TALLUR, GAYATRI, M.S. Uncertain Data Integration with Probabilities. (2013) Directed by Dr. Fereidoon Sadri. 48 pp.

Real world applications that deal with information extraction, such as business intelligence software or sensor data management, must often process data provided with varying degrees of uncertainty. Uncertainty can result from multiple or inconsistent sources, as well as approximate schema mappings. Modeling, managing and integrating uncertain data from multiple sources has been an active area of research in recent years [6][7][1][2]. In particular, data integration systems free the user from the tedious tasks of finding relevant data sources, interacting with each source in isolation using its corresponding interface and combining data from multiple sources by providing a uniform query interface to gain access to the integrated information [5].

Previous work has integrated uncertain data using representation models such as the possible worlds and probabilistic relations [12][1][2]. We extend this work by determining the probabilities of possible worlds of an extended probabilistic relation. We also present an algorithm to determine when a given extended probabilistic relation can be obtained by the integration of two probabilistic relations and give the decomposed pairs of probabilistic relations.

UNCERTAIN DATA INTEGRATION

WITH PROBABILITIES

by
Gayatri Tallur

A Thesis Submitted to the Faculty of The Graduate School at The University of North Carolina at Greensboro
in Partial Fulfillment of the Requirements for the Degree
Master of Science

Greensboro
2013

Approved by

Dr. Fereidoon Sadri Committee Chair

APPROVAL PAGE

This thesis written by GAYATRI TALLUR has been approved by the following committee of the Faculty of The Graduate School at The University of North Carolina at Greensboro.

Committee Chair Dr. Fereidoon Sadri

Committee Members Dr. Nancy Green
Dr. Jing Deng

November 7, 2013
Date of Acceptance by Committee

November 7, 2013
Date of Final Oral Examination

ACKNOWLEDGEMENTS

I sincerely thank my advisor, Dr. Fereidoon Sadri, for his abundant guidance and support throughout the course of this research without which this thesis would not have been possible. I am very thankful to him for giving me the opportunity to work with him and believing in me. I thoroughly enjoyed working under him. I would also like to thank Dr. Jing Deng and Dr. Nancy Green for their valuable guidance and feedback.

I am indebted to my husband for his constant encouragement, support and love. I am very grateful to my mother and my family members for their unconditional support and care. I want to thank Nina Revankar and her family for their ample love and concern during my study. Nina's spontaneous gestures of help on those busy days really made a big difference, and I am deeply indebted to her for it.

I would like to express my gratitude to my friends at School for cheering me up and encouraging me all through. I am highly grateful to all my dear friends in Greensboro for keeping my life outside School fun at all times, and for their endless concern and support throughout.

TABLE OF CONTENTS

Page
LIST OF TABLES vi
LIST OF FIGURES viii
CHAPTER
I. INTRODUCTION 1
1.1 Sources of Uncertainty in Data 1
1.1.1 Measurement Errors. 2
1.1.2 Multiple or Inconsistent Sources 2
1.1.3 Approximate Schema Mapping 2
1.2 Modeling Uncertain Data 3
1.2.1 Possible Worlds Model 3
1.2.2 Probabilistic Relation Model (pr-relation) 4
1.3 Managing Uncertain Data 5
1.4 Data Integration 6
1.5 Contributions from This Work. 6
II. BACKGROUND INFORMATION 8
2.1 Data Integration using the Possible Worlds Model without probabilities 8
2.2 Data Integration using the Possible Worlds Model with probabilities 10
2.3 Data Integration using the Probabilistic Relation Model without probabilities 12
2.3.1 Integration Algorithm for Sources with epr-relations 13
2.4 Motivation for This Work 14
2.5 The Conversion Algorithm 15
2.5.1 Determining the Probabilities of the Event Variables 15
2.5.2 Forming the pr-relations 16
III. PROBABILITIES FOR UNCERTAIN DATA INTEGRATION 21
3.1 Computing Probabilities in Data Integration 21
3.1.1 Using the pr-relations. 21
3.1.2 Using the epr-relation 22
3.2 Introducing Notations 22
3.3 Event Variable Formula (EVF) 23
3.3.1 EVF Corresponding to a pr-relation 23
3.3.2 EVF Corresponding to an epr-relation 25
3.4 Computing the Probabilities from the EVF 27
3.5 Example for Determining the Probabilities 27
3.5.1 EVF using the pr-relation 27
3.5.2 EVF using the epr-relation. 28
3.5.3 Calculating the Probabilities from the EVF 29
IV. FORMAL RESULTS 30
4.1 Results 30
4.2 Sufficient Conditions for an epr-relation to be Integrated 31
4.2.1 The Decomposition Algorithm 32
4.2.2 Examples 34
4.3 Theorem 4 36
4.3.1 Example 38
4.4 Theorem 5 39
4.4.1 Example 41
4.5 Theorem 6 42
4.5.1 Example 42
V. CONCLUSIONS AND FUTURE WORK 45
5.1 Conclusions 45
5.2 Future Work 45
REFERENCES 47

LIST OF TABLES

Page
Table 1. Possible Worlds Model for Representing Uncertain Data 3
Table 2. Probabilistic Relation Model for Representing Uncertain Data 5
Table 3. Possible Worlds Model for Sources S1 and S2 9
Table 4. Possible Worlds of Source S1 11
Table 5. Possible Worlds of source S2 12
Table 6. pr-relation for Source S1 and S2 14
Table 7. Integrated epr-relation 14
Table 8. Description of the Tuples 17
Table 9. Possible worlds for Source S1 18
Table 10. Possible Worlds for Source S2 19
Table 11. Truth Assignments for Source S1 19
Table 12. Possible Worlds for Source S2 19
Table 13. pr-relations for Source S1 20
Table 14. pr-relations for Source S2 20
Table 15. pr-relations for Sources S1 and S2 28
Table 16. epr relation for the Result of Integration. 28
Table 17. epr-relation 35
Table 18. pr-relation r, s for Sources S1 and S2 (Pair \#1) 35
Table 19. pr-relation r, s for Sources S1 and S2 (Pair \#2) 35
Table 20. epr-relation 35
Table 21. epr-relation q 38
Table 22. pr-relations r and s 38
Table 23. pr-relations r' and s' 39
Table 24. epr-relation q 41
Table 25. pr-relation rand s 41
Table 26. epr-relation q 42
Table 27. pr-relations r and s 43
Table 28. pr-relations r' and s' 44

LIST OF FIGURES

PageFigure 1. Result of Integrating with the Corresponding Probabilities 13
Figure 2. Possible worlds of q 43
Figure 3. Consistency Graph. 44

CHAPTER I

INTRODUCTION

Real world applications that deal with information extraction, such as sensor data management, Optical Character Recognition (OCR), data mining in social networks, deduplication and data cleaning or even business intelligence software, must often process data provided with varying degrees of certainty. Useful information is usually obtained from the available data by tracing the relevant data sources, interacting with each source in isolation using its corresponding interface and combining data from all the sources. With the growing number of such applications today, it is important that the user be able to pose complex queries and retrieve information in a very efficient and scalable manner. Given the imprecise nature of information in the real world, processing and integrating uncertain data continues to be a challenging area of research.

1.1 Sources of Uncertainty in Data

In the context of information retrieval systems, uncertainty could manifest itself for many reasons including it being the outcome of flawed data, or missing knowledge. While flawed data can result from recording errors during the process of data collection or entry, missing knowledge can result from the inability to fill gaps in the collected data. Both these issues can be addressed by enumerating all possibilities for the corrupt or missing data and assigning a degree of likelihood to them. Thus, information retrieval systems that operate on uncertain data glean useful information from all available and enumerated data to provide results that are most likely to be true. In the ensuing lines, we categorize the sources of uncertainty and provide examples for each of them.

1.1.1 Measurement Errors

Consider the example of a sensor management system that must process the readings from two sensors reporting the temperature for the same city. If one recorded a value of 70 F and the other recorded 72 F , then the sensor data can be classified as Uncertain simply because they are not matching precisely.

1.1.2 Multiple or Inconsistent Sources

Consider the example of two students S1 and S2 who provide information regarding the courses that another student Bob has registered for in the current semester. Student S1 claims that Bob has enrolled for CS100 or CS101 while student S2 claims that Bob is enrolled for CS101 or CS102. Clearly, the courses that Bob is registered for can be classified as Uncertain. Along similar lines, sources that provide data that is deemed inconsistent also lead to uncertainty.

1.1.3 Approximate Schema Mapping

Consider the example of two schemas, Student (Name, SSN, Marks) and Grad-Student (Name, ID, Grades). If every Grade in Grad-Student.Grades maps uniquely to every Marks in Student.Marks, then this one-to-one mapping ensures definite results. However, if each Grade in Grad-Student.Grades maps to a range of Marks in Grad-Student.Marks, then this approximate mapping introduces uncertainty.

For every source of uncertainty discussed above, uncertain data cannot be processed within the confines of a traditional database information retrieval system as easily. Not only is it more complicated to process, but it is also less efficient [11]. Processing such data begins with modeling uncertain data differently. In fact, research in recent times has focused on addressing the modeling techniques and managing such data $[1][6][7]$.

1.2 Modeling Uncertain Data

Traditional databases do not allow scope for handling information retrieval errors resulting from flawed data or missing knowledge. A strong need is felt for a database that can model uncertain data and allow multiple values based on user-defined confidence levels. The ensuing sections discuss the different modeling techniques that such uncertain databases could use to represent uncertain data.

1.2.1 Possible Worlds Model

The possible worlds model has been widely accepted as a conceptual model of uncertain information. In this model, the information represented by each source is distributed over many traditional database instances, each instance being a possible state of the real world [1]. Each possible world is simply a traditional database containing data without any uncertainty.

Table 1. Possible Worlds Model for Representing Uncertain Data

Possible World $\left\{D_{l}\right\}$		
Tuple	Location	Temperature
$\boldsymbol{t}_{\boldsymbol{l}}$	Greensboro	70 F

Invalid Possible World $\left\{D_{3}\right\}$

| Tuple Location Temperature |
| :--- | :--- |

$\boldsymbol{t}_{\boldsymbol{I}} \quad$ Greensboro $\quad 70 \mathrm{~F}$
$\boldsymbol{r}_{1} \quad$ Greensboro
72F

Possible World $\left\{D_{2}\right\}$		
Tuple	Location	Temperature
\boldsymbol{r}_{1}	Greensboro	72 F

Invalid Possible World $\left\{D_{4}\right\}$
Φ

Table 1 shows the four database instances for the example presented in Section 1.1.1. From Table 1 however, Possible World $\left\{D_{3}\right\}$ is invalid because it is improbable that a single location has different temperature readings simultaneously. Furthermore, Possible World $\left\{D_{4}\right\}$ is invalid
because the place must have a temperature reading associated with it. Thus, the relevant possible worlds are simply $\left\{D_{l}\right\}$ and $\left\{D_{2}\right\}$.

As the amount of uncertain data increases, the number of possible worlds also increases exponentially. The resulting representation for uncertain data becomes unwieldy and processing time becomes unacceptably large. Therefore, we resort to the probabilistic relation model which serves as a more compact representation, by helping avoid enumerating all the possible worlds.

1.2.2 Probabilistic Relation Model (pr-relation)

The uncertain database that chooses to model its data using the possible worlds model uses multiple schemas to represent all the possible enumerations of uncertain data. In contrast, the probabilistic relation model [3] uses only one schema with one additional attribute known as the Event attribute (E). Unique atomic events across all possible worlds are expressed using Boolean variables, or event variables, and are combined using logic expressions to create complex events that are assigned to the attribute E for all tuples in the schema. In other words, the attribute E for every tuple in the schema is simply a Boolean True or False value. For the example presented in Section 1.1.1, the atomic events "The temperature in Greensboro is 70F" and "The temperature in Greensboro is $72 F^{\prime \prime}$, are represented by the event variable \mathbf{x} and \mathbf{y} respectively. The atomic event \mathbf{y} may be interpreted as $\neg \mathbf{x}$ for purposes of simplification. The truth value for \mathbf{x} represents the corresponding possible worlds.

Table 2 shows the probabilistic relation for the example discussed above. The individual rows or tuples are simply represented by the variables $\mathbf{t}_{\mathbf{1}}$ and \mathbf{r}_{1} respectively. Thus, when \mathbf{x} is True, only \mathbf{t}_{1} is True representing Possible World $\left\{D_{l}\right\}$ and when \mathbf{x} is False, only \mathbf{r}_{1} is True representing Possible World $\left\{D_{2}\right\}$.

The probabilistic relations model is equivalent to the possible worlds model, and the work of [13] formally shows that in fact the probabilistic relation model can represent any possible worlds set.

Table 2. Probabilistic Relation Model for Representing Uncertain Data

Tuple	Location	Temperature	Event Attribute (E)
$\mathbf{t}_{\mathbf{1}}$	Greensboro	70 F	x
$\mathbf{r}_{\mathbf{1}}$	Greensboro	72 F	$\neg \mathrm{x}$

An uncertain database can utilize the modeling techniques described in Section 1.2.1 and 1.2.2, and assign probabilities to every possible world representing the degree of belonging to the database. The sum of these probabilities over all possible worlds in the database should be equal to 1. Such a database is then known as a Probabilistic Database. A Probabilistic Database for the example shown in Table 1, for all possible worlds with equal probabilities, might be depicted as $\mathrm{P}\left(\mathrm{D}_{1}\right)=0.5$ and $\mathrm{P}\left(\mathrm{D}_{2}\right)=0.5$.

