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ABSTRACT

ERGODICITY AND ENTROPY IN SEQUENCE SPACES

Christopher Miglino

Western Carolina University (April 2013)

Director : Dr. Julia Barnes

The infinite permutations of possible moves in a game, or positions on a game

board, form a one-sided sequence space. We are working with a probability

measure on the space of measurable subsets of the sequence space. We are

studying a shift transformation on this space, which is measure preserving.

We explore conditions under which the shift transformation is ergodic and

calculate the entropy of the shift that is associated with the steady state of the

game where applicable. These concepts are exemplified by the games Rock,

Paper, Scissors and Monopoly. We then create new games and study how the

properties of ergodicity and entropy change with respect to different aspects of

the games.
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1 INTRODUCTION

Ergodic Theory was first introduced by Ludwig Boltzmann via the field of statistical

mechanics. It is from the theorems of George David Birkhoff and John von Neumann,

in the 1930’s, that the mathematics of ergodic theory has arisen [12]. In the eighty

years following the establishment of these theorems, applications of ergodic theory to

a variety of dynamical systems have abounded [2].

In this thesis we analyze various games using ergodic theory on the sequence space of

all possible moves that one player can make. There are two main types of games that

we will be studying. One type is the old children’s game Rock, Paper, Scissors, and

a newer version of the game with two more choices, Rock, Paper, Scissors, Lizard,

Spock. The second are standard board games where a token is moved around a path

by rolling dice or spinning a dial. A classic example of a board game of this nature

is Monopoly which has already been analyzed in the literature [9, 10].

Our objective is to examine the conditions under which a shift transformation on the

sequence space generated by a game is not ergodic and how changes to the game

will effect the entropy of the shift. New games that we have developed in order to

explore the effect of various configurations of a game board are introduced in Section

5. The new games are Two Towers, Sink Hole, Sink Hole 2, and three versions of the

Medieval Game of Life. Each game is described with images of the game boards shown

in Appendix A. We have analyzed the games that we have created and discuss their

ergodicity and entropy. To reach our goal, we survey some necessary background.

In Section 2 of this paper we introduce measurable spaces and the σ-algebra. We

show how cylinder sets generate a σ-algebra and how a natural probability on these

sets can be extended to a probability measure for the entire space. Many of our

measures are Markov; an explanation of Markov Chains is given. We then define a
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shift transformation on the sequence space which move one space along an infinite

sequence. The two shift transformations under study are the Bernoulli and Markov

Shifts [6]. The mode of action in both of these transformations is the same.

Section 3 introduces the concept of ergodicity with several theorems stated and

proven. Many are known results. However, the proofs have been modified to sequence

spaces and, in many instances, significantly expanded with the intent of increasing the

clarity of the arguments. Building on these theorems, we state and prove theorems

regarding the ergodicity of Bernoulli and Markov Shifts. Entropy is introduced in

Section 4 beginning with the entropy of a partition and culminating with the entropy

of a shift transformation. In particular, the (p, P ) Markov shift is discussed as it

relates to the steady state of a Markov Chain. The game of Monopoly is used as an

example of a Markov system, as described by Ian Stewart [9, 10].
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2 MEASURE THEORY

Any study of ergodic theory is done on a measurable space, (X,B,m), which consists

of a set, X, a collection of subsets, B satisfying particular properties, and a measure,

m. A measure is a function from the space to the positive real numbers with properties

we often think of when we measure the length of a real object with a ruler. For

example, the measure of the empty set is zero, and if we break a set up into disjoint

pieces, the measure of the set is the sum of the measure of its parts. The collection

of subsets, B, is precisely the collection of sets which can be measured.

Measure Theory is an abstraction of a concept with which most people are already

familiar: how to measure something. We often think of measures in terms of length,

area, and volume. While these concepts are certainly present in measure theory, there

are also many other examples of measures. In order to define a measure, we must

begin with a measurable space.

2.1 Measurable Spaces

We call the pair (Ω,B) a measurable space, where Ω is a set and B is a collection of

subsets called a σ-algebra. A σ-algebra is a collection of subsets, B, that satisfy the

following:

1. Ω ∈ B;

2. If B ∈ B, then BC ∈ B where BC is the compliment of B;

3. If Bn ∈ B for n ≥ 1, then
⋃∞
i=1Bi ∈ B.

It is not always possible to explicitly define a σ-algebra. Frequently, we start with

a collection of subsets and generate a σ-algebra by beginning with the sets in which
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we are interested and including sets necessary to meet the above conditions. Some

collections of subsets that may be considered en route to a σ-algebra are:

A collection of subsets, L , is a semi-algebra if

1. ∅ ∈ L ;

2. If A,B ∈ L , then A ∩B ∈ L ;

3. If A ∈ L , then AC =
⋃n
i=1Ei where each Ei ∈ L and E1, . . . , En are pairwise

disjoint.

Note that a collection of sets {E1, . . . , En} is pairwise disjoint if for i 6= j, Ei∩Ej = ∅.

A collection of subsets, A , is an algebra if

1. ∅ ∈ A ;

2. If A,B ∈ A , then A ∩B ∈ A ;

3. If A ∈ A , then AC ∈ A .

Every algebra is a semi-algebra, and every σ-algebra is an algebra [11]. In order to

generate a σ-algebra from an algebra, we need the following lemma.

Lemma 2.1. If A is an algebra on Ω, the following statements are equivalent.

i. If A,B ∈ A , then A ∩B ∈ A ;

ii. If A1, A2, . . . , An ∈ A , then
⋃n
i=1 Ai ∈ A .

Proof. Let A be an algebra on Ω.

i. ⇒ ii. Assume for any subsets A,B ∈ A , A ∩ B ∈ A . Let A1, A2, . . . , An be
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an arbitrary collection of elements of A . Since A is an algebra, for each Ai ∈ A ,

ACi ∈ A . We will show by induction that
⋂n
i=1A

C
i ∈ A and use this fact to show

closure under finite unions.

As a base case we have, by hypothesis, AC1 ∩ AC2 ∈ A . Then assume that for k ∈ N,⋂k
i=1A

C
i ∈ A . Then,

k+1⋂
i=1

ACi =

(
k⋂
i=1

ACi

)
∩ ACk+1.

Since
⋂k
i=1A

C
i ∈ A , and A is an algebra,

⋂k+1
i=1 A

C
i ∈ A . Hence

⋂n
i=1A

C
i ∈ A . Since

A is closed under complementation, by DeMorgan’s Law

(
n⋂
i=1

ACi

)C

=
n⋃
i=1

(
ACi
)C

=
n⋃
i=1

Ai ∈ A .

Hence A is closed under finite unions.

ii. ⇒ i. Assume that if {A1, . . . , An} ∈ A , then
⋃n
i=1Ai ∈ A . Let A,B ∈ A . Since

A is an algebra, AC , BC ∈ A . By assumption, AC∪BC ∈ A . Then (AC∪BC)C ∈ A .

By DeMorgan’s Law,

(AC ∪BC)C = (AC)C ∩ (BC)C = A ∩B.

Indeed, A ∩B ∈ A .

Since the inclusion of set compliments and intersections in an algebra guarantees the

inclusion of finite unions, by allowing countable unions, we can define a σ-algebra on

Ω. This distinction is necessary to the construction of a measurable space.

A measure is a function from some subset of a measurable space, (Ω,B), to the

the non-negative real numbers that satisfies conditions 2 and 3 below. A probability
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measure on (Ω,B) is a function m : B → [0, 1], where

1. m(Ω) = 1;

2. m(∅) = 0;

3. m (
⋃∞
i=1Bi) =

∑∞
i=1m(Bi) where {Bi}∞i=1 is a sequence of pairwise disjoint

members of B.

A probability space is a triple (Ω,B,m), where (Ω,B) is a measurable space and

m is a probability measure on (Ω,B). All measures referred to in this paper are

probability measures. The following theorems from Resnick [8] will be used.

Theorem 2.2. Let L be a semi-algebra of subsets of Ω. The algebra, A (L ), gen-

erated by L consists precisely of those subsets of Ω that can be written in the form

E =
⋃n
i=1 Ai where each Ai ∈ L and A1, A2, . . . , An are disjoint subsets of Ω.

If L is a semi-algebra of subsets of Ω, a function µ : L → R+ is finitely additive if

µ(∅) = 0 and µ(
⋃n
i=1 Ei) =

∑n
i=1 µ(Ei) where E1, . . . , En ∈ L are pairwise disjoint

subsets of Ω. The measure µ is countably additive if µ(
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei) [11].

