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Real world applications that deal with information extraction, such as business 

intelligence software or sensor data management, must often process data provided with varying 

degrees of uncertainty. Uncertainty can result from multiple or inconsistent sources, as well as 

approximate schema mappings. Modeling, managing and integrating uncertain data from multiple 

sources has been an active area of research in recent years [6][7][1][2]. In particular, data 

integration systems free the user from the tedious tasks of finding relevant data sources, 

interacting with each source in isolation using its corresponding interface and combining data 

from multiple sources by providing a uniform query interface to gain access to the integrated 

information [5].  

Previous work has integrated uncertain data using representation models such as the 

possible worlds and probabilistic relations [12][1][2]. We extend this work by determining the 

probabilities of possible worlds of an extended probabilistic relation. We also present an 

algorithm to determine when a given extended probabilistic relation can be obtained by the 

integration of two probabilistic relations and give the decomposed pairs of probabilistic relations. 
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CHAPTER I 

INTRODUCTION 

Real world applications that deal with information extraction, such as sensor data 

management, Optical Character Recognition (OCR), data mining in social networks, 

deduplication and data cleaning or even business intelligence software, must often process data 

provided with varying degrees of certainty. Useful information is usually obtained from the 

available data by tracing the relevant data sources, interacting with each source in isolation using 

its corresponding interface and combining data from all the sources. With the growing number of 

such applications today, it is important that the user be able to pose complex queries and retrieve 

information in a very efficient and scalable manner. Given the imprecise nature of information in 

the real world, processing and integrating uncertain data continues to be a challenging area of 

research.  

1.1   Sources of Uncertainty in Data 

In the context of information retrieval systems, uncertainty could manifest itself for many 

reasons including it being the outcome of flawed data, or missing knowledge. While flawed data 

can result from recording errors during the process of data collection or entry, missing knowledge 

can result from the inability to fill gaps in the collected data. Both these issues can be addressed 

by enumerating all possibilities for the corrupt or missing data and assigning a degree of 

likelihood to them. Thus, information retrieval systems that operate on uncertain data glean useful 

information from all available and enumerated data to provide results that are most likely to be 

true. In the ensuing lines, we categorize the sources of uncertainty and provide examples for each 

of them. 
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1.1.1 Measurement Errors 

Consider the example of a sensor management system that must process the readings from 

two sensors reporting the temperature for the same city. If one recorded a value of 70F and the 

other recorded 72F, then the sensor data can be classified as Uncertain simply because they are 

not matching precisely.  

1.1.2 Multiple or Inconsistent Sources 

Consider the example of two students S1 and S2 who provide information regarding the 

courses that another student Bob has registered for in the current semester. Student S1 claims that 

Bob has enrolled for CS100 or CS101 while student S2 claims that Bob is enrolled for CS101 or 

CS102. Clearly, the courses that Bob is registered for can be classified as Uncertain. Along 

similar lines, sources that provide data that is deemed inconsistent also lead to uncertainty. 

1.1.3 Approximate Schema Mapping 

Consider the example of two schemas, Student (Name, SSN, Marks) and Grad-Student 

(Name, ID, Grades). If every Grade in Grad-Student.Grades maps uniquely to every Marks in 

Student.Marks, then this one-to-one mapping ensures definite results. However, if each Grade in 

Grad-Student.Grades maps to a range of Marks in Grad-Student.Marks, then this approximate 

mapping introduces uncertainty. 

For every source of uncertainty discussed above, uncertain data cannot be processed within 

the confines of a traditional database information retrieval system as easily. Not only is it more 

complicated to process, but it is also less efficient [11]. Processing such data begins with 

modeling uncertain data differently. In fact, research in recent times has focused on addressing 

the modeling techniques and managing such data [1][6][7]. 
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1.2     Modeling Uncertain Data 

Traditional databases do not allow scope for handling information retrieval errors resulting 

from flawed data or missing knowledge. A strong need is felt for a database that can model 

uncertain data and allow multiple values based on user-defined confidence levels. The ensuing 

sections discuss the different modeling techniques that such uncertain databases could use to 

represent uncertain data. 

1.2.1 Possible Worlds Model 

The possible worlds model has been widely accepted as a conceptual model of uncertain 

information. In this model, the information represented by each source is distributed over many 

traditional database instances, each instance being a possible state of the real world [1]. Each 

possible world is simply a traditional database containing data without any uncertainty.  

  Table 1. Possible Worlds Model for Representing Uncertain Data 

  Possible World {D1}                   Possible World {D2} 

Tuple Location Temperature 

t1 Greensboro 70F 

 

Invalid Possible World {D3}            Invalid Possible World {D4} 

           ɸ   

  

 

 

Table 1 shows the four database instances for the example presented in Section 1.1.1. From Table 

1 however, Possible World {D3} is invalid because it is improbable that a single location has 

different temperature readings simultaneously. Furthermore, Possible World {D4} is invalid 

Tuple Location Temperature 

r1 Greensboro 72F 

Tuple Location Temperature 

t1 Greensboro 70F 

r1 Greensboro 72F 
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because the place must have a temperature reading associated with it. Thus, the relevant possible 

worlds are simply {D1} and {D2}. 

As the amount of uncertain data increases, the number of possible worlds also increases 

exponentially. The resulting representation for uncertain data becomes unwieldy and processing 

time becomes unacceptably large. Therefore, we resort to the probabilistic relation model which 

serves as a more compact representation, by helping avoid enumerating all the possible worlds. 

1.2.2 Probabilistic Relation Model (pr-relation) 

The uncertain database that chooses to model its data using the possible worlds model uses 

multiple schemas to represent all the possible enumerations of uncertain data. In contrast, the 

probabilistic relation model [3] uses only one schema with one additional attribute known as the 

Event attribute (E).  Unique atomic events across all possible worlds are expressed using Boolean 

variables, or event variables, and are combined using logic expressions to create complex events 

that are assigned to the attribute E for all tuples in the schema. In other words, the attribute E for 

every tuple in the schema is simply a Boolean True or False value. For the example presented in 

Section 1.1.1, the atomic events “The temperature in Greensboro is 70F” and “The temperature 

in Greensboro is 72F” are represented by the event variable x and y respectively. The atomic 

event y may be interpreted as ¬x for purposes of simplification. The truth value for x represents 

the corresponding possible worlds.  

Table 2 shows the probabilistic relation for the example discussed above. The individual 

rows or tuples are simply represented by the variables t1 and r1 respectively. Thus, when x is 

True, only t1 is True representing Possible World {D1} and when x is False, only r1 is True 

representing Possible World {D2}.  
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The probabilistic relations model is equivalent to the possible worlds model, and the work of 

[13] formally shows that in fact the probabilistic relation model can represent any possible worlds 

set. 

Table 2. Probabilistic Relation Model for Representing Uncertain Data 

Tuple Location Temperature Event Attribute (E) 

t1 Greensboro 70F x 

r1 Greensboro 72F ¬x 

An uncertain database can utilize the modeling techniques described in Section 1.2.1 and 1.2.2, 

and assign probabilities to every possible world representing the degree of belonging to the 

database. The sum of these probabilities over all possible worlds in the database should be equal 

to 1. Such a database is then known as a Probabilistic Database. A Probabilistic Database for the 

example shown in Table 1, for all possible worlds with equal probabilities, might be depicted as 

P(D1) = 0.5 and P(D2) = 0.5.  

1.3     Managing Uncertain Data 

Managing uncertain data refers to the set of operations that are used to store data, modify it 

and extract useful information. Operations such as indexing, join processing and query evaluation 

must be redesigned to handle uncertain data properly. Each of these is an active area of research 

and query processing for probabilistic databases is still, in fact, in its infancy. Little is known 

about which queries can be evaluated in polynomial time, and the few existing evaluation 

methods employ expensive main-memory algorithms [10].  
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1.4     Data Integration 

Often, applications need to retrieve consolidated information using data stored in multiple 

uncertain databases that have the same schema. The process of consolidating all the available data 

across various databases is known as Data Integration. Data integration is important because 

integrating multiple sources of uncertain data can help resolve some uncertainty, yielding more 

accurate results than any of the individual sources [4]. The importance of information integration 

for uncertain data has been realized in recent years. In fact, [1] makes the following relevant 

observation: 

While in traditional database management managing uncertainty and lineage seems like a  

 nice feature, in data integration it becomes a necessity. 

The result of integration is useful only to the extent that the information it produces can be 

trusted. Hence, providing a confidence value to the integrated information is a necessity in many 

applications [1]. This work concentrates on integrating two probabilistic databases and 

determining the probabilities of the possible worlds in the integration. The challenge here lies in 

accurately determining the probabilities.  

