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In a kn-complex word over an alphabet Σ of size k each of the kn words of length

n appear as a subword at least once. Such a word is said to have maximum subword

complexity. De Bruijn sequences of order n over Σ are the shortest words of maximum

subword complexity and are well known to have length kn+n−1. They are e�ciently

constructed by �nding Eulerian cycles in so-called de Bruijn graphs.

In this thesis, we investigate partial words, or sequences with wildcard symbols

or hole symbols, of maximum subword complexity. The subword complexity function

of a partial word w over a given alphabet of size k assigns to each positive integer n,

the number pw(n) of distinct full words over the alphabet that are compatible with

factors of length n of w. For positive integers h, k and n, a de Bruijn partial word

of order n with h holes over an alphabet Σ of size k is a partial word w with h holes

over Σ of minimal length with the property that pw(n) = kn. In some cases, they are

e�ciently constructed by �nding Eulerian paths in modi�ed de Bruijn graphs. We

are concerned with the following three questions: (1) What is the length of k-ary de

Bruijn partial words of order n with h holes? (2) What is an e�cient method for

generating such partial words? (3) How many such partial words are there?
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CHAPTER I

INTRODUCTION

Let Σ be a k-letter alphabet and w be a �nite or right in�nite word over Σ. A

subword or factor of w is a block of consecutive letters of w. The subword complexity

of w is the function that assigns to each positive integer, n, the number, pw(n), of

distinct subwords of length n of w. The subword complexity, also called symbolic

complexity, of �nite and in�nite words has become an important subject in combi-

natorics on words. Application areas include dynamical systems, ergodic theory, and

theoretical computer science. We refer readers to Chapter 10 of [3] which surveys

and discusses subword complexity of �nite and in�nite words. References [2] and [11]

provide other surveys, [9] shows how the so-called special and bispecial factors can be

used to compute the subword complexity, and [12] gives another interesting approach

based on the gap function.

When we restrict our attention to �nite words of maximum subword complexity,

de Bruijn sequences play an important role. A k-ary de Bruijn sequence of order n

is a word over an alphabet of size k where each of the kn words of length n over

the alphabet appears as a factor exactly once. It is well known that such sequences

have length kn +n− 1. There are k!k
n−1

of them, and they can be generated in linear

time by constructing Eulerian cycles in corresponding de Bruijn directed graphs. The

technical report of de Bruijn provides an history on the existence of these sequences

[10]. De Bruijn graphs �nd applications, in particular, in genome rearrangements [1],

in the complexity of deciding avoidability of sets of partial words [4], etc.
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In this thesis, we investigate partial words of maximum subword complexity. Par-

tial words are �nite sequences that may have some unde�ned positions called holes

(a full word is just a partial word without holes). Partial words can be viewed as

sequences over an extended alphabet Σ� = Σ ∪ {�}, where � 6∈ Σ stands for a hole.

Here � matches every letter in the alphabet, or is compatible with every letter in

the alphabet. For example, 10�01 is a partial word with one hole over the alphabet

{0, 1}. In this context, pw(n) is the number of distinct full words over the alphabet

that are compatible with factors of length n of the partial word w (in our example

with w = 10�01, we have pw(3) = 5 since 000, 001, 010, 100 and 101 match factors

of length 3 of w). For positive integers n, h and k, we introduce the concept of a

de Bruijn partial word of order n with h holes over an alphabet Σ of size k, as be-

ing a partial word w with h holes over Σ of minimal length with the property that

pw(n) = kn.

The contents of this thesis is as follows. In Chapter I, we start by introducing

partial words, along with de Bruijn full words and digraphs. In Chapter II, we discuss

de Bruijn partial words with one hole, starting with such words over a binary alphabet,

then a ternary alphabet, then the general case over a k-ary alphabet, followed by a

discussion of counting binary de Bruijn partial words with one hole. In Chapter III

we look at de Bruijn partial words with two or more holes by �rst discussing minimal

partial words of maximal subword complexity, then by looking at closed formulas for

known lengths of de Bruijn partial words. In Chapter IV, we consider results from

a case where the length of a de Bruijn partial word is unknown, followed by open

questions. Part of this thesis has been published in [6] and in [8].
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1.1 Preliminaries

For more background on partial words, we refer readers to [5].