Theorem 2.3. If L is a semi-algebra of subsets of Ω and µ : L → R+ is finitely

additive, then there is a unique finitely additive function m : A (L ) → R+ which is

an extension of µ. That is, m restricted to L is equal to µ. If µ is countably additive,

then so is m.

In our study, we will focus on specific probability spaces and accompanying probability

measures as defined in Section 2.2.
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2.2 Sequence Spaces and Cylinder Sets

The space in which we are working is composed of infinite sequences. A point in the

space is a one-sided sequence, {ai}∞i=0, formed from a finite set of distinct elements,

{a0, a1, . . . , an}, called an alphabet. A sequence space, X, is the set consisting of all

possible sequences of the elements of an alphabet.

The sequences with which we are working are the set of all possible combinations of the

various states of certain games. One such game is the classic “Rock, Paper, Scissors”

(RPS). Should the reader be unfamiliar with RPS, a comprehensive explanation is

available at [1]. With each turn, either Rock (R), Paper (P ), or Scissors (S) occurs

for each player with a probability of 1
3
. Imagine playing an infinite game of RPS and

recording all of the moves that one player makes. For example, one sequence that

could be formed is x = {R,R,R,R, . . .}; another is y = {R,P,R, P, . . .}. Observe

that both of these sequences are elements of the set AR = {{ai}∞i=0 : a0 = R}, the set

of all sequences that begin with R; i.e., x, y ∈ AR. Since the probability of observing

R on the first move is 1
3
, we can intuit that one-third of all sequences begin with R.

If we define ARR = {{ai}∞i=0 : a0 = a1 = R}, we have the set of all sequences that

begin with R,R. Notice that x ∈ ARR, but y /∈ ARR.

With each turn, R, P , and S occur independently. Recall one of the rules of elemen-

tary probability: the probability of independent events occurring successively is the

product of their respective probabilities. Since P [a0 = R] = 1
3

and P [a1 = R] = 1
3
,

we say that the probability of a random sequence belonging to ARR is 1
3
· 1

3
= 1

9
. An-

other tenant of basic probability is that the probability of observing either of two (or

more) separate, independent events is the sum of their individual probabilities. For

instance, the probability of observing either R or P on the second move is 1
3

+ 1
3

= 2
3
.

However, if all positions of a sequence are fixed, we would calculate the probability of
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its occurrence as limn→∞
(

1
3

)n
= 0. In other words, the probability of any sequence

occurring in which all positions are fixed is 0.

In order to talk about the measure of sets, we must first establish what sets in the

sequence space, X, are measurable and how to assign a measure to them. The sets

formed by fixing one or more consecutive positions of a sequence and considering

all sequences that satisfy that condition are called cylinder sets. These sets will be

used to generate a σ-algebra on X. To generate the σ-algebra, we begin by letting

k be the number of possible states of a game. In the game of RPS, the states of the

game refer to playing R, P , or S at any given turn. In this instance, k = 3. We

may consider Y = {0, 1, . . . , k − 1} to be an alphabet where i corresponds to the ith

state of a game. Let 2Y be the power set of Y , and let µ be a measure defined by

a probability vector, (p0, p1, . . . , pk−1), where µ({i}) = pi. A cylinder set A is the

collection of all sequences where s consecutive positions are fixed elements of Y . The

set A can be written as {{xi}∞i=0 : xi = aj ∈ Y for r ≤ j ≤ r + s}. We can denote

A by r[ar, ar+1, . . . , ar+s]r+s and call it a block beginning with the rth position and

ending with the (r + s)th position.

Let L be the collection of finite intersections of blocks of fixed positions. A member,

A, of L has the form A =
⋂n
i=1 ri [ari , . . . , ari+si ]ri+si . If we define an impossible set

of fixed positions, such as those with a1 and a2 in the initial position with a1 6= a2,

then ∅ ∈ L . For any two members A and B of L , A∩B is an intersection of a finite

number of blocks of fixed positions. Hence, A ∩ B ∈ L . The compliment of a block

r[ar, . . . , ar+s]r+s is the finite union of r[br, . . . , br+s]r+s where bi 6= ai for at least one

i. It follows that the compliment of a member A =
⋂n
i=1 ri [ari , . . . , ari+si ]ri+si of L is

the union compliments of each blocks in A. Therefore, L satisfies the requirements

of being a semi-algebra.

We consider the space X of all sequences x ∈ X where x = {xi}∞i=0 and each xi ∈ Y .
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Since X is the collection of all sequences, we can denote X as

X =
∞∏
i=0

Y = {{xi}∞i=0 : xi ∈ Y }.

More generally, we can also look at sets of the form

n∏
i=0

Aj ×
∞∏

j=n+1

Y where Aj ∈ 2Y .

That is, the elements in the jth position are members of a set in the power set of Y ,

rather than single elements of Y . This is an example of something called a product

σ-algebra, B, on X. Then (X,B) is a measurable space denoted by

(X,B) =
∞∏
i=0

(Y, 2Y ).

The natural measure defined on the blocks is µ(r[ar, . . . , ar+s]r+s) =
∏r+s

i=r pi. The

measure µ on L is the product of the measures of the blocks, i.e.

µ

(
n⋂
i=1

ri [ari , . . . , ari+si ]ri+si

)
=

n∏
i=1

µ(r[ar, . . . , ar+s]r+s).

By Theorem 2.3, µ can be extended to a measure m on B. The measure m is called

the (p0, . . . , pk−1)-product measure [8].

As stated previously, it is the independence of the individual events that allow for

the multiplication of their respective probability measures. We now cite a theorem

from Walters [11] that establishes the existence of a unique probability measure on

our sequence spaces.

Theorem 2.4. Fix k ≥ 1 and let Y = {0, 1, . . . , k − 1} and (X,B) =
∏∞

i=0(Y, 2Y ).

For each n ∈ N and a0, . . . , an ∈ Y suppose a non-negative real number pn(a0, . . . , an)

is given so that
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1.
∑

a0∈Y p0(a0) = 1, and

2. pn(a0, . . . , an) =
∑

an+1∈Y pn+1(a0, . . . , an, an+1).

Then there is a unique probability measure m on (X,B) with m(h[ah, . . . , al]l) =

pl−h(ah, . . . , al) for all h ≤ l and all ai ∈ Y , h ≤ i ≤ l.

The probability space (X,B,m) is called the direct product of (Y, 2Y , µ). It is precisely

because each element in our sequences is an independent event that we can form the

space using these products.

We now have that the set of all sequences formed from some finite set of possible

states generates a probability space. Returning to the example at the beginning of

this section, we may now revisit the sets, AR (all sequences of RPS that begin with

R) and ARR (all those that begin with R,R). We can now measure these sets and

confirm our earlier intuition. As expected, m(AR) = 1
3

and m(ARR) = 1
9
.

2.3 Shift Transformations

A shift transformation is a type of iterative process on a sequence or set of sequences.

Let T : X → X be a map such that for {xi}∞i=0 ∈ X, T ({xi}∞i=0) = {xi+1}∞i=0. The

transformation, T , acts by “shifting” the sequence by one position. For instance,

consider ARR = {{ai}∞i=0 : a0 = a1 = R}. If we apply the shift transformation T to

the set ARR the leading term “drops off” and we are left with the set AR = {{ai}∞i=0 :

a0 = R}. In other words, the second term has now shifted to become the initial term.

Consider the sets APR = {{ai}∞i=0 : a0 = P, a1 = R}, ASR = {{ai}∞i=0 : a0 =

S, a1 = R}, and ARR = {{ai}∞i=0 : a0 = a1 = R}. By applying T , we shift the

sequences in these sets; we have T (APR) = AR, T (ASR) = AR, and T (ARR) = AR.

Under T , APR, ASR, and ARR all map into the set of sequences that start with
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R. Thus, APR ∪ ASR ∪ ARR ⊆ T−1(AR). Since the first position x0 must be R,

P , or S, T−1(AR) ⊆ APR ∪ ASR ∪ ARR. Then T−1(AR) = APR ∪ ASR ∪ ARR.

Since X is a probability space and APR ∩ ASR ∩ ARR = ∅, m(APR ∪ ASR ∪ ARR) =

m(APR) +m(ASR) +m(ARR).

From Section 2.2 we know that m(ARR) = 1
3
· 1

3
= 1

9
. Similarly, m(APR) = m(ASR) =

1
9
. Since m(APR) + m(ASR) + m(ARR) = 1

3
, we have that m(T−1(AR)) = 1

3
. Since

m(AR) = 1
3
, we see that the measure of the set, AR, is preserved under the transfor-

mation T−1.

Definition. A shift transformation T on a probability space (X,B,m) is called

measure-preserving if for B ∈ B, m(T−1(B)) = m(B) [11].

