stage.  This same supply-and-demand problem occurs when CAT is 

implemented using an item bank that was originally developed to only support [non-

adaptive] LFTs.  But the supply and demand problem in a non-adaptive LFT might not be 

as clear due to the real-time test assembly and exposure controls used.  Because the test 

assembly statistical measurement information function targets used in ca-MST are 

[usually] explicit (Luecht, 2000, 2012), deficits in the supply, given these types of 

demand-supply interactions are relatively straightforward to investigate. 

This study addresses both of the topics specified by Zenisky et al. (2010).  This 

type of research has a practical focus, ideally providing testing companies with empirical 

evidence—or at least suggesting sound investigative methods—to examine their own 

item pools as supplies relative to their test design and assembly demands.  Based on the 

results, they can either invest in the necessary item writing activities to improve the 

supply side over time, or modify their demands to match what is practically achievable. 

 As noted above, there is still a serious and apparent need for research to further 

evaluate the effect of routing decisions on overall accuracy and precision of 

measurement.  Although it is possible to exclusively rely on IRT for building the ca-MST 

modules and panels, scoring the examinees, and routing them using a maximum-

information module-selection criterion similar to CAT, it is also possible to simplify the 

routing and module selection by using IRT to assemble the modules and panels, but then 

convert to number-correct (NC) scoring and NC routing tables for operational, real-time 

movement within a panel (Luecht & Nungester, 1998; Luecht & Burgin, 2003; Luecht, 

Brumfield, & Breithaupt, 2006).  IRT-based routing and scoring mimics CAT by 
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selecting modules to minimize scoring estimation errors and actually estimating 

maximum likelihood or Bayesian proficiency scores in real-time.  When large numbers of 

examinees are testing at one time, IRT routing and scoring can introduce severe 

processing loads on internet servers, or introduce security issues if the entire process is 

downloaded to a local workstation or local network file server (Luecht, Brumfield, et al., 

2006; Zenisky et al., 2010).  In contrast, NC simplifies operational scoring and routing 

demands and can substantially reduce various data transmission and processing loads for 

an operational ca-MST system.  However, the utility (costs and benefits) of these scoring 

and routing alternatives have not been systematically explored from a psychometric 

perspective.  The purpose of this study is to explore whether the overall efficiency of NC 

scoring provides enough benefit to outweigh the cost in scoring accuracy. 

This research study examines both the impact of NC versus IRT-based routing 

and scoring methods on the accuracy of scores and the various other item pool and ca-

MST design factors and conditions that can interact to also affect score-accuracy 

outcomes.  This study does use simulated data, but the basic distributions of item 

characteristics are modeled after a large-scale, operational item pool.  This study includes 

manipulations of these characteristics that are on the edges of what is commonplace in 

testing; however, these liberties are taken in order to explore the potential impact of 

having rather extreme demand/supply deficit conditions.  In that regard, this study not 

only evaluates the technical viability of NC routing for ca-MST designs, but also 

highlights conditions or scenarios that could prove problematic in practice. 
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Study Variables, Factors, and Issues 

 The study variables can be broken up into two categories: (a) ca-MST design 

features, and (b) item pool conditions.  The ca-MST components are variables such as the 

module length, the ca-MST design configuration (i.e.: number of stages, levels of 

difficulty per stage, etc.) and the method of routing examinees.  Item pool conditions 

include the joint distributions of item discrimination and difficulty in the item pool.  

Ultimately, it is the interaction of these two categories that are of interest.  Computer-

based simulations are used in this study to specifically manipulate those interactions and 

evaluate (a) comparatively which method of routing and scoring works best under which 

conditions and (b) under which (if any) studied conditions either or both methods of 

routing and scoring produce marginal of substandard results. 

 Test length is manipulated via the module length.  Few operational tests (at least 

high-quality, high-stakes exams) are shorter than 30 items.  However, because this is an 

adaptive test and a simulation study, it makes sense to investigate how small the test can 

become before recovery of the generated “true scores” is jeopardized.  The longest tests 

considered in this study somewhat mimic some of the large-scale professional 

certification exams where hundreds of items are given to examinees to ensure that the 

candidates’ certification will not result in a danger to the public.  In sum, only two 

module lengths are considered (10 or 20 items), however, when fully crossed with the 

three ca-MST panel configurations, there are six total combinations of ca-MST design 

features. 



16 
 

 

 Ca-MST designs are plentiful and can take on almost any desired characteristics 

by manipulating the number of stages and levels of difficulty within stages.  Obviously, 

the design demands should be consistent with the available supply of items (measurement 

information and content) in the pool.  In this study, some rather common ca-MST panel 

designs in the research are considered, as well as, a few more exotic designs.  Previous 

studies (Jodoin et al., 2006; Luecht, Brumfield, et al., 2006; Luecht & Nungester, 1998; 

Reese et al., 1999; Xing & Hambleton, 2004) considered panel two- and three-stage panel 

configurations such as 1-3, 1-3-3, and 1-3-5.  Other more exotic designs have also been 

used in practice such as the 6-stage 1-5-5-5-5-5 used by Crotts, Sireci, and Zenisky 

(2012).  The present study considers three specific ca-MST designs (see Chapter III). 

In addition, routing decisions can influence both precision of measuring the 

intended proficiency and item exposure in a ca-MST assessment system.  This study 

examines four different routing and scoring methods in terms of two interacting selection 

and scoring function factors: (a) the module-selection criterion, and (b) the type of 

scoring used for the actual routing.  Table 1.1 illustrates the interacting selection and 

scoring function factors. 

There are two ways to select modules: (a) using a maximum-information module 

selection criterion, computed at some provisional proficiency score, to minimize the error 

of estimate, or (b) routing based on fixed cut score points to achieve desired item 

(module) exposure levels based on an assumed distribution of examinees.  Luecht and 

Burgin (2003) also discussed a hybrid method of designing information targets to 

simultaneously achieve both goals; however, their approach will not be considered.  
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There are also two scoring methods that can be applied with either one of these two 

module-selection methods: (i) IRT scoring using either maximum likelihood or Bayes 

estimates of the proficiency scores, θ; or (ii) number correct (NC) score routing using a 

routing table.  The four routing and scoring methods, summarized in Table 1.1, 

investigated in this study represent the combinations of module-selection and scoring 

methods. 

 
Table 1.1 

Table of Routing and Scoring Conditions 

Module Selection Criteria 

  
Maximum Information Selection Exposure Control Selection 

Type of 
Scoring 

Function 

IRT 
Scoring 

Maximum Information 
Selection with IRT Scoring 

Exposure Control Selection 
with IRT Scoring 

Number 
Correct 
Scoring 

Maximum Information 
Selection with Number Correct 

Scoring 

Exposure Control Selection 
with Number Correct Scoring 
  

 

This study also examines eighteen different item pool characteristic conditions as 

function of the distributions of item difficulty and item discrimination.  In fact, perhaps 

the only limiting factor in this study is that all of the examinee proficiency scores are 

sampled from the same unit normal population, θ~N(μ = 0,σ2 = 1).  The potential 

interaction between examinee density, test purpose and measurement information 

(precision) density, however, is indirectly addressed via the various item pool 

characteristics.  More specifically, this study includes nine difficulty distributions 
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specified as a function of three mean item difficulties, μ(b), and three levels of standard 

deviation, σ(b).  Those nine item difficulty distribution conditions are also fully crossed 

with two levels of average item discrimination.  Controlling the item pool difficulty and 

discrimination distributions allows for interactive comparisons of the routing and scoring 

methods under different inventory supply contexts. 

Multiple data set replications are generated under each of the 270 design 

conditions: 15 ca-MST design conditions by 18 item pool characteristic conditions.  

(Note that the multiple replications of the data sets under each condition will provide 

empirical sampling distributions of various aggregated outcome statistics reflecting 

potential bias and the variation of estimation errors.) Large-sample data sets are also used 

to ensure sufficient distributions of examinees across the proficiency score scale.  Each of 

the four routing and scoring mechanisms are applied to each data set using ca-MST 

simulation software (i.e., the data sets are held constant so that the simulated examinees 

act as their own controls across the four routing and scoring methods 

Research Questions 

1. How do the four routing and scoring mechanisms impact the recovery of 

simulated proficiency scores under a variety of ca-MST conditions? 

2. Under what conditions do various ca-MST design configurations work best 

from a psychometric scoring-accuracy perspective with respect to the four 

routing and scoring mechanisms as well as the various item pool 

characteristics? 
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3. How do various item pool characteristics impact the quality of ca-MST test 

forms from a psychometric perspective? 

All research questions will be addressed using a simulation approach that will 

include a fully crossed design with 270 distinct conditions, 10 replications of each set of 

conditions, and using the same examinees under each of the four methods of routing and 

scoring.  It may seem important to re-emphasize this latter point about holding the 

examinees constant for each method of routing and scoring.  That capability helps to 

directly control for sampling errors in the head-to-head methodological comparisons. 

Summary and Organization 

 With the push to use technology more and more in classrooms, assessment 

designers and test developers need to react to the ever-changing world in education and 

other areas of testing.  Ca-MST presents one very appealing way to incorporate cutting-

edge technological enhancements in CBT with a sound adaptive test delivery strategy, 

while still retaining full quality control (QC) capabilities regarding items, test forms and 

response data.  This latter QC issue is simply not well addressed with real-time test 

assembly algorithms such as those employed with CAT or LOFT.  The flexibility of ca-

MST configurations, the pre-assembly of the modules and panels, and the use of high-

integrity data structures underneath the apparent surface; make ca-MST a very robust 

way to implement an effective adaptive testing program.  Testing survey research has 

also demonstrated that examinees like the capability to review and possibly change their 

answers within a module.  Other research has shown that some of the more flexible three-
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stage ca-MST designs come very close to achieving the statistical efficiency of item-level 

CAT, especially for tests of realistic length (e.g., 30 or more items). 

This study will investigate precisely the issues that Zenisky et al. (2010) flagged 

as areas of future research.  Most notably a deeper understanding of the interactions 

between the ca-MST assembly and the available information in the item pool as 

controlled by the study pool conditions (e.g., the effects of the item pool on estimation 

accuracy, Dallas et al., 2012; Wang et al., 2012).  In addition, this study is an in-depth 

exploration of the impact of alternative methods of test routing and scoring strategies and 

their influence on examinee scores. 

This study will contain five chapters in total.  Chapter I provided a rationale for 

this study.  This chapter describes the topic, existing research, and gap(s) this study helps 

to address.  Chapter II is a description of the literature on the topic of ca-MST and other 

areas.  The literature review elaborates on the issues discussed in Chapter I, as well as, 

discuss all research related to ca-MST’s including efficiency, estimation, routing, and 

panel construction.  Chapter III contains the methods for this study including descriptions 

of the conditions, method of the simulation, relevant information about each data set, and 

relevant analyses.  Chapter IV describes the results including figures/plots and other 

relevant results.  Finally, Chapter V discusses the results and the implications the results 

have for ca-MST research. 
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CHAPTER II 

 
REVIEW OF THE LITERATURE 

  

 This chapter reviews the literature related to ca-MST’s including a review of IRT.  

The chapter discusses the literature relating to the six topics that Lord (1980, as cited in 

Zenisky et al., 2010) argued were the key technical decisions needed to develop a MST, 

compares ca-MSTs to other test delivery models, describes item pooling for both a ca-

MST and other test delivery models, and a review of Item Response Theory including a 

discussion of the potential models for this paper.  These topics inform the research 

questions by illustrating both the focus of research over the past two decades in ca-MST 

but also the gap that currently exists in the field. 

Lord’s Six Areas of Research 

Ca-MSTs were first theorized by Lord (1980) when Lord outlined six key factors 

previously discussed for setting up and implementing a multi-stage test.  Lord’s work 

revolved around setting up a two-stage test and references Cronbach and Gleser (1965, 

Chapter 6) using a decision theory approach.  Ultimately, Cronbach and Gleser sought to 

deal with a situation such as a certification examination where a single cut existed and a 

decision needed to be made.  To them, the 2nd stage was only necessary to clear up 

borderline decisions.  Lord’s work dealt more broadly with the rationale of performing 

good measurement as opposed to clarification of a classification.  Lord mentioned several 

issues test developers would need before developing a ca-MST.  Lord, however, did not 
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specify how to go about setting up a multi-stage test nor lay out a principled approach to 

MST. 

The six topics that Lord (1980, as cited in Zenisky et al., 2010) outlined were: 

• Total number of items in the test 

• Number of items in the initial and each n-stage module 

• Difficulty of the initial module 

• Number (and difficulty) of alternative modules in each stage 

• Cut points for routing examinees to modules 

• Methods for scoring stages and each nth stage test. 

This study directly examines the last two bullets.  This section will discuss the literature 

existing in the field on ca-MST paying special attention to the decisions made pertaining 

to these topics. 

A closely related area to ca-MST is the testlet models discussed by Wainer and 

Kiely (1987).  Wainer and Kiely defined “testlets” as a group of items that relate to a 

single content area and are analyzed as a unit.  While these are similar to item modules, 

testlets are typically considered related within a module above and beyond random 

chance.  An example would be a set of items that are related to the same reading 

comprehension passage or questions about a graph/diagram (Hendrickson, 2007).  Ca-

MST’s (modules) can be testlets however do not make the strong assumption that the 

items are based strongly on a central idea or goal but rather are more general. 

Luecht and Nungester (1998) described a framework for a large scale 

computerized testing framework that was called Computer Adaptive Sequential Testing 
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(CAST).  In addition, this research set up the language referred to in ca-MST, panels as 

preconstructed units and modules as sets of items assigned to a particular stage.  Luecht 

and Nungester argued that the best way to set up this design was to “consistently match 

multiple statistical targets” (p. 230).  The best way to do this is via an ATA engine.  In 

using an ATA engine, the panels and modules could be built specifically to incorporate 

both statistical targets, such as information or low standard error, but content demands as 

well.  This will be discussed further in the Strategies for Item Pooling section.  Luecht 

and Nungester (1998) had 180 total items (90 total items per module in the 2-stage, 60 

total items per module in the 3-stage) in their study.  Information or the method of 

conditionally controlling precision across the score scale were created using Test 

Information Targets (TIF).  While TIF targets were initially set the process of selecting 

items had a difficult time finding items to fit the hardest modules as the item pool had not 

set out with this goal in mind.  This study investigated three different ca-MST designs: 1-

3, 1-3-3, and 1-3-5. 

Reese et al. (1999) compared a 2-stage testlet design to their current practice of a 

paper pencil design.  Testlet designs differentiate themselves from a ca-MST because 

typically testlets are centered on a central reading passage and thus have a high level of 

association between their items.  While all testlets can be considered modules, not all 

modules could be considered a testlet.  This study involved a 1-3 design that had 10 items 

in the first stage and 15 items in the second stage.  The testlets were developed so that the 

first stage had lower discrimination values and an approximate average b of N ~ (µ = -

0.50, σ = 0.80).  The second stage the difficulty of the low module was at N ~ (µ = -1.00, 
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σ = 0.80), the medium module was N ~ (µ = 0.00, σ = 0.80), and the high difficulty 

module was N ~ (µ = 1.00, σ = 0.80). 

Xing and Hambleton (2004) on the other hand used 35 items total for an 

information systems examination.  A 2-stage ca-MST design was used which used 

different length first and second stage module lengths as the routing test was slightly 

longer than the 2nd stage module (15 items - 20 items).  Xing and Hambleton (2004) 

noted that the total number of items (35) was on the “small side” for credentialing exams; 

however it is not entirely uncommon within the information technology field for 

credentialing exams. 

Several studies have gone into judging the efficiency of multiple test lengths.  For 

example, Jodoin et al. (2006) compared two and three stage ca-MSTs to a LFT and 

several operational forms in terms of decision consistency.  Four operational forms were 

considered the “real” condition.  Then, from the item pool three new 60-item LFT’s were 

created.  Next, 60-item 3-stage (1-3-3) ca-MSTs were created and 40 item 2-stage ca-

MSTs were created.  In both the 3-stage ca-MST and the 2-stage ca-MST, the modules in 

each stage contained 20 items each.  The ca-MSTs were created in two ways.  Method 1 

was built so that each module contained a third of the information of the 60-item LFT at 

each stage.  Method 2 was built so that the first module was reduced to a quarter of the 

total information of the LFT, and the latter two modules were three eighths each. 

Each of the 3-stage ca-MST outperformed the LFT’s while the 2-stage results 

were comparable or a little worse than the full 60 item LFT.  As the pass rate was 

increased from 30% to 50%, LFT seemed to close the gap between it and the three-stage 
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ca-MST.  In addition, Method Two seemed to do better in the 3-stage design; however, 

Method Two seemed to do worse overall in the 2-stage design.  The current operational 

forms did comparably well to the 3-stage design and overall did the best except when the 

pass rate was raised to 50%.  In the 30% and 40% conditions it was only marginally 

better. 