1.3 Managing Uncertain Data

Managing uncertain data refers to the set of operations that are used to store data, modify it and extract useful information. Operations such as indexing, join processing and query evaluation must be redesigned to handle uncertain data properly. Each of these is an active area of research and query processing for probabilistic databases is still, in fact, in its infancy. Little is known about which queries can be evaluated in polynomial time, and the few existing evaluation methods employ expensive main-memory algorithms [10].

1.4 Data Integration

Often, applications need to retrieve consolidated information using data stored in multiple uncertain databases that have the same schema. The process of consolidating all the available data across various databases is known as Data Integration. Data integration is important because integrating multiple sources of uncertain data can help resolve some uncertainty, yielding more accurate results than any of the individual sources [4]. The importance of information integration for uncertain data has been realized in recent years. In fact, [1] makes the following relevant observation:

While in traditional database management managing uncertainty and lineage seems like a nice feature, in data integration it becomes a necessity.

The result of integration is useful only to the extent that the information it produces can be trusted. Hence, providing a confidence value to the integrated information is a necessity in many applications [1]. This work concentrates on integrating two probabilistic databases and determining the probabilities of the possible worlds in the integration. The challenge here lies in accurately determining the probabilities.

1.5 Contributions from This Work

The work of [1] has developed methods to integrate uncertain databases with and without known associated probabilities using the possible worlds model. On the other hand, the work of [2] has developed a method to integrate uncertain databases using the probabilistic relations model without considering the associated probabilities. Our work extends the work of [2] towards uncertain data integration in the following manner.

- We present two methods to determine the probabilities of the possible worlds in the integration of two uncertain databases associated with a known set of probabilities.
- We show that both these methods are equivalent.
- We give sufficient conditions that an extended probabilistic relation can be obtained by the integration of two probabilistic relations.
- We present the decomposition algorithm that determines if a given extended probabilistic relation can be obtained by the integration of two probabilistic relations and gives the decomposed pairs of probabilistic relations.
- Given the result of integration whose decomposition leads to multiple pairs of probabilistic relations, we show that all pairs are equivalent.

This work is organized as follows. Chapter II discusses all relevant previous work. Chapters III and IV present our work and results. Finally, Chapter V presents the conclusions and the scope for future research.

CHAPTER II

BACKGROUND INFORMATION

This chapter summarizes the work done so far towards integrating data from uncertain databases. Towards this end, we discuss the use of the Possible Worlds model to integrate information from two uncertain databases across two different scenarios, as presented in the work of [1] - firstly, when the information is not associated with known probabilities and secondly, when it is. We also highlight the use of the Probabilistic Relation model to integrate information from uncertain databases when the information is not associated with probabilities, as presented in the work of [2]. In this work, we extend these ideas towards using the Probabilistic Relation model to integrate information from uncertain databases associated with known probabilities to determine the probabilities of the result of integration.

2.1 Data Integration using the Possible Worlds Model without probabilities

The work of [12] uses the well-known possible worlds model to represent and integrate uncertain information from two uncertain sources using superset-containment. The work of [1] uses the same model to represent and integrate uncertain information. It introduces a simple logic based approach for doing the integration. Since [1] forms the basis for this research, we summarize the procedure below.

Given an uncertain source U with $\mathrm{T}(\mathrm{U})$ representing the finite set of tuples of U , a propositional variable t_{i} is assigned to each tuple in $T(U)$. A formula corresponding to each possible world (D) for a source is built by conjuncting all variables t_{i} where the corresponding
tuple is in D_{j}, and conjuncting τ_{i} where the corresponding tuple is not in D_{j}. The formula corresponding to the uncertain database U is then the disjunction of the formulae corresponding to the possible worlds of U .

The formula f corresponding to the uncertain database resulting from integrating $U_{1} \ldots U_{n}$ is obtained by conjuncting the formulae of the databases: $f=f_{1} \wedge \ldots \wedge f_{n}$. This procedure is best demonstrated through an example we present next. Let us consider the two friends of Bill who are providing information about his course registrations during Fall 2013. We refer to the first friend as Source S1 and the second one as Source S2. Let S1 state that Bill is taking CS100 or CS101 (but not both). Let S2 state that Bill is taking CS101 or CS102 (but not both). The corresponding possible worlds for this example are:

Table 3. Possible Worlds Model for Sources S1 and S2

D_{1}	
Student	Course
Bill	CS100

S1 | D_{2} | |
| :---: | :---: |
| | Student |
| Bill | Course |

D_{3}	
Student	Course
Bill	CS101

S2

Student	Course
Bill	CS102

Let variable t_{1} and t_{2} correspond to each of tuples (Bill, CS100) and (Bill, CS101) respectively. Then the formula for the first possible world, second possible world, and the database are, respectively,

$$
\mathrm{t}_{1} \wedge \neg \mathrm{t}_{2}, \neg \mathrm{t}_{1} \wedge \mathrm{t}_{2}, \text { and }\left(\mathrm{t}_{1} \wedge \neg \mathrm{t}_{2}\right) \mathrm{V}\left(\neg \mathrm{t}_{1} \wedge \mathrm{t}_{2}\right)
$$

Let t_{2} and t_{3} correspond to (Bill, CS101) and (Bill, CS102) respectively. Then the formula corresponding to the uncertain database representing S2 is as shown next.

$$
\left(\mathrm{t}_{2} \wedge \neg \mathrm{t}_{3}\right) \mathrm{V}\left(\neg \mathrm{t}_{2} \wedge \mathrm{t}_{3}\right)
$$

The integration is then obtained as,

$$
\left[\left(\mathrm{t}_{1} \wedge \neg \mathrm{t}_{2}\right) \mathrm{V}\left(\neg \mathrm{t}_{1} \wedge \mathrm{t}_{2}\right)\right] \wedge \quad\left[\left(\mathrm{t}_{2} \wedge \neg \mathrm{t}_{3}\right) \mathrm{V}\left(\neg \mathrm{t}_{2} \wedge \mathrm{t}_{3}\right)\right]
$$

Simplifying this Boolean expression yields

$$
\left(\neg \mathrm{t}_{1} \wedge \mathrm{t}_{2} \wedge \neg \mathrm{t}_{3}\right) \quad \mathrm{V} \quad\left(\mathrm{t}_{1} \wedge \neg \mathrm{t}_{2} \wedge \mathrm{t}_{3}\right)
$$

We interpret this to mean that the two possible worlds upon integration are, (Bill registered for CS101) or (Bill registered for both CS100 and CS102).

2.2 Data Integration using the Possible Worlds Model with probabilities

The integration approach developed in Section 2.1 is extended to deal with integrating uncertain information associated with known probabilities and determine the probabilities of the possible worlds in the integration [1]. Given a probabilistic uncertain database U with $\mathrm{PW}(\mathrm{U})=$ $\left\{D_{1}, \ldots, D_{m}\right\}$, it is convenient to associate a probabilistic event e_{i} with each possible world D_{i}. Intuitively, if e_{i} represents the event where the value of the uncertain database U is equal to D_{i}, then the probability of $\mathrm{e}_{\mathrm{i}}, \mathrm{P}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}$.

The work of [1] shows that the probabilistic consistency constraint has to be satisfied for performing uncertain data integration. It states that the sum of probabilities of the possible worlds corresponding to the first source should be equal to the sum of probabilities of the possible worlds corresponding to the second source for the possible worlds that are integrating. When possible worlds from different sources satisfy the consistency constraints, then the probabilities of integration are obtained in terms of the probabilities of the individual sources by using conditional probability : $P\left(e_{j} \wedge e_{k}\right)=P\left(e_{j} \mid e_{k}\right) * P\left(e_{k}\right)$. If e_{j} and e_{k} are inconsistent, then $P\left(e_{j} \mid e_{k}\right)=0$.

If possible worlds D and D ' are connected in the consistency graph, and not connected to any other nodes, then $\mathrm{P}(\mathrm{D})=\mathrm{P}\left(\mathrm{D}^{\prime}\right)$ and $\mathrm{P}\left(\mathrm{D} \wedge \mathrm{D}^{\prime}\right)=\mathrm{P}(\mathrm{D})=\mathrm{P}\left(\mathrm{D}^{\prime}\right)$, otherwise the probability is obtained by distributing the sum according to the pairwise product of probabilities of underlying possible worlds as shown in the ensuing example.

Consider the possible worlds of two sources shown in Table 4 and Table 5.

Table 4. Possible Worlds of Source S1

D_{1}	
Student	Course
Bill	CS101

D_{3}

D_{3}	
Student	Course
Bill	CS103

Let the probabilities of the possible worlds in the two sources be $\mathrm{P}\left(\mathrm{D}_{1}\right)=0.3, \mathrm{P}\left(\mathrm{D}_{2}\right)=0.5$,
$\mathrm{P}\left(\mathrm{D}_{3}\right)=0.2, \mathrm{P}\left(\mathrm{D}_{1}{ }^{\prime}\right)=0.35, \mathrm{P}\left(\mathrm{D}_{2}{ }^{\prime}\right)=0.45, \mathrm{P}\left(\mathrm{D}_{3}{ }^{\prime}\right)=0.05$, and $\mathrm{P}\left(\mathrm{D}_{4}{ }^{\prime}\right)=0.15$.
The lines in Figure 1 connecting S1 to S2 represent the possible worlds that are consistent and can integrate. There are two connected components in this consistency graph. The possible worlds in the result of integration are shown on right. The probabilistic consistency constraints $\mathrm{P}\left(\mathrm{D}_{1}\right)+\mathrm{P}\left(\mathrm{D}_{2}\right)=\mathrm{P}\left(\mathrm{D}_{1}{ }^{\prime}\right)+\mathrm{P}\left(\mathrm{D}_{2}{ }^{\prime}\right)$ and $\mathrm{P}\left(\mathrm{D}_{3}\right)=\mathrm{P}\left(\mathrm{D}_{3}{ }^{\prime}\right)+\mathrm{P}\left(\mathrm{D}_{4}{ }^{\prime}\right)$ are satisfied.

The probabilities of the integrated possible worlds are calculated in the following way.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{D}_{3} \wedge \mathrm{D}_{3}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{3} \mid \mathrm{D}_{3}{ }^{\prime}\right) * \mathrm{P}\left(\mathrm{D}_{3}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{3}{ }^{\prime}\right)=0.05, \\
& \mathrm{P}\left(\mathrm{D}_{3} \wedge \mathrm{D}_{4}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{3} \mid \mathrm{D}_{4}{ }^{\prime}\right) * \mathrm{P}\left(\mathrm{D}_{4}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{4}{ }^{\prime}\right)=0.15
\end{aligned}
$$

Table 5. Possible Worlds of source S 2

$\mathrm{D}_{1}{ }^{\prime}$	
Student	Course
Bill	CS101

$\mathrm{D}_{2}{ }^{\prime}$	
Student	Course
Bill	CS101
Bill	CS102

$\mathrm{D}_{3}{ }^{\prime}$	
Student	Course
Bill	CS102

$\mathrm{D}_{4}{ }^{\prime}$	
Student	Course
Bill	CS102
Bill	CS100

The probability of the remaining four possible worlds in the integration is obtained by distributing the sum (0.8) according to the pairwise product of probabilities of underlying possible worlds.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{D}_{1} \wedge \mathrm{D}_{1}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{1} \mid \mathrm{D}_{1}{ }^{\prime}\right) * \mathrm{P}\left(\mathrm{D}_{1}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{1}\right) /\left[\mathrm{P}\left(\mathrm{D}_{1}\right)+\mathrm{P}\left(\mathrm{D}_{2}\right)\right] * \mathrm{P}\left(\mathrm{D}_{1}{ }^{\prime}\right)=0.13125 \\
& \mathrm{P}\left(\mathrm{D}_{1} \wedge \mathrm{D}_{2}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{1} \mid \mathrm{D}_{2}{ }^{\prime}\right) * \mathrm{P}\left(\mathrm{D}_{2}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{1}\right) /\left[\mathrm{P}\left(\mathrm{D}_{1}\right)+\mathrm{P}\left(\mathrm{D}_{2}\right)\right] * \mathrm{P}\left(\mathrm{D}_{2}{ }^{\prime}\right)=0.16875 \\
& \mathrm{P}\left(\mathrm{D}_{2} \wedge \mathrm{D}_{1}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{2} \mid \mathrm{D}_{1}{ }^{\prime}\right) * \mathrm{P}\left(\mathrm{D}_{1}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{2}\right) /\left[\mathrm{P}\left(\mathrm{D}_{1}\right)+\mathrm{P}\left(\mathrm{D}_{2}\right)\right] * \mathrm{P}\left(\mathrm{D}_{1}{ }^{\prime}\right)=0.21875 \\
& \mathrm{P}\left(\mathrm{D}_{2} \wedge \mathrm{D}_{2}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{2} \mid \mathrm{D}_{2}{ }^{\prime}\right) * \mathrm{P}\left(\mathrm{D}_{2}{ }^{\prime}\right)=\mathrm{P}\left(\mathrm{D}_{2}\right) /\left[\mathrm{P}\left(\mathrm{D}_{1}\right)+\mathrm{P}\left(\mathrm{D}_{2}\right)\right] * \mathrm{P}\left(\mathrm{D}_{2}{ }^{\prime}\right)=0.28125
\end{aligned}
$$

Since $\left(\mathrm{D}_{2}{ }^{\wedge} \mathrm{D}_{2}{ }^{\prime}\right)$ has the highest probability upon integration, the possible world (Bill registered for CS101, CS103 and CS102) is the most likely solution of integration.