Let Σ be a �xed non-empty �nite set called an alphabet whose elements we call

letters. A word over Σ is a �nite sequence of elements from Σ. We let Σ∗ denote the

set of words over Σ which, under the concatenation operation of words, forms a free

monoid whose identity is the empty word, which we denote by ε. Unless otherwise

stated, we assume that Σ contains at least two letters.

A partial word w of length n over Σ can be de�ned as a function w : [0..n−1]→ Σ�,

where Σ� = Σ ∪ {�} with � 6∈ Σ. The length of w is denoted by |w|, and w(i), the

symbol at position i, is denoted by wi (here [0..n − 1] denotes the set of positions

{0, 1, . . . , n − 1}). For 0 ≤ i < n, if w(i) ∈ Σ, then i belongs to the domain of w,

denoted D(w), and if w(i) = �, then i belongs to the set of holes of w, denoted H(w).

Whenever H(w) is empty, w is a full word. We refer to an occurrence of the symbol

� as a hole. We let Σ∗� denote the set of all partial words over Σ.

A partial word u is a factor of the partial word w if there exist x, y such that

w = xuy. The factor u is called proper if u 6= ε and u 6= w. The partial word u is

a pre�x (respectively, su�x) of w if x = ε (respectively, y = ε). For i = 0, . . . , h, let

Fi(w, n) denote the multiset containing the factors of w of length n with exactly i

holes.

The partial word u is contained in the partial word v, denoted u ⊂ v, if |u| = |v|

and u(i) = v(i) for all i ∈ D(u). Two partial words u and v of equal length are

compatible, denoted u ↑ v, if u(i) = v(i) whenever i ∈ D(u) ∩D(v). In other words,

u and v are compatible if there exists a partial word w such that u ⊂ w and v ⊂ w,

in which case we let u ∨ v denote the least upper bound of u and v (u ⊂ (u ∨ v) and
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v ⊂ (u ∨ v) and D(u ∨ v) = D(u) ∪ D(v)). For example, u = aba�� and v = a��b�

are compatible, and (u ∨ v) = abab�.

A full word u is a subword of w if there exists some 0 ≤ i < |w| − |u| such that

u ↑ w(i) · · ·w(i + |u| − 1). Informally, under some ��lling in� of the holes in w with

letters from Σ to form the full word w′, there is some consecutive block of letters in

w′, w′(i) · · ·w′(i + |u| − 1), such that w′(i) = u(0), w′(i + 1) = u(1), and so on. Note

that in this thesis, subwords are always full.

A completion ŵ of a partial word w over Σ is a function ŵ : [0..|w| − 1]→ Σ such

that ŵ(i) = w(i) if w(i) 6= �. A completion ŵ is usually thought of as a ��lling in� of

the holes of w with letters from Σ. Note that two partial words u and v are compatible

if there exist completions û and v̂ such that û = v̂. The subword complexity of w is

the function that assigns to each integer, 0 ≤ n ≤ |w|, the number, pw(n), of distinct

full words over Σ that are compatible with factors of length n of w (or the number of

distinct subwords of w of length n). We let Subw(n) denote the set of all subwords

of w of length n, and we let Sub(w) =
⋃

0≤n≤|w| Subw(n) the set of all subwords of w.

Note that if ŵ is a completion of w, then pŵ(n) ≤ pw(n), since Subŵ(n) ⊂ Subw(n).

For |Σ| = k, if all subwords of length n are subwords of w, then Subw(n) = kn and

we call w a kn-complex word. Alternatively, we say that w has maximum subword

complexity.

We end this section by recalling a bound on the subword complexity of any binary

partial word w. Let n ≤ |w| be a positive integer. A factor u of length n of w

is repeated, if there exist integers i 6= j such that u = w(i) · · ·w(i + n − 1) =

w(j) · · ·w(j + n − 1). Similarly, a subword u of length n of w is repeated, if there

exist integers i 6= j such that u ↑ w(i) · · ·w(i + n− 1) and u ↑ w(j) · · ·w(j + n− 1).

4



Note that repeated factors imply repeated subwords, but the converse does not hold

in general.