The results from this study can help clear up two issues.  First, the 2-stage 40-item 

test performed worse than the 60 item tests; however, not a great deal worse.  

Considering the time savings and money savings that can be achieved with a far shorter 

test, these results are promising.  In addition, when there are more than 2 stages, shorter 

tests are satisfactory as long as the adaptivity of the 3-stage form is allowed to work.  

This finding in a way disagrees with Lord’s premise that short routing stages can end up 

causing problems.  If there are enough stages to adequately recover it looks like the 

routing test length can be short and the latter stages a little bit more informative. 

Other studies such as Crotts et al. (2012) have supported the study done by Jodoin 

et al. (2006) and showed that a reduction from 40 items to 35 items has a negligible effect 

on the six-stage Massachusetts Adult Proficiency Test for Reading.  Overall, the 

reduction in reliability (Cronbach’s α) was minimal dropping from roughly .93 to .90.  In 

addition, classification consistency was comparable to the 40-item test.  This resulted in a 

savings of about fifteen percent in test-taking time, which is an important feature when 

paying for a seat for the length of the exam. 

These studies primarily alter the first four bullet points in Lord (1980) 

considerations for building a MST.  Most studies played with the number of items in the 
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test and the number of items in each n-stage module.  While not directly, the studies 

usually did have the initial module in the middle of the item pool distribution; however, 

this isn’t necessary but makes the most sense.  Each study used a conservative design as 

well, the 1-3 (Luecht & Nungester, 1998; Schnipke & Reese, 1999) and 1-3-3 (Luecht & 

Nungester, 1998); however, more recent studies such as Crotts et al. (2012) used a 6 stage 

design.  This study alters some of these characteristics in a way consistent with the 

literature.  This study considers item sizes that range from small to very large and 

considers multiple designs both well researched and new and innovative. 

Comparison of Test Delivery Models 

 This section discusses the typical test delivery models versus newer adaptive 

models.  The three delivery models discussed in this section are: LFT, ca-MST, and CAT.  

These methods are tested against each other in how well they are able to recover ability 

estimates (Reese et al., 1999; Patsula & Hambleton, 1999; Xing & Hambleton, 2004). 

Reese et al. (1999) took the idea for a testlet based design and implemented a 

small study in practice that compared their LFT and testlet-based results.  In a sense this 

research’s primary focus was whether a ca-MST could handle complex content 

constraints without compromising efficiency that is gained over LFT and whether ca-

MST increased the precision of the examination.  This research found that the ca-MST 

was more precise than the LFT for most of the scale; however, at the extremes (-2.5 > 𝜃 > 

2.5) of the scale the LFT contained less bias than the two-stage ca-MST.  Part of the lack 

of precision in the extremes was that the panel test information functions were not met to 

an acceptable degree for some of the panels in the design.  One solution for this issue is 
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to lower the upper bound to spread information more evenly across panels.  In addition, 

the authors argue that perhaps adding a 3rd stage one with a very low and very high 

module would address the issues with the lack of precision at the extremes.  Overall, the 

RMSE for the two-stage ca-MST far exceeded both the 51-item LFT and the 25-item 

LFT. 

Patsula and Hambleton (1999) evaluated various multistage testing models and 

compared these with LFT’s and CATs.  The conditions this study manipulated were the 

number of stages, the number of modules per stage and the number of items per module.  

This simulation resulted in the finding that ca-MST’s end up with similar proficiency 

estimation when the number of stages in a ca-MST is increased from 2 to 3. 

Xing and Hambleton (2004) examined fixed LFT’s versus a two stage ca-MST 

and a CAT.  The study manipulated two factors: the size of the item bank and the quality 

of the items in the item bank.  The bank contained 240 items and the average 

discrimination for the 240 items was 1.0.  The poor quality item bank and the high quality 

item bank had an average discrimination value of 0.60 and 1.40 respectively.  While an 

average discrimination value of 1.40 may seem unrealistic, the authors note that these 

values were an attempt to examine the impact of a set of items with unusually high levels 

of item discrimination.  In addition, the authors also manipulated the size of the item 

bank by doubling the amount of items in the bank. 

Wainer and Kiely (1987) discussed earlier examined how a testlet based approach 

functioned and had two main findings.  First, as the quality of items increased statistics 

such as the decision accuracy and decision consistency also increased.  Better items 
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meant better precision which meant better estimation of ability.  Secondly, the size of the 

pool was also important, in fact, more important than having highly discriminating items.  

The decision accuracies for the 480 size item bank and the original item discrimination, 

average discrimination = 1.0, was equivalent or better than the 240 item bank example 

with average discriminations of 1.4. 

These studies indicated the efficiency and accuracy that ca-MSTs have over 

LFTs.  While ca-MSTs may not be as efficient as CAT for shorter test lengths, these test 

lengths need to be considered to examine the strength adaptivity of the ca-MST even 

when the number of items is small.  In addition, this section pointed out the effect of the 

item bank (more on this in the item banking section) on the overall success of the ca-

MST.  This study includes two different item banking qualities and 240 total different 

item banks. 

Item Response Theory 

 Presently, most testing practices and assessment rely on Item Response Theory 

(IRT) to scale their assessments.  The last thirty years, IRT has been the core of testing 

programs and represents an upgrade over the previous scaling methods such as Classical 

Test Theory (CTT).  IRT is so useful because not only can all items be scaled to the same 

scale as people, but no longer is there a direct need to form to form equate as the 

parameters are considered to be invariant between samples. 

In order to estimate an IRT model three major assumptions must be met.  The first 

assumption is that a primary trait or dominant dimension accounts for the performance on 

any item or set of items.  While multidimensional IRT (MIRT) models have been 
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developed, most IRT programs, including essentially all operational testing programs, 

assume that only one ability or trait is being measured at a time.  Hambleton and 

Swaminathan (1985) makes the argument that unidimensionality can never strictly be met 

as there are other factors such as personality and test-taking factors that impact test 

performance to some extent. 

The next assumption of IRT is Local Independence (LI).  This assumption states 

that an examinee’s responses to different items in a test are statistically independent.  For 

this to be held true, examinee’s performance on one item must not affect their responses 

either for the better or for the worse, to any other item on the test.  It is important to 

denote that pairs of items should be correlated without first removing the effect of ability 

from the correlation.  High ability examinees when faced with a pair of items should get 

both items right.  Low ability examinees when faced with a pair of items should have 

consistent results.  LI is only violated when associations between items are correlated at a 

fixed ability level. 

The last assumption is that the model is correctly specified.  There are three 

primary unidimensional IRT models that are used in common practice.  There are three 

parameters that are fixed or let free in order to create the models.  The three variables are 

parameters that represent difficulty, commonly referred to as the b-parameter; 

discrimination, commonly referred to as the a-parameter; and a pseudo-guessing 

parameter, commonly referred to as the c-parameter. 

The first model is commonly referred to as the Rasch (Rasch, 1960) or 1PL 

model.  The model estimates two parameters, the b parameter andΘ, a measure of ability.  
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The Rasch model is preferred by test developers because (a) all items are equally 

weighted, and (b) the model is considered to be statistically sufficient.  In other words, 

the raw score is all that is needed to decompose the ability metric, 𝜃.  The Rasch model is 

expressed mathematically as 

 

   (Eq. 1) 

 
 

DeMars (2010) makes the argument that all of these models are nested within 

each other, as a 2PL model is simply a 1PL without fixed a parameters and the difference 

between the 2PL and 3PL is simply removing the constraint of a 0 c-parameter (pseudo-

guessing).  The 3 PL formula is expressed as follows 

 

 P(Xi=1|θ)=ci+(1-ci)(
exp {(D*ai)�θ-bi�}

1+exp {(D*ai)�θ-bi�}
, (Eq. 2) 

 

where D is a scaling factor either 1.0 for the logistic model or 1.7 for the normal-ogive 

model. 

 One of the bigger disagreements in model selection is whether or not the c-

parameter should be included (DeAyala, 2009; DeMars, 2010).  The pseudo-guessing 

parameter assumes that low ability examinees have a higher chance of getting an item 

correct than the 2PL model suggests.  The parameter’s estimation; however, is 

completely independent of this notion. 

 Typically, the more parameters that are included in a model the better the model 

will fit the data.  To this end, some suggest that the 3PL, therefore should always be the 

)}(exp{1
)}(exp{()|1(
i

i
i bD

bDXP
−+

−
==

θ
θθ



31 
 

 

model of choice.  Most often, the pseudo-guessing parameter does soak up random 

variation that the 2PL would not be able to capture.  While it isn’t necessarily related to 

guessing improving absolute model fit is never a bad thing.  That said, what this premise 

ignores is that there is often an empirical association found between the discrimination 

parameter and the pseudo-guessing parameter estimates.  This association between a and 

c may result in the 3PL being “over-parameterized” (Holland, 1990). 

De Ayala makes the point that the c-parameter may actually pick up some person 

characteristics that it does not intend to such as “test-wiseness” or “risk-taking” 

tendencies.  Therefore, the pseudo-guessing parameter isn’t solely an item parameter, but 

also a person parameter or at the very least an interaction between item and people 

characteristics.  Therefore, De Ayala (2009) makes a reasoned argument for why the 2PL 

might be a better model to select.  De Ayala argues that the presence of the pseudo 

guessing parameter assumes the propensity to guess is constant across θ.  This 

assumption may or may not be reasonable and there’s not a really direct way to test this 

assumption.  In addition, non-zero pseudo guessing parameters lower the estimate of 𝜃 

(Wainer & Thissen, 1987), as well as, lower the amount of information that an item 

provides (De Ayala, 2009).  Although, the non-zero guessing parameter does lower 

information, is it because information is truly lower or is information inflated in the 2PL 

because it ignores the concept that lower ability examinees have a non-zero probability of 

getting an item correct. 
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Despite these limitations, the 3PL is one of the most used models in 

psychometrics today.  Many testing programs select prefer the lower complexity of the 

Rasch model and excellent available software, WINSTEPS, for operational work. 

One of the advantages that IRT provides is the ability to predict examinee 

performance on items that they examinee has not yet seen.  The manner in which this is 

accomplished is through estimation of an ability parameter,  𝜃.  There are multiple 

methods to accomplish the estimation of ability.  This section of the paper will describe 

the two most popular methods of estimating 𝜃, Maximum Likelihood Estimation (MLE) 

and Expectation A Priori (EAP) estimation.  MLE and EAP are equally plausible 

methods for calculating 𝜃.  This section will describe how MLE and EAP estimation 

work briefly and then compare and contrast the differences between the two methods of 

estimation. 

 No matter which method you use to estimate 𝜃 the first step is calculating the 

likelihood function.  The simplest method for estimating it would just be to determine the 

probability of the response vector given some known item parameters (ξ) and an estimate 

of ability (𝜃).  The likelihood of an examinee’s observed response vector can be 

calculated as 

 
  𝐿(𝑥𝑖|𝛩𝑖, 𝜉) =  ∏ 𝑝𝑗

𝑥𝑖𝑗(1 − 𝑝𝑗)(1−𝑥𝑖𝑗)𝐿
𝑗=1  (Eq. 3) 

 

(De Ayala, 2009, Hambleton & Swaminathan, 1985).  This method will return the theta at 

which the likelihood is maximized.  This method however is a crude approach to 

computing the likelihood.  A more sophisticated likelihood is calculated instead.  One 
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such method of computing the likelihood is MLE.  This likelihood of a function has a few 

neat characteristics which makes this a much better procedure.  First, near maxima of a 

distribution, the first derivative goes near 0 making it very small.  In addition, at this 

same point the second derivative is large comparatively to the first derivative (DeMars, 

2010) as a result the ratio of the first to the second derivative will be very small.  The 

signs will be the same if the estimate of ability is too high, and will be opposite if the 

estimate is too low.  There are multiple ways to start this procedure by giving it a starting 

value of a transformation of the number correct score or simply just starting at 0 

(DeMars, 2010).  Once it is started it will converge to some criterion set such as .01 

(DeMars, 2010) and ability is estimated. 

 Bayesian estimation does nothing different computationally than MLE, the first 

and the second derivatives are still calculated and the convergence is achieved at some set 

criterion.  EAP estimates are different; however, because they multiply a prior 

distribution to the likelihood distribution and attempt to find the maximum of the product 

of the two called the posterior distribution.  The strength of the prior distribution can pull 

the likelihood function based on (a) how good the prior is, and (b) the strength of the 

prior.  However, even when an inappropriate prior is used EAP and MLE tend to work 

equally well (Chen, Hou, & Dodd, 1998; Chen, Hou, Fitzpatrick, & Dodd, 1997). 

 Gorin, Dodd, Fitzpatrick, and Shieh (2005) performed a study using polytomous 

items with three types of priors, skewed positively, skewed negatively and normal prior 

distributions in a CAT procedure with three types of CAT item pools, middle peaked, 

peaked in the low end, peaked at the high end.  This research found that MLE and EAP 
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estimates perform equally well under optimal item pool situations; however, when item 

difficulty does not match the items given to the examinees, EAP estimation may be the 

more appropriate method of estimation. 

Generally speaking, MLE estimates tend to be biased outwards in that as theta 

tends to reach maximum scores, a max is usually just placed on these individuals.  EAP 

estimates usually have a normal prior place on them so the tails might be biased a little 

inwards.  Bock (1985) showed that in an adaptive environment and confirmed the inward 

bias.  He noted that if the reliability of the assessment is sufficient; however, that the bias 

of the EAP is minor for most of the population (within +- 2 SD).  He further elaborated 

stating that personnel decisions that were based on EAP estimates were equitable given 

that people competing for the same positions are estimated with the same prior and the 

same error criterion.  In this study, EAP estimates will be used as they provide similar 

estimates under optimal conditions, and better estimates under sub optimal conditions. 

IRT allows for conditional information over the entirety of the score scale.  While 

CTT has measures of score precision (such as Cronbach’s α) IRT allows information 

targets to be precise and precision can be known a priori when building ca-MST modules 

and panels.  The NC routing, however, takes a step back, perhaps when routing in a ca-

MST all one needs is the raw number correct in order to route examinees to the best panel 

for them.  If this is true, then IRT is only needed to scale the assessments and not to route 

the examinees through the ca-MST.  This study investigates whether or not the routing 

aspect of the ca-MST or the adaptive element can simply be done using a NC method. 
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Strategies for Item Pooling 

 There are three important topics discussed in this section.  First, will be a 

presentation of a couple of competing theories on constructing and maintaining item 

pools.  The next topic will be a discussion of Automated Test Assembly (ATA) and 

methods to complete ATA for use in a ca-MST.  The section will conclude with a brief 

discussion of methods to control over-exposure of items in different testing mediums.  

The three topics discussed in this section are important because these topics discuss 

methods of determining not only the location of information for the item pool itself but 

also once the item pool is developed methods of Automated Test Assembly which helps 

the individual modules and panels as a whole unit become interchangeable with one 

another.  Item exposure and precision are completely dependent on the item bank and 

affect such issues as test cheating and precision of scores. 

Methods of Determining the Central Location for the Item Pool 

 One of the few resources on item pool maintenance comes from Breithaupt, Ariel, 

and Hare (2010) who describe assembling an inventory for use in a ca-MST.  Different 

types of testing programs will require unique types of item pool maintenance.  For 

example, ca-MST and CAT have different needs in terms of the location of information 

within the item pool.  The next section will compare the item pool maintenance strategy 

for ca-MST to the item pool maintenance for other tests such as CAT (Veldkamp & van 

der Linden, 2010). 

  Research on this topic has suggested that item pool maintenance based only on 

adding new items to a pool is not sufficient in order to uphold standards of item pool 
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quality over time (Ariel, van der Linden, & Veldkamp, 2006).  Breithaupt (Breithaupt et 

al., 2010) argues that there is a natural tension between the goal of creating a large 

enough item pool, with relevant item exposure controls that are equally distributed across 

items and cost reduction and efficiency in item pool creation.  In this research, Breithaupt 

develops and describes the “Steady-State Model).  In this model, an ideal bank is 

described.  The authors argue that the cost of producing complex performance items adds 

to a major problem of maintaining a large high quality bank.  As such, balancing cost 

with a minimally tolerable item exposure is important to a testing program that requires 

these types of items.  The first consideration in determining what the authors claim, as an 

ideal minimum-size bank is content.  In order to determine how much of a particular 

content, the length of a test form, and the proportion of test content or skill area is known, 

the number of items covering that particular content can be derived. 

Another consideration that needs to be taken is the retirement or disclosure rules 

that govern the assessment.  In order to determine how often to retire items, the topic 

needs to be clearly monitored.  For example, Breithaupt (Breithaupt et al., 2010) 

mentions that the lifespan for case studies in a clinical (medical) context should have a 

shorter lifespan because of the fast paced evolution in relevant content, while items used 

for an algebra assessment/classroom assessment may be able to be retired at a far less 

rapid pace. 

