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Abstract 

 

OAK REGENERATION PATTERNS AND STAND DYNAMICS IN BURNED AND 

UNBURNED FOREST STANDS IN SHAWNEE STATE FOREST, OHIO, USA 

 

Reece Brown 

B.S., Shawnee State University 

M.A., Appalachian State University 

 

 

Chairperson:  Dr. Peter T. Soule’ 

 

 

 The primary goal of this thesis was to compare oak (Quercus spp. L.) 

regeneration, canopy class distributions, and forest stand dynamics following 

a glaze ice storm to Quercus spp. regeneration, canopy class distributions, and 

forest stand dynamics following a severe wildfire.  Additionally, tree ring 

research was used to examine forest disturbance history of the study site from 

1930-2001 and to analyze the growth-climate relationship of Quercus spp.  

Quercus spp. regeneration was higher in the burned stands than the 

unburned stands. The dominant canopy trees of both stands were Quercus
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spp.  However, the suppressed and intermediate trees were mostly red maple (Acer 

rubrum L.), tulip poplar (Liriodendron tulipifera L.), and black gum (Nyssa sylvatica 

Marshall).   This indicates that fire improved the competitive status of Quercus spp. 

regeneration, whereas the ice storm improved the competitive status of shade-

tolerant species.  Age-diameter data revealed that Quercus spp. has not been able to 

successfully recruit to an intermediate canopy class since the 1940s.  The disturbance 

history revealed several decades where disturbances were frequent, and other 

decades when disturbances were absent.  However, there were no stand-wide 

disturbance events.  Most events were minor (>25% increase in radial growth) 

disturbances, but there were also several major (>50% increase in radial growth) 

disturbances. These disturbances were unable to facilitate Quercus spp. regeneration.  

Analysis of the climate-growth relationships revealed that Quercus spp. were most 

responsive to drought conditions.  Also, the growth-climate relationships of Quercus 

spp. showed the highest responses were in the early period (1913-1945) during open-

stand conditions following logging. Growth-climate relationships were lower in the 

late period (1979-2011) which suggested a temporal shift in climate response.
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Chapter 1: Introduction 

1.1 Decline of Oak Regeneration 

Throughout the 20th century and into the present there has been a decline in the 

frequency of white oak (Quercus alba L.) and other oak species (Quercus spp.) to reach the 

advance regeneration stage of forest development within eastern deciduous forests (Abrams 

1992, Dyer 2001, Abrams 2003).  Although Quercus spp. can regenerate following clear-

cutting and subsequent timber harvesting (Potzger and Friesner 1934), they are unable to 

reach the advance regeneration stage and recruit to a mature size class because they are 

lacking a competitive advantage against more mesophytic and shade tolerant species such 

as maples (Acer spp. L.) and beech (Fagus grandifolia.) (Lorimer 1984, Nowacki and Abrams 

2008). This has led to an increase in maple and beech abundance, a phenomenon termed 

“mesophication” by Nowacki and Abrams (2008 pp. 123).  Quercus spp. seedlings require 

more light than mesophytic species following disturbance events to reach larger size classes 

(Lorimer et al. 1994).   

While many forest disturbance events are responsible for allowing light to reach the 

understory and altering growing space within the forest, fire is capable of altering forest 

composition more than any other event (Oliver and Larson 1996, Frelich 2002). Forest fires 
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are disturbance events that burn the forest understory and in severe cases the overstory. 

Fires not only burn vegetation, but they alter the soil characteristics and local nutrient 

cycling beneath the forest floor (Dress and Boerner 2001).  Fires can spread most quickly and 

intensely on xeric sites when the leaf litter is dry.  Fire intensity refers to the heat a fire is 

capable of emitting, typically measured in British Thermal Units (BTU).  Fire severity is the 

damage and mortality resulting from a forest fire.  Fires spread slower and less intensely on 

mesic sites when the soil is wet. The microsite-specific fuel loads and leaf litter content can 

create a myriad of localized fire intensities and severities even within small watersheds 

(Trammell et al. 2004).  The variability of microsite fire intensities within the landscape 

determines the severity of the fire.  Additionally, fire frequency affects the intensity, severity 

and resulting forest regeneration.  An alteration of fire frequency changes the effects of 

forest fires on the landscape (Boerner et al. 2004, Green et al. 2010, Arthur et al. 2012, 

Greenberg et al. 2012).  

The fire regime of the Central Hardwoods Region (CHR) has undergone significant 

changes during the past 400 years (Brose et al. 2001).  Prior to European settlement, fire was 

periodically ignited by Native Americans (Delcourt and Delcourt 1997) to drive wild game, 

aid in hunting, help with navigation, and many other advantageous tribal practices 

(Williams 1989). Also, fire was naturally ignited by lightning and able to spread at low 

intensities throughout forests without being hampered by human development, agriculture, 

and roads (Banks 1960).  Fire history research typically involves the use of lacustrine 
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charcoal sediment (Clark and Royall 1995, Delcourt and Delcourt 1997) or fire-scarred tree 

cross sections (Shumway et al. 2001, Swetnam and Brown 2011). Fire-history studies 

throughout the United States suggest a marked suppression of fire since the late 19th 

century (Abrams 1985, Guyette and Cutter 1991, Sutherland 1997, Shumway et al. 2001, 

Cocke et al. 2005, Allen et al. 2008).  Following European settlement, the disturbance regime 

and subsequent fire frequency throughout the eastern deciduous forests was significantly 

altered (Abrams 1992, Sutherland 1997, Brose et al. 2001, Shumway et al. 2001, Hutchinson 

et al. 2008).  

The decline of Quercus spp. regeneration in the mixed-oak forests of the eastern 

United States can be attributed to the 20th century suppression of periodic low-intensity fires 

(Abrams and Downs 1990; Abrams and Nowacki 1992; Brose et al. 2001; McEwan et al. 2007) 

and is referred to in the literature as the “oak and fire” hypothesis (McEwan et al. 2011 pp. 

244). This decline can be attributed to causes other than fire suppression, which led McEwan 

et al. (2011) to propose the “multiple interacting ecosystem drivers hypothesis,” (MIEDH).  

The MIEDH suggests that the decline of Quercus spp. regeneration also can be attributed to 

the chestnut blight (Cryphonectria parasitica Murrill.) of the 1930s (Hart et al. 2008, van de 

Gevel et al. 2012), extinction of the passenger pigeon (Ectopistes migratorius L.), a large 

increase in white tailed deer (Odocoileus virginianus), and changing drought dynamics that 

promoted mesophytic species (McEwan et al. 2011).  Several management objectives and 
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considerations such as the forest disturbance regime must be addressed for fire to help 

improve Quercus spp. regeneration (Arthur et al. 2012).   

1.2 Forest Disturbance Regime in the Central Hardwoods Region 

Forest disturbances are events that alter the growing space, resource availability, and 

biophysical characteristics of a forest (Oliver and Larson 1996).  The disturbance regime of 

any forest ecosystem includes the combination of events, their severity, their frequency, 

their seasonality, and organic/inorganic chemical characteristics (Watt 1947, Busing 1995, 

Oliver and Larson 1996, Frelich 2002, Woods 2004).  Forest disturbance events typically 

result in tree injury or mortality which alters the growing space and light availability within 

a forest (Oliver and Larson 1996, Frelich 2002). Disturbance events are important drivers of 

forest succession (Clinton 1994) and biodiversity (Loehle 2000).  Examples of forest 

disturbance events include glaze ice storms (Whitney 1980), forest fires (Fule et al. 2005), 

insect outbreaks (Swetnam et al. 1985), acid deposition (Haines et al. 1980), and high wind 

events (Knapp and Hadley 2011).  Forest disturbance events such as windstorms can occur 

in various forest environments, but their frequency and magnitude are specific to particular 

disturbance regimes and respective individual ecosystems (Watt 1947).  While fire has been 

shown to be more frequent in forests of the arid western United States (Fule et al. 2005, 

Swetnam and Brown 2011) than it is in the eastern United States (Sutherland et al. 1997, 

Shumway et al. 2001) it is still a natural component of the forest disturbance regime in the 

CHR.  Fire history research has shown that fires occur periodically with predictable return 
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intervals (Sutherland 1997).  Other disturbances can occur at random intervals without 

predictable return intervals.     

Glaze ice storms occur at random intervals, resulting in widespread tree mortality, 

and damage to the canopy (Lemon 1961, Lafon et al. 1999, Weeks 2009).  The glaze ice storm 

is one of the most severe natural disturbance events in the CHR. Glaze ice storms subject the 

landscape to a wide variety of damage severity. They exhibit topographic (Lafon et al. 1999, 

Stueve et al. 2007), species specific (Smolnik et al 2006), and hydrologic (Millward et al 2010) 

damage heterogeneity across the landscape. Glaze ice storms coat the stems of trees and 

woody shrubs with ice (Lemon 1961). The weight of the ice snaps large and small stems and 

uproots many trees (Lafon 2004). Damage to the forest canopy from the ice storms can be 

severe. Lafon et al. (1999) found 30%-60% of basal area was removed during an ice storm in 

1994 in southwest Virginia.   

Dendroecological analysis suggests that most trees are subject to declined ring 

widths in years following ice storm damage, while others can show an increase in radial 

growth due to decreased competitive pressures (Lafon 2002).  When dominant canopy-

forming trees lose limbs to a glaze ice storm, the intermediate and suppressed trees can 

absorb more light in years following the storm.  The increase in light enables the trees to 

allocate more resources to growth.  Although ring width variations do not directly represent 

primary growth the of the forest stems, they do provide a relative scale to understand 

species-specific responses to ice storm damage (Smolnik et al 2006). Smolnik et al. (2006) 
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also noted that the species showing signs of recovery were those that were able to generate 

more epicormic branches following severe pruning due to glaze ice, which favored tulip 

poplar (Liriodendron tulipifera L.) recovery in the forests of Delaware. Like other disturbance 

events, ice storms tend to impact select species within the forest. 

The different damage patterns influence the species assemblages that recover 

following the ice storm. The influence of aspect on glaze ice storms results in greater 

mortality and canopy damage on eastern aspects than on western aspects (Warrillow and 

Mou 1999, Lafon 2007, Stueve et al. 2007). The damage difference between aspects has a 

considerable impact on the species compositions even within a small watershed (Lafon 

2004).  Even though glaze ice storms influence forest compositions, they cannot be actively 

altered by forest managers to promote selected species regeneration.  Their frequency, 

intensity, and severity are naturally determined.  However, forest managers can alter other 

disturbance events such as prescribed fire and selective logging to promote the regeneration 

of selected species. 