1.5     Contributions from This Work 

The work of [1] has developed methods to integrate uncertain databases with and without 

known associated probabilities using the possible worlds model. On the other hand, the work of 

[2] has developed a method to integrate uncertain databases using the probabilistic relations 

model without considering the associated probabilities. Our work extends the work of [2] towards 

uncertain data integration in the following manner. 

 We present two methods to determine the probabilities of the possible worlds in the 

integration of two uncertain databases associated with a known set of probabilities. 
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 We show that both these methods are equivalent. 

 We give sufficient conditions that an extended probabilistic relation can be obtained by 

the integration of two probabilistic relations. 

 We present the decomposition algorithm that determines if a given extended probabilistic 

relation can be obtained by the integration of two probabilistic relations and gives the 

decomposed pairs of probabilistic relations. 

 Given the result of integration whose decomposition leads to multiple pairs of 

probabilistic relations, we show that all pairs are equivalent. 

This work is organized as follows. Chapter II discusses all relevant previous work. Chapters 

III and IV present our work and results. Finally, Chapter V presents the conclusions and the scope 

for future research. 
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CHAPTER II 

BACKGROUND INFORMATION 

This chapter summarizes the work done so far towards integrating data from uncertain 

databases. Towards this end, we discuss the use of the Possible Worlds model to integrate 

information from two uncertain databases across two different scenarios, as presented in the work 

of [1] – firstly, when the information is not associated with known probabilities and secondly, 

when it is. We also highlight the use of the Probabilistic Relation model to integrate information 

from uncertain databases when the information is not associated with probabilities, as presented 

in the work of [2]. In this work, we extend these ideas towards using the Probabilistic Relation 

model to integrate information from uncertain databases associated with known probabilities to 

determine the probabilities of the result of integration. 

2.1 Data Integration using the Possible Worlds Model without probabilities 

The work of [12] uses the well-known possible worlds model to represent and integrate 

uncertain information from two uncertain sources using superset-containment. The work of [1] 

uses the same model to represent and integrate uncertain information. It introduces a simple logic 

based approach for doing the integration. Since [1] forms the basis for this research, we 

summarize the procedure below. 

Given an uncertain source U with T(U) representing the finite set of tuples of U, a 

propositional variable ti is assigned to each tuple in T(U). A formula corresponding to each 

possible world (D) for a source is built by conjuncting all variables ti where the corresponding 
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tuple is in Dj, and conjuncting ¬ti where the corresponding tuple is not in Dj. The formula 

corresponding to the uncertain database U is then the disjunction of the formulae corresponding 

to the possible worlds of U.  

The formula f corresponding to the uncertain database resulting from integrating U1 . . . Un is 

obtained by conjuncting the formulae of the databases: f = f1 ∧ . . . ∧ fn. This procedure is best 

demonstrated through an example we present next. Let us consider the two friends of Bill who are 

providing information about his course registrations during Fall 2013. We refer to the first friend 

as Source S1 and the second one as Source S2. Let S1 state that Bill is taking CS100 or CS101 

(but not both). Let S2 state that Bill is taking CS101 or CS102 (but not both). The corresponding 

possible worlds for this example are: 

Table 3. Possible Worlds Model for Sources S1 and S2  

                           D1           S1         D2 

Student Course 

Bill CS100 

    

 

                           D3                                        S2                                        D4 

Student Course 

Bill CS101 

 

Let variable t1 and t2 correspond to each of tuples (Bill, CS100) and (Bill, CS101) respectively. 

Then the formula for the first possible world, second possible world, and the database are, 

respectively, 

t1 ∧ ¬t2, ¬t1 ∧  t2, and (t1 ∧ ¬t2) V (¬t1 ∧  t2) 

Let t2 and t3 correspond to (Bill, CS101) and (Bill, CS102) respectively. Then the formula 

corresponding to the uncertain database representing S2 is as shown next. 

Student Course 

Bill CS101 

Student Course 

Bill CS102 
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(t2 ∧¬t3) V (¬t2 ∧  t3) 

The integration is then obtained as, 

[(t1 ∧ ¬t2) V (¬t1 ∧ t2)]    ∧     [(t2 ∧ ¬t3) V (¬t2 ∧ t3)] 

Simplifying this Boolean expression yields   

(¬t1 ∧ t2 ∧ ¬t3)         V        (t1 ∧ ¬t2 ∧ t3) 

We interpret this to mean that the two possible worlds upon integration are, (Bill registered for 

CS101) or (Bill registered for both CS100 and CS102). 

2.2 Data Integration using the Possible Worlds Model with probabilities 

The integration approach developed in Section 2.1 is extended to deal with integrating 

uncertain information associated with known probabilities and determine the probabilities of the 

possible worlds in the integration [1]. Given a probabilistic uncertain database U with PW(U) = 

{D1, . . . , Dm}, it is convenient to associate a probabilistic event ei with each possible world Di. 

Intuitively, if ei represents the event where the value of the uncertain database U is equal to Di, 

then the probability of ei, P(ei) = pi.  

The work of [1] shows that the probabilistic consistency constraint has to be satisfied for 

performing uncertain data integration. It states that the sum of probabilities of the possible worlds 

corresponding to the first source should be equal to the sum of probabilities of the possible worlds 

corresponding to the second source for the possible worlds that are integrating. When possible 

worlds from different sources satisfy the consistency constraints, then the probabilities of 

integration are obtained in terms of the probabilities of the individual sources by using 

conditional probability : P(ej ∧ ek) = P(ej|ek) * P(ek). If ej and ek are inconsistent, then P(ej|ek) = 0. 



11 
 

If possible worlds D and D’ are connected in the consistency graph, and not connected to any 

other nodes, then P(D) = P(D’) and P(D ∧ D’) = P(D) = P(D’), otherwise the probability is 

obtained by distributing the sum according to the pairwise product of probabilities of underlying 

possible worlds  as shown in the ensuing example. 

Consider the possible worlds of two sources shown in Table 4 and Table 5. 

Table 4. Possible Worlds of Source S1 

                        D1      D2 
 

 

       D3 

Student Course 

Bill CS103 

Let the probabilities of the possible worlds in the two sources be P(D1) = 0.3, P(D2) = 0.5,  

P(D3) = 0.2, P(D1’) = 0.35, P(D2’) = 0.45, P(D3’) = 0.05, and P(D4’) = 0.15. 

The lines in Figure 1 connecting S1 to S2 represent the possible worlds that are consistent 

and can integrate. There are two connected components in this consistency graph. The possible 

worlds in the result of integration are shown on right. The probabilistic consistency constraints 

P(D1) + P(D2) = P(D1’) + P(D2’) and P(D3) = P(D3’) + P(D4’) are satisfied. 

The probabilities of the integrated possible worlds are calculated in the following way.  

P(D3 ∧ D3’) = P(D3 | D3’) * P(D3’) = P(D3’) = 0.05, 

P(D3 ∧ D4’) = P(D3 | D4’) * P(D4’) =  P(D4’) = 0.15 

 

 

Student Course 

Bill CS101 

Bill CS103 

Student Course 

Bill CS101 
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Table 5. Possible Worlds of source S2 

         D1’           D2’ 

 

Student Course 

Bill CS101 

   

 

         D3’             D4’ 

Student Course 

Bill CS102 

 

The probability of the remaining four possible worlds in the integration is obtained by distributing 

the sum (0.8) according to the pairwise product of probabilities of underlying possible worlds. 

P(D1 ∧ D1’) = P(D1 | D1’) * P(D1’) = P(D1) / [P(D1) + P(D2)]  * P(D1’) = 0.13125 

P(D1 ∧ D2’) = P(D1 | D2’) * P(D2’) = P(D1) / [P(D1) + P(D2)]  * P(D2’) = 0.16875 

P(D2 ∧ D1’) = P(D2 | D1’) * P(D1’) = P(D2) / [P(D1) + P(D2)]  * P(D1’) = 0.21875 

P(D2 ∧ D2’) = P(D2 | D2’) * P(D2’) = P(D2) / [P(D1) + P(D2)]  * P(D2’) = 0.28125 

Since (D2 ^ D2’) has the highest probability upon integration, the possible world (Bill registered 

for CS101, CS103 and CS102) is the most likely solution of integration.  

