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ABSTRACT

BORONATE MACROCYCLE FORMATION USING BORON-LEWIS BASE DATIVE
BONDS AND BORONIC ACID-DIOL CONDENSATION REACTIONS

Natalie Rose Rizzo, MS.
Western Carolina University (July 2013)

Director: Dr. William R. Kwochka

Synthesis of boronate ester compounds via condensation reactions using either an amine or an
amine N-oxide coupled with a boronic acid. Synthesis of boronate ester compounds using
quinoline isomers coupled with 2, 3-dihydroxynaphthalene was also attempted. These compounds
form B-N dative bonds, and potentially form macrocycles capable of trapping a guest molecule in
the cavity. The exact sizes of the complexes are unknown at this time. Characterization of these

compounds was performed by *H NMR, FT-IR, mass spectroscopy, and *C NMR.



CHAPTER ONE: INTRODUCTION

1.1 The B-N Dative Bond

In a dative (or coordinate) covalent bond, one atom acts as a Lewis base and contributes
both electrons to the bond it forms with a Lewis acid, or electron acceptor. In the case of boron
and nitrogen, the nitrogen atom acts as the Lewis base and the boron atom is the Lewis acid
(scheme 1). This type of bond develops between boron and nitrogen, because when boron is in its
neutral state in a molecule, it has an unoccupied p-orbital. When nitrogen is in its neutral state in

a molecule, its lone pair orbital has p character.

Scheme 1. Ammonia and borane form a dative covalent bond in which nitrogen is the electron
donor.

The resulting dative bond between nitrogen and boron in a boroxine is dynamic, allowing the two

atoms to rapidly associate and dissociate (Scheme 2).
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Scheme 2. Methylphenylboroxine and picoline combine to form a complex in which the nitrogen
atom can shift from one boron atom to another.*

Both boroxines and boronates (scheme 3) can be produced through condensation
reactions. A boroxine is produced by reacting a boronic acid with itself (scheme 3a), while a
boronate is produced by reacting a boronic acid with a vicinal diol (scheme 3b), which results in

the loss of H,0.!

0]
© B/ \B
—_—

(@)

HO OH
\B/

v O-C — OO

Scheme 3. Boroxines (a) and boronates (b) can be produced by condensation reactions.
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1.2 Polymers

By combining boronic acid-diol condensations (scheme 5a) and the formation of boron-
nitrogen dative bonded complexes (scheme 5b), polymers may be produced in a single step
(scheme 4)2. Through his work, Severin has shown that not only is this type of reaction possible,
but also reversible when dissolved in hot chloroform. In addition to this, when the solution is

cooled to room temperature, the polymer spontaneously reassembles.

/V_|
B,
N\ O/ \O
HO\B/OH ‘
=
HO OH
ToRIs o aRI A
HO OH O\B/o
cl ‘\ =N
P~
N \ /

Scheme 4. Severin’s polymer produced via boronic acid-diol condensation and boron-nitrogen
dative bonds.?

Such structures can be described as not only self-assembling, but significantly
structurally flexible as well?. The flexibility of these polymers can be attributed to the use of two

chemically distinct building blocks: a condensation product and an amine.?
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(a) OH

el
(b) o ¢ T @

Scheme 5. Boronic acid-diol condensation reaction (a), and complexation of boronate ester and
N-donor ligand (b) .

1.3 Boronate Macrocycles

Using boronic acid-diol condensations and B-N dative bonding, Severin also found that
macrocycles can be produced in one step reactions. Like polymers, macrocycles consist of
repeating units; however, these structures close in on themselves to form rings. In addition to this,
Severin was also able to produce a macrocycle with a guest molecule housed in its cavity (scheme

6)."

HO\B/OH
X OH Benzene
5 N\ + 5
= OH

;3%@ &

L0 Q
Q

g

E

Scheme 6. Combining a boronic acid-diol condensation reaction and the complexation of a
boronate ester and N-donor ligand in a simultaneous one step reaction with benzene as the solvent
produces a boronate macrocycle with a benzene guest molecule lodged in its macrocyclic cavity.*
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1.4 Rotaxanes

A rotaxane is a host macrocycle in which a guest molecule is housed. It consists of two
interlocking molecules: a linear “thread” and a circular “loop”. “Stoppers” are also present at
either end of the thread component to prevent the loop and thread from dissociating from one
another. The “thread” and “stoppers” together form the dumbbell-shaped component of the
rotaxane seen in figure 1.° A long-term goal of our research lab is to produce boronate
macrocycle-based rotaxanes using this work as the foundation. Hopefully, this can eventually be
achieved by adding onto the guest molecule in the macrocyclic cavity, thus extending it outward

to form the linear component of a rotaxane.

" Macrocycle
“Dumbbell shaped
molecule

Figure 1. A rotaxane consists of three components: a cyclic “ring”, a linear “thread” and
stoppers, which are attached to either end of the thread. Together the “thread” and stoppers make
the dumbbell shaped molecule pictured.®
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CHAPTER TWO: RESULTS AND DISCUSSION

2.0 General

This project was centered on the creation of boronate macrocycles via condensation
reactions and dative bonding. The goal was not only to synthesize these unique structures, but
also to explore whether a guest molecule would readily become trapped in the macrocyclic cavity
if the reactions were run in toluene. In most of the complexes that were made, we tried to form
the dative bond using nitrogen and boron. We also tried to use oxygen and boron to form dative
bonds in one of the complexes produced, which necessitated the synthesis of an N-oxide prior to
complex formation. Additionally, we also made some complexes using quinoline compounds, in

which both the boron and nitrogen atoms originate from the same molecule.

2.1 Boronate Macrocycles

This series of reactions was designed to explore the potential of synthesizing boronate
macrocycles in which the dative bond was made through the interaction of the nitrogen atom of a
pyridine derivative and the boron atom of a boronate ester. The objective of these reactions was
firstly, to explore whether these macrocycles could be made using various nitrogen-containing
compounds, and secondly, to attempt to incorporate a toluene guest molecule within the

macrocyclic cavity.
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HO OH

\B/

L, (I—»q@

RS

N
o N\, ‘
T O
— N
NO,

Scheme 7. 3-nitrophenylboronic acid 1 and 2, 3-dihydroxypyridine 2 are condensed to produce a
compound 3. The expected product is macrocycle 4.

The first step in the synthesis of these boronate macrocycles was to perform a reaction
that originally appeared in a paper published by Severin to determine what conditions were
needed for subsequent reactions. * The difference between this reaction and the one from the
paper we referenced was that Severin’s was a 15 hour reaction, whereas we were able to complete

this reaction in 30 minutes using a microwave synthesizer.