One benefit of a ca-MST is that a predictive model can be directly mathematically 

calculated to determine the proportion of candidates will see any given item.  This 

probability depends on the number of panels, as well as, the number and position of the 
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models within a panel.  All that is needed is the probability of a student seeing a 

particular panel and the proportion of students that are routed to the module. 

Veldkamp and van der Linden (2010) take a slightly different approach to the 

maintenance of item pools.  This research focuses on the use of traditional item pool 

blueprints and content blueprints to help identify shortages of content/statistical concerns 

within an item pool.  This paper uses a Shadow-Test approach.  Shadow tests are full-

length tests that are optimal at the current ability estimate that meet all test specifications 

and contain all items given to the test-taker.  Then constraints are placed on each form 

that minimize costs and constrain things at the test level such as test information, length, 

number of stimuli, and content constraints.  One must put careful consideration into 

defining what Veldkamp (Veldkamp & van der Linden, 2010) calls “the design space” (p. 

234).  This differs from Breithaupt’s methods of maintaining an item bank, however, is a 

useful method for maintaining proper item demands in the item bank. 

Ensuring proper levels of information (precision) and security (item exposure) 

should always be balanced with the cost of producing enough items in the item pool.  

Dallas et al. (2012) illustrated that not only does exposure and security have a balance 

with cost but also with each other.  Decisions made about which ca-MST configuration 

chosen can ultimately decide the proper amount of exposure to obtain minimum amounts 

of precision and cost.  Ultimately, the testing purpose should always guide decisions 

about where precision and exposure are key and where precision may not be so 

important.  For example, a certification test that has a single cut at θ = 0.00 may not need 

a great deal of items that can give great amounts of precision at θ = 2.00. 
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Aside from exposure another important consideration for any assessment system 

is the location of the information and the scale precision.  The location and amount of the 

information across the scale can mean the difference between a successful and 

unsuccessful testing program.  Too little information and precision is lost, too much 

information and money is spent on something that might never be used.  Also, if there is 

plenty of information but the information isn’t in the location where it is needed, the 

results can leave developers with a major problem.  The information function has 

applications in not just test construction, but item selection, assessment of precision of 

measurement, comparison of tests, determination of score weights, and comparison of 

scoring methods (Hambleton & Swaminathan, 1985). 

 The test information function can generically be written as 

 

  𝐼�𝜃, 𝜃�� =  ∑ 𝑃′(𝜃)𝑖
2

𝑃𝑖 (𝜃)𝑄𝑖(𝜃)
𝑛
𝑖=1  (Eq. 4) 

 

The amount of information is influenced by the quality and number of test items in the 

pool/on the form/in the ca-MST (Hambleton & Swaminathan, 1985).  The items that will 

provide the most information will have steep slopes (high a-parameters) and low item 

variances.  Item information is summative and independent of other items.  There are 

particular strategies such as Assessment Engineering (Luecht, 2006) and Evidence 

Centered Design (Huff, Steinberg, & Matts, 2010; Mislevy, Almond, & Lukas, 2003) that 

can aid item writers in developing items with these features.  The optimal method of 

doing this is by taking exemplar items or items with high a parameters and modeling 

them in an item shell type format.  Methods such as Assessment Engineering’s Task 
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Modeling (Luecht, Dallas, & Steed, 2010) can help bring item shells into a common 

language, as well as, allow for multiple instantiations of task models called templates to 

create several items with similar statistical qualities.    

 Several empirical studies (Bejar, 1991; Bejar et al., 2003; Embretson, 1999; 

Luecht, 2011) have tested whether item shells or items from task models would be 

statistically feasible.  Bejar et al. (2003) examined the use of on-the-fly item generation 

using item shells.  The study used item models from the quantitative section of the GRE 

in an adaptive testing (CAT) setting.  The study sought to test whether or not items could 

be generated that contained a great deal of isomorphicity or equivalent content and 

psychometric to the current GRE.  The simulation study showed mixed results.  The 

study used four scenarios.  First, no isomorphicity, this scenario contained each isomorph 

produced one and only one item and item parameters were known.  The rest of the 

simulations had several isomorphs generated under an item shell with different levels of 

variance in the b parameters.  The worst-case scenario had the most amount of variance 

in the b parameters, while the best-case scenarios contained little variance in the b 

parameters under an item shell.  Under high levels of isomorphicity the standard error of 

measurement, or the inverse of information, was the same as the no isomorph condition; 

however, as variance was increased among the isomorphs precision was lost.  The field 

study; however, showed a correlation between the standard GRE and the on-the-fly GRE 

created from item shells to be .87.  This correlation was in line with the general test- re-

test correlation found between normal administrations of the GRE.  This indicates that the 

item shells function just about as well as typical items.  With this in mind, the use of item 



40 
 

 

shells on the best items may prove to be a reasonable method for using current item pools 

to increase the quality of the item pool to obtain the most amount of information.  This 

research is important to this study because item shells can be combined with Automatic 

Item Generation (Gierl & Lai, 2011) to produce thousands of items for use in the item 

bank.  While not yet operationally used, item shells and AIG are cutting edge technology 

that could represent the future of item pools. 

  Methods for performing Automated Test Assembly (ATA).  The 3PL model is 

specifically being used to develop items for the item pools for this paper.  The item 

information function for the 3PL model is as follows 

 

  𝐼�𝜃 , 𝜃�� =  𝐷
2𝑎𝑖

2𝑞𝑖
𝑝𝑖

[(𝑝𝑖− 𝑐𝑖)2

(1−𝑐𝑖)2 ] (Eq. 5) 
 

Since item information is summative, the test information function would just be to sum 

across the items and theta scales.  In order to build the TIF’s, this paper uses Automatic 

Test Assembly using an ATA engine.  Most ATA engines seek to minimize or maximize 

functions to fit certain constraints on either content or information such as this target 

which minimize the gap in Information across the 𝜃 scale: 

 
 T(θ) − ∑ xiI

i=1 Ii(θ) (Eq. 6) 
 

T(𝜃)is the target and  

 
 ∑ xiI

i=1 Ii(θ) (Eq. 7) 
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is the summative item information across the 𝜃 scale or the total test information 

currently in the exam. 

Luecht and Nungester (1998) argued that there are two ways to perform the ATA 

for a ca-MST.  The first called “top-down” assembly requires the specification of content 

constraints for the total test along all possible pathways thru the panel.  The ATA engine 

would then optimize a model that would aggregate item content across the stages to 

satisfy total test level constraints.  Also, TIFs would be generated for the “most likely” 

pathways for an examinee. 

Luecht and Nungester (1998) also described another approach called the “bottom 

up” approach looks at specific routes that a low proficiency examinee, moderate 

proficiency examinee and a high proficiency examinee might take through the panel.  In 

separating these out modules become mixable between panels as a module in the 

moderate position can be switched between stages or between panels as modules now 

become separate.  Separate target TIFs also would be created for each module. 

One important decision that a developer makes in the ATA process is the level of 

exposure that is tolerable for the assessment.  Luecht (2000) expanded the design 

framework and automated test assembly mechanisms needed to implement ca-MST in 

practice.  Building on the original CAST model, he demonstrated how to build forms 

using ATA, while simultaneously focusing on critical item exposure issues.  Luecht 

argued that the advantage that ca-MST has over CAT is due to using robust average test 

information targets for the modules, ca-MST designs evenly distribute the “best” or 

highest a-parameter items across the panels.  One drawback CAT has is that since the 
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algorithm is going to pull the item with the most information, high a parameter items will 

always have the most information.  In addition, because we do not re-use items on panels, 

item exposure can be seen as consistent across a stage.  For example, if there is a 1-3-3 

design with 10 panels at each module, the probability of any item being seen is the 

probability of being routed to low medium or high, 0.33, times the number of random 

panels at each stage 10, or 0.033.  Lastly, exposure can be empirically calculated as 

mentioned in the last step.  Assuming we control the item to be on 1 and only 1 panel or 

limit an item to a particular number of panels, we can easily calculate the maximum 

exposure rate for any given item.  These decisions can even be incorporated into the 

Automated Test Assembly process as a constraint on exposure.  Also since we know 

which panels will be active for any examinee, corrections could potentially be made in 

advance to remove items with excessive exposure, content has become outdated, or the 

content has become exposed due to potential test cheating. 

 Luecht and Burgin (2003) described a solution to building TIF targets called 

conditional information targeting (CIT).  Luecht argues that this strategy will be 

generalizable to having multiple routes and stages.  The CIT strategy relies on three 

values called “posts.”  The left, center, and right posts each have different roles in 

generating the TIF functions.  In general, the posts are related as follows: 𝜃L < 𝜃C < 𝜃R.  

The center post is always fixed and controls the proportion of the population sent to the 

left and to the right.  The left and right posts are used to move the targets for the 

maximum amount of information the modules.  The TIF strategies explained below are 

just generalizations of the CIT principles. 
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Luecht and Burgin (2003) found that the targets could be hit, however 

recommended fixing one of the outer posts helps constrain an otherwise challenging 

solution, where aligning the intersection to the center post is the primary criterion.  This 

is particularly challenging when the supply vs. demand gap is particularly narrow.  In 

general a lack of convergence to a ATA solution can cause the intersection to move or 

not be met such as in Luecht and Burgin (2003) when one of the solutions ended up with 

a 𝜃C = -0.46 when the criterion was set at -0.524.  Luecht and Burgin admit that there 

may be an issue with more than two modules as the research only included a 1-2 design.  

There may also be some concern with further than two stages, as some people may take 

auxiliary routes and the CIT strategy only works for the primary routes.  While the 

thought is that particular auxiliary routes should balance out or the people going from a 

moderate module going to easy should be the same as the people going from an easy 

module to a moderate module, this should be empirically researched. 

Several exposure control methods exist for CAT and LFT.  As previously 

discussed the majority of exposure control methods rely on the Sympson-Hetter 

procedure (Sympson & Hetter, 1985).  There are other types of exposure controls that 

have also had success such as Chang and Ying’s (1996) a-stratified exposure controls.  

Way (1998) classified all exposure control procedures into two main categories: 

randomization selection procedures and conditional selection procedures.  Randomization 

procedures select several items near the optimal level of maximum information from 

which one item is then randomly selected for administration in a CAT.  Conditional 

selection procedures have preset exposure parameters that meet a pre-selected maximum 
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exposure rate. Dodd and Fitzpatrick (2002) note that if the ability distribution is changing 

the conditional selection obtaining the exposure parameter is a nontrivial process.  This 

section will discuss a couple of the more popular exposure control methods. 

The most commonly used conditional selection procedure is the Sympson-Hetter 

(Sympson & Hetter, 1985) technique.  Ultimately, Sympson-Hetter limits the exposure of 

items that have been exposed greatly before.  This ensures essentially a maximum 

exposure rate because the higher the frequency of administration in a CAT the smaller the 

exposure-control parameter that the item will have. 

Another commonly used conditional exposure control method is the a-stratified 

(Chang & Ying, 1996) method.  In this method, when the CAT algorithm is most 

uncertain of the examinees’ ability, lower discriminating items are administered.  As the 

CAT progresses, the examinees’ ability becomes more known and higher discriminating 

items are administered.  This method falls into a joint approach to exposure control.  The 

items within each strata (low and high discrimination) are randomly distributed to an 

examinee.  As mentioned earlier there are some questions as to how many strata should 

be created and what the strata should look like.  Overall, these types of can help hit 

exposure goals in a CAT; however, unlike CAT, ca-MST will have known item-exposure 

characteristics and these item exposure characteristics are entirely dependent on the item 

pool and decisions made about the ca-MST configuration (see: Dallas et al., 2012). 

These topics are important in developing what ca-MST configuration that will 

work best for your assessment.  The item pool and the information and shape of the item 

pool is extremely important in determining which ca-MST configuration will serve the 
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test purpose best.  This section described a couple of the available item pooling 

techniques for ca-MST.  Followed by a discussion of a couple of the different type of 

ATA procedures found in the literature.  Finally, a couple of the popular exposure 

techniques used in CAT and could potentially be used in a ca-MST.  These topics inform 

the final research question of supply versus demand.  Ultimately, the ca-MST will only 

be as good as its supplies (information in the item pool) versus the demands placed on it 

by the choices made about configuration and ca-MST options (such as the # of items in a 

module or item re-use rules.) 

Routing and Scoring Methods for ca-MSTs 

There are varieties of ways to route examinees from stage to stage.  CAT 

procedures usually provide the item that optimizes item information at the examinees 𝜃� 

estimate; however, ca-MST’s can be a little bit more flexible in the method that routing is 

performed.  As noted in Chapter I, four types of routing and scoring are considered in this 

study: (a) routing using Bayesian a maximum module information criterion using 

Bayesian mean (i.e., expected a posteriori or EAP) scores; (b) routing to achieve a 

balanced exposure of modules within any ca-MST stage using EAP scores and cut scores 

along the θ distribution; (c) routing using number-correct (NC) scores, but with the 

underlying module information functions designed routing the examinees using a 

maximum module information criterion; and (d) NC-scoring with routing set to achieve 

uniform balance of module exposure within a stage. 

 Very little has been done directly addressing the effects of the consequences of a 

particular routing strategy.  Yen (1984) investigated the use of a NC scoring method on a 
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LFT.  Yen’s research used a look up table where the NC score was used to find an 

examinee’s estimated trait level using the 3PL model.  This was done by using an 

approximation to the compound binomial distribution (Lord & Novick, 1968).  Yen 

found that NC scoring produced similar results except in the lower two quintiles of the 

scale.  In addition, Yen found that there was a 10% increase in the average error of 

measurement for the 𝜃� distribution.  Stocking (1996) proposed a method for scoring fixed 

length CATs based on a NC raw score.  While a LFT contains multiple raw score options 

with approximately the same mean difficulty for a form, CAT contains about the same 

raw scores with the only difference being the mean difficulty of the items taken by the 

examinee (Dodd & Fitzpatrick, 2002). 

 In terms of NC scoring on ca-MSTs, Schnipke and Reese (1999) used NC scoring 

in their simulation study in which they used an approach that attempted to figure out at 

which NC value was the mean squared error lowest between pathways (low to medium, 

medium to high).  Dodd and Fitzpatrick (2002) also offered up a routing method that is 

similar to the information based routing method used in this study.  Dodd and 

Fitzpatrick’s method involved computing NC ability estimates and then selecting 

modules based on information at that estimate.  Schipke and Reese (1999) found that 

selecting testlets on the basis of information worked better than selecting testlets of a 

given average difficulty based only on the raw score of the previous testlet. 

 Luecht, Brumfield, et al. (2006) tangentially dealt with routing in a study 

examined some key practical issues/development considerations.  They specifically 

examined how a 1-3-3 ca-MST (then called a Computer Adaptive Sequential Test or 
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CAST) would fit the Uniform CPA Examination.  They chose to do number-correct 

routing to route examinees to the next stage.  While the authors did not compare number 

correct routing to other routing methods using IRT, they did bring up an important 

technical consideration if using number-correct routing.  There are two potential methods 

for locating the routing points on the ability scale. 

 The first method described by Luecht, Brumfield, et al. (2006) included the use of 

IRT estimates to develop cut scores for the panel.  One would obtain number correct 

scores for specific cuts and use those number correct decisions to route examinees 

through the panel.  These number correct scores could either be cumulative or based 

solely on the previous module.  The IRT cut score formula would be calculated for a set 

decision point by summing the probabilities of a correct answer across items in any of the 

IRT models given the set of item parameters: 

 
 Xcut =  ∑ ∑ P(θcut; ξi)

nj
i=1

k
j=1  (Eq. 8) 

  

 The other method of routing forces a defined population interval to particular 

routes.  This method can be used more as a policy decision to force relative proportions 

of examinees to each of the primary routes.  This would be accomplished by finding the 

ability points that would correspond with the 33rd and 67th percentiles of the cumulative 

distribution.  Assuming a normal distribution or (μ = 0, σ2 = 1) the routing points would 

be 𝜃LM = -0.44 and 𝜃MH = 0.44. 

 These two methods are somewhat similar to the methods used in this study.  One 

type of NC routing focuses on efficiency and precision routing the examinee to the route 
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that is maximally informative given prior performance on the assessment.  The other type 

of NC routing focuses on exposure routing examinees to routes based on a designed 

interval to protect the modules from being over exposed. 

 No matter which method is chosen number correct scoring rules can be set up.  

They can be individualized for each panel (i.e., if equating differences exist).  Once these 

rules are set up, the only IRT needed is the end score ability estimate.  The payoff with 

using this method is that no longer will testing centers have to perform IRT calibrations 

on the fly in order to route examinees.  To date, little research has been done confirming 

that number correct methods work equally well to IRT methods of scoring. 