2.3 Data Integration using the Probabilistic Relation Model without probabilities 

Moving on from the Possible Worlds model, the work of [2] represents uncertain 

information from two sources using the probabilistic relations (pr-relation) model and integrates 

it. It introduces the extended probabilistic relation (epr-relation) model for representing the 

integration. An epr-relation is a pr-relation plus a set of event constraints that restrict the set of 

valid truth assignments, and hence, the set of possible worlds of an epr-relation.  The ensuing 

section describes the integration algorithm in detail. 

Student Course 

Bill CS101 

Bill CS102 

Student Course 

Bill CS102 

Bill CS100 
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Figure 1. Result of Integrating with the Corresponding Probabilities 

 

2.3.1 Integration Algorithm for Sources with epr-relations 

Let r1 and r2 be pr-relations for sources S1 and S2, respectively. Let R = R’ U {E} be the 

schema of r1 and r2, where R’ is the set of regular attributes and E is the special event attribute. 

Let T1 be the set of regular tuples (tuple-set) of r1, that is, T1 = {t (R’) | t є r1}. Similarly, let T2 be 

the tuple-set of r2. 

The result of integration of r1 and r2 is an epr-relation r obtained as follows. 

 The Schema of r is the same as that of r1 and r2, namely, R = R’ U {E}. 

 The set of regular tuples (tuple-set) of r is T = T1 U T2. 

 For a tuple t є T, its Event attribute value in r is obtained as follows 

 If t є T - T2 (t is in only r1) then copy the corresponding E value from r1. 

 If t є T - T1 (t is in only r2) then copy the corresponding E value from r2. 

 If t є T1 ∩ T2 (t is in both r1 and r2) then copy the corresponding E value from 

either r1 or r2. 

    0.3 

   0.5 

   0.2 

D1 

D2 

D3 

D1’ 

D2’ 

D3’ 

D4’ 

D1 ^ D1’ 

D1 ^ D2’ 

D2 ^ D1’ 

D2 ^ D2’ 

D3 ^ D3’ 

D3 ^ D4’ 

 0.35 

  0.45 

  0.05 

0.15 

0.13125 

  0.16875 

   0.21875 

   0.28125 

  0.05 

0.15 

S1 
S2 
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 Add the following event constraints to r: For each t є T1 ∩ T2, add the constraint w1 ≡ w2, 

where w1 is the value of Event attribute for t in r1 and w2 is the value of Event attribute 

for t in r2. We use w1 ≡ w2 to represent the formula (w1  w2) ∧ (w2  w1). 

We apply this algorithm to the example outlined in Section 2.1.  

Table 6. pr-relation for Source S1 and S2 

                                     S1                S2 

Student Course Event 

Attribute (E) 

Bill CS100 x 

Bill CS101 ¬x 

 

Table 7. Integrated epr-relation  

Student Course Event 

Attribute (E) 

Bill CS100 x 

Bill CS101 ¬x 

Bill CS102 ¬y 

¬x ≡ y 

The event constraint in Table 7 (¬x ≡ y) implies that only the cases (x = true, y = false) and (x = 

false, y = true) are valid. All other cases are invalid. We already know that the truth table with x 

and y event variables gives us all the possible worlds. Eliminating all cases where (x ≡ y) labeling 

them as invalid assignments leaves us with the remaining valid possible worlds as: (Bill 

registered for CS101), or (Bill registered for both CS100 and CS102). 

2.4 Motivation for This Work 

The work of [2] has provided a compact representation for efficient integration of uncertain 

data. However, it does not take the probabilities that accompany such data into account. 

Integration methods using the possible worlds model that take the probabilities into account and 

Student Course    Event 

Attribute (E) 

Bill CS101 y 

Bill CS102 ¬y 
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calculate the probabilities of the result of integration are already available, but they are highly 

inefficient and impractical for the purposes of storing and processing large amounts of uncertain 

data. Therefore, we attempt to solve this problem of determining probabilities using the compact 

representation of pr-relation and the work of [2] provides a good starting point for our work. 

In the next section, we will look at how possible worlds models with known associated 

probabilities can be represented using the compact representation of pr-relations by applying the 

conversion algorithm shown in the work of [13].  We will use this and the work of [2] as a 

starting point for our work which is presented in the ensuing chapters.  

2.5 The Conversion Algorithm 

This algorithm works in two steps. In the first step, the probabilities of the event variables 

are determined. Next, the corresponding pr-relations are formed. 

2.5.1 Determining the Probabilities of the Event Variables 

Let the possible worlds be D1, D2 . . . Dn.  Let the probability of the Possible Worlds P (Di) = 

di, i = 1, 2 . . . n such that  ∑ (  )   
 
 . Let the event variables be x1, x2,.. xn-1. Let the 

probabilities of the event variables P (xi) = pi. 

We consider the 2
n-1

 truth assignments from the truth table for the event variables x1, x2 . . . 

xn-1. We use a specific assignment of possible worlds D1, D2 . . . Dn to the truth assignments that 

facilitates the computation of probabilities P (xi) = xi, i = 1, 2 . . . n-1 in terms of possible worlds 

probabilities P (Di) = di, i = 1, 2 . . . n. 

 Assign D1 to all combinations where x1 = true (there are 2
n-2

 such combinations). This 

result in  p1 = d1.  

 Assign D2 to all combinations where x1 = false and x2 = true (there are 2
n-3

 such 

combinations). This results in (1- p1) p2 = d2. Hence, we obtain p2 = d2 / (1 - d1).       
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Note that d1, d2, and (1 - d1) are positive, and d1 + d2 ≤ 1. So, we have 0 ≤ p2 ≤ 1. 

 Assign D3 to all combinations where x1 = false, x2 = false and x3 = true (there are 2
n-4

 such 

combinations). This results in (1- p1) (1- p2) p3 = d3. Hence, we obtain p3 = d3 / (1 - d1 - 

d2). Note that d1, d2, d3 and (1 - d1 - d2) are positive, and d1 + d2 + d3 ≤ 1. So, we have 0 ≤ 

p2≤ 1.  

 Continuing in this manner, we get the general term pi = di / (1 – d1 – d2 - . . . – di -1) or, 

equivalently pi = di / (dn + dn-1 + dn-2 + . . . + di). Clearly, 0 ≤ pi ≤ 1. 

The n
th
 possible world, Dn, is assigned to the combination x1 = false . . . xn-1 = false. We 

should obtain (1- p1) (1- p2) . . . (1- pn-1) = dn. We can verify this by noticing that, from 

the equation for pi above, 

( 1 - pi ) = ( dn + dn-1 + dn-2 + … + di+1 ) 

   ( dn + dn-1 + dn-2 + … + di ) 

which yields, 

( 1 – p1 ) ( 1 – p2 ) … ( 1 – pn-1 )  =                     dn                     . 

         ( dn + dn-1 + dn-2 + … + d1 ) 

        dn 

Thus, we have now obtained the probabilities for the event variables. We next proceed to form 

the pr-relations. 

2.5.2 Forming the pr-relations 

We can obtain the pr-relations, r, corresponding to the Possible Worlds D1, D2 . . . Dn.  The 

pr-relations r contains the set of tuples D1 U D2  . . . U Dn. 

 With each world Di, i = 2, 3, . . . n-1 we associate the Boolean expression 
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fi = ¬x1 ∧ ¬x2 ∧ ¬x3 ∧. . . ∧¬xi+1 ∧ xi 

We provide the expression for D1 as f1 = x1 for i=1, and the expression for the n
th
 term Dn as fn = 

¬x1 ∧ ¬x2 ∧ ¬x3 ∧. . . ∧ ¬xn-1. The value of the event attribute for a tuple ‘t’ in r is obtained as 

VtєDifi. In other words, the value of Event attribute (E) for t is the disjunction of the expressions 

associated with the possible worlds that contain t. 

We present an example to demonstrate the working of the Conversion Algorithm. Consider 

the information about Bill’s course registrations during Fall 2013, which is stored in an uncertain 

database. Let the set of all given tuples in the database be as shown in Table 8. 

Table 8. Description of the Tuples 

  

 

 

 

Let Source S1 consist of three possible worlds, t4, t1t3 and t1t2, with probabilities 0.08, 0.32 and 

0.6 respectively. Let Source S2 consist of two possible worlds, t1 and t4t5, with probabilities 0.4 

and 0.6 respectively. Given this information, we now proceed to apply the Conversion Algorithm. 

We first list out the three possible worlds for Source S1 in Table 9. We also list out the two 

possible worlds for Source S2 in Table 10. We need two event variables since there are three 

possible worlds in Source S1, say x1 and x2. We next perform the following truth assignments:  

 Assign the first possible world t4 to all combinations where the truth value of x1 is True. 