In order to synthesize complex 4, starting materials 1 and 2 were added to a round bottom
flask along with toluene. The reaction mixture was heated and stirred at reflux for 30 minutes
using a microwave synthesizer and a Dean-Stark trap with molecular sieves to remove water from
the reaction mixture.* Upon removal of the solvent, the resulting product was a white powder
with a 34% yield, which was confirmed by 'H NMR, FT-IR and mass spectroscopy to be the

desired complex 4 (figures 2 and 3).
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A comparison of the "H NMR spectra of starting materials 1 and 2 with the complex 4
(figure 2) shows the following chemical shift changes: proton g’ shifts from 7.16 ppm to 8.61
ppm, f* shifts from 8.17 ppm to 8.31 ppm, proton d’ shifts from 7.81 ppm to 8.08 ppm, proton e’
shifts from 7.53 ppm to 7.59 ppm, proton a’ shifts from 7.32 ppm to 6.87 ppm, proton ¢’ shifts
from 6.53 ppm to 6.80 ppm, and proton b’ shifts from 6.85 ppm to 6.19 ppm. Protons g, f, d, and
e in complex 4 have shifted upfield compared to protons g’, f’, d’, and e’ in 1 because when 1 and
2 are condensed to form compound 3, electron density is added to them. Conversely, electron
density is taken away from protons a and b in compound 3, which is why they have shifted

downfield compared to protons a’ and b’ in 2 (figure 2).
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Figure 2. 'H NMR spectrum of 2, 3-dihydroxypyridine 2, 3-nitrophenylboronic acid 1 and
complex 4 in CDCls.

In the FT-IR spectrum of complex 4 (figure 3) the following signals were observed:

aromatic C-H stretch at 3077.16 cm™, aromatic C=C bend at 1644.97 cm™, and B-N stretch at
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563.06 cm™. According to a paper published by Dana N. Reinmann, et al the B-N stretching
mode for a boronate ester shows up between 560 and 650 cm™.% The B-N stretch observed at
563.06 cm™ is of particular importance because it provides evidence that a macrocyclic structure

is present.

s 128114

Absornance

Figure 3. FT-IR spectrum of complex 4.

A mass spectrum of complex 4 dissolved in methanol was taken in order to confirm its
formation from 1 and 2 (figure 4). The following peak was detected: 241.0 m/z representing [M]-
1. The molecular mass of compound 3 is 242.00 g/mol, so the [M]-1 peak at 241.0 m/z is

significant because it provides evidence that the desired compound was formed.
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Figure 4. Mass spectrum of complex 4 dissolved in methanol.
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Scheme 8. 3-nitrophenylboronic acid 1 and 2-hydroxynicotinic acid 5 are condensed to produce
compound 6. The expected product is macrocycle 7.
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After successfully synthesizing macrocycle 4 (scheme 7), as our proof-of-concept
reaction, we were then ready to synthesize a macrocycle with a potentially larger ring cavity. The
increased size of the macrocyclic cavity would hopefully facilitate the incorporation of a guest
molecule into the ring quite easily. We chose to use starting materials 1 and 5 to produce
compound 6 with a different overall shape than that of the previous compound 3. This would
hopefully allow the dative bonds to form at larger angles relative to each other, thus creating a

pentameric structure with a larger macrocyclic cavity than the previous tetramer 4 (scheme 7).

This compound 6 was synthesized from 1 and 5 using the same method outlined for the
synthesis of the previous compound 3.* The resulting product was a white powder with a 66%
yield, which was confirmed by *H NMR, FT-IR and mass spectroscopy to be the desired product

6 (figures 5, 6, 7, 8 and 9).

A comparison of the *H NMR spectra of starting materials 1 and 5 to product 6 (figure 5)
shows the following chemical shift changes: proton g’ shifts from 9.02 ppm to 8.59 ppm, proton
¢’ shifts from 8.09 ppm to 7.56 ppm, and proton b’ shifts from 6.61 ppm to 6.58 ppm. Protons b
and ¢ have shifted downfield compared to protons b’ and ¢’ because the formation of compound 6
removes electron density. These chemical shift changes provide evidence that compound 6 was
produced, though there is an impurity present at 8.47 ppm, the identity of which we are unsure of
at this time. Signals from protons i, j, and k corresponding to the toluene molecule can also be
seen at7.59 ppm overlapping the signal from proton e. This provides evidence that a guest

molecule may be present in the macrocyclic cavity (figure 5).



19

7

8,31

—a.s53 ﬂQEl
=]

~HAIC
— 8.0
— 750
— .G

L
=

~—8.33

00000005 -

FHormmalzed Imensity
: : =
S (TN
858 B =
=]
=]
=]
=]
— 758~ —
o
=
= ‘ I9)
S
O
Sw
@
z
5 =
N
o

.’;'I
o EAE na oo o8 Bnbe 2%E
j : e 8 2c ERE v Ine Hr
. 1 l‘J\‘m LI P i1y s L K
i “ W T S
g ]
;
¥ B (o] IF
! [
£
2825 ' oSN
onQn o B0
e 2338y J \ Big
[ — o

L;
{k
kI S
C

2
-

U ety
e T, Ll W bl i Ll S il T T T T T T T T T L il i i § T
94 93 92 %1 90 89 BB &7 86 &5 B4 B3 82 &1 B0 TS VB 77 V6 U5 T4 73 T2 T4 10 69 63 BT GE A
Chemical Shist (ppm)

Figure 5. '"H NMR spectrum of 2-hydroxynicotinic acid 5, 3-nitrophenylboronic acid 1, and
product 6 in CDCls.

Evidence that toluene is present as a guest molecule can be seen by looking at the *H
NMR spectrum of the product 6 in DMSO-ds (figure 6). The relative integrations of the product’s
protons 6 to those of the methyl group on the toluene molecule are roughly 5:3, which indicates
not only the presence of the guest molecule in the macrocyclic cavity, but also that the
macrocycle is likely a pentamer (figure 6). There does, however, seem to be an impurity present
in the product, as is indicated by the signal present at 6 8.51, which suggests that an OH peak
from excess 1 may be present in the product. This could indicate that some amount of 1 did not
complex with 5, likely due to a slight excess of 1 in the reaction mixture or the reaction time

being too short for all of 1 and 5 to complex.
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Figure 6. *H NMR spectrum of product 6 in DMSO-ds.

In the FT-IR spectrum of the product 6 (figure 7), the following signals were observed:
aromatic C-H stretch at 3098.76 cm™, carboxylic acid C=0 stretch at 1713.53 cm™, aromatic C=C
bend at 1613.51 cm™ and B-N stretch at 568.76 cm™. The B-N stretch at 568.76 cm™ is of
particular interest because it, along with the 'H NMR spectrum (figure 6), provides evidence
suggesting that a macrocyclic ring is present. Whether or not the ring is a pentamer 7 is

inconclusive at this time, although the *H NMR spectrum (figure 7) does suggest that it likely is.
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Figure 7. FT-IR spectrum of product 6.