 The other methods to score examinees would be to use 𝜃� to score examinees.  𝜃� is 

computed by using the underlying Item Response Theory model, most likely the three 

parameter logistic item response model (3PL).  The most likely 𝜃� could be found by 

computing the likelihood across the ability scale by computing the likelihood function on 

𝜃.  Examinees would be given more credit for correctly answering items that are either 

highly discriminating or highly difficult.  IRT has two potential methods of routing: 

routing by the module that will provide maximum information at the examinees current 𝜃� 

proficiency level or have specific 𝜃� cuts set up for advancement to the next module. 

 The first IRT method that is under consideration is used primarily in CAT 

research.  Most CAT routines select an item that is maximally informative to the users 𝛩� .  

This method would route students ultimately the best as research has shown (Hambleton 

& Swaminathan 1985; Lord, 1980; Luecht, 2000) that when item difficulty matches 

ability both efficiency and validity are maximized.  In this scenario, 𝜃� would have to be 
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calculated at least at the end of each module and at every routing decision point, 

additionally, the routing mechanism would have to be the cumulative method of scoring, 

which may reduce the total amount of adaptivity in the design; however, ultimately this 

method has traditionally proven to produce scores that are the most efficient and precise.  

One drawback of this method is that proportions of the population are not as easy to 

control.  Information targets can be set up to roughly route examinee proportions to 

roughly desired conditions; but 𝜃� does not have the strict controls that number correct 

routing or 𝜃 cuts have over controlling the proportions of people whom see each module. 

 The hybrid between number correct routing and max information routing is the 

last of the routing strategies and that’s providing 𝜃� cuts and routing people according to 

those cuts.  This method is similar to the information targeting method in that IRT is 

performed at each module and the 𝛩�  estimate is directly tied to the module that the 

examinee is sent to.  In addition, it also offers the strict population control procedures that 

can be found in number correct routing. 

 One of the primary differences between number correct scoring and 𝛩�cut scoring 

is simply the method of calculating the actual cuts.  Recall that in number correct scoring 

IRT true scores were calculated by simply taking the item parameters, ξ and the cut score 

for 𝜃cut and summing the probabilities of a correct response at that cut score.  The 

difference is no longer do those true scores need to be created; the 𝜃 cuts will suffice in 

determining the cut scores to route.  The scoring can either be done cumulatively or 

separately for each stage; however, in order to obtain the most precise estimates for 𝜃�, the 

cumulative approach to scoring should probably be used. 
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 A bit of work has been done in using the Test Characteristic Curve (TCC) or a 

curve of the expected raw score for any given θ.  This research in some way related to 

using the raw score to approximate back to the θ scale.  Thissen and Wainer (2001) 

mentioned the idea of using the TCC to score tests (i.e., using “sum scores”) for the 

North Carolina EOG Mathematics Test (Williams, Pommerich, & Thissen, 1998). 

 Kolen and Tong (2010) evaluated the effects of choice of estimator on score 

distributions while considering the effects of the prior and test length.  The paper 

compared TCC scoring, MLE scoring, EAP scoring and a variant of EAP scoring for a 

summed score estimator.  The findings from this study have two major implications for 

number correct scoring.  First, Kolen and Tong found that the score distributions were 

more variable for the MLE/TCC scoring functions as compared to their Bayesian 

counterparts.  Second, in practical situations, number-correct scoring is more likely easier 

to understand for users of the test than IRT scoring (Kolen & Tong, 2010). 

 While this study isn’t explicitly using TCC scoring, the routing of examinees is 

completely done using a number correct method.  Final score estimates will be both MLE 

and EAP IRT estimates and not a TCC score.  That said, using number correct (summed 

score) estimates to route is not a brand new idea and has been done in previous research. 

 While more has been done in this area, there is a routing method that this paper 

did not consider.  This method was Wald’s (1947) sequential probability ratio test which 

was explored further by Luecht et al. (1996).  This method was not seriously considered, 

however, as suggested by a comment made in Luecht and Nungester (1998) to the effect 

that the SPRT was considered valuable only in a mastery testing context where 
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improving the quality of ability estimates was not a major concern.  In the Luecht et al. 

study the ability estimates are of concern and as a result the SPRT is not an appropriate 

routing method.  Another method of routing /scoring that was not tested is the method 

developed by Luecht and Burgin (2003) which is a hybrid method of scoring which 

routes the examinee to the module most informative, however, also keeps exposure in 

mind in the process. 

Summary 

 The development of ca-MST has begun to take hold on the testing industry as 

more and more companies wish to integrate cutting edge technology with cutting edge 

measurement methods.  This notion should sound the call for renewed research into ca-

MST and focus the bulk of the research on specific technical considerations that should 

not be overlooked. 

Developing cutting edge item pool development strategies that maximize 

precision where it is needed most and routing examinees in the most efficient way in 

terms of efficiency and exposure are keys for any testing company.  Companies can save 

money if item pool demands can be known in advance and dealt with in a reasonable 

manner.  More research needs to be done to determine the best types of information 

structures for ca-MSTs and how item pool maintenance can be done in the most efficient 

manner possible. 

This literature review shows the gap in the assessment the effect of routing 

strategies as well as the history of measurement in the field of ca-MST.  These 
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considerations will go a long way in determining the future of not only ca-MST 

assessments but in assessment as a whole. 

This literature review highlights the importance of the research questions 

addressed in this paper.  Routing and scoring methods for ca-MSTs are not well 

established in the literature.  This dissertation represents the first empirical study of 

routing and scoring conditions testing them purposefully against other routing and 

scoring conditions.  While there is nothing necessarily new about the routing and scoring 

conditions themselves, the use of these conditions within a ca-MST is untested.  Lastly, a 

discussion of item pooling and item exposure methods highlights the final research 

question.  The final research question investigates the notion of striking a proper balance 

between available psychometric information and the demand that the configuration and 

other ca-MST options places on the item pool.  Creating an item pool should not just be a 

simple repurposing of available items from another item bank and making a ca-MST out 

of those items.  Item pools for ca-MST should be constructed with some forethought and 

constructed to meet the needs of the desired ca-MST configuration as opposed to letting 

the item pool control the configuration options or performing suboptimal measurement 

(Dallas et al., 2012). 
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CHAPTER III 

 
DATA AND METHODOLOGY 

 

This chapter provides an overview of the data generation and simulation process 

and the study design conditions.  A brief summary of analysis procedures is also 

included.  Those procedures are more fully covered in Chapter IV. 

Data Generation and Simulation Process 

 The research questions outlined in Chapter I are addressed using a large-scale 

simulation study covering 36 conditions, with multiple data set replications per condition, 

and simulated examinees serving as their own controls across four within-person ca-MST 

routing and scoring strategies.  Details about the 36 design conditions and four 

routing/scoring strategies are covered in the next subsection. 

 Each simulation is carried out in four parts.  Part 1 is the data generation and 

calibration phase.  An item pool is created specifically for each study design condition.  

These item pools were simulated to be roughly 1.5x the information needed for a paper-

pencil fixed length assessment.  The “known” item parameters are used to generate a 

calibration response data set using procedures outline below.  The examinees in the 

calibration sample are assigned a random set of items—essentially a LOFT form—

matching the corresponding panel test length (e.g., for the 1-3 panel configuration with 8 

items per stage, examinees in the calibration sample would be assigned a 16-item LOFT 

form.  These calibration samples will be sufficiently large to ensure that at least 500 
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examinees see any particular item and that sufficient overlap or connectivity in the data 

set exists for calibrating the entire item pool to a common IRT θ scale.  The calibration 

data set will be calibrated using BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 

2003).  All item parameter estimates for the item pool must converge.  This calibration 

method simulates a reasonable approach to calibrating an item pool based on field trials 

or embedded field-testing of the items. 

 Part 2 is the panel assembly phase.  Here, ten replications of the panel 

configuration are assembled from the item pool, without item overlap across panels, 

using the calibrated item statistics from Part 1.  Appropriate routing and scoring tables 

are also created as part of the assembly process.  All of the assembly is carried out using 

a well-established automated test assembly (ATA) heuristic for ca-MST designs (Luecht, 

2000).  A variant of the CASTISEL version 1.5 software, called ATA Panel Builder 

(Luecht, 2013) is used. 

 The targets for the ATA are developed using R-programming (2013).  First, the 

location and amount of maximum information is computed.  For this task, the TRUE 

(generated) item parameters for this task.  Next, based on the maximum information per 

item, the items will be sampled into S bins where S = the number of stages (2, 3, 4, or 5).  

The size of each bin should be proportionally equal to the sum of the module sizes at 

each stage.  For example in a 1-2-3 design with 10 item modules, the item pool would 

have 720 items (1.5x the demand).  Bin #1 would correspond to stage 1, which has only 

one module.  As a result, we would sample 1/6th of the item pool and assign them to Bin 

#1, stratifying by max. amount of information to ensure a somewhat uniform spread of 
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information across the modules, regardless of the mean of the difficulty in the item pool 

itself.  Bin #2 or the second stage items would have 1/3rd (2/6ths) of the items in the pool 

and the remaining ½ (3/6ths) of the items would end up in Bin #3 for use in the third 

stage.  Next, the items in each bin will be sorted by location of maximum information.  

These items will then be split into “piles” corresponding to the number of difficulty levels 

(modules) at each level.  For example using the previous example using a 1-2-3 ca-MST 

configuration, Bin #1 would need no sort or split needed because it only has one level of 

difficulty.  Bin #2 would sort and split the items into a “moderately easy” and a 

“moderately hard” pile.  Bin #3 would need to be sorted and split into three piles: an 

easy, medium and hard pile. 

 Next, the average item information across all items within each pile in each pin 

will be computed at 41 quadrature points.  The average item information across each bin 

then becomes the TIF targets for the ATA procedure.  The ATA procedure uses the 

Normally Weighted Absolute Deviation Heuristic (NWADH; Luecht, 2013; Luecht, 

1998), or a variation of a greedy algorithm.  This algorithm is useful because it always 

converges to a solution, even if there is not adequate information in the pool.  In addition, 

when there is a lack of information in the pool the algorithm will do the best job it can in 

building parallel forms.  The NWADH procedure updates the overall information after 

selecting an item and adjusts the “best” item (or the item that meets the biggest gap) after 

each selection. 

Part 3 generates a simulation data set using the original item parameters from Part 

1 (not the calibrated statistics).  The data generation is carried out for the entire item bank 
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to ensure that the same response generating mechanism is applied for a particular 

simulated examinee, regardless of which panel or routing/scoring mechanism is applied 

in Part 4, below.  Twenty thousand examinees are generated per simulation data set to 

ensure that simple random assignment of panels to examinees will result in 

approximately 2000 examinees being administered any particular panel. 

Part 4 is the ca-MST simulation phase.  This phase uses the generated simulation 

data sets from Part 3 and the pre-assembled panels from Part 2.  These simulations are 

carried out by caMST Simulator (Luecht, 2013).  In this phase, the ten pre-assembled 

panel replications are randomly assigned to each simulated examinee in a simulation data 

set.  The same panel is then essentially administered four times, once per routing and 

scoring strategy (described in Chapter I and below).  The estimated item statistics from 

Part 2 are used for all routing and scoring, even though the response data are generated 

using the original item pool statistics from Part 1.  This process allows item parameter 

estimation errors to potentially impact the accuracy of scores, in addition errors 

attributable to the various routing and scoring mechanisms used.  Since the four routing 

and scoring mechanisms are applied to the same response string that each examinee, the 

examinees essential serve as their own controls for comparative purposes. 

The calibration data sets (Part 1) and ca-MST simulation data sets (Part 4) are 

rather straightforward extensions of data generation methods used in most IRT-related 

research.  Here, we consider an item pool consisting of I items with parameters, ξi=(ai, bi, 

ci), i=1,…,I.  The item parameters are sampled from target distributions of: (a) item 

discriminations, ln(a)~N(μa, σa); (b) item difficulties, b~N(μb, σb); and (c) lower 
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asymptote parameters, c~Β(μ, σ), where N denotes the Gaussian normal distribution and 

Β denotes a beta distribution.  The moments of the sampling distributions are specifically 

manipulated to achieve the study design characteristics outlined above. 

 These sampled item pool parameters are used in the IRT three-parameter logistic 

model (3PLM) to generate dichotomous (1 = correct, 0 = incorrect) response data for the 

entire pool of items, given a sampled proficiency score, θ~N(μθ, σθ).  The 3PLM can be 

written as 
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 + − θ−   (Eq. 9) 

 

For each person-by-item interaction, we can apply Equation 3.1 to obtain an item 

“true score,” Pij, using ξi and θj (i=1,…,I items and j=1,…,N examinees).  We can next 

generate a uniform random real-valued number within the interval 0 ≤ πij ≤ 1.  If Pij ≥ πij, 

we set the scored item response to uij=1, otherwise uij=0.  The process is repeated for 

each simulated examinee on every item in the pool.  However, only those responses 

actually administered in Parts 1 and 4 are used in scoring.  The full-pool item generation 

is primarily used for data management convenience, requiring a total of only 540 

complete responses data sets for Parts 1 and 4. 

Study Design Conditions 

Thirty-six conditions are considered in this study.  The design factors cover two 

general categories: (a) ca-MST design configurations, and (b) item pool characteristics.  

There are 6 plausible ca-MST design configurations consisting of two module-lengths 
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and three panel configurations.  The module lengths are 10 and 20 items.  The ca-MST 

panel configurations include: (a) a 1-3 two-stage design; (b) a 1-2-3 three-stage design; 

and (c) a 1-2-3-4 four-stage design.  These choices appear to reflect an adequate range of 

adaptation for two- to four-stage panels and expand on the work done in previous studies 

(e.g., Jodoin et al., 2006; Wang et al., 2012). 

Six characteristics potential item pools are fully crossed with the ca-MST.  The 

choice to focus on item pool characteristics, rather the spread of measurement 

information within particular modules or panels emphasizes a realistic condition of test 

assembly.  Item pools are not infinite resources.  By focusing on the item pool 

characteristics, we force the panel assembly process to deal with the realities of a specific 

item pool and then generate a number of modules that contain similar targets.  The 

generated pools are further limited to being 1.5 times the number of items needed to 

create twelve parallel panels under one of the six ca-MST design configurations 

described above.  Using twelve parallel panels is a reasonable number of panels that a test 

developer might construct to ensure that random assignment of panels would deter any 

cheating/gaming of the ca-MST system.  In addition, these panels serve a method of 

replication in case a particular panel has something go wrong in the simulation.  This 

seems to be a reasonable restriction that might mirror practical item inventory planning.  

The six sets of item pool characteristics are determined by manipulating the means of the 

item discrimination parameters and the means of the item difficulty parameters.  Details 

on the IRT model used and how those item discrimination and difficulty parameters are 

expressed in the model are explained in the next subsection. 
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If we consider a distribution of examinee proficiencies drawn from a unit-normal 

distribution, θ~N(0,1), we can move the statistical measurement information of an item 

pool relative to that examinee distribution and the purpose of the test.  Three levels of 

average item difficulty (μb) are used to simulate the item pools: (i) item pools comprised 

primarily of easy test items (μb =−1σθ); (ii) item pools composed of primarily moderate 

difficulty items—that is, an item pool well-matched, on average, to the examinee 

population mean (μb = 0); and (iii) item pools comprised primarily of difficult items (μb = 

+1σθ).  All of the item pools have an average b parameter variation of 1.0.  Using 1.0 

represents, moderate variation in the item pools (σb = 1.0), and simulates item pools well 

matched to the variance of examinees in the population.  Most of the other research 

studies use 1.0 as the standard deviation for the difficulty parameter (Xing & Hambleton, 

2004; Jodoin et al., 2006). 

Two levels of average item discrimination were also consider: (i) moderately low 

discrimination, μa=.6, representing a plausible amount of discrimination for many types 

of certification and licensure tests administered to highly able, homogeneous samples of 

examinees; and moderately high discrimination, μa=1, a value compatible with a number 

of large-scale achievement and college entrance examinations.  Most studies included an 

average discrimination parameter of 1.0 (e.g., Xing & Hambleton, 2004).  Note: 

unrealistically high discrimination values are sometimes included in simulation studies.  

However, those levels rarely contribute anything useful to an operational assessment 

system because levels of average discrimination above 1.2 or so are almost impossible to 

consistently maintain given even very good item writing guidelines and training of item 
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writers.  In fact, a recent study by Paap and Veldkamp (2012) examined the effect of a 

testlet model and the relationship between the discrimination and difficulty parameters.  

The average a’s in this study ranged from 0.4 to 0.9. 

 The complete set of crossed design conditions is summarized in Table 3.1.  

Taking the product of the “Totals” row values gives the 36 total conditions noted above.  

Each of these conditions will be replicated 10 times for a total of 360 item pools in the 

study. 