The corresponding probability for the event variable x1 is P(x1) = P(t4) = 0.6 

Tuple Student Course 

t1 Bill CS101 

t2 Bill CS103 

t3 Bill CS102 

t4 Bill CS100 

t5 Bill CS104 

t6 Bill CS105 
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 Assign the second possible world t1t3 where the truth value of x1 is True and x2 is False. 

The corresponding probability for the event variable x2 is,  

P(x2) = P(t1t3)/ [1 - P(x1)] = 0.32/0.4 = 0.8 

 Assign the last possible world t1t2 to the remaining row where both x1 and x2 are False. 

The truth assignments for the event variables x1 and x2 for source S1 are shown in Table 

11. 

Table 9. Possible worlds for Source S1 

D1, P(D1) = 0.08    D2, P(D2) = 0.32 

Student Course 

Bill CS100 

 

D3, P(D3)=0.6 

 

 

 

Based on the truth assignments in Table 11, we now form the corresponding pr-relations in the 

following manner.  

t4 = x1 

t1, t3 = ¬ x1 x2 

t1, t2 = ¬ x1 ¬ x2 

Hence simplifying the expression for t1 gives t1 = ¬ x1 x2 V ¬ x1¬ x2 = ¬ x1 

 

 

Student Course 

Bill CS101 

Bill CS102 

Student Course 

Bill CS101 

Bill CS103 
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Table 10. Possible Worlds for Source S2 

D1’, P(D1’) = 0.4         D2’, P(D2’) = 0.6 

 

 

Table 11. Truth Assignments for Source S1 

x1 x2 Possible World 

0 0 t1t2 

0 1 t1t3 

1 0 t4 

1 1 t4 

We now proceed along similar lines for Source S2. Since we have two possible worlds, we need 

only one event variable, say y1. We next perform the following truth assignments. 

 Assign the first possible world t1 to all combinations where the truth value of y1 is True. 

The corresponding probability for the event variable y1 is P (y1) = P (t1) = 0.4 

 Assign the second possible world t4t5 where the truth value of y1 is False. 

Therefore, the truth assignments for Source S2 are as shown in Table 12. Based on Table 12, we 

form the corresponding pr-relations in the following manner: 

t4, t5 = ¬ y1 

t1 = y1 

Table 12. Possible Worlds for Source S2 

y1 Possible World 

0 t4t5 

1 t1 

Student Course 

Bill CS100 

Bill CS104 

Student Course 

Bill CS101 
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Thus the probabilistic relation and the probabilities of the event variables are as follows: P(x1) = 

0.6, P(x2) = 0.8, P(y1) = 0.4. At this point, we have successfully obtained the corresponding 

compact representation for the given data with probabilities ready to be applied for data 

integration. We represent the uncertain information in the form of pr-relations for Source S1 and 

Source S2 as shown in Table 13. 

Table 13. pr-relations for Source S1 

Source S1, P(x1) = 0.6, P(x2) = 0.8 

Tuple Student Course Event Attribute 

t1 Bill CS101 ¬ x1 

t2 Bill CS103 ¬ x1¬ x2 

t3 Bill CS102 ¬ x1 x2 

t4 Bill CS100 x1 

Table 14. pr-relations for Source S2 

Source S2, P(y1) = 0.4 

 

 

                                                          

Clearly, Table 13 and Table 14 provide a more compact representation for this problem compared 

to Table 9 and Table 10 respectively.  

In summary, we use this conversion algorithm to arrive at a compact representation of the 

uncertain data with the associated probabilities to determine the probabilities of the result of 

integration using our method as presented in the ensuing chapters.  

Tuple Student Course Event Attribute 

t1 Bill CS101 y1 

t4 Bill CS100 ¬ y1 

t5 Bill CS104 ¬ y1 
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CHAPTER III 

PROBABILITIES FOR UNCERTAIN DATA INTEGRATION 

In this chapter, we seek to introduce the necessary ideas that help us to successfully compute 

the probabilities associated with the integrated results over uncertain databases. We introduce the 

set of notations that we will use throughout the rest of this work. We also introduce the idea of an 

Event Variable Formula (EVF) that will form the basis for computing the probabilities of the 

integrated result.  

3.1 Computing Probabilities in Data Integration 

Given two sources, let us assume that we have the possible worlds with known associated 

probabilities available to us. Say, we have obtained the corresponding pr-relations with the 

probabilities using the conversion algorithm. At this point, we present two methods of obtaining 

probabilities of the possible worlds in the integration. 

3.1.1 Using the pr-relations 

 We start with the pr-relations and construct the EVFs for every possible world of both 

sources. 

 We integrate the two sources to obtain the resulting possible worlds. 

 For each of these possible worlds, we combine the relevant EVFs to obtain the EVF for 

the possible worlds in the integration. 

 We finally obtain the probability of the possible worlds in the integration in terms of the 

probabilities of the event variables of the EVF. 
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3.1.2 Using the epr-relation 

 We start with the epr-relation and obtain the corresponding possible worlds in 

integration. 

 We build EVFs for each of these possible worlds thus obtained. 

 We finally obtain the probability of the possible worlds in the integration in terms of the 

probabilities of the event variables of the EVF. 

We show that the EVFs and the probabilities obtained for every possible world in the 

integration is the same, irrespective of whether we use the pr-relations or the epr-relation.  

3.2 Introducing Notations 

 A pr-relation shall be denoted by r 

 The schema for the database shall be denoted by R 

 The schema of r is R U {E}, where E is the Event Attribute  

 The set of event variables for r shall be denoted by V 

 A tuple in r has the form t@f, where t is the tuple and f is the corresponding Event 

Attribute 

 r has n tuples t1@f1, . . . , tn@fn. We assume ti ≠ tj for all i ≠ j 

 If t@f є r, we also say the regular tuple t is in r. The set of regular tuples of a pr-relation 

or epr-relation r is denoted by T(r). T(r) is also the tuple-set of the uncertain relation r. 

 Possible Worlds of r, PW(r), is the set of relations r1, . . . , rk on schema R. The possible 

worlds contain regular tuples, ri ⊆ T(r), i = 1, . . . , k. 

 We have two sources, represented by pr-relations r and s 

 r and s have the same schema: R U {E} 

 The set of event variables for s is W. We assume V ⋂ W = ∅ 
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 s has m tuples, u1@g1, . . . , um@gm 

 Possible Worlds of s, PW(s), is the set of relations s1, . . . , sl on schema R 

 The integration of r and s is denoted by r Ũ s. We overload the notation and use ri Ũ sj to 

denote the result of integrating possible worlds ri є PW(r) and sj є PW(s). If ri and sj are 

compatible, then ri Ũ sj = ri U sj . If ri and sj are not compatible, they cannot be integrated 

and ri Ũ sj is nil.  

 Without loss of generality, we assume r and s have p common (regular) tuples, namely, tk 

= uk for k = 1. . . p. If p = 0, the two pr-relations do not have any common tuples. 

3.3 Event Variable Formula (EVF) 

An Event Variable Formula (EVF) is a logic based formula obtained as a result of 

performing Boolean operations over multiple event variables. Since the probabilities of the event 

variables are already known, the EVF can be used to obtain the probabilities of the integrated 

results. The following section provides a formal definition of the EVF in the scenario where it can 

be used to integrate from two pr-relations and epr-relation. 

3.3.1 EVF Corresponding to a pr-relation 

Building an EVF corresponding to a pr-relation is a two-step process as highlighted in 

Section 3.1.1. In the ensuing sections, we delve deeper into it. 

3.3.1.1 EVF Corresponding to a possible world of the pr-relation 

Let r be the pr-relation on the schema R U {E} and t1@f1 . . . tn@fn be the tuples of r. 

Consider a relation ri ⊆ {t1 . . . tn} in the possible world of r, ri є PW(r). We define the EVF φi 

corresponding to the possible world ri as,  

φi = ∧tkєri fk ∧tk∉ri ¬fk 
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Since T(r) = {t1 . . . tn}, we can write the EVF of ri є PW(r) in the form,  

φi = ∧tkєri fk ∧tkє(T(r)- ri) ¬fk 

Observation 1: For a relation ri ∉ PW(r), the EVF φi = ∧tkєri fk ∧tkє(T(r)- ri) ¬fk is false 

Proof: If ri ∉ PW(r) then no truth assignment v to event variables V exists for which (1) all fj are 

true for tj є ri, and (2) all fj are false for tj є (T(r) - ri). Hence, φi is not satisfiable (it is false for all 

truth assignments to event variables V).  

Corollary 1: For a pr-relation r, ri є PW(r) if and only if φi is satisfiable. 