All transformations in this study are of of this form and are measure-preserving. It is

worth noting that m(T (ARR)) = m(AR) = 1
3
6= 1

9
= m(ARR). Therefore, even though

T is a measure-preserving transformation, measure is not preserved in the forward

direction.
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3 ERGODICITY

A model that describes the changes in a system as time progresses is called a dynamical

system. Ergodic theory concerns the long-term behavior of dynamical systems. In

our study, we are concerned with the ergodicity of the shift transformations described

in Section 2.3. This leads us to the following definition.

Definition. A measure preserving transformation T of a probability space (Ω,B,m)

is called ergodic if the only members B of B with T−1(B) = B satisfy m(B) = 0 or

m(B) = 1 [11].

A set theoretic operation used in this study that deserves explanation is the symmetric

difference. The symmetric difference of sets A and B, denoted A4B, is exactly the

portion of A that is not in B and of B that is not in A. Symbolically, we could write

A4 B = (A \ B) ∪ (B \ A). If the measures of sets are equal up to sets of measure

zero, we say that the measures are equal almost everywhere and use the notation, a.e.;

that is, m(A) = m(B) if and only if m(A4B) = 0. Also, function χ : X → {0, 1} is

called the characteristic function. For B ∈ B, χB is defined as follows.

χB(x) =

 1 if x ∈ B

0 if x /∈ B

3.1 Ergodic Theory

Two main theorems that are central to ergodic theory are the Pointwise Ergodic

Theorem by George Birkhoff, and another by Jon Von Neumann. We are concerned

with the first, which is stated here without proof.

Theorem 3.1 ([11];1.14). Let (Ω,B,m) be a probability space and T : Ω → Ω be a
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measure-preserving transformation. Then

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
Ω

fdm a.e.

The Pointwise Ergodic Theorem gives us that the long term average of a sequence of

functions converges to some function, and that function is integrable. In this paper,

the only function we will be integrating is the characteristic function. Integrating

the characteristic function of a set with respect to its measure gives the measure of

the set,
∫
X
χB(x)dm(x) = m(B) [7]. In some of the following proofs we use the fact

that the measure of any set in a probability space is bounded above by 1 and the

convergence given by the Pointwise Ergodic Theorem to apply the following theorem.

Theorem 3.2 ([11]; Dominated Convergence). Let {fn} be a sequence of real valued

functions on (X,B,m). If ∃M ∈ R+ such that ∀n ≥ 1, |fn| ≤ M and limn→∞ fn =

f a.e. then f is integrable and lim
∫
fndm =

∫
fdm.

The following corollary to the Pointwise Ergodic Theorem is used frequently.

Corollary 3.3 ([11];1.14.2). Let (X,B,m) be the probability space of sequences from

Section 2.2 and let T : X → X be the shift transformation from Section 2.3. Then T

is ergodic if and only if ∀A,B ∈ B

lim
n→∞

1

n

n−1∑
i=0

m(T−i(A) ∩B) = m(A)m(B).

Proof. (of Corollary 3.3)

Let T be ergodic. Let f = χA, the characteristic function on the set A. By Theorem

3.1, we have

lim
n→∞

1

n

n−1∑
i=0

χA(T i(x)) =

∫
x∈X

χA(x)dm(x) = m(A).
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Note that
∫
x∈X χA(x)dm(x) = m(A) because the integral of the characteristic function

of a set gives the measure of the set. Multiplying through by χB(x), we have

lim
n→∞

1

n

n−1∑
i=0

χA(T i(x))χB(x) = m(A)χB(x) a.e.

Notice that |χl(x)| ≤ 1 for any l, the average 1
n

∑n−1
i=0 χl(x) ≤ 1 for any n. Furthermore

by the Pointwise Ergodic Theorem 1
n

∑n−1
i=0 χl(x) is equal to the measure of the set

l almost everywhere. By the Dominated Convergence Theorem, the integral of the

limit of these averages as n tends toward infinity is equal to the limit of the average

of the integral of the characteristic function. Then

∫
lim
n→∞

1

n

n−1∑
i=0

χA(T i(x))χB(x)dm(x) = lim
n→∞

1

n

n−1∑
i=0

∫
χA(T i(x))χB(x)dm(x)

= lim
n→∞

1

n

n−1∑
i=0

m(T−i(A) ∩B) = m(A)m(B).

Conversely, assume the convergence property holds. Let T−1(E) = E for E ∈ B.

Then T−1(E) ∩ E = E. Let A = B = E in the above convergence equations. Then,

lim
n→∞

1

n

n−1∑
i=0

m(T−i(E) ∩ E) = lim
n→∞

1

n

n−1∑
i=0

m(E) = m(E)2.

Moreover, notice that

lim
n→∞

1

n

n−1∑
i=0

m(E) =
n ·m(E)

n
= m(E).

Then we have that m(E) = m(E)2. Hence, m(E) = 0 or m(E) = 1. By definition, T

is ergodic.

Commutativity of symmetric difference is used in the following proofs. Since the
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symmetric difference between sets is essentially a union of their set differences, com-

mutativity clearly holds.

These equivalent statements are used in proving the ergodicity of Bernoulli and

Markov shifts later in this paper.

Theorem 3.4 ([11];1.5). If T : X → X is a shift transformation on a probability

space (X,B,m), then the following are equivalent:

i. T is ergodic.

ii. The only members B of B with m(T−1(B)4 B) = 0 are those with m(B) = 0

or m(B) = 1.

iii. For every A ∈ B with m(A) > 0 we have m(
⋃∞
n=1 T

−n(A)) = 1.

iv. For every A,B ∈ B with m(A) > 0 and m(B) > 0, there exists an n > 0 with

m(T−n(A) ∩B) > 0.

Proof. Let (X,B,m) be a probability space, and T : X → X a shift transformation

on (X,B,m).

i.⇒ ii. Let T be ergodic. Let B ∈ B such that m(B 4 T−1(B)) = 0. Since

T−n(B)4B ⊂
n−1⋃
i=0

T−(i+1)(B)4 T−i(B) =
n−1⋃
i=0

T−i(T−1(B)4B)

and T is a measure preserving transformation, thenm(T−n(B)4B) ≤
∑n−1

i=0 m(T−i(B)4

B) = nm(T−1(B)4B) = 0. Hence, ∀ n ≥ 0, m(B 4 T−n(B)) = 0. It follows that

m(B 4
∞⋃
i=n

T−i(B)) ≤
∞∑
i=n

m(B 4 T−1(B)) = 0.
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Let B∞ =
⋂∞
n=0

⋃∞
i=n T

−i(B). Note that as n increases,
⋃∞
i=n T

−i(B) decreases. Also,

since T is a measure preserving transformation, m(T−i(B)) = m(B), ∀ i ≥ n.

By assumption, we have that m(B 4 T−n(B)) = 0. It follows that m(B 4 B∞) = 0.

Hence, m(B∞) = m(B). Further note that

T−1(B)∞ =
∞⋂
n=0

∞⋃
i=n

T−(i+1)(B) =
∞⋂
n=0

∞⋃
i=n+1

T−i(B) = B∞.

Since T is ergodic, m(B∞) = 0 or m(B∞) = 1. Then m(B) = 0 or m(B) = 1.

ii.⇒ iii. Let A ∈ B such that m(A) > 0. Let A1 =
⋃∞
n=1 T

−n(A). Then T−1(A)1 ⊂

A1. Since T is measure preserving, m(T−1(A1)) = m(A1). So, m(T−1(A1)4A1) = 0.

By ii., we have that m(A1) = 0 or m(A1) = 1. Since m(A) = m(T−1(A)) > 0 and

T−1(A) ⊂ A1, m(A1) 6= 0. Therefore m(A1) = 1.

iii. ⇒ iv. Let A,B ∈ B such that m(A) > 0 and m(B) > 0. By iii., we have that

m(
⋃∞
n=1 T

−n(A) = 1). So m(B) can be expressed as

0 < m(B) = m

(
B ∩

∞⋃
n=1

T−n(A)

)
= m

(
∞⋃
n=1

B ∩ T−n(A)

)
.

Therefore, m(B ∩ T−n(A)) > 0 for some n ≥ 1.

iv. ⇒ i. Suppose that T−1(B) = B and 0 < m(B) < 1. Notice that m(B ∩ BC) =

m(T−1(B) ∩BC) = 0 for all n ≥ 1. Since this is absurd, m(B) = 0 or m(B) = 1.