A mass spectrum of product 6 dissolved in methanol was taken in order to confirm its
formation from 1 and 5 (figure 8). The following peaks were detected: 122.0 m/z representing
[M]—CeH4BNO3 and 271.0 m/z representing [M]+1. The molecular mass of compound 6 is
270.00 g/mol, so the [M]+1 peak at 271.0 m/z is of particular interest because it provides

evidence that it was indeed formed.
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Figure 8. Mass spectrum of product 6 dissolved in methanol.
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Scheme 9. 2-hydroxynicotinic acid 5 and 4-trifluoromethyl phenylboronic acid 8 are condensed
to produce a compound 9. The expected product is macrocycle 10.
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Over the course of this research project, it occurred to us that it may be beneficial to use a
boronic acid other than 1 in order to minimize the number of proton signals present in the NMR
spectra, thus making it less complicated and easier to interpret. This reaction was carried out
using the same method employed to synthesize compound 6, except boronic acid 8 was used
instead of 1.* The resulting product was a white powder with a 66% yield, and was confirmed by

'H NMR and FT-IR spectroscopy to be the desired compound 9 (figures 9, 10 and 11).

The *H NMR signal at 7.97 ppm is actually two overlapping signals from protons e and ¢
(figure 9). The *H NMR signal seen at 8.38 ppm should be a doublet, but an impurity is present,
which causes it to look like a triplet. Other than this impurity, the relative integrations and
multiplicities are correct. However, a toluene guest molecule did not become incorporated into
the compound’s 9 macrocyclic cavity, if a macrocycle is even present (figure 9). This may be due
to the CF; group on boronic acid 8 being less electron withdrawing than the NO, group on 1.” The
CFsgroup on 8 may cause the product to form more quickly so that a toluene molecule cannot
become trapped in the macrocyclic cavity of the product 10, if indeed the product is a
macrocycle. At this time there is no real evidence to indicate the formation of a macrocycle, but
since the only difference between compounds 9 and 6 is the boronic acid used, it is likely that a

macrocycle 10 formed if indeed compound 6 formed a macrocycle 7, as we suspect.
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Figure 9. 'H NMR spectrum of product 9 in DMSO-d.

A comparison of the *H NMR spectrum of starting material 5 to product 9 in CDCls
(figure 10) shows the following chemical shift changes: proton ¢’ shifts from 7.83 ppm to 8.57
ppm, &’ shifts from 7.76 ppm to 7.55 ppm, and b’ shifts from 7.62 ppm to 6.58 ppm. Protons a
and b have shifted downfield compared to a” and b’ because the formation of 9 takes electron
density away from 5. These chemical shift changes provide evidence that the desired compound 9

was formed.
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Figure 10. *H NMR spectrum of 2-hydroxynicotinic acid 5 4-trifluoromethyl phenyl boronic acid
8 and the product 9 in CDCls.

In the FT-IR spectrum of product 9 (figure 11) the following signals were observed:
carboxylic acid-OH stretch at 3231.05 cm™, aromatic C=C bend at 1605.73 cm™, aromatic C-H
bend at 778.55 cm™ and B-N stretch at 639.67 cm™. The carboxylic acid-OH stretch at 3231.05
cm™ indicates that the impurity seen in the *H NMR spectrum of the product at 8.38 ppm (figure

9) could be from the presence of an OH peak from excess 5.
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Figure 11. FT-IR spectrum of product 9.

2.2 N-Oxides

These reactions were centered on the synthesis of N-oxides so that they could be used in
subsequent reactions in an attempt to synthesize boronate macrocycles. The potential use of N-
oxides in the assembly of macrocycles was explored for two reasons. Firstly, to see whether the
dative bond could be made using oxygen, and secondly, to explore whether the larger ring
opening could possibly facilitate the addition of a guest molecule more easily (or perhaps a larger

guest molecule could be introduced).

(0] (o]
HO | AN Oxone HO I AN
N _— Reflux 40 hr /N* —

o
11 12

Scheme 10. Picolinic acid is oxidized to yield picolinic acid N-oxide.
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Before attempting to synthesize the unique N-oxides needed to produce our targeted
macrocycles, 12 was synthesized and compared to a sample of commercially obtained picolinic
acid N-oxide, so that the proper reaction conditions could be determined. In order to synthesize
12 from 11, a solution of 11 in dichloromethane was added to a solution of oxone in water. The
mixture was allowed to reflux at 45°C for 40 hours.® The resulting product was a white powder
with a 54% yield, which was confirmed by *H NMR and FT-IR to be compound 12 (figures 12

and 13).

The *H NMR spectra of the product 12 and a sample of commercially obtained picolinic
acid N-oxide were compared to one another and found to be identical (figure 12). Signals from
protons b, ¢, a and d can be seen at 7.63 ppm, 7.71 ppm, 8.36 ppm and 8.44 ppm, respectively.

The identical "H NMR spectra confirms the formation of the desired compound 12.
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Figure 12. *H NMR spectra of picolinic acid N-oxide 12 and commercially obtained picolinic
acid N-oxide in CDCls.
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In the FT-IR spectrum of product 12 (figure 13) the following signals can be observed:

aromatic C-H stretch at 3119.17 cm™, aromatic C=C bend at 1557.12 cm™, and N-O stretch at

1251.89 cm™. The N-O stretch provides more evidence that the desired compound 12 was indeed

formed.
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Figure 13. FT-IR spectrum of picolinic acid N-oxide 12.
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Scheme 11. 2, 3-dihydroxypyridine 2 is oxidized to yield 2, 3-dihydroxypyridine N-oxide 13.

After successfully completing our proof-of-concept synthesis (scheme 10), the next step

was to attempt the synthesis 13. This N-oxide product was targeted because we wanted to see if

adding oxygen atoms through which a dative bond could be made with boron (as opposed to
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nitrogen) would allow us to build a macrocycle similar to the one seen in scheme 7, yet large

enough to house a guest molecule in its cavity.

Two unsuccessful attempts at making 13 using the method previously employed for the
synthesis of 12 necessitated the use of a different method for this, as well as subsequent reactions
used to make N-oxides. In order to produce 13, 30% H,0, was added to a solution of 2 in water at
room temperature. The mixture was allowed to warm to 70°C whilst stirring before being cooled
to room temperature. Benzene was added and the mixture was allowed to reflux for three hours.’
The resulting product was a yellow-white solid with a 30% yield. In the *"H NMR spectrum, no
chemical shift changes can be seen between starting material 2 and the product 13, which
indicates that the desired product was not formed (figure 14). This reaction was attempted

multiple times with the same end result.
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Figure 14. 'H NMR spectra of 2, 3-dihydroxypyridine 2 and unsuccessful reaction product
(scheme 11) in DMSO-d.
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Scheme 12. 3-hydroxypyridine-2-carboxylic acid 14 is oxidized to yield 3-hydroxypyridine-2-
carboxylic acid N-oxide 15.

Using the same method that was employed for the synthesis of the previous N-oxide
product 13, 15 was produced from 14.° The product was a white solid with a 67% yield, and was
confirmed by *H NMR and FT-IR spectroscopy to be the desired compound 15 (Figures 15 and

16).