3.3.1.2 EVF Corresponding to Integration of pr-relations from Two Sources 

Let r and s on the schema R U {E} be the two pr-relations in the integration. V and W are 

the set of event variables for r and s respectively, and V ⋂ W = ɸ. Let ri є PW(r) and sj є PW(s) 

with EVFs φi and ψj, respectively. If ri є PW(r) and sj є PW(s) are compatible, then the EVF for 

the possible world in the integration of r and s represented by ξ is obtained by conjuncting the 

EVFs for ri and sj respectively. 

ξ = φi ∧ ψj 

where, φi = ∧tkєri fk ∧tkє(T(r) - ri) ¬fk and 

ψj = ∧tkєsj gk ∧tkє(T(s) - sj) ¬gk 
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3.3.2 EVF Corresponding to an epr-relation 

For an epr-relation r with set of tuples t1@f1 . . . tn@fn and event constraints c1, c2 . . . cn we 

can define EVFs as defined in Section 3.3.1 for a relation ri ⊆ {t1 . . . tn} that is in the possible 

world of r as follows, 

φi = ∧tkєri fk ∧tkє(T(r)- ri) ¬fk   

Observation 2: For an epr-relation r and a relation ri ⊆ {t1 . . . tn} that is not in the possible world 

of r, the EVF φi = ∧tkєri fk ∧tkє(T(r)- ri) ¬fk  ∧ (c1 ∧ c2 ∧ . . . cn) is false, where c1, c2  . . . cn 

are event constraints of r. Thus φi is true for valid truth assignments to event variables in V that 

yield the possible world ri and false for all other valid truth assignments. Hence the event 

constraints needs to be satisfied to construct a valid EVF. 

Observation 3: For an epr-relation r and ri ⊆ T(r) with the EVF φi, we observe that: 

 ri є PW(r), if at least one valid truth assignment exists that makes φi true. 

 If all valid truth assignments make φi false, then ri ∉ PW(r). 

Corollary 2: For an epr-relation r, ri є PW(r) iff φi ∧ C is satisfiable, where C = c1 ∧ c2 ∧ . . . cn is 

the conjunction of all event constraints of r.  

Theorem 1: Given two pr-relations r and s on the schema R U {E}, let q be the epr-relation that 

represents the integration of r and s i.e q = r Ũ s. Let ri є PW(r) and sj є PW(s) with EVFs φi and 

ψj, respectively. Let ξ = φi ∧ ψj, and μ be a truth assignment to variables in V and W. Then, if ri 

and sj are compatible, and if ξ is true under μ, then μ is a valid truth assignment. That is, all event 
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constraints of q are satisfied under μ. This means ξ  C, where C is the conjunction of event 

constraints of q. 

Proof: Assume, without loss of generality, that r and s have p common regular tuples tk = uk, k = 1 

. . . p. Alternatively, T(r) ⋂ T(s) = {t1 . . . tp} = {u1 . . . up}. Then q = r Ũ s has p event constraints 

fk ≡ gk, k = 1 . . . p. Since ri and sj are compatible, then by Lemma in [2], there is no regular tuple 

tk є T(r) ⋂ T(s) such that tk є ri and tk ∉ sj or vice versa. Further, since ξ is true, then φi and ψj, are 

true. It follows that for all tk є T(r) ⋂ T(s), either: 

(1) tk є ri and tk є sj and both fk and gk are true under truth assignment μ, or  

(2) tk ∉ ri and tk ∉ sj and fk and gk are both false under truth assignment μ.  

Hence, the event constraints fk ≡ gk, k = 1 . . . p are satisfied under μ. 

Theorem 2: Let r, s, ri, sj, φi, ψj, ξ, and μ be as defined in Theorem 1. Then ξ is the EVF 

associated with possible world qij = ri Ũ sj of epr-relation q = r Ũ s. 

Proof: Let r = {t1@f1 . . . tn@fn} and s = {u1@g1 . . . um@gm}, with p common (regular) tuples, tk 

= uk, k = 1 . . . p. Then, one possible set of tuples for q = r Ũ s is,  

q = {t1@f1 . . . tn@fn} U {up+1@gp+1 . . . um@gm} 

Consider the truth assignment μ to event variables V U W. By Theorem 1, if ξ is true under μ, 

then μ is legal. Further, if ξ is true under μ, then so are φi and ψj. Hence, fk is true for all tuples tk є 

ri, and it is false for all tuples tk є (T(r)- ri). Similarly, gk is true for all tuples uk є sj , and it is false 

for all tuples uk є (T(s)- sj). Consider a tuple v@h є q = r Ũ s. (v@h is either a tk@fk or a uk@gk). 

In this case h is true under μ iff v є ri U sj. It follows that ξ is true for all valid truth assignments 

that yield the possible world qij, and, hence, ξ is the EVF for qij.  
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3.4 Computing the Probabilities from the EVF 

Once the EVFs of the possible worlds in integration are obtained, we can compute their 

corresponding probabilities using the probabilities of the event variables in the EVF. The event 

variables are assumed independent, except those related through event constraints.  

 If the event variables are independent, the probability of the integrated possible world is 

simply the product of the probabilities of the individual event variables in the EVF. For 

example the probability associated with EVF (b∧¬c) is P(b∧¬c) = P(b) * (1 - P(c)).  

 On the other hand, if the event variables are not independent, conditional probability is 

used to determine the resulting probability.  For example, an event constraint of the form 

a ≡ d enforces P(a) = P(d). The probability associated with EVF (a∧d) is P(a∧d) = P(a|d) 

* P(d). In this case, P(a|d) = P(d|a) = 1 and hence P(a∧d) = P(a) = P(d).  

3.5 Example for Determining the Probabilities 

We present an example to demonstrate the calculation of the probabilities using the two 

methods explained in Section 3.1.1 and 3.1.2. Consider two sources represented compactly using 

the pr-relations along with the probabilities of the event variables as shown in Table 15. Consider 

the integrated epr-relation shown in Table 16. Let the set of all given tuples in the database be as 

shown in Table 8. 

3.5.1 EVF using the pr-relation  

We build the EVF of the possible worlds in the integration using the method described in 

Section 3.1.1. 

We first obtain the Possible Worlds in S1 using the truth value of x. This gives r1 = {ɸ}, 

r2 = {t1}. The EVF corresponding to the possible worlds of S1 are ¬x and x respectively. The 
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Possible Worlds in S2 are s1 = {ɸ}, s2 = {t3}, s3 = {t1, t2}, and s4 = {t1, t2, t3}. The EVF 

corresponding to the possible worlds of S2 are ¬y∧¬z, ¬y∧z, y∧¬z, and y∧z, respectively. 

The compatible pairs of possible worlds from r and s are (r1, s1), (r1, s2), (r2, s3), and (r2, s4). 

The EVFs for these possible worlds in the integration are ¬x∧¬y∧¬z, ¬x∧¬y∧z, x∧y∧¬z, and 

x∧y∧z, respectively. 

Table 15. pr-relations for Sources S1 and S2 

Source S1, P(x) = 0.8    Source S2, P(y) = 0.8, P(z) = 0.2 

 

 

 

 

Table 16. epr relation for the Result of Integration 

 

                
   

x ≡ y 

3.5.2 EVF using the epr-relation  

We build the EVF of the possible worlds in the integration using the method described in 

Section 3.1.2. 

We first obtain the Possible Worlds of the integrated epr-relation using the truth values of x, 

y, z that eliminate invalid cases based on the event constraints. This gives {ɸ}, {t3}, {t1, t2}, and 

{t1, t2, t3}. In the next step, the EVF corresponding to these possible worlds are obtained. These 

are ¬x∧¬y∧¬z, ¬x∧¬y∧z, x∧y∧¬z, and x∧y∧z, respectively. 

Tuples Event Attribute 

t2 y 

t3 z 

t1 y 

Tuples Event Attribute 

t1 x 

Tuples Event Attribute 

t1 x 

t2 y 

t3 z 
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3.5.3 Calculating the Probabilities from the EVF 

The probabilities are calculated using the method described in Section 3.4. In this case, 

event variables x and y are dependent. The possible worlds in integration and the corresponding 

EVFs obtained in both 3.5.1 and 0 for this example have matched exactly.  