 
Table 3.1 

Summary of Study Design Conditions 

  
  

Panel Designs Item Pool Characteristics 

 
Module Length 

ca-MST 
Configuration 

Average Item 
Difficulty 

Average Item 
Discrimination 

Totals 2 3 3 2 
Level 1 10 2 Stage: 1-3 Easy, μb = -1 Low, μb = .6 

Level 2 20 3 Stage: 1-2-3 Mod., μb = 0 High, μa = 1 

Level 3 – 4 Stage: 1-2-3-4 Difficult, μb = 1 – 
Note: Each of these 36 item pools will be replicated 10 times. 
 

 As noted in Chapter I, four types of routing and scoring are considered in this 

study: (a) routing using Bayesian a maximum module information criterion using 

Bayesian mean (i.e., expected a posteriori or EAP) scores; (b) routing to achieve a 

balanced exposure of modules within any ca-MST stage using EAP scores and cut scores 

along the θ distribution; (c) routing using number-correct (NC) scores, but with the 

underlying module information functions designed routing the examinees using a 
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maximum module information criterion; and (d) NC-scoring with routing set to achieve 

uniform balance of module exposure within a stage.  As previously mentioned, these four 

routing and scoring methods directly address the gap in the literature on number correct 

scoring versus traditional scoring practices. 

 For maximum information routing with Bayesian scoring, we compute the 

module information functions (MIF) at the current EAP estimate and choose the module 

with maximum information (Willse et al., 2012).  For NC routing with the maximum 

information criterion in place, we determine the intersection of any pair of adjacent MIFs 

and compute the rounded expected NC score using all items completed through prior 

stage along designated ca-MST routes; that is, Round[E(NC)=∑i(θintersection)] .  The 

rounded expected NC value serves as a boundary score for routing purposes.  For 

uniform, balanced module exposure, we divide by the number of modules at any one 

stage and determine the corresponding θ (or estimate) corresponding to the area within 

each of the regions of the cumulative normal distribution.  For example, for three 

modules at a particular stage, we divide by three and determine the cut points at the 33rd 

and 67th percentiles of the cumulative normal distribution to route approximately equal 

proportions of the sample to one of the three modules.  When IRT Bayesian scoring is 

used, the routing is based on EAP estimates of θ.  When NC routing is used, we 

determine the expected NC cut points using the Round[E(NC)=∑i(θcut)] transformation.  

This description also helps to highlight that the primary difference between the IRT-

based routing and scoring and the NC approach is that the latter depends on the rounding 
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function.  Its advantages lie in simplifying the operational routing and scoring 

mechanisms and IRT-related data needed to support ca-MST in real-time. 

Data Analysis 

 Once 𝜃� was calculated for every examinee, residual statistics will be calculated 

and reported for each examinee within each design condition.  For each 𝜃�, the residual for 

any jth examinee can be calculated as ej = 𝜃�j - θj.  The residuals serve as a measurement 

of error and the expected value of the residuals is expected to be zero.  The equation for 

the mean of the bias is 

 

  µe =  Ej =  
∑ ejN
j=1

N
. (Eq. 10) 

 

When the mean of the residuals is non-zero, however, the estimates of 𝜃�j is said to 

contain bias.  Pine (1977) and Hambleton and Swaminathan (1985) described item/test 

bias as the same underlying ability (measured by θ) having the same probability of 

getting an item correct.  Most commonly bias serves as a measure of finding Differential 

Item Functioning (DIF); however, since there was only one group in this study, 

ultimately bias takes on the meaning of do all examinees with similar abilities perform at 

the same level.  In other words, does the choice of a ca-MST, model selection (e.g., two 

parameter IRT model, three parameter IRT model, or routing method (number correct, 

IRT 𝜃�j , or max information IRT routing) cause groups of individuals with the same 𝜃�j to 

be misestimated in a similar manner? For example, if somehow the number correct 

scoring method caused everyone in a range of ability from -1 to 1 to be misestimated in a 

similar direction, the estimates could contain bias.  If it is the case that the number correct 



63 
 

 

method leads to greater amounts of bias than the IRT methods of ability estimation, the 

number correct method probably should not be used operationally. 

 The other outcome observed was also related to the residual error.  Root Mean 

Square Error (RMSE) was defined in this paper as 

 

  RMSE =  �
∑ ej

2N
j=1

N
. (Eq. 11) 

 

RMSE is the square root of the Mean Square Error (MSE).  The expectation of RMSE in 

a non-biased distribution is expected to be 0.  Luecht (2011) notes that MSE is the sum of 

the squared errors, RMSE subsume bias and error variance into a single measure.  It 

should be noted that the error variance is the variance of the residuals around the mean of 

the residuals.  The MSE should be similar to the empirical error variance and should only 

be different by the amount of bias or the mean of the residuals.   In this study, the RMSE 

will be used to compare the true theta to the estimated theta and how well the ATA 

resulting MIFs matched the target MIFs. 

Review of Research Questions 

 These analyses are directed at answering the three research questions in this 

study.  Ultimately, the goal will be to show how differing both the ca-MST conditions 

and the within-person routing mechanisms affect precision of estimation of ability. 

1. How do the four routing and scoring mechanisms impact the recovery of 

simulated proficiency scores under a variety of ca-MST conditions? 

The two statistics as earlier described will be computed and then graphics will be 

developed to illustrate the overall effect of the routing conditions under a variety of ca-
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MST conditions.  Ultimately, this is similar to examining just the main effect of the 

routing conditions, as routing condition accuracy is a major concern to test developers in 

establishing validity.  In addition, conditional residuals will be calculated and plots or 

tables of route residuals (bias and RMSE) will be calculated.  The results from this 

question will directly address the gap in the literature about the possible use of NC 

scoring in an operational framework. 

2. Under what conditions do various ca-MST design configurations work best 

from a psychometric scoring-accuracy perspective with respect to the four 

routing and scoring mechanisms as well as the various item pool 

characteristics? 

Graphics will be developed to illustrate which design conditions do various ca-

MST conditions work best from a scoring accuracy.  This question examines the 

interaction between configuration and routing condition controlling for the other study 

conditions.  The graphics from this question will examine the potential issues that can 

arise as a result of certain item pool characteristics and the potential interactions between 

the ca-MST configuration and psychometric scoring accuracy. 

3. How do various item pool characteristics impact the quality of ca-MST test 

forms from a psychometric perspective? 

The two previously discussed statistics will be calculated and then graphics will 

be developed to investigate this question.  This research question will be answered via 

graphics that directly address how item pool characteristics affect the quality of ca-MST 

forms from a psychometric perspective.  This question directly addresses the supply vs.  
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demand question from Chapter I.  The basic relationship between supply and demand 

might impact the ca-MST configuration decisions that a testing company might make.  

For instance, if the item pool won’t support the decisions made it may hurt the testing 

program in terms of the psychometric accuracy of their exam. 

Conclusion 

 The methods for answering the research questions include highly specialized 

procedures and cutting edge technology.  To date, little has been done to test whether 

number correct scoring is a viable option in a ca-MST framework, this research study 

explores this by testing the overall resulting difference(s) in ability estimation when using 

number correct routing versus IRT routing. 
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CHAPTER IV 

 
RESULTS 

  

 In this section the results from the ATA and simulation study are presented.  The 

results from the ATA include how well the ATA engine performed in generating module 

information functions (MIFs) versus the targets (discussed in Chapter III).  Then, results 

from the ca-MST simulations are presented. 

Creation of the MIFs 

 This section discusses the results from the creation of the MIFs including how 

well the resulting MIFs from the ATA fit to the targets.  A description of how the targets 

were generated can be found in Chapter III.  Figure 4.1 displays an example of one of the 

MIF v Target plots generated.  The black geometric figures are the actual MIFs while the 

colored lines are the target functions.  The scale runs from 0 to the maximum information 

in the entire first configuration.  If the plots fit well there would be very little difference 

between the colored line (target) and the geometric points (MIFs).  In Figure 4.1 we see 

very little difference so we can assess that the target MIFs fit pretty well in this iteration.  

Figure 1 is by replication, so there are 12 modules per stage which means there are 

twelve module lines in the left side (stage 1) of Figure 4.1 and 4 module lines in each of 

the three MIFs on the right side of Figure 4.1. 
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Figure 4.1.  Example of 1-3 MIF design.  This figure shows the fit of the MIFs to the MIF 

targets.  The solid black geometric shapes are the actual MIFs used in the analysis, while 

the solid colored lines were the targets. 

 
Since the study included ten replications per each of the 36 study conditions it’s 

important to see if there are any particular outliers when it comes to the ATA process.  As 

a result, the modules within each stage were averaged across condition for each of the ten 

replications.  As shown in Figure 4.2, there is little variance between the conditions even 

when the number of modules within a stage is small (as is the case with the 3rd stage).  

This indicates that there is no real anomaly in the ATA for each of the 36 conditions.  In 

this case there are 10 module lines (one for each replication averaged across the 12 

modules).  A different color was used for each MIF.  As with Figure 4.1, closeness to the 

targets indicates good fit.  In addition, if there’s a MIF that diverges from the other MIFs 

that would indicate perhaps an aberrant replication of the specific condition. 
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Figure 4.2. Example configuration TIF to target plot.  This figure shows the fit of the 

MIFs to the MIF targets for each of the ten replications.  The solid black geometric 

shapes are the actual MIFs used in the analysis, while the solid colored lines were the 

targets. 

 
 The overall MIF RMSEs of the actual MIFs to the target MIFs are displayed in 

Tables 4.1 to 4.3.  Overall, the a-parameters seem to be the biggest difference in fit.  The 

configurations with the a-parameter values with a mean of 0.6 had a better chance of 

fitting.  Typically the fit was most compromised at tails of the distribution as seen in 
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Figures 4.1 and 4.2.  This could be an artifact of the item parameter generation.  The 

modules in the 1-3 configuration tend to fit a little bit better than the modules from either 

the 1-2-3 or the 1-2-3-4.  The 1-2-3 and 1-2-3-4 fit equally well in terms of the RMSE. 

 These fit indices are summed over the entire range of the scale (-4 to 4), while 

there are great amounts of misfit towards the tails of the distribution, there is significantly 

less misfit where the peaks of the distribution are.  Another point of interest might be the 

low standard deviations on the configuration means.  While Figure 4.2 provides a picture, 

this table suggests that the target to actual relationship is similar for all 10 replications. 

 
Table 4.1 

RMSE of ATA-created MIFs vs. Target Functions for 1-3 Configurations 

Config mn-S1M s-S1M mn-S2L s-S2L mn-S2M s-S2M mn-S2H s-S2H 

C1 1.00 0.51 1.01 0.49 0.92 0.44 0.95 0.50 

C1P1D1A1 0.44 0.00 0.45 0.02 0.44 0.01 0.44 0.01 

C1P1D1A2 0.98 0.01 0.98 0.01 0.88 0.01 0.99 0.02 

C1P1D2A1 0.43 0.01 0.44 0.01 0.41 0.01 0.39 0.01 

C1P1D2A2 1.00 0.01 0.96 0.01 0.91 0.01 0.96 0.04 

C1P1D3A1 0.39 0.01 0.41 0.01 0.37 0.01 0.33 0.02 

C1P1D3A2 0.93 0.01 0.95 0.01 0.83 0.02 0.82 0.05 

C1P2D1A1 0.86 0.02 0.93 0.06 0.86 0.04 0.85 0.04 

C1P2D1A2 1.81 0.03 1.84 0.06 1.60 0.04 1.83 0.05 

C1P2D2A1 0.82 0.03 0.86 0.05 0.82 0.04 0.77 0.05 

C1P2D2A2 1.85 0.03 1.76 0.05 1.67 0.04 1.78 0.05 

C1P2D3A1 0.74 0.01 0.77 0.05 0.67 0.02 0.66 0.04 

C1P2D3A2 1.74 0.03 1.73 0.04 1.56 0.04 1.60 0.11 
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Table 4.2 

RMSE of ATA-created MIFs vs. Target Functions for 1-2-3 Configurations 

 
Config 

mn-
S1 

s-    
S1 

mn-
S2LM 

s-
S2LM 

mn-
S2MH 

s-
S2MH 

mn-
S3L 

sd-
S3L 

mn-
S3M 

s-
S3M 

mn-
S3H 

s-
S3H 

C2 1.08 0.60 1.07 0.59 1.04 0.61 1.11 0.66 1.02 0.56 1.08 0.67 

C2P1D1A1 0.45 0.01 0.44 0.01 0.41 0.01 0.42 0.02 0.43 0.01 0.42 0.02 

C2P1D1A2 1.00 0.01 0.93 0.01 0.91 0.01 0.96 0.01 0.91 0.01 0.93 0.02 

C2P1D2A1 0.42 0.00 0.41 0.01 0.40 0.01 0.41 0.01 0.40 0.01 0.39 0.01 

C2P1D2A2 0.95 0.01 0.91 0.01 0.94 0.02 0.92 0.01 0.92 0.01 0.94 0.03 

C2P1D3A1 0.38 0.01 0.40 0.01 0.34 0.01 0.42 0.02 0.37 0.01 0.34 0.01 

C2P1D3A2 0.92 0.01 0.89 0.01 0.87 0.02 0.90 0.01 0.84 0.02 0.86 0.05 

C2P2D1A1 0.93 0.03 0.97 0.04 0.87 0.02 0.89 0.03 0.90 0.04 0.92 0.05 

C2P2D1A2 2.06 0.03 2.20 0.05 1.87 0.03 2.54 0.05 1.88 0.02 2.08 0.07 

C2P2D2A1 0.93 0.02 0.91 0.04 0.85 0.06 0.90 0.05 0.88 0.05 0.91 0.07 

C2P2D2A2 2.00 0.04 1.88 0.04 2.07 0.09 1.90 0.06 1.99 0.06 2.08 0.09 

C2P2D3A1 0.84 0.02 0.91 0.03 0.75 0.04 1.03 0.07 0.87 0.05 0.75 0.06 

C2P2D3A2 2.07 0.06 1.94 0.05 2.15 0.07 2.06 0.09 1.89 0.08 2.33 0.07 

 

Table 4.3 

RMSE of ATA-created MIFs vs. Target Functions for 1-2-3-4 Configurations 

 
Config 

mn- 
S1 

s- 
S1 

mn- 
S2LM 

s- 
S2LM 

mn- 
S2MH 

s- 
S2MH 

mn- 
S3L 

sd- 
S3L 

mn- 
S3M 

s- 
S3M 

C3 1.06 0.57 1.08 0.58 1.08 0.63 1.13 0.63 0.98 0.51 

C3P1D1A1 0.45 0.01 0.45 0.01 0.44 0.01 0.45 0.02 0.42 0.01 

C3P1D1A2 0.95 0.01 0.94 0.01 0.93 0.02 0.92 0.01 0.87 0.01 

C3P1D2A1 0.43 0.01 0.43 0.01 0.43 0.01 0.46 0.01 0.41 0.01 

C3P1D2A2 0.98 0.01 0.96 0.01 0.92 0.02 0.99 0.01 0.83 0.02 

C3P1D3A1 0.37 0.00 0.42 0.01 0.36 0.01 0.42 0.01 0.38 0.01 
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Table 4.3 

(Cont.) 