In comparing the *H NMR spectra of starting material 14 and product 15 (figure 15) the
following chemical shift changes can be seen: proton ¢’ shifts from 7.95 ppm to 8.16 ppm, a’
shifts from 7.32 ppm to 7.52 ppm, and b’ shifts from 7.42 ppm to 7.52 ppm. The protons in the
N-oxide product 15 have gained electron density from the addition of the oxygen atom to the
molecule, so they have shifted upfield. The observed chemical shift changes provide evidence
that the desired compound 15 has indeed been formed. However, there is a peak at 7.58 ppm that
indicates that an impurity is present in the product 15 (figure 15), the identity of which we are

unsure of at this time.
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Figure 15. *H NMR spectra of 3-hydroxypyridine-2-carboxylic acid 14 and 3-hydroxypyridine-2-
carboxylic acid N-oxide 15 in CDCls.

In the FT-IR spectrum of the product 15 (figure 16), the following signals can be seen:
aromatic C-H stretch at 3043.50 cm™, aromatic C=C bend at 1602.94 cm™, and N-O stretch at
1271.96 cm™. The N-O stretch seen provides additional evidence that the desired compound 15

was formed.
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Figure 16. FT-IR spectrum of 3-hydroxypyridine-2-carboxylic acid N-oxide 15.

2.3 Boronate Macrocycles Made From N-Oxides

Originally, we planned to produce three macrocycles in which the dative bond was
formed through oxygen and nitrogen instead of boron and nitrogen. However, multiple attempts
to synthesize 2, 3-dihydroxypyridine N-oxide 13 and 2-hydroxynicotinic acid N-oxide failed. The
only N-oxide we were able to successfully synthesize was 3-hydroxypyridine-2-carboxylic acid
N-oxide 15. As a result, the only N-oxide complex we were able to attempt to produce was

complex 17.
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Scheme 13. 3-nitrophenylboronic acid 1 and 3-hydroxypyridine-2-carboxylic acid N-oxide 15 are
condensed to produce a compound 16. The expected product is macrocycle 17.

This product 16 was synthesized from 1 and 15 by combining both starting materials with
toluene, and refluxing the resulting reaction mixture for 10 hours using a heating mantle. A Dean-
Stark trap and molecular sieves were used to remove water from the reaction mixture.* The
resulting product was a light tan solid, with a 77% yield, and was characterized by ‘H NMR, FT-

IR and mass spectroscopy (figures 17, 18 and 19).

After we attempted to purify the product via sublimation, an *H NMR spectrum was
taken, which revealed that although some impurities had been removed, many impurities were

still present (figure 17). Although the mass spectroscopy data provides evidence that compound
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16 may have been formed (figures 18 and 19), we were not able to obtain *H NMR data that

supports this, and therefore our results for this reaction are inconclusive.
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Figure 17. *H NMR spectrum of 3-nitrophenylboronic acid 1, 3-hydroxypyridine-2-carboxylic
acid N-oxide 15 and the compound 16 in CDCls.

In the FT-IR spectrum of product 16 the following signals were observed: aromatic C-H
stretch at 3102.55 cm™, carboxylic acid-OH stretch at 2514.31 cm’®, B-O stretch at 1726.88,
aromatic C=C bend at 1694.18 cm™, N-O stretch at 1283.38 cm™, a B-N stretch at 577.84 cm™.
The carboxylic acid-OH stretch at 2514.31 cm™ indicates that some unreacted starting material 15
is present. The presence of both a B-O stretch and a B-N stretch indicate that a mixture of two

compounds is possibly present in the product.
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Figure 18. FT-IR spectrum of product 16.

A mass spectrum of the product dissolved in methanol was taken in order to confirm that
compound 16 was actually formed from starting materials 15 and 1 (figure 19). The molecular
weight of compound 16 is 286.00 g/mol. A small peak at 269.8 m/z suggests an [M]-O loss,
which could indicate that a small amount of the desired compound 16 was indeed formed, though

our results are inconclusive.
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Figure 19. Mass spectrum of product 16 dissolved in methanol.

2.4 Boronate Macrocycles Made From Quinoline Boronic Acid Compounds

These reactions were centered on the synthesis of boronate macrocycles in which the

dative bond could be made through nitrogen and boron atoms originating from the same

molecule. The objective of these reactions was firstly, to explore whether these macrocycles

36

could be made using 3-quinoline boronic acid and two of its isomers, and secondly, to attempt to

incorporate a toluene guest molecule into the macrocyclic cavity.

HO
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Scheme 14. 3-quinoline boronic acid 18 and 2, 3-dihydroxynaphthalene 19 are condensed to
yield compound 20.
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In order to synthesize this compound 20, starting materials 18, 19 and toluene were added
to a round bottom flask and heated at reflux for 45 minutes using a microwave synthesizer, and a
Dean-Stark trap with dry molecular sieves to remove water from the reaction mixture.* We tried
to purify the product via column chromatography using silica gel as the stationary phase and a 1%
solution of methanol in dichloromethane as the mobile phase, but unfortunately the product clung
to the silica even after we finally flushed the column with methanol in a final effort to recover the
product. The resulting product was a yellow powder with a 70% yield, which was somewhat
purified via sublimation, and confirmed by 'H NMR, FT-IR, and mass spectroscopy to be the

desired compound 20 (figures 20, 21 and 22).

In the *H NMR spectrum of product 20 (figure 20) the integrations are roughly a 2:2 ratio
of starting material 18 protons to starting material 19 protons when there should be a 1:2 ratio.
This indicates that excess 18 may be present, as does the OH signal at 8.50 ppm. An OH signal
can also be seen at 9.49 ppm, which indicates that some uncomplexed 19 is also present.
Typically, signals corresponding to protons on the toluene guest molecule show up at a range of
approximately 7.20-7.30 ppm. Since no such signal can be seen in the *H NMR spectrum of

product 20 (figure 20), no guest molecule seems to be present.
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Figure 20. *H NMR spectrum of “purified” product 20 in DMSO-d.

In the FT-IR spectrum of product 20 (figure 21) the following signals were observed:
aromatic C-H stretch at 3030 cm™, aromatic C=C bend at 1644.03 cm™, and B-N stretch at 622.53
cm™. The B-N stretch seen provides evidence that a macrocycle may have been formed, though

We are unsure as to its exact size at this time.
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Figure 21. FT-IR spectrum of product 20.
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A mass spectrum of the product 20 dissolved in methanol was taken in order to confirm

its formation from 18 and 19 (figure 22). An [M] peak was detected at 297.1 m/z. The molecular

mass of compound 20 is 297.12 g/mol, so the presence of an [M] peak at 297.1 m/z provides

evidence that the desired compound was indeed formed.
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Figure 22. Mass spectrum of product 20 dissolved in methanol.
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Scheme 15. 3-isoquinoline boronic acid and 2, 3-dihydroxynaphthalene condense to form
compound 22.

Using the same method that was used to produce compound 20, compound 22 was
produced from 21 and 19.% The resulting product was a tan-colored powder with a 79% yield,
which was somewhat purified via sublimation, and confirmed by 'H NMR, FT-IR and mass

spectroscopy to be the desired compound 22 (figures 23, 24 and 25).