P(ɸ) = P(¬x∧¬y∧¬z) = P(¬x|¬y) * P(¬y) *P(¬z) = P(¬y) *P(¬z) = 0.16 

P(t3) = P(¬x∧¬y∧z) = P(¬x|¬y) * P(¬y) *P(z) = P(¬y) *P(z) = 0.04 

P(t1t2) = P(x∧y∧¬z) = P(x|y) * P(y) *P(¬z)  = P(y) *P(¬z) = 0.64 

P(t1t2t3) = P(x∧y∧z) = P(x|y) * P(y) *P(z) = P(y) *P(z) = 0.16 

Thus, we get matching probabilities from both methods in this case. Using the two methods we 

introduced, we have obtained the probabilities of the possible worlds in integration. Since the 

possible world {t1, t2} has the highest probability upon integration, the possible world (Bill 

registered for CS101 and CS103) is the most likely solution of integration.  

  



30 
 

CHAPTER IV 

FORMAL RESULTS 

We have now constructed the EVF for the possible worlds in the integration starting from 

both pr- and epr-relations. We have also presented how we can compute the probabilities using 

the EVF. In this chapter, we verify that the EVF generated by using both the methods are 

equivalent and the resulting probabilities are also equal.  

4.1 Results 

Our verification methodology involves comparing the EVFs generated by the pr-relations 

and the epr-relations.  

Firstly, we start with an integrated epr-relation and decompose it into its corresponding pr-

relations. However, the process of decomposition may not necessarily always lead to a unique 

pair of pr-relations. Hence, we compute the EVF for each such pair and check if these formulae 

match exactly. If yes, we also compare it against the EVF generated by the epr-relation. Matching 

formulae will always ensure matching probabilities as well.  

Since we have restricted ourselves to integrating data from only two sources in this work, an 

integrated epr-relation may not be obtainable by the integration of two pr-relations.  Hence, we 

use the sufficient conditions to check beforehand if it can even be broken down into exactly two 

pr-relations. Section 4.2 presents these conditions in detail. 

Secondly, we start with two pr-relations and obtain the integrated epr-relation. We simply 

ensure that the event variables in both the EVFs are equivalent along with the same truth values. 

The probabilities generated by both the EVFs should therefore also match exactly.  
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4.2 Sufficient Conditions for an epr-relation to be Integrated 

Given an epr-relation q, we say q is integrated if a pair of non-empty pr-relations r and s 

exists such that q = r Ũ s. The integration algorithm in [2] is non-deterministic and can produce 2
p
 

different epr-relations, where p refers to the number of common tuples. 

Theorem 3: An epr-relation q is integrated if a partition (V, W) of event variables of q exists such 

that, 

1) For each tuple t@f є q, all event variables appearing in f are in V or all are in W. 

2) For each event constraint f ≡ g of q, all event variables appearing in f are in V 

and all event variables appearing in g are in W, or vice versa. 

3) For each event constraint f ≡ g of q, there is a unique (regular) tuple t such that 

t@f є q or t@g є q. 

Proof: We show that if conditions of Theorem 3 hold, then the Decomposition Algorithm 

described in Section 4.2.1 can be used to produce pr-relations r and s such that q ≡ r Ũ s. We 

assume that Step 3(a) and Step 3(b) of this algorithm partition the tuples of q onto pr-relations r 

and s. By condition (1) of Theorem 3, this partition will be well-defined. Then, Step 3(c) of the 

algorithm adds more tuples to r and/or s to complete the construction. Thus, q is now decomposed 

into pr-relations r and s. 

Next, we show that given an epr-relation q, pr-relations r and s produced by the 

Decomposition Algorithm should satisfy r Ũ s ≡ q. Assume r Ũ s = q’. We first verify that q’ has 

the same set of event constraints as q. For each constraint f ≡ g in q, by Conditions (2) and (3) of 

Theorem 3, there is a unique tuple t@f or t@g in q, and, by Step 3(b) of the Decomposition 

Algorithm, in r or s. Without loss of generality, assume t@f є r. Step 3(c) of the Decomposition 

Algorithm adds t@g to s. Then the integration algorithm in the work of [2] generates f ≡ s for q’ = 

r Ũ s.  
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Finally, we show that q’ has the same (or equivalent) set of tuples as q. By the 

Decomposition Algorithm, for all t@f є q, either t@f є r or t@f є s. Then, by the integration 

algorithm of [2], either t@f є q’ or t@g є q’ for some g such that f ≡ g. It, thus, follows that set of 

tuples of q’ and q are equivalent. 

4.2.1 The Decomposition Algorithm 

Given an epr-relation q, this algorithm determines whether q satisfies the sufficient 

conditions of Theorem 3, and if it does, generates partitions (V, W) of event variables of q and 

obtains all pairs of two pr-relations (r,s). We introduce the idea of an Extra-Set which is the set of 

Event Attributes in q that are not specifically associated with partition V or W. The number of 

different pairs of pr-relations depends on the size of Extra-Set. Specifically, it will be 2
|Extra-Set|

. 

The algorithm works in three steps. 

In the first step, it checks if conditions 2 and 3 of Theorem 3 are satisfied and identifies the 

event variables in event constraints that should appear separately (in V and W). In the second 

step, it checks if condition 1 of Theorem 3 is satisfied and identifies event variables in Event 

Attributes that should appear separately (in V and W). Finally, in the third step it obtains all pairs 

of two pr-relations (r,s) based on the partition (V, W) generated in the first 2 steps. 

 

Algorithm: 

Input: epr-relation q with tuples {v1@h1. . . vl@hl} and constraints fi = gi, i = 1 . . .p. Let ev(q) be 

the set of event variables appearing in q (in hi’s, fi’s, gi’s). 

Initialization: Initialize the partition sets V and W to Null. Initialize the set Extra-Set to Null.  

Step 1: In this step, the event constraints occurring on either sides of ≡ symbol needs to be 

partitioned into V and W. 
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The first part of the if condition checks if condition 2 of Theorem 3 is satisfied, by verifying if all 

event variables in f are in V (or W) and all event variables in g are in W (or V) and therefore not 

in both. The second part of the if condition checks condition 3 of Theorem 3. 

The else part adds the event variables in the constraints to V or W in the following way. It checks 

if a subset of f or g is already present in V or W, in which case it adds the remaining event 

variables in that Event Attribute to the same partition. Otherwise, all event variables in f are 

added to V and all event variables in g are added to W. The pseudo code for Step 1 is, 

For each event constraint f ≡ g of q: 

 If((f ⊆ V (or W) and g ⊆ V (or W)) or !(∃ unique tuple t such that t@f є q or t@f є q)) 

  Exit() 

 Else 

  If f ⊆ V (or W), add f - V (or f – W) to V (or W) and g to W (or V) 

  Else if g ⊆ V (or W), add g - V (or g – W) to V (or W) and f to W (or V) 

Else add f to V (or W) and g to W (or V) 

End 

Step 2: In the second step, the remaining event variables in the Event Attributes are partitioned 

based on existing event variables in V and W.  

The if condition checks if a subset of event variables in that Event Attribute is in V and also in W, 

in which case the partition is not possible. 

The else part adds the event variables in the Event Attribute in the following way. It checks if a 

subset of the Event Attribute is already present in V or W, in which case it adds the remaining 

event variables to the same partition V or W. Otherwise, it adds the Event Attribute to the Extra-

Set. The pseudo code for Step 2 is, 

For each ev (q):  
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 If(ev (q) ⊆ V and ev(q) ⊆ W) 

  Exit() 

 Else 

If ev (q) ⊆ V, add (ev (q) – V) to V  

Else If ev (q) ⊆ W, add (ev (q) – W) to W 

Else add (ev (q) - Extra-Set) to Extra-Set 

End 

Step 3: In the third step, all pairs of two pr-relations (r,s) is generated in the following way. 

Let ev (f) represent the set of event variables of Event Attribute f. 

a) Partition tuples of q as follows: Let r = {t@f є q | ev(f) ⊆ V} and s = {t@f є q | ev(f) ⊆ 

W}. 

b) Add each element of the Extra-Set to r or s in 2
|Extra-Set| 

ways. 

c) For each constraint f ≡ g of q, if t@f є r (or t@f є s), then add t@g to s (or to r), or if t@g 

є r (or t@g є s), then add t@f to s (or to r). 

4.2.2 Examples 

To demonstrate the Decomposition Algorithm, we consider the following example. Let the 

set of all given tuples in the database be as shown in Table 8. 

Firstly, the initialization V = ɸ, W = ɸ, Extra-Set = ɸ is done. 

Step 1: Here, Condition 3 is satisfied since t1 = x.  x is added to V and y is added to W. At the end 

of Step 1, V = {x} and W = {y}. The partition satisfies Condition 2. 

