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Manganese (Mn) is an essential metal that functions primarily as a 

cofactor for metalloenzymes contributing to numerous metabolic pathways. 

Exposure to excess environmental Mn overwhelms endogenous regulation, and 

deleterious effects disrupt neurotransmitter systems of the basal ganglia. The 

following studies examined the effects of Mn on ɣ-aminobutyric acid (GABA) 

using in vivo microdialysis, metabolomic analysis, and primary astrocyte cell 

culture.  Microdialysis experiments in Sprague-Dawley rats revealed that 6-week 

exposure to Mn (1g Mn/L drinking water) significantly elevated extracellular 

GABA compared to controls. Using nipecotic acid to antagonize GABA transport 

proteins (GATs), we identified that Mn disrupted GABA homeostasis by inhibiting 

GAT mediated GABA clearance.  Concurrently, metabolomic analysis of Mn 

exposed rats uncovered drastically altered lipid metabolism highlighted by a 12- 

and 15-fold increase in oleic and palmitic acids compared to control, respectively. 

Brain Mn accumulation was accompanied by abnormal stereotypy and was 

significantly correlated with plasma homogentisic, chenodeoxycholic, and 

aspartic acids, identifying biomarkers that correspond with Mn neurotoxicity.  To 

elucidate mechanisms driving Mn induced changes in GABA uptake, primary 

astrocytes were exposed to Mn with or without oleic or palmitic acid. 3H-GABA 

uptake was significantly reduced by Mn and exacerbated by oleic or palmitic 

acids. Plasma membrane levels of GAT3 were unaltered by Mn or fatty acids 



despite increased regulatory protein kinase C (PKC) phosphorylation; however, 

fatty acid treatments augmented Mn accumulation at the plasma membrane of 

astrocytes. Moreover, control cells exposed to Mn exclusively during the 

experimental uptake had significantly reduced 3H-GABA uptake, and the addition 

of 50 µM GABA blunted cytosolic Mn accumulation. These data indicate that 

reduced GAT3 function in astrocytes is not driven by PKC signaling, but is likely 

influenced by Mn and fatty acids interacting with the plasma membrane, thereby 

inhibiting GABA uptake via GAT3. Together these studies improve our 

understanding of how Mn alters GABA neurotransmission upon overexposure. 

Furthermore, these data provide candidate biomarkers to improve early detection 

of Mn intoxication prior to irreparable damage.  
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CHAPTER I 
 

INTRODUCTION 
 

 

Manganese (Mn) is an essential dietary metal critical for numerous cellular 

processes; however, overexposure to environmental Mn via industrial occupation 

or contaminated drinking water can lead to toxic brain Mn accumulation that has 

been associated with neurodegeneration (Cersosimo and Koller, 2006). Mn 

intoxication via inhalation has been reported over the past few decades and 

recently, cognitive deficits were reported in children drinking Mn contaminated 

well water (Wasserman et al., 2006). Symptoms of Mn neurotoxicity resemble 

idiopathic Parkinson’s disease and similarly affect the dopamine-rich basal 

ganglia (Cersosimo and Koller, 2006); however, neurochemical changes due to 

Mn exposure extend beyond dopamine with recent data implicating ɣ-

aminobutyric acid (GABA) as a target of Mn neurotoxicity.   

Several models of Mn neurotoxicity have shown increased striatal GABA 

with various doses and duration of Mn exposure, but conflicting results have 

been reported on the effect of Mn on extracellular GABA (Takeda et al., 2002; 

2003; Anderson et al., 2008). Proteins critical to synaptic regulation of GABA 

have been examined but minimal changes in gene expression or tissue protein 

levels were detected after Mn exposure. It is clear that Mn interferes with GABA
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 regulation; but specific mechanisms involved remain elusive. Identifying these 

mechanisms will aid in the development of treatments for Mn neurotoxicity.   

Early detection of Mn neurotoxicity has proven difficult, with most cases of 

toxicity diagnosed after neurological symptoms are present. Additionally, few 

studies have focused on detecting early markers of Mn accumulation. There is a 

glaring need to develop biomarkers associated with disease progression, as well 

as prophylactic treatments that may benefit individuals with increased risk of Mn 

exposure.   

The following studies were designed to elucidate the effect of Mn on 

GABA regulation and identify biomarkers associated with Mn neurotoxicity. The 

specific aims were as follows: 

1. Characterize the effect of Mn on extracellular GABA and GABA 

clearance mechanisms in the striatum of Mn exposed rats. The 

hypothesis for this aim was that altered extracellular GABA observed 

with Mn exposure is due to Mn impeding GABA transporter (GAT) 

function.   Recent studies have shown that Mn increases extracellular 

GABA without altering GAT protein or mRNA levels. We sought to 

elucidate whether Mn altered the function of GABA transport 

mechanisms. 

2. Identify biomarkers of Mn accumulation that correspond with 

behaviors indicative of neurotoxicity. The hypothesis for this aim 

was that changes in metabolism due to Mn toxicity would create 
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detectable biomarkers that could be elucidated using metabolomics 

analysis. A shift in the metabolome of Mn exposed rats would not only 

provide candidates for testable biomarkers, but would identify global 

effects of Mn exposure that correspond with behaviors consistent with 

neurotoxicity.  

3. Identify the effect of cellular Mn localization on disturbances in 

GABA uptake. The central hypothesis for this aim was that the 

location of Mn accumulation within the cell affects how Mn interferes 

with GABA uptake. Identifying the burden of Mn accumulation in the 

cytosolic and membrane fractions of cells will help elucidate 

mechanisms by which Mn decreases GABA uptake.    

4. Test the efficacy of quercetin as a treatment for Mn neurotoxicity. 

The hypothesis for this aim was that pretreatment with a protein kinase 

C (PKC) inhibitor quercetin will stabilize GABA transport proteins on 

the plasma membrane preserving function. Mn is known to activate the 

PKC signaling pathway that regulates membrane recycling of GABA 

and dopamine transporters. Modulating Mn induced PKC signaling with 

quercetin will preserve normal transport function.  

The overall hypothesis of these studies was that Mn exposure would 

impair GABA neurotransmission by disrupting synaptic uptake mechanisms and 

the changes in GABA uptake would correspond with Mn targeting the plasma 

membrane, inducing PKC signaling, and initiating GAT internalization. 
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Additionally, Mn accumulation would be associated with detectable metabolic 

changes, and some of the neurotoxic effects of Mn exposure could be modulated 

by pretreatment with the bioactive food component quercetin.  
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CHAPTER II 

 

REVIEW OF LITERATURE 
 
 

The section entitled Neurochemical Changes with Manganese 
Exposure including figures 2.2 and 2.3 were previously published by 
Springer Science in Metal Ion in Stroke, chapter 27: The Neurochemical 
Alterations Associated with Manganese Toxicity, pages 549 to 567, in 
2012. The coauthors of the book chapter were Steven C. Fordahl and 
Keith M. Erikson. Kind permission from Springer Science and Business 
Media can be found in Appendix A. References from this article can be 
found in the Reference section. 
 
 

Introduction 

 Manganese (Mn) is an essential dietary element that functions primarily as 

a coenzyme in several biological processes. These processes include, but are 

not limited to, macronutrient metabolism, bone formation, free radical defense 

systems, and in the brain, ammonia clearance and neurotransmitter synthesis. 

Although Mn has a diverse role in the human body, dietary requirements for this 

micronutrient have been modestly established at 1.8 and 2.3 mg per day for 

healthy adult women and men, respectively (National Academy of Science, 

2002). This recommendation takes into account relatively low absorption rates of 

Mn (≤5%) but still fulfills the biological requirements for this trace mineral. 

Because Mn is a ubiquitous metal found in a variety of foods (fruit, nuts, 

legumes, whole grains, and brewed tea) dietary Mn deficiency is not of public 

concern; however, because Mn is abundant in the earth’s crust and is widely 
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used for industrial purposes, excessive exposure to Mn does happen and can 

lead to dire neurological consequences.  

 Overexposure to Mn most commonly happens via inhalation to excessive 

amounts of airborne Mn particulate, but has also been reported to occur after 

consumption of Mn polluted drinking water (ATSDR, 2008). Symptoms from 

these exposure routes manifest in a slightly different manner, which will be 

covered in further detail later in this chapter, but the end result is Mn 

accumulation in the brain (most notably the basal ganglia) interfering with 

neurotransmitter systems that result in cognitive and movement disorders similar 

to Parkinson’s disease. Due to the occurrence and clinical relevance of Mn 

neurotoxicity, exposure thresholds have been established by the Environmental 

Protection Agency (EPA) and The World Health Organization (WHO) at 0.3 mg/L 

in drinking water and 0.2 mg/m3 for chronic air exposure (ATSDR, 2008).  Even 

with these guidelines in place, Mn neurotoxicity still occurs predominantly in 

factory or mining industries where Mn is procured for welding, smelting, or 

battery manufacturing. Workplace guidelines for airborne Mn limits have been 

established for these settings; however, chronic exposure may still result in toxic 

accumulation. Similarly, populations that rely on well water from ground water 

sources with propensity for Mn contamination have reported learning impairment 

in children consuming unfiltered well water (Wasserman et al., 2006).  
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Manganese Exposure 

Dietary 

 Mn is commonly found in the food supply but is particularly abundant in 

whole grains (oat bran and wheat), fruits (pineapple), vegetables (spinach), and 

red meats (USDA, 2002). The daily average intake of Mn has been estimated at 

2-6 mg for adults with vegetarians consuming slightly greater amounts, estimated 

around 11 mg/day (Freeland-Graves and Turnlund, 1996; Gibson, 1994). These 

quantities are adequate for ideal health and fall slightly above the National 

Academy of Sciences recommended intakes. Fortunately, because absorptive 

mechanisms for Mn in the gut are tightly regulated, excess dietary Mn rarely 

results in toxicity. Absorption of dietary Mn is influenced by several different 

factors including intestinal pH, the presence of the divalent metal transporter 

(DMT1), other divalent metals competing for absorption (e.g. iron (Fe), copper 

(Cu), or zinc (Zn)), and chelating agents such as phytic acid (Aschner and 

Aschner, 2005; Hurrell, 2004). DMT1 is the primary metal transporter in the 

intestinal tract (Garrick et al., 2003), but DMT1 is also a key transporter allowing 

Mn to cross the blood brain barrier (BBB) (Erikson et al., 2005). In the gut, DMT1 

expression is influenced primarily by systemic Fe status (Gunshin et al., 2001) 

with duodenal biopsy data showing increased protein levels of DMT1 correlating 

with decreased serum ferritin (Zoller et al., 1999). Serum ferritin levels were also 

associated with prolonged Mn retention in males but females with lower ferritin 
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levels had increased Mn absorption measured using the radio isotope 54Mn 

(Finley, 2004). There is an inverse relationship between Fe and Mn with regard 

to absorption and tissue distribution where, generally, iron deficiency (ID) 

increases Mn absorption (Finley, 1999), and in cases of Mn overexposure, ID 

accelerates tissue Mn accumulation (Anderson et al., 2008).   

Environmental  

Occupational exposure to Mn is the most common cause of Mn 

neurotoxicity.  Several cases of neurotoxicity have been linked to Mn exposure 

within mining, manufacturing, and welding industries (Hochberg et al., 1996; 

Crossgrove and Zheng, 2004).  Inhalation of dense Mn particulate, up to 100-fold 

higher than established safe limits, has been reported workers who display 

neurological symptoms (Crossgrove and Zheng, 2004). While acute exposure 

manifests neurotoxic symptoms in a fairly quick manner, chronic exposure to low 

dose airborne Mn in the form of methylcylopentadienyl manganese tricarbonyl 

(MMT) or Mn contaminated drinking water may present future health concerns. 

This is particularly true in vulnerable infant and iron deficient populations where 

chronic low grade exposure to Mn has been associated with cognitive 

impairments (Wasserman, 2006; Sahni et al., 2007). In Bangladesh, children 

drinking from wells with a high Mn content (793 μg/L, compared to the 

Environmental Protection Agencies (EPA) established safe limit of 300 μg/L) had 

significantly reduced verbal scores and overall intellectual performance 
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compared to children consuming water Mn concentrations under the EPA’s 

established safe limit (Wasserman, 2006). 

Manganese Transport 

Under normal conditions Mn homeostasis is tightly regulated by the body 

with excess Mn excreted through the biliary system. Increased exposure to 

exogenous Mn, however, can overwhelm systemic regulation and result in 

peripheral tissue accumulation, most notably in the brain (Gianutsos et al., 1985). 

Systemic distribution of Mn to extrahepatic tissues is handled by transport 

proteins including albumin, β-globulin, and transferrin (Critchfeld and Keen, 

1992). Accumulation of Mn in the brain is well documented (specifically in the 

iron-rich basal ganglia Uchino et al., 2007)), but involves transport systems 

capable of bypassing the blood brain barrier (BBB). To date several transport 

mechanism have been discovered, but the mechanism engaged depends largely 

on Mn speciation, divalent (Mn2+) or trivalent (Mn3+), and plasma concentrations.  

Entrance of Mn via the cerebral spinal fluid at the choroid plexus tends to favor 

high plasma concentrations, whereas cerebral capillary transport at the BBB 

predominate under lower physiologic concentrations (Aschner et al., 2007).  It is 

thought that the majority of Mn is chaperoned into the brain by Mn3+ bound to 

transferrin or uptake of Mn2+ by divalent metal transporter DMT-1 (Aschner et al., 

2007).  Ancillary Mn transport across the BBB also occurs through active 

transport, leak pathways, in the form of Mn2+ citrate, and through store-operated 
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calcium channels (Aschner and Gannon, 1994; Crossgrove et al., 2003; 

Crossgrove and Yokel, 2005). 

 DMT-1 is a known transporter of Mn and Fe that is expressed on the 

apical wall of endothelial cells, cerebral capillaries, on foot processes of 

astrocytes (integral to the BBB), and choroid epithelia of the blood-CSF barrier 

(Garrick et al., 2003).  A study by Chua and Morgan, (1997) helped characterize 

the role of DMT-1 in Mn transport using homozygous Belgrade (b/b) rats with a 

defective DMT-1 allele.  Mn and Fe transport into the brain was impaired in b/b 

rats compared to heterozygous (+/b) and Wistar rats indicating the importance of 

DMT-1. 

 Mn bound to transferrin represents another mechanism by which Mn 

crosses the BBB. Transferrin can bind to transferrin receptors at the cerebral 

capillaries for endocytosis into the capillary endothelium (Fishman et al., 1987).  

Within the endothelial cell, Mn is liberated from systemic transferrin to complex 

with brain synthesized transferrin for transport into the brain.  A small amount of 

Mn in the blood is bound to citrate, this Mn-citrate complex is thought to cross the 

BBB through monocarboxylate transporter (MCT) (Aschner et al., 2007).  Other 

small scale transport mechanisms include the zinc family transporter (ZIP) and 

leak pathways (Aschner et al., 2007).  The mechanisms by which Mn travels 

within the brain are still largely undefined; however, transferrin is thought to play 

a role.   
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Lastly, Mn transport to the brain has also been demonstrated to occur 

along olfactory neurons (Dorman et al., 2002).  Solubility of the Mn species 

appears to play a role in transport, with more soluble MnCl2 and MnSO4 

concentrations peaking rapidly compared to less soluble MnHPO4 (Dorman et al., 

2001; Dorman et al., 2002; Brenneman et al., 2000).  Inhaled Mn concentrates 

primarily in the olfactory bulb, but the mechanism governing Mn relocalization 

once it has entered the brain has yet to be fully elucidated (Leavens et al. 2007). 
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Figure 2.1.  Manganese Transport at the Blood Brain Barrier. 

 

Figure 2.1.  Manganese Transport at the Blood Brain Barrier. – The above 
figure is a schematic of the Mn transport mechanism across the BBB.  Primary 
transport routes (DMT-1 and transferrin endocytosis) are depicted with more 
abundant BBB density and bold arrows compared to the other transport 
mechanism (ZIP, Mn2+-Citrate, and leak pathways).  Endocytosis of Mn-bound 
transferrin 1) Mn bound to systemic transferrin reaches the BBB. 2) Mn-bound 
transferrin binds to transferrin receptor. 3) Endocytosis of the receptor bound 
complex 4) Mn is liberated from systemic transferrin and binds to 5) brain-
produced transferrin where it is transferred across the basolateral surface of the 
capillary endothelium into the brain. 
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Neurochemical Changes with Manganese Exposure 

Manganese, Dopamine, and Neurodegeneration 

 Much of the early evidence linking Mn overexposure to alterations in 

neurochemical functioning has focused on dopamine biology within the basal 

ganglia (Neff et al., 1969; Mustafa and Chandra, 1971; Barbeau, 1984). 

Dopamine input to the striatum from the substantia nigra works in concert with 

GABA and glutamate to modulate voluntary movements and fine motor control. 

The effect of Mn accumulation on the dopaminergic activity of the basal ganglia 

results in extrapyramidal movement disorders similar to Parkinson’s disease.  

This Mn-induced condition termed manganism is characterized by bradykinesia, 

rigidity, dystonia, and a cock-like gait (Cersosimo and Koller, 2006). Movement 

abnormalities are often accompanied by behavioral alterations associated with 

the dopaminergic system including anxiety, diminished libido, apathy, and 

emotional instability (Pal et al., 1999). While manganism and Parkinson’s disease 

are clinically distinct, their phenotypes are driven largely by alterations in 

dopamine biology. The maintenance of normal dopamine biology is dependent 

upon rapid recycling of extracellular dopamine into presynaptic neurons (Iversen, 

1971).  Since this dopamine reuptake is dependent upon a properly functioning 

dopamine transporter protein, several recent studies have examined the effect of 

Mn exposure on dopamine transporter biology. 
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Manganese and Dopamine Transporters 

 The dopamine transporter (DAT) is a member of the solute carrier (SLC) 

protein family (SLC6a3) that requires co-transport of two Na+ and one Cl- per 

molecule substrate. DAT is a transmembrane protein regulated by 

phosphorylation, ubiquitination, and glycosylation that is expressed on 

presynaptic neuronal membranes and by most glial cell types, primarily 

astrocytes (Robinson, 2002). DAT clears excess dopamine from the synapse 

against its concentration gradient for repackaging into neuronal vesicles or for 

degradation. The interaction between Mn and DAT is dual-faceted. Evidence of 

impaired dopamine transport has been reported with Mn neurotoxicity suggesting 

impedance of DAT function (Kern et al., 2010); however, DAT has also been 

shown to aid in Mn transport (Anderson et al., 2007). Whether Mn competes with 

dopamine as a substrate for DAT or alters DAT density by influencing membrane 

trafficking remains unknown.     

 Magnetic resonance imaging (MRI) and positron emission tomography 

(PET) technologies using Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) 

have been used to identify brain Mn accumulation and DAT functionality in 

human subjects. A case study of two Taiwanese welders (the first, 12 yrs 

removed from 1 yr of Mn exposure; the second, 10 days removed from 8 yrs of 

exposure) used T1-weighted MRI to identify brain Mn accumulation and 18F-Dopa 

to monitor dopamine uptake (Kim et al., 1999). The first subject showed no 



15 
 

indication of Mn accumulation and exhibited normal dopamine uptake in the 

striatum. The second subject had high MRI signal intensities in the globus 

pallidus (GP), indicating Mn accumulation, and significantly reduced 18F-dopa 

uptake in the striatum. A 6 month follow up of the second individual showed a 

reduction of GP Mn approaching normal levels. Similar PET scan studies using 

18F-DOPA to identify dopamine uptake in the striatum report a decrease in 

striatal dopamine uptake in Parkinson’s disease (Brooks 2004), but normal 

uptake with Mn accumulation (Kim, et al. 1998). The fact that the second subject 

in the case study exhibited decreased uptake 10 days post Mn exposure, but 

both had normal uptake once removed from exposure, suggests that Mn inhibits 

DAT-mediated dopamine uptake in a transient nature.  Findings from a study by 

Huang et al. (2003) corroborate these data, identifying a slight decrease in 

striatal DAT density in Mn exposed smelters compared to controls, though still 

significantly higher than Parkinson’s disease patients. 

Animal models of Mn toxicity support impaired DAT function observed in 

human subjects.  Increased DAT binding potential, followed by decreased DAT 

function and motor deficits have been reported in non-human primates exposed 

to intravenous MnSO4 (10-50 mg/kg) (Chen, et al. 2006; Guilarte, et al., 2006). 

Moreover, oral administration of Mn (750 µg/day) to rat pups PND 1-21 

decreased striatal DAT density up to two months post treatment, impaired 

dopamine uptake, and modified learning behavior (McDougall, et al., 2008).  

Decreased striatal DAT has also been associated with hyperactivity in similarly 
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aged Mn exposed rats (Kern et al., 2010). Coupled with clinical and case reports 

from human subjects, these data suggest that Mn initiates a decline in dopamine 

neurotransmission that is characterized by a decrease in DAT function, which 

contributes to movement and behavior abnormalities seen with Mn over-

exposure.   

 Additional studies exploring the Mn/DAT relationship discovered that DAT 

may have a functional role in brain Mn transport. Ingersoll et al., (1999) noted 

decreased ventral pallidum Mn accumulation when DAT reuptake blockers 

cocaine and reserpine were given to rats exposed to Mn (Ingersoll et al., 1999).  

This finding was substantiated when  Mn accumulation was attenuated in 

striatopallidal tissue from DAT knockout mice (Erikson et al., 2005) and rats 

given the DAT inhibitor GRB12909 (Anderson et al., 2007a). These studies 

suggest that DAT aids in Mn accumulation leading to functional DAT decline.  

Manganese and Dopamine Receptors 

 Dopamine receptors are divided into two different families, D1-like and D2-

like, which are both G-protein coupled; however, D1-like receptors increase 

cellular cyclic adenosine monophosphate (cAMP), while D2-like receptors inhibit 

cAMP production. D2-like receptors also tend to be presynaptic and function as 

auto receptors to modulate dopamine release.  

 A case report on a subject with manganism 40yrs post exposure using 

PET to detect 18F-methylspiperone binding to D2 receptors showed a decrease in 
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D2 density, possibly indicative of neurodegeneration (Kessler et al., 2003). 

Another individual with non-Mn-induced liver encephalopathy showed increased 

Mn in the GP via T1-weighted MRI also exhibited decreased D2 binding potential 

(Butterworth et al., 1995). Conversely, primates chronically exposed to Mn (0.1g 

per month for 26 months) had normal D2 density but decreased binding of the D1 

agonist 3H-SCH 23,390 compared to control (Eriksson et al., 1992). The density 

and function of D2 is essential in regulating dopamine function, but has also been 

shown to regulate the release of glutamate at cortical/striatal nerve terminals 

(Calabresi et al., 2001).  Regulating glutamate input into the striatum is critical to 

regulate GABAergic projections from the striatum. Rodent models have 

repeatedly shown an increase in dopamine receptor activity. C57BL/6 mice 

receiving 20-40 mg MnCl2/kg/d for 5 days had increased striatal D2 protein and 

mRNA levels, which were associated with decreased motor coordination (Nam 

and Kim, 2008). Early Mn exposure in postnatal rats (PND 1-21) has also been 

linked with elevated striatal D2 expression and increased D2 binding sites 

(McDougall et al., 2011), and increased D1 and D2 receptor levels in the nucleus 

accumbens and prefrontal cortex (Kern and Smith, 2011). Some of the changes 

seen in early Mn exposure may also persist later in life (Kern and Smith, 2011), 

thus even short term Mn exposure during critical developmental periods may 

have a deleterious long term effect. Chronic Mn exposure later in life seems to 

differentially alter dopamine receptors.  Rats exposed to solubilized Mn 

containing welding fumes for 7 weeks had decreased D2 mRNA expression in the 
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striatum and midbrain for up to 35 days after exposure ceased (Sriram et al., 

2010). These studies suggest that dopamine receptor functioning in the 

developing brain is more vulnerable to Mn exposure than the mature brain. 