 
Config 

mn- 
S1 

s- 
S1 

mn- 
S2LM 

s- 
S2LM 

mn- 
S2MH 

s- 
S2MH 

mn- 
S3L 

sd- 
S3L 

mn- 
S3M 

s- 
S3M 

C3P1D3A2 0.89 0.01 0.87 0.01 0.90 0.03 0.90 0.01 0.85 0.02 

C3P2D1A1 0.93 0.02 0.95 0.04 0.92 0.02 0.98 0.07 0.86 0.04 

C3P2D1A2 1.94 0.02 2.24 0.03 1.96 0.03 2.31 0.11 1.75 0.02 

C3P2D2A1 0.97 0.02 0.92 0.04 0.97 0.04 1.03 0.05 0.90 0.07 

C3P2D2A2 2.01 0.05 1.97 0.04 1.98 0.07 2.09 0.05 1.69 0.08 

C3P2D3A1 0.79 0.02 0.97 0.03 0.78 0.04 0.98 0.06 0.82 0.04 

C3P2D3A2 1.96 0.05 1.78 0.03 2.34 0.11 1.98 0.05 1.93 0.05 

 
Config 

mn-
S3H 

s- 
S3H 

mn-
S4L 

s- 
S4L 

mn-
S4LM 

s-
S4LM 

mn-
S4MH 

s-
S4MH 

mn-
S4H 

s- 
S4H 

C3 1.08 0.67 1.13 0.66 1.01 0.55 1.01 0.56 1.08 0.65 

C3P1D1A1 0.42 0.01 0.47 0.03 0.43 0.01 0.43 0.01 0.45 0.01 

C3P1D1A2 0.95 0.02 0.91 0.01 0.93 0.01 0.91 0.02 0.88 0.02 

C3P1D2A1 0.42 0.02 0.46 0.02 0.43 0.01 0.42 0.01 0.40 0.02 

C3P1D2A2 0.94 0.01 0.92 0.01 0.86 0.02 0.87 0.01 0.91 0.03 

C3P1D3A1 0.34 0.01 0.42 0.01 0.37 0.01 0.35 0.01 0.34 0.02 

C3P1D3A2 0.81 0.03 0.88 0.01 0.85 0.01 0.84 0.02 0.90 0.05 

C3P2D1A1 0.89 0.04 0.97 0.06 0.89 0.05 0.88 0.03 1.03 0.08 

C3P2D1A2 2.12 0.05 2.68 0.08 2.03 0.04 1.88 0.04 1.90 0.05 

C3P2D2A1 0.93 0.04 1.05 0.05 0.90 0.04 0.93 0.05 0.94 0.05 

C3P2D2A2 2.20 0.13 1.90 0.06 1.80 0.05 1.88 0.07 2.06 0.11 

C3P2D3A1 0.72 0.03 0.97 0.04 0.85 0.05 0.76 0.06 0.77 0.05 

C3P2D3A2 2.17 0.05 1.91 0.03 1.83 0.06 1.94 0.13 2.41 0.08 
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 Overall, the TIFs fit for most of the distribution.  The misfit tended to occur 

where the mean discrimination in the item pool was high and when the item pool 

difficulty was off-center.  Most of the misfit tended to be in the tails.  The shape of the 

TIFs tended to match the targets, however, the amount of information tended to be 

slightly depressed in the tails of the distribution. 

Differences in Routing 

Because of the way that the study is set up, the only way that a candidate’s ability 

estimate differs is if the route changes as a function of the routing/scoring method.  

Figure 4.3 illustrates the effect of the item pool difficulty on routing for the 1-3 design.  

Overall, the exposure control method seems to be working as it’s supposed to routing 

roughly 33% of examinees to one of the three routes taken.  In addition, moderate to 

moderate (“M-M”) route appears to be equally used in all four of the routing methods.  

One thing to note is that both the moderate to low route (“M-L”) and the moderate to 

high route (“M-H”) both have considerable variation to the amounts of students routed to 

each module.  

Figure 4.4 completes the story set up by Figure 4.3.When the item pool is 

centered at either -1.0 or 1.0 and examinees are routed via maximum information routing, 

the examinees are routed primarily to the highest or lowest module more often than when 

the average difficulty of the item pool is centered at 0.0.  When the item pool is centered 

at 0.0, the proportions of candidates sent to any of the 2nd stage modules is roughly 

equal; however, when the difficulty is at -1.0 or 1.0, the population is either sent to the 

highest module (as in the case of -1.0 average item difficulty) or to the lowest module (as 
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in the case of the 1.0 average item difficulty) disproportionately.  This effect is not seen 

in exposure control routing because it control the proportions of examinees that are sent 

to each route. 

 

 

Figure 4.3.  Proportion of routing by method.  This figure shows the 5 methods by 

proportion of examinees routed to each of the routes in a 1-3 design.  The names of the 

four scoring/routing methods have been abbreviated: Bsln = Baseline, EC_I = Exposure 

Control routing + IRT scoring, EC_N = Exposure Control routing and Number Correct 

scoring, MI_I = Maximum Information routing and IRT scoring and MI_N is Maximum 

Information routing and Number Correct scoring. 
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Figure 4.4.  Proportion of routing by configuration.  This shows the differences in routing 

by mean difficulty by routing and scoring method.  D1 = -1.00, D2 = 0.00 and D3 = 1.00. 

 
 The 1-2-3 has a similar pattern to it seen in Figure 4.5.  The middle two routes are 

very tight in terms of their proportions routed in each of the four methods; however, in 

the two tail patterns for the maximum information routing methods, there are cases where 

the proportions of people taking that particular route is over .80. 
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Figure 4.5.  Proportion of routing scores by method in the 1-2-3 configuration.  This 

figure is similar to Figure 4.3 using the 1-2-3 configuration.  Bsln= Baseline, EC_I = 

Exposure Control routing + IRT scoring, EC_N = Exposure Control routing and Number 

Correct scoring, MI_I = Maximum Information routing and IRT scoring and MI_N is 

Maximum Information routing and Number Correct scoring. 

 
Overall, we see the same pattern in terms of routing in each of the four methods.  

The maximum information methods tend to route people differently than the exposure 
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control methods particularly when the mean difficulty in the item pool is off center  

(b = -1.00 or b = 1.00). 

Residuals and Recovery 

 Ultimately the overall goal of any testing method is to provide the most accurate 

information possible about the examinee’s ability level.  No matter the choice in ca-MST 

configuration, routing method or scoring method, the ca-MST should be constructed to 

provide precise information about the examinee’s ability.  This section of the dissertation 

examines the overall effects of the routing and scoring decisions and configuration 

decisions on the recovery of examinee ability.  First, the overall graphs will be shown for 

each of the conditions in the study.  Next, tables and figures will be displayed with the 

collapsed information across replications.  Each of these will be broken up by each of the 

four routing/scoring methods.  Each plot will contain the results of the “baseline” which 

is an unrestricted ca-MST that essentially behaves like a maximum information CAT 

routing the examinee to the items that are most appropriate for the examinee regardless of 

the route. 

 Each of the below figures has the scale set a little higher than the max RMSE and 

runs from 0.0 to the max of the condition plus a little bit.  This allows all of the points to 

be seen on the plot and allows also examining of the patterns in the data.  The bias plots 

run from -0.10 to 0.15.  The colors are consistent across all of the plots with a color per 

method: red represents the baseline statistic, blue indicates the maximum information 

routing and IRT scoring method, green indicates the maximum information routing and 

number correct scoring method, purple indicates the exposure control routing and IRT 



77 
 

 

scoring method, and pink represents the exposure control routing and number correct 

scoring method. 

Item Pool Characteristics 

Each of the item pool characteristics was tested to see if the levels in them caused 

changes in the overall ability recovery.  The item pool characteristics in this section are 

item pool difficulty and average discrimination. 

Three item pool difficulties were chosen to observe the effect of different item 

pool difficulties on the configuration decisions.  The three levels of item pool difficulty 

were low difficulty pool (D1 = -1.00), a moderate difficulty pool (D2 = 0.00), and a high 

difficulty pool (D3 = 1.00).  Figure 4.6 displays the bias by mean difficulty of the item 

pool.  There is little difference in bias across the three levels of difficulty.  One of the -

1.00 pools ended up having some slight bias in the positive direction for the exposure 

control metrics; however, this effect was not consistent across replications within or 

across conditions.  On average, D1 and D2 contained a little more variation than D3 did. 

Figure 4.7 displays the RMSE for the average pool difficulty and routing and 

scoring method.  Overall, there were no major differences in either of the difficulty 

methods.  While this result may not be surprising, it’s good to note that the changes in 

pool difficulty do not affect the decision made in routing method.  D2 tended to be 

slightly lower however still overlaps with the majority of the two off-center difficulties.  

In addition, D3 tended to produce the highest RMSE results out of any of the three 

difficulties.  D2 tends to dip slightly below the other two difficulty measures as is 

illustrated by Figure 4.7, one possible explanation could be that D2 matches the 
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generated ability distribution and thus tends to recover ability just a little bit better.  D1 

tends to range from 0.25 to 0.55 and D3 tends to range from 0.25 to above 0.60, whereas 

D2 tends to range from 0.20 to 0.50.  While the RMSE tends not to be much lower at its 

lowest, the ceiling is slightly lower. 

 

 

Figure 4.6.  Bias by method and pool difficulty.  MaxInfIRT = Maximum Information 

routing with IRT scoring, MaxInfNC = Maximum Information Routing with Number-

correct scoring, ExpConIRT = Exposure Control routing with IRT scoring and 

ExpConNC = Exposure Control Routing with Number-correct scoring. 
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Figure 4.7.  RMSE by pool difficulty and routing/scoring method.  MaxInfIRT = 

Maximum Information routing with IRT scoring, MaxInfNC = Maximum Information 

Routing with Number-correct scoring, ExpConIRT = Exposure Control routing with IRT 

scoring and ExpConNC = Exposure Control Routing with Number-correct scoring. 

 
The other item pool characteristic included in this study is the average 

discrimination for the item pool.  The two levels of average item discrimination chosen 

for this study were low average item discrimination (A1 = 0.60) and high average item 

discrimination (A2 = 1.00).  The two levels of average item discrimination in the pool 

were compared by bias and RMSE.  Figures 4.8 and 4.9 illustrate the differences in these 

two statistics. 
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Figure 4.8 displays the bias by both method and average discrimination.  On 

average, both levels of discrimination appear to be around 0.00 average bias.  It is 

important to note; however, that when the average discrimination is high (a = 1.00) that 

in this study, some of the conditions ended up under estimating ability. 

 

 

Figure 4.8. Bias by method and average discrimination.  MaxInfIRT = Maximum 

Information routing with IRT scoring, MaxInfNC = Maximum Information Routing with 

Number-correct scoring, ExpConIRT = Exposure Control routing with IRT scoring and 

ExpConNC= Exposure Control Routing with Number-correct scoring. 

 
Figure 4.9 displays the RMSE for each of the four methods by the average 

discrimination.  On average the RMSE for the higher average discrimination is lower.  

This finding is the result of items that are higher quality in terms of the amount of 

information each item if the items are of higher quality, information will be higher which 
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will result in a drop of the standard error or more precise estimation which will result in 

lower RMSE values.  Values of RMSE range from just below 0.30 to roughly 0.60 for A1 

and range from roughly 0.20 to just under 0.50 for A2.  Figure 4.9 shows the A2 RMSE 

quite a bit below the RMSE for the A1 discrimination condition. 

 

 

Figure 4.9. RMSE by method and average discrimination.  MaxInfIRT = Maximum 

Information routing with IRT scoring, MaxInfNC = Maximum Information Routing with 

Number-correct scoring, ExpConIRT = Exposure Control routing with IRT scoring and 

ExpConNC= Exposure Control Routing with Number-correct scoring. 
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Overall, there were only a few differences in the item pool characteristics.  First, 

the bias for the average discrimination tended to be slightly under-estimated when the 

average discrimination was a little higher.  Second, when the average discrimination of 

the item pool tended to be higher, the RMSE tended to be lower. 

Ca-MST Configuration Characteristics 

Similarly to the item pool characteristics, each of the ca-MST configuration 

characteristics was tested to see if the levels in them caused changes in the overall ability 

recovery.  There were two ca-MST configuration characteristics in this study: three levels 

of ca-MST designs/configurations and two levels of module length/item pool size.  Each 

of these conditions will be examined in terms of bias and RMSE and plots/tables will be 

displayed to describe the differences in ability recovery for each of these two variables. 

Figure 4.10 displays the bias results for the two different module lengths (m = 10 

items and m = 20 items).  The module length tended to result in about 0 bias for each of 

the two module lengths; however, when the test was longer, the bias tended to be slightly 

more variable, whereas the lower sized modules tended to be tightly bound around 0.00.  

 Figure 4.11 illustrates the same results but instead of bias the RMSE results are 

shown.  The results here are notable if unexpected.  The longer the module length is the 

lower the RMSE is.  More items mean lower errors and lower errors mean better, more 

precise results.  The lower module length (m = 10 items) ranges from just below 0.30 to 

roughly 0.60.  The higher module length (m = 20 items) ranged from roughly 0.20 to 0.40 

with one case being exceptionally high at roughly 0.50. 
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Lastly, the three ca-MST designs were compared in terms of bias and RMSE.  

The three configurations in this study were the 1-3 (C1), 1-2-3 (C2), 1-2-3-4 (C3).  These 

are three of a nearly infinite pool of ca-MST designs that could be chosen.  These pools 

were chosen because they vary the number of stages and levels of difficulty within a 

stage. 

 

 

Figure 4.10. Bias by method and module length.  MaxInfIRT = Maximum Information 

routing with IRT scoring, MaxInfNC = Maximum Information Routing with Number-

correct scoring, ExpConIRT = Exposure Control routing with IRT scoring and 

ExpConNC= Exposure Control Routing with Number-correct scoring. 

 



84 
 

 

 

Figure 4.11. RMSE by method and module length.  MaxInfIRT = Maximum Information 

routing with IRT scoring, MaxInfNC = Maximum Information Routing with Number-

correct scoring, ExpConIRT = Exposure Control routing with IRT scoring and 

ExpConNC= Exposure Control Routing with Number-correct scoring. 

 
Figure 4.12 depicts the average bias by each of the three configurations chosen for 

this study.  Nothing here really sticks out.  Configuration C1 might have slightly less 

variation in the bias statistic; however, all three configurations are roughly centered at 

0.00 with very little variation. 
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Figure 4.12. Bias by configuration and method.  MaxInfIRT = Maximum Information 

routing with IRT scoring, MaxInfNC = Maximum Information Routing with Number-

correct scoring, ExpConIRT = Exposure Control routing with IRT scoring and 

ExpConNC= Exposure Control Routing with Number-correct scoring. 

 
Figure 4.13 highlights the difference in RMSE by configuration.  Similar to the 

module length there is a decrease in terms of the number of stages.  The more items an 

examinee sees the better the model will be able to recover ability.  There is a rather steep 

drop in RMSE from C1 (1-3) to C2 (1-2-3) the extra module produces a rather stark drop 

in terms of recovery.  The drop from C2 to C3 (1-2-3-4) is not as distinct. 
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Figure 4.13. RMSE by configuration and method.  MaxInfIRT = Maximum Information 

routing with IRT scoring, MaxInfNC = Maximum Information Routing with Number-

correct scoring, ExpConIRT = Exposure Control routing with IRT scoring and 

ExpConNC = Exposure Control Routing with Number-correct scoring. 

 
Overall, the effects of the ca-MST configurations tend to be where more items 

seen leads to lower amounts of RMSE.  There are however, diminishing returns when it 

comes to adding items to the configuration.  There are multiple ways to add items to the 

ca-MST either by increasing the size of the modules or the number of stages in the ca-

MST design. 
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Routing and Scoring Methods 

This section breaks the four routing and scoring sections down and summarizes 

the bias and RMSE results.  Plots will be displayed to summarize both the routing and 

scoring and an overall table of all 36 conditions will be displayed.  Figure 4.14 

summarizes the bias plot for the two routing methods + the baseline condition which was 

a maximum information CAT with unrestricted routing.  Maximum Information routing 

tended to result in slightly less bias than either the Exposure Control or Baseline 

methods.  All three methods of routing tended to be centered around zero and ranged 

between -.05 and .02.  The outliers found in EC are from one iteration that seems to have 

been an aberrant case. 

 

 

Figure 4.14. Bias by routing method.  BL is the baseline, EC is exposure control routing 

and MI is maximum information routing. 
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Similarly, the RMSE for the routing method tells a similar story.  Maximum 

information routing and the baseline tend to be a little lower in terms of RMSE.  All three 

methods tended to have their minimum RMSE values around 0.20.  Baseline tends to 

have a little less variance in RMSE than either the max information condition or the 

exposure control condition.  Figure 4.15 displays the RMSE values for all 360 

replications. 

 

 

Figure 4.15. RMSE by routing method.  BL is the baseline condition, EC is exposure 

control routing and MI is maximum information routing. 

 
The two scoring methods in this paper were the IRT (EAP) approach versus the 

Number-Correct scoring method.  In addition, the baseline method, although it uses IRT 

to score, was considered a category of its own.  Figure 4.16 displays the bias statistics for 
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the three scoring methods.  The IRT and NC methods are extremely similar to each other 

in terms of the overall distribution of bias.  Figure 4.17 represents the distribution of 

RMSE statistics for the number correct scoring method versus the IRT method.  Overall, 

the baseline CAT does slightly better than the IRT and NC methods; however, the 

difference is not great.  In addition, the IRT method does slightly better than the NC 

method. 

 

 

Figure 4.16. Bias by scoring method. BL is baseline scoring, IRT is IRT scoring and NC 

is number correct scoring. 
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Figure 4.17. RMSE by scoring method. BL is baseline scoring, IRT is IRT scoring and 

NC is number correct scoring. 

 
Figure 4.18 is the interaction of the two routing and scoring methods compared 

with the baseline in terms of RMSE.  The maximum information IRT method performs 

nearly identically to the Baseline CAT method.  The maximum information- number 

correct method has a slightly higher median value; however, is just a hair worse than the 

corresponding IRT method.  In addition, the maximum information routing method 

tended to do a bit better than the exposure control methods.  There does not really appear 

to be an interaction effect between the two. 
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Figure 4.18. Boxplots of the interaction between the routing and scoring methods.  