21

3.2 Bernoulli Shift

A Bernoulli Shift is a shift transformation on a probability space, where p = (p1, . . . , pk)

is a probability vector; RPS is an example of a Bernoulli Shift. It is also called the

(p0, . . . , pk)-shift. In the games which we are studying using the Bernoulli Shift, each

event is equally likely to occur. In this case, pi = 1
k

for 1 ≤ i ≤ k. Each term of the

sequences in our Bernoulli cylinder sets has equal measure. Flipping a coin forever

would generate a Bernoulli sequence where each point would have pi = 1
2
. A shift

transformation on the space of all sequences consisting of “heads” or “tails” is an

example of a (1
2
, 1

2
)-shift. The following theorem states that any Bernoulli Shift is

ergodic.

Theorem 3.5 ([11];1.12). The (p0, . . . , pk−1)-shift is ergodic.

Proof. Let (X,B,m) be a probability space and A be an algebra of finite unions of

cylinder sets. Let E ∈ B and let T−1(E) = E. Let ε > 0. Let A ∈ A such that

m(E 4 A) < ε. Since (X,B,m) is a probability space,

|m(E)−m(A)| = |(m(E ∩ A) +m(E \ A))− (m(A ∩ E) +m(A \ E))|

= |m(E ∩ A) +m(E \ A)−m(A ∩ E)−m(A \ E)|

= |m(E \ A)−m(A ∩ E) +m(E ∩ A)−m(A \ E)|

= |m(E \ A)−m(A \ E)| ≤ m(E \ A) +m(A \ E) = m(E 4 A) < ε.

Choose n0 large enough that B = T−n0(A) depends on different coordinates from A.

That is, B is disjoint from T−n0(A) and hence from E. If A is defined by a fixing

a block k[ak, . . . , ak+l]l, then n0 > l − k. Because m is a product measure and T is
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measure preserving, we have m(B ∩ A) = m(A)m(B) = m(A)2. Then

m(E 4B) = m(T−n(E)4 T−n(A) = m(E 4 A) < ε.

Notice that

E 4 (A ∩B) = (E \ (A ∩B)) ∪ ((A ∩B) \ E)

= ((E \ A) ∪ (E \B)) ∪ ((A \ E) ∩ (B \ E))

⊆ (E \ A) ∪ (E \B) ∪ (A \ E) ∪ (B \ E)

= (E \ A) ∪ (A \ E) ∪ (E \B) ∪ (B \ E)

= (E 4 A) ∪ (E 4B).

Then m(E 4 (A ∩B)) < 2ε. Hence |m(E)−m(A ∩B)| < 2ε, and

|m(E)−m(E)2| ≤ |m(E)−m(A ∩B)|+ |m(A ∩B)−m(E)2|

≤ 2ε+ |m(A)2 −m(E)2|

≤ 2ε+m(A)|m(A)−m(E)|+m(E)|m(A)−m(E)|

≤ 4ε.

Since ε is arbitrary, m(E) = m(E)2. Hence m(E) = 0 or m(E) = 1.

For the sake of brevity, we use the following definitions.

Definition. When the shift transformation associated with a particular game is

found to be ergodic, we shall say “the game is ergodic”.

By Theorem 3.5, RPS is ergodic. Moreover, since a shift transformation on any

sequence space of independent events is a Bernoulli shift, any alterations to RPS
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will result in an ergodic game. For instance, consider the popular expansion of RPS

that includes the terms “Lizard” and “Spock”, as played on the television program,

“The Big Bang Theory”. Rock, Paper Scissors, Lizard, Spock is an example of a

(1
5
, 1

5
, 1

5
, 1

5
, 1

5
)-shift and is clearly ergodic because it is a Bernoulli shift. Notice that

the property of being ergodic does not depend on the measure of any pi ∈ p, only

that p is a probability vector. The effect of altering the values of the probabilities

will be explored in Section 4.3.

3.3 Markov Shift

A sequence of random events, the state of which depends only upon the preceding

event, is referred to as a Markov Chain. An example of a Markov Chain is the possible

position of a player’s token on a board game. The space to which the token is moved

depends on the space from which it is being moved. Due to its level of complexity, and

the extensive studies that have been performed previously [9], the first board game

used in this thesis to facilitate the discussion of Markov Chains is Monopoly. Because

the position of a game token at a certain time depends on the previous position of

the token, the probability of the token being at a particular location is conditional.

We say that the probability is Markov.

Markov probability measures are calculated using a probability vector p and a tran-

sition matrix P . The pij entry of P is the probability of moving from the ith to the

jth state. For instance, consider a game token on the third position of a Monopoly

board. Regardless of how the token arrived at that position, the probability that it

will move to the fifth position is 1
36

. This is because the player would need to roll a

two in order to move from the third to the fifth position. Because the probability of

rolling a two on a pair of six sided dice is 1
36

, p35 = 1
36

. A Markov Chain is formed

by iterating p(i−1)P = p(i). The result of left multiplication of P by p is another
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probability vector p(1). The ith entry of p(1) is the probability of being in the ith state

after the first iteration. After n iterations p(n−1)P = p(n) gives the probability of

being in the ith state as pin .

According to Ian Stewart [10], the probabilities of being on any of the 40 positions

on the Monopoly board approaches a steady state. This means that over time the

probability of being on any position approaches a constant. If we assume that a

player can move around the Monopoly board only as a result of rolling dice (and not

by drawing a card or going to jail), P is the matrix in Appendix B.1. Note that for

comparison, the transition matrix for the game including movements induced by the

Chance and Community Chest cards is given in Appendix B.2. On the (p, P ) Markov

Chain, where P is the transition matrix in Appendix B.1, all probabilities approach

1
40

. The steady state of the game when considering player movements resulting from

the cards is found by calling the steadyState function in Appendix C.2 with the

transition matrix in Appendix B.2. The function returns a similar probability vector,

but with slightly more density around the positions to which a player may move as a

result of the cards.

In the sequence space generated by all possible itineraries of the game when played

forever, the set of all sequences that have the token being on Boardwalk at a fixed

position in the sequence has measure equal to the long term probability of being on

that spot. The set of all sequences that have Boardwalk followed by Atlantic Avenue

is the intersection of the collection of sequences where the ith position is Boardwalk

and the i + 1st position is Atlantic Avenue. Since we are using the measure defined

on cylinder sets, the measure of such a set is the product of the probabilities of the

token being in each position.

The existence of the limit of the long term average of a transition matrix is shown by

the following lemma.
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Lemma 3.6 ([11];1.18). Let P be a transition matrix and p a strictly positive prob-

ability vector such that pP = p. Then Q = limN→∞
1
N

∑N−1
n=0 P

n exists. Q is a

transition matrix and QP = PQ = Q. Moreover, any eigenvector of P corresponding

to the eigenvalue 1 is also an eigenvector of Q.

Proof.

Let m denote the (p, P ) Markov measure and T the (p, P ) Markov shift. Let χi be

the characteristic function of the cylinder set 0[i]0 = {(xj)∞j=0|x0 = i}. By Theorem

3.1 (Pointwise Ergodic Theorem),

lim
n→∞

1

n

n−1∑
k=0

χj(T
k(x)) =

∫
X

χj(x)dm(x) a.e .

Multiplying by χi(x) and integrating, we have

∫
lim
n→∞

1

n

n−1∑
k=0

χj(T
k(x))χi(x)dm(x) =

∫
χj(x)χi(x)dm(x).

As stated previously, since each characteristic function is bounded above by 1, the

average of the characteristic functions is also bounded above by 1. By the Pointwise

Ergodic Theorem the limit of the average of the characteristic function is equal to

the measure of the set on which the characteristic function is defined. Then we can

apply the Dominated Convergence Theorem.

∫
lim
n→∞

1

n

n−1∑
k=0

χj(T
k(x))χi(x)dm(x) = lim

n→∞

1

n

n−1∑
k=0

∫
χj(T

k(x))χi(x)dm(x)

= lim
n→∞

1

n

n−1∑
k=0

m(k[j]k ∩ 0[i]0) = lim
n→∞

1

n

n−1∑
k=0

pip
k
ij =

∫
χi(x)χj(x)dm(x) = piqij.

Therefore, qij = 1
pi

limn→∞
1
n

∑n−1
k=0 p

k
ij = 1

pi

∫
χi(x)χj(x)dm(x) is the ij-entry of Q.
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Multiplying Q on the right or left by P only changes the indexes of the summations;

Q is unchanged and QP = PQ = Q. Let v be a left eigenvector of P corresponding

to the eigenvalue 1. Then vP = 1v. Since Q = PQ, vQ = vPQ = 1vQ = v. Hence v

is a left eigenvector of Q corresponding to the eigenvalue 1.