In the *H NMR spectrum of the product 22, both protons h and i appear to be doublets
when in fact they should be singlets (figure 23). This indicates that although many impurities

were removed via sublimation, there are still some impurities present. Impurities are also

\
220 H‘ | 314.0327.0 3409 s 4049

40



indicated by the integrations of protons a, b and ¢, which are 5.14, 5.42 and 4.47, respectively

when they should all be 2.0. This indicates the presence of uncomplexed 19. Additionally, no

guest molecule seems to be present in the *H NMR spectrum of the product 22.
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Figure 23. "H NMR spectrum of “purified” product 22 in DMSO-d.

In the FT-IR spectrum of product 22 (figure 24) the following signals were observed:

aromatic C-H stretch at 3051.27 cm™, aromatic C=C bend at 1626.22 cm™, and B-N stretch at

41

643.80 cm™. The presence of the B-N stretch suggests that a macrocycle may have been formed,

though we are unsure as to its size at this time.
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Absorbancs

Figure 24. FT-IR spectrum of product 22.

In the mass spectrum of the product (figure 25) dissolved in methanol, an [M] peak can
be seen at 297.1 m/z. The molecular weight of compound 22 is 297.12 g/mol, so the presence of

the [M] peak at 297.1 m/z provides evidence that it was actually formed.
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Figure 25. Mass spectrum of product 22 dissolved in methanol.
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Scheme 16. 5-isoquinoline boronic acid and 2, 3-dihydroxynaphthalene condense to form
compound 24.

Using the same method that was employed to produce compound 20, 24 was produced
from 23 and 19.* The resulting product was a tan-colored powder with a 79% yield, which was
confirmed by *H NMR, FT-IR and mass spectroscopy to be the desired compound 24 (figures 26,

27 and 28).

In the *H NMR spectrum of product 24 (figure 26) there seem to be no OH peaks present.
However, the integrations of the protons of starting materials 19 to 23 is not a 2:1 ratio as it

should be. For example, the signal at 7.09 ppm that corresponds to proton a has an integration of
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4.2 when it should 2.0. Also, protons ¢ at 7.15 ppm and b at 7.52 ppm have integrations of 2.89
and 2.99 respectively, when they should both have integrations of 2.0. This indicates that
uncomplexed 19 may be present in the product. Additionally, the integration of proton g at 8.52
ppm is 2.02 when it should be 1.00. Since the integrations of all the other protons from 23 are
roughly 1.0 it is likely that an OH signal from 19 is present at 8.52 ppm and is overlapping with
the signal from proton g, as opposed to uncomplexed 23 being present. Additionally, no signals

indicating the presence of a guest molecule can be seen in the *H NMR spectrum of the product

24.
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Figure 26. *H NMR spectrum of product 24 in DMSO-ds.

In the FT-IR spectrum of product 24 (figure 27) the following signals can be seen:
phenol-OH stretch at 3362.88 cm’*, aromatic C-H stretch at 3046.27 cm™, aromatic C=C bend at

1633.30 cm™, and B-N stretch at 670.58 cm™. The OH stretch at 3362.88 cm™ indicates that
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uncomplexed 19 may be present. The B-N stretch at 670.58 cm™ suggests that a macrocycle may

have been formed.
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Figure 27. FT-IR spectrum of product 24.

A mass spectrum of product 24 dissolved in methanol was taken, and an [M] peak at

297.1 m/z was observed (figure 28). Since the molecular weight of compound 24 is 297.12 g/mol,

this [M] peak at 297.1 m/z indicates its formation.
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CHAPTER THREE: CONCLUSIONS

This thesis describes the synthesis and characterization of unique boronate macrocycles
using condensation reactions and dative bonding. In most of the complexes that were made, we
attempted to form dative bonds using nitrogen and boron. However, we did attempt to make
pyridine N-oxides that could then be combined with 3-nitrophenylboronic acid 1 in an attempt to
produce macrocycles in which the dative bond could form through boron and oxygen instead of
boron and nitrogen. Additionally, we explored whether these structures would readily trap a guest
molecule within the macrocyclic cavity if toluene was used as the solvent. Our hope was that
using this work as the foundation, eventually rotaxanes could be produced from these
macrocyclic structures by building onto the guest molecule, thus extending it outward. If this

could be achieved, it would prove to be a unique method for the synthesis of rotaxanes.

Three of the boronate macrocycles we attempted to produce were made from condensing
a pyridine with a boronic acid, in which we attempted to make the dative bond through nitrogen
and boron. The “monomer units” of these structures were successfully produced, as is indicated
by the *H NMR and mass spectroscopy data. The FT-IR data provides evidence that dative bonds
are present in all of these complexes, though more evidence is needed to confirm specific ring
sizes. From this work we discovered that the choice of functional group on the boronic acid can
either facilitate or hinder the addition of a guest molecule to the macrocyclic cavity. For example,
3-nitrophenyl boronic acid 1 was used to synthesize complex 7, and a toluene signal is clearly
present in the *H NMR spectrum of the product. In contrast, complex 10 was synthesized using 4-
trifluoromethyl phenylboronic acid 8, yet a guest molecule was not observed in the *H NMR

spectrum of the product. Since the only difference between complexes 7 and 10 is the functional
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group on the boronic acid, this must be why complex 7 can house a guest molecule in its cavity

and complex 10 cannot.

We also tried to produce pyridine N-oxides, so that they could then be combined with 3-
nitrophenyl boronic acid 1 to produce compounds that would hopefully form a dative bond
through oxygen and nitrogen to form unique macrocycles. Aside from picolinic acid N-oxide 12,
which was our proof-of-concept reaction, the only N-oxide we were able to successfully produce
was 3-hydroxypyridine-2-carboxylic acid N-oxide 15. Unfortunately, reacting 15 with 3-
nitrophenylboronic acid 1 yielded inconclusive results. Although there is some evidence from the
FT-IR and mass spectra that suggests that complex 17 was formed, there are also so many
impurities present (even after some impurities were removed by sublimation) in both the '"H NMR

and IR data that we are unsure as to whether this complex was actually formed.

Additionally, we attempted to produce three macrocycles from the condensation of
quinoline isomers with 2, 3-dihydroxynaphthalene 20. The *H NMR and mass spectroscopy data
confirms the formation of all of these monomer units, while the IR data suggests the presence of
B-N dative bonds, although we are unsure as to the exact ring sizes of these structures at this
time. Unfortunately, none of the complexes produced seem to be capable of trapping a guest

molecule in the macrocyclic cavity, if indeed macrocycles were formed.