2.3 Data Integration using the Probabilistic Relation Model without probabilities

Moving on from the Possible Worlds model, the work of [2] represents uncertain information from two sources using the probabilistic relations (pr-relation) model and integrates it. It introduces the extended probabilistic relation (epr-relation) model for representing the integration. An epr-relation is a pr-relation plus a set of event constraints that restrict the set of valid truth assignments, and hence, the set of possible worlds of an epr-relation. The ensuing section describes the integration algorithm in detail.

Figure 1. Result of Integrating with the Corresponding Probabilities

2.3.1 Integration Algorithm for Sources with epr-relations

Let r_{1} and r_{2} be pr-relations for sources $S 1$ and $S 2$, respectively. Let $R=R^{\prime} U\{E\}$ be the schema of r_{1} and r_{2}, where R^{\prime} is the set of regular attributes and E is the special event attribute. Let T_{1} be the set of regular tuples (tuple-set) of r_{1}, that is, $\mathrm{T}_{1}=\left\{\mathrm{t}\left(\mathrm{R}^{\prime}\right) \mid \mathrm{t} \in \mathrm{r}_{1}\right\}$. Similarly, let T_{2} be the tuple-set of r_{2}.

The result of integration of r_{1} and r_{2} is an epr-relation r obtained as follows.

- The Schema of r is the same as that of r_{1} and r_{2}, namely, $R=R \prime U\{E\}$.
- The set of regular tuples (tuple-set) of r is $T=T_{1} \mathrm{UT}_{2}$.
- For a tuple $\mathrm{t} \epsilon \mathrm{T}$, its Event attribute value in r is obtained as follows
- If t ϵ T- $T_{2}\left(t\right.$ is in only $\left.r_{1}\right)$ then copy the corresponding E value from r_{1}.
- If t $\in T-T_{1}\left(t\right.$ is in only $\left.r_{2}\right)$ then copy the corresponding E value from r_{2}.
- If $t \in T_{1} \cap T_{2}\left(t\right.$ is in both r_{1} and $\left.r_{2}\right)$ then copy the corresponding E value from either r_{1} or r_{2}.
- Add the following event constraints to r : For each $\mathrm{t} \epsilon \mathrm{T}_{1} \cap \mathrm{~T}_{2}$, add the constraint $\mathrm{w}_{1} \equiv \mathrm{w}_{2}$, where w_{1} is the value of Event attribute for t in r_{1} and w_{2} is the value of Event attribute for t in r_{2}. We use $w_{1} \equiv w_{2}$ to represent the formula $\left(w_{1} \rightarrow w_{2}\right) \wedge\left(w_{2} \rightarrow w_{1}\right)$.

We apply this algorithm to the example outlined in Section 2.1.

Table 6. pr-relation for Source S1 and S2

S1			S2		
Student	Course	$\begin{gathered} \text { Event } \\ \text { Attribute (E) } \\ \hline \end{gathered}$	Student	Course	$\begin{gathered} \text { Event } \\ \text { Attribute (E) } \\ \hline \end{gathered}$
Bill	CS100	x	Bill	CS101	y
Bill	CS101	$\checkmark \mathrm{x}$	Bill	CS102	$\neg \mathrm{y}$

Table 7. Integrated epr-relation

Student	Course	Event Attribute (E)
Bill	CS100	x
Bill	CS101	$\neg \mathrm{x}$
Bill	CS102	$\neg \mathrm{y}$
	$\neg \mathbf{x} \equiv \mathbf{y}$	

The event constraint in Table $7(\neg \mathbf{x} \equiv \mathbf{y})$ implies that only the cases ($\mathrm{x}=$ true, $\mathrm{y}=\mathrm{false}$) and ($\mathrm{x}=$ false, $y=$ true) are valid. All other cases are invalid. We already know that the truth table with x and y event variables gives us all the possible worlds. Eliminating all cases where ($\mathrm{x} \equiv \mathrm{y}$) labeling them as invalid assignments leaves us with the remaining valid possible worlds as: (Bill registered for CS101), or (Bill registered for both CS100 and CS102).

2.4 Motivation for This Work

The work of [2] has provided a compact representation for efficient integration of uncertain data. However, it does not take the probabilities that accompany such data into account. Integration methods using the possible worlds model that take the probabilities into account and
calculate the probabilities of the result of integration are already available, but they are highly inefficient and impractical for the purposes of storing and processing large amounts of uncertain data. Therefore, we attempt to solve this problem of determining probabilities using the compact representation of pr-relation and the work of [2] provides a good starting point for our work. In the next section, we will look at how possible worlds models with known associated probabilities can be represented using the compact representation of pr-relations by applying the conversion algorithm shown in the work of [13]. We will use this and the work of [2] as a starting point for our work which is presented in the ensuing chapters.

2.5 The Conversion Algorithm

This algorithm works in two steps. In the first step, the probabilities of the event variables are determined. Next, the corresponding pr-relations are formed.

2.5.1 Determining the Probabilities of the Event Variables

Let the possible worlds be $D_{1}, D_{2} \ldots D_{n}$. Let the probability of the Possible Worlds $P\left(D_{i}\right)=$ $\mathrm{d}_{\mathrm{i}}, \mathrm{i}=1,2 \ldots \mathrm{n}$ such that $\sum_{i}^{n}\left(d_{i}\right)=1$. Let the event variables be $\mathrm{x}_{1}, \mathrm{x}_{2}, . . \mathrm{x}_{\mathrm{n}-1}$. Let the probabilities of the event variables $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}$.

We consider the 2^{n-1} truth assignments from the truth table for the event variables $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots$ $\mathrm{x}_{\mathrm{n}-1}$. We use a specific assignment of possible worlds $\mathrm{D}_{1}, \mathrm{D}_{2} \ldots \mathrm{D}_{\mathrm{n}}$ to the truth assignments that facilitates the computation of probabilities $P\left(x_{i}\right)=x_{i}, i=1,2 \ldots n-1$ in terms of possible worlds probabilities $P\left(D_{i}\right)=d_{i}, i=1,2 \ldots n$.

- Assign D_{1} to all combinations where $\mathrm{x}_{1}=$ true (there are $2^{\mathrm{n}-2}$ such combinations). This result in $\mathrm{p}_{1}=\mathrm{d}_{1}$.
- Assign D_{2} to all combinations where $x_{1}=$ false and $x_{2}=$ true (there are 2^{n-3} such combinations). This results in $\left(1-p_{1}\right) p_{2}=d_{2}$. Hence, we obtain $p_{2}=d_{2} /\left(1-d_{1}\right)$.

Note that $\mathrm{d}_{1}, \mathrm{~d}_{2}$, and $\left(1-\mathrm{d}_{1}\right)$ are positive, and $\mathrm{d}_{1}+\mathrm{d}_{2} \leq 1$. So, we have $0 \leq \mathrm{p}_{2} \leq 1$.

- Assign D_{3} to all combinations where $x_{1}=$ false, $x_{2}=$ false and $x_{3}=$ true (there are 2^{n-4} such combinations). This results in $\left(1-p_{1}\right)\left(1-p_{2}\right) p_{3}=d_{3}$. Hence, we obtain $p_{3}=d_{3} /\left(1-d_{1}-\right.$ $\left.\mathrm{d}_{2}\right)$. Note that $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$ and $\left(1-\mathrm{d}_{1}-\mathrm{d}_{2}\right)$ are positive, and $\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3} \leq 1$. So, we have $0 \leq$ $\mathrm{p}_{2} \leq 1$.
- Continuing in this manner, we get the general term $\mathrm{p}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}} /\left(1-\mathrm{d}_{1}-\mathrm{d}_{2}-\ldots-\mathrm{d}_{\mathrm{i}-1}\right)$ or, equivalently $p_{i}=d_{i} /\left(d_{n}+d_{n-1}+d_{n-2}+\ldots+d_{i}\right)$. Clearly, $0 \leq p_{i} \leq 1$. The $\mathrm{n}^{\text {th }}$ possible world, D_{n}, is assigned to the combination $\mathrm{x}_{1}=$ false $\ldots \mathrm{x}_{\mathrm{n}-1}=$ false. We should obtain $\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots\left(1-p_{n-1}\right)=d_{n}$. We can verify this by noticing that, from the equation for p_{i} above,

$$
\left(1-p_{i}\right)=\frac{\left(d_{n}+d_{n-1}+d_{n-2}+\ldots+d_{i+1}\right)}{\left(d_{n}+d_{n-1}+d_{n-2}+\ldots+d_{i}\right)}
$$

which yields,

$$
\begin{aligned}
\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots\left(1-p_{n-1}\right) & =\frac{d_{n}}{\left(d_{n}+d_{n-1}+d_{n-2}+\ldots+d_{1}\right)} \\
& =d_{n}
\end{aligned}
$$

Thus, we have now obtained the probabilities for the event variables. We next proceed to form the pr-relations.

2.5.2 Forming the pr-relations

We can obtain the pr-relations, r, corresponding to the Possible Worlds $D_{1}, D_{2} \ldots D_{n}$. The pr-relations r contains the set of tuples $D_{1} U D_{2} \ldots U D_{n}$.

- With each world $\mathrm{D}_{\mathrm{i}}, \mathrm{i}=2,3, \ldots \mathrm{n}-1$ we associate the Boolean expression

$$
\mathrm{f}_{\mathrm{i}}=\neg \mathrm{x}_{1} \wedge \neg \mathrm{x}_{2} \wedge \neg \mathrm{x}_{3} \wedge \ldots \wedge \neg \mathrm{x}_{\mathrm{i}+1} \wedge \mathrm{x}_{\mathrm{i}}
$$

We provide the expression for D_{1} as $f_{1}=x_{1}$ for $i=1$, and the expression for the $n^{\text {th }}$ term D_{n} as $f_{n}=$ $\neg \mathrm{X}_{1} \wedge \neg \mathrm{X}_{2} \wedge \neg \mathrm{X}_{3} \wedge \ldots \wedge \neg \mathrm{X}_{\mathrm{n}-1}$. The value of the event attribute for a tuple ' t ' in r is obtained as $\mathrm{V}_{\mathrm{teDi}} \mathrm{f}_{\mathrm{i}}$. In other words, the value of Event attribute (E) for t is the disjunction of the expressions associated with the possible worlds that contain t .

We present an example to demonstrate the working of the Conversion Algorithm. Consider the information about Bill's course registrations during Fall 2013, which is stored in an uncertain database. Let the set of all given tuples in the database be as shown in Table 8.

Table 8. Description of the Tuples

Tuple	Student	Course
t_{1}	Bill	CS101
t_{2}	Bill	CS103
t_{3}	Bill	CS102
t_{4}	Bill	CS100
t_{5}	Bill	CS104
t_{6}	Bill	CS105

Let Source $S 1$ consist of three possible worlds, $t_{4}, t_{1} t_{3}$ and $t_{1} t_{2}$, with probabilities $0.08,0.32$ and 0.6 respectively. Let Source $S 2$ consist of two possible worlds, t_{1} and $t_{4} t_{5}$, with probabilities 0.4 and 0.6 respectively. Given this information, we now proceed to apply the Conversion Algorithm. We first list out the three possible worlds for Source S1 in Table 9. We also list out the two possible worlds for Source S 2 in Table 10 . We need two event variables since there are three possible worlds in Source $S 1$, say x_{1} and x_{2}. We next perform the following truth assignments:

- Assign the first possible world t_{4} to all combinations where the truth value of x_{1} is True. The corresponding probability for the event variable x_{1} is $\mathrm{P}\left(\mathrm{x}_{1}\right)=\mathrm{P}\left(\mathrm{t}_{4}\right)=0.6$
- Assign the second possible world $\mathrm{t}_{1} \mathrm{t}_{3}$ where the truth value of x_{1} is True and x_{2} is False.

The corresponding probability for the event variable x_{2} is,

$$
\mathrm{P}\left(\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{t}_{1} \mathrm{t}_{3}\right) /\left[1-\mathrm{P}\left(\mathrm{x}_{1}\right)\right]=0.32 / 0.4=0.8
$$

- Assign the last possible world $\mathrm{t}_{1} \mathrm{t}_{2}$ to the remaining row where both x_{1} and x_{2} are False. The truth assignments for the event variables x_{1} and x_{2} for source S 1 are shown in Table 11.