Manganese and Dopamine Summary  

Unlike Parkinson’s disease pathology, Mn induced changes in dopamine 

may be a function of altered transport or receptor proteins rather than 

dopaminergic neuron loss.  Whether or not Mn antagonizes DAT through direct 

binding, competitive inhibition, or some other mechanism is not known. Altered 

striatal DAT function, with a concomitant decline in dopamine receptors levels, 

produces deficits in motor control and may contribute to some of the behavior 

changes (e.g. hyperactivity) observed with Mn neurotoxicity. 
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Figure 2.2. Manganese Toxicity and Dopamine. 
 

 

Figure 2.2. Manganese Toxicity and Dopamine. – Schematic of the effects of 
Mn on dopamine biology. 1) Dopamine transporter (DAT) facilitates the transport 
of Mn into the cell aiding in accumulation (Erikson et al., 2005).  2) There is a 
short initial increase in DAT binding potential followed by decreased DAT 
function and density (Kern et al., 2010).  3) Mn decreases the density and 
binding potential of dopamine auto receptor D2 (Butterworth et al., 1995).  4) 
Increased expression and activity has been reported in both D1 and D2 receptors 
(Kern et al., 2010; McDougall et al., 2011).   
Abbreviations – Na+:sodium, K+: potassium, Ca2+: calcium, Mn2+: manganese, 
DAT: dopamine transporter, D1: metabotropic postsynaptic dopamine receptor, 
D2: metabotropic presynaptic dopamine autoreceptor, cAMP: cyclic adenosine 
monophosphate.  
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Manganese and GABA Neurotransmission 

 Dense populations of GABAergic neurons are found in the basal ganglia 

primarily located in the striatum and GP. The inhibitory effect of GABA in these 

regions counteracts excitatory glutamate projections from the cortex, and along 

with dopamine input, helps regulate motor control. Similar to dopamine, evidence 

has shown that Mn toxicity alters GABA biology within the basal ganglia; 

however, conflicting results have been reported. Mn exposure has been linked 

with both increased and decreased GABA levels in the brain. Early studies 

identified increased striatal GABA in rats exposed to 10 mg MnCl2/ml drinking 

water for two months (Bonilla, 1978), and after six months of exposure to dietary 

MnCl2 (4% Mn diet) (Gianutsos and Murray, 1982). It is important to note that 

Gianutsos and Murray did not observe a change after 1-2 months of exposure. 

Shorter term, lower-dose exposure (6mg Mn/kg/d), however, decreased whole 

brain GABA concentrations (Chandra et al., 1982). Multiple factors may 

contribute to these differential findings such as age of subject and length and 

route of exposure. More recently, similar inconsistencies have been noted. 

Increased GABA was detected in striatal tissue of weanling rats receiving 20 mg 

Mn/kg/d for 30 days (Lipe et al., 1999), after intraperitoneal (i.p.) injection of 4.8 

mg MnCl2/kg/3x week for 5 weeks (Gwiazda et al., 2002), and in rat pups (post 

natal day 21) after nursing from Mn exposed dams (Garcia et al., 2006), but an 

inverse correlation was found between brain Mn levels and striatal GABA in 

normal, dietary iron deficient, and Mn exposed rats (Erikson et al., 2002). While 
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ex vivo detection of tissue GABA identifies brain regional changes that may 

perturb neurotransmission, it does not delineate between GABA sequestered in 

cell bodies versus physiologically relevant extracellular GABA in the synapse.  

Monitoring extracellular GABA during Mn exposure capitulates how Mn alters 

GABA neurotransmission, specifically by elucidating the effects of Mn on GABA 

transport. 

Manganese and GABA Transporters 

 There are four different isoforms of the GABA transporter (GAT) -1, -2, -3, 

and -4 all members of the solute carrier transport family SLC6. In the brain, 

presynaptic neurons express GAT1 and astrocytes largely express GAT3, both of 

which function to clear GABA from the synapse (Minelli et al., 1995). The effect 

of Mn on GABA transporters has been observed directly by measuring 3H-GABA 

uptake or indirectly with in vivo microdialysis to monitor transient changes in 

extracellular GABA during or after Mn treatment.   

 Microdialysis studies, similar to tissue analysis of GABA, have reported 

opposing effects of Mn on GABA in the extracellular space.  Two studies by 

Takeda et al., (2002; 2003) used microdialysis to examine the response of 

extracellular neurotransmitters when perfused with 200 nM MnCl2. Direct delivery 

of Mn into the striatum and hippocampus of rats significantly reduced 

extracellular GABA (Takeda et al., 2002; 2003). These animals had not been 

exposed to any other form of exogenous Mn prior to direct probe injection 
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representing the immediate effect of extracellular Mn on a synapse. To help 

characterize the effect of Mn neurotoxicity on extracellular GABA a study by 

Anderson et al. (2008) measured extracellular GABA in rats with sub-chronic Mn 

exposure.  Anderson et al. (2008) reported increased extracellular GABA in the 

striatum during the sixth week of oral Mn exposure (1g Mn/L drinking water); 

however, no changes in GAT1 protein levels were detected compared to control 

animals, which implied that Mn was impeding the function of GAT1 thereby 

decreasing GABA uptake.  These data also corroborate previous evidence of 

decreased 14C-GABA uptake in primary striatal cells and 3H-GABA uptake in 

striatal synaptosomes after Mn exposure (Defazio et al., 1996; Anderson et al., 

2007b, respectively). To confirm whether or not GAT1 function is impaired due to 

Mn exposure, in vivo microdialysis was performed on Mn exposed rats (1g Mn/L 

drinking water) using nipecotic acid, a potent GAT inhibitor, to pharmacologically 

probe GAT functioning. Perfusion of nipecotic acid into the striatum induced a 

228% increase of extracellular GABA in control rats, an effect that was absent in 

Mn exposed rats (Fordahl et al., 2010). Mn exposure appears to block GABA 

uptake via decreased GAT functioning, but future experiments are warranted to 

identify the mechanism of action on GAT inhibition. Two putative factors 

contributing to Mn induced GAT inhibition are: 1) altered regulation of protein 

kinase C (PKC), or 2) taurine mediated feedback via GABA auto-receptor 

activation. PKC activation has been reported with Mn exposure 

(Latchoumycandane et al., 2005), linked to phosphorylation and subsequent 
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internalization of GAT1 (Gadea and Lopez-Colome, 2001), and shown to 

decrease 3H-GABA uptake (Sato et al., 1995). Additionally, taurine homeostasis 

is disrupted with Mn exposure (Fordahl et al., 2010); because taurine is a known 

modulator of GABA receptors (Namima et al., 1982), alterations in extracellular 

taurine may contribute to the Mn-induced changes in GAT function. 

Manganese and GABA Receptors 

 There are two different classes of GABA receptors expressed on either 

pre- or postsynaptic plasma membranes. Primarily, GABAA receptors conduct 

inhibitory current on post synaptic neurons via the opening of Cl- ion channels, 

while GABAB receptors modulate release of GABA from the presynaptic terminal 

through activation of G-protein linked signal transduction and therefore are 

considered autoreceptors.  To date, it remains unclear if accumulated brain Mn 

due to exposure interferes with GABA receptor activation/density, but due to its 

role in attenuating the functional capacity of GAT1, it is plausible. 

 Little data has been collected on the relationship between Mn and GABA 

receptors. Chronic exposure (26 weeks and 7-59 days) to varying Mn 

concentrations in primates has shown no effect on GABAA density in two different 

studies (Eriksson et al., 1992; Burton et al., 2009). In rats, however, waterborne 

Mn exposure alters both GABAA and GABAB protein and mRNA expression in a 

heterogeneous fashion (Anderson et al., 2008). Specifically, Mn exposure 

increased GABAA protein levels in the GP and hippocampus, although GABAA 
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mRNA levels were unchanged in all regions except a decrease in the substantia 

nigra (Anderson et al., 2008). Decreased GABAB protein levels were found in the 

GP, hippocampus, and substantia nigra accompanied by decreased mRNA in the 

hippocampus, substantia nigra, and the striatum.  Decreased GABAB levels may 

explain the increased extracellular GABA levels observed during Mn exposure 

(Anderson et al., 2008; Fordahl et al., 2010) due to this loss of autoreceptor-

mediated GABA release.  The hyperactivity associated with Mn exposure (Kern 

et al., 2010; Fordahl et al., 2012) could also be linked to decreased GABAB levels 

as GABAB null mice have hyper-locomotion and increased striatal dopamine 

(Vacher et al., 2006). 

Manganese and GABA Summary 

 Mn neurotoxicity disrupts tissue and extracellular GABA by altering normal 

transport and receptor function, which impairs the ability of GABA to counteract 

the excitatory neurotransmission of glutamate in the basal ganglia. It is important 

to note that when examining GABA biology due to Mn neurotoxicity, there are 

clearly species differences (e.g., minimal effect in primates but robust effects in 

rodents); differences due to the developmental age (e.g., developing brains are 

more vulnerable than developed brains); as well as differences due to exposure 

length (acute versus chronic) and delivery method (i.e., enteral versus 

parenteral).  When all of these factors are considered, it is evident that enteral, 

subchronic Mn exposure in the developing brain causes elevated striatal 
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extracellular GABA which is related to attenuated GAT functioning.  Additionally, 

this Mn exposure paradigm is linked with heterogeneous alterations in GABA 

receptor levels in the basal ganglia which likely accounts for the hyperlocomotion 

associated with Mn neurotoxicity. 
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Figure 2.3. Manganese Toxicity and GABA. 
 

 

Figure 2.3. Manganese Toxicity and GABA. – Schematic of the effects of Mn 
on GABA biology.  1) Mn exposure has been linked with decreased GAT1 gene 
expression and impaired GABA uptake in astrocytes and synaptosomes 
(Anderson et al., 2007;2008).  2) In vivo microdialysis using GAT inhibitor 
nipecotic acid revealed that Mn interferes with GAT mediated GABA clearance 
(Fordahl et al., 2010) resulting in 3) increased extracellular GABA.  4) Increased 
GABAA protein levels have been reported in Mn exposed animals as well as 5) 
decreased GABAB protein and mRNA levels (Anders on et al., 2008) which may 
alter inhibitory feedback mechanisms necessary for maintaining proper 
extracellular GABA concentrations.  
Abbreviations – Na+:sodium, K+: potassium, Ca2+: calcium, Mn2+: manganese, 
Cl-: chloride, GABA: γ-aminobutyric acid, GAT-1: GABA transporter, GABAA: 
ionotropic GABA receptor, GABAB: metabotropic GABA receptor, cAMP: cyclic 
adenosine monophosphate. 
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Mechanisms Regulating GABA and Dopamine Transporters 

 Cellular regulation of GAT1 and DAT by Mn is poorly understood.  

Understanding how these proteins are regulated by Mn will help us identify how 

neurochemical communication within the basal ganglia may influence 

neurodegenerative pathologies. Normally GATs and DAT are recycled to and 

from the plasma membrane in response to membrane depolarization, cellular 

calcium levels, or feedback mechanism from pre-synaptic auto-receptor 

activation (Melikian, 2004 for review).  Membrane recycling occurs at 

approximately 10%/min for GAT1 (Whitworth and Quick, 2001) and 3-5%/min for 

DAT (Loder and Melikian, 2003), and once internalized the transporters reside 

within endosomes for quick redistribution to the plasma membrane. Mounting 

evidence identifies PKC as an upstream mediator of GATs and DAT 

internalization (Torres et al., 2003; Copeland et al., 1996; Melikian and Buckley, 

1999; Beckman et al., 1999; Sato et al., 1995; Quick et al., 1997; Quick et al., 

2004). It is thought that phosphorylation of GATs and DAT by PKC is the first 

step in the endocytic process, tagging the protein, for subsequent internalization 

(Mortensen et al., 2008). Cellular phosphatases such as dual specificity 

phosphatase 6 (DUSP6) have been shown to play a role in this process 

(Mortensen et al., 2008) demonstrating the complexity of membrane trafficking; 

however, PKC activation and phosphorylation of membrane transporters remains 

the initial step in this process.  Mn has been associated with increased PKCδ 
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activation (Kitazawa et al., 2005), but not the neuron specific isoform PKCγ. 

Moreover, the events leading up to this activation remain unclear.   

Manganese Neurotoxicity 

Mechanisms 

 Proposed mechanisms of Mn neurotoxicity range from functional changes 

in neurotransmission, to cellular organelle damage, and oxidative stress caused 

by Mn accumulation.  The effect of Mn on the brain is also influenced by route of 

exposure and magnitude of accumulation. Inhalation of Mn is generally 

associated with oxidative stress and increased neuronal apoptosis (Seo et al., 

2013), whereas ingestion of Mn has more of a subtle effect altering 

neurochemistry and cognition (Gwiazda et al., 2002; Fitsanakis et al., 2006; 

Wasserman et al., 2006). 

Excess Mn is primarily sequestered in astrocytes (Aschner et al. 1999).  

Dysfunction is thought to occur when excess Mn burden on astrocytes and other 

glial cells disrupts their ability to modulate the neuronal environment.  This leaves 

neurons vulnerable to excitotoxicity, reactive oxygen species (ROS), and other 

toxic byproducts generally processed by astrocytes. Mn is known to localize the 

mitochondria of cells where its cytotoxic properties have been linked to inhibition 

of complex I and II of the electron transport chain (Zhang et al., 2004), increased 

production of ROS (Ali et al., 1995), disruption of mitochondrial membrane 

potential (Rao and Norenberg, 2004), and caspase 3 activation leading to 
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apoptosis (Oh et al., 2006).  Other than energy production, one of the key 

physiologic functions of the mitochondria is to sequester cellular calcium (Gunter 

et al., 2004), a function shared with the endoplasmic reticulum (ER) (Koch, 

1990). Similarly, Mn has been shown to induce ER stress (Chun et al., 2001) 

which is associated with the release of calcium into the cytosol (Verkhrastsky, 

2004; Arduino et al., 2009). Altered cytosolic calcium may in turn trigger caspase-

3 mediated apoptosis (Tantral et al., 2004). Additionally, increased ROS 

produced by Mn has also been associated with lipid peroxidation (Milatovic et al., 

2007). These data display the breadth of damage instilled by Mn on several 

cellular compartments. Cells (astrocytes or neurons) damaged by Mn have an 

undoubtedly hampered ability to respond to the brains dynamically changing 

environment. Linking mechanistic changes (due to Mn) to functional outcomes of 

toxicity is the next step in understanding the progression of Mn neurotoxicity.   

Diagnosis 

Early symptom identification and removal from Mn exposure can improve 

the prognosis of Mn neurotoxicity.  The use of magnetic resonance imaging 

(MRI) has been demonstrated to accurately reflect brain Mn deposits (Dorman et 

al., 2006; Fitsanakis et al., 2008), and when used in conjunction with positron 

emission tomography (PET) can identify biological alterations in 

neurotransmission (Kim et al., 1999). While MRI and PET technologies have 

advanced the identification of Mn neurotoxicity, the practical application and cost 
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of these tools may preclude widespread use. Moving forward, it is important to 

establish cost effective diagnostic measures that correspond with brain Mn 

accumulation similar to MRI.  Identifying biomarkers of Mn neurotoxicity in 

biological fluids may provide an alternative solution to confirm the extent of brain 

Mn accumulation.   

   To date, few reliable markers exist to measure the extent of brain Mn 

accumulation. Prospective compounds such as lymphocytic manganese 

superoxide dismutase (MnSOD) and arginase were suggested as biomarkers 

over a decade ago; however, each possessed diagnostic limitations (Davis and 

Greger, 1992; Brock et al., 1994).  More recently, Dorman et al. (2008) screened 

for potential Mn exposure biomarkers using a liquid chromatography-mass 

spectrometry method to identify metabolomic changes in the blood and urine of 

monkeys exposed to airborne MnSO4.  Of the 27 metabolites significantly altered 

by Mn, three blood metabolites corresponded with Mn accumulation in the globus 

pallidus: phenylpyruvate, disaccharides, and guanosine (Dorman et al., 2008).  

While these markers show promise, additional studies are needed to confirm 

their potential as consistent biomarkers.   

 The study of metabolomics is emerging as a reliable approach to identify 

potential biomarkers in diseased states including cancer (Kim et al., 2008) and 

amyotrophic lateral sclerosis (Pradat and Dib, 2009), among other potential 

applications (Oresic et al., 2006). Methods using liquid and gas chromatography, 



31 
 

coupled with mass spectrometry (LC-MS, GC-MS), enable the detection of 

thousands of metabolites in a biological sample (Halket et al., 2005).  These 

methods are ideal for monitoring changes in metabolite byproducts due to altered 

cellular metabolism in either a diseased state or after application of selected 

therapies.   

Proposed Therapies for Manganese Neurotoxicity 

Chelation Therapy 

Few treatment options have been proposed for Mn neurotoxicity. Removal 

from the Mn toxic environment is the first course of action, but only two clinical 

treatments have been tested; calcium disodium EDTA (CaNa2EDTA) and para-

Aminosalicylic Acid (PAS), each yielding success in a small sample cohort. 

CaNa2EDTA is a synthetic compound used in detergents and food preservatives 

that is known to bind divalent and trivalent metal ions.  A study by Hernandez et 

al. (2006) used CaNa2EDTA to treat seven welder/foundry workers presenting 

Mn induced Parkinson’s symptoms.  Five of the seven workers showed 

improvement in muscle rigidity and postural tremor. The use of PAS as treatment 

for Mn intoxication was investigated in a case study of a 50 year old woman who 

had been exposed to airborne Mn for 21 years.  All Mn-induced symptoms were 

significantly alleviated upon receiving PAS therapy, and the patient presented 

close to normal clinical, neurologic, MRI and handwriting scores in a follow up 

examination 17 yrs post treatment (Jiang et al., 2006). 
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Though CaNa2EDTA and PAS treatments have shown positive results, the 

sample sizes in these studies are small, and to date no progress has evolved 

from these putative therapies.  Additionally, these treatments are intended to 

relieve or improve symptoms secondary to Mn toxicity when neuronal damage 

may have already occurred. It is imperative that treatment strategies shift to 

prevent the onset of Mn neurotoxicity rather than the treatment of its symptoms. 

Recently, the use of bioactive food components in cancer and cardiovascular 

research fields has gained notoriety as a preventative treatment (Kris-Etherton et 

al., 2002). Bioactive food components are non-nutritive compounds found in 

foods that have immunoprotective properties within the plants themselves. These 

compounds are frequently pigments of plants and provide protection from free 

radical damage and other environmental insults. Emerging evidence suggests 

that a specific subclass of these bioactive components, the polyphenolic 

compounds, may have additional neuroprotective properties (See Kovacsova et 

al., 2010 for mini-review). 

Bioactive Food Components 

Quercetin is the most abundant polyphenolic compound in the American 

diet, particularly abundant in onions and blueberries (Scalbert and Williamson, 

2000). With the ability to cross the blood brain barrier, quercetin has emerged as 

a new compound in neuroprotection. Rats ingesting quercetin in the form of 

blueberry extract had decreased hippocampal neuron loss in a model of 
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excitotoxic neurodegeneration (Duffy et al., 2008). Similar decreases in 

hippocampal neuron loss and improvement in learning and memory were 

observed in an Alzheimer’s disease rodent model receiving quercetin in an 

inhaled liposome (Tong-un et al., 2010). Quercetin is also known to inhibit PKC 

activation, and to decrease inositol-3-phosphate activity (Ferriola et al., 1989; 

Natsume et al., 2009). These properties of quercetin make it a candidate for 

neuroprotection due to the role of PKC activation in GAT and DAT internalization.  

Once ingested, quercetin is metabolized by the liver and other tissues to 

form several bioactive variants. Isorhamnetin (ISO) is a methylated quercetin 

metabolite that is capable of crossing the BBB (de Boer et al., 2005). In a study 

where rats and pigs were administered oral quercetin and examined for quercetin 

metabolite content in plasma and various tissues, ISO was the predominant 

metabolite in the brain with concentrations reported at 200 nM (de Boer et al., 

2005). Plasma ISO levels were reported around 15 µM (de Boer et al., 2005). 

While ISO is a slightly less potent PKC inhibitor than quercetin, (Ferriola et al., 

1989) ISO has superior bioavailability and tissue distribution (Paulke et al., 

2012).  

Identifying a specific dietary food component of protective value against 

neurodegeneration would change the approach of therapeutic interventions. Until 

now treatments for Mn toxicity and neurodegenerative diseases have focused on 

treatments after the onset of symptoms. A dietary treatment utilizing a relatively 
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ubiquitous bioactive food component could be a proactive approach to mitigate 

disease prevention. Alternatively, quercetin may also provide an answer for 

therapeutic intervention alternative to pharmaceutical administration in 

progressing neurodegenerative disease. 

Conclusion 

It is well documented that brain Mn accumulation has a profound effect on 

the neurochemistry of the basal ganglia. Symptoms of Mn neurotoxicity are 

driven by changes in dopamine and GABA biology, where Mn is thought to impair 

synaptic proteins that govern these systems.  There is a lack of evidence, 

describing mechanisms by which Mn interferes with these synaptic proteins to 

dysregulate signal conductance. Elucidating the effect of Mn on GABA 

neurotransmission is especially important because it is an early event in Mn 

neurotoxicity. Understanding how Mn alters GABA may prevent changes in other 

neurotransmitter systems that result in cognitive and movement abnormalities.  

Collecting data to help characterize the progression of Mn neurotoxicity will aid in 

the development of early treatments prior to irreparable damage. 
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CHAPTER III 

 

MANGANESE EXPOSURE INHIBITS THE CLEARANCE OF 

EXTRACELLULAR GABA AND INFLUENCES TAURINE HOMEOSTASIS IN 

THE STRIATUM OF DEVELOPING RATS 

 

Reprinted from NeuroToxicology , volume 31, Steve C. Fordahl, Joel G. 

Anderson, Paula T. Cooney, Tara L. Weaver, Christa L. Colyer, and 

Keith M. Erikson, Manganese Exposure Inhibits the Clearance of 

Extracellular GABA and Influences Taurine Homeostasis in the Striatum 

of Developing Rats, pages 639 to 646, in 2010, with permission from 

Elsevier to use the article in its entirety as notated in Appendix A. 

References from this article can be found in the Reference section. 