1.3 Prescribed Fire and Oak Regeneration  

Prescribed fire has been shown to alter forest compositions.  Like ice storms, select 

species can respond with greater growth and regeneration rates than others.  Studies in the 

CHR suggest that prescribed fire improves white oak regeneration (Arthur et al. 1998, Brose 

and van Lear 1998, Blankenship and Arthur 2006, Iverson et al. 2008, Brose 2010, 

Hutchinson et al. 2012a, Hutchinson 2012b). Several studies have applied prescribed fire to 
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forest stands to compare oak regeneration before and after the treatments (Hutchinson et al. 

2005).  Following a prescribed fire, the density of all seedlings and saplings is significantly 

reduced in the understory (Hutchinson 2005).  Within the understory Acer rubrum seedling 

survival is less than that of the Quercus spp. following prescribed fire (Green et al. 2010).  

Quercus spp. is given a slight competitive advantage because it is able to resprout quicker 

and incur less damage from prescribed fires than mesophytic species such as Acer spp. and 

Fagus spp. (Brose and van Lear 1998).  During the spring growing season after the fire, soil 

temperatures increase quicker than unburned sites (Iverson and Hutchinson 2002). The 

acorns from Quercus spp. trees that occupy the seedbank and their fine root biomass from 

that survive fire are thus able to initiate growth earlier in the growing season than the Acer 

spp. (Dress and Boerner 2001).  

Studies of the effects of fire combined with anthropogenic disturbance events that 

cause canopy gaps are limited to recent research (Iverson et al. 2008). The first study to 

compare Quercus spp. regeneration in natural canopy gaps that were subjected to prescribed 

fire to natural canopy gaps that were left unburned found that prescribed fire promoted 

Quercus spp. regeneration (Hutchinson et al. 2012a).  Other studies have applied 

shelterwood timbering combined with prescribed fire to promote Quercus spp. regeneration.  

Fire concurrent with other disturbances is important for Quercus spp. regeneration (Brose 

and van Lear 1998, Hutchinson et al. 2005).  Disturbances that remove portions of the 

canopy increase light availability to the understory which increases the growth of 
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suppressed trees.  Openings within the canopy are necessary for understory recruitment to 

the canopy and increase the effectiveness of prescribed fire (Hutchinson et al. 2005).   

1.4 Canopy Gap Dynamics 

Canopy gaps are openings within a forest canopy caused by disturbance events and 

individual tree mortality that allow light to reach the apical meristems of the understory 

trees and the lateral meristems of the overstory trees (Runkle and Yetter 1987).  Canopy gap 

size is highly variable and influenced by disturbance type and age structure of the forest 

stand.  Once light reaches the respective portions of the trees the canopy gap begins to close 

laterally from the overstory trees and apically from the understory trees (Runkle 1985).  The 

rate of canopy gap closure is dependent on the gap size and forest productivity (Dickinson 

et al. 1993). Canopy gap closure occurs in one growing season in small gaps in productive 

environments, but takes decades in large canopy gaps in less productive environments 

(Runkle 1985). Because seedlings and saplings in the forest understory require light to 

recruit to larger size classes, canopy gap formation helps catalyze their accession toward the 

overstory. Canopy gaps are widely studied because their compositions are indicative of the 

future forest overstory and they exhibit future forest compositions of a particular stand 

(Barden 1979, Barden 1981, Runkle 1981, Runkle 1985, Runkle and Yetter 1987, Hart and 

Kupfer 2011).   

Canopy gaps yield different physiological contributions to trees within a gap relative 

to their age, diameter, position within the gap, and size class (Barden 1979, Canham 1988). 
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Following canopy gap formation, understory trees allocate increased energy toward apical 

meristems (Runkle and Yetter 1987) and dominant overstory trees allocate increased energy 

toward lateral meristems due to the amount and direction of increased light availability 

(Canham et al. 1990).  The increase in light availability increases the photosynthetic rate of 

the trees and results in greater amounts of carbohydrates in both the understory and 

overstory trees (Montgomery and Chazdon 2002).  The carbohydrates are used to increase 

the rate of radial (secondary) tree growth. All tree species exhibit different growth responses 

relative to gap formation characteristics.  Tree species’ response to gap formation varies 

with seasonality, topography, disturbance type, mortality of gap forming species, gap area, 

and collateral mortality (Hart and Grissino-Mayer 2009). Understory and overstory trees are 

capable of exhibiting a significant increase in radial growth for over five years following 

canopy gap formation (Rubino and McCarthy 2004).   

1.5 Forest Disturbance History 

Release events can be used to reconstruct forest disturbance history (Lorimer 1980).  

Widespread release events throughout a forest stand are indicative of disturbance events 

and can be analyzed to determine the disturbance history of a forest stand (Lorimer 1980, 

Hart et al. 2011).  Release events enable dendroecologists to date the year of canopy gap 

formation and canopy accession dates (Black and Abrams 2003, Speer 2010, Buchanan and 

Hart 2011). Radial growth release patterns between trees in a forest stand can identify 

canopy gap ages.  Releases also can be used to identify years of stand-wide (>25% of the tree 
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ring series detects a disturbance event) disturbance events (Nowacki and Abrams 1997, 

Black and Abrams 2003, Rubino and McCarthy 2004) such as ice storms (Lafon 2004), 

windstorms (Knapp and Hadley 2011), and selective diseases (van de Gevel et al. 2012).  The 

analysis of all the stand-wide forest disturbance events within a forest is referred to as the 

disturbance history (Lorimer 1980).  Trees exhibit differential release timing, magnitude, 

and duration following disturbances (Canham 1989, Hart et al. 2012). The disturbance 

history of a forest captures the frequency and relative severity of disturbance events within 

a stand. The frequency of these events helps to inform land managers about how often to 

expect particular disturbance events and how they will affect different tree species (Lorimer 

1980).  

1.6 Forest Succession 

Forest succession is the term used to describe the change in forest compositions, age-

structure, and stand dynamics over time (Shugart and West 1980). Forest succession 

patterns are affected by disturbance events (Henry and Swan 1974).  All species within the 

forest have different tolerances for drought, shade, and disease.  Forest disturbances favor 

some species and injure other species. Some shade intolerant species such as Quercus spp. 

and Liriodendron tulipifera require high light and are able to establish in open-canopy or 

deforested areas to initiate forest regeneration following a disturbance (Boring and Swank 

1984).  However, once the canopy is established and available soil moisture becomes higher, 

the early successional trees become competitively overwhelmed by mid-successional trees.  
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The early successional trees do not become completely eliminated (Oliver and Larson 1996); 

they establish less frequently following the establishment of the mid-successional trees 

(Egler 1954). Mid-successional trees are able to dominate the canopy for much longer 

periods of time and are typically more shade-tolerant than the early successional species 

(Barden 1981).  Late-successional trees that replace the mid-successional are even more 

shade tolerant (McCormick and Platt 1980).  Late-successional trees are often replaced by 

mid-successional trees following forest disturbances (Barden 1979). Disturbances can change 

the number and species of trees occupying a particular growing space at all phases of 

succession. When disturbances result in tree mortality and significant pruning of scaffold 

limbs, such as in the case of the ice storm (Lafon 2004), new growing space becomes 

available.  The newly-formed available growing space in a forest is referred to in the 

literature as a canopy gap (Bray 1956, Runkle 1981, Young and Hubbell 1991). 

1.7 Goals of this thesis 

This project compares regeneration, canopy class distributions, and basal area 

between unburned canopy gaps and burned stands in Shawnee State Forest, Scioto County, 

Ohio.  There has not been a study that compared regeneration within a burned forest stand 

to canopy gaps within an unburned portion of nearby stands until Hutchinson (2012a).  This 

is important because canopy gaps are fundamental points where regeneration takes place 

within a forest (Barden 1981, Runkle 1981, Hart and Kupfer 2011).  Additionally, this project 

analyzes long-term forest stand dynamics by examining the age-diameter relationship, 
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disturbance history, and growth-climate relationship in Shawnee State Forest.  This thesis 

will provide information about the structure, age, and future succession of Shawnee State 

Forest as it recovers from the glaze ice storm of 2003 and the wildfire of 2009. 

1.8 Research Questions 

1. How do the seedling and sapling regeneration dynamics in burned and unburned stands 

differ? 

2. How do the canopy class distributions differ between burned and unburned stands? 

3. Is there a difference in the distribution of basal area between classes and species in burned 

and unburned stands? 

4. How has the overall diameter and age-structure changed in Shawnee State Forest during 

the past 90 years? 

5. What does the disturbance history reveal about the frequency, magnitude, and extent of 

disturbance events in the forest? 

6. Have disturbance events altered the growth-climate relationship of Quercus spp. during 

the past 100 years? 

  



13 

 

 

 

Chapter 2: Study Area 

2.1 Geography 

This research project was conducted in Shawnee State Forest, Scioto County, Ohio.  

Shawnee State Forest (38°44’21.6816”N; 83°13’36.9438”W) is located approximately 8 

kilometers west of Portsmouth, Ohio.  This region was left unglaciated and referred to as the 

Allegheny Plateau of southern Ohio (Figure 1).  Forests of the study area are regionally 

classified as part of the Central Hardwoods Region of the eastern United States. Shawnee 

State Forest is managed by the Ohio Department of Natural Resources Division of Forestry.  

It comprises 25,700 ha, making it the largest state forest in Ohio.  Approximately 3,000 ha 

are designated as unmanaged wilderness (Ohio Department of Natural Resources 2006).  

The Division of Forestry applies three basic management strategies for individual 

watersheds in Shawnee State Forest: clear-cut harvesting, selective-cut harvesting, and no 

harvesting prior to 1940 (Summerville and Crist 2002).   

Elevation of the study area varies from 138 to 322 meters.  Valleys within the study 

site are deeply incised and the adjacent slopes leading up to the ridge tops are often steep 

(17-25 degrees). However, the vegetation is continuous from the valleys to the ridge tops 

because there are very few large bedrock outcrops.  The complexity of slope gradients and 
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aspects within the study area result in a wide-range of hydrologic and climatic variability at 

the landscape scale.  This complexity promotes high biodiversity of woody and non-woody 

vegetation communities. 