Baseline = Baseline, EC_I = Exposure Control routing + IRT scoring, EC_N = Exposure 

Control routing and Number Correct scoring, MI_I = Maximum Information routing and 

IRT scoring and MI_N is Maximum Information routing and Number Correct scoring. 

 
As seen in some of the plots of bias by routing and scoring method, the bias for 

some of the conditions was negative.  Figure 4.19 examines the bias by condition in the 

study.  Most of the boxes are right around 0.00, however, there are a couple conditions 

that are causing most of the issues with the bias statistic.  When you look at those same 
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conditions in terms of RMSE however, as in Figure 4.20, the effect of the bias washes out 

as the RMSE tends to be lower relative to other similar conditions. 

 

 

Figure 4.19. Boxplots of the average bias by each of the ten replications in the study for 

each condition. The configurations run from C1 (1-3) to C3 (1-2-3-4). The P is the 

module size ranging from P1 = 10 items per module to P2 = 20 items per module. D 

represents the average pool difficulty with values of D1 (-1.00), D2 (0.00), and D3 (1.00).  

Lastly, A is the average discrimination in the pool with values of A1 = 0.6 and A2 = 1.00. 



93 
 

 

 

Figure 4.20. RMSE by condition. The configurations run from C1 (1-3) to C3 (1-2-3-4).  

The P is the module size ranging from P1 = 10 items per module to P2 = 20 items per 

module. D represents the average pool difficulty with values of D1 (-1.00), D2 (0.00), 

and D3 (1.00). Lastly, A is the average discrimination in the pool with values of A1 = 0.6 

and A2 = 1.00. 

 
Overall, Bias and RMSE numbers for each condition in the study are available in 

Appendix A. 
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Summary 

This section presented the results from the automated test assembly (ATA), the 

routing mechanism and finally the ca-MST simulations.  These results directly target the 

three research questions described in Chapter I.  The four routing and scoring methods 

were compared against each other in terms of bias and RMSE (see Figure 4.18).  The 

ATA plots, main plots and the tabled values (Appendix A) all described the conditions 

under various ca-MST design configurations tended to work better with the item pool 

characteristics.  The item pool characteristics questions were answered by the plots 

describing the effect of the item pool characteristics on the quality of the ca-MST under 

the four routing and scoring methods. 

Overall, the results suggested that the maximum information method was superior 

to the exposure control method in terms of RMSE.  While the IRT method was slightly 

better than the NC method, the difference was negligible.  The ATA tended to work a lot 

better when the item bank was centered at 0.00 rather than one of the extremes (-1.00 or 

1.00); however, measurement recovery was not strongly adversely affected (see Figure 

4.7).  Even so, there was a visual difference in the RMSE plot when the difficulty was at 

0.00 compared to when it was off-center. 

Other findings include increases in the module length results in decreases in 

RMSE.  More items taken generally leads to better psychometric accuracy.  In addition, 

when the configuration has more stages, the RMSE dropped due to the increase in items.  

While these results are not unexpected it’s important information for testing companies 

desiring a switch to a ca-MST to consider when choosing their configuration. 
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CHAPTER V 

 
DISCUSSION 

  

 This section discusses the implications of the results presented in Chapter IV and 

places it in the realm of research discussed in Chapters I and II.  The results and the 

implications of the results for each of the three research questions will be discussed.  

Finally, next steps for further research will be presented. 

Impact of Routing and Scoring Methods 

 This section discusses the implications of the results of the ca-MST simulations 

and the four routing and scoring methods.  This study evaluated the efficacy of four 

routing and scoring methods in terms of recovery of ability in a ca-MST framework.  The 

four methods were a fully crossed design of two routing/module selection criteria 

(Maximum Information routing and Exposure Control routing) and two scoring designs 

(Item Response Theory EAP estimates versus Number-Correct scoring).  A full 

description of these methods and a table of each of the four methods can be found in 

Chapter I. 

 Maximum information module selection routes the examinee to the module most 

informative for the examinee’s current estimate of ability.  This is probably the most 

popular module selection criterion for current adaptive testing programs (including 

CAT).  The other module selection criterion could weight the selection criteria by desired 

population/exposure values.  In this study, equal weights were applied to the module 
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selection criteria.  For example in a 1-2-3 ca-MST configuration, 50% of people would be 

routed to each of the modules in stage 2 and 33.33% would be routed to each of the 

modules in stage 3. 

 Maximum information routing tended to do much better than exposure control 

routing in nearly every condition.  The overall results were roughly .02 to .03 better for 

the maximum information routing as opposed to the exposure control module selection 

methods.  While this study only looked at equal proportions of examinees being sent to 

each module, other weighting methods could be employed. 

 Ultimately, maximum information seems to do an adequate job of routing 

examinees to the appropriate modules.  While exposure control did a better job of making 

sure no module was overexposed.  Given that the number of panels/modules in this study 

were great enough to avoid any potential issue with overexposure, the increased precision 

would probably be desirable.  If on the other hand, the testing program had just a few 

panels and item exposure was a serious risk, the exposure control module selection 

method might prevent any particular module from being overexposed.  While this would 

not be statistically optimal, the difference between the exposure control method and 

maximum information method tended to be less when ca-MST configuration was 1-2-3-

4.  This finding is probably a result of the amount of items asked overriding potential risk 

of not sending the examinee to the “most informative” module for the examinees ability 

estimate. 

 Item response theory has been the gold standard for scoring and scaling many 

computer-based assessments of all models.  EAP scores tend to be preferred (Thissen & 



97 
 

 

Orlando, 2001) because of their bias towards the center (as long as the prior is a normal 

distribution).  The efficacy of number-correct scoring within a fully 3PL model versus 

IRT scoring had not yet been tested.  One drawback of using fully IRT 3PL estimates to 

route and score examinees is that at each step the item parameters would have to be 

hosted at the test facility. 

This study confirmed that IRT scoring provides a trivial amount of extra precision 

as compared to number correct scoring.  In fact, there were a few conditions such as 

when the difficulty in the item pool was below 0 (D1 = -1.00) in the 1-3 ca-MST 

configuration that number correct scoring tended to do the same or ever so slightly better 

than the IRT equivalent.  Overall, the difference between IRT and number correct scoring 

in all iterations and all routing methods was small (roughly .008 for max information 

routing and .01 for exposure control routing both on the RMSE of theta metric.).  These 

differences are not likely enough to effect the estimation of examinee ability and thus 

provide nearly equivalent measures of examinee ability. 

 The implications of these findings suggest that if a testing company wanted to 

discontinue the online hosting of item parameters and IRT calculations at each step of a 

ca-MST that this would not adversely affect the estimation of ability for any examinee.  

In other words, no “harm” would be done to the candidate based on the choice between 

number correct scoring and traditional IRT practices. 

 Ultimately, the decision on the routing and scoring should be weighted with the 

testing vendors needs and goals.  For example if exposure is an issue because the number 

of panels are few, exposure control metrics may be the best decision for that program.  
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There is a method that can simultaneously balance exposure risk to precision (Luecht & 

Burgin, 2003).  The program should keep in mind; however, that a simple two-stage 

configuration may not be the best choice for them.  If on the other hand, a testing 

company needs the most precise measurement accuracy and exposure is not a risk 

because the number of panels is great, this company has more options but should 

probably choose the maximum information module selection method.  Ultimately, the 

decision between number correct methods and IRT methods are so small that it’s unlikely 

that the ability estimation will be affected.  To that end, either the maximum information 

module selection with IRT-EAP scoring or the maximum information module selection 

with number correct scoring will result in similar results.    

Impact of ca-MST Configuration and Item Pool Variables 

This section addresses the results and implications of the second research 

question.  The second research question asked “Under what conditions do various ca-

MST design configurations work best from a psychometric scoring accuracy perspective 

with respect to the four routing and scoring mechanisms as well as the various item pool 

characteristics”? In other words, under which item pool characteristics and ca-MST 

configuration decisions does the psychometric scoring accuracy tend to be improved by? 

 One of the more pronounced differences was the RMSE of theta tending to drop 

as the number of stages increased.  Ultimately, the increase in the number of stages meant 

more items and more items meant increased precision.  All of the routing and scoring 

methods dropped by around 0.10 in RMSE when the number of stages was increased 

from 2 to 4.  Anecdotally from Figure 4.12 the decrease in RMSE seems greater in 
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switching from the 1-3 to the 1-2-3 than the 1-2-3 to the 1-2-3-4.  If the pool is 

sufficiently large and variable, adding more stages and making the stages have more 

levels of difficulty seem to help precision. 

The other configuration option is also making a large impact on psychometric 

quality.  The RMSE drops when the module length is 20 items instead of 10 items.  

Regardless of the configuration having 20 items per module improved the fit.  The cause 

for this is exactly the same as increasing the number of stages within the ca-MST 

configuration, more items means better precision.  The effect of increasing the module 

length was about the same as increasing the number of stages; RMSE’s dropped about 

.10. 

The two configuration variables (number of stages & number of items in a 

module) seemed to confirm the same thing, more is better.  More items leads to increased 

precision that leads to better recovery of ability.  This seems to be true regardless of 

which scoring method is employed.  As a result, testing companies should ensure that the 

proper numbers of items are on the forms to ensure proper precision.  While ca-MST 

tends to gain some efficiency over paper-pencil or fixed length testing, this efficiency 

does not mean that the test can be 20 questions long.  The takeaway from these two 

findings is that if the item count is low, measurement precision will be low. 

Another factor that ended up having perhaps the biggest effect on 

RMSE/measurement precision was the average discrimination of items in the item pool.  

This study examined the effect of two different average discrimination parameters, 

A1=0.6 and A2=1.0.  Overall, the means when the average discrimination parameter in 
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the pool was 1.0 resulted in a much lower RMSE than when the average discrimination 

parameter in the pool was 0.6.  This result again is not terribly unexpected but the 

magnitude of the drop is very notable.  When items have large discrimination parameters 

they tend to provide more information not only at the location of their maximum 

information but also more information across the entire score scale.  So items that have 

high discrimination parameters become more valuable at determining the true ability of 

the examinee.  As a result, precision increases as information increases. 

As discussed in Chapter I, CAT algorithms struggle with the overuse of high 

discrimination items and as a result these items tend to get overexposed.  Certain 

techniques such as Weiss (1973) match to b or Chang et al. (2001) which added a-

blocking to Weiss’s match to b have had some success in reducing the overall exposure 

of these items to the testing program.  It’s important for programs to develop as many of 

these high discriminating items as possible.  While obtaining an average discrimination 

of 1.0 might be extremely difficult, writing several highly discriminating items 

particularly with new assessment practices such as Evidence Centered Design (Mislevy et 

al., 2003) or Assessment Engineering (Luecht, 2006) can assist item writers in 

developing items that are of high quality and does so in a way that will produce many 

high quality items.  It’s important however even in a ca-MST context to avoid overusing 

discriminating items because item exposure can turn an item into known content that can 

reduce the discrimination and have other consequences on the item parameters. 

The last condition was that of item difficulty.  Item difficulty tended to be the 

least affected for each of the four scoring and routing methods.  The routing and scoring 



101 
 

 

methods tended to perform more or less the same regardless of where the difficulty of the 

item pool was centered.  This study examined three different locations of difficulty (D1 =  

-1.00, D2 = 0.00, and D3 = 1.00).  Overall, the mean RMSE for the difficulty that was 

centered at 0.00 was lower than the mean RMSEs for RMSEs centered away from 0 (-

1.00 and 1.00).  Part of this phenomenon could be a result of the way that the examinee 

ability parameters were generated as they were also centered at 0.00; however, this 

difference was usually pretty small overall. 

Generally speaking, testing companies tend to have their item pool difficulty 

centered at the most appropriate location for the purpose of their test.  A 

certification/licensure test may need to set their cut score lower so that the majority of 

test-takers pass the exam.  As a result, if their candidate population is normally 

distributed with a mean of 0.00 most people on average will pass the exam.  If the test is 

an educational test with the need for many cuts/information at multiple points in the 

scale, the test centered at 0.00 might be more appropriate and may more accurately 

measure the same population that is centered at 0.00 than an item pool where the mean 

difficulty of the item pool is off-center.  If the purpose of the test is to award additional 

credentialing/scholarships to a group of highly advanced examinees, an item pool that is 

right of the center might be more appropriate.  While measurement error might be lowest 

for examinees that are high ability, examinees that are of average to lower ability might 

contain more measurement error and thus their RMSE’s would be a little higher. 

A benefit of ca-MST is that while these phenomena should result in much greater 

standard errors for examinees away from the mean of the item pools when the item pools 
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are off-center, the effect of this is smaller than any of the other effects almost to the point 

of not being noticeable.  When the number of stages is smaller (e.g., 1-3) the differences 

in RMSE between the three difficulty means are very small.  As the number of stages 

gets increased the effect of the item pool separation tends to also increase (in this study 

the 1-2-3-4 was roughly .02 greater RMSE for the off-center mean difficulties). 

Control of the item pool and the configuration are under the complete control of 

the testing company offering the test.  The results here should not shock anyone and the 

results tend to be consistent for all routing and scoring methods.  It should not be a 

surprise that increasing the number of items will reduce residual error in measuring 

examinee ability, nor that writing good items is a critical component of sound 

measurement practice.  Testing companies need to keep in mind the purpose for the 

assessment, the overall desired item exposure for their items particularly their items with 

better discriminations, and the methods that they use to write/produce items and fill their 

item banks.  All of these characteristics of the assessment design process interact with the 

type of configuration decisions that a testing company can choose in the development of 

their assessment. 

Impact of Item Pool Characteristics on Psychometric Quality of Forms 

This section discusses the results and implications of research question number 

three.  The third research question asked, “how do various item pool characteristics 

impact the quality of ca-MST forms from a psychometric perspective”? This research 

question delves into the relationship between available supplies in the item pool versus 
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the demands of the ca-MST configurations place on the demands and that impact on 

panel quality. 

In this study the item pools were “repurposed.”  As a result, the item pools had 

more items than were necessary.  Module item information functions were created using 

the entire pool.  As a result, the ATA engine did the best job it could do given the items 

that were available to it.  Sometimes the resulting MIF’s were not exact particularly at the 

tails of the distribution.  This gap between the MIFs and targets were exacerbated when 

the difficulty was off-center (Dif = -1.00 or Dif = 1.00). 

In almost every case the target MIFs were higher than the actual resulting MIFs.  

This finding could indicate that the target MIFs were targeted a bit too aggressively for 

the item pool to meet the demands on information found in the item bank. 

Tables 4.1 to 4.3 describe the overall fit of the targets to the actual resulting MIFs 

generated by ATA Panel Builder (Luecht, 2013).  The fit of the targets to the actual is 

dependent on a few factors.  First, the k = 20 modules fit a great deal worse than the  

k = 10 modules.  Secondly, the misfit is worse for the 1-2-3 and 1-2-3-4 than the 1-3 

design. 

One rationale for the misfit is the number of items used versus the available pool.  

The item targets were developed by breaking the items into clumps equivalent to the 

number of stages in the configuration.  From there the clumps were divided evenly into 

the modules (for more on this process see Chapter III).  Ultimately, each module target 

function would be composed of the average item in the item pool.  If the ATA then uses 

more than 50% of the items, there might be some “below average” items in the ATA 
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which could cause some degree of misfit.  Table 5.1 describes the % of the pool used by 

configuration and module length.  In each of the configurations, the k = 20 modules use 

over 60% of the items.  This could potentially explain the less than accurate fit that is 

seen in the k = 20 module MIFs. 

 
Table 5.1 

Number of Items Available and Used by ca-MST Configuration and Module Length 

 
Configuration 

 
k=10 it 

k=10 it 
poolsize 

%  
used 

k=20  
it 

k=20 it 
poolsize 

% 
used 

1-3 240 528 45.45% 480 792 60.61% 

1-2-3 360 768 46.88% 720 1152 62.50% 

1-2-3-4 480 1056 45.45% 960 1584 60.61% 
 

Another issue is that the most of the misfit is in the tails of the target MIFs.  The 

peaks of the target MIFs seem to be nearly or matched very well, but there is a great deal 

of misfit in the tails.  This is particularly true when the difficulty is off-center.  There is 

great amount of misfit in the module tail that is most distant from the center of the item 

pool. 

Dallas et al. (2012) showed the effect on measurement precision when certain 

exposure criteria were met.  As exposure controls were implemented, the effect was that 

the item pool became stretched to the point where measurement precision was degraded.  

The same thing applies to creating MIFs if the available information in the item pool isn’t 

enough to cover the demands of the item pool, measurement precision could become 
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degraded as a result.  It’s important for testing companies to have item banks capable of 

supporting their decisions regarding the configuration decisions in the ca-MST. 