Table 9. Possible worlds for Source S1
$\mathrm{D}_{1}, \mathrm{P}\left(\mathrm{D}_{1}\right)=0.08$

Student	Course
Bill	CS100

$\mathrm{D}_{2}, \mathrm{P}\left(\mathrm{D}_{2}\right)=0.32$

Student	Course
Bill	CS101
Bill	CS102

$\mathrm{D}_{3}, \mathrm{P}\left(\mathrm{D}_{3}\right)=0.6$

Student	Course
Bill	CS101
Bill	CS103

Based on the truth assignments in Table 11, we now form the corresponding pr-relations in the following manner.

$$
\begin{gathered}
\mathrm{t}_{4}=\mathrm{x}_{1} \\
\mathrm{t}_{1}, \mathrm{t}_{3}=\neg \mathrm{x}_{1} \mathrm{x}_{2} \\
\mathrm{t}_{1}, \mathrm{t}_{2}=\neg \mathrm{x}_{1} \neg \mathrm{x}_{2}
\end{gathered}
$$

Hence simplifying the expression for t_{1} gives $t_{1}=\neg \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{~V} \neg \mathrm{x}_{1} \neg \mathrm{x}_{2}=\neg \mathrm{x}_{1}$

Table 10. Possible Worlds for Source S2
$\mathrm{D}_{1}{ }^{\prime}, \mathrm{P}\left(\mathrm{D}_{1}{ }^{\prime}\right)=0.4$

Student	Course
Bill	CS101

$$
\mathrm{D}_{2}{ }^{\prime}, \mathrm{P}\left(\mathrm{D}_{2}{ }^{\prime}\right)=0.6
$$

Student	Course
Bill	CS100
Bill	CS104

Table 11. Truth Assignments for Source S1

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	Possible World
0	0	$\mathrm{t}_{1} \mathrm{t}_{2}$
0	1	$\mathrm{t}_{1} \mathrm{t}_{3}$
1	0	t_{4}
1	1	t_{4}

We now proceed along similar lines for Source S2. Since we have two possible worlds, we need only one event variable, say y_{1}. We next perform the following truth assignments.

- Assign the first possible world t_{1} to all combinations where the truth value of y_{1} is True.

The corresponding probability for the event variable y_{1} is $P\left(y_{1}\right)=P\left(t_{1}\right)=0.4$

- Assign the second possible world $\mathrm{t}_{4} \mathrm{t}_{5}$ where the truth value of y_{1} is False.

Therefore, the truth assignments for Source S 2 are as shown in Table 12. Based on Table 12, we form the corresponding pr-relations in the following manner:

$$
\begin{aligned}
\mathrm{t}_{4}, \mathrm{t}_{5} & =\neg \mathrm{y}_{1} \\
\mathrm{t}_{1} & =\mathrm{y}_{1}
\end{aligned}
$$

Table 12. Possible Worlds for Source S2

$\mathbf{y}_{\mathbf{1}}$	Possible World
0	$\mathrm{t}_{4} \mathrm{t}_{5}$
1	t_{1}

Thus the probabilistic relation and the probabilities of the event variables are as follows: $\mathrm{P}\left(\mathrm{x}_{1}\right)=$ $0.6, \mathrm{P}\left(\mathrm{x}_{2}\right)=0.8, \mathrm{P}\left(\mathrm{y}_{1}\right)=0.4$. At this point, we have successfully obtained the corresponding compact representation for the given data with probabilities ready to be applied for data integration. We represent the uncertain information in the form of pr-relations for Source S1 and Source S2 as shown in Table 13.

Table 13. pr-relations for Source S1

Source S1, $\mathrm{P}\left(\mathrm{x}_{1}\right)=0.6, \mathrm{P}\left(\mathrm{x}_{2}\right)=0.8$			
Tuple	Student	Course	Event Attribute
t_{1}	Bill	CS101	$\neg \mathrm{x}_{1}$
t_{2}	Bill	CS103	$\neg \mathrm{x}_{1} \neg \mathrm{x}_{2}$
t_{3}	Bill	CS102	$\neg \mathrm{x}_{1} \mathrm{x}_{2}$
t_{4}	Bill	CS100	x_{1}

Table 14. pr-relations for Source S2
Source S2, P(y_{1}) $=0.4$

Tuple	Student	Course	Event Attribute
t_{1}	Bill	CS101	y_{1}
t_{4}	Bill	CS100	$\neg \mathrm{y}_{1}$
t_{5}	Bill	CS104	$\neg \mathrm{y}_{1}$

Clearly, Table 13 and Table 14 provide a more compact representation for this problem compared to Table 9 and Table 10 respectively.

In summary, we use this conversion algorithm to arrive at a compact representation of the uncertain data with the associated probabilities to determine the probabilities of the result of integration using our method as presented in the ensuing chapters.

CHAPTER III

PROBABILITIES FOR UNCERTAIN DATA INTEGRATION

In this chapter, we seek to introduce the necessary ideas that help us to successfully compute the probabilities associated with the integrated results over uncertain databases. We introduce the set of notations that we will use throughout the rest of this work. We also introduce the idea of an Event Variable Formula (EVF) that will form the basis for computing the probabilities of the integrated result.

3.1 Computing Probabilities in Data Integration

Given two sources, let us assume that we have the possible worlds with known associated probabilities available to us. Say, we have obtained the corresponding pr-relations with the probabilities using the conversion algorithm. At this point, we present two methods of obtaining probabilities of the possible worlds in the integration.

3.1.1 Using the pr-relations

- We start with the pr-relations and construct the EVFs for every possible world of both sources.
- We integrate the two sources to obtain the resulting possible worlds.
- For each of these possible worlds, we combine the relevant EVFs to obtain the EVF for the possible worlds in the integration.
- We finally obtain the probability of the possible worlds in the integration in terms of the probabilities of the event variables of the EVF.

3.1.2 Using the epr-relation

- We start with the epr-relation and obtain the corresponding possible worlds in integration.
- We build EVFs for each of these possible worlds thus obtained.
- We finally obtain the probability of the possible worlds in the integration in terms of the probabilities of the event variables of the EVF.

We show that the EVFs and the probabilities obtained for every possible world in the integration is the same, irrespective of whether we use the pr-relations or the epr-relation.

3.2 Introducing Notations

- A pr-relation shall be denoted by r
- The schema for the database shall be denoted by R
- The schema of r is $\mathrm{R} \mathrm{U}\{\mathrm{E}\}$, where E is the Event Attribute
- The set of event variables for r shall be denoted by V
- A tuple in r has the form $t @ f$, where t is the tuple and f is the corresponding Event Attribute
- r has n tuples $t_{1} @ f_{1}, \ldots, t_{n} @ f_{n}$. We assume $t_{i} \neq t_{j}$ for all $i \neq j$
- If $\mathrm{t} @ \mathrm{f} \epsilon \mathrm{r}$, we also say the regular tuple t is in r . The set of regular tuples of a pr-relation or epr-relation r is denoted by $T(r) . T(r)$ is also the tuple-set of the uncertain relation r.
- Possible Worlds of r, $\operatorname{PW}(r)$, is the set of relations r_{1}, \ldots, r_{k} on schema R. The possible worlds contain regular tuples, $\mathrm{r}_{\mathrm{i}} \subseteq \mathrm{T}(\mathrm{r}), \mathrm{i}=1, \ldots, \mathrm{k}$.
- We have two sources, represented by pr-relations r and s
- r and s have the same schema: $R U\{E\}$
- The set of event variables for s is W . We assume $\mathrm{V} \cap \mathrm{W}=\varnothing$
- \quad s has m tuples, $\mathrm{u}_{1} @ \mathrm{~g}_{1}, \ldots, \mathrm{u}_{\mathrm{m}} @ \mathrm{~g}_{\mathrm{m}}$
- Possible Worlds of $s, \operatorname{PW}(\mathrm{~s})$, is the set of relations $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{1}$ on schema R
- The integration of r and s is denoted by $r \tilde{U} s$. We overload the notation and use $r_{i} \tilde{U} s_{j}$ to denote the result of integrating possible worlds $r_{i} \in P W(r)$ and $s_{j} \in P W(s)$. If r_{i} and s_{j} are compatible, then $r_{i} \tilde{U} s_{j}=r_{i} U s_{j}$. If r_{i} and s_{j} are not compatible, they cannot be integrated and $\mathrm{r}_{\mathrm{i}} \tilde{\mathrm{U}} \mathrm{s}_{\mathrm{j}}$ is nil.
- Without loss of generality, we assume r and s have p common (regular) tuples, namely, t_{k} $=u_{k}$ for $\mathrm{k}=1 \ldots \mathrm{p}$. If $\mathrm{p}=0$, the two pr-relations do not have any common tuples.

3.3 Event Variable Formula (EVF)

An Event Variable Formula (EVF) is a logic based formula obtained as a result of performing Boolean operations over multiple event variables. Since the probabilities of the event variables are already known, the EVF can be used to obtain the probabilities of the integrated results. The following section provides a formal definition of the EVF in the scenario where it can be used to integrate from two pr-relations and epr-relation.

3.3.1 EVF Corresponding to a pr-relation

Building an EVF corresponding to a pr-relation is a two-step process as highlighted in Section 3.1.1. In the ensuing sections, we delve deeper into it.

3.3.1.1 EVF Corresponding to a possible world of the pr-relation

Let r be the pr-relation on the schema $R U\{E\}$ and $t_{1} @ f_{1} \ldots t_{n} @ f_{n}$ be the tuples of r. Consider a relation $r_{i} \subseteq\left\{t_{1} \ldots t_{n}\right\}$ in the possible world of $r, r_{i} \in P W(r)$. We define the EVF φ_{i} corresponding to the possible world r_{i} as,

$$
\varphi_{\mathrm{i}}=\Lambda_{\mathrm{tk} \in \mathrm{ri}} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{tk} \notin \mathrm{ri}} \neg \mathrm{f}_{\mathrm{k}}
$$

Since $T(r)=\left\{t_{1} \ldots t_{n}\right\}$, we can write the EVF of $r_{i} \in P W(r)$ in the form,

$$
\varphi_{\mathrm{i}}=\Lambda_{\mathrm{tk} \in \mathrm{ri}} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{tke}(\mathrm{~T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k}}
$$

$\underline{\text { Observation 1: For a relation } r_{i} \notin \operatorname{PW}(r) \text {, the } \operatorname{EVF} \varphi_{\mathrm{i}}=\Lambda_{\mathrm{tk} \in \mathrm{ri}} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{tk} \mathrm{\in}(\mathrm{~T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k}} \text { is false }}$ Proof: If $r_{i} \notin \mathrm{PW}(\mathrm{r})$ then no truth assignment v to event variables V exists for which (1) all f_{j} are true for $t_{j} \epsilon r_{i}$, and (2) all f_{j} are false for $t_{j} \epsilon\left(T(r)-r_{i}\right)$. Hence, φ_{i} is not satisfiable (it is false for all truth assignments to event variables V).

Corollary 1: For a pr-relation $r, r_{i} \in \operatorname{PW}(r)$ if and only if φ_{i} is satisfiable.

3.3.1.2 EVF Corresponding to Integration of pr-relations from Two Sources

Let r and s on the schema $R U\{E\}$ be the two pr-relations in the integration. V and W are the set of event variables for r and s respectively, and $V \cap W=\phi$. Let $r_{i} \in P W(r)$ and $s_{j} \in P W(s)$ with EVFs φ_{i} and ψ_{j}, respectively. If $r_{i} \in P W(r)$ and $s_{j} \in P W(s)$ are compatible, then the EVF for the possible world in the integration of r and s represented by ξ is obtained by conjuncting the EVFs for r_{i} and s_{j} respectively.

$$
\xi=\varphi_{\mathrm{i}} \wedge \psi_{\mathrm{j}}
$$

where, $\varphi_{\mathrm{i}}=\Lambda_{\text {tkeri }} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{tke}(\mathrm{T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k}}$ and

$$
\psi_{\mathrm{j}}=\Lambda_{\mathrm{tkesj}} \mathrm{~g}_{\mathrm{k}} \Lambda_{\mathrm{tke}(\mathrm{~T}(\mathrm{~s})-\mathrm{si})} \neg \mathrm{g}_{\mathrm{k}}
$$

3.3.2 EVF Corresponding to an epr-relation

For an epr-relation r with set of tuples $t_{1} @ f_{1} \ldots t_{n} @ f_{n}$ and event constraints $c_{1}, c_{2} \ldots c_{n}$ we can define EVFs as defined in Section 3.3.1 for a relation $r_{i} \subseteq\left\{t_{1} \ldots t_{n}\right\}$ that is in the possible world of r as follows,

$$
\varphi_{\mathrm{i}}=\Lambda_{\mathrm{tkeri}} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{tkE}(\mathrm{~T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k}}
$$

Observation 2: For an epr-relation r and a relation $r_{i} \subseteq\left\{t_{1} \ldots t_{n}\right\}$ that is not in the possible world of r , the EVF $\varphi_{\mathrm{i}}=\Lambda_{\text {tkeri }} \mathrm{f}_{\mathrm{k}} \Lambda_{\text {tke(T(r)-ri) }} \neg \mathrm{f}_{\mathrm{k}} \wedge\left(\mathrm{c}_{1} \wedge \mathrm{c}_{2} \wedge \ldots \mathrm{c}_{\mathrm{n}}\right)$ is false, where $\mathrm{c}_{1}, \mathrm{c}_{2} \ldots \mathrm{c}_{\mathrm{n}}$ are event constraints of r . Thus φ_{i} is true for valid truth assignments to event variables in V that yield the possible world r_{i} and false for all other valid truth assignments. Hence the event constraints needs to be satisfied to construct a valid EVF.

Observation 3: For an epr-relation r and $r_{i} \subseteq T(r)$ with the EVF φ_{i}, we observe that:

- $\mathrm{r}_{\mathrm{i}} \in \mathrm{PW}(\mathrm{r})$, if at least one valid truth assignment exists that makes φ_{i} true.
- If all valid truth assignments make φ_{i} false, then $\mathrm{r}_{\mathrm{i}} \notin \mathrm{PW}(\mathrm{r})$.

Corollary 2: For an epr-relation $r, r_{i} \in \operatorname{PW}(r)$ iff $\varphi_{i} \wedge C$ is satisfiable, where $C=c_{1} \wedge c_{2} \wedge \ldots c_{n}$ is the conjunction of all event constraints of r .