Forests of the Allegheny Plateau of southern Ohio are classified as mixed mesophytic 

(Braun 1950).  Common woody species from the study site are listed in (Table 1).  The most 

common dominant canopy trees in the study site are Quercus rubra, Quercus alba, Acer 

rubrum, Liriodendron tulipifera, Acer saccharum, Prunus serotina, Juglans nigra, and Carya ovata , 

(Griffith et al. 1993).  The understory is primarily composed of Sassafras albidium, Acer 

rubrum, and Viburnum dentatum.  Shawnee State Forest is at the understory re-initiation 

phase of forest development (Oliver and Larson 1996).   
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Figure 1.  Map of the study area. Shawnee State Forest, Scioto County, Ohio.   
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Species Common name 

Acer rubrum L. Red maple 

Acer sacharum L. Sugar maple 

Amalanchier arborea Michx. Downy serviceberry 

Carpinus caroliniana Walter Musclewood 

Carya glabra Nutt. Pignut hickory 

Carya ovate Nutt. Shagbark hickory 

Carya tomentosa Nutt. Mockernut hickory 

Castanea dentate Marshall American chestnut 

Celtis occidentalis L. Hackberry 

Cercis canadensis L. Eastern redbud 

Fagus grandifolia Ehrh. American beech 

Fraxinus americana L. White ash 

Fraxinus pennsylvanica Marshall Green ash 

Hamamelis virginiana L. Witch-hazel 

Ilex opaca Aiton American holly 

Kalmia latifolia L. Mountain laurel 

Liriodendron tulipifera L. Tulip poplar 

Magnolia tripetalaL. Umbrella magnolia 

Nyssa sylvatica Marshall Black gum 

Oxydendrum arboretum L. Sourwood 

Pinus rigida Mill. Pitch pine 

Pinus virginiana Mill. Virginia pine 

Populus grandidentata Michx. Big-tooth aspen 

Prunus serotina Ehrh. Wild black cherry 

Quercus alba L. White oak 

Quercus prinus L. Chestnut oak 

Quercus rubra L. Red oak 

Quercus velutina Lam. Black oak 

Rhus glabra L. Smooth sumac 

Rhus typhina L. Staghorn sumac 

Sassafras ablidium L. Sassafrass 

Vaccinium spp. L. Blueberry 

Viburnum dendatum L. Blackhaw viburnum 

Table 1. List of woody plants sampled in this study of Shawnee State Forest, Scioto County, 

Ohio. 
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2.2 Geology and Soils  

The local bedrock formations are all sedimentary and composed of undivided 

Bedford shale, Berea sandstone and Sunbury shale Devonian to Mississippian age (Hodson 

et al. 1940).  Unlike southeastern and southwestern Ohio, Scioto County lacks carbonate 

bedrock systems, but borders the Brush Creek limestone deposits of Pennsylvanian age that 

are located just to the west and northwest in Adams County (Carlson 1994).  Most of these 

units represent transgression and regression sequences and form the northwestern portion 

of the Appalachian Basin (Busch and Rollins 1984, Carlson 1994). Regression sequences are 

represented by ripple marks preserved within the sandstone/shale units, while the 

transgression sequences are represented by the Brush Creek limestone that was deposited 

during Pennsylvanian time (Busch and Rollins 1984). Soils of the ridges and steep slopes 

that make up about 90% of the study area are poorly-drained loam to silty clay and are 

classified as members of the Shelocta-Brownsville association.  Soils in the lower elevations 

and river valley are primarily loam and are classified as Berks channery silt loam and 

Skidmore silt loam (Hodson et al. 1940, USDA 2012).  

2.3 Climate  

The climate of southern Ohio is classified as humid continental (Midwestern 

Regional Climate Data Center 2005).  The study site is located in United States Climate 

Division #9.  U.S. Divisional Climate Data averages from 1900-2012 

(http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl) indicate that July is 

http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl
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the warmest month, and January is the coolest.  July receives the most precipitation, and 

February receives the least (Table 2). 
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Temperature     

(°C) 

Precipitation 

(cm) 

January -0.2 8.5 

February 1.0 7.3 

March 6.2 10.1 

April 11.7 9.4 

May 17.1 10.6 

June 21.6 9.9 

July 23.7 11.3 

August 22.9 9.5 

September 19.3 7.9 

October 12.8 6.5 

November 6.6 7.4 

December 1.4 8.1 

Total   106.5 

Table 2.  1900-2012 averages of temperature and amount of precipitation each month for 

Ohio Climate Division 9. 
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2.4 Severe Forest Disturbances 

Shawnee State Forest has undergone some significant forest disturbances during the 

past decade.  The combination of these disturbances occurring within Shawnee State Forest 

is the primary reason that this site was chosen for the study.  During February 2003, 

Shawnee State Forest was subjected to a severe glaze ice storm which extensively pruned 

tree limbs and uprooted thousands of trees (ODNR 2006).  The ice storm was described as 

“the most severe ice storm to affect forests in the state of Ohio” (video interview with 

Hamilton 2012).  Six years later, during April 2009, nearly 800 hectares of Shawnee State 

Forest experienced an unintentional wildfire, which was deemed as arson (ODNR 2009).  

The burn scorched thousands of canopy-forming trees and removed almost all of the 

understory in its path.  Burn severity was the worst on the xeric sites and decreased slightly 

in the mesic sites.  Due to the ice storm severity just six years prior, there was a large build-

up of fuel to amplify the intensity of the fire. The ice storm and fire have altered the forest 

compositions of Shawnee State Forest. 
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Chapter 3: Methods 

3.1 Field Methods 

3.1.1 Forest stand dynamics and regeneration within unburned canopy gaps 

During June, July, and August of 2012, seven large, greater than 30cm diameter at 

breast height (dbh; height = 1.37m), uprooted Quercus spp. trees were located that formed 

canopy gaps in Shawnee State Forest, Scioto County, Ohio (Table 3).  Gaps were found on 

various slope positions, aspects, and gradients to analyze forest stand dynamics and 

understory regeneration.  The base of the uprooted tree was used to establish the plot center 

for a 0.05ha circular plot. A GPS was used to record the latitude and longitude of each point 

for cartographic representation.  At the plot center, the slope position was recorded as 

lower, middle, or upper based on relatively defined moisture gradients and tree 

assemblages.  Also at each plot center, the aspect and slope were measured to the nearest 

degree with a Brunton Compass.  Each plot was divided into four quadrants.  Once the plot 

was established and the four quadrants were delineated, all woody seedlings and saplings 

were identified by species and tallied to quantify their occurrence and analyze understory 

regeneration within each gap.  Seedlings were defined as stems <1m in height, and saplings 

were defined as stems >1m in height and < 5cm dbh.  All stems >5cm dbh were identified by 
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species and assigned a canopy class (overtopped, intermediate, codominant, and dominant) 

to analyze each tree’s dominance based on the direction and amount of light reaching the 

majority of their leaves (Oliver and Larson 1996).  An increment core was extracted from at 

least ten overtopped and intermediate trees within each gap to date the year of canopy gap 

formation and to understand the age-diameter relationship of various understory trees.  At 

least five codominant and dominant Quercus spp. within each plot were cored to reconstruct 

disturbance history of the greater Shawnee State Forest and to analyze their radial growth 

response to climate.  Vines and non-woody vegetation were excluded from analysis. 

3.1.2 Forest stand dynamics and regeneration within the burned area 

In July and August of 2012, five  0.05ha (8m x 62.5m) transects were delineated at 

random points within the burned area of Shawnee State Forest to analyze forest stand 

dynamics and regeneration 3.5 growing seasons after the wildfire (Table 3).  The understory 

was exposed to amounts of light similar to canopy gaps within the unburned portion of the 

forest because the fire was severe enough to remove significant portions of the canopy.  

Therefore, it would not be acceptable to compare the burned area to closed canopy stands in 

the unburned portion of the forest.  Plots within the burned section of the forest had to be 

transects rather than circular plots because of the extremely dense understory of green briar 

Smilax spp. and other vines.  Transect apexes were randomly located and aligned 

perpendicular to the slope contour to capture various slope positions and gradients.  The 

aspect was recoded for each transect.  Within each transect all woody seedlings and saplings 
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were identified and tallied, using the same procedures as within the unburned canopy gaps, 

to quantify their occurrence and analyze regeneration dynamics within each gap.  Increment 

cores were extracted from dominant and codominant Quercus spp. trees to analyze forest 

disturbance history.  Considering that the year of gap formation was 2012, cores were not 

extracted from understory trees to date the year of gap formation. 
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  Aspect Gradient Position North West 

Gap#1 N56°W 22° Middle 38°47.46 83°07.75 

Gap#3 S63°E 17° Lower 38°42.04 83°10.85 

Gap#4 N41°W 12° Upper 38°48.24 83°09.01 

Gap#5 N63°E 16° Upper 38°48.29 83°08.47 

Gap#6 S55°W 26° Upper 38°47.55 83°07.74 

Gap#2 N70°W 23° Lower 38°42.05 83°09.06 

Gap#7 N75°W 16° Middle 38°43.49 83°10.73 

Burned #1 S28°E 16°-20° Transect 38°41.70 83°12.05 

Burned #2 N23°W 18° Transect 38°41.72 83°12.03 

Burned #3 S33°E 19° Transect 38°41.66 83°12.09 

Burned #4 S55°W 18°-22° Transect 38°41.62 83°12.13 

Burned #5 N46°E 17° Transect 38°41.97 83°13.71 

Table 3.  Topographic variables and coordinates (WGS84) of canopy gaps in the unburned 

stand and transects in the burned stand.    
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3.1.3 Disturbance history  

Dominant and codominant Quercus spp. cored in and out of plots in the burned and 

unburned stands were used to analyze stand-wide disturbances in Shawnee State Forest.  

Quercus spp. increment cores have been widely used to reconstruct forest disturbance 

histories because they lack absent rings, have similar growth patterns within the genus, and 

have clearer ring boundaries than other species (McCarthy and Bailey 1996, Rubino and  

McCarthy 2004, Hart et al. 2011).  The dbh and canopy class of each tree was recorded. One 

increment core was extracted from each tree (Buchanan and Hart 2011). 