Step 2: In this step, z is added to V and w is added to W. {vk} is added to Extra-Set. At the end of 

Step 2, V = {x,z} W = {y,w} Extra-Set = {{vk}} 

Step 3: The decomposition of q results in two pairs of (r,s) as shown in Table 18 and Table 19. 
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Table 17. epr-relation 

Tuples Event Attribute (E) 

t1 x 

t2 ¬x 

t3 ¬y 

t4 xz 

t5 wy 

t6 vk 

x ≡ y 

Table 18. pr-relation r, s for Sources S1 and S2 (Pair #1) 

Tuples Event Attribute (E) 

t1 x 

t2 ¬x 

t4 xz 

t6 vk 

 

Table 19. pr-relation r, s for Sources S1 and S2 (Pair #2) 

Tuples Event Attribute (E) 

t1 x 

t2 ¬x 

t4 xz 

 

Consider yet another example in Table 20 for which Decomposition is not possible. 

Decomposition may not be possible if the event variables in the Event Attributes cannot be 

partitioned into (V,W). 

Table 20. epr-relation 

 

 

 

 

 

x ≡ y 

Tuples Event Attribute (E) 

t1 y 

t3 ¬y 

t5 wy 

Tuples Event Attribute (E) 

t1 y 

t3 ¬y 

t5 wy 

t6 vk 

Tuples Event Attribute (E) 

t1 xy 

t2 x 

t3 ¬y 
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Firstly the initialization, V = ɸ, W = ɸ, Extra-Set = ɸ is done. 

Step 1: Here, Condition 3 is satisfied since t2 = x.  At the end of Step 1, V = {x}, W = {y}. The 

partition satisfies Condition 2. 

Step 2: In this step, partition of Event Attributes is not possible. This is because, the first Event 

attribute {xy} implies that event variables x and y should be in the same partition, but x and y 

have been already separated into different partitions in Step 1. Thus there is a contradiction and 

hence decomposition is not possible. 

4.3 Theorem 4 

Given an extended probabilistic relation (epr-relation) q which is obtainable by integrating 

two pr-relations, let S be the set of all pairs (r,s) of two probabilistic relations (pr-relation) whose 

integration results in q. We prove that all pairs (r,s) in S give exactly the same EVF for the 

integrated possible worlds. 

Proof: Without loss of generality, assume r = {t1@f1. . . tn@fn} and s = {u1@g1, . . . , um@gm} be 

an (r,s) pair obtained by Decomposition Algorithm for an epr-relation q. Also assume, without 

loss of generality that ti = ui for i = 1. . . p. Note that T(q) = {t1, . . . , tn} U {u1, . . . , um}. 

Let ak = {a1, a2 . . ae . . al} be a possible world obtained by integrating the possible worlds of two 

pr-relations. As a special case, ak can be the empty relation (ak = ɸ) when l = 0. Let {ae} be a 

member of the Extra Set that can freely move to any source. The tuples in this possible world is a 

subset of the tuples in q, ak ⊆ T(q).  

There can be several pairs (r,s) that can lead to the integrated possible world {a1, a2 . . ae . . ak}. 

Let us consider 2 possibilities here, 

 ri = {a1, a2 . . ae . . at} є PW(r) and sj = {at+1 . . . az} є PW(s) , or 

 r’i = {a1, a2 . . . at} є PW(r’) and s’j = {at+1 . . ae . . az} є PW(s’) 
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The EVF for ri and sj and their integration is, 

φi = ∧akєri fk ∧akє(T(r)- ri) ¬fk      and  ψj = ∧akєsj gk ∧akє(T(s)- sj) ¬gk   

ξ = φi ∧ ψj = ∧akєri fk ∧akє(T(r)- ri) ¬fk ∧akєsj gk ∧akє(T(s)- sj) ¬gk 

Similarly, the EVF for r’i and s’j and their integration is, 

φ'i = ∧akєr’i f’k ∧akє(T(r’)- r’i) ¬f’k,   and 

ψ’j = ∧akєs’j g’k ∧akє(T(s’)- s’j) ¬g’k 

ξ’ = φ’i ∧ ψ’j = ∧akєri f’k ∧akє(T(r)- ri) ¬fk ∧akєsj g’k ∧akє(T(s)- sj) ¬g’k 

The Decomposition Algorithm gives the partition of the event variables with two pieces of 

information. Firstly, the event variables that should be in fixed sources and secondly, the Extra-

Set of event variables that can be in any source. That is 

if ak є Extra Set, 

ak  є r   Possibility #1 

ak є s   Possibility #2 

else, 

ak є r   or   ak є s (fixed for every possibility) 

Consider the component, ∧akєri fk ∧ akєsj gk in ri and sj, and compare it with the component  

∧akєr’ i f’k ∧ akєs’j g’k in r’i and s’j. For ak = ae if ae є ri, fk = fe or if ae є s’j, g’k = ge. For all the  
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other tuples where ak ≠ ae, the EVFs will be the same. It follows that the two components have 

exactly the same terms for ae є r and for ae є s’. A similar argument shows that the second 

components of the expressions (with ¬fk and ¬gk) are also equal. 

In the same way, the elements of the Extra Set can be moved one by one from one source to 

the other giving rise to different possibilities. However, this will not change the EVF for the 

integrated possible worlds. The EVF remains the same for every possible world including an 

invalid one. For this case, all possibilities result in a false value. Let us consider an example that 

demonstrates the results of this Theorem as shown below. 

4.3.1 Example 

Consider the epr-relation q of Table 21. Let the set of all given tuples in the database be as 

shown in Table 8. 

Table 21. epr-relation q 

Tuples Event Attribute 

t1 a 

t2 b 

t3 ¬c 

a ≡ c 

The possible worlds of q are {t1}, {t1,t2}, {t3}, and {t2,t3} with EVF a∧¬b∧c, a∧b∧c, ¬a∧¬b∧¬c,  

and ¬a∧b ∧¬c, respectively. Applying the Decomposition Algorithm on q will produce the two pr-

relations shown in Table 22 and Table 23. 

Table 22. pr-relations r and s 

  S1           S2 

 

         

Tuples Event Attribute 

t1 a 

t2 b 

Tuples Event Attribute 

t1 c 

t3 ¬c 
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Possible worlds of r are r1 = ɸ, r2 = {t1}, r3 = {t2}, and r4 = {t1,t2} with EVF ¬a∧¬b , a∧¬b , ¬a∧b, 

and a∧b, respectively. Possible worlds of s are s1 = {t1}, and s2 = {t3}, with EVF c and ¬c, 

respectively. The compatible pairs of possible worlds from r and s are (r2, s1), (r4, s1), (r1, s2), and 

(r3, s2). The EVFs for these possible worlds in the integration are a∧¬b∧c, a∧b∧c, ¬a∧¬b∧¬c, and 

¬a∧b∧¬c, respectively. Next, consider the pr-relations in the following Table. 

Table 23. pr-relations r’ and s’ 

    S1             S2 

 

 

 

    

Possible worlds of r’ are r1’ = {ɸ}, and r2’ = {t1} with EVF ¬a, a, respectively. Possible worlds of 

s’ are s1’ = {t1}, s2’ = {t3}, s3’ = {t1,t2}, and s4’ = {t2,t3}, with EVF ¬b∧c, ¬b∧¬c, b∧c and b∧¬c, 

respectively. The compatible pairs of possible worlds from r’ and s’ are (r2’, s1’), (r2’, s3’), (r1’, 

s2’), and (r1’, s4’). The EVFs for these possible worlds in the integration are a∧¬b∧c, a∧b∧c, 

¬a∧¬b∧¬c, and ¬a∧b∧¬c, respectively. 

Thus the integration of pairs of compatible possible worlds in different possibilities yields exactly 

the same possible worlds with the same EVF.  

4.4 Theorem 5 

Consider an integrated epr-relation q that satisfies the conditions of Theorem 3. Consider a 

possible world qk of q. There are different ways of obtaining EVF of qk: One possibility is to 

obtain it directly from q. Another possibility is to use the Decomposition Algorithm to obtain two 

sources r and s whose integration yield q, there may be multiple pairs of sources with this 

Tuples Event Attribute 

t1 c 

t2 b 

t3 ¬c 

Tuples Event Attribute 

t1 a 



40 
 

property. Then obtain the EVF for qk by conjuncting the EVF of possible worlds ri and sj of the 

two sources whose integration yield qk. We show that the EVF obtained in different ways are 

equivalent, with respect to the event constraints of q.  