Theorem 1: Given two pr-relations r and s on the schema $R U\{E\}$, let q be the epr-relation that represents the integration of r and si.e $q=r \tilde{U}$ s. Let $r_{i} \in P W(r)$ and $s_{j} \in P W(s)$ with $E V F s \varphi_{i}$ and ψ_{j}, respectively. Let $\xi=\varphi_{\mathrm{i}} \wedge \psi_{\mathrm{j}}$, and μ be a truth assignment to variables in V and W . Then, if r_{i} and s_{j} are compatible, and if ξ is true under μ, then μ is a valid truth assignment. That is, all event
constraints of q are satisfied under μ. This means $\xi \rightarrow \mathrm{C}$, where C is the conjunction of event constraints of q .

Proof: Assume, without loss of generality, that r and s have p common regular tuples $t_{k}=u_{k}, k=1$ \ldots p. Alternatively, $\mathrm{T}(\mathrm{r}) \cap \mathrm{T}(\mathrm{s})=\left\{\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{p}}\right\}=\left\{\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{p}}\right\}$. Then $\mathrm{q}=\mathrm{r} \tilde{\mathrm{U}} \mathrm{s}$ has p event constraints $f_{k} \equiv g_{k}, k=1 \ldots$. Since r_{i} and s_{j} are compatible, then by Lemma in [2], there is no regular tuple $t_{k} \in T(r) \cap T(s)$ such that $t_{k} \in r_{i}$ and $t_{k} \notin s_{j}$ or vice versa. Further, since ξ is true, then φ_{i} and ψ_{j}, are true. It follows that for all $\mathrm{t}_{\mathrm{k}} \in \mathrm{T}(\mathrm{r}) \cap \mathrm{T}(\mathrm{s})$, either:
(1) $t_{k} \in r_{i}$ and $t_{k} \in s_{j}$ and both f_{k} and g_{k} are true under truth assignment μ, or
(2) $\mathrm{t}_{\mathrm{k}} \notin \mathrm{r}_{\mathrm{i}}$ and $\mathrm{t}_{\mathrm{k}} \notin \mathrm{s}_{\mathrm{j}}$ and f_{k} and g_{k} are both false under truth assignment μ.

Hence, the event constraints $f_{k} \equiv g_{k}, k=1 \ldots p$ are satisfied under μ.

Theorem 2: Let $\mathrm{r}, \mathrm{s}, \mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}, \varphi_{\mathrm{i}}, \psi_{\mathrm{j}}, \xi$, and μ be as defined in Theorem 1. Then ξ is the EVF associated with possible world $q_{i j}=r_{i} \tilde{U} s_{j}$ of epr-relation $q=r \tilde{U} s$.

Proof: Let $\mathrm{r}=\left\{\mathrm{t}_{1} @ \mathrm{f}_{1} \ldots \mathrm{t}_{\mathrm{n}} @ \mathrm{f}_{\mathrm{n}}\right\}$ and $\mathrm{s}=\left\{\mathrm{u}_{1} @ \mathrm{~g}_{1} \ldots \mathrm{u}_{\mathrm{m}} @ \mathrm{~g}_{\mathrm{m}}\right\}$, with p common (regular) tuples, t_{k} $=u_{k}, k=1 \ldots p$. Then, one possible set of tuples for $q=r \tilde{U} s$ is,

$$
\mathrm{q}=\left\{\mathrm{t}_{1} @ \mathrm{f}_{1} \ldots \mathrm{t}_{\mathrm{n}} @ \mathrm{f}_{\mathrm{n}}\right\} \mathrm{U}\left\{\mathrm{u}_{\mathrm{p}+1} @ \mathrm{~g}_{\mathrm{p}+1} \ldots \mathrm{u}_{\mathrm{m}} @ \mathrm{~g}_{\mathrm{m}}\right\}
$$

Consider the truth assignment μ to event variables V U W. By Theorem 1, if ξ is true under μ, then μ is legal. Further, if ξ is true under μ, then so are φ_{i} and ψ_{j}. Hence, f_{k} is true for all tuples $t_{k} \epsilon$ r_{i}, and it is false for all tuples $t_{k} \in\left(T(r)-r_{i}\right)$. Similarly, g_{k} is true for all tuples $u_{k} \in s_{j}$, and it is false for all tuples $u_{k} \epsilon\left(T(s)-s_{j}\right)$. Consider a tuple $v @ h \in q=r \tilde{U} s .\left(v @ h\right.$ is either a $t_{k} @ f_{k}$ or a $\left.u_{k} @ g_{k}\right)$. In this case h is true under μ iff $v \in r_{i} U s_{j}$. It follows that ξ is true for all valid truth assignments that yield the possible world q_{i}, and, hence, ξ is the EVF for q_{ij}.

3.4 Computing the Probabilities from the EVF

Once the EVFs of the possible worlds in integration are obtained, we can compute their corresponding probabilities using the probabilities of the event variables in the EVF. The event variables are assumed independent, except those related through event constraints.

- If the event variables are independent, the probability of the integrated possible world is simply the product of the probabilities of the individual event variables in the EVF. For example the probability associated with EVF $(\mathrm{b} \wedge \neg \mathrm{c})$ is $\mathrm{P}(\mathrm{b} \wedge \neg \mathrm{c})=\mathrm{P}(\mathrm{b}) *(1-\mathrm{P}(\mathrm{c}))$.
- On the other hand, if the event variables are not independent, conditional probability is used to determine the resulting probability. For example, an event constraint of the form $\mathrm{a} \equiv \mathrm{d}$ enforces $\mathrm{P}(\mathrm{a})=\mathrm{P}(\mathrm{d})$. The probability associated with $\operatorname{EVF}(\mathrm{a} \wedge \mathrm{d})$ is $\mathrm{P}(\mathrm{a} \wedge \mathrm{d})=\mathrm{P}(\mathrm{a} \mid \mathrm{d})$ * $P(d)$. In this case, $P(a \mid d)=P(d \mid a)=1$ and hence $P(a \wedge d)=P(a)=P(d)$.

3.5 Example for Determining the Probabilities

We present an example to demonstrate the calculation of the probabilities using the two methods explained in Section 3.1.1 and 3.1.2. Consider two sources represented compactly using the pr-relations along with the probabilities of the event variables as shown in Table 15. Consider the integrated epr-relation shown in Table 16. Let the set of all given tuples in the database be as shown in Table 8.

3.5.1 EVF using the pr-relation

We build the EVF of the possible worlds in the integration using the method described in Section 3.1.1.

We first obtain the Possible Worlds in S1 using the truth value of x . This gives $\mathrm{r}_{1}=\{\phi\}$, $r_{2}=\left\{t_{1}\right\}$. The EVF corresponding to the possible worlds of $S 1$ are $\neg \mathrm{x}$ and x respectively. The

Possible Worlds in S 2 are $\mathrm{s}_{1}=\{\phi\}, \mathrm{s}_{2}=\left\{\mathrm{t}_{3}\right\}, \mathrm{s}_{3}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$, and $\mathrm{s}_{4}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\right\}$. The EVF corresponding to the possible worlds of S 2 are $\neg \mathrm{y} \wedge \neg \mathrm{z}, \neg \mathrm{y} \wedge \mathrm{z}, \mathrm{y} \wedge \neg \mathrm{z}$, and $\mathrm{y} \wedge \mathrm{z}$, respectively.

The compatible pairs of possible worlds from r and s are $\left(r_{1}, s_{1}\right),\left(r_{1}, s_{2}\right),\left(r_{2}, s_{3}\right)$, and $\left(r_{2}, s_{4}\right)$. The EVFs for these possible worlds in the integration are $\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}, \neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}, \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z}$, and $\mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z}$, respectively.

Table 15. pr-relations for Sources S1 and S2

Table 16. epr relation for the Result of Integration

Tuples	Event Attribute
t_{1}	x
t_{2}	y
t_{3}	z
	$\mathbf{x} \equiv \mathbf{y}$

3.5.2 EVF using the epr-relation

We build the EVF of the possible worlds in the integration using the method described in Section 3.1.2.

We first obtain the Possible Worlds of the integrated epr-relation using the truth values of x , y, z that eliminate invalid cases based on the event constraints. This gives $\{\phi\},\left\{\mathrm{t}_{3}\right\},\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$, and $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\right\}$. In the next step, the EVF corresponding to these possible worlds are obtained. These are $\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z}, \neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z}, \mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z}$, and $\mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z}$, respectively.

3.5.3 Calculating the Probabilities from the EVF

The probabilities are calculated using the method described in Section 3.4. In this case, event variables x and y are dependent. The possible worlds in integration and the corresponding EVFs obtained in both 3.5.1 and 0 for this example have matched exactly.
$\mathrm{P}(\phi)=\mathrm{P}(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \neg \mathrm{z})=\mathrm{P}(\neg \mathrm{x} \mid \neg \mathrm{y}) * \mathrm{P}(\neg \mathrm{y}) * \mathrm{P}(\neg \mathrm{z})=\mathrm{P}(\neg \mathrm{y}) * \mathrm{P}(\neg \mathrm{z})=0.16$
$\mathrm{P}\left(\mathrm{t}_{3}\right)=\mathrm{P}(\neg \mathrm{x} \wedge \neg \mathrm{y} \wedge \mathrm{z})=\mathrm{P}(\neg \mathrm{x} \mid \neg \mathrm{y}) * \mathrm{P}(\neg \mathrm{y}) * \mathrm{P}(\mathrm{z})=\mathrm{P}(\neg \mathrm{y}) * \mathrm{P}(\mathrm{z})=0.04$
$\mathrm{P}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\mathrm{P}(\mathrm{x} \wedge \mathrm{y} \wedge \neg \mathrm{z})=\mathrm{P}(\mathrm{x} \mid \mathrm{y}) * \mathrm{P}(\mathrm{y}) * \mathrm{P}(\neg \mathrm{z})=\mathrm{P}(\mathrm{y}) * \mathrm{P}(\neg \mathrm{z})=0.64$
$\mathrm{P}\left(\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)=\mathrm{P}(\mathrm{x} \wedge \mathrm{y} \wedge \mathrm{z})=\mathrm{P}(\mathrm{x} \mid \mathrm{y}) * \mathrm{P}(\mathrm{y}) * \mathrm{P}(\mathrm{z})=\mathrm{P}(\mathrm{y}) * \mathrm{P}(\mathrm{z})=0.16$

Thus, we get matching probabilities from both methods in this case. Using the two methods we introduced, we have obtained the probabilities of the possible worlds in integration. Since the possible world $\left\{t_{1}, t_{2}\right\}$ has the highest probability upon integration, the possible world (Bill registered for CS101 and CS103) is the most likely solution of integration.

CHAPTER IV

FORMAL RESULTS

We have now constructed the EVF for the possible worlds in the integration starting from both pr- and epr-relations. We have also presented how we can compute the probabilities using the EVF. In this chapter, we verify that the EVF generated by using both the methods are equivalent and the resulting probabilities are also equal.

4.1 Results

Our verification methodology involves comparing the EVFs generated by the pr-relations and the epr-relations.

Firstly, we start with an integrated epr-relation and decompose it into its corresponding prrelations. However, the process of decomposition may not necessarily always lead to a unique pair of pr-relations. Hence, we compute the EVF for each such pair and check if these formulae match exactly. If yes, we also compare it against the EVF generated by the epr-relation. Matching formulae will always ensure matching probabilities as well.

Since we have restricted ourselves to integrating data from only two sources in this work, an integrated epr-relation may not be obtainable by the integration of two pr-relations. Hence, we use the sufficient conditions to check beforehand if it can even be broken down into exactly two pr-relations. Section 4.2 presents these conditions in detail.

Secondly, we start with two pr-relations and obtain the integrated epr-relation. We simply ensure that the event variables in both the EVFs are equivalent along with the same truth values. The probabilities generated by both the EVFs should therefore also match exactly.

4.2 Sufficient Conditions for an epr-relation to be Integrated

Given an epr-relation q , we say q is integrated if a pair of non-empty pr-relations r and s exists such that $\mathrm{q}=\mathrm{r} \tilde{\mathrm{U}}$ s. The integration algorithm in [2] is non-deterministic and can produce 2^{p} different epr-relations, where p refers to the number of common tuples.

Theorem 3: An epr-relation q is integrated if a partition (V, W) of event variables of q exists such that,

1) For each tuple $t @ f \in q$, all event variables appearing in f are in V or all are in W.
2) For each event constraint $f \equiv g$ of q, all event variables appearing in f are in V and all event variables appearing in g are in W , or vice versa.
3) For each event constraint $f \equiv g$ of q, there is a unique (regular) tuple t such that $\mathrm{t} @ \mathrm{f} \in \mathrm{q}$ or t @g $\in \mathrm{q}$.

Proof: We show that if conditions of Theorem 3 hold, then the Decomposition Algorithm described in Section 4.2.1 can be used to produce pr-relations r and s such that $q \equiv r$ Ũ s. We assume that Step 3(a) and Step 3(b) of this algorithm partition the tuples of q onto pr-relations r and s. By condition (1) of Theorem 3, this partition will be well-defined. Then, Step 3(c) of the algorithm adds more tuples to r and/or s to complete the construction. Thus, q is now decomposed into pr-relations r and s .