3.2 Laboratory Methods 

3.2.1 Regeneration composition 

Regeneration layer composition was analyzed by computing species richness 

(number of species), density (stems*hectare-1), and relative density ([(stems*hectare-1)/total 

hectares sampled]*100) for all seedlings and saplings in the unburned canopy gaps and 

burned portion of the forest. The distribution across unburned and burned regeneration 

layers was compared using a non-parametric independent samples Mann-Whitney U Test.  

3.2.2 Canopy class distribution 

Canopy class distributions of all trees >5cm dbh were analyzed by computing 

species richness, density (number of each species hectare-1), relative density, dominance 

(basal area = m2*hectare-1), and relative dominance (Hart et al. 2008, van de Gevel et al. 
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2012).  The canopy classes also were used to compare the difference between burned and 

unburned stands.  The distribution of each canopy class, selected group, and abundant 

individuals were compared across burned and unburned stands using an Independent 

Samples Mann-Whitney U test. 

3.2.3 Basal area 

Basal area was calculated for each species, group, and canopy class to compare the 

difference of each in burned and unburned stands.  Basal area values were obtained using 

(Thomas and Roesch 1990): 

Basal area = dbh2 * 0.00007854 

An Independent Samples Mann-Whitney U test was used to examine the difference in 

distribution of each variable across burned and unburned stands. 

3.2.4 Tree ring analysis 

All increment cores were mounted with glue, air dried, and sanded with progressively finer 

grit sand paper to reveal the cellular structure of the wood (Speer 2010).  The 

increment cores measured for disturbance history and growth-climate relationships 

were placed beneath a stereozoom microscope and visibly cross-dated using the list-

year method to assign a calendar year to each ring (Yamaguchi 1991).  Cores were 

scanned using an Epson Expression 1000 XL scanner at 1200 dots/inch.  The image 

scans were opened as TIF files using WinDendro software (Windendro Version 
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2004b for Tree Ring Analysis. Regent Instruments Inc. Chicontimi, Quebec, Canada), 

individual rings were measured to the nearest 0.001mm, and then statistically 

verified using program COFECHA (Holmes 1983). In COFECHA, a 40-year segment 

lagged 20 years was used to compare segments within the tree ring series and master 

chronology.  Segments with low correlations were visibly re-examined to verify 

calendar date assignments.  If an error was found, the core was re-measured 

correctly.  The tree ring series used in the growth-climate relationship was detrended 

using program ARSTAN. A negative exponential curve was applied to minimize 

effects of stand dynamics and physiological consequences of tree growth (Speer 

2010).      

3.2.5 Age-diameter relationship  

Age/diameter data were obtained from increment cores and dbh from the 12 closest 

trees to plot center that were >5cm dbh. The inner-most year on each core with pith or 

significant growth ring curvature near pith was used as the date of establishment for each 

tree.  Cores without significant curvature were discarded from this portion of analysis.  

These establishment dates were plotted with dbh to analyze patterns of tree size and 

establishment periods. 

3.2.6 Disturbance history 
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The increment cores of codominant and dominant Quercus spp. were used to analyze 

disturbance history. Stand-wide and localized release events were quantified by detecting 

radial growth releases in Quercus spp. increment cores (n=56) using a 10 year running (20 

year window) median method (Rubino and McCarthy 2004). Growth increases greater than 

25% were recorded as minor releases and 50% growth increases were recorded as major 

releases (Nowacki and Abrams 1997). Releases must have lasted a minimum of five years to 

be considered in the disturbance history. When >25% of the trees recorded a release it was 

considered to be a stand-wide release (Nowacki and Abrams 1997).  All other releases were 

considered to be localized.  

3.2.7 Growth-climate relationship 

Climate data were obtained from the National Oceanic and Atmospheric 

Administration Divisional Climate Data Set (NOAA 2013).  The master Quercus spp. 

chronology (1897-2011) was truncated by 16 years based on limited sample depth (<10) and 

diminished running r-bar (<0.85) (Speer 2010).  The remaining 99 year chronology was split 

into three equal periods.  The truncated series (1913-2011) was compared with concurrent 

and lagged monthly temperature, precipitation, and Palmer Drought Severity Index (PDSI; 

Palmer 1965).  The highest correlations between growth and climate of the 99 year series 

were identified.  The series was split into early (1913-1945), middle (1946-1978), and late 

(1979-2011) to identify temporal stability of the growth-climate analysis.   
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Chapter 4: Results 

4.1 Seedling and Sapling Regeneration Dynamics 

The density and species richness of seedlings were significantly less in the burned 

stand (Table 4). Seedlings (stems <1.5m height) showed differences in density (seedlings ha-

1), richness, and composition between stands (Table 5).  Specifically, the densities of Acer 

rubrum and Quercus alba seedlings were significantly less in the burned stand.  However, the 

relative densities (%) of Quercus alba and Quercus spp. seedlings were not significantly 

different between stands, but greater in the burned stand (Figure 2).   

Sapling densities and species richness were different between burned and unburned 

stands, but not statistically significant (Table 6).  The densities of Acer rubrum, Quercus alba, 

Quercus spp., and Quercus spp. + Carya spp. saplings were not significantly different between 

stands.  However, the densities and relative densities of Quercus alba and Quercus spp. 

saplings were greater in the burned stand (Figure 2).  Species richness was 24 in the burned 

stand and 25 in the unburned stand.  
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Distribution Across Burned and Unburned Significance Ho Decision 

Total Seedling Density 0.017 Reject 

Total Sapling Density 0.588 Retain 

Total Seedlings + Saplings 0.003 Reject 

Seedling Species Richness 0.048 Reject 

Sapling Species Richness 0.268 Retain 

Total Species Richness 0.073 Retain 

Quercus alba seedling Density 0.032 Reject 

Quercus alba sapling Density 0.548 Retain 

Quercus alba seedling Relative Density 0.310 Retain 

Quercus alba sapling Relative Density 0.314 Retain 

Quercus spp*. Seedling Density 0.421 Retain 

Quercus spp*. Sapling Density 0.390 Retain 

Quercus spp*. Seedling Relative Density 0.413 Retain 

Quercus spp*. Sapling Relative Density 0.089 Retain 

Quercus spp. and Carya spp.**Seedling Density 0.041 Retain 

Quercus spp. and Carya spp.** Sapling Density 0.128 Retain 

Quercus spp. and Carya spp.** Seedling Relative Density 0.222 Retain 

Quercus spp. and Carya spp.** Sapling Relative Density 0.095 Retain 

Acer rubrum Seedling Density 0.025 Reject 

Acer rubrum Sapling Density 0.885 Retain 

Acer rubrum Seedling Relative Density 0.032 Reject 

Acer rubrum Sapling Relative Density 0.997 Retain 

Table 4. Results from the Independent Samples Mann-Whitney U Test for differences in the 

distribution of regeneration layer dynamics between unburned and burned stands in 

Shawnee State Forest, Scioto County, Ohio.*Quercus spp. includes Q. alba, Q. prinus, Q. rubra, 

and Q. velutina. **Carya spp. includes C. glabra, C. ovata, and C. tomentosa 
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Seedling Density     Relative Density 

Species Burned Unburned  Burned Unburned 

Acer rubrum 64 1400  5.8 25.9 

Acer sacharum 0 3  0.0 0.1 

Amalanchair arborea 8 117  0.7 2.2 

Carpinus caroliniana 4 0  0.4 0.0 

Carya glabra 12 11  1.1 0.2 

Carya ovata 0 57  0.0 1.1 

Carya tomentosa 40 46  3.6 0.8 

Castanea dentata 0 0  0.0 0.0 

Celtis occidentalis 60 0  5.4 0.0 

Fagus grandifolia 0 3  0.0 0.1 

Fraxinus americana 20 26  1.8 0.5 

Kalmia latifolia 0 14  0.0 0.3 

Liriodendron tulipifera 8 274  0.7 5.1 

Magnolia tripetala 0 0  0.0 0.0 

Nyssa sylvatica 12 57  1.1 1.1 

Oxydendron arboreum 0 49  0.0 0.9 

Pinus rigida 0 6  0.0 0.1 

Prunus serotina 0 46  0.0 0.8 

Quercus alba 44 460  4.0 8.5 

Quercus prinus 504 489  45.5 9.0 

Quercus rubra 24 946  2.2 17.5 

Quercus velutina 68 374  6.1 6.9 

Rhus glabra 8 0  0.7 0.0 

Rhus typhina 20 3  1.8 0.1 

Sassafras ablidium 40 189  3.6 3.5 

Vaccinium spp. 0 251  0.0 4.7 

Viburnum dendatum 172 586  15.5 10.8 

Total 1108 5405  100.0 100.0 

Table 5.  Density (stems ha-1) and relative density of all seedlings in burned and unburned 

stands of Shawnee State Forest, Scioto County, Ohio. 
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Sapling Density     Relative Density 

Species Burned Unburned  Burned Unburned 

Acer rubrum 472 417  20.5 14.7 

Acer sacharum 4 34  0.2 1.2 

Amalanchair arborea 40 363  1.7 12.7 

Carpinus caroliniana 0 23  0.0 0.8 

Carya glabra 20 57  0.9 2.0 

Carya ovata 20 37  0.9 1.3 

Carya tomentosa 80 63  3.5 2.2 

Castanea dentata 8 0  0.3 0.0 

Celtis occidentalis 40 0  1.7 0.0 

Cercis canadensis 0 9  0.0 0.3 

Fagus grandifolia 8 26  0.3 0.9 

Fraxinus americana 32 40  1.4 1.4 

Fraxinus pennsylvanica 0 3  0.0 0.1 

Hammamelis virginiana 0 14  0.0 0.5 

Ilex opaca 0 3  0.0 0.1 

Kalmia latifolia 20 63  0.9 2.2 

Liriodendron tulipifera 140 429  6.1 15.1 

Magnolia tripetala 0 3  0.0 0.1 

Nyssa sylvatica 144 103  6.3 3.6 

Oxydendron arboreum 108 131  4.7 4.6 

Populus grandidentata 4 0  0.2 0.0 

Prunus serotina 16 63  0.7 2.2 

Quercus alba 120 40  5.2 1.4 

Quercus prinus 232 14  10.1 0.5 

Quercus rubra 36 34  1.6 1.2 

Quercus velutina 40 46  1.7 1.6 

Rhus glabra 8 0  0.3 0.0 

Rhus typhina 68 0  3.0 0.0 

Sassafras ablidium 636 451  27.7 15.9 

Viburnum dendatum 4 380  0.2 13.4 

Total 2300 2846  100.0 100.0 

Table 6.  Density (stems ha-1) and relative density of all saplings in burned and unburned 

stands of Shawnee State Forest, Scioto County, Ohio. 