Lemma I.1 ([7]). Let w be a partial word with h holes over a binary alphabet. For

index i = 0, . . . , h and positive integer n ≤ |w|, let Fi(w, n) denote the multiset

containing the factors of w of length n with exactly i holes. Then

h∑
i=0

‖Fi(w, n)‖ = |w| − n + 1 (I.1)

pw(n) ≤
h∑

i=0

2i‖Fi(w, n)‖ (I.2)

with equality holding in (I.2) if and only if w has no repeated subwords of length n.

The following zero-hole and one-hole bounds hold:

(1) Let h = 0. For n ≤ |w|, we have pw(n) ≤ |w| − n + 1, with equality holding if

and only if w has no repeated subwords of length n.

(2) Let h = 1 and n ≤ |w|. If |w| ≤ 2n − 1, then pw(n) ≤ 2(|w| − n + 1). Else,

pw(n) ≤ |w| + 1. In both cases, equality holds if and only if w has no repeated

subwords of length n.

1.2 De Bruijn words

What is the length of a shortest word w over an alphabet of size k for which

pw(n) = kn, where n is a positive integer?
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Theorem I.2 ([3]). For all k, n ≥ 1 there exists a word w over an alphabet of size k,

of length kn + n− 1, such that pw(n) = kn.

Such a word is often called a k-ary de Bruijn full word of order n, that is, a full

word over a given alphabet Σ with size k for which every possible word of length n

over Σ appears as a subword exactly once. De Bruijn words are often �cyclic� in the

literature, meaning that subwords can wrap around from the end to the beginning of

the word, but to better �t our notion of the complexity function, we unwrap them

and use a non-cyclic version.

In order to prove the theorem, set Σ = {0, 1, . . . , k − 1}. If k = 1, then take 0n,

while if n = 1, take 01 · · · (k − 1). If k, n ≥ 2, a family of directed graphs Gk(n)

is de�ned as follows: the vertices of Gk(n) are the words of length n − 1 over Σ,

and the edges of Gk(n) are the pairs (az, zb), labelled by azb, where a, b ∈ Σ and z

is a word of length n − 2 over Σ. It then su�ces to show that Gk(n) possesses an

Eulerian cycle, that is, a path that traverses every edge exactly once and begins and

ends at the same vertex, as each Eulerian cycle in Gk(n) corresponds to a k-ary de

Bruijn full word of order n. The graph Gk(n) has an Eulerian cycle because it is both

weakly-connected and balanced. A digraph G is weakly-connected if, after replacing

each edge in G with a non-directional edge between the same vertices, the resulting

graph is connected. A vertex v is balanced if its indegree, denoted ideg(v), equals its

outdegree, odeg(v) (we call the pair (ideg(v), odeg(v)) the degree of v, or deg(v)).

If every vertex v in G is balanced, then G is a balanced digraph.

Indeed, Gk(n) is strongly connected, that is, there is a directed path connecting

any two vertices, and Gk(n) is balanced. A directed graph that possesses an Eulerian

cycle is called an Eulerian digraph. Note that there are several linear-time algorithms,
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including Fleury's algorithm, for computing Eulerian cycles in digraphs [13].

Example I.3. The 2-ary word w = 0000111101100101000 of length 19 is such that

pw(4) = 24 = 16. It can be checked from Figure 1 that

000
0000−→ 000

0001−→ 001
0011−→ 011

0111−→ 111
1111−→ 111

1110−→ 110
1101−→ 101

1011−→ 011

0110−→ 110
1100−→ 100

1001−→ 001
0010−→ 010

0101−→ 101
1010−→ 010

0100−→ 100
1000−→ 000

is an Eulerian cycle in G2(4).

It is well known that there are k!k
n−1

de Bruijn full words of order n over a k-letter

alphabet. Returning to Example I.3, this gives 256 de Bruijn full words of order 4

over {0, 1}.