In our work with boronate macrocycles, we have successfully synthesized the “monomer
units” of six structures, as is indicated by the *H NMR and mass spectroscopy data. The FT-IR
data also confirms the presence of a B-N dative bond, which provides evidence that macrocycles
have likely been formed, although the exact sizes of the rings are inconclusive at this time. The
main problem we encountered was trying to characterize the sizes of these macrocyclic rings. The
B-N dative bond was too weak for the rings to be characterized by methods such as mass

spectroscopy, and although a macrocycle is a mini polymer of sorts, the rings were too small to
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be characterized by methods typical for the characterization of polymers, such as viscosity
experiments. In addition to mass spectroscopy, we did also attempt to characterize the sizes of the
rings by recrystallization and Thermogravimetric Analysis (which was used on complex 7). The
problem with Thermogravimetric Analysis was that after two mass losses complex 7 would
degrade, so we were unable to determine the ring size using that method. Although we were able
to recrystallize some of the complexes produced, we were never able to produce x-ray quality

crystals.

Future work with such compounds could involve the attempted synthesis of more
macrocyclic structures in which the boronic acid is varied instead of the pyridine. It would be
interesting to see which of these compounds are capable of trapping a guest molecule and which
are not, and then to explore why. Future work could also include trying to insert a di-substituted
guest molecule into the ring cavity of complex 7, and then trying to construct a rotaxane by

extending it outward.
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CHAPTER FOUR: EXPERIMENTAL

4.0 General

All of the reagents used were purchased from commercial suppliers (Alfa Aesar, Acros,
or Frontier Scientific) and used as is unless otherwise stated. The boronic acids that were
purchased from Frontier Scientific and used directly from the bottle without prior purification.
Toluene was purchased from Acros and used without any further purification. All reactions were
performed using oven-dried glassware and a Teflon stir bar. The microwave syntheses were
performed open to the atmosphere in a CEM Discover Microwave Synthesizer. All *H NMR, *C
NMR experiments were conducted on a JEOL Eclipse 300 FT 300 MHz NMR Spectrometer. The
rotavap used was BUCHI Rotavapor R-205. IR spectra were collected on a Smiths IdentifyIR.

The mass spectra were collected on an Agilent Technologies 7890 A GC Sampler.

4.1 Boronate Macrocycles

NO,
o)
\ \
| B
N/ o
3

Compound 3

To a 250 mL round bottom flask, 2, 3-dihydroxypyridine (0.170 g, 1.53 mmol), 3-

nitrophenylboronic acid (0.218 g, 1.31 mmol), and toluene (80.0 mL) were added. The mixture
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was heated at reflux for 30 minutes using a microwave synthesizer and a Dean-Stark trap. The
solvent was removed under reduced pressure to obtain the final product, which was a white solid
(yield: 34%, 0.93 g). *H NMR (300 MHz, CDCls): 5 6.56 (d, J=6.6 Hz, 1 H), 6.86 (t, J=1 Hz, 1
H), 7.16 (d, J=7.4 Hz, 1 H), 7.31 (d, J=7.4 Hz, 1 H), 7.53 (t, J=1 Hz, 1 H), 7.81 (br. s 1 H), and
8.20 (d, J=1 Hz, 1 H). *C NMR (300 MHz, DMSO-dg): & 104.73, 115.88, 117.63, 123.42,
126.19, 127.49, 128.97, 132.74, 138.27, 148.25, and 150.93. FT-IR spectrum: aromatic C-H
stretch at 3077.16 cm™, aromatic C=C bend at 1644.97 cm™, and B-N stretch at 563.06 cm™.

Mass spectrum: [M]-1 peak at 241.0 m/z.
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Compound 6

To a 125 mL round bottom flask, 2-hydroxynicotinic acid (0.245 g, 1.80 mmol), 3-
nitrophenylboronic acid (0.311 g, 1.86 mmol), and toluene (60.0 mL) were added. The reaction
mixture was heated at reflux using a microwave synthesizer and a Dean-Stark trap. After 30
minutes, the solvent was removed under reduced pressure to obtain the final product, which was a
white solid. (yield: 66%, 0.32 g). *H NMR (300 MHz, DMSO-dg): & 2.30 (s, 3 H), 6.67 (t, J=1
Hz, 5 H), 7.18-7.25 (m, 5 H), 7.63 (t, J=1 Hz, 5 H), 7.95 (d, J=1 Hz, 5 H), 8.18-8.27 (m, 10 H),
8.39 (d, J=7.2 Hz, 6 H), 8.51 (s, 16 H), and 8.63 (s, 5 H). *H NMR (300 MHz, CDCl5): & 1.26 (s,
1 H), 6.61 (t, J=6.7 Hz, 1 H), 7.54-7.61 (m, 2 H), 7.73 (t, J=7.7 Hz, 1 H), 8.06 (d, J=8 Hz, 1 H),
8.28 (d, J=10.2 Hz, 1 H), 8.47 (d, J=6.9 Hz, 1 H), 8.59 (m, 9 H), and 9.02 (s, 1 H). *C NMR (300
MHz, DMSO-dg): & 109.28, 125.36, 128.82, 129.65, 141.17, 142.09, 146.82, 147.99, 165.18, and

165.60. FT-IR spectrum: aromatic C-H stretch at 3098.76 cm™, carboxylic acid C=0 stretch at
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1713.53 cm™, aromatic C=C bend at 1613.51 cm™, and B-N stretch at 568.76 cm™. Mass

spectrum; [M]—CsH4BNO; and [M]+1.at 271.0 m/z.

Compound 9

To a 125 mL round bottom flask, 2-hydroxypyridine-3-carboxylic acid (0.349 g,
2.51 mmol), 4-trifluoromethyl phenylboronic acid (0.442 g, 2.33 mmol) and toluene (60.0 mL)
were added. The reaction mixture was heated at reflux and stirred using a microwave synthesizer
and a dean stark trap with dry molecular sieves. After 45 minutes, the solvent was removed
under reduced pressureto obtain the final product, which was a white solid. (yield: 70%, 0.91 g).
'H NMR (300 MHz, DMSO-ds): § 6.69 (t, J=1 Hz, 1 H), 7.67 (d, J=7.7 Hz, 1 H), 7.97 (m, 2 H),
and 8.38 (t, J=1 Hz, 2 H). *H NMR (300 MHz, CDCl,): § 7.62 (d, J=7.7 Hz, 1 H), 7.69-7.91 (m, 3
H), 7.83 (d, J=7.7 Hz, 1 H), and 8.31 (d, J=7.7 Hz, 2 H). *C NMR (300 MHz, DMSO-d¢): &
109.31, 117.20, 135.21, 142.10, 146.82, 165.18, and 165.64. FT-IR spectrum: carboxylic acid-
OH stretch at 3231.05 cm™, aromatic C=C bend at 1605.73 cm™, aromatic C-H bend at 778.55

cm’, and B-N stretch at 639.67 cm™.
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4.2 N-Oxides

N-Oxide 12

To a solution of picolinic acid (1.66 g, 13.5 mmol) in dichloromethane (14.0 mL) a
saturated solution of oxone (10.2 g, 67.1 mmol) in water (42.0 mL) was added. The mixture was
refluxed at 45°C for 40 hours in an oil bath before being cooled to room temperature and
extracted with dichloromethane (10 x 50 mL). The organic phases were combined and dried over
anhydrous MgSO,. The product was filtered and the solvent was removed under reduced pressure
to obtain a white solid product. (yield: 54%, 1.00 g). *H NMR (300 MHz, DMSO-ds): & 7.88-7.96
(m, 2 H), 8.31 (d, J=1 Hz, 1 H), and 8.74 (d, J=1 Hz, 1 H). FT-IR spectrum: aromatic C-H stretch

at 3119.17 cm™, aromatic C=C bend at 1557.12 cm™, and N-O stretch at 1251.89 cm™.
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N-Oxide 13