 



33 

 

 

 

 

 

Figure 2. A: Density (stems ha-1) and B: Relative Density (%) of selected seedlings and 

saplings in unburned and burned stands of Shawnee State Forest, Scioto County, Ohio. 

*Quercus spp. includes Q. alba, Q. prinus, Q. rubra, and Q. velutina.                                      

**Carya spp. includes C. glabra, C. ovata, and C. tomentosa  

B 

A 
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4.2 Canopy Class Distributions 

There were differences in the composition of each canopy class in both the burned 

and unburned stands.  The only significant difference between stands was the intermediate 

trees ha-1 had a higher density in the unburned stand (Table 7).  The burned stand contained 

less total trees ha-1 in the suppressed, intermediate, and codominant classes than the 

unburned stand (Table 8). However, the burned stand contained more dominant trees ha-1.  

Species richness was nine in the burned stand and 19 in the unburned stand.  

The density of each species varied between canopy classes in the burned stand 

(Table 8). Sassafrass albidium had the highest density in the suppressed class, Acer rubrum 

had the highest density in the intermediate class, Quercus prinus had the highest density in 

the codominant class, and Liriodendron tulipifera had the highest density in the dominant 

class of the burned stand.  

The unburned stand had more species in each canopy class than the burned stand 

(Table 8).  Nyssa sylvatica L. was the most abundant tree ha-1 in the suppressed and 

intermediate classes, Liriodendron tulipifera was the most abundant tree ha-1 in the 

codominant class, and Quercus rubra was the most abundant tree ha-1 in the dominant class).  

The relative canopy class distribution shows that the burned stand was primarily 

composed of codominant and dominant trees, and the unburned stand was primarily 

composed of intermediate and codominant trees (Figure 3B).  The midstory (suppressed + 
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intermediate) of the burned and unburned stands was primarily composed of Fagus spp. + 

Acer spp. (Figure 3C).  The overstory (codominant + dominant) of the burned stand was 

primarily composed of Quercus spp., while the overstory of the unburned stand was 

primarily oak-hickory and Liriodendron tulipifera  (Figure 3D).    
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Distribution Across Burned and Unburned p-value Ho Decision 

Fagus spp. + Acer spp. SU+IN 0.343 Retain 

Carya spp. SU+IN 0.432 Retain 

Liriodendron tulipifera SU+IN 0.268 Retain 

Quercus spp. SU+IN 0.998 Retain 

Quercus spp. + Carya spp. SU+IN 0.432 Retain 

Fagus spp. + Acer spp. CO+DM 0.106 Retain 

Carya spp. CO+DM 0.106 Retain 

Liriodendron tulipifera CO+DM 0.755 Retain 

Quercus spp. CO+DM 0.876 Retain 

Quercus spp. + Carya spp. CO+DM 0.639 Retain 

Fagus spp. + Acer spp. SU+IN % 0.876 Retain 

Carya spp. SU+IN % 0.432 Retain 

Liriodendron tulipifera SU+IN % 0.268 Retain 

Quercus spp. SU+IN % 0.999 Retain 

Quercus spp. + Carya spp. SU+IN % 0.432 Retain 

Carya spp. CO+DM % 0.106 Retain 

Fagus spp. + Acer spp. CO+DM % 0.106 Retain 

Liriodendron tulipifera CO+DM % 0.639 Retain 

Quercus spp. CO+DM % 0.53 Retain 

Quercus spp. + Carya spp. CO+DM % 0.53 Retain 

Suppressed 0.202 Retain 

Intermediate 0.018 Reject 

Codominant 0.432 Retain 

Dominant 0.343 Retain 

Total (all trees >5cm dbh) 0.073 Retain 

Suppressed % 0.343 Retain 

Intermediate % 0.106 Retain 

Codominant % 0.997 Retain 

Dominant % 0.106 Retain 

Table 7.  Results from the Independent Samples Mann-Whitney U Test for differences in the 

distribution of canopy between unburned and burned stands in Shawnee State Forest, 

Scioto County, Ohio.  Canopy classes were based on the direction and amount of 

intercepted light. Ranked in order from lowest class to highest class, SU: Suppressed, IN 

Intermediate, CO: Codominant, DM: Dominant. 
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  Suppressed   Intermediate   Codominant     Dominant 

Species Bu. Un.  Bu. Un.  Bu. Un.  Bu. Un. 

Acer rubrum 0 3  28 40  12 11  0 0 

Acer saccharum 0 0  0 6  0 14  0 6 

Amelanchair arborea 0 0  0 3  0 0  0 0 

Carpinus caroliniana 0 3  0 3  0 0  0 0 

Carya glabra 0 0  0 0  0 3  0 3 

Carya ovata 0 0  0 3  0 0  0 0 

Carya tomentosa 0 0  0 3  0 9  0 0 

Fagus grandifolia 0 6  0 9  0 3  0 0 

Fraxinus americana 0 0  0 0  0 0  3 0 

Liriodendron tulipifera 0 9  0 46  20 89  20 11 

Nyssa sylvatica 0 11  12 60  16 37  14 0 

Oxydendron arboreum 0 0  0 20  4 6  0 0 

Pinus virginiana 0 0  0 0  0 0  0 3 

Prunus serotina 0 0  0 0  0 3  0 0 

Quercus alba 0 0  0 6  12 37  3 3 

Quercus prinus 0 0  4 0  40 14  11 11 

Quercus rubra 0 0  0 0  0 0  0 14 

Quercus velutina 0 0  0 0  8 3  9 3 

Sassafras albidium 4 0  20 29  8 0  0 0 

Ulmus rubra 0 0  0 3  0 0  0 0 

Total 4 31  64 229  120 229  60 54 

Table 8.  Canopy class distributions (trees ha-1) of burned (Bu.) and unburned (Un.) stands 

in Shawnee State Forest, Scioto County, Ohio.  Canopy classes determined by direction and 

amount of light reaching each tree.  Ranked in order from lowest class to highest class, SU: 

Suppressed, IN Intermediate, CO: Codominant, DM: Dominant. 
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Figure 3. Canopy class distribution and relative densities of selected species and groups in 

Shawnee State Forest, Scioto County, Ohio.  A: canopy class distribution of all tree (stems 

>5cm dbh) densities in unburned and burned sites. B: relative densities (Canopy class % of 

total trees in each site) of each canopy class. C: Midstory (suppressed + intermediate) 

relative densities of select individuals and groups. D:  Overstory (codominant + dominant) 

relative densities of select individuals and groups.  
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4.3 Basal Area 

The total basal area (m2 ha-1) was not significantly different between burned and 

unburned stands (Table 9).  The total basal area in the burned stand was 24.8500 m2 ha-1 and 

15.4461 m2 ha-1 in the unburned stand.  Carya spp. had significantly greater dominance (basal 

area) in the burned stand. The Acer spp. + Fagus spp. group and Carya spp. had significantly 

less relative basal area in the burned stand.    The most dominant trees in the burned stand 

were Liriodendron tulipifera, Quercus prinus, and Quercus velutina (Table 10).  The most 

dominant trees in the unburned stand were Quercus alba, Quercus rubra, and Quercus prinus.  

Liriodendron tulipifera showed a much greater difference in dominance between stands than 

other groups and individuals, with greatest dominance in the burned stand (Figure 4).  The 

Quercus spp. + Carya spp. group had the greatest relative dominance in both burned and 

unburned stands (Figure 4B). 

There were many differences in the distribution of basal area between canopy classes 

and stands, but only two of them were significant.  The burned stand contained significantly 

more basal area in the dominant class than the unburned stand (Table 9). The unburned 

stand contained significantly higher relative basal area in the intermediate class.  Basal area 

of the burned stand decreased with canopy class positions (Table 11).  
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Distribution Across Burn and Unburn Significance (p) Ho Decision 

Liriodendron tulipifera 0.268 Retain 

Acer spp. + Fagus spp. 0.202 Retain 

Carya spp. 0.017 Reject 

Quercus spp. 0.999 Retain 

Quercus spp. + Carya spp. 0.755 Retain 

Total Basal Area 0.268 Retain 

Relative Liriodendron tulipifera 0.432 Retain 

Relative Acer spp. + Fagus spp. 0.048 Reject 

Relative Carya spp. 0.048 Reject 

Relative Quercus spp. 0.073 Retain 

Relative Quercus spp. + Carya spp. 0.073 Retain 

Suppressed 0.23 Retain 

Intermediate 0.106 Retain 

Codominant 0.999 Retain 

Dominant 0.03 Reject 

Relative Suppressed 0.202 Retain 

Relative Intermediate 0.03 Reject 

Relative Codominant 0.268 Retain 

Relative Dominant 0.106 Retain 

Basal Area of trees >25cm dbh 0.268 Retain 

Table 9. Results from the Independent Samples Mann-Whitney U Test for differences at the 

95% confidence level for the distribution of dominance (basal area: m2 ha-1) between 

unburned and burned stands in Shawnee State Forest, Scioto County, Ohio. 
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Unburned Stand 