The product of transition matrices is a transition matrix [3]. By the associativity of

matrix multiplication we can easily see that for a transition matrix P , P n is also a

transition matrix. Since P n is a transition matrix, the rows of P n sum to one for all

n. Consider adding N transition matrices. The rows of the resultant matrix will sum

to N . Multiplying this matrix by 1
N

results in a matrix whose rows sum to one. It

follows that the rows of Q sum to one. Then the matrix Q is a transition matrix.

We now show that a Markov shift is ergodic.

Theorem 3.7 ([6];1.19). Let T denote the (p, P ) Markov Shift where can assume

pi > 0 for each i and p = (p0, . . . , pk−1). Let Q denote the matrix obtained in Lemma

3.6. The following statements are equivalent.

i. T is ergodic.

ii. All rows of the matrix Q are identical.

iii. 1 is a simple eigenvalue of P ; that is, 1 occurs with single multiplicity.

Proof.

i. ⇒ ii. Let T be an ergodic measure preserving transformation. From the proof of

Lemma 3.6 we have

lim
n→∞

1

n

n−1∑
k=0

m(k[j]k ∩ 0[i]0) = m(0[i]0)m(n[j]n) = piqij.
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Since m(0[i]0) = pi and m(n[j]n) = pj, we have that piqij = pipj. Since pi > 0,

qij = pj. Hence each row of Q is identical.

ii.⇒ i. Since the rows of Q are identical, qij depends only on i. Since QP = PQ = Q,

it follows that qij = pj. Let A1, A2 be any two blocks of fixed letters in the σ-algebra.

A1 and A2 have the form A1 = r[i0, . . . , il]r+l, A2 = s[j0, . . . , jm]s+m. For n > s+m−r,

m(T−n(A1) ∩ A2) = pj0pj0j1 · · · pjm−1jmp
(r+n−s−m)
jmi0

pi0i1 · · · pil−1il .

Since qij = pj,

lim
N→∞

1

N

N−1∑
n=0

m(T−n(A1) ∩ A2) = pj0pj0j1 · · · pjm−1jmpi0pi0i1 · · · pil−1il = m(A1)m(A2).

By Corollary 3.3, we have that T is ergodic.

ii. ⇒ iii. Since the rows of Q are identical and QP = PQ = Q, qij = pj. Then,

the only left eigenvectors of Q corresponding to the eigenvalue 1 are multiples of p.

This means that the eigenspace corresponding to the eigenvalue 1 has a dimension of

1. Since the dimension of the eigenspace is less than or equal to the multiplicity of

its corresponding eigenvalue, 1 is a simple eigenvalue of Q. By Lemma 3.6, these are

also the only left eigenvectors of P corresponding to the eigenvalue 1. It follows that

1 is a simple eigenvalue of P .

iii.⇒ ii. Suppose 1 is a simple eigenvalue of P . Then the eigenspace corresponding to

the eigenvalue 1 has a dimension of 1. If p is a left eigenvector of P corresponding to

the eigenvalue 1, then any other eigenvector is a multiple of p. Since p is a probability

vector, the only valid multiple of p is p itself. Since QP = Q, each row of Q is a left

eigenvector of P . Hence, each row of Q is identical.

In the context of our study, a shift transformation, T , on the sequence space, X, of
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all possible states of a board game is ergodic if a set, B, is equal to its pre-image,

T−1(B) = B, then B is either the entire game or some sets of measure zero. It is for

this reason that, when played for a long enough time, a player will eventually land on

every space of the board. In the long term, the probability that a player will be at a

certain position on the board approaches a steady state [5]. The matrix, Q, described

in Lemma 3.6 gives us these probabilities. Notice that Q is a transition matrix that

represents the long term averages of the state transitions given by P . Since the long

term probabilities approach a steady state and are Markov, the probability of moving

to any position on the board becomes, over time, the same regardless of the previous

position. This is why all rows of Q are identical.

We have shown in the proof of Theorem 3.7 that the ergodicity of T and identicalness

the the rows of Q are necessary and sufficient conditions. We then showed that this

property of the matrix Q is necessary and sufficient to guarantee the existence of 1

as a simple eigenvalue of P . While the ergodicity of T and the behavior of the long

term average of P can only be shown algorithmically to within a set tolerance, it is

a simple matter to find the eigenvalues of P . As we discuss the new games that we

have created, we will look at the eigenvalues of their transition matrices to determine

properties of each game.

Notice that ergodicity of a game does not depend on the values of the entries in P , but

the behavior of the long term average of P . Though they have different transition

matrices, the two representations of the game of Monopoly given in Appendix B,

with and without the Chance and Community Chest cards, are both ergodic. What

is important is that the game contains no backward invariant sub-loops. Monopoly

clearly contains no invariant sub-loops whatsoever. In Section 5 we will introduce

new games that do have sub-loops. Some of these are measure 0 or 1, while others

have measures between 0 and 1. The former are ergodic games; the latter are not.
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4 ENTROPY

Entropy describes the uncertainty that is present in a system. Our systems are

sequence spaces with a shift transformation. We will begin by discussing partitions

and then use them to define entropy, a measure of the uncertainty in a system.

4.1 Partitions

A finite partition ξ on a probability space on (X,B,m) is a collection of disjoint

subsets of B, {A1, . . . , Ak} whose union is X. If ξ is a finite partition on (X,B,m),

the collection of all elements of B whose unions are elements of ξ is called a finite

sub-σ-algebra of B, denoted A (ξ). Conversely, if a collection C = {Ci : i = 1, . . . , n}

is a finite sub-σ-algebra of B, then the non-empty sets of the form B1 ∩ · · · ∩ Bn

where Bi = Ci or X \ Ci form a partition, η, on (X,B,m) denoted by ξ(C ). Then

A (ξ(C )) = C and ξ(A (η)) = η. Hence, there is a one-to-one correspondence between

finite partitions and sub−σ-algebras [11]. A σ-algebra, B, may be viewed as the

collection all possible events and combinations of events that can occur in a given

probability space. A partition on B is a set of events where one and only one event

can happen at a time [4]. Such a collection is a sub-σ-algebra of B.

If C and D are sub-σ-algebras of B such that for every C ∈ C there exists a D ∈ D ,

and for every D ∈ D there exists a C ∈ C with m(C 4D) = 0, we write C $ D .

Let ξ = {A1, . . . , An} and η = {C1, . . . , Ck} be finite partitions of (X,B,m). The

join of the partitions is

ξ ∨ η = {Ai ∩ Cj : 1 ≤ i ≤ n, 1 ≤ j ≤ k}.

Moreover, if A and C are finite sub-σ-algebras of B, then A ∨ C is the smallest
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sub-σ-algebra of B that contains both A and C . By the definition of a join, A ∨ C

consists of all unions of the form A ∩ C where A ∈ A and C ∈ C .

4.2 Calculating Entropy

In order to define the term entropy, we will look at probability from an empirical

perspective. Consider an experiment performed repeatedly. The probability of an

outcome is a measure of the certainty of observing that outcome over repeated trials.

Each possible outcome can then be assigned a probability of occurring, and the prob-

abilities of all possible outcomes must sum to 1. Entropy is a measure of the amount

of uncertainty present in performing the same experiment. For example, consider the

interval [0, 1]. If we partition [0, 1] into two intervals of equal length and randomly

choose a number in [0, 1], it is equally likely to be in the lower half as the upper half.

Our level of uncertainty is high. However, if we partition the interval such that 1
100

th

of the length is on the lower end, a partition of [0, 1] would be {[0, 1
100

], ( 1
100
, 1]}. We

are far more certain that a randomly chosen number will be in the upper portion.

Our level of uncertainty is much lower. Entropy is a quantity that represents our

level of uncertainty.

A function that measures the amount of uncertainty in performing some experiment

should satisfy certain requirements. For instance, if we are certain that one and only

one outcome will occur, we have no uncertainty; the entropy should be zero. Moreover,

if we also consider events that are impossible to occur, our level of uncertainty as to

those than can occur should be unchanged.

The following theorem by A.I. Khinchin provides a function for calculating the entropy

of a partition [4].

Theorem 4.1 ([4];The Uniqueness Theorem). Let p be a strictly positive probability
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vector and H : p→ R be a continuous function with respect to all its arguments such

that the following hold.

1. H(p1, . . . , pk) ≥ 0 and H(p1, . . . , pk) = 0 if and only if some pi = 1.

2. H(p1, . . . , pk, 0) = H(p1, . . . , pk).

3. For each k ≥ 1, H has its largest value at (1/k, . . . , 1/k).

Then there exists a positive number λ such that H(p1, . . . , pk) = −λ
∑k

i=1 pi log pi.

Kinchin states on page 10 of [4], “This theorem shows that the expression for the

entropy of a finite (partition) is the only one possible if we want to have certain

general properties which seem necessary in view of the actual meaning of the concept

of entropy.”