 
 

Abstract 

Manganese (Mn) accumulation in the brain has been shown to alter the 

neurochemistry of the basal ganglia.  Mn-induced alterations in dopamine biology 

are fairly well understood, but recently more evidence has emerged 

characterizing the role of γ-aminobutyric acid (GABA) in this dysfunction. The 

purpose of this study was to determine if the previously observed Mn-induced 

increase in extracellular GABA (GABAEC) was due to altered GABA transporter 

(GAT) function, and whether Mn perturbs other amino acid neurotransmitters, 

namely taurine and glycine (known modulators of GABA). Extracellular GABA, 

taurine, and glycine concentrations were collected from the striatum of control 

(CN) or Mn-exposed Sprague-Dawley rats using in vivo microdialysis, and the
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 GAT inhibitor nipecotic acid (NA) was used to probe GAT function. Tissue and 

extracellular Mn levels were significantly increased, and the Fe:Mn ratio was 

decreased 36-fold in the extracellular space due to Mn exposure.  NA led to a 2-

fold increase in GABAEC of CNs, a response that was attenuated by Mn. Taurine 

responded inversely to GABA, and a novel 10-fold increase in taurine was 

observed after the removal of NA in CNs.  Mn blunted this response and nearly 

abolished extracellular taurine throughout collection. Striatal taurine transporter 

(Slc6a6) mRNA levels were significantly increased with Mn exposure, and Mn 

significantly increased 3H-Taurine uptake after 3-minute exposure in primary rat 

astrocytes.  These data suggest that Mn increases GABAEC by inhibiting the 

function of GAT, and that perturbed taurine homeostasis potentially impacts 

neural function by jeopardizing the osmoregulatory and neuromodulatory 

functions of taurine in the brain.         

Introduction 

  An essential trace element and a cofactor for several enzymes (Hurley 

and Keen, 1987), manganese (Mn) is involved in immune function, regulation of 

metabolism, reproduction, digestion, bone growth, and blood clotting (see review 

by Aschner et al., 2005).  While frank manganese deficiency has not been 

clinically observed in humans, Mn toxicity, in particular Mn neurotoxicity, is of 

concern (Aschner et al., 2005; Dobson et al., 2004).  A recent study suggests 

that high levels on Mn in drinking water (>300 µg/L) are associated with reduced 
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intellectual function in children (Wasserman et al., 2006) likely due to altered 

neurochemistry (Garcia et al., 2006; Anderson et al., 2008, 2009) Manganese 

neurotoxicity shares similarities with the neurodegenerative disorder Parkinson’s 

disease (Beuter et al., 1994; Calne et al., 1994; Pal et al., 1999), though the two 

are clinically distinct (Calne et al., 1994; Pal et al., 1999; Perl and Olanow, 2007).  

Due to the similarities of Mn neurotoxicity with Parkinson’s disease, most 

research in the area of Mn neurotoxicity has focused on its effect on the biology 

of dopamine.  Recently it has become clear that alterations in the biology of other 

neurotransmitters are involved in the etiology of Mn neurotoxicity, with the most 

evidence concerning γ-aminobutyric acid (GABA) (Anderson et al., 2007, 2008; 

Garcia et al., 2006; 2007; Gwiazda et al., 2002). 

With the intriguing findings that striatal extracellular GABA (GABAEC) 

concentrations are higher due to Mn exposure (Anderson et al., 2008), and 

uptake of 3H-GABA is attenuated by Mn-exposure in striatal synaptosomes 

(Anderson et al., 2007) despite no significant effect of Mn on GABA transporter 

(GAT) protein and mRNA levels (Anderson et al., 2008); we hypothesize that the 

functioning of the transporter is altered by Mn exposure leading to attenuation of 

GABA reuptake.  Thus, we designed our current experiment to pharmacologically 

probe the functioning of GAT by administering a known uptake inhibitor, nipecotic 

acid (NA).  NA has a high binding affinity for human GAT-1 and rat GAT-1 and -2, 

decreasing astrocyte and neuronal GABA uptake (Krogsgaard-Larsen 1980; 

Krogsgaard-Larsen et al., 2000).  We can, therefore, test GAT function by 
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measuring the increase in GABAEC concentrations in the striatum of Mn-exposed 

rats by comparing them to the controls. The use of NA is also advantageous 

because it does not block the transport of other amino acids neurotransmitters, 

most notably taurine (del Olmo et al., 2004).   

Taurine is an abundant non-essential amino acid in the brain formed from 

cysteine.  Traditionally, brain taurine is thought to function as an osmoregulator in 

cells (cell volume regulation), but has also been implicated in neuromodulation, 

possibly functioning as a neurotransmitter.  Data exist suggesting that taurine 

functions as an anxiolytic agent (Kong et al., 2006) and interacts with the GABAA 

receptor (Jia et al., 2008).  These data make sense given that it has long been 

recognized that taurine and GABA are structurally similar and may share 

transporters in the brain.   

We chose to look at the taurine/GABA relationship in the striatum because 

it is a known region for Mn accumulation (Erikson et al., 2005; Liu et al., 2000) 

and because the GABAergic medium spiny neurons of the striatum help 

orchestrate dopaminergic activity in the basal ganglia (Ade et al., 2008), where 

dysfunction is known to contribute to movement abnormalities during Mn 

neurotoxicity (Carlsson and Carlsson, 1990).  Microdialysate fractions collected 

from the striatum of rats revealed that taurine release was higher than glutamate 

and glycine, and that overall the striatum is very rich in taurine (Molchanova et 

al., 2004).  To date, however, the effect of Mn exposure on extracellular taurine 
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(TauEC) in the striatum is unknown.   Therefore, we sought to determine if Mn 

exposure effects TauEC concentrations in the striatum possibly as it relates to 

GABA biology.   

In addition to GABA and taurine, we felt it was prudent to examine the 

effect of Mn on another amino acid neurotransmitter, glycine.  Glycine is an 

abundant inhibitor neurotransmitter, similar to GABA, and it is known that taurine 

is a glycine receptor agonist (Xu et al., 2006). Although previous studies have not 

shown Mn to have an effect on extracellular glycine (GlyEC) levels in the striatum 

(Takeda et al., 2003), it is possible that glycine levels may be affected due to 

potential alterations in GABA or taurine concentrations driven by NA or Mn 

exposure. 

Within the brain, astrocytes are the primary cells that maintain the 

composition of the extracellular fluid (Wang and Bordey, 2008).  It is logical, 

therefore, that disturbances in GABAEC, GlyEC and TauEC caused by Mn exposure 

could be due to astrocyte dysfunction.  Thus, our final goal of this study was to 

examine the effect of Mn exposure on amino acid biology in primary astrocyte 

cultures.   
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Materials and Methods 

Animals 

 Male weanling (post-natal day 21) Sprague-Dawley rats (Harlan Sprague-

Dawley, Indianapolis, IN) (n=8 for microdialysis study; n=6 for PCR gene 

expression and metal analysis studies) were randomly divided into two dietary 

treatment groups used in previous studies (Anderson et al., 2007, 2008): control 

(CN; 35 mg Fe/kg, 10 mg Mn/kg diet & d.i. water) and Mn-exposed (Mn; control 

diet & 1 g Mn (as MnCl2)/L d.i. water).  Diets were obtained from Bio-Serv 

(Frenchtown, NJ) and certified for metal content.  Rats had free access to food 

and water 24 hr/day, with the lights off between 1800 and 600 h and room 

temperature maintained at 25 ± 1° C.  The University of North Carolina at 

Greensboro Animal Care and Use Committee approved all of the animal 

procedures. 

Cell Cultures 

Rat primary cortical astrocyte cultures were purchased from Invitrogen 

(Carlsbad, CA) and certified for purity with > 95% staining positive for the 

astrocytic marker glial fibrillary acidic protein (GFAP).  Cells were grown in 

Dulbecco’s Modified Eagle Media (D-MEM) with 15% fetal bovine serum (FBS), 

and maintained in a humidified atmosphere of 95% air/5% CO2 at 37°C.  

Manganese treatments were delivered using 0, 100, or 300 µM Mn in the form of 

MnCl2.  These dose concentrations are based on previous studies in non-human 
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primates reporting clinical symptoms of Mn neurotoxicity at brain concentrations 

of 300 µM, while 100 µM concentrations appeared to be asymptomatic (Suzuki et 

al., 1975).  For this reason 300 µM was use to examine the effect of toxic Mn 

accumulation on Taurine uptake, while 100 and 300 µM were used for the mRNA 

experiments to examine if there is a change in expression of Scl6a6 from 

moderate non-symptomatic  levels (100 µM) to known toxic accumulation (300 

µM). 

3H-Taurine Uptake 

Uptake of tritiated taurine (3H-Taurine) was measured as described by 

Erikson and Aschner (2002).  Astrocytes (cultured for 3-4 weeks, seeded 2 x 105 

in 6-well plates, and grown to confluence) were incubated overnight at 37°C with 

 day, cells were 

washed 3  with  EPE  buffer  122 mM  aCl, 3.3 mM KCl, 0.4 mM Mg  4, 1.3 

mM CaCl2, 1.2 mM K 2P 4, 10 mM glucose, and 25 mM  -2-hydroxy-

ethylpiperanzine   -2-ethansulfonic acid, pH 7.4] and incubated for 1, 3, or 6 

minutes with HEPES buffer 3H-taurine (GE Healthcare Life 

Sciences, Piscataway, NJ).  The reaction was stopped by aspirating the tritiated 

HEPES and washing the cells 4X with cold (4°C) 290 mM mannitol buffer 

containing 0.5 mM calcium nitrate to maintain cell adhesion to the substrate.  

Cells were solubilized in 1 mL RIPA lysis buffer (99 mL 1X PBS, 1 mL Nonidet 

40, 0.1 g sodium dodecyl sulfate, 0.5 g sodium deoxycholate, pH 7.4) and 750 µL 
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aliquots were used for β-counting with a Beckman LS 3801 liquid scintillation 

analyzer (Beckman Instruments).  The remaining 250 µL was used for protein 

determination using the bicinchoninic assay (BCA, Pierce Chemicals).  

Stereotaxic Surgery 

After five weeks of dietary treatment and one week prior to microdialysis 

experiments, rats were anesthetized with ketamine-HCl (80 mg/kg) and xylazine 

(12 mg/kg) and maintained on a heating pad at 37° C.  The heads of the rats 

were shaved and wiped with a 5% povidone-iodine solution to reduce risk of 

infection.  Sterile instruments and gloves were used throughout the surgical 

procedure.  The rats were secured in the stereotaxic frame and an incision was 

made perpendicular to the bregma.  A guide cannula (CMA/12, CMA 

Microdialysis, Acton, MA) was implanted into the striatum using the following 

coordinates: 2.4 mm lateral to the midline, 7.5 mm anterior to the lambda.  The 

cannula was lowered to a depth of 2.5 mm, positioning it in the medial area of the 

striatum (Paxinos and Watson, 1998).  Anchoring screws were utilized to 

maintain the position of the cannula before being cemented into place using 

dental adhesive.  Animals were given 0.9% sterile saline (0.5 mL/kg body weight, 

i.p.) to reduce fluid lost while under anesthesia and to aid in recovery time.  

Animals were also given the xylazine reversal agent Antisedan (Atapimazole) 

(0.1 mg/kg body weight, i.p.) (Allivet, Hialeah, FL) to reduce recovery time.  
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Animals were returned to shoebox cages with Tek-Fresh bedding (Harlan, 

Indianapolis, IN) and monitored daily until microdialysis experiments began. 

Microdialysis 

During week six of the dietary protocol, a microdialysis probe (CMA/12 

Elite, CMA Microdialysis, Acton, MA) was inserted into the guide cannula and the 

rat was perfused with artificial cerebral spinal fluid (aCSF) (155 mM Na+, 0.83 

mM Mg2+, 2.9 mM K+, 132.76 mM Cl-, 1.1 mM Ca+, pH 7.4) for one hour at a 

flow rate of 1 µL/min.  After perfusion, the flow rate was adjusted to 0.5 µL/min 

and 30 minute fractions were collected in microtubes for a total of four and a half 

hours (9 samples per rat) in a refrigerated fraction collector (CMA Microdialysis, 

Acton MA).  This protocol has been used successfully in previous studies with 

stable neurotransmitter recovery in the dialysate (Anderson et al., 2008; 2009). 

Probe recoveries measured using in vitro standards for GABA, taurine, and 

glycine were averaged for each amino acid over all probes; however, because 

tissue diffusion may affect in vivo probe recovery no correction was made for 

total recovery as in previous studies (Anderson et al., 2008; 2009; Beard et al., 

1994; Chen et al., 1995; Nelson et al., 1997). The microdialysate samples 

analyzed were collected at 0, 60, 120, 180, and 240-minute time-points with NA 

administration (100 µM in aCSF) just prior to the 60-minute collection.  This time 

course identifies baseline values (0 min), the response of extracellular amino 

acid concentrations to decreased GAT function (60 min), their recovery after 
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removal of NA and re-perfusion with aCSF (120 min), and renormalization (180 

and 240 min). Samples were stored at -80° C until analysis of the dialysate 

fraction.  Rats were then returned to their home cage, and, the following day, 

were euthanized, brains removed, and probe placement verified post mortem.   

CE-LIF Analysis 

A protocol by Chen et al. (2001) allowing for detection of amino acids and 

biogenic amines at nanomolar concentrations, modified to accommodate the 

needs of our previous studies (Anderson et al., 2008, 2009), was utilized in the 

current study as well.  The advantages of applying CE analysis to neuroactive 

compounds include minimal required sample volumes, speed of analysis, and 

high separation efficiency (Powell and Ewing, 2005).  Briefly, on the day of 

sample analysis, 5 μL of microdialysate sample were derivatized at 40˚C by the 

addition to 100 nmol ATTO-TAG™ FQ fluorogenic reagent (Molecular Probes, 

Eugene,  R) and 10 μL of a 10 mM borate (Fisher, Fair Lawn,  J)/ 25 mM KC  

(Fluka) solution (p  9.18).  The total sample volume was adjusted to 20 μL using 

HPLC grade methanol (G.J. Chemical Company, Newark, NJ).  After a minimum 

reaction time of 90 min., 1 μL of an FQ derivatized homoserine ( igma,  t.Louis, 

MO) internal standard solution was added to the derivatized microdialysate 

sample and analyzed. CE-LIF conditions leading to high efficiency peaks for 

microdialysate samples were 10 kV for 10 min with sample injections at 10 

psi/sec.  Uncoated silica capillary (Polymicro, Arizona) with an i.d. of 25 µm, o.d. 
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of 361 µm, and effective/total lengths of 25.4/30.0 cm was used.  The run buffer 

was 15 mM sodium borate (Fisher), pH 9.0, with 45 mM sodium dodecyl sulfate 

(Pierce, Rockford, IL), 5 mM sodium cholate (Anatrace, Maumee, OH), and 4% 

(v/v) 2-propanol (Fisher).  Three replicates were analyzed for each sample, with 

calibration curves for neurotransmitters of interest constructed each day of 

sample analysis using three points with a concentration range of 0.1 μM to 5 μM.  

GABA (Sigma), glycine (Sigma), taurine (Sigma), and homoserine standard 

solutions used for construction of calibration curves were prepared in ACSF with 

the same composition as that used in the microdialysis studies.  The ratio of 

neurotransmitter peak height to internal standard (homoserine) peak height for 

each sample was used to determine the concentration of the neurotransmitter 

based on the calibration curve response. 

RNA Isolation and cDNA Synthesis 

Total RNA was isolated from astrocyte monolayers and the striatum of 

control and Mn exposed rats for quantitative PCR analysis.  Tissue samples were 

stored in 1 mL of RNAlater® solution (Ambion Inc., Austin, TX) and kept at -80° C 

until analysis.  Astrocytes were cultured in 6-well plates, then treated for 24 hrs 

with media containing 0, 100, or 300 µM Mn.  Astrocytes were harvested in 500 

µL Denaturation Solution (Ambion Inc., Austin, TX).  Tissue and cell culture RNA 

isolation was performed using the ToTALLY R A™ system (Ambion Inc., Austin, 

T ), following manufacturer’s instructions.  R A concentration and purity were 
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determined by spectrophotometric analysis before carrying out cDNA synthesis.  

Synthesis of cDNA was performed using the High Capacity cDNA Reverse 

Transcriptase Kit (Applied Biosystems, Foster City, CA), following manufacturer’s 

instructions. 

Quantitative PCR 

 Quantitative real-time PCR analysis was utilized to determine differential 

mRNA expression between control and Mn treated tissue or cell samples of the 

solute carrier family taurine transporter Slc6a6 (Applied Biosystems, Foster City, 

CA; Rn00567962_m1, Chr. 4 - 125875817 – 125945795). Triplicate aliquots of 

cDNA were analyzed on 96-well plates using TaqMan® Gene Expression assays 

(Applied Biosystems, Foster City, CA).  Values of cDNA expression were 

normalized relative to the expression of β-actin (Rn00667869_m1, Chr. 12 - 

12047070 – 12050040) analyzed from the same sample on the same plate and 

reported as percent of control.   

Metal Analyses 

Mn, Fe, and copper (Cu) concentrations were measured with graphite 

furnace atomic absorption spectrometry (Varian AA240, Varian, Inc., USA). Brain 

tissue from the striatum was digested in ultra-pure nitric acid (1:10 w/v dilution) 

for 48-72 hours in a sand bath (60° C).  A 50 µL aliquot of digested tissue was 

brought to 1 mL total volume with 2% nitric acid for analysis.  The extracellular 

striatal samples obtained via microdialysis were not diluted due to the small 
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volume (20 µL) and the likelihood that this biological compartment has a low 

concentration of metals. Bovine liver (NBS Standard Reference Material, USDC, 

Washington, DC) (10 µg Mn/g; 184 µg Fe/g; 80 µg Cu/g) was digested in 

ultrapure nitric acid and used as an internal standard for analysis (final 

concentration 5 µg Mn/L; 92 µg Fe/L; 10 µg Cu/L).    

Statistical Analyses 

 Data were analyzed using SPSS v14 for Windows (Microsoft, Redmond, 

WA).  Metal, baseline microdialysis, and 3H-Taurine uptake data were analyzed 

using paired samples t-tests to examine the difference between Mn treated 

samples and controls.  Independent sample t-tests were used to examine time-

point percent change differences in the microdialysis data, time-point 3H-Taurine 

uptake changes, and significance between Mn exposed versus control mRNA 

expression of Scl6a6.  A p-value of < 0.05 was considered significant. 

Results 

Manganese and Iron concentrations 

Mn exposure resulted in significant alterations in compartmental metal 

concentrations.  As expected, tissue Mn levels were significantly higher in Mn 

exposed rats versus control (p = 0.001) (Table 1).  Cu levels were slightly 

increased with Mn exposure, and no appreciable difference was observed in Fe 

levels between the two groups; however, there was a significant reduction (p = 
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0.002) in the Fe:Mn ratio in the Mn exposed group (Table 1).  Examining Fe and 

Mn as a ratio may portray metal toxicities more accurately. The use of an Fe:Mn 

ratio has recently emerged as a reliable diagnostic criteria for metal 

neurotoxicities, as levels of one divalent cation may alter the availability or 

functionality of the other (Chua and Morgan, 1996; Cowan et al., 2009; Fitsanakis 

et al., 2008).   

Collected fractions of microdialysate were analyzed for Fe and Mn to 

assess changes in extracellular metal levels as a consequence of oral Mn 

exposure.  Extracellular Mn within the striatum was significantly increased in the 

Mn exposed rats, while Fe levels significantly decreased, compared to controls (p 

= 0.021 and 0.001, respectively) (Table 1).  Differences in extracellular metal 

concentrations between Mn exposed and control groups revealed a significant (p 

= 0.020), 36-fold, decrease in the extracellular Fe:Mn ratio due to increased Mn 

(Table 1).  
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Table 3.1. Brain Tissue and Extracellular Metal Concentrations. 
  

  

Table 3.1. Brain Tissue and Extracellular Metal Concentrations. – 
Compartmental metal concentrations represented in the striatum of Mn exposed 
rats.  Extracellular metal concentrations represent Mn and Fe levels measured in 
microdialysate fractions of extracellular fluid collected from the rat striatum (n=4).  
Striatal Mn, Fe, and Cu levels represent metal concentrations of brain tissue 
(n=6).  The Fe:Mn ratio depicts metal homeostasis changes due to Mn 
accumulation.  A significant increase in extracellular Mn accompanied by 
significant decreases in both Fe levels and the Fe:Mn ratio were observed in rats 
exposed to Mn treatment.  No significant changes in tissue Fe levels were 
observed; however, a significant reduction in the Fe:Mn ratio indicates altered 
metal homeostasis. * = p<0.05, ‡ = p≤0.001 versus control according to paired-
sample t-test analysis. 
 
 
Extracellular concentrations of Taurine, GABA, and Glycine     

 Extracellular amino acid concentrations are differentially altered by Mn 

exposure.  Baseline levels of taurine and glycine were more abundant than 

GABA in the extracellular space, though Mn does not have a statistically 

significant effect on their levels compared to control (Figure 1).  Mn exposure, 

however, did significantly increase (p = 0.017) baseline GABA concentrations 

over control (Figure 1A), corroborating our previous findings (Anderson et al. 

2007, 2008).  While GABAEC was more concentrated in the striatum of Mn-

Ratio

Mn Fe Cu Fe:Mn

Control    0.023 ± 0.006   4.071 ± 0.510 -     5044:1

Manganese    0.104 ± 0.030*   1.526 ± 0.304* -       137:1*

Ratio

Mn Fe Cu Fe:Mn

Control    0.185 ± 0.029   3.896 ± 0.106    0.177 ± 0.034        25:1

Manganese    0.477 ± 0.059*   3.329 ± 0.407    0.426 ± 0.037*          9:1*

Extracellular (µM)

Caudate Putamen (nmol/mg Protein)
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exposed rats, the rise in NA-induced GABA levels was not as profound in Mn-

exposed versus control rats (Figure 1C).  Administration of NA caused a 

significant 228% increase in the GABAEC levels of the control (p = 0.015) but not 

in the Mn exposed group (p = 0.233) (Figure 1C).  After the removal of NA and a 

60-minute perfusion with aCSF, GABA levels returned to baseline and remained 

unchanged at the 180- and 240-minute time-points (data not shown).  

 No significant difference in baseline taurine levels were found between 

control and Mn exposed animals (Figure 1A).  In control animals administration of 

NA caused a modest 75% decline in TauEC from baseline, followed by a 

significant (p = 0.010) 1000% increase after removal of NA at the 120 minute 

time-point (Figure 1B).    The decrease in TauEC was similar in the Mn exposed 

group due to NA administration; however, no rise in TauEC was observed after 

removal of NA, as observed in the control rats (Figure 1B).  In control and Mn 

exposed animals, taurine levels returned to and maintained levels similar to 

baseline at the 180- and 240-minute time-points (data not shown).   

 GlyEC levels were similar in control and Mn exposed groups, and no 

significant percent changes were observed between time-points within either 

control or Mn groups (Figure 1 D). 

 Limits of detection of the CE-LIF method employed for each 

neurotransmitter were found by serial dilution of derivatized standards until no 

discernable analyte peak could be obtained. Accordingly, limits of detection for 



51 
 

GABA, glycine, and taurine were 6.9 ± 1.7 nM, 24 ± 5 nM, and 42 ± 21 nM, 

respectively, with linear dynamic ranges of 3.6 decades, 3.1 decades, and 3.3 

decades, respectively. 
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Figure 3.1. Extracellular Amino Acid Concentrations. 