Figure 1. G2(4), a de Bruijn full word graph
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A de Bruijn partial word of order n with h holes over Σ of size k is a kn-complex

word with h holes over Σ of shortest possible length. A main question is to determine

the length of k-ary de Bruijn partial words with h holes of order n. For example,

00110 is a 2-ary de Bruijn full word of order 2, which has length 5, while a 2-ary

de Bruijn partial word of order 2 with one hole is 001�, which has length 4. We let

Lk(n, h) denote the length of a k-ary de Bruijn partial word of order n with h holes.

De�nition I.4 ([8]). We de�ne Mz(n) and Mk(n, h) = maxz Mz(n) as follows.

• Let Mz(n) denote the number of distinct completions of factors of length n with

at least one hole of a partial word z.

• Let Mk(n, h) = maxz Mz(n) where the maximum is taken over all partial words

z with h holes over an alphabet of size k.

It is clear that for n ≤ h, if z is a word with h holes, n of them being consecutive,

over an alphabet of size k, then Mz(n) = kn and since kn is the total number of words

of length n over a k-letter alphabet, we have Mk(n, h) = kn. We can signi�cantly

re�ne the upper bound of kn on Mk(n, h), when n > h, as stated in the next theorem.

Theorem I.5 ([8]). For k ≥ 2 and n > h > 0, Mk(n, h) ≤ (n− h + 1)kh + 2kh−k
k−1 .

Proof. Let z be a word with h holes over a k-letter alphabet. First, note that if

the h holes of z are consecutive, or �h is a factor of z, then there may be factors of

length n of z that contain only the �rst hole (respectively, the last hole), the �rst two

holes (respectively, the last two holes), and so on, until may be factors that contain

only the �rst h − 1 holes (respectively, the last h − 1 holes), and then factors that

contain all of the h holes. Note that i consecutive holes can contribute a maximum

8



of ki distinct completions. So, in total, z can have up to (n− h+ 1)kh + 2
∑h−1

i=1 ki =

(n−h+1)kh+2kh−k
k−1 distinct completions of factors of length n containing at least one

hole. Now, assume that �h−r and �r are two disjoint factors of z, where 0 < r < h.

In this case, Mz(n) cannot be bigger than the bound above. So if we keep splitting

up the holes, we do not change our bound.

Corollary I.6 ([8]). For k ≥ 2, n ≥ 2h + 2 and h > 0, we have

Mk(n, h) = (n− h + 1)kh + 2
kh − k

k − 1
.

Proof. By Theorem I.5, Mk(n, h) ≤ (n− h+ 1)kh + 2kh−k
k−1 . To show that Mk(n, h) ≥

(n−h+1)kh+2kh−k
k−1 , we only need �nd a partial word zn,h with h holes over a k-letter

alphabet such that Mzn,h
(n) = (n−h+1)kh +2kh−k

k−1 . Consider zn,h = bna�habn where

a, b are distinct letters of the alphabet. The factors of length n of zn,h with at least

one hole are

• bn−2a�, . . . , bn−ha�h−1, as well as their reversals: the number of distinct comple-

tions of these factors is 2kh−k
k−1 .

• bn−h−1a�h, . . . , ba�habn−h−3, a�habn−h−2, �habn−h−1: the number of distinct com-

pletions of these factors is (n− h− 1 + 1 + 1)kh = (n− h + 1)kh.

Note that the words of length n compatible with these factors are distinct, since the

factors starting at the �rst n− 1 positions are distinct from each other, because they

start with a di�erent number of b's, and distinct from the rest, because they have
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an a at most h positions from the beginning. The factors ending at the last n − 1

positions are also distinct because they end with di�erent numbers of b's.

Remark. Corollary I.6 fails for n < 2h + 2. In the construction of the proof of

Corollary I.6, z5,2 = b5a�2ab5, and so Mz(5) = 19 6= 20 = (n−h+1)kh +2kh−k
k−1 . Here,

the factor b2a�2 is compatible with the factor �2ab2, and so the completion b2ab2 gets

counted twice.

Theorem I.7 ([8]). For h > 0, Lk(n, h) ≥ Lk(n, 0)−Mk(n, h) + (n + h− 1).

Proof. A k-ary de Bruijn full word of order n contains each subword of length n

exactly once. When considering partial words with h holes over an alphabet of size

k, we are still limited to at most one distinct factor of length n per starting symbol,

except we can get more than one distinct completion for factors with at least one hole.