Species 

Density Relative 

Density 

Dominance Relative 

Dominance 

Relative 

Importance 

Liriodendron tulipifera 154.29 28.27 0.52 9.67 18.97 

Quercus alba 45.71 8.38 1.14 21.34 14.86 

Nyssa sylvatica 108.57 19.90 0.24 4.49 12.19 

Quercus rubra 14.29 2.62 1.07 19.99 11.30 

Quercus prinus 25.71 4.71 0.90 16.90 10.80 

Acer rubrum 57.14 10.47 0.32 5.95 8.21 

Quercus velutina 5.71 1.05 0.49 9.23 5.14 

Acer saccharum 25.71 4.71 0.14 2.66 3.69 

Oxydendron arboreum 25.71 4.71 0.09 1.70 3.21 

Sassafras albidium 28.57 5.24 0.03 0.56 2.90 

Fagus grandifolia 17.14 3.14 0.06 1.21 2.17 

Carya tomtentosa 11.43 2.09 0.10 1.81 1.95 

Carya glabra 5.71 1.05 0.14 2.53 1.79 

Pinus virginiana 2.86 0.52 0.07 1.30 0.91 

Carpinus caroliniana 5.71 1.05 0.01 0.10 0.57 

Carya ovata 2.86 0.52 0.02 0.33 0.43 

Prunus serotina 2.86 0.52 0.01 0.11 0.32 

Amelanchair arborea 2.86 0.52 0.00 0.07 0.30 

Ulmus rubra 2.86 0.52 0.00 0.05 0.29 

Total 544.00 200 11.58 200 200 

 

Burned Stand Species Density Relative 

Density 

Dominance Relative 

Dominance 

Relative 

Importance 

Liriodendron tulipifera 48 17.65 2.52 43.46 30.55 

Quercus prinus 60 22.06 1.48 25.64 23.85 

Nyssa sylvatica 48 17.65 0.24 4.07 10.86 

Quercus velutina 20 7.35 0.71 12.35 9.85 

Acer rubrum 40 14.71 0.18 3.12 8.91 

Sassafras albidium 32 11.76 0.05 0.79 6.28 

Quercus alba 16 5.88 0.22 3.87 4.88 

Fraxinus americana 4 1.47 0.38 6.65 4.06 

Pinus virginiana 4 1.47 0.00 0.07 0.77 

Total 272 100 5.79 100 100 

Table 10. Density (stems ha-1), relative density (%), dominance (basal area: m2 ha-1), relative 

dominance (%), and relative importance (average relative density and relative dominance) 

of all trees (stems >5cm dbh) in burned and unburned stands of Shawnee State Forest, Scioto 

County, Ohio.  
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  Dominance     Relative dominance 

Canopy Class Burn Unburned  Burn % Unburned % 

Dominant 15.415 6.705  66.6 43.9 

Codominant 6.997 6.793  30.2 44.5 

Intermediate 0.726 1.668  3.1 10.9 

Suppressed 0.015 0.107  0.1 0.7 

Total 24.85 15.446  100 100 

Table 11.  Dominance (basal area: m2 ha-1) and relative dominance (%) of each canopy class 

in burned and unburned stands of Shawnee State Forest, Scioto County, Ohio. 
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Figure 4. A: Dominance (basal area: m2 ha-1), B: Relative Dominance (%) of select species and 

groups in unburned and burned stands of Shawnee State Forest, Scioto County, Ohio. Other 

includes species listed on Table 7. 

B 

A 
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4.4 Diameter and Age Structure 

The diameter-age relationship showed that most of the large trees (dbh > 20cm) were 

Quercus spp. and had inner-most dates between 1890 and 1940 (Figure 5). The period 

between 1940 and 2000 was when most of the shade-tolerant species (Acer spp., Nyssa 

sylvatica, Oxydendron arboreum) were able to establish.  This establishment period was 

dominated by Acer spp., Carya spp., Nyssa sylvatica, and Oxydendron arboretum.  The final 

period, 2000 to the present, was when most of the Liriodendron tulipifera was able to 

establish.  More specifically, the ice storm of 2003 created favorable conditions for 

Liriodendron tulipifera establishment (Figure 5). Most trees in the plots were in small (<20 cm 

dbh) classes rather than large (>20 cm dbh) classes (Figure 6).  Acer spp. + Fagus spp., 

Liriodendron tulipifera, Nyssa sylvatica comprised the bulk of the smaller size classes.  Quercus 

spp. comprised the bulk of the larger size classes.  
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Figure 5.  A: Diameter-age relationships for 82 trees (stems >5cm dbh) in 7 plots throughout 

the unburned stand of Shawnee State Forest, Scioto County, Ohio. B: Number of trees that 

established in each decade between 1890 and 2010.  Gray line indicates the ice storm of 2003.  

  

B 
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Figure 6.  Number of trees (> 5cm dbh) ha-1 for selected species within each 5cm dbh interval 

for 260 trees in Shawnee State Forest, Scioto County, OH.  Other species listed on Table 7. 
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4.5 Disturbance History 

The 53 Quercus spp. (Q. alba n= 37, Q. prinus n= 8, Q. rubra n= 6, Q. velutina n= 2) 

increment cores detected a total of 78 release events between 1935 and 2001 (Figure 7).  49 of 

the cores (89%) detected at least one release event, 24 (43%) detected at least two, and five 

(9%) of the cores detected three events.  Releases were clustered around the 1940s, 1960s, 

mid 1980s and late 1990s into 2001.  The year 1999 had the greatest number of releases in the 

disturbance history.  There were a total of 34 release years in the disturbance history.  The 

longest period without any releases was between 1989 and 1997.  The average, median, and 

standard deviation of the release event durations were 7.95, 7.5, and 4.09 respectfully.  58 

(74%) of the release events were identified as minor (>25% increase and sustained for 5 

years), and 20 (25%) were identified as major (>50% increase and sustained for 5 years).  

There were no stand-wide disturbances (>25% of trees experiencing a release in a given 

year) detected.  
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Figure 7. Releases identified using a 10 year running median from 53 Quercus spp. 

individuals in Shawnee State Forest, Scioto County, Ohio.  A: Release initiation years. B: 

Releases and number of years sustained. 

  

A 

B 



49 

 

 

 

4.6 Growth-Climate Relationship 

The same Quercus spp. chronology (n= 53, 1897-2011) that was used to reconstruct 

disturbance history was also analyzed for growth-climate relationships (Table 12).  This 

chronology had an interseries correlation of 0.577 and a mean sensitivity of 0.269. Program 

COFECHA identified 25 out of 231 40-year segments as possible problems.  The segments 

were re-examined using a stereozoom microscope, but no dating errors were found. The 

Quercus alba chronology (1897-2011) from 33 individuals (n=33) had an interseries 

correlation of 0.553 and a mean sensitivity of 0.288 and had lower correlations with growing 

season climate variables than the Quercus spp. chronology. Therefore, the Quercus spp. 

chronology was used to examine growth climate relationships because of its’ higher sample 

size and greater correlation with climate. 

The early, middle, and late growing periods exhibited differential responses to 

growing season climate variables. The early and middle periods showed higher correlations 

to climate variables than the late period. The highest correlation was between the early 

period and PDSI (Table 13).  The late period had no statistically significant correlations 

between growth and PDSI. Correlations between growth and precipitation were lower and 

less frequent than PDSI. The highest correlation between growth and precipitation was in 

the middle period, and there were no significant correlations in the late period (Table 14). 

Correlations between growth and temperature were higher than precipitation, but less 
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frequent.  The correlation between growth and temperature had higher values in the late 

period than PDSI and precipitation (Table 15). 
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Table 12. Ring-width index (solid line) chronology of Quercus spp. chronology (n= 53) from 

Shawnee State Forest, Scioto County, Ohio.  Dashed line is a 10-year moving average. 
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  Correlation with PDSI     

Month Complete Early Middle Late 

Jan .276** .381* .403* .073 

Feb .234* .339 .330 .054 

Mar .263** .401* .342 .086 

Apr .231* .267 .284 .210 

May .327** .483** .404* .222 

Jun .424** .575** .606** .251 

Jul .431** .643** .403* .270 

Aug .411** .642** .349* .261 

Sep .391** .658** .324 .201 

Oct .374** .567** .387* .227 

Nov .344** .545** .320 .202 

Dec .340** .561** .273 .175 

Lag Jan -.066 .086 .376* .064 

Lag Feb -.056 .116 .307 -.007 

Lag Mar -.070 -.030 .155 .005 

Lag Apr -.029 -.020 .156 -.081 

Lag May .112 -.067 .252 -.093 

Lag Jun .080 -.076 .343 -.046 

Lag Jul .023 -.104 .139 .038 

Lag Aug -.038 .153 .076 .084 

Lag Sep -.002 .140 .099 .051 

Lag Oct .042 .292 .201 .013 

Lag Nov .059 .304 .345* .000 

Lag Dec .050 .305 .456** -.003 

Table 13. Correlations between growth and PDSI for complete chronology (1913-2011); early 

(1913-1945), middle (1946-1978), and late (1979-2011) periods.  Lagged months indicate 

previous year variables. Bold-faced values indicate statistically significant correlations (p < 

0.05). * Significant at the 0.05 level.  **Significant at the 0.01 level.  
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  Correlation with precipitation   

Month Complete Early Middle Late 

Jan .194 .318 .079 .126 

Feb -.022 -.124 .083 -.032 

Mar -.045 -.036 -.125 .015 

Apr -.061 -.059 -.259 .095 

May .142 .204 .256 .082 

Jun .355** .308 .556** .275 

Jul .263** .542** .013 .199 

Aug .055 .003 .065 .110 

Sep .122 .335 .096 -.015 

Oct .083 .008 .208 .136 

Nov .007 .265 -.171 -.106 

Dec .061 .183 -.004 .006 

Lag Jan -.200* -.101 .180 .069 

Lag Feb .020 .006 .028 .082 

Lag Mar -.070 -.448** -.313 .103 

Lag Apr .037 .036 -.054 -.138 

Lag May .178 -.308 .234 -.119 

Lag Jun -.002 -.139 .282 .036 

Lag Jul .018 -.110 -.175 .137 

Lag Aug -.094 .378* -.006 .228 

Lag Sep .031 .052 .066 .008 

Lag Oct .081 .323 .264 -.132 

Lag Nov .041 .218 .341 -.041 

Lag Dec -.021 .321 .366* -.027 

Table 14.  Correlations between growth and precipitation for complete chronology (1913-