 

  
Figure 3.1. Extracellular Amino Acid Concentrations. – Microdialysate 
fractions from the striatum of control (n=4) and Mn-exposed (n=4) rats were 
analyzed for taurine, GABA, and glycine concentrations at baseline, 60 minutes, 
and 120 minutes. Nipecotic Acid (NA) was administered prior to the 60-minute 
time-point.  Graph values are expressed as percent change ± SEM; inset data 
are µM concentrations ± SEM.  A) Baseline concentrations of each amino acid at 
onset of sample collection (0 Min) in both control and Mn-exposed rats.  Percent 
change in amino acid concentration was calculated from baseline (100%) to post-
NA administration, then post-NA to 120-minute recovery period for B) Taurine, C) 
GABA, and D) Glycine to observe the effect of Mn on extracellular amino acid 
levels.  Superscript letters denote significant within-group differences (bars with 
different letters are significantly different from one another, bars that share a 
letter are not significant from one another), while * denote significance between 
groups.  

a, b, c, and * = p<0.05 via independent samples t-test within or between groups. 
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3H-Taurine Uptake 

 Mn exposure results in increased 3H-Taurine uptake in astrocytes.  After 

observing the unique effects of Mn-exposure on TauEC in the striatum of rats in 

vivo, we decided to examine the effect of Mn exposure on 3H-Taurine uptake in 

primary rat astrocytes in vitro.  Primary astrocytes exposed to Mn revealed a 

slight (30%) decrease in taurine uptake after 1 minute, followed by a significant 

(219%) increase after 3 minutes (p = 0.034) (Figure 2).  Six minute 3H-Taurine 

retention in Mn exposed cells was similar to that of controls.  Uptake of 3H-

Taurine in control cells remained consistent around 0.4 pmol/mg protein at each 

time-point (Figure 2 inset).  To examine whether or not 24 hr Mn exposure had 

an effect on taurine transporter expression in astrocytes, we next evaluated Mn 

induced alterations in the taurine transporter, Slc6a6.  

Gene Expression of Taurine Transporter  

 Mn exposure increased taurine transporter gene expression in the rat 

brain, but not cultured astrocytes.  Quantitative RT-PCR analysis was conducted 

on primary astrocytes and striatal brain tissue to determine whether or not taurine 

transporter (Slc6a6) gene expression reflected the observed Mn induced 

alterations in TauEC and 3H-uptake.  Chronic Mn exposure caused a significant (p 

= 0.045) increase in striatal Slc6a6 mRNA levels compared to control (Figure 3).  

Alternatively, acute Mn exposure (100 and 300 µM Mn) had relatively little effect 

on astrocyte Slc6a6 mRNA levels (Figure 3). 
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Figure 3.2. 3H-Taurine Uptake in Primary Astrocytes. 

 
Figure 3.2. 3H-Taurine Uptake in Primary Astrocytes. – Primary astrocytes, 
seeded 2x10 5 in 6-well plates (n=6) then grown to confluence, were cultured with 
either Mn-treated (300 µM MnCl2) or control media.  After 24hrs cultures were 
exposed to 3H-Taurine for 1, 3, or 6 minutes and analyzed for 3H-Taurine 
retention.  The inset represents percent change in uptake due to Mn exposure 
expressed as percent control ± SEM. A significant (p = 0.034) increase in 3H-
Taurine uptake was observed after 3mins of exposure in the Mn treated 
astrocytes versus control.  

* = p<0.05 via independent samples t-test between Mn and control treatment 

groups at each time-point. 
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Figure 3.3. Taurine Transporter, Slc6a6, mRNA Levels. 

 
Figure 3.3. Taurine Transporter, Slc6a6, mRNA Levels. – Quantitative RT-
PCR results for taurine transporter, Slc6a6, in Mn exposed astrocytes (n=6) and 
the striatum of Mn exposed rats (n=6).  Values are expressed as percent control 
± SEM, with control values representing no Mn exposure.  Minimal alterations in 
Slc6a6 levels were observed in astrocytes treated with either 100 or 300 µM 
MnCl2.  Mn exposure did, however, significantly increase Slc6a6 mRNA levels 
within the caudate putamen, versus matched control animals. 
  
* = p<0.05 via independent samples T-Test between Mn and control treatment 

groups.  
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Figure 3.4. Working Model for Mn Induced GABA and Taurine Alterations. 
 

 
Figure 3.4. Working Model for Mn Induced GABA and Taurine Alterations. – 
The dynamic shifts in neurotransmitter concentrations observed in response to 
nipecotic acid (NA) (panels A, B, and C) are mitigated by Mn (panels D, E, and 
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F).  We hypothesize this lack of response in Mn-exposed rats is driven by 
decreased GABA transporter (GAT-1) function.  (A) The control panel displays 
GABAEC and TauEC under normal conditions, representing baseline microdialysis 
measurements. All percent change (% change) comparisons in subsequent 
panels are based on the % change from baseline levels, represented in the 
control panel.   Under normal conditions GABAEC binds to GABAA receptors 
(GABAA-R) allowing chloride ion (Cl2-) movement for inhibitory hyperpolarization 
of postsynaptic neurons, while presynaptic binding to GABAB-receptors (GABAB-
R) regulates GABA release (Kamisaki et al., 1993) through slow G-protein-linked 
inhibitory tone via GABAB activation (Chen and van den Pol, 1998).  GAT-1 
functions normally to clear excess GABA from the synapse as TauEC modulates 
pre- and post-synaptic transmission (Namima et al., 1982; 1983).  (B) 
Administration of NA, a GAT specific inhibitor, blocks GABA reuptake 
substantially increasing GABAEC while decreasing TauEC.  Additionally, NA 
activates GABAA-like Cl2- channels (Barrett-Jolley, 2001) in addition to GAT 
binding, increasing the pre- and post-synaptic inhibitory tone.  (C) Upon removal 
of the NA, GABAEC returns to normal; however, a 10-fold increase in TauEC 
ensues.  We speculate that the taurine efflux is a compensatory response to 
regulate GABA release through GABAB activation (Chen and van den Pol, 1998). 
Elevated TauEC may also function to stabilize the inhibitory tone achieved in the 
striatum due to increased GABAA activation (del Olmo et al., 2000; Jia et al., 
2008).  TauEC slowly returns to control levels over the next two hours (data not 
shown), indicating the acute nature of this response.  (D) During Mn-exposure, 
GABAB expression is decreased (Anderson et al., 2008) and GABA reuptake via 
GAT-1 is attenuated, resulting in higher GABAEC and lower TauEC (Figure 1B and 
C) compared to control.  We hypothesize that this alteration in GAT-1 function is 
regulated by Mn activation of protein kinase C (PKC) (Latchoumycandane et al., 
2005) causing phosphorylation of GAT-1 and subsequent internalization (Gadea 
and Lopez-Colome, 2001).  This internalization decreases synaptic density of 
GAT-1 and attenuates GABA reuptake. Additionally, decreased GABAB 
expression alters auto-receptor feedback resulting in significantly higher GABAEC 
compared to normal conditions.  (E) Mn exposure significantly attenuates the 
effects of NA, potentially via decreased synaptic availability of GAT-1.  The 
attenuated rise in GABAEC coupled with decreased auto-receptor expression 
results in less GABAA and GABAB activation leading to reduced inhibitory tone 
compared to control.  (F) Removal of NA in Mn-exposed rats led to GABAEC 
returning to pre-NA levels (Panel D); however, the taurine efflux was absent 
compared to control (refer to Figure 1B).   We interpret the dramatically 
decreased taurine efflux observed with Mn exposure as a function of altered 
auto-receptor biology (Anderson et al., 2008).  Altered feedback regulation in 
conjunction with a modest rise (40%) in GABAEC, compared to the normal 
feedback regulation and significant rise (228%) in GABAEC observed in control 
rats, leads to an uncoupling of the taurine efflux response due to Mn-exposure.  
Our studies suggest that Mn exposure disrupts extracellular conditions within the 
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striatum, altering neurochemical coordination with other brain regions.  
Elucidating the mechanism involved in this response will further the development 
of pharmacological therapies aimed at susceptible populations. 
 
 

Discussion 

 The purpose of this study was to examine the effect of Mn on GAT-

mediated GABA uptake.  Knowing that glycine and taurine are important amino 

acid neurotransmitters that are known to modulate GABA neurochemistry 

(Namima et al., 1982; Hernandes and Troncone, 2009), it was logical that we 

measure them in the dialysate too.  We found that GAT function is attenuated by 

Mn exposure, and that the resulting increase in GABAEC alters taurine but not 

glycine homeostasis.  Specifically, we observed a 10-fold increase in TauEC upon 

removal of NA in the control animals but not in the Mn exposed, implicating a 

critical neurotransmitter function of TauEC that Mn alters (discussed in more detail 

below and in Figure 4).    

Mn, Fe, and Cu levels were analyzed in the striatum of Mn exposed rats 

and non-exposed controls to ascertain homeostatic changes due to Mn 

accumulation.  As expected, Mn exposure led to significant Mn accumulation in 

the striatum (Table 1).  Striatal Cu levels were slightly higher with Mn exposure, 

but tissue Fe levels were unaffected.  These data are consistent with striatal Fe 

levels reported in previous studies with Mn exposure (Anderson et al., 2009; 

Erikson et al., 2004; Fitsanakis et al., 2008).  However, there was a near three-

fold decrease in the Fe:Mn ratio with Mn exposure, suggesting altered metal 
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homeostasis.  While tissue levels of Fe remained relatively unchanged, 

extracellular Fe was significantly decreased by Mn accumulation, with a 36-fold 

drop in the Fe:Mn ratio.  Previously, Mn driven decreases in extracellular Fe have 

been positively correlated with extracellular norepinephrine levels and inversely 

associated with GABAEC (Anderson et al., 2008, 2009), but no significant 

changes in tissue Fe levels were observed.  The disparity between tissue and 

extracellular Fe:Mn ratios suggest the synaptic environment may be subject to 

drastic changes in metal homeostasis.  Moreover, these changes may leave the 

extracellular compartment vulnerable compared to striatal tissue, in which Fe and 

Mn levels appear to be more tightly regulated.  

 We specifically selected the striatum to examine the effect of Mn on 

GABAEC and GAT function because it is a known region for Mn accumulation 

(Erikson et al., 2005; Liu et al., 2000), and due to its high density of GABAergic 

cell bodies (Oertel and Mungnaini, 1984).  Mn exposure has been associated 

with increased GABAEC concentrations in the striatum, and decreased 3H-GABA 

uptake has been reported in striatal synaptosomes (Anderson et al., 2007, 2008).  

While these studies reported little effect on GAT protein and mRNA levels with 

Mn exposure, the implications of these data on GAT functionality prompted us to 

pharmacologically probe GAT function with NA.  We hypothesized that Mn 

exposure alters GAT function as indicated by the attenuation of increased 

GABAEC concentrations in the presence of NA.  Results from the microdialysis 

experiment indicate that this is indeed the case.  NA in the striatum of control rats 
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caused a 228% increase in GABAEC; however, in Mn-exposed rats NA only 

increased GABAEC by 43%.  The use of NA in the current study identifies GAT as 

a target for Mn toxicity, and provides an explanation for the observed increase in 

GABAEC with Mn accumulation. Exactly how Mn regulates GAT function warrants 

further investigation; however, decreased GAT function may be regulated 

through protein kinase C (PKC) activation.  Mn exposure has been shown to 

activate PKC in N27 mesenchephalic cells (Latchoumycandane et al., 2005), and 

PKC activation has been demonstrated to decrease 3H-GABA transport by GAT 

(Sato et al., 1995).  Moreover, phosphorylation of GAT-1 via PKC (Mandela and 

Ordway, 2006) may lead to internalization of GABA transporters (Gadea and 

Lopez-Colome, 2001).  This could explain why Anderson et al. (2008) found 

increased GABAEC despite no decrease in GAT-1 protein levels (as detected by 

western blot analysis which would measure both plasma membrane and 

internalized GAT-1 levels).  It is also possible that Mn may alter some sort of 

feedback mechanism such as an autoreceptor (e.g., GABAB or GABAA).  Being 

that taurine is a known modulator of GABA receptors (del Olmo et al., 2000; 

Kamisaki et al., 1993; Jia et al., 2008; Namima et al., 1982, 1983), perturbations 

in taurine biology may play a role in GABA homeostasis.         

 A novel finding from our study was that control rats responded to 

cessation of NA with a 10-fold increase of TauEC in the striatum, an effect that 

was absent in the Mn exposed rats.    Changes in TauEC coincided inversely with 

alterations in GABA (Figure 1A, B), presumably due to its role in osmoregulation.  
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These results suggest that alterations in GABA uptake may dictate taurine 

release due to a hyperosmotic environment.  Alternatively, the 10-fold increase in 

taurine after removal of NA may be a compensatory response to help decrease 

GABAEC concentrations.  Taurine binding to GABAA receptors (del Olmo et al., 

2000; Jia et al., 2008) and GABAB autoreceptors (Kamisaki et al., 1993; Namima 

et al., 1982, 1983), may help to regulate GABA release.  Enhanced taurine efflux 

observed in control animals after NA administration could functionally decrease 

GABA release by activating GABAA and GABAB receptors thereby normalizing 

GABAEC.  Additionally, there is evidence that NA activates GABAA-like ion 

channels (Barrett-Jolley, 2001).  Taurine efflux may be an adaptive response to 

facilitate GABAA activation compensating for the loss of inhibitory tone due to NA 

cessation. Whether the taurine response observed in the control rats is due to its 

role in regulating striatal neurochemistry or through a secondary osmoregulatory 

effect, the lack of this response in the Mn-exposed rats may have profound 

consequences (See Figure 4).   

 Because Mn alters GAT function and GAT transport proteins are in the 

solute carrier protein family Slc6 (shared by the taurine transporter, Slc6a6), it is 

reasonable to assume that Mn may influence taurine movement by altering the 

function of the taurine transporter. In cultured astrocytes we measured 3H-

Taurine uptake and found that while Mn initially decreased taurine uptake by 

30%, it was followed by a significant 219% increase in uptake before normalizing 

to control levels (Figure 2). Uptake of 3H-Taurine in control cells remained 
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consistent around 0.4 pmol/mg protein at each time-point, suggesting that 

fluctuations in taurine uptake in vitro is probably due to osmoregulation or altered 

transporter kinetics.  Taurine transporter Slc6a6 mRNA levels were not altered in 

cultured astrocytes exposed to 100 or 300 µM Mn.  Similar results were found by 

Erikson and Aschner (2002), with Slc6a6 expression significantly increasing in 

astrocytes only when exposed to 500 µM Mn.  It is important, however, to 

remember that taurine transport may also occur via volume-sensitive organic 

osmolyte anion channels (VSOAC) (Mongin et al., 1999).  VSOACs allow the 

transport of Na+, K+, Cl-, and organic osmolytes (e.g. taurine) under conditions 

of cell shrinkage or swelling (Lang, 2007).  Without directly inhibiting Slc6a6, 

controlling osmolarity, and taking into account Cl- influx due to GABAA activation 

we cannot confirm the functionality of Slc6a6 in the presence of Mn. Interestingly, 

Slc6a6 mRNA levels are increased in the striatum of Mn exposed rats, compared 

to control (Figure 3).  The contradiction of in vivo and in vitro Slc6a6 expression 

may be a product of chronic (6 week) exposure to Mn in vivo versus acute (24 hr) 

exposure in vitro.  Additionally, Slc6a6 gene expression is increased in the 

absence of sufficient taurine, and decreased when taurine is in excess (Bitoun 

and Tappaz, 2000; Lambert, 2004).  Therefore, it is likely that altered taurine 

homeostasis in the striatum due to Mn exposure influences striatal Slc6a6 

expression similarly.   

 Collectively, our data show that the GABAEC and TauEC are indeed 

influenced by Mn accumulation and altered GAT function.  Moreover, Mn virtually 
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abolished TauEC and dramatically blunted the taurine rebound observed during 

the post NA recovery period (Figures 2B and 4), indicating a serious disconnect 

in taurine homeostasis in the Mn-exposed rat striatum.    Moving forward, it is 

essential to understand the effect of Mn toxicity on taurine movement in the 

brain.  Characterizing the role of Mn on GABA and taurine may help depict the 

multifaceted etiology of Mn neurotoxicity, and provide insight into some of the 

behavioral changes observed with Mn accumulation. 
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CHAPTER IV 
 

WATERBORNE MANGANESE EXPOSURE ALTERS PLASMA, BRAIN, AND 

LIVER METABOLITES ACCOMPANIED BY CHANGES IN STEREOTYPIC 

BEHAVIORS 
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Metabolites Accompanied by Changes in Stereotypic Behaviors, pages 27 to 
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Reference section. 
 
 

Abstract 

Overexposure to waterborne manganese (Mn) is linked with cognitive 

impairment in children and neurochemical abnormalities in other experimental 

models. In order to characterize the threshold between Mn exposure and altered 

neurochemistry, it is important to identify biomarkers that positively correspond 

with brain Mn accumulation.  The objective of this study was to identify Mn 

induced alterations in plasma, liver, and brain metabolites using liquid/gas 

chromatography-time of flight-mass spectrometry metabolomic analyses; and to 

monitor corresponding Mn induced behavior changes. Weanling Sprague-Dawley 

rats had access to deionized drinking water either Mn free or containing 1g Mn/L

 for six weeks. Behaviors were monitored during the sixth week for a continuous 

24h period while in a home cage environment using video surveillance. Mn 
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exposure significantly increased liver, plasma, and brain Mn concentrations 

compared to control, specifically targeting the globus pallidus (GP).  Mn 

significantly altered 98 metabolites in the brain, liver, and plasma; notably shifting 

cholesterol and fatty acid metabolism in the brain (increased oleic and palmitic 

acid; 12.57 and 15.48 fold change (FC), respectively), and liver (increased oleic 

acid, 14.51 FC; decreased hydroxybutyric acid, -14.29 FC). Additionally, Mn 

altered plasma metabolites homogentisic acid, chenodeoxycholic acid, and 

aspartic acid correlated significantly with GP and striatal Mn. Total distance 

traveled was significantly increased and positively correlated with Mn exposure, 

while nocturnal stereotypic and exploratory behaviors were reduced with Mn 

exposure and performed largely during the light cycle compared to unexposed 

rats. These data provide putative biomarkers for Mn neurotoxicity and suggest 

that Mn disrupts the circadian cycle in rats.          

Introduction 

  Overexposure to environmental manganese (Mn) is known to have 

neurological consequences with symptomology similar to Parkinson’s disease 

(PD) (Pal et al., 1999; Cersosimo and Koller, 2006; Perl and Olanow, 2007).  

Both are characterized by alterations in the dopaminergic system of the basal 

ganglia, producing movement abnormalities and cognitive deficits (Pal et al., 

1999; Cersosimo and Koller, 2006).  Mn neurotoxicity is clinically distinct from PD 

in that onset may occur at earlier ages, movement symptoms occur bilaterally as 
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opposed to unilaterally in PD, and the lack of response to levo-Dopa treatment 

(Cersosimo and Koller, 2006).  Cases of Mn neurotoxicity have been reported 

due to occupational contact (e.g., mining, battery manufacturing, and welding) 

and contaminated drinking water (Crossgrove and Zheng, 2004; Wasserman et 

al., 2006). Challenges exist in diagnosing Mn neurotoxicity, and factors such as 

length or route of exposure may differentially affect symptom onset. Inhalation of 

Mn species leads to rapid brain Mn accumulation and is associated with 

increased biomarkers of oxidative stress (Erikson et al., 2007); whereas, 

ingested Mn accumulates in the brain at slightly lower concentrations and is 

associated with neurochemical alterations (Garcia et al., 2006; Anderson et al., 

2008; Fordahl et al., 2010) and cognitive decline (Wasserman et al., 2006; 

Bouchard et al., 2011).  

 Mn-neurotoxicity has been linked with changes in dopamine, γ-

aminobutyric acid (GABA), and glutamate (Fitsanakis et al., 2006 for review). Mn 

induced changes in these neurochemicals, specifically dopamine, have been 

associated with hyperactivity in rodents (Kern et al., 2010), and learning/memory 

deficits accompanied by changes in stereotypic behaviors in primates (Schneider 

et al, 2006; Kern et al., 2010). Similar symptoms have been reported in Mn-

exposed children (Bouchard et al., 2007; Farias et al., 2010), and it is imperative 

to identify symptoms of toxicity early during this critical stage of growth and 

neurological development.  



67 
 

 Early symptom identification and removal from Mn exposure can improve 

the prognosis of Mn neurotoxicity.  The use of magnetic resonance imaging 

(MRI) has been demonstrated to accurately reflect brain Mn deposits (Dorman et 

al., 2006; Fitsanakis et al., 2008), and when used in conjunction with positron 

emission tomography (PET) can identify biological alterations in 

neurotransmission (Kim et al., 1999). While MRI and PET technologies have 

advanced the identification of Mn neurotoxicity, the practical application and cost 

of these tools may preclude widespread use. Moving forward, it is important to 

establish cost effective diagnostic measures that correspond with brain Mn 

accumulation similar to MRI.  Identifying biomarkers of Mn neurotoxicity in 

biological fluids may provide an alternative solution to confirm the extent of brain 

Mn accumulation.   

   To date, few reliable markers exist to measure the extent of brain Mn 

accumulation. Prospective compounds such as lymphocytic manganese 

superoxide dismutase (MnSOD) and arginase were suggested as biomarkers 

over a decade ago; however, each possessed diagnostic limitations (Davis and 

Greger, 1992; Brock et al., 1994).  More recently, Dorman et al. (2008) screened 

for potential Mn exposure biomarkers using a liquid chromatography-mass 

spectrometry method to identify metabolomic changes in the blood and urine of 

monkeys exposed to airborne MnSO4.  Of the 27 metabolites significantly altered 

by Mn, three blood metabolites corresponded with Mn accumulation in the globus 

pallidus (GP): phenylpyruvate, disaccharides, and guanosine (Dorman et al., 
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2008).  While these markers show promise, additional studies are needed to 

confirm their potential as consistent biomarkers.   

 The study of metabolomics is emerging as a reliable approach to identify 

potential biomarkers in diseased states including cancer (Kim et al., 2008) and 

amyotrophic lateral sclerosis (Pradat and Dib, 2009), among other potential 

applications (Oresic et al., 2006). Methods using liquid and gas chromatography, 

coupled with mass spectrometry (LC-MS, GC-MS), enable the detection of 

thousands of metabolites in a biological sample (Halket et al., 2005).  These 

methods are ideal for monitoring changes in metabolite byproducts due to altered 

cellular metabolism in either a diseased state or after application of selected 

therapies.  The goal of this study was to identify potential biomarkers of Mn 

neurotoxicity, and to link any changes in the metabolome with biological 

alterations associated with Mn exposure.  Additionally, we wanted to monitor any 

changes in behavior or locomotor activity indicative of neurotoxicity. While 

previous studies have examined the effects of Mn exposure on behavior over 

short observational periods, to date no study has examined the effects of Mn on 

locomotor and circadian behaviors longitudinally over a 24h period in a home-

cage environment.  A 24h time frame allows for analysis of diurnal and nocturnal 

behaviors not normally captured with other behavioral tests.   
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Materials and Methods 

Animals 

 Male weanling (post-natal day 21) Sprague-Dawley rats (Harlan Sprague-

Dawley, Indianapolis, IN) (n=12) were individually housed and randomly divided 

into two treatment groups: control (AIN-93G diet (35, 10, and 6 mg/kg Fe, Mn, 

and Cu, respectively) with deionized water) and Mn-exposed (AIN-93G diet with 

deionized water containing 1 g Mn (as MnCl2) /L.  Formulated diet was obtained 

from Dyets Inc. (Bethlehem, PA). This Mn-exposure protocol has been used 

previously in our lab to achieve consistent brain Mn accumulation producing 

neurochemical changes indicative of toxicity after 6 weeks of exposure 

(Anderson et al., 2007; 2008; Fordahl et al., 2010). Based on average water 

consumption for rats (10-12 ml per 100 g body weight (Harkness and Wagner, 

1989)), Mn ingestion was approximately 100 mg/kg per day. Water levels were 

monitored to examine consumption, and no avoidance of Mn containing water 

was observed. Because intestinal Mn absorption in rodents is estimated at 1-5% 

(Hurley and Keen, 1987), the systemic Mn burden was approximately 1-5 mg. 