The measures of the sets in a finite sub-σ-algebra form a probability vector. The-

orem 4.1 gives us that the entropy of a finite sub-σ-algebra A of B with ξ(A ) =

{A1, . . . , Ak} is

H(A ) = H(ξ(A )) = −
k∑
i=1

m(Ai) logm(Ai).

The following theorem from Walters [11] gives us that H is strictly convex.

Theorem 4.2 ([11];4.2). The function φ : [0, 1]→ R defined by

φ(x) =

 0 if x = 0

x log(x) if x 6= 0

is strictly convex. That is, if α ∈ [0, 1] and x, y ∈ [0,∞), φ(αx + (1 − α)y) ≤

αφ(x) + (1− α)φ(y). We have equality only when x = y or α = 0.
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Proof. To confirm the convexity of φ, we use elementary calculus.

φ′(x) = 1 + log(x), and

φ′′(x) =
1

|x|
.

Fix α ∈ [0, 1]. Let x, y ∈ [0,∞). By the Mean Value Theorem,

φ(y)−φ(αx+(1−α)y) = φ′(z)α(y−x) for some z between αx+(1−α)y and y, and

φ(αx+(1−α)y)−φ(x) = φ′(w)(1−α)(y−x) for some w between x and αx+(1−α)y.

Since φ′′(x) > 0, we have φ′(z) > φ′(w) because z > w. Hence,

(1− α)(φ(y)− φ(αx+ (1− α)y)) = φ′(z)α(1− α)(y − x) > φ′(w)α(1− α)(y − x)

= α(φ(x+ (1− α)y)− φ(x)).

Therefore φ(αx + (1 − α)y) < αφ(x) + (1 − α)φ(y) if x, y > 0. By the piecewise

definition of the function, it also holds if x, y ≥ 0 where x 6= y.

The corollary shows that maximum entropy occurs in an equi-probable system; that

is where p = (p1, . . . , pk) and pi = 1
k

for 1 ≤ i ≤ k.

Corollary 4.3 ([11];4.2.1). If ξ = {A1, . . . , Ak}, then H(ξ) ≤ log(k), and H(ξ) =

log(k) only when m(Ai) = 1
k

for all i.

Proof. Let p = (p1, . . . , pk) be a probability vector. Then there exists non-negative

real numbers a1, . . . , aj where
∑j

i=1
ai
k

= 1 such that p1 = a1
k
, . . . , pk =

aj
k

. By Theo-

rem 4.1, if aj = 0 then H(p1, . . . , pk) = H(p1, . . . , pk−1). Without loss of generality,
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we can assume that ai > 0 for 1 ≤ i ≤ j. Notice that

−
j∑
i=1

ai
k

log
ai
k

= −
j∑
i=1

ai
k

(log ai − log k)

=

j∑
i=1

(ai
k

log k − ai
k

log ai

)
= log k

j∑
i=1

ai
k
−

j∑
i=1

ai
k

log ai.

Since
∑j

i=1
ai
k

= 1 and H is strictly convex, we have

−
j∑
i=1

ai
k

log
ai
k

= log k −
j∑
i=1

ai
k

log ai ≤ log k.

Notice that equality occurs only when a1 = · · · = aj = 1, that is when j = k and

pi = 1
k
.

Definition. Suppose T : X → X is a measure-preserving transformation of the

probability space (X,B,m). If A is a finite sub-σ-algebra of B then

h(T, ξ(A )) = h(T,A ) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iA

)

is called the entropy of T with respect to A . Finally, the entropy of T is the supremum

over all finite sub-σ-algebras, A of B. We define h(T ) = suph(T,A ). Since ξ(A ) =

A (ξ), we have that h(T ) = suph(T, ξ) where the supremum is taken over all finite

partitions of (X,B,m) [11].

Consider T n to be the iteration of T over n increments of time. Then, h(T ) represents

the maximum average amount of information gained by performing T [6]. We now cite

a theorem that allows us to equate the entropy of a measure preserving transformation

T with the entropy of T with respect to A . We state it here without proof; see [11]
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for details.

Theorem 4.4 ([11];4.18). If T is a measure-preserving transformation (not neces-

sarily invertible) of the probability space (X,B,m) and if A is a finite sub-σ-algebra

of B with
∨∞
i=0 T

−iA $ B. Then h(T ) = h(T,A ).

4.3 Entropy of Bernoulli and Markov Shifts

We now show how to calculate the entropy of the measure-preserving transformations

under study, the Bernoulli and Markov shifts. The Bernoulli shift is defined as the

shift transformation, T , where p is a probability vector. The following theorem defines

a function to calculate the entropy for the shift.

Theorem 4.5 ([11];4.26). The (p0, . . . , pk−1)-shift has entropy

−
k−1∑
i=0

pi log pi.

Proof. Let Y = {0, 1, . . . , k − 1}, X =
∏∞

0 Y , and let T be the shift map. Let

Ai = {{xk} : x0 = i}, for 0 ≤ i ≤ k − 1. Then ξ = {A0, . . . , Ak−1} is a partition of

X. Denote A (ξ) by A . Notice that for each n, T−n(ξ) = {T−n(A1), . . . , T−n(Ak−1)}

is a partition with T−n(Ai) = n[i]n. Then
∨r+s
i=r T

−n(ξ) is the partition all blocks of

the form r[ar, . . . , ar+s]r+s. Since these are the cylinder sets defined in Section 2 the

σ-algebra generated by the join is the same as the σ-algebra generated by the cylinder

sets. Hence, B =
∨∞
i=0 T

−iA . By Theorem 4.4,

h(T ) = lim
n→∞

1

n
H(A ∨ T−1A ∨ · · · ∨ T−(n−1)A ).

A member of ξ(A ∨ T−1A ∨ · · · ∨ T n−1A ) has the form

Ai0 ∩ T−1(Ai1) ∩ · · · ∩ T−(n−1)(Ain−1) = {{xn} : x0 = i0, x1 = i1 . . . , xn = in−1}
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and has measure pi0 · pi1 · · · · · pin−1 . Notice that

H(
n−1∨
i=0

T−iA ) = −
∑

(pi0 · pi1 · · · · · pin−1) log(pi0 · pi1 · · · · · pin−1)

= −
k−1∑

i0,...,in−1=0

(pi0 · pi1 · · · · · pin−1)[log pi0 + · · ·+ log pin−1 ]

= −n
k−1∑
i=0

pi log pi.

Then h(T ) = h(T,A ) = −
∑k−1

i=0 pi log pi.

Calculating the entropy for a Bernoulli Shift is a simple matter when all probabilities

are equal. The entropy is H(T ) = log k, where k is the number of states and each

state has probability pi = 1
k
. The entropy associated with Rock, Paper, Scissors,

RPS, is equal to log 3. Revisiting the example in Section 3.2 of an expanded RPS

that includes the terms “Lizard” and “Spock”, we can see that this game has entropy

equal to log 5. The entropy is larger for the expanded version of the game because

there are more moves that a player may make. Since these entropies are maximal,

any changes we may impose on the probabilities will result in a decrease in entropy.

We forgo further exploration of entropy in Bernoulli Shifts.

Since the shift transformation, T , is the same whether the measure, m, on the se-

quence space X is Markov or Bernoulli, the formula for finding the entropy of a

Markov shift uses the same sequences space as the Bernoulli. The entropy of a Markov

shift, is calculated in a similar way using the measure associated with Markov shifts.

Note that the proof is similar to Theorem 4.5, though there are more computations

because of the transition matrix.

Theorem 4.6 ([11];4.27). The (p, P ) Markov shift has entropy −
∑

i,j pipij log pij.

Proof. Let Y = {0, 1, . . . , k − 1}, let X =
∏∞

0 Y . Let T be the shift map. Let
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Ai = {{xk} : x0 = i, 0 ≤ i ≤ k − 1}. Then ξ = {A0, . . . , Ak−1} is a partition of

X. Denote A (ξ) by A . Using the same notation as in the proof of Theorem 4.5,

B =
∨∞
i=0 T

−iA . We have that

k−1∑
i=0

pipij = pj.

A member of ξ(A ∨ T−1A ∨ · · · ∨ T n−1A ) has measure pi0pi0i1 · · · pin−2in−1 . Since∑k−1
i=0 pipij = pj and

∑k−1
j=0 pij = 1,

H

(
n−1∨
i=0

T−iA

)
= −

k−1∑
i0,...,in−1=0

(pi0pi0i1 · · · pin−2in−1) log(pi0pi0i1 · · · pin−2in−1)

= −
k−1∑

i0,...,in−1=0

(pi0pi0i1 · · · pin−2in−1)

·[log pi0 + log pi0i1 + · · ·+ log pin−2in−1 ]

=
k−1∑
i=0

pi0 log pi0 − (n− 1)
k−1∑
i,j=0

pipij log pij.