2011); early (1913-1945), middle (1946-1978), and late (1979-2011) periods.  Lagged months 

indicate previous year variables. Bold-faced values indicate statistically significant 

correlations (p < 0.05).  * Significant at the 0.05 level.  **Significant at the 0.01 level.   
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Correlation with 

temperature     

Month Complete Early Middle Late 

Jan .102 .132 .095 .088 

Feb -.037 .105 .083 -.294 

Mar .031 .013 .031 .075 

Apr -.079 .059 -.328 -.021 

May -.126 -.352* -.010 -.040 

Jun -.252* -.527** -.188 .043 

Jul -.121 -.265 -.088 .005 

Aug -.140 -.494** .019 .065 

Sep .035 -.024 -.053 .212 

Oct .077 .129 .031 .038 

Nov .054 .179 .023 .022 

Dec -.093 -.081 -.137 -.075 

Lag Jan -.130 -.044 .137 -.228 

Lag Feb -.026 -.107 .129 -.405* 

Lag Mar .086 -.114 -.051 .005 

Lag Apr .211* .022 .002 .124 

Lag May -.063 .017 .028 -.038 

Lag Jun -.074 -.162 -.139 .127 

Lag Jul -.148 -.066 .144 -.140 

Lag Aug .016 -.130 .310 -.046 

Lag Sep -.159 .131 .086 .008 

Lag Oct -.159 .249 -.036 .069 

Lag Nov .211* .168 -.087 -.040 

Lag Dec .060 .023 .145 -.140 

Table 15.  Correlations between growth and temperature for complete chronology (1913-

2011); early (1913-1945), middle (1946-1978), and late (1979-2011) periods.  Lagged months 

indicate previous year variables. Bold-faced values indicate statistically significant 

correlations (p < 0.05).  * Significant at the 0.05 level.  **Significant at the 0.01 level. 
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Chapter 5: Discussion 

5.1 Seedling and sapling regeneration 

 Shade-intolerant saplings (Quercus alba, Quercus spp. and Quecus spp. + Carya spp) and 

Quercus spp. seedlings had greater relative densities in the burned stand of Shawnee State 

Forest.  The greater relative density increased their competitive status relative to shade 

tolerant saplings and seedlings (Acer spp., Fagus grandifolia).  Quercus spp. seedlings and 

saplings have important physiological adaptations that enable them to gain a competitive 

advantage over other species following fire.  Quercus spp. that are killed are able to resprout 

vigorously from carbohydrate reserves stored in the roots (Dey et al. 1996).  Fire is the only 

natural disturbance capable of clearing multiple hectares of understory at a time (Oliver and 

Larson 1996).  This form of disturbance enables Quercus spp. to gain a competitive advantage 

over other seedlings and saplings that are not able to resprout as vigorously (Hutchinson et 

al. 2012b).   

Prescribed fire research typically involves sampling an area prior to burning (e.g., 

Brose and van Lear 1998). The burned stand was not sampled prior to the 2009 wildfire and 

Quercus spp. regeneration could have already had an elevated competitive status.  However, 

this study actively sampled a much greater area (m2) per treatment than other similar 
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studies (Table 16).  Additionally, these studies did not examine regeneration in canopy gaps. 

Hutchinson et al. (2012b) conducted a study approximately 130 km northwest of Shawnee 

State Forest in the Vinton Experimental Forest (VEP), Vinton County, Ohio.  They found fire 

improved the competitive status of shade-intolerant species in canopy gaps, and they were 

able to sample the canopy gaps prior to fire.  Furthermore, results from Hutchinson et al. 

(2012a) suggest that fire improved the competitive status of shade-intolerant species 

regeneration during the 13 year study with several prescribed fire regimes. 

 The increased competitive status of shade-intolerant species regeneration was not a 

direct result of fire. The reduction of seedlings, suppressed trees and intermediate trees in 

the burned stand suggest that fire altered other stand dynamics that may have indirectly 

improved shade-intolerant regeneration.  Results from studies of prescribed fire suggest that 

factors such as understory density reduction and shelterwood removal helped promote 

shade-intolerant regeneration (Brose and van Lear 1998, Hutchinson et al. 2005., Iverson et 

al. 2008, Brose 2010).  The burned stand had significantly fewer seedlings ha-1. This enabled 

Quercus spp. to have a greater relative density in the burned stand, and decreased the 

relative density of Acer rubrum seedlings.  Fire also reduced the number of saplings, 

suppressed canopy class trees, and intermediate canopy class trees.  This reduction allowed 

more growing space to be available for shade-intolerant regeneration.  The high severity of 

the 2009 wildfire also resulted in mortality of many large codominant trees.  The burned 

stand only contained 120 codominant trees ha-1, whereas the unburned stand contained 229.  
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This reduction in overstory trees allowed increased light to reach the understory, which is 

similar to the way shelterwood harvests promote the same process. 

 Management goals for prescribed fire have been outlined in several studies (e.g., 

Brose et al. 2001, Abrams 2005, Arthur et al. 2012), and these goals are oriented to decrease 

the total density of the understory to improve the competitive status of Quercus spp.  Ideally, 

this should result in a lower % of Acer rubrum and a higher % of Quercus spp.  Additionally, 

thinning the overstory to increase the light availability in the understory also gives Quercus 

spp. a competitive advantage.  Although these goals were developed for prescribed fires as a 

best case scenario, this study of a high intensity out-of-control wildfire represents a worst 

case scenario for land managers.  However, most of the results from this study are favorable 

when placed into the context of management goals for prescribed fire (Table 17).  This study 

found that fire helped accomplish 14 out of 16 management goals to improve Quercus spp. 

regeneration (Table 17).  
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Study Location 

Seedling/sapling area sampled (m2) 

per treatment 

Arthur et al. (1998) Kentucky 120 

Blankenship and Arthur (2006) Kentucky 200 

Brose and van Lear (1998) Virginia 300 

Barnes and van Lear (1998) Virginia 225 

Hutchinson et al. (2005) Ohio Seedling:1350; Sapling: 2812  

This study Ohio 2500 

Table 16.  Seedling and sapling area (m2) sampled in five other fire-oak regeneration studies 

in Kentucky, Ohio, and Virginia. 

 

  This study 

Management goals for prescribed fire to improve oak 

regeneration/competitive status 
Unburned  Burned 

Increase the relative density (%) of Quercus alba saplings 1% 5% 

Increase the % of Quercus spp. Saplings 5% 18% 

Increase the % of Quercus spp. + Carya spp. Saplings 10% 24% 

Decrease the % of Acer rubrum saplings 15% 21% 

Increase the % of Quercus alba seedlings 9% 4% 

Increase the % of Quercus spp. Seedlings 42% 58% 

Increase the % of Quercus spp. + Carya spp. Seedlings 44% 63% 

Decrease the % of Acer rubrum seedlings 26% 6% 

Increase the density (stems ha-1) of Quercus alba saplings 40 120 

Increase the density of Quercus spp. Saplings 134 428 

Increase the density of Quercus spp. + Carya spp. saplings 291 548 

Decrease the density of Acer rubrum seedlings 1400 64 

Decrease the total density of all seedlings  5405 1108 

Decrease the total density of all saplings 2845 2300 

Decrease the number of suppressed canopy class trees 31 4 

Decrease the number of intermediate canopy class trees 229 64 

Table 17.  Common management goals for prescribed fire (Brose et al. 2001, Abrams 2005, 

Arthur et al. 2012) in mixed-oak forests and results from this study of a severe wildfire in 

Shawnee State Forest, Scioto County, Ohio.  
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5.2 Canopy class distribution 

The lack of suppressed, intermediate and codominant trees in the burned stand 

indicates that the 2009 wildfire was severe. The fire altered growing space and increased 

light availability to the understory. Although the canopy class distributions indicate that 

growing space had been altered and light availability was greater in the burned stand, the 

unburned canopy gaps were the only comparable sites in the rest of the forest where 

growing space had undoubtedly been altered.  The unburned canopy gaps were subjected 

to the severe ice storm of 2003, and many other disturbance events identified in the 

disturbance history (Figure 7). 

Because canopy class distributions were composed of stems larger than saplings 

(trees >5cm dbh), trees that were killed by the wildfire were not able to reach that stage in 

four growing seasons.  The mortality of saplings caused by the wildfire of 2009 was 

relatively undetectable because they were able to regrow during the past four growing 

seasons, and a similar total density as the unburned canopy gaps (Table 6).  However, the 

trees that were sampled in the canopy class distribution were larger, and those that were 

killed have not had enough time to grow back to trees >5cm dbh. Some of these trees >5cm 

dbh are adapted to survive fire better than others, and thus were not killed (Oliver and 

Larson 1996).  The higher relative density of Liriodendron  tuplipifera in the midstory 

(suppressed+intermediate) of the unburned canopy gaps indicates that it is less adapted to 

withstand fire than other disturbance events.  The glaze ice storm of 2003 favored the 
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establishment of Liriodenron tulipifera in the unburned canopy gaps (Figure 5), but the 

wildfire of 2009 reduced its’ density. The intermediate classes of Nyssa sylvatica and 

Oxydendron arboreum also showed a higher mortality in the burned stand. Quercus spp. is 

able to compartmentalize wounds from fire better than other species (Smith and Sutherland 

1999). The increased relative density of Quercus spp. in the midstory and overstory 

(codominant and dominant) (Figure 3) of the burned stand indicates that it was more fire 

tolerant than other species (Abrams 2005).  

The canopy class distributions of the unburned canopy gaps represent the most 

likely successional trajectory of Shawnee State Forest, which is similar to other studies that 

have found Quercus spp. in the codominant and dominant canopy classes, but a lack of 

Quercus spp. in the suppressed and intermediate classes (McCarthy and Bailey 1996, 

McCarthy et al. 2001, Hart et al. 2008, van de Gevel et al. 2012).  Quercus spp. saplings in the 

burned stand are likely to recruit to larger size classes within the next decade because of 

decreased competition and their ability to resprout vigorously from root-stalk (Dey et al. 

1996).   Conversely, Quercus spp. in the unburned canopy gaps are less likely to recruit to the 

higher size classes due to their lack of abundance, decreased relative density, restricted light 

availability, and increased competition in the understory.    

5.3 Basal area 

The basal area was greater in the burned stand than in the unburned stand.  This 

result was not expected, but may have been caused by a small number of very large trees 
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being included in the sample. For example, a Liriodendron tulipifera individual in the burned 

stand had a dbh of 85.2 cm and basal area of 0.5674 m2 ha-1, and there were five other very 

large Liriodendron tulipifera individuals with dbh > 50 cm in the burned stand.  Trees 

sampled in the burned stand may have had greater basal area due to the changes in nutrient 

availability and decreased competition after the fire.  Research at the VEF suggests that fire 

increases the Ca2+ availability and raises the soil pH (Boerner et al. 2004).  Soils of the study 

site are very acidic (3.6-4.5 pH) so it is likely that the rise in pH following the 2009 wildfire 

made unavailable nutrients become available (McCleary et al. 1989).  Additionally, canopy 

class distributions show decreases in the suppressed, intermediate, and codominant classes 

which reduced competition for water and nutrients. This combination of increased nutrient 

availability and decreased competition likely increased the basal area in the burned stand.  