Human exposure to waterborne Mn has been reported at >700 µg/L in children 

(Wasserman et al., 2006) leading to cognitive impairment, and up to 14 mg/L in 

25 Japanese adults (Kawamura et al. 1941) resulting in neurotoxicity (n=23) and 

death (n=2). Although 100 mg Mn/kg is considerably higher than documented 

human exposure, it should be noted that Sprague Dawley rats have a higher 

threshold for toxicity than humans withstanding Mn doses of 200 mg/kg/day for 
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2yrs and 2,251 mg/kg/day for 6 months before fatality (NTP, 1993; Gianutsos 

and Murray, 1982). Rats had free access to food and water 24 hr/day, with the 

lights off between 1800 and 600 h and room temperature maintained at 25 ± 1°C.  

During the seventh week of the study, after an overnight fast with access to 

water, the rats were rendered unconscious in a CO2 chamber, euthanized via 

decapitation, brains and liver tissue removed, and trunk blood was collected for 

analysis.  Dissected tissues were immediately placed on dry ice then stored at -

80°C until analysis.  For metal analysis, sections of the globus pallidus (GP) and 

striatum, two regions known to accumulate Mn, were removed, and the 

remaining brain tissue was used for metabolomic analysis. The University of 

North Carolina at Greensboro Animal Care and Use Committee approved all of 

the animal procedures. 

Hematology 

Trunk blood from each rat was collected in heparinized tubes and stored 

on ice until processed.  Hematocrit was determined by centrifugation of 

heparinized micro-hematocrit capillary tubes (Fisher Scientific, Waltham, MA).  

Remaining whole blood samples were centrifuged for 15 minutes at 1000 x g to 

separate plasma for iron (Fe) status assays, metabolomic analysis and metal 

quantification.  Plasma was stored at -80°C. Plasma ferritin and transferrin were 

determined using enzyme linked immunosorbent assay (ELISA) kits from (ICL, 

Inc., Newberg, OR) and (GenWay Biotech, Inc., San Diego, CA), respectively. 
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Behavior Analysis 

Behavior analysis was conducted using Clever Systems Home Cage Scan 

(HCS) system (Reston, VA) rather than a rating scale system, which are 

generally time-consuming and provide ordinal data (Flagel and Robinson, 2007).  

The HCS system utilizes video images from the home cage acquired at 30 

frames per second.  Software algorithms then categorize the images into a set of 

behaviors by extracting the image of the animal movements.  Based on the 

sequential postures of the animal and position of body parts in space, behaviors 

are assigned using pre-trained data sets as a reference (Flagel and Robinson, 

2007).  Agreement between behaviors identified by the HCS and manual 

assessments has been found to be ≥ 90% (Steele et al., 2007).  During weeks 

four, five, and six of the dietary protocol, animals were placed in individual 

shoebox cages with food, water, and minimal bedding.  The animals were 

allowed to acclimate to the novel environment for a 24h period to ensure that any 

behavior alterations captured were treatment effects. After the acclimation period 

the animals were monitored by video surveillance and their behaviors were 

analyzed for an additional 24h period to capture the entire light and dark cycle.  

Cameras were mounted onto tripods and placed parallel to the shoebox cages.  

Red lighting was utilized during the dark phase to provide an appropriate 

background for the HCS system to analyze movement. Behaviors were scored 

by the HCS system and data exported to MS Excel 2007 for analysis.  The 
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following behaviors were examined: total distance traveled, repetitive turning 

(turning), sniffing, rearing, and grooming.  

Metal Analyses 

Mn, Fe, and copper (Cu) concentrations were measured with graphite 

furnace atomic absorption spectrometry (Varian AA240, Varian, Inc., USA). 

Brain, liver, and plasma samples were digested in ultra-pure nitric acid (1:10 

dilution for plasma, 1:10 w/v dilution for tissue) for 48-72 hours in a sand bath 

(60° C).  A 50 µL aliquot of digested sample was further diluted 1:20 with a 2% 

nitric acid solution for analysis. Bovine liver (NBS Standard Reference Material, 

USDC, Washington, DC) (10 µg Mn/g; 184 µg Fe/g; 80 µg Cu/g) was digested in 

ultrapure nitric acid and used as an internal standard for analysis (final 

concentration 5 µg Mn/L; 92 µg Fe/L; 40 µg Cu/L). Metal data are expressed as 

µg/g tissue or µg/L plasma. Additionally, an Fe:Mn ratio was also used to 

address the relationship between these metals as levels of one may impact the 

functionality or availability of the other (Chua and Morgan, 1996; Cowan et al., 

2009; Fitsanakis et al., 2008).     

Liquid Chromatography-Time of Flight Mass Spectrometry (LC-TOFMS) 

Plasma samples were thawed and centrifuged at 13,000 rpm for 5 min.  A 

volume of 100 µL supernatant was mixed with 400 µL of a mixture of methanol 

and acetonitrile (5:3).  The mixture was vortexed for 2 min, allowed to stand for 

10 min, centrifuged at 13,000 rpm for 20 min, and then the supernatant was used 
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for LC-TOFMS.  Liver and brain tissue (100 mg and 50 mg, respectively) was 

added to 500 µL of a chloroform, methanol, and water mixture (1:2:1, v/v/v).  

These samples were then homogenized and centrifuged at 13,000 rpm for 10 

min at 4°C.  A 150 µL aliquot of supernatant was transferred to a sampling vial. 

The deposit was re-homongenized with 500 µL methanol followed by a second 

centrifugation. Another 150 µL supernatant was added to the same vial for drying 

and then reconstituted in 500 µL of ACN:H2O (6:4, v/v) before separation.   

 An Agilent HPLC 1200 system equipped with a binary solvent delivery 

manager and a sample manager (Agilent Corporation, Santa Clara, CA, USA) 

was used with chromatographic separations performed on a 4.6 × 150 mm 5 μm 

Agilent ZORBAX Eclipse XDB-C18 chromatography column. The LC elution 

conditions are optimized as follows: isocratic at 1% B (0–0.5 min), linear gradient 

from 1% to 20% B (0.5-9.0 min), 20-75% B (9.0-15.0 min), 75-100% B (15.0-18.0 

min), isocratic at 100% B (18–19.5 min); linear gradient from 100% to 1% B 

(19.5-20.0 min) and isocratic at 1% B (20.0–25.0 min). For positive ion mode 

(ESI+) where A = water with 0.1% formic acid and B = acetonitrile with 0.1% 

formic acid, while A = water and B = acetonitrile for negative ion mode (ESI-). 

The column was maintained at 30 °C as a 5 μL aliquot of sample is injected. 

Mass spectrometry is performed using an Agilent model 6220 MSD TOF mass 

spectrometer equipped with a dual sprayer electrospray ionization source 

(Agilent Corporation, Santa Clara, CA, USA). The system was tuned for optimum 

sensitivity and resolution using an Agilent ESI-L low concentration tuning mix in 
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both positive (ES+) and negative (ES-) electrospray ionization modes. Agilent 

API-TOF reference mass solution kit was used to obtain accurate mass time-of-

flight data in both positive and negative mode operation. The TOF mass 

spectrometer was operated with the following optimized conditions: (1) ES+ 

mode, capillary voltage 3500 V, nebulizer 45 psig, drying gas temperature 325 

°C, drying gas flow 11 L/min, and (2) ES- mode, similar conditions as ES+ mode 

except the capillary voltage was adjusted to 3000 V. The TOF mass 

spectrometer is calibrated routinely in ES+ and ES- modes using the Agilent ESI-

L low concentration tuning mix. During metabolite profiling experiments, both plot 

and centroid data are acquired for each sample from 50 to 1,000 Da over a 25 

min analysis time. Data generated from LC-TOFMS were centroided, deisotoped, 

and converted to mzData xml files using the MassHunter Qualitative Analysis 

Program (vB.03.01) (Agilent). Following conversion, xml files are analyzed using 

the open source XCMS package (v1.16.3) (http://metlin.scripps.edu), which runs 

in the statistical package R (v.2.9.2) (http://www.r-project.org), to pick, align, and 

quantify features (chromatographic events corresponding to specific m/z values 

and elution times). The software is used with default settings as described 

(http://metlin.scripps.edu) except for xset (bw = 5) and rector (plottype = “m”, 

family = “s”). The created .tsv file is opened using Excel software and saved as 

.xls file. The resulting 3-D matrix containing arbitrarily assigned peak index, 

retention time, and abundance value (.xls file) are further exported to SIMCA-P 

software 12.0 (Umetrics, Umeå, Sweden) for multivariate statistical analysis. 
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Compound identification was performed by comparing the accurate mass and 

retention time with reference standards available in our laboratory, or comparing 

the accurate mass with online database such as the Human Metabolome 

Database (HMDB). 

Gas Chromatography-Time of Flight Mass Spectrometry (GC-TOFMS) 

The GC-TOFMS analysis procedure was followed by our previous 

publications (Qui et al., 2009; Pan et al., 2010). For plasma samples (50 µl for 

each sample), the metabolites were extracted by 150 µl of mixture solvent 

(methanol: chloroform (3:1)). After centrifugation, an aliquot of the 170-μL 

supernatant was transferred to a glass sampling vial to vacuum dry at room 

temperature. The tissue samples were prepared identically to those used in the 

LC-TOFMS without reconstitution in ACN:H2O.  Instead, the 150 µl alipuot of 

supernatant was added to the same vial (containing 10 µl heptadecanoic acid in 

methanol, 1 mg/ mL) to vacuum dry at room temperature. The residue of plasma 

and tissue samples was then derivatized by adding 80 μL methoxyamine (15 

mg/mL in pyridine) to the vial while holding at 30°C for 90 minutes, then 10 μL 

retention index compounds (the mixture of C10-C40, 50μg/mL) and 80 μL 

BSTFA (1%TMCS) were added into the reaction vials. Then the samples were 

subjected to a 70°C for 120 minutes derivatization reaction.  

 A 1 μL aliquot of the derivatized solution was injected using splitless mode 

into an Agilent 7890N gas chromatograph coupled with a Pegasus HT time-of-
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flight mass spectrometer (Leco Corporation, St Joseph, USA). Separation was 

achieved on a DB-5 ms capillary column (30 m × 250 µm I.D., 0.25-µm film 

thickness; Agilent J&W Scientific, Folsom, CA, USA), with helium as the carrier 

gas at a constant flow rate of 1.0 ml/min. The temperature of injection, transfer 

interface, and ion source was set to 260°C, 260°C, and 210°C, respectively. The 

GC temperature programming was set to 2 min isothermal heating at 80°C, 

followed by 10°C/min oven temperature ramps to 220 °C, 5 °C/min to 240°C, and 

25°C/min to 290 °C, and a final 8 min maintenance at 290°C. Electron impact 

ionization (70 eV) at full scan mode (m/z 40-600) was used, with an acquisition 

rate of 20 spectra/second in the TOFMS setting. The acquired MS files from 

GC/TOFMS analysis were exported in NetCDF format by ChromaTOF software 

(v4.22, Leco Co., CA, USA). CDF files were extracted using custom scripts 

(revised Matlab toolbox hierarchical multivariate curve resolution (H-MCR), 

developed by Par Jonsson, et al.) in the MATLAB 7.0 (The MathWorks, Inc, 

USA) for data pretreatment procedures such as baseline correction, de-noising, 

smoothing, alignment, time-window splitting, and multivariate curve resolution 

(based on multivariate curve resolution algorithm). The resulting three dimension 

data set includes sample information, peak retention time and peak intensities. 

Internal standards and any known artificial peaks, such as peaks caused by 

noise, column bleed and BSTFA derivatization procedure, were removed from 

the data set. The resulting data was mean centered and unit variance scaled 

during chemometric data analysis in the SIMCA-P 12.0 Software package 
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(Umetrics, Umeå, Sweden). Compound identification was performed by 

comparing the mass fragments with NIST 05 Standard mass spectral databases 

in NIST MS search 2.0 (NIST, Gaithersburg, MD) software with a similarity of 

more than 70% and finally verified by available reference compounds. 

Data Analyses 

Metal, body weight, hematology, and behavior data were analyzed using 

SPSS v14 for Windows.  Data were examined for normality of distribution using a 

one-sample Kolmogorov-Smirnov test and for the presence of outliers by boxplot 

analysis. Independent t-test analyses were conducted to identify changes 

between control and Mn exposed groups for metal, body weight, hematology, 

and behavior data. After Bonferroni correction for multiple comparisons, the 

significance level for metal and behavior t-tests was set at p < 0.025 and p < 

0.01, respectively. Pearson’s correlational analyses were then performed to 

examine relationships between metal concentrations, biomarkers, and behaviors, 

with a significance threshold set at p < 0.05. 

 Metabolomic LC/GC-TOFMS data was analyzed using principle 

component analysis (PCA) and OPLS analysis between groups. The differential 

metabolites were selected when they meet the requirements of variable 

importance in the projection (VIP) >1 in OPLS model and p < 0.05 from student t-

test. The corresponding fold change shows how these selected differential 

metabolites varied from control. Final data analysis between control and Mn 
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exposed groups for each metabolite was conducted using independent t-test 

analysis with a p < 0.05 significance threshold. 

Results 

Body Weight and Hematology 

Oral Mn-exposure alters systemic markers of iron status. Body weight 

measurements were completed three times per week to monitor growth. No 

significant change in body weight was observed between groups throughout the 

study, or in terminal body weight (Table 1).  Because of the close relationship 

between biological Mn and Fe levels, we examined changes in hematological 

indicators of overall iron status due to Mn exposure. Mn-exposed rats had normal 

hematocrit levels but had significantly increased (p = 0.016) plasma transferrin 

accompanied by a trend toward reduced ferritin (Table 1) suggesting early stages 

of iron deficiency.  

 
Table 4.1. Body Weight and Hematology. 

 

 

Table 4.1. Body Weight and Hematology. – Values are listed ± SEM and 
significance was established using independent t-tests to identify differences 
between the control (n=6) and Mn-exposed (n=6) groups. * = (p ≤ 0.05)  

 

 

Treatment Body Wt. (g) Hematocrit Transferrin (mg/mL) Ferritin (ng/mL)

Control 278.7 ± 6.3 0.50 ± 0.01 1.53 ± 0.06 425 ± 47.8

Manganese 263.3 ± 5.9 0.51 ± 0.01   2.21 ± 0.21* 299 ± 44.6
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Metal Analysis 

 Oral Mn exposure led to significantly elevated brain, liver, and plasma Mn 

concentrations. Mn, Fe, and Cu were quantified in dissected brain regions of Mn 

exposed rats and non-exposed controls.  Mn accumulated significantly in the 

striatum and GP (p = 0.003; p = 0.019, respectively) of Mn-exposed rats 

compared to controls (Table 2). Brain Fe levels were largely unaffected by Mn 

exposure; however, due to Mn accumulation the Fe:Mn ratio was significantly 

lower in the striatum of Mn exposed animals compared to controls (Table 2).  

While Fe homeostasis in the GP was quite stable under Mn exposure, Cu levels 

were significantly elevated (p = 0.05) due to Mn (Table 2). Although the Fe:Mn 

ratio was significantly lower in many brain regions, stable Fe levels suggest that 

metabolic and behavioral changes are driven by Mn accumulation, not Fe 

deficiency.  

 Similar to the brain, significantly higher Mn content was found in the liver 

of Mn exposed rats compared to controls (p = 0.002) (Figure 2). Elevated liver 

Mn was accompanied by dramatically reduced liver Fe levels (p = 0.012) and 

Fe:Mn ratio (p < 0.001) due to Mn exposure.  These data along with the 

transferrin and ferritin results indicate that Mn alters systemic Fe status leading to 

deficiency, without anemia. Liver Cu levels were comparable between Mn and 

control groups.  
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 Plasma Mn concentrations were significantly increased in the Mn exposed 

group versus control (p = 0.013).  Plasma Fe and Cu levels were similar between 

groups, but the Fe:Mn ratio was significantly lower in Mn exposed (p = 0.003), 

compared to control.   

 
Table 4.2. Metal Analysis of Brain, Liver, and Plasma. 

 

 

Table 4.2. Metal Analysis of Brain, Liver, and Plasma. – Values are listed ± 
SEM and data were analyzed using independent t-tests to identify differences in 
metal content between the Mn (n=6) and control (n=6) groups. * = (p ≤ 0.025) ** 
= (p < 0.001) 

 

 

 

Mn Fe Cu Fe:Mn Ratio

Striatum

Control 0.34 ± 0.06   6.1 ± 1.2 1.5 ± 0.2 21:1

Manganese   0.69 ± 0.06*   6.4 ± 1.3 1.5 ± 0.2    9:1*

Globus Pallidus

Control  0.57 ± 0.06  7.5 ± 1.8 0.9 ± 0.2  12:1

Manganese   1.03 ± 0.10*  9.5 ± 0.9   1.3 ± 0.1*    9:1

Mn Fe Cu Fe:Mn Ratio

Control 2.31 ± 0.06 256 ± 31.1 4.3 ± 0.3 111:1

Manganese  5.10 ± 0.43*    92.6 ± 21.3* 4.4 ± 0.2     18:1**

Mn Fe Cu Fe:Mn Ratio

Control 8.32 ± 0.35 1543 ± 112 838 ± 19 186:1

Manganese  26.5 ± 4.49* 1504 ± 256 848 ± 32    57:1*

Plasma µg/L

Brain µg/g Tissue

Liver µg/g Tissue
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Metabolomic Analyses 

 Mn exposure significantly altered plasma, brain, and liver metabolites 

indicating a shift in the metabolome compared to controls. Metabolomic analysis 

of these tissues using LC/GC-TOFMS identified 98 significantly altered 

metabolites due to Mn exposure.  Significant changes were observed in each 

compartment: plasma (Table 3), brain (Table 4), and liver (Table 6), indicating 

changes in lipid and amino acid metabolism. Similarly, OPLS plots of plasma 

(Figure 1), brain (Figure 3), and liver (Figure 4) data identify a shift in the 

metabolome of animals exposed to Mn versus healthy controls.  

 Several plasma metabolites altered by Mn reflect amino acid breakdown.  

Markers of tryptophan metabolism, 3-indolepropionic acid and kynurenine, were 

significantly elevated (2.12 fold change (FC); p = 0.026 and 2 FC; p = 0.041, 

respectively).  Similarly, arginine and homogentisic acid levels were increased 

due to Mn, while alanine and creatinine were significantly decreased (Table 3).  

Significant associations were also identified between regional brain Mn 

accumulation and select plasma metabolites (Figure 2). Positive correlations 

were found between plasma homogentisic acid and Mn levels in the striatum and 

GP (r = 0.6980, p = 0.012 and r = 0.7155, p = 0.009, respectively) (Figure 2A), as 

well as substantia nigra Mn, GP Cu, and GP Fe levels (r = 0.7068, p = 0.010; r = 

0.6973, p = 0.012; and r = 0.6355, p = 0.026, respectively) (data not shown). 

Similarly, chenodeoxycholic acid was positively correlated with striatal and GP 
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Mn (r = 0.7724, p = 0.003 and r = 0.7589, p = 0.004, respectively) (Figure 2C). 

These changes were accompanied by negative correlations between plasma 

aspartic acid and Mn in the striatum and GP (Figure 2B). Additionally, 

correlations between metabolite changes and brain metals represent potential 

indices for brain metal homeostasis and Mn accumulation.   

Mn altered brain metabolites indicative of compromised lipid metabolism 

and potential plasma membrane integrity including significant increases in 

cholesterol (4.42 FC; p = 0.033), desmosine (12.69 FC; p = 0.007), oleic acid 

(12.57 FC; p < 0.001), and palmitic acid (15.48 FC; p < 0.001) (Table 4). 

Changes in these lipids and several other brain metabolites were correlated with 

plasma Mn levels (Table 5). Alterations in oleic and palmitic acid may also 

suggest an impairment in fatty acid synthesis and energy metabolism, along with 

the significant increase in 2-butenedioic acid “Fumarate” (2.12 FC; p = 0.030).  

Mn caused a significant increase in urea (2.36 FC; p = 0.025) and decreased 2-

pyrrolidone-5-carboxylic acid (-2.79 FC; p = 0.029), which could be linked to 

disrupted glutamine metabolism. 

 The largest effect Mn exposure had on liver metabolites pertained to lipid 

metabolism and ketone body formation; oleic acid (14.51 FC; p = 0.003) and 

hydroxybutyric acid (-14.29 FC; p = 0.048), respectively (Table 6). Mn also 

significantly decreased metabolites associated with energy metabolism including 

creatine (-3.13 FC; p = 0.008) and nicotinamide ribotide (-3.03 FC; p = 0.031), 
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and structural markers hydroxyglutaric acid, desmosine, and serine (6.47 FC, 

5.25 FC, and 3.78 FC, respectively; p < 0.002) (Table 6).  It is important to note 

that the liver metabolites altered by Mn-exposure were correlated with increased 

liver Mn concentrations and not decreased Fe levels (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

Table 4.3. Plasma Metabolites Altered with Mn Exposure. 
 

 

Table 4.3. Plasma Metabolites Altered with Mn Exposure. – Listed is the fold 
change (FC) of each metabolite in the Mn exposed (n=6) compared to control 
(n=6) group, and its corresponding p-statistic. Independent t-tests were used to 
identify significance between Mn-exposed and control groups.   

 

 

 

Compound FC

Cholesterol 1.35

2-Aminobutyric acid 1.24

2-ethyl-3-hydroxypropionic acid 1.54

3,4-Dihydroxybutanoic acid 1.46

3-Hydroxybutyric acid 1.48

3-Indolepropionic acid 2.12

4-Hydroxy-proline -2.71

Alanine -2.00

Arginine 2.39

Aspartic acid -2.55

Chenodeoxycholic acid 2.98

Creatinine -2.50

Histidine 1.36

Homogentisic acid 2.39

Isocitric acid 1.76

Keynurenine 2.00

Methionine 1.21

Methyl phosphate 1.63

Myo-Inositol, phosphate 1.52

Oxalic acid 1.29

Phenylalanine 1.34

Phosphate 1.83

Pseudo uridine 1.36

Uracil 1.31

p

0.008

0.043

0.015

0.004

0.000

0.009

0.035

0.009

0.002

0.001

0.015

0.026

0.002

0.041

0.009

0.014

0.007

0.023

0.041

0.027

0.003

0.005

0.043

0.017
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Table 4.4. Brain Metabolites Altered with Mn Exposure. 
 