Next, we show that given an epr-relation q , pr-relations r and s produced by the Decomposition Algorithm should satisfy r Ũ $\mathrm{s} \equiv \mathrm{q}$. Assume $\mathrm{r} \tilde{\mathrm{U}} \mathrm{s}=\mathrm{q}$ '. We first verify that q ' has the same set of event constraints as q. For each constraint $f \equiv g$ in q, by Conditions (2) and (3) of Theorem 3, there is a unique tuple $\mathrm{t} @ \mathrm{f}$ or $\mathrm{t} @ \mathrm{~g}$ in q , and, by Step 3(b) of the Decomposition Algorithm, in r or s. Without loss of generality, assume $\mathrm{t} @ \mathrm{f} \in \mathrm{r}$. Step 3(c) of the Decomposition Algorithm adds $\mathrm{t} @ \mathrm{~g}$ to s . Then the integration algorithm in the work of [2] generates $\mathrm{f} \equiv \mathrm{s}$ for $\mathrm{q}^{\prime}=$ r Ũ s.

Finally, we show that q ' has the same (or equivalent) set of tuples as q. By the Decomposition Algorithm, for all $\mathrm{t} @ \mathrm{f} \epsilon \mathrm{q}$, either $\mathrm{t} @ \mathrm{f} \epsilon \mathrm{r}$ or $\mathrm{t} @ \mathrm{f} \in \mathrm{s}$. Then, by the integration algorithm of [2], either $\mathrm{t} @ \mathrm{f} \in \mathrm{q}$ ' or $\mathrm{t} @ \mathrm{~g} \in \mathrm{q}^{\prime}$ for some g such that $\mathrm{f} \equiv \mathrm{g}$. It, thus, follows that set of tuples of q^{\prime} and q are equivalent.

4.2.1 The Decomposition Algorithm

Given an epr-relation q , this algorithm determines whether q satisfies the sufficient conditions of Theorem 3, and if it does, generates partitions (V,W) of event variables of q and obtains all pairs of two pr-relations (r, s). We introduce the idea of an Extra-Set which is the set of Event Attributes in q that are not specifically associated with partition V or W . The number of different pairs of pr-relations depends on the size of Extra-Set. Specifically, it will be $2^{\text {Extra-Set| }}$. The algorithm works in three steps.

In the first step, it checks if conditions 2 and 3 of Theorem 3 are satisfied and identifies the event variables in event constraints that should appear separately (in V and W). In the second step, it checks if condition 1 of Theorem 3 is satisfied and identifies event variables in Event Attributes that should appear separately (in V and W). Finally, in the third step it obtains all pairs of two pr-relations (r, s) based on the partition (V, W) generated in the first 2 steps.

Algorithm:

Input: epr-relation q with tuples $\left\{\mathrm{v}_{1} @ \mathrm{~h}_{1} \ldots \mathrm{v}_{1} @ \mathrm{~h}_{1}\right\}$ and constraints $\mathrm{f}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i}}, \mathrm{i}=1 \ldots \mathrm{p}$. Let ev(q) be the set of event variables appearing in q (in h_{i} 's, f_{i} 's, g_{i} 's).

Initialization: Initialize the partition sets V and W to Null. Initialize the set Extra-Set to Null. Step 1: In this step, the event constraints occurring on either sides of \equiv symbol needs to be partitioned into V and W .

The first part of the if condition checks if condition 2 of Theorem 3 is satisfied, by verifying if all event variables in f are in V (or W) and all event variables in g are in W (or V) and therefore not in both. The second part of the if condition checks condition 3 of Theorem 3.

The else part adds the event variables in the constraints to V or W in the following way. It checks if a subset of f or g is already present in V or W , in which case it adds the remaining event variables in that Event Attribute to the same partition. Otherwise, all event variables in f are added to V and all event variables in g are added to W . The pseudo code for Step 1 is, For each event constraint $\mathrm{f} \equiv \mathrm{g}$ of q :
$\operatorname{If}((\mathrm{f} \subseteq \mathrm{V}($ or W$)$ and $\mathrm{g} \subseteq \mathrm{V}($ or W$))$ or $!(\exists$ unique tuple t such that $\mathrm{t} @ \mathrm{f} \epsilon \mathrm{q}$ or $\mathrm{t} @ \mathrm{f} \in \mathrm{q}))$ Exit()

Else
If $\mathrm{f} \subseteq \mathrm{V}($ or W$)$, add $\mathrm{f}-\mathrm{V}($ or $\mathrm{f}-\mathrm{W})$ to V (or W$)$ and g to W (or V)
Else if $\mathrm{g} \subseteq \mathrm{V}$ (or W), add $\mathrm{g}-\mathrm{V}$ (or $\mathrm{g}-\mathrm{W}$) to V (or W) and f to W (or V)
Else add f to V (or W) and g to W (or V)
End
Step 2: In the second step, the remaining event variables in the Event Attributes are partitioned based on existing event variables in V and W .

The if condition checks if a subset of event variables in that Event Attribute is in V and also in W, in which case the partition is not possible.

The else part adds the event variables in the Event Attribute in the following way. It checks if a subset of the Event Attribute is already present in V or W , in which case it adds the remaining event variables to the same partition V or W . Otherwise, it adds the Event Attribute to the ExtraSet. The pseudo code for Step 2 is, For each ev (q):
$\operatorname{If}(\mathrm{ev}(\mathrm{q}) \subseteq \mathrm{V}$ and $\mathrm{ev}(\mathrm{q}) \subseteq \mathrm{W})$

> Exit()

Else
If $\mathrm{ev}(\mathrm{q}) \subseteq \mathrm{V}$, add $(\mathrm{ev}(\mathrm{q})-\mathrm{V})$ to V
Else If ev $(\mathrm{q}) \subseteq \mathrm{W}$, add $(\mathrm{ev}(\mathrm{q})-\mathrm{W})$ to W
Else add (ev (q) - Extra-Set) to Extra-Set
End
Step 3: In the third step, all pairs of two pr-relations (r,s) is generated in the following way.
Let ev (f) represent the set of event variables of Event Attribute f.
a) Partition tuples of q as follows: Let $\mathrm{r}=\{\mathrm{t} @ \mathrm{f} \in \mathrm{q} \mid \mathrm{ev}(\mathrm{f}) \subseteq \mathrm{V}\}$ and $\mathrm{s}=\{\mathrm{t} @ \mathrm{f} \in \mathrm{q} \mid \mathrm{ev}(\mathrm{f}) \subseteq$ W\}.
b) Add each element of the Extra-Set to r or s in $2^{\text {|Extra-Set } \mid}$ ways.
c) For each constraint $f \equiv g$ of q, if $t @ f \in r$ (or $t @ f \in s)$, then add $t @ g$ to (or tor $)$, or if $t @ g$ $\epsilon \mathrm{r}($ or $\mathrm{t} @ \mathrm{~g} \epsilon \mathrm{~s}$), then add $\mathrm{t} @ \mathrm{f}$ to s (or to r).

4.2.2 Examples

To demonstrate the Decomposition Algorithm, we consider the following example. Let the set of all given tuples in the database be as shown in Table 8.

Firstly, the initialization $\mathrm{V}=\phi, \mathrm{W}=\phi$, Extra-Set $=\phi$ is done.
Step 1: Here, Condition 3 is satisfied since $t_{1}=x$. x is added to V and y is added to W. At the end of Step $1, \mathrm{~V}=\{\mathrm{x}\}$ and $\mathrm{W}=\{\mathrm{y}\}$. The partition satisfies Condition 2.

Step 2: In this step, z is added to V and w is added to W . $\{\mathrm{vk}\}$ is added to Extra-Set. At the end of Step 2, $V=\{x, z\} W=\{y, w\}$ Extra-Set $=\{\{\mathrm{vk}\}\}$

Step 3: The decomposition of q results in two pairs of (r, s) as shown in Table 18 and Table 19.

Table 17. epr-relation

Tuples	Event Attribute (E)	
t_{1}	x	
t_{2}	$\neg \mathrm{x}$	
t_{3}	$\neg \mathrm{y}$	
t_{4}	xz	
t_{5}	wy	
t_{6}	vk	
	$\mathbf{x} \equiv \mathbf{y}$	

Table 18. pr-relation r, s for Sources S1 and S2 (Pair \#1)

Table 19. pr-relation r, s for Sources S1 and S2 (Pair \#2)

Tuples	Event Attribute (E)
t_{1}	x
t_{2}	$\neg \mathrm{x}$
t_{4}	xz

Tuples	Event Attribute (E)
t_{1}	y
t_{3}	$\neg \mathrm{y}$
t_{5}	wy
t_{6}	vk

Consider yet another example in Table 20 for which Decomposition is not possible. Decomposition may not be possible if the event variables in the Event Attributes cannot be partitioned into (V,W).

Table 20. epr-relation

Tuples	Event Attribute (E)
t_{1}	xy
t_{2}	x
t_{3}	y
$\mathbf{x \equiv y}$	

Firstly the initialization, $\mathrm{V}=\phi, \mathrm{W}=\phi$, Extra-Set $=\phi$ is done.
Step 1: Here, Condition 3 is satisfied since $t_{2}=x$. At the end of Step $1, V=\{x\}, W=\{y\}$. The partition satisfies Condition 2.

Step 2: In this step, partition of Event Attributes is not possible. This is because, the first Event attribute $\{\mathrm{xy}\}$ implies that event variables x and y should be in the same partition, but x and y have been already separated into different partitions in Step 1. Thus there is a contradiction and hence decomposition is not possible.

4.3 Theorem 4

Given an extended probabilistic relation (epr-relation) q which is obtainable by integrating two pr-relations, let S be the set of all pairs (r, s) of two probabilistic relations (pr-relation) whose integration results in q . We prove that all pairs (r, s) in S give exactly the same EVF for the integrated possible worlds.

Proof: Without loss of generality, assume $\mathrm{r}=\left\{\mathrm{t}_{1} @ \mathrm{f}_{1} \ldots \mathrm{t}_{\mathrm{n}} @ \mathrm{f}_{\mathrm{n}}\right\}$ and $\mathrm{s}=\left\{\mathrm{u}_{1} @ \mathrm{~g}_{1}, \ldots, \mathrm{u}_{\mathrm{m}} @ \mathrm{~g}_{\mathrm{m}}\right\}$ be an (r, s) pair obtained by Decomposition Algorithm for an epr-relation q . Also assume, without loss of generality that $\mathrm{t}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i}}$ for $\mathrm{i}=1 \ldots$. Note that $\mathrm{T}(\mathrm{q})=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\} \mathrm{U}\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}$.

Let $a_{k}=\left\{a_{1}, a_{2} \ldots a_{e} \ldots a_{1}\right\}$ be a possible world obtained by integrating the possible worlds of two pr-relations. As a special case, a_{k} can be the empty relation $\left(a_{k}=\phi\right)$ when $1=0$. Let $\left\{a_{e}\right\}$ be a member of the Extra Set that can freely move to any source. The tuples in this possible world is a subset of the tuples in $\mathrm{q}, \mathrm{a}_{\mathrm{k}} \subseteq \mathrm{T}(\mathrm{q})$.

There can be several pairs (r, s) that can lead to the integrated possible world $\left\{\mathrm{a}_{1}, \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{e}} \ldots \mathrm{a}_{\mathrm{k}}\right\}$. Let us consider 2 possibilities here,

$$
\begin{array}{ll}
\text { - } & \mathrm{r}_{\mathrm{i}}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{e}} \ldots \mathrm{a}_{\mathrm{t}}\right\} \in \operatorname{PW}(\mathrm{r}) \text { and } \mathrm{s}_{\mathrm{j}}=\left\{\mathrm{a}_{\mathrm{t}+1} \ldots \mathrm{a}_{\mathrm{z}}\right\} \in \operatorname{PW}(\mathrm{s}) \text {, or } \\
\text { - } & \mathrm{r}_{\mathrm{i}}^{\prime}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{t}}\right\} \in \operatorname{PW}\left(\mathrm{r}^{\prime}\right) \text { and } \mathrm{s}_{\mathrm{j}}^{\prime}=\left\{\mathrm{a}_{\mathrm{t}+1} \ldots \mathrm{a}_{\mathrm{e}} \ldots \mathrm{a}_{z}\right\} \in \operatorname{PW}\left(\mathrm{s}^{\prime}\right)
\end{array}
$$

The EVF for r_{i} and s_{j} and their integration is,

$$
\begin{aligned}
& \varphi_{\mathrm{i}}=\Lambda_{\mathrm{ak} \mathrm{\epsilon ri}} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon}(\mathrm{~T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k}} \quad \text { and } \quad \psi_{\mathrm{j}}=\Lambda_{\mathrm{ak} \mathrm{\epsilon sj}} \mathrm{~g}_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon}(\mathrm{~T}(\mathrm{~s})-\mathrm{sj})} \neg \mathrm{g}_{\mathrm{k}} \\
& \xi=\varphi_{\mathrm{i}} \Lambda \psi_{\mathrm{j}}=\Lambda_{\mathrm{ak} \mathrm{\epsilon ri}} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon}(\mathrm{~T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon Sj}} \mathrm{~g}_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon}(\mathrm{~T}(\mathrm{~s})-\mathrm{sj})} \neg \mathrm{g}_{\mathrm{k}}
\end{aligned}
$$