Comparison of the Baseline versus the Routing/Scoring Methods 

 This study included a baseline method in the calculations of bias and RMSE.  The 

baseline method was an unconstrained ca-MST that would mimic an item-level CAT and 

selects the model at each stage that will contribute the maximum measurement precision 

(e.g., information) at the provisional estimate of examinee ability.  In other words it is 

very related to the maximum information routing; however some constraints are 

removed.  Operationally for a company to deploy the baseline the test driver would need 

to run IRT statistics in real time, be capable of computing IRT estimates of ability (EAP 

or MLE) in real time and be able to compute module-level information functions in real 

time.  All of this places burden on the servers and precludes large volumes of examinees 

testing at once, unless large amounts of computing power are readily available.  The two 

maximum information methods are similar to the baseline and thus their results are 

extremely similar to the baseline particularly in the 1-3 configuration where they are .001 

off on the RMSE metric.  The benefit to using either the maximum information IRT 

routing/scoring method or the maximum information number correct scoring method is 

that while they essentially perform similar tasks because the ca-MST modules are pre-

constructed the scoring rules/decisions are constructed apriori and thus only a score 

lookup table is needed for full routing and decision making.  The only IRT scoring that is 

required is at the end of the examination, which reduces the overall burden on the testing 

vendors servers. 



106 
 

 

 The lack of constraints on the model may also encourage groups of examinees to 

game the exam to see as much content as they can.  Students in an unconstrained CAT-

like ca-MST could jump from the low module on stage 2 to the high module on stage 3.  

As testing security is a major threat to validity, safeguards against this practice could be 

employed to stop this behavior. 

Further Research 

 This section describes further avenues of research to explore regarding ca-MST 

routing and scoring methods.  This section touches on additional research topics such as 

altering the spread of the difficulty parameters, adding more exotic configurations, and 

experimenting with different routing designs. 

 One limitation of the study was the underestimation of the bias in a few 

conditions.  Further investigation of those conditions showed a possibility of a lack of 

convergence (e.g., fixed c’s) using default BILOG commands.  The RMSE; however, 

was unaffected by the convergence and properly reflected the accuracy of the condition. 

 One condition that could be interesting particularly in examining research 

question #3 about the psychometric quality of the panels based on the available item pool 

characteristic is to alter the standard deviation of the difficulty parameters.  This 

alteration would change the shape of the distribution of difficulty parameters.  If the 

difficulty parameters are tight, one might assume that the spread of the parameters would 

change and that could affect the psychometric quality of the ca-MST due to the 

availability of information being spread over a small area. 
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 Another interesting condition might be adding some more exotic conditions to the 

study.  This study sampled three ca-MST configurations out of a very deep population of 

potential configurations.  A study could sample configurations such as 1-6-6-6-6 or 1-4-5 

or others with much larger spreads in difficulty or more stages. 

 Finally as was mentioned earlier, the exposure control method essentially sent 

equal numbers of people to the next stage’s modules.  This would work well for 

controlling the number of people who saw any given module; however, this design could 

also be controlled perhaps to route people in a licensure exam to create bins of 

examinees.  For instance, one might have a module for people who are “clear passers,” 

“borderline candidates” and “clear failers.”  The modules could contain differing levels 

of multidimensionality or other features to make diagnostic feedback more reliable.  If 

the pass rate is known, different weights could be applied to the ca-MST routing logic to 

route examinees to particular modules.  These weights could be tested and examined for 

how well they recover ability in a ca-MST design and also how good the resulting 

diagnostic information is depending on when they entered the “clear fail” stage within the 

panel. 

 These are just a few of the many studies that could be done to examine the field of 

routing and scoring within a ca-MST.  These studies will help inform testing company 

and further the research base of routing and scoring within a ca-MST. 

Summary 

This section closes the study and describes its impact and how it fits in with the 

global realm of ca-MST research.  To date, the research focus of ca-MST had focused on 
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comparison to CAT and LFT in terms of efficiency and accuracy (e.g., Jodoin et al., 

2006; Luecht, 2000; Luecht et al., 1996; Luecht & Nungester, 1998; Reese et al., 1999; 

Schnipke & Reese, 1999; Xing, 2001; Xing & Hambleton, 2004).  This study confirmed 

some of the findings of previous studies, most notably the effect that the length of the test 

has on precision (Jodoin et al., 2006; Luecht et al., 1996; Luecht & Nungester, 1998; 

Wang et al., 2012).  This study took these studies a step further and expanded the 

literature base of the routing and scoring conditions. 

Lord (1980) outlined those six conditions that should be considered before 

starting a ca-MST.  This study covered all of them in some form.  The total number of 

items in the test should be large enough to ensure accurate measurement precision.  This 

study included equal numbers of items in the initial module but found that expanding the 

number from 10 to 20 items per module tended to result in much better recovery of 

examinee ability.  The difficulty of the initial module was dependent on the overall 

difficulty in the item bank, easy, moderate, and hard.  This study found that the moderate 

module tended to result in slightly better accuracy but that the precision was largely 

dependent on other factors including average discrimination in the item pool, number of 

items in each module, and total items within the panel.   

 Further, the study examined looking at different number and difficulty of 

alternative models in each stage, again dependent on the overall difficulty of the item 

pool.  Finally, this study tackled the last two of Lord (1980) seven attributes, which were 

cut points for routing examinees to modules and methods for scoring stages and each nth 

stage test. 
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This study examined two separate methods for setting cut scores: maximum 

information routing and exposure control routing.  Further research could examine 

altering the weights to determine whether unequal exposure routing might improve 

examinee ability estimates. 

While there had been a few papers (Luecht, Brumfield, et al., 2006) that had 

brought up the concept of using a number correct scoring algorithm; however, this is the 

first empirical examination of the effect on measurement accuracy of this method.  This 

study found that number-correct scoring may give up a small amount of precision but 

other factors are far more influential in determining the overall accuracy in measuring 

examinee ability. 
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APPENDIX A 
 

BIAS AND RMSE BY CONFIGURATION TABLES 
 
 

Table A.1 
 
Bias by Configuration 
 

Config BL_Bias SD(B_LBias) MI_IRT SD(MI_IRT) MI_NC SD(MI_NC) EC_IRT SD(EC_IRT) EC_NC SD(EC_NC) 

Overall -0.006 0.015 -0.007 0.016 -0.007 0.015 -0.007 0.017 -0.006 0.015 

C1 0.001 0.009 0.000 0.010 -0.001 0.010 0.001 0.016 0.000 0.014 

C2 -0.011 0.016 -0.011 0.016 -0.011 0.015 -0.011 0.016 -0.010 0.015 

C3 -0.010 0.017 -0.011 0.017 -0.010 0.016 -0.011 0.017 -0.010 0.015 

C1P1D1A1 0.002 0.010 0.001 0.011 0.002 0.011 0.004 0.009 0.004 0.010 

C1P1D1A2 0.003 0.010 0.002 0.010 0.003 0.011 0.006 0.011 0.006 0.011 

C1P1D2A1 0.000 0.009 -0.001 0.008 -0.002 0.008 -0.002 0.009 -0.002 0.008 

C1P1D2A2 -0.001 0.006 0.000 0.006 -0.001 0.006 -0.001 0.006 -0.002 0.006 

C1P1D3A1 0.009 0.008 0.007 0.008 0.005 0.008 0.001 0.008 0.001 0.008 

C1P1D3A2 0.001 0.009 0.001 0.009 0.000 0.009 -0.003 0.010 -0.004 0.010 

C1P2D1A1 0.001 0.011 -0.007 0.017 -0.006 0.017 0.015 0.043 0.013 0.036 

C1P2D1A2 0.004 0.007 0.004 0.007 0.004 0.007 0.007 0.008 0.006 0.008 

C1P2D2A1 -0.004 0.011 -0.006 0.012 -0.006 0.012 -0.006 0.012 -0.006 0.012 

C1P2D2A2 0.000 0.005 0.000 0.006 0.000 0.006 -0.001 0.006 -0.001 0.006 

C1P2D3A1 0.003 0.008 0.001 0.008 0.000 0.009 -0.002 0.009 -0.003 0.009 

C1P2D3A2 -0.005 0.006 -0.005 0.006 -0.006 0.007 -0.010 0.006 -0.009 0.006 

C2P1D1A1 0.001 0.009 -0.001 0.009 0.001 0.009 0.003 0.010 0.004 0.010 

C2P1D1A2 -0.002 0.011 -0.002 0.011 -0.001 0.010 0.001 0.010 0.001 0.010 

C2P1D2A1 -0.001 0.008 -0.001 0.008 -0.001 0.009 -0.002 0.009 -0.001 0.009 
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Table A.1 

(Cont.) 

Config BL_Bias SD(B_LBias) MI_IRT SD(MI_IRT) MI_NC SD(MI_NC) EC_IRT SD(EC_IRT) EC_NC SD(EC_NC) 

C2P1D2A2 -0.004 0.011 -0.004 0.011 -0.004 0.010 -0.005 0.011 -0.004 0.010 

C2P1D3A1 0.003 0.007 0.002 0.007 0.000 0.006 -0.005 0.005 -0.004 0.005 

C2P1D3A2 -0.003 0.011 -0.003 0.010 -0.003 0.011 -0.007 0.011 -0.008 0.011 

C2P2D1A1 -0.023 0.012 -0.022 0.012 -0.021 0.012 -0.020 0.012 -0.019 0.012 

C2P2D1A2 -0.023 0.009 -0.023 0.009 -0.022 0.009 -0.018 0.008 -0.015 0.008 

C2P2D2A1 -0.017 0.013 -0.018 0.012 -0.017 0.012 -0.018 0.012 -0.017 0.012 

C2P2D2A2 -0.041 0.012 -0.042 0.012 -0.038 0.012 -0.043 0.013 -0.040 0.013 

C2P2D3A1 -0.006 0.012 -0.008 0.011 -0.009 0.011 -0.010 0.010 -0.008 0.010 

C2P2D3A2 -0.011 0.012 -0.013 0.012 -0.012 0.012 -0.008 0.011 -0.006 0.011 

C3P1D1A1 -0.003 0.010 -0.004 0.010 -0.002 0.010 -0.001 0.010 0.000 0.010 

C3P1D1A2 0.005 0.007 0.005 0.007 0.005 0.006 0.007 0.007 0.006 0.007 

C3P1D2A1 -0.001 0.009 -0.002 0.009 -0.003 0.008 -0.003 0.009 -0.003 0.009 

C3P1D2A2 0.006 0.007 0.005 0.007 0.004 0.007 0.004 0.007 0.003 0.007 

C3P1D3A1 -0.002 0.010 -0.003 0.010 -0.004 0.011 -0.010 0.011 -0.008 0.010 

C3P1D3A2 0.002 0.009 0.002 0.009 0.002 0.009 -0.005 0.010 -0.005 0.010 

C3P2D1A1 -0.020 0.006 -0.020 0.006 -0.019 0.006 -0.015 0.005 -0.014 0.006 

C3P2D1A2 -0.034 0.010 -0.034 0.010 -0.032 0.010 -0.026 0.010 -0.022 0.010 

C3P2D2A1 -0.014 0.008 -0.018 0.007 -0.017 0.007 -0.017 0.008 -0.016 0.008 

C3P2D2A2 -0.044 0.008 -0.045 0.008 -0.040 0.008 -0.047 0.008 -0.042 0.008 

C3P2D3A1 -0.002 0.010 -0.006 0.011 -0.006 0.011 -0.010 0.010 -0.008 0.010 

C3P2D3A2 -0.010 0.012 -0.012 0.011 -0.012 0.011 -0.009 0.011 -0.006 0.011 
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Table A.2 
 
RMSE by Configuration 
 

Config BLRMSE SD(BLRMSE) MI_IRT SD(MI_IRT) MI_NC SD(MI_NC) EC_IRT SD(EC_IRT) EC_NC SD(EC_NC) 

Overall 0.344 0.086 0.346 0.087 0.354 0.086 0.357 0.090 0.366 0.089 

C1 0.401 0.085 0.402 0.086 0.403 0.087 0.415 0.088 0.416 0.088 

C2 0.337 0.073 0.339 0.074 0.346 0.076 0.348 0.076 0.356 0.078 

C3 0.294 0.064 0.298 0.067 0.313 0.069 0.308 0.070 0.325 0.075 

C1P1D1A1 0.515 0.005 0.516 0.006 0.516 0.005 0.519 0.004 0.518 0.004 

C1P1D1A2 0.375 0.003 0.375 0.004 0.375 0.004 0.386 0.003 0.387 0.003 

C1P1D2A1 0.510 0.004 0.511 0.005 0.512 0.004 0.513 0.005 0.513 0.004 

C1P1D2A2 0.374 0.009 0.376 0.014 0.377 0.013 0.380 0.014 0.380 0.011 

C1P1D3A1 0.541 0.002 0.541 0.002 0.546 0.002 0.563 0.003 0.565 0.004 

C1P1D3A2 0.423 0.007 0.423 0.007 0.428 0.006 0.476 0.006 0.487 0.006 

C1P2D1A1 0.403 0.042 0.406 0.048 0.405 0.049 0.409 0.054 0.409 0.055 

C1P2D1A2 0.279 0.001 0.280 0.001 0.280 0.002 0.289 0.002 0.289 0.002 

C1P2D2A1 0.384 0.003 0.384 0.003 0.384 0.003 0.385 0.003 0.385 0.003 

C1P2D2A2 0.270 0.002 0.270 0.002 0.270 0.002 0.273 0.002 0.274 0.002 

C1P2D3A1 0.415 0.005 0.415 0.005 0.416 0.005 0.429 0.005 0.430 0.006 

C1P2D3A2 0.322 0.003 0.322 0.003 0.323 0.003 0.354 0.003 0.360 0.004 

C2P1D1A1 0.440 0.002 0.444 0.002 0.452 0.003 0.446 0.003 0.457 0.004 

C2P1D1A2 0.318 0.002 0.318 0.002 0.327 0.002 0.329 0.002 0.346 0.002 

C2P1D2A1 0.438 0.004 0.441 0.004 0.452 0.005 0.441 0.004 0.451 0.004 

C2P1D2A2 0.309 0.003 0.310 0.003 0.317 0.003 0.313 0.003 0.323 0.003 

C2P1D3A1 0.458 0.003 0.460 0.003 0.469 0.004 0.478 0.002 0.488 0.003 

C2P1D3A2 0.362 0.005 0.362 0.006 0.371 0.006 0.404 0.006 0.418 0.006 

C2P2D1A1 0.332 0.003 0.333 0.003 0.338 0.002 0.336 0.002 0.341 0.003 
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Table A.2 

(Cont.) 

Config BLRMSE SD(BLRMSE) MI_IRT SD(MI_IRT) MI_NC SD(MI_NC) EC_IRT SD(EC_IRT) EC_NC SD(EC_NC) 

C2P2D1A2 0.250 0.002 0.251 0.002 0.256 0.002 0.260 0.002 0.266 0.002 

C2P2D2A1 0.316 0.002 0.318 0.002 0.323 0.002 0.316 0.002 0.320 0.002 

C2P2D2A2 0.228 0.003 0.229 0.002 0.233 0.003 0.229 0.003 0.233 0.003 

C2P2D3A1 0.339 0.003 0.341 0.003 0.344 0.004 0.348 0.003 0.353 0.004 

C2P2D3A2 0.261 0.004 0.262 0.004 0.264 0.004 0.274 0.005 0.281 0.005 

C3P1D1A1 0.386 0.003 0.393 0.002 0.410 0.004 0.397 0.002 0.417 0.004 

C3P1D1A2 0.273 0.001 0.274 0.001 0.295 0.002 0.287 0.002 0.318 0.002 

C3P1D2A1 0.380 0.001 0.390 0.002 0.410 0.004 0.388 0.002 0.405 0.002 

C3P1D2A2 0.266 0.002 0.269 0.002 0.297 0.004 0.270 0.002 0.298 0.002 

C3P1D3A1 0.406 0.003 0.413 0.004 0.433 0.004 0.432 0.003 0.462 0.044 

C3P1D3A2 0.315 0.002 0.316 0.002 0.329 0.003 0.363 0.003 0.391 0.005 

C3P2D1A1 0.290 0.002 0.294 0.002 0.304 0.002 0.297 0.001 0.306 0.002 

C3P2D1A2 0.219 0.004 0.221 0.004 0.231 0.004 0.230 0.004 0.238 0.004 

C3P2D2A1 0.273 0.002 0.279 0.003 0.289 0.005 0.275 0.003 0.282 0.003 

C3P2D2A2 0.200 0.002 0.202 0.002 0.215 0.003 0.201 0.002 0.213 0.003 

C3P2D3A1 0.297 0.003 0.301 0.003 0.309 0.004 0.310 0.003 0.317 0.002 

C3P2D3A2 0.227 0.004 0.229 0.004 0.234 0.004 0.243 0.005 0.256 0.006 

 
 