Proof: Without loss of generality, assume r = {t1@f1 . . . tn@fn} and s = {u1@g1 . . . um@gm} be an 

(r,s) pair obtained by Decomposition Algorithm for an epr-relation q. Also assume, without loss 

of generality that ti = ui for i = 1 . . . p. Here T(q) = {t1 . . . tn} U {s1 . . . sm}. Assume qk = {v1 . . . 

vl}. As a special case, qk can be empty (qk = ɸ) when l = 0. The EVF for qk obtained from q is ξk 

= ∧viєqkhi ∧ viє(T(q)-qk)¬hi where hi is the event attribute value associated with vi in q. That 

is, vi@hi є q. Alternatively, consider ri є PW(r) and sj є PW(s) such that ri Ũ sj = qk. The EVF for ri 

and sj are  φi = ∧tkєri fk  ∧tkє(T(r)- ri) ¬fk, and ψj = ∧skєsj gk ∧skє(T(s)- sj) ¬gk 

We show that φi ∧ ψj and ξk are equivalent with respect to event constraints of q. Consider the 

component, ∧tkєri fk and ∧skєsj gk in φi ∧ ψj, and compare it with the component ∧viєqkhi 

in ξk. qk = ri U sj and hi = fi if vi є ri - ri ∩ sj ; hi = gi if vi є sj - ri ∩ sj; hi = fi or hi = gi if vi є ri ∩ sj . 

It follows that the two components have exactly the same terms for vi є ri - ri ∩ sj and for vi є sj - ri 

∩ sj . But for vi є ri ∩ sj, the first component has fi ∧ gi, while the second component only has hi 

where hi = fi or hi = gi. However, q also has the constraint fi ≡ gi for vi є ri ∩ sj . It follows that fi ∧ 

gi and hi are equivalent for vi є ri ∩ sj. Hence, ∧tkєri fk ∧skєsj gk   in φi ∧ ψj, and ∧viєqkhi in 

ξk are equivalent with respect to the event constraints of q.  

A similar argument shows that the second components of the expressions (with ¬hi, ¬fk, and ¬gk) 

are also equivalent. Hence, φi ∧ ψj and ξk are equivalent with respect to event constraints of q. 
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4.4.1 Example 

Consider q1 = {t1} of the following epr-relation, where the set of all given tuples in the 

database be as shown in Table 8. 

Table 24. epr-relation q 

Tuples Event Attribute 

t1 a 

t2 b 

a ≡ c  

ξ = a∧¬b   (1) 

Applying the Decomposition Algorithm on q will produce the pr-relation (r,s) shown in Table 25. 

The event variable a is in pr-relation r and the event variables b and c are in pr-relation s. 

Table 25. pr-relation r and s 

           S1                 S2 

 

 

The possible world r1 = {t1} of r and possible world s1 = {t1} of s combine to obtain the possible 

world {t1} in integration with EVF a and c∧¬b respectively.  

The EVF for their integration is, 

φi ∧ ψj = a∧¬b∧ c   (2) 

Equations (1) and (2) are equivalent with respect to the event constraint a ≡ c. 

Tuples Event Attribute 

t1 c 

t2 b 

Tuples Event Attribute 

t1 a 
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4.5 Theorem 6 

Given an epr-relation q, let S be the set of all pairs (r,s) of two pr-relations whose integration 

results in q. All pairs (r,s) in S give exactly the same probabilities for the integrated possible 

worlds. 

Proof: We saw in Theorem 4 in Section 4.3 that every pair (r,s) in S gives the same EVF for a 

possible world in integration. Hence the corresponding probabilities for the integrated possible 

worlds also match exactly. Consider the following example that demonstrates this. 

4.5.1 Example 

Consider the epr-relation q of Table 26. The event constraint of q has a variable d that does not 

appear in the tuples. The possible worlds of q are shown in Figure 2, and correspond to EVF 

¬a∧¬b∧¬c, ¬a∧¬b∧c, ¬a∧b∧¬c, ¬a∧b∧c, a∧¬b∧¬c, a∧¬b∧c, a∧b∧¬c, and a∧b∧c respectively. 

Given probabilities for event variables a, b, and c, we can calculate the probabilities of possible 

worlds. For example, probability of possible world {t1, t2} associated with EVF a∧b∧¬c is 

P(a)P(b)(1-P(c)).  

Table 26. epr-relation q 

Tuples Event Attribute 

t1 a 

t2 b 

t3 c 

a ≡ d 

Applying Decomposition Algorithm on q gives the following pair of pr-relations r and s of Table  

27. Possible worlds of r are r1 = {ɸ}, r2 = {t2}, r3 = {t1}, and r4 = {t1, t2}. The corresponding EVFs 

are ¬a∧¬b, ¬a∧b, a∧¬b, and a∧b, respectively. Similarly, possible worlds of s are s1 = {ɸ}, s2 = 
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{t3}, s3 = {t1}, and s4 = {t1,t3}, and their corresponding EVFs are ¬c∧¬d, c∧¬d, ¬c∧d and c∧d 

respectively. 

Figure 2. Possible worlds of q 

 

Consistency graph of these possible worlds are shown in Figure 3. Edges connect pairs of 

compatible relations. For example, r4 and s4 can be integrated to obtain the possible world {t1, t2} 

of q. 

Table 27. pr-relations r and s 

   S1                    S2 

Tuples Event Attribute 

t1 a 

t2 b 

   

The EVF of r4 U s3 can be obtained from EVF of r4 and s3, namely, (a∧b) ∧ (¬c∧d) = a∧b∧¬c∧d. 

The EVF for this possible world obtained from q is a∧b∧¬c. However they are equivalent due to 

the event constraint a ≡ d. The corresponding probability associated with {t1, t2} is P(a)P(b)(1-

P(c)). 

q can also be obtained by integrating pr-relations r’ and s’ of Table 28. Possible worlds of r’ are 

r1’= {ɸ}, and r2’= {t1}, with EVF ¬a and a, respectively. Possible worlds of s’ are s1’ = {ɸ}, and 

s2’ = {t1}, s3’ = {t3}. s4’ = {t1, t3}, s5’ = {t2}, s6’ = {t1, t2}, s7’ = {t2, t3}, and s8’ = {t1, t2, t3}. Their 

Tuples Event Attribute 

t1 d 

t3 c 

ɸ t3 t2 t2 

t3 

 

t1 t1 

t3 

 

t1 

t2 

 

t1 

t2 

t3 
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EVF are ¬b∧¬c∧¬d, ¬b∧¬c∧d, ¬b∧c∧¬d, ¬b∧c∧d, b∧¬c∧¬d, b∧¬c∧d, b∧c∧¬d, and b∧c∧d, 

respectively. r1’ is compatible with s1’, s3’, s5’and s7’. r2’ is compatible with s2’, s4’, s6’ and s8’. 

    The possible world {t1, t2} of q is obtained as r2’ U s6’ in this case, with EVF a ∧ (b∧¬c∧d) = 

a∧b∧¬c∧d, which is exactly the same as the EVF obtained for r4 U s3 in the previous case, and is 

equivalent to a∧b∧c due to the event constraint a ≡ d. The corresponding probability associated 

with {t1, t2} is P(a)P(b)(1-P(c)). Thus the integration of pairs of compatible possible worlds yields 

exactly the same probabilities as from a different pair (r,s). 

Figure 3.  Consistency Graph 

 

Table 28. pr-relations r’ and s’ 

S1                        S2 

 

 

  

Tuples Event Attribute 

t1 d 

t2 b 

t3 c 

Tuples Event Attribute 

t1 a 

r1 

r2 

r3 

r4 

s1 

s2 

s3 

s4 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis we presented two methods to determine the probabilities of the possible worlds 

in integration and proved that they are equivalent. We introduced the Event Variable Formula 

(EVF) to build logical expressions corresponding to the pr- and epr-relations. We introduced the 

Decomposition Algorithm to determine the different ways in which the pr-relations in the source 

can be regenerated. We also verified that every decomposed pair of pr-relations is equivalent to 

any other pair and that all these pr-relations are equivalent to the epr-relation. Finally, due to the 

matching EVFs between the pr- and epr-relation, the probabilities were also found to match.  

5.2 Future Work 

With the field of uncertain data integration in its infancy, this work opens up exciting 

prospects for the future. Innumerable applications such as medical diagnosis based on data 

integrated across databases of observed symptoms and current medications, or sensor data 

processing systems stand to benefit directly from this work. We next outline the specific 

directions to further this research. 

 This work provides new methods to determine the probabilities of data in integration and 

the theoretical background to support it. A practical implementation that can perform 

query processing based on the results derived from this work will be the next logical step. 
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 The current work limits itself to only two sources for integration. Considering more than 

two sources for integration opens up a new set of challenges that could benefit many 

more applications. 
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