 

Table 4.4. Brain Metabolites Altered with Mn Exposure. – Listed is the fold 
change (FC) of each metabolite in the Mn-exposed (n=6) compared to control 
(n=6) group, and its corresponding p-statistic. Independent t-tests were used to 
identify significance between Mn-exposed and control groups.   

 

 

 

 

Compound FC

2-Aminobutyric acid 1.28

2-Butenedioic acid 2.12

2-Pyrrolidone-5-carboxylic acid -2.79

3-Hydroxybutyric acid 1.46

4-Guanidinobutanoic acid 1.23

Acetyl aspartate 3.11

Arabitol 1.63

Ascorbic acid 1.60

Aspartic acid -1.10

Carnitine -1.10

Cholesterol 4.42

Citric acid 1.31

Desmosine 12.69

Fructose 1.41

Glycocholic acid -2.78

N-Acetyl-L-aspartic acid 1.55

Oleic acid 12.57

Palmitic acid 15.43

Phosphate 1.12

Proline -1.84

Sarcosine 1.33

Uracil 1.35

Urea 2.36

Valine 1.55

0.004

0.024

0.011

p

0.010

0.030

0.029

0.005

0.025

0.024

0.000

0.000

0.018

0.027

0.006

0.028

0.033

0.031

0.007

0.028

0.009

0.004

0.025

0.011

0.048
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Table 4.5. Brain Metabolites Correlated with Plasma Mn. 
 

 

Table 4.5. Brain Metabolites Correlated with Plasma Mn. – Relationships 
between plasma Mn and altered brain metabolites were identified using 
Pearson’s correlational analysis. r and p values are displayed for each metabolite 
significantly (p < 0.05) correlated with plasma Mn. 

 

 

 

 

 

 

 

 

 

 

Compound r

2Butenedioic acid 0.8415

Cholesterol 0.6208

Desmosine 0.8197

Glycocholic acid -0.6627

Oleic acid 0.8332

Palmitic acid 0.7589

0.019

< 0.001

0.004

p

< 0.001

0.031

0.001
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Table 4.6. Liver Metabolites Altered with Mn Exposure. 
 

 

Table 4.6. Liver Metabolites Altered with Mn Exposure. – Listed is the fold 
change (FC) of each metabolite in the Mn-exposed (n=6) compared to control 
(n=6) group, and its corresponding p-statistic. Independent t-tests were used to 
identify significance between Mn exposed and control groups.   

 

 

 

 

Compound FC Compound FC

1,4-Diaminobutane 1.40 N-Acetyl glucosamine 1.22

1-Methyladenosine 1.37 Nicotinamide ribotide -3.03

2-Aminobutyric acid 1.34 Norepinephrine 1.95

3-Hydroxy-n-valeric acid 1.52 Norleucine 1.28

Aminocaproic acid 1.15 Octadecanedioic acid 1.58

Aspartic acid 1.11 Oleamide 1.57

But-2-enoic acid 1.24 Oleic acid 14.51

Cadaverine 1.93 Pantothenic acid 1.25

Choline -1.19 Proline 1.55

Citicoline 1.59 Pyridoxamine 1.20

Creatine -3.13 Pyroglutamic acid -1.13

Cytidine 1.24 Ribitol 1.67

Desmosine 5.25 Ribonic acid-1,4-lactone 2.19

Dihydrothymine -3.03 Sebacic acid 1.15

d-Xylose-1-phosphate -1.48 Serine 3.78

Ethylmalonic acid 2.30 Serotonin 1.27

Glycerophosphate -1.56 S-Nitrosoglutathione 1.64

Homocitrulline 1.63 Stearinc acid -3.33

Hydroxybutyric acid -14.29 Taurocholic acid 1.38

Hydroxyglutaric acid 6.47 Threonine 1.19

Isoleucine 2.62 Uracil 1.41

L-Cysteine 1.42 Urobilin -1.75

L-Methionine 1.15 Valeric acid 1.22

Malonic acid -1.32 Valine 1.17

N,N-Dimethylglycine 1.47 Xanthosine 1.53

0.008

0.041

0.007

p

0.022

0.001

0.033

0.015 0.045

0.013

0.040

0.044

0.014

0.038

0.002

0.006

0.048

0.001

0.030

0.000

0.008

0.030

0.002

0.012

0.010

0.040

0.013

0.047

0.000

0.002

0.017

0.022

0.029

0.020

0.050

0.048

0.000

0.018

0.001

0.034

0.015

0.017

0.003

0.007

0.006

0.013

0.045

0.050

p

0.042

0.031

0.011
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Figure 4.1. OPLS of Plasma Spectral Data. 
 

 

Figure 4.1. OPLS of Plasma Spectral Data. – A) Gas chromatography-time of 
flight-mass spectroscopy (GC-TOFMS) data represented by OPLS-DA scores 
plot between control and Mn-exposed groups. OPLS-DA Model: Control vs Mn, 
1+2 components, R2X (cum)=0.542, R2Xp = 0.152, R2Y (cum)=0.977, 
Q2(cum)=0.652. B) Liquid chromatography-time of flight mass spectroscopy (LC-
TOFMS) data represented by the OPLS scores plot of the separation between 
healthy control and Mn-exposed rats. OPLS model: 2 component model, 
R2X=0.395, R2Y=0.934, Q2(cum)=0.554. 
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Figure 4.2. Relationships Between Brain Mn and Plasma Metabolites. 
 

 

Figure 4.2. Relationships Between Brain Mn and Plasma Metabolites. – 
Pearson’s correlational analysis was conducted between plasma metabolites 
altered by Mn and Mn levels in the striatum and globus pallidus (GP). Significant 
relationships emerged between striatal and GP Mn levels with A) plasma 
homogentisic acid, B) aspartic acid, and C) chenodeoxycholic acid, represented 
by arbitrary units (AU), and depicted in scatterplot form with best fit trendlines 
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representing the Pearson’s r value for each plasma metabolite and brain region’s 
metal content. Control (Cn) (n=6) and Mn (n=6) groups were included in the 
analysis and are depicted by shades of gray on each plot.  
 
 

Figure 4.3. OPLS of Brain Spectral Data. 
 

 

Figure 4.3. OPLS of Brain Spectral Data. – A) Gas chromatography-time of 
flight-mass spectroscopy (GC-TOFMS) data represented by OPLS-DA scores 
plot between control and Mn-exposed groups. OPLS-DA, Control vs Mn, 1+2 
components, R2X (cum)=0.462, R2Xp = 0.153, R2Y (cum)=0.978, 
Q2(cum)=0.526. B) Liquid chromatography-time of flight mass spectroscopy (LC-
TOFMS) data represented by the OPLS scores plot of the separation between 
healthy control and Mn-exposed rats. OPLS model: 2 component model, 
R2X=0.500, R2Y=0.979, Q2(cum)=0.642. 

 

 

 

 

 

 

 

 

 

 



91 
 

Figure 4.4. OPLS of Liver Spectral Data. 
 

 

Figure 4.4. OPLS of Liver Spectral Data. – A) Gas chromatography-time of 
flight-mass spectroscopy (GC-TOFMS) data represented by OPLS-DA scores 
plot between control and Mn-exposed groups. OPLS-DA Model: Control vs Mn, 
1+2 components, R2X (cum)=0.454, R2Xp = 0.176, R2Y (cum)=0.996, 
Q2(cum)=0.695. B) Liquid chromatography-time of flight mass spectroscopy (LC-
TOFMS) data represented by the OPLS scores plot of the separation between 
healthy control and Mn-exposed rats. OPLS model: 2 component model, 
R2X=0.391, R2Y=0.964, Q2(cum)=0.660. 
 
 
Behavioral Observations 

 Mn exposure significantly increased locomotion and altered stereotypic 

activity associated with light and dark cycles. Because hyperactivity and altered 

locomotion has been previously associated with Mn exposure (Bouchard et al., 

2007; Kern et al., 2010) we conducted behavioral analysis during the fourth, fifth, 

and sixth weeks of Mn exposure using 24h video surveillance to monitor Mn 

induced changes in activity.  No changes in behavior occurred until the sixth 

week of exposure when total activity, measured as total distance traveled (TDT), 

was significantly greater (p = 0.003) in the Mn exposed group (Figure 5A); 

moreover, increased locomotion was strongly correlated with GP, striatal, and 
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plasma Mn levels (r = 0.8027, p = 0.002; r = 0.7212, p = 0.008; and r = 0.6229, p 

= 0.030, respectively) (Figures 5A1, 5A2, and 5A3).  Analysis of individual 

behaviors identified a significant increase in repetitive turning (p = 0.007) during 

the light cycle of Mn exposed animals and a significant Mn induced decrease in 

rearing (p = 0.006) during the dark cycle (Figure 5B). Depicting behaviors as 

percent performed in the light cycle versus dark cycle revealed increased activity 

of Mn exposed animals in the light cycle, contradictory to the nocturnal activity of 

the controls (Figure 5C). 
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Figure 4.5. Behavioral Analysis of Mn and Control Rats. 
 

 

Figure 4.5. Behavioral Analysis of Mn and Control Rats. – Behaviors were 
monitored for 24 h using Home Cage Scan video surveillance during the sixth 
week of Mn exposure. A) Total distance traveled (TDT) in meters over the 24 h 
period for control and Mn exposed rats. Independent t-tests were used to identify 
differences between groups and data are expressed ± SEM. Inset) Scatter plot 
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representation of Pearson’s correlational analysis between TDT (in meters; x 
axis) and 1) plasma Mn (µg/L; y axis) (r = 0.6229), 2) striatal Mn (µg/g; y axis) (r 
= 0.7212), and 3) globus pallidus (GP) Mn (µg/g; y axis)  (r = 0.8027). B) Total 
behaviors expressed as percent control during the light and dark cycles using 
independent t-tests to identify differences between groups data are expressed ± 
SEM. (* = p < 0.01) C) Percentage of each behavior completed in the light or 
dark cycle for control and Mn exposed rats. 
 
 

Discussion 

The purpose of this study was to identify biomarkers of Mn toxicity that 

provide diagnostic information corresponding to brain Mn accumulation, and to 

monitor changes in rat home cage behaviors that accompany Mn accumulation.  

Using a LC/GC-TOFMS method of metabolomic analysis we were able to identify 

several potential biomarkers that corresponded with indices of Mn neurotoxicity 

in rats; including, altered metal homeostasis, amino acid metabolism, and 

markers of structural damage.  Additionally, video surveillance identified altered 

behavior and activity consistent with previous observations in Mn exposure 

models; however, our 24h data collection period identified a previously 

unreported disturbance in circadian rhythm due to Mn toxicity. 

Oral Mn exposure elevated brain Mn in all regions examined, primarily 

localizing in the GP. A novel increase in Cu was also observed in the GP, but it is 

unclear whether the elevation in Cu is a direct effect or an artifact of Mn 

exposure. For example, Mn can influence Fe homeostasis, evidenced by a 

decrease in the Fe:Mn ratio, which has been linked with elevated GP copper 

(Erikson et al., 2004). Similarly, liver and plasma Mn levels were increased with 
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Mn exposure.  While Mn exposure did not drastically alter brain or plasma Fe 

levels, it did significantly lower liver Fe content. Decreased liver Fe was 

accompanied by decreased plasma ferritin and increased plasma transferrin 

indicating systemic Fe deficiency but not anemia (normal hematocrit) (Tables 1, 

2). It is important to note that while systemic Fe status was significantly altered 

due to Mn exposure, the metabolic and behavior alterations that occurred were 

strongly associated with increased brain Mn content and not depleted systemic 

iron. 

 Locomotor activity (i.e. total distance traveled) is often used in 

neuroscience as an outcome measure for neurotoxic effects ( ’Donoghue, 1996; 

Flagel and Robinson, 2007). In our study, increased overall activity, measured by 

TDT, was observed with Mn exposure, and was associated with plasma, striatal, 

and GP Mn levels (Figure 5A). Increases in the motor activity of rats as a result 

of Mn exposure have been reported previously (Calabresi et al., 2001; Kern et 

al., 2010), though these effects are often transient (Vacher et al., 2006). 

Repetitive turning was also observed in Mn exposed rats, which may contribute 

to the overall increased activity, but has also been associated with stereotypy 

linked to dopaminergic dysfunction, akin to obsessive compulsive disorders (de 

Haas et al., 2010).  While repetitive turning was significantly elevated in Mn 

exposed rats the distribution of repetitive turning events was consistent with the 

circadian behavior of control animals, unlike rearing, sniffing and grooming 

(Figure 5C). Rearing and sniffing behaviors were markedly decreased during the 
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dark cycle of Mn exposed rats, consistent with previous reports (Witholt et al., 

2000). Changes in these exploratory behaviors contradict typical nocturnal 

behavior (Scheer et al., 2003) and suggest that Mn exposure may disrupt the 

circadian clock.  leep disturbances are common among Parkinson’s disease 

patients (Suzuki et al., 2011), and reversal of the circadian rhythm has been 

observed in iron deficient rats and is attributed to alterations in dopaminergic 

and/or noradrenergic activity (Youdim et al., 1980). In addition to dopamine and 

norepinephrine, circadian rhythm is largely influenced by serotonin, GABA, and 

glutamate in the suprachiasmatic nucleus (Wagner et al., 2001; Reghunandanan 

and Reghunandanan, 2006), and circadian fluctuations in dopamine, glutamate, 

and GABA have been reported in the striatum of rats (Castaneda et al., 2004).  

Therefore, if the altered light/dark behaviors observed in this study are indeed 

alterations in circadian rhythm, they are likely driven by alterations in striatal 

dopamine, GABA and/or glutamate that have been linked with Mn exposure 

(Fitsanakis et al., 2006 for review). Further studies utilizing larger sample size 

with longer monitoring periods are needed to confirm Mn induced circadian 

reversal; however, these data suggest that Mn disrupts normal behaviors 

throughout the light/dark cycle as opposed to previously reported short 

observational periods (Youdim and Yehuda, 1985). While behavior is a valuable 

indicator of neurobiological function when assessing neurotoxicity; biochemical 

measures (e.g. metabolomics) are equally important to identify metabolic 

changes congruent with neurotoxicity, and to reveal potential biomarkers. 
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To our knowledge, the only other metabolomic analysis of Mn exposure 

was completed by Dorman et al., (2008) in monkeys exposed to airborne 

MnSO4. While the Mn exposure protocol between the two studies differed, there 

were similarities in altered blood metabolites, specifically elevated arginine and 

glutamine derivatives. Our study corroborated these previous data and revealed 

a few new scenarios. Possibly the most compelling identified a substantial impact 

of Mn on fatty acid metabolism in the brain. Palmitic acid, the product of de novo 

lipogenesis, was detected in 15-fold greater concentrations in the brains of Mn 

exposed rats.  Increased palmitate was accompanied by significant elevations in 

oleic acid, desmosine, and cholesterol (Table 4). Other than oleic acid, Mn did 

not have the same affect on these metabolites in the liver, which is interesting 

because Mn has been shown to increase lipogenesis in liver tissue despite high 

lipid availability (Baquer et al., 1974), possibly by inhibiting normal feedback 

mechanisms. Mn has also been linked to increased acetyl-CoA carboxylase 

activity, enhancing fatty acid synthesis (Scorpio and Masoro, 1970).  Mn 

enhanced lipogenesis could account for the increased palmitic acid (found in the 

brain) and its potential downstream product oleic acid (increased in brain and 

liver).  Alternatively, Mn has been implicated in endoplasmic reticular stress 

(Chun et al., 2001; Tjalkens et al., 2006), which may disrupt fatty acid elongation 

resulting in abnormally high palmitic acid content. Mn accumulation may also 

compromise liver function leading to liver damage or failure. Mn induced liver 
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failure will directly affect liver metabolites and may influence metabolite changes 

in other tissues including clearance and/or degradation.   

 Increased palmitic acid in the brain, along with elevated cholesterol, may 

introduce a scenario similar to what has been observed in Alzheimer’s disease 

(AD). Palmitic acid has been linked to increase ceramide production in astrocytes 

(Patil et al., 2007) and implicated in the elevation of β-secretase (BACE1) activity 

and tau hyperphosphorylation (Patil et al., 2008). Additionally, elevated free 

cholesterol influences β- and γ-secretase activity enhancing amyloid β production 

(Shobab et al., 2005). Mn has also been directly linked to tau 

hyperphosphorylation in PC12 cells (Cai et al., 2011). Changes in lipid availability 

may also compromise membrane integrity by increasing fatty acid and 

cholesterol incorporation, thereby altering normal structure and dynamics. 

Continuity of vascular structure may also be compromised as elevated levels of 

desmosine, a marker of elastin breakdown (Ronchetti and Contri, 1997), were 

found in the Mn exposed group compared to control.  

Evidence of compromised integrity existed in the brains of Mn exposed 

rats. We speculate, however, that markers of structural damage were not linked 

to neuronal death. Neuronal loss due to structural damage has been associated 

with decreased N-acetylaspartate (NAA) levels (Demougeot et al., 2001), and a 

previous study on Mn exposed primates observed decreases in NAA and the 

NAA:creatine ratio suggesting neuronal integrity/density was altered (Guilarte et 

al., 2006). We observed minimal changes in brain creatine levels and increased 
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NAA due to Mn exposure, and when coupled with altered lipid metabolites likely 

signify altered membrane integrity rather than neuronal death.  

 To investigate potential biomarkers associated with Mn induced 

neurological dysfunction, we conducted correlational analyses between the 

plasma metabolites prominently altered by Mn with brain Mn concentrations in 

the striatum and GP. Notable plasma metabolites that were altered due to Mn 

were aromatic amino acids derivatives (Tryptophan: 3-indolepropionic acid and 

kynurenine; Tyrosine: homogentisic acid) (Table 3).  Plasma homogentisic acid, 

aspartic acid, and chenodeoxycholic acid all correlated significantly with GP and 

striatal Mn accumulation (Figure 2). Increased chenodeoxycholic acid is 

consistent with altered bile acid regulation in the liver (Table 6). Because plasma 

Mn correlated significantly with GP Mn we also examined relationships between 

plasma Mn and altered brain and liver metabolites. Weak correlations were found 

between plasma Mn and liver metabolites associated with energy production 

(e.g. creatine and ribonic acid) (data not shown); however, plasma Mn was a 

better predictor of altered lipid metabolism (cholesterol, palmitate and oleate) and 

structural integrity (desmosine) in the brain.  In this aspect, plasma Mn may be 

useful to monitor along with  plasma metabolites (e.g., chenodeoxycholic acid or 

homogentisic acid) in order to gain a more complete picture of brain Mn 

accumulation and its resulting pathologies possibly leading to earlier intervention. 
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 In conclusion, six weeks of oral Mn exposure led to increased brain Mn 

that corresponded with locomotor and stereotypic behavior abnormalities 

suggesting a disturbance in circadian rhythm. Simultaneous changes in brain, 

plasma, and liver metabolites were also identified and associated with brain Mn 

accumulation.  Together, these data provide a useful starting point to identify 

metabolite biomarkers that correspond with Mn toxicity in a more cost effective 

manner.   Furthermore, it may be prudent to consider how shifts in multiple 

metabolites may relate to one another in Mn toxicity; for example, an indicator of 

brain Mn accumulation (plasma chenodeoxycholic acid predicts GP Mn) together 

with an indicator of Mn induced changes in the brain (plasma Mn predicts 

elevated brain desmosine) will better appraise the progression of neurotoxicity. 

GC/LC-TOFMS can be a powerful tool to identify potential biomarkers, and 

additional study paradigms (route of exposure and/or species) are warranted to 

identify consistent biomarkers using this technique. 
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CHAPTER V 
 

MANGANESE ACCUMULATION IN MEMBRANE FRACTIONS OF PRIMARY 

ASTROCYTES IS ASSOCIATED WITH DECREASED ɣ-AMINOBUTYRIC ACID 

(GABA) UPTAKE, AND IS EXACERBATED BY OLEIC ACID AND 

PALMITATE 

 
Abstract 

 verexposure to manganese (Mn) disrupts γ-aminobutyric acid (GABA) 

neurochemistry and has been associated with severe imbalances in the fatty acid 

profile of the brain. Evidence suggests that Mn increases extracellular GABA by 

interfering with GABA uptake mechanisms, but the effects of Mn on GABA 

transport proteins (GATs) have not been identified. The purpose of this study 

was to characterize how Mn neurotoxicity impairs GAT function in primary rat 

astrocytes. Based on our previous studies that showed significantly elevated 

brain fatty acid levels with Mn exposure, we exposed astrocytes to 500 µM Mn 

for 24 hrs with or without co-treatments of oleic and palmitic acids (10 or 100 µM) 

to ascertain the role of fatty acids on GABA uptake during Mn toxicity. Following 

exposure 3H-GABA uptake was measured, and isolated astrocyte fractions 

(cytosolic and membrane) were examined for GAT3, protein kinase C (PKC), and 

phospho-PKC (pPKC) protein levels and metal content. 3H-GABA uptake was 

significantly decreased by 24 hr Mn exposure (p < 0.001), an effect exacerbated 
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by co-treatment with 100 µM oleic or palmitic acid. Increased pPKC levels were 

observed in the membrane fraction due to Mn and palmitic acid, but pPKC did 

not correspond with decreased membrane GAT3. Pretreatment with PKC 

inhibitors BIS II (10 µM) and isorhamnetin (10 µM) failed to restore uptake 

suggesting a diminished role of PKC in decreased GAT function.  Oleic and 

palmitic acids (10 and 100 µM) significantly elevated membrane Mn levels 

compared to Mn treatment alone (p < 0.01), and were negatively correlated with 

3H-GABA uptake (r = -0.45, p = 0.011). Furthermore, control cells exposed to Mn 

only during the experimental uptake had significantly reduced 3H-GABA uptake, 

and the addition of 50 µM GABA blunted cytosolic Mn accumulation. Together, 

these data indicate that reduced GAT function in astrocytes is not driven by PKC 

signaling, but is likely influenced by Mn and fatty acids interacting with the 

plasma membrane thereby inhibiting GABA uptake by GAT3.   

Introduction 

Manganese (Mn) neurotoxicity is associated with distinct neurochemical 

changes that contribute to extrapyramidal symptoms similar to Parkinson’s 

disease. While most of the phenotypic changes resulting from prolonged Mn 

exposure are associated with changes in the dopamine system, evidence shows 

that Mn induced changes in the GABA neurotransmission exist prior to 

dopaminergic dysfunction (Gwiazda et al., 2002). GABA is the main inhibitory 

neurotransmitter in the brain that is responsible for modulating excitatory signals 

within the basal ganglia to help coordinate smooth motor function. Motor control 
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issues observed with Mn exposure (e.g. bradykinesia) and other artifacts of Mn 

accumulation, such as glutamate excitotoxicity, may result from disrupted GABA 

signaling. Specific mechanism as to how Mn alters GABA are unclear, but Mn 

appears to target GABA uptake mechanisms which are mediated by pre- and 

extra-synaptic GABA transport proteins GAT1 and GAT3, respectively (Kersanté 

et al., 2013). Astrocytes primarily express the GAT3 isoform and are integral to 

GABA uptake because of their relatively high Km compared to neuronal GAT1 

(33 µM versus 7 µM, respectively). The high Km for GAT3 suggests that it plays 

a critical role in clearing GABA spillover from the synaptic cleft reducing the 

duration and intensity of inhibitory neurotransmission. Astrocytes also sequester 

Mn and other metals that pose a threat to the more vulnerable neurons (Aschner 

et al., 1992); however, as cellular Mn concentrations increase, the protective 

function of astrocytes including their role in GABA clearance may be jeopardized. 