By rearranging the terms in this sum, we obtain h(T ) = −
∑

i,j pi · pij log pij.

When passed a probability vector p and a transition matrix P , the entropyMarkov

function in Appendix C.1 calculates the entropy of a shift transformation, T , as

proscribed in Theorem 4.6.

We notice that in Theorem 3.7, it is necessary that the (p, P ) Markov system use

a strictly positive probability vector, p. By Theorem 4.4, the entropy of the shift

transformation, T , is the limit supremum of the grand joins of partitions, ξ(A ) being

acted upon by T . Applying this result, we impose the condition that p be the steady

state vector of its Markov Chain. Since we are looking at the entropy of the long
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term behavior of the system, the steady state probability vector is a logical choice.

If a Markov Chain approaches a steady state, it will do so regardless of the starting

conditions [5]. As all of our board games begin at the starting position, to find a

steady state vector, we begin with a probability vector, p, of length n with p1 = 1

and an n×n transition matrix P . Using the steadyState function found in Appendix

C.2, we generate a steady state probability vector, p∗.

Notice that Theorem 4.6 imposes no restrictions on p. For this reason, the entropy

that is calculated is for one step, one “link” in the Markov Chain. We are concerned

with the long term behavior of games, not just a single move. Therefore we can use

the steady state vector, p∗, and define the value returned by entropyMarkov to be

the entropy of the game.

Consider the entropy for each of our representations of the game of Monopoly. The

die-roll only version uses the transition matrix P given in Appendix B.1. The long

term behavior of this game is that, over time, a player is equally likely to be in

any position on the board. The steadyState function returns a vector of equal

probabilities. With this p∗, entropyMarkov returns a value of 2.270. This is the

entropy of the game. The inclusion of Chance and Community Chest cards requires

that P is the matrix given in Appendix B.2. Using the equal probability vector,

steadyState returns a value of 2.307. While this vector may occur in the Markov

Chain representation of the game, this is not the long term behavior of the game as a

whole. Not only is this assertion supported by Ian Stewart in [10], but steadyState

also confirms that the long term probabilities are affected by the inclusion of the cards;

that is, the steady state vector of the (p, P ) Markov Chain when P is the transition

matrix in Appendix B.2 is not the same as if P were the matrix in Appendix B.1.

Using the steady state vector, entropyMarkov returns a value of 2.306, the true

entropy for this rendition of the game. Since the steady state vectors were found to



38

within a tolerance of 10−3, the entropy associated with both version of Monopoly may

be considered to be essentially equal. When studying new games, we will consider

the entropy associated with the steady state vector.

Definition. The entropy of a game is the entropy of the shift transformation of the

sequence space generated by the game that is calculated using the steady state vector

of the Markov Chain for that game.
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5 NEW GAMES

In Section 2.2 we established that the sequence space formed by playing a game

forever and recording all of the moves that one player can make is a probability space,

(X,B,m). We then defined a shift transformation, T : X → X, on the sequence

space; this was the focus of Section 2.3. Sections 3 and 4 defined ergodicity and

entropy respectively, provided conditions under which T is ergodic, and showed how to

find the entropy associated with T . We now turn our focus to new games that we have

created with the purpose of exploring these topics. Where applicable, representations

of each game are given in Appendix A and associated transition matrices are given

in Appendix B. A special die called a color die is used in some of our games. Each

face of the die is painted. Colors are evenly distributed across all of the faces; the

number of colors is given in the name of the die. For instance, a two-color die consists

of two colors. It has six sides, three sides per color. The die can have 6 or 8 sides

to accommodate 2, 3, or 4 evenly distributed colors. A color die of any number is

equally likely to show any of its colors.

5.1 Two Towers

The first new game that we created was Two Towers. The game board is shown in

Appendix A.1. The object of the game is to conquer both towers. Players start in the

lobby, the center. A two-color die determines whether the player moves into the right-

hand loop or the left-hand loop. Two six-sided die are used to determine a player’s

movement around the board. Players continue around the same loop, consolidating

their “tower of power” until landing on the starting position exactly. The two-color

die is thrown to determine whether the player remains in the same loop, or moves

into the opposite loop, at which point conquest of the other tower begins.
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Let P be the Two Towers transition matrix shown in Appendix B.3. The state

transition probabilities described above determined P . We find that 1 is a simple

eigenvalue of P . By Theorem 3.7, a shift transformation T on the sequence space

generated by Two Towers is ergodic. Hence, the game of Two Towers is ergodic.

Despite the fact that there are two separate loops in which a player may remain, it

is not required that the player remain in one loop or the other. So, these loops are

not backward invariant. A pre-image under T of a set of sequences in either of these

loops is not equal to itself. This is because a player may move between loops. So,

the only invariant sets are the whole game or those sequences where the player never

moves between towers. The latter are sets of measure zero for the same reason that

the probability of observing a sequence all of whose positions are fixed is zero.

Two Towers reaches a steady state. In the long term, players are equally likely to

be in any position in either loop. Since the lobby is part of both towers, the long

term probability that a player will be in the lobby is twice the probability of being

at any other position. The entropyMarkov function returns a value of 2.330 for the

entropy of Two Towers. Notice that Two Towers has slightly higher entropy than

either rendition of Monopoly.

5.2 Sink Hole

The next game was designed with the specific intent of creating an invariant sub-

loop. A simple design of the Sink Hole board is shown in Appendix A.2. Players

begin at the starting position. The two-color die is thrown to determine whether the

player will begin moving around the loop or immediately fall into the sink hole. If

the player does not land in the sink hole, a six-sided die is thrown; the player moves

accordingly. The player continues to move according to the roll of a six sided die until
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landing again at the starting position. When the player next lands at the starting

position, the two-color die is again thrown. The player will either continue around

the board or fall into the “sink hole”. Once inside the sink hole, actual movement of

the player’s game token ceases. However, the position of the token continues to be

recorded forever. The positions in the sequence after the player has entered the sink

hole will be constant.

Let P be the transition matrix for Sink Hole given in Appendix B.4. Since 1 is a

simple eigenvalue of P , Sink Hole is an ergodic game. This was initially counter

intuitive, since a forward invariant loop exists for a sequence landing in the sink hole.

However, remaining in the sink hole is not backward invariant. If we consider the

set of all sequences that enter the sink hole, we see immediately that it must have

measure equal to that of the entire space. This is because all sequences except for

a countable set of sequences land in the sink hole. The sequences that do not enter

the sink hole are of zero measure. Then the backward invariant set of sequences that

enter the sink hole has a measure of 1, while those that do not have measure 0.

The steady state vector for Sink Hole has most of the probability at the end of

the vector. That is, the vector coordinate that corresponds to the sink hole. The

steadyState function gives p∗ as a probability vector of length 11 where p11 = .998.

This entry represents the probability that a player is in the sink hole. The remaining

.002 is evenly distributed across the rest of the vector. As such, there should be

very little uncertainty associated with this game. This assumption is confirmed when

entropyMarkov returns an entropy value of 0.003. We are very certain that we are

going to land in the sink hole! It is only because steadyState uses a set tolerance to

find p∗ that there is any long term probability outside of the sink hole. By considering

the limit to infinity, we expect that steady state of sink hole to be a vector of length

11 where the only non-zero entry is p11 = 1. In this case, by Theorem 4.1, the entropy



42

of Sink Hole is 0.

Since the existence of the sink hole resulted in the game being ergodic, we modified

the game to include two sink holes to see if the new game would continue to be

ergodic. The second version is called Sink Hole 2. The game board is shown in

Appendix A.3. The game is played exactly the same way as the original version, but

now there are two spaces where a player must consult the two-color die. On opposite

sides of the game board, the player has two pitfalls to avoid. If the player lands on

either space, the two-color die determines whether the player remains in the sink hole

or not. There are now two invariant sets. These are the set of sequences that land

in the first sink hole and the set that land in the second. Each of these has measure

between 0 and 1.

Let P be the transition matrix in Appendix B.5. We notice that P has an eigenvalue

of 1, but with double multiplicity; it is not a simple eigenvalue. By Theorem 3.7, Sink

Hole 2 is not ergodic. Sink Hole 2 achieves a steady state vector. The steadyState

function gives that the long term probability of being in the original sink hole is .722,

while there is a long term probability of .267 of being in the new sink hole. the

remaining probability density, .011, is distributed evenly across the rest of the vector.