Similarly, the EVF for $\mathrm{r}^{\prime}{ }_{\mathrm{i}}$ and $\mathrm{s}^{\prime}{ }_{\mathrm{j}}$ and their integration is,

$$
\begin{aligned}
& \varphi_{\mathrm{i}}^{\prime}=\Lambda_{\mathrm{ak} \in \mathrm{r}^{\prime} \mathrm{i}} \mathrm{f}^{\prime}{ }_{\mathrm{k}} \Lambda_{\mathrm{ak} \in\left(\mathrm{~T}\left(\mathrm{r}^{\prime}\right)-\mathrm{r}^{\prime} \mathrm{i}\right)}{\neg \mathrm{f}^{\prime}{ }_{\mathrm{k}}, \quad \text { and }, ~} \\
& \psi^{\prime}{ }_{\mathrm{j}}=\Lambda_{\mathrm{ak} \mathrm{\epsilon s}{ }^{\prime} \mathrm{j}} \mathrm{~g}^{\prime}{ }_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon}\left(\mathrm{~T}\left(\mathrm{~s}^{\prime}\right)-\mathrm{s}^{\prime} \mathrm{j}\right)} \neg \mathrm{g}^{\prime}{ }_{\mathrm{k}} \\
& \xi^{\prime}=\varphi^{\prime}{ }_{\mathrm{i}} \wedge \psi^{\prime}{ }_{\mathrm{j}}=\Lambda_{\mathrm{ak} \in \mathrm{ri}_{\mathrm{i}}} \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon}(\mathrm{~T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k}} \Lambda_{\mathrm{ak} \in \mathrm{Sj}} \mathrm{~g}^{\prime}{ }_{\mathrm{k}} \Lambda_{\mathrm{ak} \mathrm{\epsilon}(\mathrm{~T}(\mathrm{~s})-\mathrm{sj})} \neg \mathrm{g}^{\prime}{ }_{\mathrm{k}}
\end{aligned}
$$

The Decomposition Algorithm gives the partition of the event variables with two pieces of information. Firstly, the event variables that should be in fixed sources and secondly, the ExtraSet of event variables that can be in any source. That is if $\mathrm{a}_{\mathrm{k}} \in$ Extra Set,
$\mathrm{a}_{\mathrm{k}} \in \mathrm{r} \rightarrow$ Possibility \#1
$\mathrm{a}_{\mathrm{k}} \in \mathrm{s} \rightarrow$ Possibility \#2
else,
$\mathrm{a}_{\mathrm{k}} \epsilon \mathrm{r}$ or $\mathrm{a}_{\mathrm{k}} \epsilon \mathrm{S}$ (fixed for every possibility)
Consider the component, $\Lambda_{a k \in r i} f_{k} \Lambda_{a k \in S j} g_{k}$ in r_{i} and s_{j}, and compare it with the component $\Lambda_{a k \in r}{ }^{\prime}{ }_{i} f^{\prime}{ }_{k} \Lambda_{a k \in s}{ }^{\prime}{ }_{j} g^{\prime}{ }_{k}$ in $r^{\prime}{ }_{i}$ and $s^{\prime}{ }_{j}$. For $a_{k}=a_{e}$ if $a_{e} \in r_{i}, f_{k}=f_{e}$ or if $a_{e} \in s^{\prime}{ }_{j}, g^{\prime}{ }_{k}=g_{e}$. For all the
other tuples where $a_{k} \neq a_{e}$, the EVFs will be the same. It follows that the two components have exactly the same terms for $a_{e} \epsilon r$ and for $a_{e} \epsilon s^{\prime}$. A similar argument shows that the second components of the expressions (with $\neg \mathrm{f}_{\mathrm{k}}$ and $\neg \mathrm{g}_{\mathrm{k}}$) are also equal.

In the same way, the elements of the Extra Set can be moved one by one from one source to the other giving rise to different possibilities. However, this will not change the EVF for the integrated possible worlds. The EVF remains the same for every possible world including an invalid one. For this case, all possibilities result in a false value. Let us consider an example that demonstrates the results of this Theorem as shown below.

4.3.1 Example

Consider the epr-relation q of Table 21. Let the set of all given tuples in the database be as shown in Table 8.

Table 21. epr-relation q

Tuples	Event Attribute
t_{1}	a
t_{2}	b
t_{3}	$\neg \mathrm{c}$
$\mathbf{a} \equiv \mathbf{c}$	

The possible worlds of q are $\left\{\mathrm{t}_{1}\right\},\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\},\left\{\mathrm{t}_{3}\right\}$, and $\left\{\mathrm{t}_{2}, \mathrm{t}_{3}\right\}$ with EVF $\mathrm{a} \wedge \neg \mathrm{b} \wedge \mathrm{c}, \mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}, \neg \mathrm{a} \wedge \neg \mathrm{b} \wedge \neg \mathrm{c}$, and $\neg \mathrm{a} \wedge \mathrm{b} \wedge \neg \mathrm{c}$, respectively. Applying the Decomposition Algorithm on q will produce the two prrelations shown in Table 22 and Table 23.

Table 22. pr-relations r and s

S 1	
Tuples	Event Attribute
t_{1}	a
t_{2}	b

S2

Tuples	Event Attribute
t_{1}	c
t_{3}	$\neg \mathrm{c}$

Possible worlds of r are $\mathrm{r}_{1}=\phi, \mathrm{r}_{2}=\left\{\mathrm{t}_{1}\right\}, \mathrm{r}_{3}=\left\{\mathrm{t}_{2}\right\}$, and $\mathrm{r}_{4}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$ with $\mathrm{EVF} \neg \mathrm{a} \wedge \neg \mathrm{b}, \mathrm{a} \wedge \neg \mathrm{b}, \neg \mathrm{a} \wedge \mathrm{b}$, and $\mathrm{a} \wedge \mathrm{b}$, respectively. Possible worlds of s are $\mathrm{s}_{1}=\left\{\mathrm{t}_{1}\right\}$, and $\mathrm{s}_{2}=\left\{\mathrm{t}_{3}\right\}$, with EVF c and $\neg \mathrm{c}$, respectively. The compatible pairs of possible worlds from r and s are $\left(r_{2}, s_{1}\right),\left(r_{4}, s_{1}\right),\left(r_{1}, s_{2}\right)$, and $\left(\mathrm{r}_{3}, \mathrm{~s}_{2}\right)$. The EVFs for these possible worlds in the integration are $\mathrm{a} \wedge \neg \mathrm{b} \wedge \mathrm{c}, \mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}, \neg \mathrm{a} \wedge \neg \mathrm{b} \wedge \neg \mathrm{c}$, and $\neg \mathrm{a} \wedge \mathrm{b} \wedge \neg \mathrm{c}$, respectively. Next, consider the pr-relations in the following Table.

Table 23. pr-relations r' and s'

S1

Tuples	Event Attribute
t_{1}	a

S2

Tuples	Event Attribute
t_{1}	c
t_{2}	b
t_{3}	$\neg \mathrm{c}$

Possible worlds of r^{\prime} are $\mathrm{r}_{1}{ }^{\prime}=\{\phi\}$, and $\mathrm{r}_{2}{ }^{\prime}=\left\{\mathrm{t}_{1}\right\}$ with EVF $\neg \mathrm{a}$, a, respectively. Possible worlds of s^{\prime} are $\mathrm{s}_{1}{ }^{\prime}=\left\{\mathrm{t}_{1}\right\}, \mathrm{s}_{2}{ }^{\prime}=\left\{\mathrm{t}_{3}\right\}, \mathrm{s}_{3}{ }^{\prime}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$, and $\mathrm{s}_{4}{ }^{\prime}=\left\{\mathrm{t}_{2}, \mathrm{t}_{3}\right\}$, with EVF $\neg \mathrm{b} \wedge \mathrm{c}, \neg \mathrm{b} \wedge \neg \mathrm{c}, \mathrm{b} \wedge \mathrm{c}$ and $\mathrm{b} \wedge \neg \mathrm{c}$, respectively. The compatible pairs of possible worlds from r^{\prime} and s^{\prime} are $\left(\mathrm{r}_{2}{ }^{\prime}, \mathrm{s}_{1}{ }^{\prime}\right),\left(\mathrm{r}_{2}{ }^{\prime}, \mathrm{s}_{3}{ }^{\prime}\right),\left(\mathrm{r}_{1}{ }^{\prime}\right.$, $\left.s_{2}{ }^{\prime}\right)$, and ($\left.r_{1}{ }^{\prime}, s_{4}{ }^{\prime}\right)$. The EVFs for these possible worlds in the integration are $\mathrm{a} \wedge \neg \mathrm{b} \wedge \mathrm{c}, \mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}$, $\neg \mathrm{a} \wedge \neg \mathrm{b} \wedge \neg \mathrm{c}$, and $\neg \mathrm{a} \wedge \mathrm{b} \wedge \neg \mathrm{c}$, respectively.

Thus the integration of pairs of compatible possible worlds in different possibilities yields exactly the same possible worlds with the same EVF.

4.4 Theorem 5

Consider an integrated epr-relation q that satisfies the conditions of Theorem 3. Consider a possible world q_{k} of q . There are different ways of obtaining EVF of q_{k} : One possibility is to obtain it directly from q. Another possibility is to use the Decomposition Algorithm to obtain two sources r and s whose integration yield q , there may be multiple pairs of sources with this
property. Then obtain the EVF for q_{k} by conjuncting the EVF of possible worlds r_{i} and s_{j} of the two sources whose integration yield q_{k}. We show that the EVF obtained in different ways are equivalent, with respect to the event constraints of q.

Proof: Without loss of generality, assume $r=\left\{t_{1} @ f_{1} \ldots t_{n} @ f_{n}\right\}$ and $s=\left\{u_{1} @ g_{1} \ldots u_{m} @ g_{m}\right\}$ be an (r, s) pair obtained by Decomposition Algorithm for an epr-relation q . Also assume, without loss of generality that $t_{i}=u_{i}$ for $i=1 \ldots$ p. Here $T(q)=\left\{t_{1} \ldots t_{n}\right\} U\left\{s_{1} \ldots s_{m}\right\}$. Assume $q_{k}=\left\{v_{1} \ldots\right.$ $\left.\mathrm{v}_{\mathrm{i}}\right\}$. As a special case, q_{k} can be empty $\left(\mathrm{q}_{\mathrm{k}}=\phi\right)$ when $\mathrm{l}=0$. The EVF for q_{k} obtained from q is ξ_{k} $=\Lambda_{\mathrm{Vieq}} \mathrm{h}_{\mathrm{i}} \Lambda_{\operatorname{vie}(\mathrm{T}(\mathrm{q})-\mathrm{qk})} \neg \mathrm{h}_{\mathrm{i}}$ where h_{i} is the event attribute value associated with v_{i} in q . That is, $\mathrm{v}_{\mathrm{i}} @ h_{i} \in \mathrm{q}$. Alternatively, consider $\mathrm{r}_{\mathrm{i}} \in \operatorname{PW}(\mathrm{r})$ and $\mathrm{s}_{\mathrm{j}} \in \mathrm{PW}(\mathrm{s})$ such that $\mathrm{r}_{\mathrm{i}} \tilde{U} \mathrm{~s}_{\mathrm{j}}=\mathrm{q}_{\mathrm{k}}$. The EVF for r_{i} and sj $\operatorname{are} \varphi_{\mathrm{i}}=\Lambda_{\text {tk } \in \mathrm{ri}} \mathrm{f}_{\mathrm{k}} \quad \Lambda_{\text {tk } \in(\mathrm{T}(\mathrm{r})-\mathrm{ri})} \neg \mathrm{f}_{\mathrm{k},}$ and $\psi_{\mathrm{j}}=\Lambda_{\text {Sk€Sj }} \mathrm{g}_{\mathrm{k}} \Lambda_{\text {Sk } \in(\mathrm{T}(\mathrm{s})-\mathrm{sj})} \neg \mathrm{g}_{\mathrm{k}}$

We show that $\varphi_{\mathrm{i}} \wedge \psi_{\mathrm{j}}$ and ξ_{k} are equivalent with respect to event constraints of q . Consider the component, $\Lambda_{\text {tkeri }} f_{k}$ and $\Lambda_{\text {SkESj }} g_{k}$ in $\varphi_{\mathrm{i}} \wedge \psi_{\mathrm{j}}$, and compare it with the component $\Lambda_{\text {Vieqk }} h_{\mathrm{i}}$ in $\xi_{k} . q_{k}=r_{i} U s_{j}$ and $h_{i}=f_{i}$ if $v_{i} \in r_{i}-r_{i} \cap s_{j} ; h_{i}=g_{i}$ if $v_{i} \in s_{j}-r_{i} \cap s_{j} ; h_{i}=f_{i}$ or $h_{i}=g_{i}$ if $v_{i} \in r_{i} \cap s_{j}$. It follows that the two components have exactly the same terms for $v_{i} \in r_{i}-r_{i} \cap s_{j}$ and for $v_{i} \in s_{j}-r_{i}$ $\cap s_{j}$. But for $v_{i} \in r_{i} \cap s_{j}$, the first component has $f_{i} \wedge g_{i}$, while the second component only has h_{i} where $h_{i}=f_{i}$ or $h_{i}=g_{i}$. However, q also has the constraint $f_{i} \equiv g_{i}$ for $v_{i} \in r_{i} \cap s_{j}$. It follows that $f_{i} \wedge$ g_{i} and h_{i} are equivalent for $\mathrm{v}_{\mathrm{i}} \in \mathrm{r}_{\mathrm{i}} \cap \mathrm{s}_{\mathrm{j}}$. Hence, $\Lambda_{\text {tk } \in \mathrm{ri}} \mathrm{f}_{\mathrm{k}} \Lambda_{\text {Sk€Sj }} \mathrm{g}_{\mathrm{k}}$ in $\varphi_{\mathrm{i}} \wedge \psi_{\mathrm{j}}$, and $\Lambda_{\text {Viєqk }} h_{\mathrm{i}}$ in ξ_{k} are equivalent with respect to the event constraints of q . A similar argument shows that the second components of the expressions (with $\neg h_{i}, \neg f_{k}$, and $\neg \mathrm{g}_{\mathrm{k}}$) are also equivalent. Hence, $\varphi_{\mathrm{i}} \wedge \psi_{\mathrm{j}}$ and ξ_{k} are equivalent with respect to event constraints of q .