Several studies have shown that Mn exposure disrupts GABA levels in 

tissue and extracellular space of the striatum (Bonilla, 1978; Gianutsos and 

Murray, 1982; Gwiazda et al., 2002; Takeda et al., 2002, 2003; Anderson et al., 

2008; Fordahl et al., 2010). Although these studies were conducted using various 

rodent models of Mn exposure, overall the findings indicate that Mn exposure 

decreases tissue GABA while increasing extracellular levels. The direct effect of 

Mn on GABA transporters, however, has only been measured in striatal 

synaptosomes using 3H-GABA (Anderson et al., 2007a) and via in vivo 

microdialysis in Mn exposed rats after delivery of the GAT inhibitor nipecotic acid 
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(Fordahl et al., 2010). Striatal synaptosomes isolated from Mn exposed rats 

displayed a marked decline in 3H-GABA uptake than synaptosomes from control 

rats (Anderson et al., 2007a). Similarly, Mn exposure caused increased 

extracellular GABA compared to controls and blunted the expected rise in GABA 

after GAT inhibition by nipecotic acid (Fordahl et al., 2010). These data along 

with evidence that Mn exposure did not alter GAT protein or mRNA levels in Mn 

exposed rodents (Anderson et al., 2008) suggest a functional decline in GABA 

transport proteins due to Mn.  

We hypothesize the decline in GABA transport is due to Mn altering 

cellular regulation of the GATs presumably through protein kinase C (PKC) 

signaling. PKC activation has been reported in dopaminergic N27 cells exposed 

to Mn (Latchoumycandane et al., 2005). Additionally, internalization of GATs 

from the plasma membrane to cytosolic vesicles is dependent on PKC 

phosphorylation of GATs (Gadea and Lopez-Colome, 2001; Quick et al., 2004). 

Data showing PKC activation with phorbol 12-myristate 13-acetate (PMA) 

reduced GABA uptake by 50% in human embryonic kidney cells, an effect that 

was blocked by PKC inhibitors (Sato et al., 1995). Moreover, other solute carrier 

family (Slc) transporters, like the glutamine transporter SNAT3, are impaired by 

Mn induced activation of PKC (Sidoryk-Wegrzynowicz et al., 2011).   

 Recently, data were published by our lab showing profound changes in 

brain lipid metabolism of Mn exposed rats (Fordahl et al., 2012). Significant 
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elevations of oleic acid (12 fold), palmitic acid (15 fold), and cholesterol (4 fold) 

were observed. These fatty acids are primary constituents of plasma membrane 

and membrane raft composition (Schumann et al., 2011), and oleic and palmitic 

acid have been independently associated with decreased GABA uptake and 

increased PKC activity (Troeger et al., 1984; Khan et al., 1992; Ragheb et al., 

2009). Drastic changes in these fatty acids may contribute to GABA related 

dysfunction observed in Mn neurotoxicity; however to our knowledge this 

relationship has not been investigated.  

The purpose of this project was to characterize how Mn decreases GABA 

uptake in primary astrocytes. Because astrocytes maintain the extracellular 

milieu around synaptic terminals, understanding how Mn and indirect 

consequences of Mn exposure (i.e. increased fatty acids) alter astrocyte GABA 

uptake is valuable to understand neurochemical changes associated with Mn 

neurotoxicity. For these reasons the goals of this study were to: 1) specifically 

examine GABA uptake and GAT3 protein levels in primary astrocytes after Mn 

exposure, 2) investigate the role of PKC signaling in GAT3 regulation with the 

use of a PKC inhibitor, isorhamnetin (ISO) (the primary quercetin metabolite 

found in the brain), and 3) characterize the effect of oleic acid and palmitic acid 

on GAT3 protein levels and function. We hypothesized that Mn directly regulates 

GAT3 proteins through PKC signaling leading to transporter internalization, 

similar to other transport proteins in the solute carrier family. Additionally, we 

hypothesized that oleic acid and palmitate would exacerbate Mn induced GAT3 
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dysfunction. Lastly, we wanted to quantify Mn accumulation in cytosolic and 

membrane fractions of astrocytes to identify if Mn distribution within these cellular 

fractions is associated with GAT3 localization, PKC signaling, or GABA uptake.  

Materials and Methods 

Cell Isolation and Culture 

 Cortical astrocytes were isolated from Sprague Dawley rat pups PND 1-3 

(Harlan Laboratories) following the methods described by Allen et al., 2001 with 

slight modifications. Briefly, the pups were retrieved, cleaned using the antiseptic 

microbiocide Betadine, and swiftly decapitated. Using dissecting scissors and 

forceps the skull cap was detached and the brain was removed after carefully 

dissecting away any intact meninges to reduce fibroblast contamination. Once 

removed, well-defined cortices were carefully dissected apart from the rest of the 

brain and placed into serum free Dulbecco’s minimal essential medium (D-MEM) 

(Sigma-Aldrich). The isolated tissue was minced by titration using a Pasteur 

pipette treated with Sigmacote® (Sigma-Aldrich) to prevent cell lysing. Astrocytes 

were dissociated using a 1:5 dilution of Trypsin 0.05% in serum free D-MEM. 

Dissociated cells were removed and placed in D-MEM containing 10% heat 

inactivated horse serum (Sigma-Aldrich) to neutralize the Trypsin. Cells were 

plated in 100mm dishes at a density of 7.5 x 105 or 6-well plates at a density of 

1.0 x 105 and maintained in a humidified atmosphere of 95% air/5% CO2 at 37 

°C. Media was changed twice a week until cultures were 90% confluent. Culture 

purity was verified using immunocytochemistry where >95% stained positive for 
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the astroglial marker GFAP (Invitrogen). Experimental treatments were as 

follows: 500 µM Mn in the form of MnCl2 was used for all Mn exposures unless 

otherwise indicated. This concentration of Mn falls in the symptomatic range of 

Mn neurotoxicity, 300 µM to 1000 µM, as measured in the brains of non-human 

primates (Suzuki et al., 1975).  10 µM Isorhamnetin (ISO) (Sigma-Aldrich), the 

methylated metabolite of quercetin and protein kinase C (PKC) inhibitor, was 

used as a pre- and co-treatment with Mn for uptake, western blot, and metal 

analyses. Isorhamnetin concentrations in rat plasma and brain have been 

reported at 15 µM and 200 nM, respectively (de Boer et al., 2005). Total GABA 

concentrations used in experiments were 50 µM representing physiologically 

relevant synaptic concentrations of GABA during inhibitory neurotransmission 

(Grabauskas, 2004). Logarithmic concentrations (10, 100, and 1000 µM) of 

albumin bound Oleic acid and palmitic acid (Sigma-Aldrich) were used for 

individual and co-treatment with Mn for all fatty acid experiments; however, 

decreased cell viability was observed during co-treatment of 1000 µM fatty acid 

and Mn so these data were not reported. 

3H-GABA Uptake 

 Uptake of tritiated GABA (3H-GABA) was measured as described by 

Erikson and Aschner (2002).  Astrocytes (90% confluent in 6-well plates) were 

incubated for 1, 6, or 24 hrs at 37°C with treatment media containing 0 or 500 µM 

Mn in the form of MnCl2. An additional group of control astrocytes received 500 
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µM Mn (CnMn) in the experimental buffer only for the duration of the uptake 

experiment. The CnMn group simulates Mn in the extracellular space, and was 

used to observe the interaction of Mn with extracellular GABA and GABA 

transport proteins. Cells were washed 3  with  EPE  buffer  122 mM  aCl, 3.3 

mM KCl, 0.4 mM Mg  4, 1.3 mM CaCl2, 1.2 mM K 2P 4, 10 mM glucose, and 

25 mM  -2-hydroxy-ethylpiperanzine   -2-ethansulfonic acid, pH 7.4] and 

incubated for 1, 2, or 4 minutes with HEPES buffer containing 0.5 µCi 3H-GABA 

(PerkinElmer) and cold GABA (Sigma-Aldrich) resulting in a final concentration of 

50 µM total GABA.  The reaction was stopped by aspirating the tritiated HEPES 

and washing the cells 4X with cold (4°C) 290 mM mannitol buffer containing 0.5 

mM calcium nitrate to maintain cell adhesion to the substrate.  Cells were 

solubilized in 500 µL NaOH (1N) and 400 µL aliquots were neutralized with 33.3 

µl HCl (12 ) then used for β-counting with a Perkin Elmer liquid scintillation 

analyzer (PerkinElmer).  The remaining 100 µL was used for protein 

determination using the bicinchoninic assay (BCA, Pierce Chemicals). 

Cell Fractionation  

 Astrocyte cytosolic and membrane fractions were obtained through 

differential centrifugation. Astrocytes from two 100 mm plates were pooled into 1 

mL phosphate buffered saline (PBS), centrifuged (1000 x g) to pellet, then rinsed 

with PBS and re-pelleted twice. The PBS was then aspirated and 100 µL cold 

0.32 M sucrose pH 7.4 containing a protease inhibitor cocktail (Calbiochem) and 
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phosphatase inhibitors sodium orthovanadate, sodium fluoride, and β-

glycerolphosphate (Sigma-Aldrich) was added to the final pellet to maintain 

membrane integrity. The pellet was sonicated on ice using ten one-second 

bursts.  The remaining homogenate was centrifuged at 750 x g for 5 minutes to 

pellet nuclear material and any unbroken cells. The supernatant was decanted 

and centrifuged at 41,000 x g for 30 minutes at 4 °C. The resulting supernatant 

and pellet were separated and represent the cytosol and crude membrane 

fractions, respectively. The crude membrane fraction was solubilized in 100 µL 

radioimmunoprecipitation assay (RIPA) lysis buffer (99 mL 1X PBS, 1 mL 

Nonidet 40, 0.1 g sodium dodecyl sulfate, 0.5 g sodium deoxycholate, pH 7.4). 

Cellular fractions of astrocytes were obtained from least three independent 

culture dates and used for Western blot and metal analyses. 

Western Blot Analysis 

 Protein concentrations of cytosolic and plasma membrane samples were 

determined using BCA analysis. For western blots, 20 µg of protein from each 

sample was loaded into  NuPAGE® Bis-Tris precast gels, run with MES running 

buffer for 40 mins using NuPAGE® preset conditions on the PowerEase® 500 

power supply system, and transferred to a Immobilon® PVDF membrane 

(Millipore) for 1 hr using the  Cell II™ blot module in transfer buffer (All from 

Invitrogen). The following antibodies and dilutions were used for protein 

detection: GAT3 1:500 (Abcam), phospho-PKC (pan, βII  er 660) 1:1000 (Cell 
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 ignaling), PKC (pan, Thr 495) 1:1000 ( ovus Biologicals), β-Actin 1:1000-

1:5000 (Cell Signaling), and Anti-rabbit IgG HRP-linked secondary (Cell 

Signaling). Immunoblotting occurred overnight at 4 °C after membranes were 

blocked with tris-buffered saline containing tween (TBST, 2.42 g Tris, 8 g NaCl, 1 

L deionized water, 500 uL Tween 20, pH 7.6) and 5% instant milk. The 

membrane was then rinsed 4x with TBST and blocked again with 5% milk prior to 

being exposed to the secondary antibody for 2 hrs at room temperature. Protein 

detection was acquired using Western Lighting Chemiluminescence 

(PerkinElmer) on a BioRad Chemidoc imaging system, and the band signal 

intensity was assessed using QuantityOne software (BioRad). 

Metal Analysis 

 Mn and Fe concentrations were measured with graphite furnace atomic 

absorption spectrometry (Varian AA240, Varian, Inc., USA). Aliquots of astrocyte 

cytosolic and plasma membrane homogenates (30 uL) were digested in ultra-

pure nitric acid (1:2 v/v dilution) for 24-48 hours in a sand bath (60° C).  Each 

sample was further diluted with a 2% nitric acid solution as need for analysis. A 

bovine liver (NBS Standard Reference Material, USDC, Washington, DC) (10 µg 

Mn/g; 184 µg Fe/g) was digested in ultrapure nitric acid and used as an internal 

standard for analysis (final concentration 5 µg Mn/L and 92 µg Fe/L). Metal data 

are expressed as µM/mg protein. 
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Statistical Analyses 

3H-GABA uptake and metal data were analyzed using SPSS v20 for 

Windows.  Data were examined for the presence of outliers by boxplot analysis. 

Analysis of variance was conducted to identify mean differences between 

treatment groups for uptake and metal analyses with a significance threshold set 

at p < 0.05. Tukey’s post hoc tests were conducted when a significant difference 

in means was detected to identify significant variations between individual 

treatments within the statistical model. Pearson’s correlational analyses were 

then performed to examine relationships between metal concentrations and 3H-

GABA uptake. The threshold of significance for all tests was set at p < 0.05. 

Results 

Manganese Decreases 3H-GABA Uptake in a PKC Independent Manner 

A time dependent decrease in 3H-GABA uptake was observed in 

astrocytes exposed to 500 µM Mn (Figure 1A). Mn significantly reduced GABA 

uptake after 24hrs of exposure (p < 0.001) and in astrocytes that were only 

exposed to Mn (CN Mn) during experimental conditions (p = 0.025), compared to 

control. The CN Mn group was added to identify the effect of extracellular Mn on 

GABA uptake. A time dependent increase in PKC phosphorylation (pPKC) was 

also observed with Mn exposure (Figure 1C); however, no appreciable changes 

in plasma membrane or cytosolic GAT3 protein levels resulted due to elevated 

pPKC, contrary to our hypothesis. To further investigate the involvement of PKC 
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in Mn reduced GABA transport we repeated the uptake experiments using the 

PKC inhibitors BIS II and isorhamnetin (ISO). Despite decreasing pPKC in the 

plasma membrane fraction (Figure 1D), pretreatment with 10 µM ISO failed to 

restore Mn-impaired GABA uptake and further reduced uptake when Mn was 

present in the extracellular space (Figure 1B). Slight reductions in membrane 

bound GAT3 were observed with ISO treatment corroborating decreased uptake. 

ISO driven changes in membrane GAT3 are not likely due to PKC signaling 

because 24 hr Mn exposure did not yield similar results although pPKC was 

abundant. Moreover, treatment with the broad PKC inhibitor BIS II (10 µM) did 

not restore Mn-impaired GABA uptake (Data not shown) further supporting a 

diminished role of PKC phosphorylation in Mn reduced GABA uptake.  
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Figure 5.1. 3H-GABA Uptake and GAT3 Protein Levels in Mn Exposed 
Astrocytes. 

 

Figure 5.1. 3H-GABA Uptake and GAT3 Protein Levels in Mn Exposed 

Astrocytes. – Mn and isorhamnetin (ISO) significantly reduce 3H-GABA uptake 

independent of PKC phosphorylation. A) 3H-GABA uptake of astrocytes exposed 

for 2 min to an experimental buffer containing 0.5 µCi 3H-GABA (total GABA 

concentration, 50 µM). Prior to uptake astrocytes were exposed to 500 µM Mn for 

0 (Control), 1, 6, or 24 hrs. An additional group of control astrocytes were 

exposed experimental buffer containing 3H-GABA and 500 µM Mn (CN Mn) to 

simulate extracellular Mn. B)  2 min uptake of 3H-GABA in astrocytes pretreated 

for 72hr with 10µM ISO, ISO plus extracellular Mn (ISO ExMn), and 24 hr Mn 

exposure after ISO pretreatment (ISO Mn 24hr). All uptake data represent three 

sample replicates from three independent culture dates (n=9) and are expressed 

as mean specific activity normalized to protein ± SEM.  C and D) Western blot 

analysis on cytosolic and plasma membrane fractions of cells exposed to 500 µM 

Mn for 0, 1, 6, or 24 hrs (C), or 24 hr exposure to Mn after pretreatment with ISO 

(D). An additional group of cells were treated with 50 µM GABA (G50) (D) to 

control for protein expression changes due to the uptake experimental 

conditions. Analysis of variance was performed on uptake data, and when 

applicable, Tukey’s post hoc analysis was conducted to determine significant 

differences between treatment groups, p ≤ 0.05.  
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Membrane GAT3 May be Influenced by Cellular Manganese Localization  

Metal analysis of membrane and cytosolic fractions provide novel data 

that suggest Mn and ISO induced changes in GABA uptake may be associated 

with cellular Mn localization.  Astrocytes exposed to 500 µM Mn rapidly 

accumulate cytosolic Mn by 600 fold within one hour of exposure, followed by 

drastic Mn efflux resulting in a ~100 fold increase in cytosolic Mn at 24 hrs 

compared to control (Figure 2A). Interestingly, ISO pretreatment blunted cytosolic 

Mn accumulation by 60% after one and six hours of Mn exposure, but cytosolic 

Mn normalized after 24 hrs (Figures 2A, 2B). Cytosolic and membrane Mn levels 

were significantly elevated from controls after 24 hrs of Mn exposure (p = 0.003 

and 0.005, respectively), corresponding with significantly reduced GABA uptake 

but stable membrane GAT3 levels. Decreased Mn uptake in the ISO treatment 

group, and a near significant (p = 0.06) reduction in membrane Mn levels 

compared to the Mn alone treatment, may allow for proper GAT3 membrane 

recycling.  
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Figure 5.2. Astrocyte Mn Accumulation after Mn Exposure and ISO 
Pretreatment.

 
Figure 5.2. Astrocyte Mn Accumulation after Mn Exposure and ISO 

Pretreatment. – A) Astrocytes exposed to 500 µM Mn responded with rapid 

accumulation of cytosolic Mn after 1hr of exposure but retained less cytosolic Mn 

with longer term exposure. The Mn content in plasma membrane fractions of 

astrocytes responded similarly over time with less magnitude of change. After 24 

hrs of Mn exposure, cytosolic and membrane Mn concentrations were 

significantly elevated compare to control (B). Pretreatment with ISO blunted the 

initial cytosolic accumulation of Mn (A), and caused a near significant (p = 0.06) 

reduction in plasma membrane Mn content after 24 hrs of Mn exposure (B). 

Analysis of variance was performed on metal analysis data, and when applicable, 

Tukey’s post hoc analysis was conducted to determine significant differences 

between treatment groups, p ≤ 0.05.  

 

 

Oleic Acid and Palmitic Acid Exacerbate Manganese Accumulation Resulting in 

Decreased GABA Uptake 

Administration of oleic acid and palmitic acid to astrocyte cultures resulted 

in concentration dependent changes in GABA uptake (Figure 3A). Low 

concentrations (10 µM) of either fatty acid had little effect on GABA uptake but a 

logarithmic increase in fatty acid dose reduced uptake. Mn exposure 

compounded this effect significantly impairing GABA uptake with 10 or 100 µM 
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treatment of either fatty acid (Figure 3A). Moreover, the application of fatty acids 

enhanced Mn accumulation in cytosolic and membrane fractions of astrocytes 

(Figure 4B). Co-application of oleic acid and Mn significantly increased 

membrane Mn content (O10 Mn, p = 0.001; O100 Mn, p = 0.013) over Mn 

treatments alone (Figure 4B). Similarly, combined palmitic acid and Mn 

applications significantly elevated membrane Mn levels over Mn treatments alone 

(P10 Mn and P100 Mn, p < 0.001), but palmitic acid also exacerbated Mn uptake 

leading to significantly greater cytosolic Mn concentrations than Mn treatment 

alone (p < 0.001) (Figure 4D). Correlational analysis revealed significant inverse 

relationships between GABA uptake and both cytosolic (Figure 4C, p = 0.010) 

and membrane (Figure 4D, p = 0.011) Mn concentrations. Decreased uptake and 

augmented Mn accumulation with oleic acid and palmitic acid were not 

associated with changes in GAT3 protein levels (Figures 3B, 3C). 

 

 

 

 

 

 



117 
 

Figure 5.3. 3H-GABA Uptake and Western Blot Analysis of Astrocytes 
Exposed to Oleic and Palmitic Acids. 
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Figure 5.3. 3H-GABA Uptake and Western Blot Analysis of Astrocytes 
Exposed to Oleic and Palmitic Acids. – Astrocytes were exposed to oleic acid 
or palmitate (10 µM (P10 and O10) or 100 µM (P100 and O100)) for 24 hrs with 
or without 500 µM Mn. Uptake and western blot analyses were performed on 
astrocytes from three independent culture dates. Uptake samples (n = 9) and 
western blots are representative of protein changes from the three culture dates. 
A) Oleic acid and palmitate significantly decrease 3H-GABA uptake when 
combined with Mn exposure, but not independently. B) Changes in 3H-GABA 
uptake did not correspond with changes in plasma membrane GAT3 content or 
PKC phosphorylation. Analysis of variance was performed on uptake data, and 
when applicable, Tukey’s post hoc analysis was conducted to determine 
significant differences between treatment groups, p ≤ 0.05. 
 
 

Figure 5.4. Cytosolic and Plasma Membrane Metal Content of Astrocytes 
Exposed to Oleic and Palmitic Acids. 

 

 

Figure 5.4. Cytosolic and Plasma Membrane Metal Content of Astrocytes 
Exposed to Oleic and Palmitic Acids. – Exposure to oleic acid and palmitate 
exacerbate Mn accumulation due to 500 µM Mn exposure in cytosolic and 
membrane fractions, and was negatively correlated with 3H-GABA uptake. Data 
represent samples from two independent culture dates and are expressed as µM 
Mn normalized to sample protein ± SEM. A) Mn concentrations of cytosolic and 
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membrane fractions of cells exposed to 10 or 100 µM fatty acid. B) Co-treatment 
with 500 µM Mn and fatty acids enhance Mn accumulation in both cell fractions 
compared to control (*) and Mn exposure (†) alone. C) Cytosolic Mn 
concentrations of Mn and fatty acid (FA) exposures had a significant negative 
correlation with 3H-GABA uptake. D) A significant negative correlation was also 
observed between plasma membrane Mn content and 3H-GABA uptake of Mn 
and FA exposed astrocytes. Analysis of variance with Tukey’s post hoc analysis 
was used to determine significant differences in Mn content between treatment 
groups, and Pearson’s correlational analysis was conducted to elucidate the 
relationship between 3H-GABA uptake and Mn accumulation, p ≤ 0.05.       
 
 
Iron Deficiency Decreases GABA Uptake  

Iron deficiency has been shown to down regulate DAT function by 

promoting transporter internalization (Wiesinger et al., 2007). For this reason we 

wanted to investigate if iron deficiency regulated GABA uptake and GAT3 in a 

similar fashion. Using the iron chelator desferrioxamine (DFO), iron deficiency 

suppressed GABA uptake to the same extent as Mn exposure (Figure 6A). While 

DFO treatment had no effect on cellular Mn levels, it depleted cytosolic Fe and 

doubled the Fe content found in the plasma membrane fraction compared to 

controls (Data not shown). Iron deficiency decreased GABA uptake, but it did not 

reduce membrane GAT3 levels.  
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Figure 5.5. Dose Response: Cytosolic and Membrane Mn 
Concentrations with Increasing Mn and GABA. 