As was the case with the steady state vector for the original Sink Hole, the presence of

any probability density outside of the sink hole positions is due to the set tolerance in

the steadyState function. We notice that three quarters of the probability density is

in one sink hole and one quarter in the other. This is because the first sink hole is at

the starting position. At the beginning of the game, a player will move immediately

into the sink hole with a probability of one-half. Assuming that play is allowed to

continue, the probability of falling into either of the two sink holes is even. If the

starting position was not associated with a sink hole, the long term probability of

being in either hole would still be greater for the first hole that a player encounters.
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Using p∗ as returned by steadyState, the entropyMarkov function returns a value

of .002 for the entropy of Sink Hole 2. Since it is very unlikely that a player will not

be in one of the sink holes there is very little uncertainty as to where a player will

be. However, the steady state vector when taken to infinity would result in non-zero

entropy. This is because eventually every sequence except those of measure zero will

will be in one of two spaces. Since the tolerance used in estimating the steady state

vector was set at .0001, the difference in entropies between the two versions of Sink

Hole is attributable to the tolerance level as well as the presence of another position

where a player may be.

Both versions of Sink Hole are, admittedly trivial. They were designed solely with

the purpose of exploring the requirements for ergodicity of a game. This begs the

question, does the quality of being ergodic or not effect whether a game is fun to

play? We leave the question as an exercise to the reader.

5.3 Medieval Game of Life

Noticing that the existence of two sink holes resulted in Sink Hole 2 being non-

ergodic, we designed a game that was both non-trivial and non-ergodic. Our pièces

de résistance is the Medieval Game of Life. The game board is shown in Appendix A.4.

The Medieval Game of Life (MGOL) is an epic saga of a child born of a prince and a

peasant woman. The player’s childhood years are spent traversing the beginning path

of the game. There are six positions that represent the player’s childhood. A six-sided

die thrown to determine the player’s movement; players must land on the sixth space

exactly. When the player reaches the sixth space of the board a decision is made. At

this point in the player’s life, the king will either reject the child, or accept him or

her as a member of the royal family. Rolling the two-color die represents the decision

of the king. If the player is accepted into the noble family, movement continues in
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the loop to the left. If the player is rejected, movement is to the right. Players in the

left-hand loop, or the royal family, have the responsibility of maintaining the rule of

the monarchy and oppressing the peasantry. Players that were rejected by the king

(despite their royal blood) are tasked with overthrowing the monarchy. The rebellion

against the crown is born!

Let P be the transition matrix given in Appendix B.6. We notice that P has an

eigenvalue of 1 with multiplicity of 2. By Theorem 3.7, MGOL is not an ergodic

game. This is consistent with our results in Section 5.2. The loops in MGOL and

the sink holes in Sink Hole 2 are both parts of the game out of which a player cannot

move. The crucial difference is that the loops in MGOL are non-trivial. In fact, they

are not pitfalls to be avoided. Rather, they dictate the course of the game.

The MGOL Markov Chain will approach a steady state. The steadyState function

returns a vector, p∗, that shows evenly distributed probability across the two loops,

p7 to p16 and p17 to p26. This is because the loops are of equal size and the player may

enter either with equal probability. Since a player must land exactly on the decision

spot to enter a loop, p1 to p6 have minuscule but non-zero probabilities that a player

will enter neither loop. Using p∗, entropyMarkov returns a value of 1.79, the entropy

of MGOL.

We added another loop to the game to see how this effects ergodicity and entropy.

The initial premise is the same, but upon reaching the decision spot a three-color

die is thrown. The third option is that the player become a member of the clergy.

Clerics will ally themselves with whichever faction they choose. Ultimately, since

both oppression and rebellion cause great collateral damage to the people, the clergy

is tasked with thwarting the efforts of both the royals and the rebels.

Let P be the transition matrix given in Appendix B.7. This matrix has an eigenvalue
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of 1 with multiplicity of 3. Though not ergodic, we found it interesting that the multi-

plicity of the eigenvalue of 1 was equal to the number of loops. The transition matrix

given in Appendix B.8 represents the same game with four loops. As expected, the

eigenvalue 1 appears with multiplicity 4. The following theorem gives the multiplicity

of 1 as an eigenvalue of a transition matrix for a game with k invariant loops.

Theorem 5.1. The transition matrix, P , for a board game with k invariant loops

has an eigenvalue of 1 with multiplicity k.

Proof. Let P be the n× n transition matrix associated with a game has k invariant

loops and let P1, . . . , Pk be sub-matrices of P corresponding to the loops. Renumber-

ing the spaces of the board if necessary, P can be expressed as

P =


P1 · · · 0

0
. . . 0

0 · · · Pk

 .

Let α1, . . . , αk be the row dimensions of P1, . . . , Pk respectively. The characteristic

polynomial of P is

det(P−λIn) = det


P1 − λIα1 · · · 0

0
. . . 0

0 · · · Pk − λIαk

 = det(P1−λIα1) · · · det(Pk−λIαk
).

Since each Pi represents a loop into which a player will move, there exists positive

integers m1, . . . ,mk such that Pmi
i contains only positive entries. Then for each

det(Pi − λIαi
), 1 occurs as an eigenvalue with a multiplicity of 1. Hence, 1 occurs as

an eigenvalue of P with a multiplicity of k.

Recall that the entropy of MGOL with two loops was found to be 1.79. The three
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and four loop versions of the game also approach steady states. Using the respective

steady state vectors for each matrix, entropyMarkov returns a value of 1.79 for both

games. Since the probability of a player not entering one of the loops approaches

zero, the only entropy that exists in the game occurs as a result of the loops. Equal

amounts of uncertainty exist because the loops are of the same size.
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6 CONCLUSIONS

We have shown the properties of ergodicity and entropy as they relate to some com-

mon games, and we have created new games that explore these properties. We have

also shown how to calculate the entropy of a game. We found that the presence of

loops in a game is not sufficient to guarantee non-ergodicity. If, however, the sets

that these loops represent are backward invariant and have measure between 0 and 1,

non-ergodicity is realized. We have provided a theorem that describes the behavior of

the eigenvalue 1 for the transition matrices of games that contain backward invariant

loops.

Finally, we noticed that the inclusion of additional loops of the same size will not

change the entropy. This is because, with certainty, a player will be in one of the

loops. The only uncertainty is where in the respective loop a player might be. Further

research in this area may include a study of the entropy associated with games that

contain invariant loops of different sizes or sink holes located inside of loops.
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A GAME BOARDS

A.1 Two Towers

Figure A.1.1: Two Towers
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A.2 Sink Hole

Figure A.2.1: Sink Hole

A.3 Sink Hole 2

Figure A.3.1: Sink Hole 2
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A.4 Medieval Game of Life

A.4.1 2 Loops

Figure A.4.1: The Medieval Game of Life
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A.4.2 3 & 4 Loops

(a) 3 Loops (b) 4 Loops

Figure A.4.2: Medieval Game of Life (3 & 4 Loops)
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B TRANSITION MATRICES

B.1 Monopoly Die-Roll-Only Matrix
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B.2 Monopoly Transition Matrix
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B.3 Two Towers Transition Matrix
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B.4 Sink Hole Transition Matrix
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B.5 Sink Hole 2 Transition Matrix
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B.6 Medieval Game of Life Transition Matrix (2 loops)
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B.7 Medieval Game of Life Transition Matrix (3 loops)
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B.8 Medieval Game of Life Transition Matrix (4 loops)
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C MATLAB CODE

C.1 MATLAB Code for calculating Entropy of a Markov Shift

1 function [ ent ] = entropyMarkov (p ,P)

2 %This f u n c t i o n c a l c u l a t e s the entropy o f a Markov S h i f t .

3

4 [m, n ] = s ize (P) ;

5 i f m ˜= n

6 fpr intf ( ’ S i z e mismatch . Enter a square matrix . ’ )

7 return

8 end

9

10 ent = 0 ;

11 for i = 1 : n

12 for j = 1 : n

13 i f p( i )==0 | | P( i , j )==0

14 ent = ent + 0 ;

15 else

16 ent = ent + p( i )∗P( i , j )∗ log (P( i , j ) ) ;

17 end

18 end

19 end

20 ent = −ent ;

21

22 end
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C.2 MATLAB Code for finding a steady state vector in a Markov Chain.

1 function [ x ] = steadyState (p ,P, to l , maxiter )

2 done = 0 ;

3 i t e r = 1 ;

4

5 while (˜ done && i t e r<maxiter )

6 pnew = p∗P;

7 i f norm(pnew−p)< t o l

8 x = pnew ;

9 break

10 else i t e r = i t e r +1;

11 end

12 p = pnew ;

13 end
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