5.4 Diameter-age relationship  

The overall pattern of tree establishment is similar to Hart et al. (2008) and van de 

Gevel et al. (2012).  Large Quercus spp. established in the earliest period and smaller shade-

tolerant species (Acer spp., Nyssa sylvatica, Oxydendron arboreum) established consistently 

throughout the most recent 70 years.  The recruitment of shade-tolerant species throughout 

the last 100 years is also consistent with a nearby study (McCarthy et al. 2001).  The largest 

cohorts established during the 1920s and 2000s.  The large number of Quercus spp. that 

established in the 1920s were most likely the result of logging cessation within those stands 
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during the early 1900s.  Conversely, the cohort of Liriodendron tulipifera that established 

during the 2000s was the result of the 2003 glaze ice storm.  

The diameter class distribution (Figure 6) shows the inverse-J distribution typical of 

a regenerating forest (Hart et al. 2008).  Most of the trees in the forest were Acer spp., 

Liriodendron tulipifera, Nyssa sylvatica, and Oxydendron arboreum between five and 19.9 cm 

dbh.  These trees will likely become the future dominant and codominant trees in Shawnee 

State Forest as the mature Quercus spp. die-out.  This same process is underway at a nearby 

old-growth forest (McCarthy et al. 2001). 

5.5 Disturbance history 

The disturbance history highlights the temporal frequency and spatial magnitude of 

disturbances prior to the ice storm of 2003 and the wildfire of 2009.  The 10-year running 

median method that was used in other studies (Rubino and McCarthy 2004, Hart et al. 2011) 

was not able to capture the ice storm of 2003 because there were not 10 years of growth to 

analyze after it. Despite not capturing the ice storm of 2003, the disturbance history did 

capture 78 release events between 1935 and 2001.  The majority of the increment cores (70%) 

used to reconstruct disturbance history were from the unburned canopy gaps.  This 

indicates that the most of the disturbance events in the forest were most likely from the 

unburned stand and specifically within the canopy gaps sampled.  Therefore, the unburned 

canopy gaps had been subjected to numerous disturbance events prior to the ice storm of 

2003. 
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Although the disturbance history does not directly analyze the difference between 

unburned canopy gaps and the burned stand, it does explicitly verify that periodic 

disturbances have occurred in the canopy gaps since 1935.  This is important because it 

verifies that the type of disturbance is responsible for influencing species assemblages in the 

forest.  Regardless of the frequency and magnitude of the disturbances in the history, each 

disturbance type has different effects on the biotic and abiotic processes within the forest 

that ultimately effect the composition (Oliver and Larson 1996). 

5.6 Growth-climate relationship 

PDSI had the highest correlation with radial growth in this study and in a nearby 

study (Rubino and McCarthy 2000).  PDSI takes into account soil moisture and temperature, 

variables that are both responsible for driving drought stress (Speer 2010).  The early period 

trees had stronger relationships with climate variables than the middle period, late period, 

and complete chronology.  This indicates that there was an age-related shift in climate 

response of Quercus spp.   Another study of Quercus spp. found a greater growth-climate 

relationship in the younger trees (Haavik et al. 2011).  Conversely, (Copenheaver et al. 2011) 

found a greater growth-climate relationship in the older trees.   

The age-related shift in climate response has been attributed to causes such as 

increased CO2, changing climate, insect outbreaks, fire suppression, chronic N deposition, 

and changes in tree physiology (Szeicz and MacDonald 1994, Bond 2000, Copenheaver and 

Abrams 2003, Carrer and Urbanati 2004, Voelker et al. 2006, Copenheaver et al. 2011, Haavik 
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et al. 2011).  The shift in growth-limiting climate variables throughout the life cycle of 

Quercus spp. also has been identified in central Virginia where it was linked to physiological 

changes that occur with tree age, and a shift in growth-limiting resources (Copenheaver et 

al. 2011). CO2 enrichment throughout the last 150 years has increased the growth of Quercus 

spp. and Pinus echinata in Missouri (Voelker et al. 2006).   The gypsy moth (Lymantria dispar 

L.) has reduced growth and increased mortality rates of Quercus alba throughout its’ range, 

and likely decreased the climate response during favorable growth periods (Muzika and 

Liebold 2011). 

Additionally, there also was a shift in the seasonality of the relationship.  Younger 

trees (1913-1945) had a higher response to September climate variables than older trees 

(1979-2011).  The relationships between climate and radial growth of the younger trees 

extended later into the growing season whereas the strongest relationships in the complete 

chronology were in July/August.  

Results from this study suggest that the age-related shift in climate response could 

be caused by the increased magnitude and frequency of disturbances as the forest matured 

(Oliver and Larson 1996).  The disturbance history from this study indicates that 

disturbances influence growth, and were also frequent throughout the development of the 

forest (Hart et al. 2011).  Disturbance events are able to alter tree growth because they 

increase the light availability and decrease the competition for below-ground resources 

(Runkle and Yetter 1987, Canham et al. 1990, Montgomery and Chazdon 2002).  
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Furthermore, individual drought years and/or high precipitation years were only able to 

alter ring widths for 1-2 growing seasons.  On the contrary, disturbance events in this study 

altered radial growth for the following ten years, and many of these releases were sustained 

for 12 years or more.  This indicates that long-term ring width releases are more indicative 

of gap-phase dynamics rather than climate. 
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Chapter 6: Conclusion 

This study investigated the disturbance history and effects of two recent severe 

disturbances on stand dynamics in Shawnee State Forest, Scioto County, Ohio. Several large 

scale and many localized disturbances in the unburned canopy gaps failed to improve the 

competitive status of Quercus alba and Quercus spp seedlings and saplings. The lack of 

Quercus spp. in the suppressed and intermediate canopy classes indicates that fire-free 

disturbances are unlikely to allow their regeneration.  The fire uniquely altered growing 

space and light availability in such a way that improved their competitive status.  Although 

the burned stand also lacks Quercus spp. in the suppressed and intermediate classes, there 

have only been four growing seasons prior to this study.  It took at least eight growing 

seasons for the youngest trees in this study to reach 5cm dbh.  The canopy class 

distributions also suggest that Quercus spp. is relatively fire-tolerant, while Liriodendron 

tulipifera is more tolerant of fire-free disturbances.
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6.1 Major Conclusions 

1. The higher relative densities of Quercus alba, Quercus spp., and Quercus spp. + Carya 

spp. saplings in the burned stand suggest that fire is important for regeneration. 

Even though other disturbance events altered growing space and species 

compositions throughout the past 65 years, fire was unique in respect to Quercus spp. 

regeneration.  Despite the high severity of the 2003 ice storm, regeneration in the unburned 

stand was less than in the burned stand.  This suggests that fire is a unique disturbance 

event, and that these species must rely on it for regeneration. 

2. The basal area was greater in the burned stand than in the unburned stand, but only 

because of several large Liriodendron tulipifera individuals. 

There was greater total basal area in the burned stand, which could also indicate that 

many of the trees were growing faster following the fire.  This is unlikely since these trees 

were measured just four growing seasons after the fire. Even though the results do not 

suggest that fire will increase basal area, they do suggest that a reduction in basal area is less 

likely following fire. Most of the mortality in the burned stand was in the suppressed and 

intermediate classes, which contribute very little to the overall basal area of the stand.    
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3. Diameter-age relationships show that Quercus spp. has not been able to establish since 

the early 1940s, and that the last severe disturbance of 2003 promoted the establishment 

of Liriodendron tulipifera. 

Quercus spp. remained absent from the cohorts that established following several 

disturbances after the 1930s.  This suggests that Quercus spp. is unlikely to establish in the 

absence of fire.  Shade-tolerant (Acer spp., Fagus grandifoolia, Oxydendron arboreum, Nyssa 

sylvatica) trees were able to establish in every decade since the 1920s.  Most of the trees in the 

forest (68%) were less than 20 cm dbh, which is indicative of a regenerating forest. 

4. The disturbance history detected a total of 33 years with disturbance events between 

1935 and 2001, indicating disturbances have likely played a role in species composition 

shifts. 

Most of the release years were clustered during the 1940s, 1960s, 1980s and late 

1990s.  The high frequency of release events in these decades indicates that these were the 

periods that were most affected by disturbances. As the stand matures, the magnitude of 

disturbance is likely to have greater impacts on species compositions in the forest.  Also, 

more stand-wide disturbance events are likely to occur. These events influence species 

composition as well as the growth-climate relationship of Quercus spp.   
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5.  The growth-climate relationship of Quercus spp. is highest in the early period and 

lowest in the later period. 

Trees in the early period (1913-1945) had a greater frequency of significant 

relationships with climate variables than the late period (1979-2011). Drought conditions 

were the most growth-limiting, but the correlation decreased through time.  The frequency 

and magnitude of disturbances likely influenced the climate-growth relationship in the late 

period. Although tree physiology changes throughout the tree’s life cycle, disturbance 

events in this study clearly altered decadal trends in tree growth at several periods 

throughout the disturbance history.  Severe droughts were only capable of reducing growth 

for 1-2 years, whereas the disturbances influenced growth for at least 10 years, and in many 

cases 12-15 years.  The combination of the high frequency of disturbance events recorded in 

1999, and the ice storm of 2003 likely decreased the growth-climate relationship in the late 

period.  

6.2 Future research and improvements 

This research helps to bridge an important literature gap between the 

paleoecological history of fire and contemporary effects of fire in southern Ohio.  This type 

of methodology could be used to help bridge that same gap in other regions.  Future 

research should continue to analyze forest stand dynamics and disturbance history within 

the site, and examine the contemporary role of fire.  Additional research in Shawnee State 

Forest should examine the stand dynamics of another fire that burned in 2003.  This stand 
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would likely have a longer temporal component and enable some Quercus spp. regeneration 

to be evident in the canopy class distributions.  
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