Figure 5.5. Dose Response: Cytosolic and Membrane Mn Concentrations 
with Increasing Mn and GABA. – These data represent cytosolic and 
membrane Mn concentrations of astrocytes exposed to logarithmic increases in 
Mn (10, 100, and 1000 µM) and GABA (50 and 500 µM) independent or in 
combination for 24hrs. These data represent experiments from two independent 
culture dates. Analysis of variance with Tukey’s post hoc analysis were 
applicable was used for statistical analysis. (*) represents a significant change 
from control and (†) represents a significant change from Mn 1000, p ≤ 0.05. 
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Figure 5.6. Iron Deficiency Reduces 3H-GABA Uptake in Cultured 
Astrocytes. 

 

Figure 5.6. Iron Deficiency Reduces 3H-GABA Uptake in Cultured 
Astrocytes. – To determine the effect of iron deficiency on GABA uptake we 
induced iron deficiency using the iron chelator desferrioxamine (DFO) 200 µM 
with or without 500 µM Mn for 24 hrs. Iron deficiency significantly reduced uptake 
compared to control, as determined by analysis of variance with Tukey’s post hoc 
test, p ≤ 0.05. 
 
 
Extracellular Manganese and GABA Interact Reducing Their Transport Into Cells  

 Astrocytes exposed to Mn only during the uptake experiment (CN Mn) had 

reduced GABA uptake similar to astrocytes that were exposed to Mn for 24 hrs 

(Figure 1A).  Additionally, extracellular Mn reduced GABA uptake in the ISO 

treatment group versus the ISO treatment without Mn in the experimental buffer 

(Figure 1C). These data show that extracellular Mn decreases GABA uptake. 

Next we tested whether increasing concentrations of GABA had the same effect 

on Mn uptake.  Astrocytes exposed to 10, 100, and 1000 µM Mn had significantly 
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elevated cytosolic Mn compared to control (Figure 5); however concomitant 

administration of 50 µM or 500 µM GABA with 1000 µM Mn significantly 

decreased cytosolic Mn concentrations compared with 1000 µM Mn alone (p < 

0.001) (Figure 5).  

Discussion 

These data corroborate previous findings of impaired GABA uptake 

(Anderson et al., 2008; Takeda et al., 2002; 2003) extending to primary 

astrocytes and novel evidence that mechanisms driving this impairment involve 

Mn interacting with the plasma membrane. Additionally, our results show that 

increases in brain fatty acid levels associated with Mn neurotoxicity exacerbate 

the effect of Mn on GABA uptake by enhancing Mn accumulation in the 

membrane fraction of astrocytes.  

We hypothesized that Mn would decreased GABA uptake in astrocytes via 

PKC phosphorylation and internalization of GAT3. This assumption was based 

on data indicating that Mn activates PKC (Latchoumycandane et al., 2005; 

Kitazawa et al., 2005), PKC mediates membrane recycling of GAT1 (Wang and 

Quick, 2005), and that Mn induced PKC activation led to internalization of other 

transporters in the Slc6 family (Sidoryk-Wegrzynowicz et al., 2011). We observed 

a time dependent increase in PKC phosphorylation with Mn exposure; however, 

this increase did not correspond with internalization of GAT3 protein. There is 

abundant evidence in the literature supporting the role of PKC in the regulation of 
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GAT1 (Whitworth and Quick, 2001; Quick et al., 2004; Wang and Quick, 2005), 

but a paucity of experimental studies examining GAT3 regulation. We measured 

both GAT1 (data not shown) and GAT3 in our primary astrocytes, but only 

detected the presence of GAT3.  It is possible that GAT3 regulation functions 

through different mechanisms, or that GAT3 does not recycle as dynamically as 

GAT1 to and from the plasma membrane. Because GAT3 transporters have a 

higher Km (33 µM vs 7 µM for GAT1), are primarily extrasynaptic, and function to 

clear synaptic GABA overflow, it is likely that membrane levels of GAT3 remain 

more stable.  Alternatively, increased pPKC in astrocytes promotes SNARE 

protein interactions with GAT1 (and likely GAT3), which has been shown to 

stabilize GAT1 on the membrane, but due to conformational changes, decreases 

GAT function (Quick, 2006; Wang et al., 2003). However, because the PKC 

inhibitors Bis II and ISO did not restore GABA uptake in our study, and the 

addition of Mn to the experimental buffer decreased uptake in control astrocytes, 

we feel that Mn interacts directly with the plasma membrane and possibly the 

GAT proteins. Mn binding GATs could reduce GABA transport similar to 

decreased dopamine transporter (DAT) function upon zinc binding to 

extracellular loops of DATs (Norregaard et al., 1998).  

Mn is chaperoned by intra- and extra-cellular transport proteins, but once 

the need for Mn in metalloenzymes is met and storage mechanisms become 

overwhelmed, excess Mn can impair cellular respiration, induce lipid 

peroxidation, and initiate apoptosis (Malecki, 2001; Yiin et al., 1996, Yoon et al., 
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2011). The unbound species of Mn (Mn3+) is highly reactive and will quickly bind 

to sulfhydryl moieties of amino acid residues (Fisher and Jones, 1981) or 

scavenge electrons initiating oxidative damage. The production of F2-

isoprostanes and increase of prostaglandin E2 due to Mn exposure demonstrates 

this reactivity (Milatovic et al., 2009), but also provides evidence that Mn interacts 

with the plasma membrane. Our data confirm that Mn content in the membrane 

fraction of astrocytes is significantly elevated with Mn exposure, and was also 

associated with decreased GABA uptake. Sulfhydryl containing cysteine residues 

on the short extracellular loop four of the GABA transporters are fundamental to 

sodium and GABA ligand binding for translocation to the cytosol (Zomot and 

Kanner, 2003). Mn interfering with these sulfhydryl residues is a putative 

mechanism for decreased GABA uptake in primary astrocytes. Additionally, the 

DAT (of the same, largely conserved, Slc6 transporter family) was identified to 

play a role in Mn transport in striatal synaptosomes and the globus pallidus of Mn 

exposed rats (Anderson et al., 2007b). We observed that adding physiological 

concentrations of GABA (50 µM) to astrocyte cultures decreased cytosolic Mn 

accumulation. We speculate that Mn interacts with extracellular GABA or 

competes as a ligand for GATs.     

The effect of fatty acid treatment on GABA uptake observed in our study 

was less than previously reported (Troeger et al., 1984; Rhoads et al., 1982). A 

significant decline in GABA uptake was only achieved when oleic acid or 

palmitate were co-administered with Mn. Again, PKC associated internalization of 
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GAT3 did not occur with either fatty acid alone or combined fatty acid/Mn 

treatments. Changes in the amount of these fatty acids, specifically the saturated 

fatty acid palmitate, may compromise the membrane fluidity and impair protein 

mediated transport (Hulbert et al., 2005). Oleic acid is one of the most abundant 

fatty acids in the plasma membrane, and oleic and palmitic acids are the 

predominant fatty acids found in membrane lipid rafts (Schumann et al., 2011). 

Disrupting lipid composition in membrane rafts resulted in a 50% decrease in 

transport rate by GATs (North and Fleischer, 1982; Allen et al., 2007). We 

speculate that the debilitating effect of fatty acids and Mn on GABA uptake is due 

to altered lipid raft composition. Our speculation is based on studies showing that 

GATs are associated with lipid raft micor-domains (Allen et al., 2007). Moreover, 

oleic and palmitic acids significantly elevated Mn accumulation in membrane 

fractions over Mn exposure alone. It is unclear whether decreased GABA uptake 

is primarily affected by Mn directly or Mn induced changes in fatty acids, but our 

data show a synergistic relationship between the two.  

 Due to the reciprocal relationship between Mn toxicity and iron deficiency, 

the influence of iron deficiency on DAT function (Erikson et al., 2000), and PKC 

mediated trafficking of DATs induced by iron deficiency (Wiesinger et al., 2007), 

we also examined whether iron deficiency contributed to the observed decline in 

GABA transport. Induced iron deficiency in astrocyte cultures significantly 

reduced GABA uptake similar to Mn exposure and combined iron deficient/Mn 

treatments. Iron deficiency did not decrease plasma membrane concentrations of 
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GAT3 as was observed with DAT in iron deficient rats (Erikson et al., 2000). The 

use of DFO depleted cytosolic iron as expected, but interestingly resulted in a 

doubling of the iron content in the membrane fraction (Data not shown). 

Membrane iron accumulation is presumably an artifact of elevated extracellular 

iron in the culture medium due to the DFO treatments; however, increased 

extracellular iron may interact with the plasma membrane akin to extracellular 

Mn. It is noteworthy that extracellular iron has been reported to decrease in the 

striatum of Mn exposed rats while extracellular Mn is significantly elevated 

(Fordahl et al., 2010; Anderson et al., 2009). Further studies need to be 

conducted to confirm direct binding of Mn or Fe to GATs. Binding could be 

identified using structural modeling to predict metal binding sites, similar to the 

elucidation of the zinc/DAT binding site. In conjunction with structural modeling, 

immunoprecipitation of GATs from Mn exposed cells followed by metal analysis 

of the eluted protein could identify metal/GAT binding.  

In conclusion, contrary to our hypothesis, it appears that Mn exposure 

does not alter cellular GAT 3 in primary astrocytes, specifically via PKC signaling. 

It is possible that endoplasmic reticular stress compromises post translational 

modification of neurotransmitter transporters, but results from this and previous 

studies from our lab suggest that Mn exposure alters membrane 

structure/function as evidenced by the oleic acid, palmitic acid, and cholesterol 

changes in vivo with Mn exposure (Fordahl et al., 2012) and their influence on in 

vitro GABA uptake (North and Fleischer, 1982; Allen et al., 2007). These 
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changes may influence membrane dynamics, and our data suggest that 

elevations of these fatty acids augment Mn aggregation at the membrane where 

Mn is available to interact with transmembrane proteins or instigate oxidative 

damage. Further characterizing the effects of Mn accumulation on membrane 

integrity will provide valuable information on how Mn neurotoxicity affects GABA 

and other neurotransmitter systems within the basal ganglia. While direct binding 

of Mn to GATs needs to be confirmed, we provide evidence that an interaction 

between Mn and these transmembrane proteins may exist 
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CHAPTER VI 
 

EPILOGUE 
 
 

Exposure to environmental manganese (Mn) is associated with dire 

neurological consequences. Inhalation of Mn airborne particulate or ingestion of 

Mn contaminated water each contributes to documented cases of Mn 

neurotoxicity; however, pathologies for these sources of exposure are quite 

different. Diagnosis of inhalation exposure is often associated with motor control 

issues (Meyer-Baron et al., 2009), whereas ingestion results in more subtle 

cognitive impairments (Wasserman et al., 2006; Khan et al., 2011). Length and 

severity of Mn exposure in either scenario influence the extent of neurotoxic 

damage, but a common theme to the overall etiology of Mn neurotoxicity is 

disrupted dopamine and ɣ-aminobutyric acid (GABA) signaling in the basal 

ganglia. Changes in brain GABA levels have been reported prior to changes in 

dopamine (Gwiazda et al., 2002), and results from this dissertation suggest that 

Mn altered GABA is associated with GABA tranporter function. Additionally, our 

findings identify biomarkers that correspond with Mn accumulation. Prior to the 

studies herein, reliable biomarkers and mechanisms involved with GABA 

dysregulation were unknown. These data serve as a foundation for future studies 

to further characterize the effects of Mn neurotoxicity, and to develop tests for the 

candidate biomarkers we have identified.  
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A goal of this project was to characterize how Mn interfered with GABA 

neurotransmission. The impact of Mn on GABA was examined specifically by: 1) 

measuring the clearance of extracellular GABA in Mn exposed rats using in vivo 

microdialysis, and 2) testing the effect of Mn on GABA transport proteins (GATs) 

using the GAT inhibitor nipecotic acid (NA). These experiments were based on 

previous studies in our lab showing increased extracellular GABA levels in the 

striatum of Mn exposed rats with minimal effect on transport proteins (Anderson 

et al., 2008). Results from this study corroborated our previous observations of 

elevated striatal GABA with Mn exposure, but several novel findings appeared 

after blocking GAT mediated GABA clearance with NA. In control animals, 

administration of NA was followed by a significant rise in extracellular GABA, as 

expected. This effect was absent in Mn exposed rats indicating that the function 

of GAT proteins was already impaired due to Mn. These data confirmed our 

hypothesis that Mn impairs GABA uptake by attenuating GAT protein function, 

instead of altering protein or mRNA expression. Additionally, Mn nearly abolished 

extracellular taurine and mitigated the taurine release that followed extraneous 

synaptic GABA. We speculated that the taurine efflux was a compensatory 

response to regulate GABA release through GABAB receptor activation (Chen 

and vanden Pol, 1998), or to stabilize the inhibitory tone of the striatum due to 

increased GABAA receptor activation (del Olmo et al., 2000; Jua et al., 2008). 

Altered extracellular GABA and taurine in the striatum due to Mn is likely to affect 
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neurochemical coordination with other brain regions and neurotransmitter 

systems.    

Because the microdialysis data indicated a functional decline in GAT 

proteins, and previous reports indicate minimal change in protein expression 

(Anderson et al., 2008), cellular experiments were designed to investigate 

whether internalization of GAT proteins contributed to the loss of function. 

Primary astrocytes were used to examine cellular Mn accumulation and the 

protein kinase C signaling pathway which is critical to membrane recycling of 

GAT proteins (Quick et al., 2004). We hypothesized that Mn decreased 

membrane density of the astrocyte specific GAT isoform, GAT3, through PKC 

activation and subsequent GAT3 internalization. Surprisingly, membrane levels 

of GAT3 were largely unaffected in Mn exposed astrocytes despite increased 

PKC phosphorylation and a significant decline in 3H-GABA uptake. Instead, 

decreased uptake was correlated with Mn accumulation in the membrane 

fractions of astrocytes. Moreover, extracellular Mn alone markedly reduced 3H-

GABA uptake and dose response studies with Mn and GABA revealed that 

physiological concentrations of GABA reduce the binding affinity of Mn to 

membrane fractions.  We speculate that under conditions of Mn neurotoxicity, 

free extracellular Mn either binds to GAT proteins as an allosteric or non-

competitive inhibitor decreasing GABA transport, or aggregates with extracellular 

GABA blocking reuptake via GATs. These hypotheses are based on the 

allosteric regulation of zinc on dopamine receptors (Schetz and Sibley, 1997). 
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To further characterize the involvement of PKC signaling with Mn 

accumulation, 3H-GABA uptake and western analyses were repeated in 

astrocytes pretreated with isorhamnetin (ISO), a blood brain permeable quercetin 

metabolite and PKC inhibitor. ISO slightly decreased PKC phosphorylation, but 

did not improve membrane GAT3 protein levels or 3H-GABA uptake in Mn 

exposed cells. To confirm a diminished role of PKC in GAT3 regulation of GABA 

uptake in Mn exposed astrocytes, cells were treated with the potent PKC inhibitor 

bisindolylmaleimide (BIS II) prior to the uptake experiments. We expected BIS II 

to improve 3H-GABA uptake in Mn exposed cells by reducing PKC mediated 

internalization of GAT3.  BIS II ablated PKC phosphorylation but did not restore 

3H-GABA uptake. BIS II actually decreased uptake compared to controls, similar 

to ISO. GAT3 protein levels were also unaffected by BIS II, suggesting that GAT3 

mediated GABA uptake is regulated by mechanisms other than PKC signaling.  

Results from our studies on GAT3 regulation in astrocytes differ from 

previous research on GAT1 regulatory mechanisms in neurons and GAT1 

transfected cell lines. Using primary astrocytes as a model to characterize GAT 

mechanisms may account for the differences observed, and may provide a 

limitation to characterize Mn induced GAT regulation. Knowing that maturation of 

the rat brain GABA neurotransmitter system happens between post natal days 

(PND) 10-30 (Kilb, 2012), our model may have been developmentally mistimed 

since the astrocytes isolated for our studies were harvested between PND 1-3; 

however, isolation of astrocytes beyond PND 3 substantially diminishes astrocyte 
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viability and increases the likelihood of neuronal, microglial, and fibroblast 

contamination (Allen et al., 2001). GAT3 protein levels were detectable, but 

regulatory mechanisms may differ in these cells compared to astrocytes isolated 

from a GABA mature environment. GABA release is a key factor to GABAergic 

development in vivo (Bernstein and Quick, 1999). For that reason we fortified our 

media to contain 50 µM GABA while in culture prior to experimental treatments. 

GABA fortification modestly improved GAT3 protein levels, and we suspect that 

this aided astrocyte GAT regulation. It is important to note that this model is still 

appropriate to characterize the impact of Mn neurotoxicity. Because astrocytes 

are the primary metal handling cells of the brain, early neurochemical changes 

presumably result when the metal sequestering capacity of these cells is 

exhausted, and astrocyte function begins to diminish. Astrocyte impairment not 

only leaves neurons vulnerable to metals and other toxic molecules, but reduces 

the ability of astrocytes to modulate the extracellular space by clearing excess 

neurotransmitters. Moreover, we observed a functional decline in uptake with Mn 

accumulation despite internalization of GAT3. This observation demonstrates 

that the effect of Mn on GABA neurotransmission extends beyond our initial 

hypothesis of altered cellular signaling and membrane recycling of GAT proteins. 

Future studies need to be conducted to examine whether Mn directly 

interacts with membrane proteins, specifically GAT3. Our results suggest that Mn 

may compete with extracellular GABA as a ligand for GATs, or allosterically 

inhibit GAT3 protein function. A logical next step would be to immunoprecipitate 
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(IP) GAT1 and GAT3 from Mn exposed cells, then conduct metal analysis on the 

eluted protein. If Mn directly binds to the protein, it will be detectable in the IP 

fraction. Alternatively, the use of structural modeling to predict metal binding sites 

of GAT1 and GAT3, similar to the elucidation of the zinc/dopamine transporter 

(DAT) binding site, could be used to identify putative binding sites.  

Another aim of this project was to identify biomarkers that correspond with 

Mn neurotoxicity. Metabolomic analysis was conducted on plasma, liver, and 

brain samples from rats that were exposed to waterborne Mn for six weeks, and 

behavior changes were assessed using 24 hr video surveillance. Mn 

neurotoxicity was confirmed when stereotypic behaviors that are known to 

correspond with neurotoxicity became present. Brain, plasma, and liver Mn 

content was significantly elevated in Mn exposed rats compared to control, and a 

total of 98 metabolites were significantly altered between these three 

compartments. Plasma homogentisic acid, aspartic acid, and chenodeoxycholic 

acid emerged as potential biomarkers of neurotoxicity, each significantly 

correlating with Mn accumulation in the striatum and globus pallidus. The most 

notable metabolic shift due to Mn exposure was found in fatty acid metabolism. 

In the brain, oleic and palmitic acids were significantly elevated after Mn 

exposure (12 and 15 fold change, respectively), and were strongly correlated 

with plasma Mn (r > 0.75). Oleic acid was similarly altered in the liver along with 

significantly decreased ketone body formation suggesting altered lipid 

metabolism. 
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Several behavioral changes were observed in Mn exposed rats. Twenty-

four hour surveillance of the home cage environment identified a decrease in 

stereotypic behaviors during the dark cycle, but light cycle activity increased. The 

overall increase in activity was strongly correlated with brain and systemic Mn 

levels; however, a reversal of circadian rhythm has also been associated with 

iron deficiency (Youdim et al., 1980). We speculate that this reversal in circadian 

clock is influenced by Mn induced changes in striatal dopamine and GABA, 

which are known to fluctuate in a circadian fashion (Castaneda et al., 2004) and 

influence proteins critical to circadian regulation (Hood et al., 2010). The ability to 

identify consistent behaviors that correspond with Mn neurotoxicity in rodents 

may be useful to develop indices for early diagnosis in Mn exposed humans. 

A possible limitation to this study was that the striatum and globus pallidus 

were not able to be used for metabolomic analysis. These target regions of Mn 

accumulation were dissected out for metal and other biochemical analyses, 

leaving the remainder of the brain available for metabolomic analysis. Because of 

this, a global shift in brain metabolism could be discerned, but future studies are 

warranted to examine specific metabolic shifts in the striatum and globus 

pallidus. Characterizing metabolic changes in brain regions routinely affected by 

Mn accumulation would shed light onto mechanisms that affect neurochemistry. 

The significant changes in brain oleic and palmitic acids identified with 

metabolomic analysis, along with notable alterations in cholesterol and 
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desmosine suggest that structural damage or membrane remodeling may occur 

with Mn accumulation. These changes could affect membrane fluidity and alter 

the function of transmembrane proteins. Oleic acid and palmitate are primary 

constituents of plasma membranes and lipid raft domains (Schumann et al., 

2011), and have been linked with decreased GABA uptake (Troeger et al., 1984; 

Rhoads et al., 1982). For this reason experiments were conducted to examine 

whether these Mn induced metabolic changes influenced GABA dysfunction in 

primary astrocytes. Oleic and palmitic acids synergistically reduced GABA uptake 

with Mn exposure. This effect was accompanied by a significant increase in 

plasma membrane Mn accumulation compared to Mn exposed astrocytes alone. 

Mechanisms that contribute to the effect of fatty acids on membrane Mn 

accumulation are unclear, but altered membrane composition and palmitoylation 

of membrane proteins likely contribute to impaired 3H-GABA uptake. 

Palmitoylation has been shown to regulate DAT kinetics and prevent PKC 

mediated regulation of the protein thereby stabilizing DAT at the plasma 

membrane (Foster and Vaughan, 2011). GAT3 could be modified by 

palmitoylation in a similar manner. Alternatively, if lipid raft micro domains are 

compromised by high concentrations of saturated fatty acids, GAT3 proteins 

associated with these domains could be affected. Further studies are warranted 

to address these questions. Employing methodology from Foster and Vaughan 

(2011), palmitoylation of GATs could be confirmed using 3H-pamitatic acid to 

label palmitoylated membrane proteins, IP GATs of interest, confirm 
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palmitoylated protein with electrophoretic migration, using hydroxylamine 

treatments as a negative control. Hydroxylamine cleaves fatty acylated thioester 

bonds, which would remove the radiolabelled palmitate. These experiments 

would address questions that arose from our studies, and further characterize 

how metabolic shifts influence cell function.  

The etiology of Mn neurotoxicity is diverse depending on route, length, 

and magnitude of exposure. Mechanisms that contribute to neurotoxicity are still 

under investigation, but it is clear that Mn accumulates in distinct regions of the 

brain, inflicts cellular damage, and modifies neurochemical signaling. The 

chronology of these events and how they influence one another needs to be 

further characterized; however, data from this dissertation provide evidence that 

altered fatty acid metabolism and cellular compartmentalization of Mn affect 

GABA neurotransmission. Understanding how Mn compromises cellular function 

and alters metabolism is essential to develop treatments that target pathways 

capable of restoring the neurochemical imbalances associated with Mn 

exposure. Such breakthroughs would be applicable to similar neurodegenerative 

diseases, like Parkinson’s disease, or other neurological disorders affected by 

metal homeostasis (e.g. copper and Wilson’s disease).    
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All content posted to the web site must maintain the copyright information line on the 

bottom of each image,  

A hyper-text must be included to the Homepage of the journal from which you are 
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for books athttp://www.elsevier.com , and 

Central Storage: This license does not include permission for a scanned version of the 

material to be stored in a central repository such as that provided by Heron/XanEdu. 
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18. Author website for books with the following additional clauses:  

Authors are permitted to place a brief summary of their work online only. 

A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com . All 
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