A solution of 2, 3-dihydroxypyridine (0.297 g, 2.68 mmol) and water (1.50 mL) in a 100
mL round bottom flask was allowed to stir at room temperature for several minutes before 30%
hydrogen peroxide (1.40 mL, 36.8 mmol) was added. The mixture was slowly heated to 70°C,

and then allowed to cool down to room temperature before benzene (68.0 mL) and 30% hydrogen
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peroxide (0.500 mL, 10.4 mmol) were added to the reaction mixture. Using a Dean-Stark trap
with dry molecular sieves, the solution was allowed to reflux for approximately 3 hours before
the solvent was removed under reduced pressure to obtain the final product, which was a yellow-
white solid. (yield: 30%, 0.10 g). *H NMR (300 MHz, DMSO-dg): & 6.01 (t, J=6.9 Hz, 1 H), 6.65
(d, J=6.9 Hz, 1 H), 6.80 (d, J=6.6 Hz, 1 H). FT-IR spectrum: aromatic C=C bend at 1670.69 cm?,

N-O stretch at 1294.16 cm™, and aromatic C-H bend at 748.32 cm™.

15

N-Oxide 15

A solution of 3-hydroxypyridine-2-carboxylic acid (0.605 g, 4.35 mmol) and water (1.50
mL) in a 100 mL round bottom flask was allowed to stir at room temperature for several minutes
before 30% hydrogen peroxide (6.00 mL, 155 mmol) was added. The mixture was slowly heated
to 70°C, and then allowed to cool down to room temperature before benzene (60.0 mL) and 30%
hydrogen peroxide (2.00 mL, 51.8 mmol) were added to the reaction mixture. Using a Dean-Stark
trap with dry molecular sieves, the solution was allowed to reflux for approximately 9 hours
before the solvent was removed under reduced pressure to obtain the final product, which was a
white solid. (yield: 67%, 0.40 g). "H NMR (300 MHz, CDCl,): § 7.32 (d, J=1 Hz, 1 H), 7.42 (t,
J=1Hz, 1 H),and 7.95 (d, J=6.1 Hz, 1 H). FT-IR spectrum: aromatic C-H stretch at 3043.50 cm?,

aromatic C=C bend at 1602.94 cm™, and N-O stretch at 1271.96 cm™.
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4.3 Boronate Macrocycles Made From N-Oxides

16

Compound 16
To a 100 mL round bottom flask, 3-hydroxypyridine-2-carboxylic acid N-oxide (0.287 g,

1.84 mmol), 3-nitrophenylboronic acid (0.301 g, 1.81 mmol) and toluene (60.0 mL) were added.
The reaction mixture was heated at reflux and stirred using a microwave synthesizer and a Dean-
Stark trap with dry molecular sieves. After 45 minutes, the solvent was removed under reduced
pressure to obtain the final product, which was a light-tan solid. (yield: 77%, 0.43 g). '"H NMR
(300 MHz, DMSO-ds): 5 7.35 (d, J=1, 1 H), 7.45 (t, J=1, 1 H), 7.58 (m, J=1, 1 H), 7.68 (br. s, 1
H), 7.80 (d, J=1, 1 H), 7.96 (m, 1 H), 8.07-8.15 (m, 1 H), 8.30 (d, J=6.9, 1 H), and 8.58 (s, 1 H).
FT-IR spectrum: aromatic C-H stretch at 3102.55 cm™, carboxylic acid-OH stretch at 2514.31
cm'™, aromatic C=C bend at 1694.18 cm™, N-O stretch at 1283.38 cm™, and B-N stretch at 577.84

cm™. Mass spectrum: [M]-O loss at 269.8 m/z.
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4.4 Boronate Macrocycles Made From Quinoline Boronic Acid Compounds
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Compound 20

To a 100 mL round bottom flask, 3-quinoline boronic acid (0.301 g, 1.74 mmol), 2, 3-
dihydroxynaphthalene (0.285 g, 1.78 mmol) and toluene (60.0 mL) were added. The reaction
mixture was heated at reflux and stirred using a microwave synthesizer and a Dean-Stark trap
with dry molecular sieves. After 45 min, the solvent was removed under reduced pressure to
obtain the final product, which was a yellow solid. (yield: 70%, 0.51 g). "H NMR (300 MHz,
DMSO de): § 7.15-7.19 (m, 1 H), 7.54-7.65 (m, 2 H), 7.77 (t, J=7.7 Hz, 1 H), 7.98 (t, J=7.4 Hz, 2
H), 8.50 (s, 2 H), 8.75 (s, 1 H), 9.18 (d, J=1.7 Hz, 1 H), and 9.49 (s, 1 H). *C NMR (300 MHz,
DMSO-dg): 6 110.08, 123.43, 126.09, 129.33, 130.35, and 141.87. FT-IR spectrum: aromatic C-H
stretch at 3030 cm™, aromatic C=C bend at 1644.03 cm™, and B-N stretch at 622.53 cm™. Mass

spectrum: 297.1 m/z ([M]).
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Compound 22

To a 100 mL round bottom flask, 4-isoquinoline boronic acid (0.315 g, 1.82 mmol), 2, 3-
dihydroxynaphthalene (0.300 g, 1.87 mmol) and toluene (60.0 mL) were added. The reaction
mixture was heated at reflux and stirred using a heating mantle. After 10 hours dry molecular
sieves were added to the Dean-Stark trap, and the reaction mixture was allowed to reflux for 5
more hours. The solvent was removed under reduced pressure to obtain the final product, which
was a tan-colored solid. (yield: 79%, 0.41 g). *H NMR (300 MHz, DMSO-dg): 5 7.09 (s, 5 H),
7.16-7.19 (dd, J=1, 5 Hz, H), 7.54-7.57 (dd, J=1 Hz, 6 H), 7.74 (t, J=1 Hz, 1 H), 7.86 (t, J=1 Hz, 1
H), 7.92 (d, J=5.8 Hz, 1 H), 8.01 (d, J=8.3 Hz, 1 H), 8.17 (d, J=8.3 Hz, 1 H), and 8.52 (d, J=5.8
Hz, 1 H). *C NMR (300 MHz, DMSO-dg): & 110.07, 119.59, 123.42, 126.07, 129.33, and 147.40.
FT-IR spectrum: aromatic C-H stretch at 3051.27 cm™, aromatic C=C bend at 1626.22 cm™, and

B-N stretch at 643.80 cm™. Mass spectrum: 297.1 m/z ([M]).