The number of such completions is at most Mk(n, h), but this includes (n + h − 1)

starting positions that lead to distinct subwords in a de Bruijn full word. So, in total

we have Lk(n, h) ≥ Lk(n, 0)−Mk(n, h) + (n + h− 1).

Corollary I.8 ([8]). For n ≥ 2h+2 and h > 0, L2(n, h) ≥ 2n+2n+h+2−(n−h+3)2h.

Proof. We know that 2-ary de Bruijn full words of order n have length 2n + n − 1.

Furthermore, from Theorem I.5, Corollary I.6 and Theorem I.7, we get

L2(n, h) ≥ 2n + n− 1− (2h(n− h + 3)− 4) + (n + h− 1)

= 2n + 2n + h + 2− (n− h + 3)2h

In Chapter II, we show that the bound of Corollary I.8 is tight for h = 1, that is,

L2(n, 1) = 2n + 2n + h + 2− (n− h + 3)2h = 2n − 1 for n ≥ 4.
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CHAPTER II

DE BRUIJN PARTIAL WORDS WITH ONE HOLE

We can construct a k-ary de Bruijn full word of order n by �nding an Eulerian

cycle in the de Bruijn graph Gk(n). To construct a k-ary de Bruijn partial word of

order n with h holes, we show that we can delete edges from Gk(n) and add edges to

Gk(n) in such a way that a minimal length Eulerian path exists. In this chapter we

discuss in detail our technique as applied to the special cases of binary and ternary

de Bruijn partial words with one hole, as well as k-ary de Bruijn partial words with

one hole in the general case; each of order n.

We �rst recall the conditions for a directed graph G = (V,E) to have an (x, y)-

Eulerian path, that is, an Eulerian path from vertex x to vertex y. Eulerian paths

are found in weakly-connected and �nearly� balanced, or weakly-balanced, digraphs.

Let G = (V,E) be a digraph with vertices u and v such that ideg(u) = odeg(u) + 1

and ideg(v) + 1 = odeg(v). If every other vertex in V is balanced, then G is weakly-

balanced.

Lemma II.1 ([13]). Let G be a digraph with vertices u and v, where ideg(u) =

odeg(u) + 1 and ideg(v) + 1 = odeg(v). Then G has an Eulerian path from v to u

if and only if (1) G is weakly-connected and (2) G is weakly-balanced.

Before we look at constructing such a digraph, we consider the placement of holes,

which is a key factor in building a de Bruijn partial word. One e�ective strategy for

determining hole placement is to �encapsulate� the holes in a partial word z = xz′y,

where z meets the following conditions:
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• factors x and y are full words;

• |x| = |y| = n− 1;

• the �rst and last positions of z′ contain a hole; and

• z′ contains h holes.

Then for each partial word w with h holes containing z as a factor, we have

Mz(n) = Mw(n), as this means that Fi(w, n) = Fi(z, n) for i ≥ 1. We call each such

partial word z a candidate word, and we call each candidate word that occurs in a de

Bruijn partial word of matching parameters a good word.

In Section 2.1, we describe an algorithm to construct a binary de Bruijn partial

word of order n with one hole by �nding an Eulerian path in a trimmed version of

G2(n). We then discuss the k = 3 case in Section 2.2 and the general case for k > 3

in Section 2.3.

2.1 The binary one-hole case

We now modify the Eulerian cycle approach to prove that our lower bound is tight

in the binary one hole case.

Theorem II.2 ([8]). For n ≥ 4, we have L2(n, 1) = 2n − 1.

Proof. Start with the digraph G = G2(n). Let z = x�y = 1n−20�0n−21. Trim

G2(n) by deleting all edges that are in Subz(n). Then, add a new edge from ver-

tex x to vertex y labelled by z. Call the resulting graph, G′ = (V,E), the di-

graph generated by z. We show that there exists a path from any vertex u in G′

to x = 1n−20. To see this, if u = u0 · · ·un−31, we traverse the path labelled by the
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edges u0 · · ·un−311, u1 · · ·un−3111, . . . , un−31
n−20, which starts at vertex u and ends

at vertex x. None of the edges in this path are deleted from G as can be seen from the

form of z. Similarly, if u = u0 · · ·un−30, we traverse the path labelled by the edges

u0 · · ·un−301, u1 · · ·un−3011, . . . , un−301n−2, 01n−20

which starts at u and ends at x. There are only three problem vertices u, that is,

1n−20, 10n−2 and 0n−1, since indeed both out-edges are deleted for each of these and

we thus cannot follow the edge labelled u1 to get to x. However, 1n−20 is our x and

is accounted for. Additionally, 10n−2 and 0n−1 become isolated and are thus removed

from G. Thus, G′ has a single non-trivial connected component.