4.4.1 Example

Consider $\mathrm{q}_{1}=\left\{\mathrm{t}_{1}\right\}$ of the following epr-relation, where the set of all given tuples in the database be as shown in Table 8.

Table 24. epr-relation q

Tuples	Event Attribute
t_{1}	a
t_{2}	b
$\mathbf{a} \equiv \mathbf{c}$	

Applying the Decomposition Algorithm on q will produce the pr-relation (r,s) shown in Table 25. The event variable a is in pr-relation r and the event variables b and c are in pr-relation s.

Table 25. pr-relation r and s

S 2	
Tuples	Event Attribute
t_{1}	c
t_{2}	b

The possible world $r_{1}=\left\{t_{1}\right\}$ of r and possible world $s_{1}=\left\{t_{1}\right\}$ of s combine to obtain the possible world $\left\{\mathrm{t}_{1}\right\}$ in integration with EVF a and $\mathrm{c} \wedge \neg \mathrm{b}$ respectively.

The EVF for their integration is,

$$
\varphi_{\mathrm{i}} \wedge \psi_{\mathrm{j}}=\mathrm{a} \wedge \neg \mathrm{~b} \wedge \mathrm{c} \rightarrow(2)
$$

Equations (1) and (2) are equivalent with respect to the event constraint $\mathrm{a} \equiv \mathrm{c}$.

4.5 Theorem 6

Given an epr-relation q , let S be the set of all pairs (r, s) of two pr-relations whose integration results in q . All pairs (r, s) in S give exactly the same probabilities for the integrated possible worlds.

Proof: We saw in Theorem 4 in Section 4.3 that every pair (r, s) in S gives the same EVF for a possible world in integration. Hence the corresponding probabilities for the integrated possible worlds also match exactly. Consider the following example that demonstrates this.

4.5.1 Example

Consider the epr-relation q of Table 26. The event constraint of q has a variable d that does not appear in the tuples. The possible worlds of q are shown in Figure 2, and correspond to EVF $\neg \mathrm{a} \wedge \neg \mathrm{b} \wedge \neg \mathrm{c}, \neg \mathrm{a} \wedge \neg \mathrm{b} \wedge \mathrm{c}, \neg \mathrm{a} \wedge \mathrm{b} \wedge \neg \mathrm{c}, \neg \mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}, \mathrm{a} \wedge \neg \mathrm{b} \wedge \neg \mathrm{c}, \mathrm{a} \wedge \neg \mathrm{b} \wedge \mathrm{c}, \mathrm{a} \wedge \mathrm{b} \wedge \neg \mathrm{c}$, and $\mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}$ respectively. Given probabilities for event variables a, b, and c , we can calculate the probabilities of possible worlds. For example, probability of possible world $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$ associated with EVF $\mathrm{a} \wedge \mathrm{b} \wedge \neg \mathrm{c}$ is $\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b})(1-\mathrm{P}(\mathrm{c}))$.

Table 26. epr-relation q

Tuples	Event Attribute
t_{1}	a
t_{2}	b
t_{3}	c
$\mathbf{a} \equiv \mathbf{d}$	

Applying Decomposition Algorithm on q gives the following pair of pr-relations r and s of Table 27. Possible worlds of r are $\mathrm{r}_{1}=\{\phi\}, \mathrm{r}_{2}=\left\{\mathrm{t}_{2}\right\}, \mathrm{r}_{3}=\left\{\mathrm{t}_{1}\right\}$, and $\mathrm{r}_{4}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$. The corresponding EVFs are $\neg \mathrm{a} \wedge \neg \mathrm{b}, \neg \mathrm{a} \wedge \mathrm{b}, \mathrm{a} \wedge \neg \mathrm{b}$, and $\mathrm{a} \wedge \mathrm{b}$, respectively. Similarly, possible worlds of s are $\mathrm{s}_{1}=\{\phi\}, \mathrm{s}_{2}=$
$\left\{\mathrm{t}_{3}\right\}, \mathrm{s}_{3}=\left\{\mathrm{t}_{1}\right\}$, and $\mathrm{s}_{4}=\left\{\mathrm{t}_{1}, \mathrm{t}_{3}\right\}$, and their corresponding EVFs are $\neg \mathrm{c} \wedge \neg \mathrm{d}, \mathrm{c} \wedge \neg \mathrm{d}, \neg \mathrm{c} \wedge \mathrm{d}$ and $\mathrm{c} \wedge \mathrm{d}$ respectively.

Figure 2. Possible worlds of q

$$
\cap\left(t ^ { 2 } \cap (\begin{array} { l }
{ t _ { 2 } } \\
{ t _ { 1 } } \\
{ t _ { 3 } }
\end{array}) (\begin{array} { l }
{ t _ { 1 } } \\
{ t _ { 2 } }
\end{array}) \left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right.\right.
$$

Consistency graph of these possible worlds are shown in Figure 3. Edges connect pairs of compatible relations. For example, r_{4} and s_{4} can be integrated to obtain the possible world $\left\{t_{1}, t_{2}\right\}$ of q.

Table 27. pr-relations r and s

S1		S2	
Tuples	Event Attribute	Tuples	Event Attribute
t_{1}	a	t_{1}	d
t_{2}	b	t_{3}	c

The EVF of $r_{4} U s_{3}$ can be obtained from EVF of r_{4} and s_{3}, namely, $(a \wedge b) \wedge(\neg c \wedge d)=a \wedge b \wedge \neg c \wedge d$. The EVF for this possible world obtained from q is $a \wedge b \wedge \neg c$. However they are equivalent due to the event constraint $\mathrm{a} \equiv \mathrm{d}$. The corresponding probability associated with $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$ is $\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b})(1-$ $P(c))$.
q can also be obtained by integrating pr-relations r^{\prime} and s^{\prime} of Table 28. Possible worlds of r' are $\mathrm{r}_{1}{ }^{\prime}=\{\phi\}$, and $\mathrm{r}_{2}{ }^{\prime}=\left\{\mathrm{t}_{1}\right\}$, with EVF \neg a and a, respectively. Possible worlds of s^{\prime} are $\mathrm{s}_{1}{ }^{\prime}=\{\phi\}$, and $\mathrm{s}_{2}^{\prime}=\left\{\mathrm{t}_{1}\right\}, \mathrm{s}_{3}^{\prime}=\left\{\mathrm{t}_{3}\right\} . \mathrm{s}_{4}^{\prime}=\left\{\mathrm{t}_{1}, \mathrm{t}_{3}\right\}, \mathrm{s}_{5}^{\prime}=\left\{\mathrm{t}_{2}\right\}, \mathrm{s}_{6}{ }^{\prime}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}, \mathrm{s}_{7}^{\prime}=\left\{\mathrm{t}_{2}, \mathrm{t}_{3}\right\}$, and $\mathrm{s}_{8}^{\prime}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\right\}$. Their

EVF are $\neg \mathrm{b} \wedge \neg \mathrm{c} \wedge \neg \mathrm{d}, \neg \mathrm{b} \wedge \neg \mathrm{c} \wedge \mathrm{d}, \neg \mathrm{b} \wedge \mathrm{c} \wedge \neg \mathrm{d}, \neg \mathrm{b} \wedge \mathrm{c} \wedge \mathrm{d}, \mathrm{b} \wedge \neg \mathrm{c} \wedge \neg \mathrm{d}, \mathrm{b} \wedge \neg \mathrm{c} \wedge \mathrm{d}, \mathrm{b} \wedge \mathrm{c} \wedge \neg \mathrm{d}$, and $\mathrm{b} \wedge \mathrm{c} \wedge \mathrm{d}$, respectively. $\mathrm{r}_{1}{ }^{\prime}$ is compatible with $\mathrm{s}_{1}{ }^{\prime}, \mathrm{s}_{3}{ }^{\prime}, \mathrm{s}_{5}{ }^{\prime}$ and $\mathrm{s}_{7}{ }^{\prime} . \mathrm{r}_{2}{ }^{\prime}$ is compatible with $\mathrm{s}_{2}{ }^{\prime}, \mathrm{s}_{4}{ }^{\prime}, \mathrm{s}_{6}{ }^{\prime}$ and $\mathrm{s}_{8}{ }^{\prime}$.

The possible world $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$ of q is obtained as $\mathrm{r}_{2}{ }^{\prime} \mathrm{Us}_{6}{ }^{\prime}$ in this case, with EVF $\mathrm{a} \wedge(\mathrm{b} \wedge \neg \mathrm{c} \wedge \mathrm{d})=$ $\mathrm{a} \wedge \mathrm{b} \wedge \neg \mathrm{c} \wedge \mathrm{d}$, which is exactly the same as the EVF obtained for $\mathrm{r}_{4} \mathrm{Us}_{3}$ in the previous case, and is equivalent to $\mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}$ due to the event constraint $\mathrm{a} \equiv \mathrm{d}$. The corresponding probability associated with $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}$ is $\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b})(1-\mathrm{P}(\mathrm{c}))$. Thus the integration of pairs of compatible possible worlds yields exactly the same probabilities as from a different pair (r, s).

Figure 3. Consistency Graph

Table 28. pr-relations \mathbf{r}^{\prime} and \mathbf{s}^{\prime}

S1

Tuples	Event Attribute
t_{1}	a

S2

Tuples	Event Attribute
t_{1}	d
t_{2}	b
t_{3}	c

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis we presented two methods to determine the probabilities of the possible worlds in integration and proved that they are equivalent. We introduced the Event Variable Formula (EVF) to build logical expressions corresponding to the pr- and epr-relations. We introduced the Decomposition Algorithm to determine the different ways in which the pr-relations in the source can be regenerated. We also verified that every decomposed pair of pr-relations is equivalent to any other pair and that all these pr-relations are equivalent to the epr-relation. Finally, due to the matching EVFs between the pr- and epr-relation, the probabilities were also found to match.

5.2 Future Work

With the field of uncertain data integration in its infancy, this work opens up exciting prospects for the future. Innumerable applications such as medical diagnosis based on data integrated across databases of observed symptoms and current medications, or sensor data processing systems stand to benefit directly from this work. We next outline the specific directions to further this research.

- This work provides new methods to determine the probabilities of data in integration and the theoretical background to support it. A practical implementation that can perform query processing based on the results derived from this work will be the next logical step.
- The current work limits itself to only two sources for integration. Considering more than two sources for integration opens up a new set of challenges that could benefit many more applications.

REFERENCES

[1] Sadri,F., "On the foundations of probabilistic information integration", CIKM '12: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Oct 2012
[2] Borhanian,A.D., Sadri,F., "A Compact Representation for Efficient Uncertain-Information Integration", IDEAS '13, Proceedings of the 17th International Database Engineering \& Applications Symposium, pp.122-131
[3] Dalvi,N., Suciu,D., "Efficient query evaluation on probabilistic databases", VLDB '04 Proceedings of the Thirtieth international conference on Very Large Data Bases, vol.30, pp.864-875
[4] Agrawal,P., "Incorporating uncertainty in data management and integration", Stanford University, 2012, http://ilpubs.stanford.edu:8090/1053/
[5] Hearst,A.M., "Information Integration", Trends and Controversies, IEEE Intelligent Systems, Sep/Oct 1998, http://www.cs.jyu.fi/ai/vagan/course_papers/Paper_12_III.pdf
[6] Haas,M.L, "Beauty and the beast: The theory and practice of information integration", Proceedings of International Conference on Database Theory, pp.28-43, 2007
[7] Halevy,A.Y., Rajaraman,A., Ordille,J.J, "Data integration: The teenage years", Proceedings of International Conference on Very Large Databases, pp.9-16, 2006
[8] Abiteboul,S., Kanellakis,C.P., Grahne,G., "On the representation and querying of sets of possible worlds", Proceedings of ACM SIGMOD International Conference on Management of Data, pp.34-48, 1987
[9] Aggarwal,C.C., "Managing and Mining Uncertain Data", IBM T.J.Watson Research Center, Hawthorne, NY 10532, Kluwer Academic Publishers, Boston/Dordrecht/London, http://charuaggarwal.net/utoc.pdf
[10] "Scalable Query Processing in Probabilistic Databases", Department of Computer Science, University of Oxford, http://www.cs.ox.ac.uk/projects/SPROUT/
[11] Sen,P., "Representing and Querying uncertain data", Dissertation, Department of Computer Science, University of Maryland, College Park, 2009
[12] Agrawal,P., Sarma,A.D., Ullman,J., Widom,J., "Foundations of Uncertain-Data Integration ",Proceedings of the VLDB Endowment, Volume 3 Issue 1-2, pp.1080-1090, 2010
[13] Dalvi,N., Suciu,D., "Efficient query evaluation on probabilistic databases", VLDB '07 Proceedings of the $30^{\text {th }}$ VLDB Conference, Volume 30,pp.523-544