58

\ e

24

Complex 24

To a 100 mL round bottom flask, 5-isoquinoline boronic acid (0.312 g, 1.80 mmol), 2, 3-
dihydroxynaphthalene (0.302 g, 1.89 mmol) and toluene (60.0 mL) were added. The reaction
mixture was heated at reflux and stirred using a heating mantle. After 10 hours, dry molecular
sieves were added to the dean stark trap, and the reaction mixture was allowed to reflux for 5
more hours. The solvent was removed under reduced pressure to obtain the final product, which
was a tan-colored solid. (yield: 79%, 0.41 g). *H NMR (300 MHz, DMSO-dg): & 7.16 (d, J=3.3
Hz, 1 H), 7.54 (d, J=3.3 Hz, 12 H), 7.64 (t, J=1 Hz, 7 H), 8.07 (d, J=1 Hz, 1 H), 8.13 (d, J=8.5 Hz,
2 H), 8.35 (d, J=4.1 Hz, 1 H), 8.48 (d, J=1 Hz, 5 H), 9.30 (s, 1 H), and 9.50 (br. s, 4 H). *C NMR
(300 MHz, DMSO-ds): 6 123.54, 126.07, 129.30, 147.30, 166.00, and 169.80. FT-IR spectrum:
phenol-OH stretch at 3362.88 cm™, aromatic C-H stretch at 3046.27 cm™, aromatic C=C bend at

1633.30 cm™, and B-N stretch at 670.58 cm™. Mass spectrum: 297.1 m/z ([M]).
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APPENDIX A: 'H NMR, FT-IR, GCMS, AND **C NMR SPECTRA OF COMPOUND 3
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Figure 29. *H NMR spectrum of compound 3 formed from 2, 3-dihydroxypyridine and 3-

nitrophenylboronic acid in CDCls.
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Figure 30. FT-IR spectrum of compound 3 formed from 2, 3-dihydroxypyridine and 3-
nitrophenylboronic acid.
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Figure 31. Mass spectrum of compound 3 formed from 2, 3-dihydroxypyridine and 3-

nitrophenylboronic acid dissolved in methanol.
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APPENDIX B: *H NMR, FT-IR, GCMS, AND **C NMR SPECTRA OF COMPOUND 6
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Figure 33. *H NMR spectrum of compound 6 formed from 2-hydroxynicotinic acid and 3-

nitrophenylboronic acid in CDCls.
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Figure 34. 'H NMR spectrum of compound 6 formed from 2-hydroxynicotinic acid and 3-

nitrophenylboronic acid in DMSO-de.
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Figure 35. FT-IR spectrum of compound 6 formed from 2-hydroxynicotinic acid and 3-
nitrophenylboronic acid.
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Figure 36. Mass spectrum of compound 6 formed from 2-hydroxynicotinic acid and 3-

nitrophenylboronic acid dissolved in methanol.
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Figure 37. *C NMR spectrum of compound 6 in DMSO-ds.
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APPENDIX C: *H NMR, FT-IR, GCMS, AND **C NMR SPECTRA OF COMPOUND 9
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Figure 38. *H NMR spe'ctrum of compound 9 formed from 4-trifluoromethyl phenylboronic acid

and 2-hydroxynicotinic acid in DMSO-ds.
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Figure 39. *H NMR spectrum of compound 9 formed from 4-trifluoromethyl phenylboronic acid

and 2-hydroxynicotinic acid CDCl;,
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Figure 40. FT-IR spectrum of compound 9 formed from 4-trifluoromethyl phenylboronic acid
and 2-hydroxynicotinic acid.
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Figure 41. **C NMR spectrum of compound 9 in DMSO-ds.
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APPENDIX D: *H NMR AND FT-IR SPECTRA OF COMPOUND 12
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Figure 42. *H NMR spectrum of picolinic acid N-oxide 12 in CDCls.
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Figure 43. FT-IR spectrum of picolinic acid N-oxide 12.
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APPENDIX E: 'H NMR SPECTRUM OF COMPOUND 13
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Figure 44. *H NMR spectrum of unsuccessfully oxidized 2, 3-dihydroxypyridine (scheme 11) in

DMSO-ds.
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APPENDIX F: '"H NMR AND FT-IR SPECTRA OF COMPOUND 15
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Figure 45. *H NMR spectrum of 3-hydroxypyridine-2-carboxylic acid N-oxide 15 in CDCls.
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APPENDIX G: 'H NMR, FT-IR AND GCMS SPECTRA OF COMPOUND 16
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Figure 47. *H NMR spectrum of compound 16 formed from 3-nitrophenylboronic acid and 3-

hydroxypyridine-2-carboxylic acid N-oxide 15.
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Figure 48. FT-IR spectrum of compound 16 formed from 3-nitrophenylboronic acid and 3-

hydroxypyridine-2-carboxylic acid N-oxide 15.
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Figure 49. Mass spectrum of compound 16 formed from 3-nitrophenylboronic acid and 3-

hydroxypyridine-2-carboxylic acid N-oxide dissolved in methanol.
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APPENDIX H: *H NMR, FT-IR, GCMS, AND *C NMR SPECTRA OF COMPOUND 20
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Figure 50. "H NMR spectrum of “purified” compound 20 formed from 2, 3-

dihydroxynaphthalene and 3-quinoline boronic acid in DMSO-d®.
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Figure 51. FT-IR spectrum of compound 20 formed from 2, 3-dihydroxynaphthalene and 3-

quinoline boronic acid.
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Figure 52. Mass spectrum of compound 20 formed from 2, 3-dihydroxynaphthalene and 3-

quinoline boronic acid dissolved in methanol.
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Figure 53. *C NMR spectrum of compound 20 in DMSO-d.
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APPENDIX I: *H NMR, FT-IR, GCMS, AND **C NMR SPECTRA OF COMPOUND 22
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Figure 54. "H NMR spectrum of “purified” compound 22 formed from 2, 3-

dihydroxynaphthalene and 3-isoquinoline boronic acid in DMSO-ds,
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Figure 55. FT-IR spectrum of compound 22 formed from 2, 3-dihydroxynaphthalene and 3-

isoguinoline boronic acid.
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Figure 56. Mass spectrum of compound 22 formed from 2, 3-dihydroxynaphthalene and 3-

isoquinoline boronic acid dissolved in methanol.
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Figure 57. **C NMR spectrum of compound 22 in DMSO-ds.
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APPENDIX J: 'H NMR, FT-IR, GCMS, AND *C NMR SPECTRA OF COMPOUND 24
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Figure 58. *H NMR spectrum of “purified” compound 24 formed from 2, 3-

dihydroxynaphthalene and 5-isoquinoline boronic acid in DMSO-dg,
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Figure 59. FT-IR spectrum of compound 24 formed from 2, 3-dihydroxynaphthalene and 5-

isoquinoline boronic acid.
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Figure 60. Mass spectrum of compound 24 formed from 2, 3-dihydroxynaphthalene and 5-

isoquinoline boronic acid dissolved in methanol.
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Figure 61. *C NMR spectrum of compound 24 in DMSO-d.