It can be checked that Mz(n) = 2n = M2(n, 1), that is, z has 2n distinct subwords

of length n. First, consider any factor of length n− 1 with a hole in z. Then, choose

a completion, v, of that factor. Thus, v is a pre�x of some v1 ∈ Subz(n) and a su�x

of some v2 ∈ Subz(n). So, both ideg(v) and odeg(v) get decreased by one, but v

remains balanced. As already mentioned, the only vertices that become isolated are

0n−1 and 10n−2. Now, consider the factors x = 1n−20 and y = 0n−21. Here, x is a

pre�x of two subwords of length n, namely the two completions 1n−200 and 1n−201.

So, two edges starting at x are deleted from G, while the edge starting at x, labelled

by z, is added to G (see Figure 2). Similarly, y is a su�x of two subwords of length n,

the two completions 00n−21 and 10n−21. So, two edges ending at y are deleted from

G, while the edge ending at y, labelled by z, is added to G. So the graph G′ satis�es

the following conditions:
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(1) G′ has a single non-trivial connected component;

(2) odeg(y) = ideg(y) + 1 and ideg(x) = odeg(x) + 1; and

(3) for every vertex v ∈ V \ {x, y}, ideg(v) = odeg(v).

Then conditions (2) and (3) imply that G′ is weakly-balanced. Thus, by Lemma II.1,

G′ has an Eulerian path from vertex y to vertex x. Since z has the maximum number,

M2(n, 1), of distinct subwords of length n, we get L2(n, 0) = 2n + n − 1 implies

L2(n, 1) = 2n−M2(n, 1)+n−1+(|y|+1), and so L2(n, 1) = 2n−2n+n−1+n = 2n−1

as desired.

Figure 2. Proof of Theorem II.2.

14



Example II.3. Computer experiments show that there are seven z's (up to a re-

naming of letters) with one hole over the binary alphabet {0, 1} such that Mz(4) =

M2(4, 1) = 8. They are

001�001, 001�100, 001�110, 010�110, 011�010, 011�011, 011�100

From the proof of Theorem II.2, if we choose z1 = 001�110, then there is an

Eulerian path in the resulting graph from vertex 110 to vertex 001. But, if we consider

z2 = 001�001 instead, we note that 0001, 1000 ∈ Sub(z2) but 0000 6∈ Sub(z2). So

the vertex 000 becomes isolated with the loop labelled by 0000 (see the graph on

the right in Figure 6). Therefore, the resulting graph does not have an Eulerian

path. There are fourteen z's that satisfy Mz(4) = 8, but only four of them generate

graphs that have an Eulerian path (001�110, its reversal, and their renamings). For

k = 2, n = 5, h = 1, there are ninety eight z's that satisfy Mz(5) = M2(5, 1) = 10,

but only �fty of them generate graphs that have an Eulerian path.

From this we can de�ne what makes a candidate word z �good� in the binary

one-hole case: Mz(n) = M2(n, 1) and G2(n, z), the graph constructed from G2(n)

after deleting and adding edges according to z (see the construction of G′ = G2(n, z)

in the proof of Theorem II.2), must be connected. Three classes of candidate words

have been identi�ed as problem words and computer experiments show that up to

n = 10 these are indeed the only candidate words which are not good words in the

binary one-hole case:
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• {01n−1, 1n−10} ⊂ Subz(n) and 1n /∈ Subz(n), or {10n−1, 0n−11} ⊂ Subz(n) and

0n /∈ Subz(n). If one of these occurs, then 0n−1 or 1n−1 becomes isolated with

loop 0n or 1n, respectively (see Figure 3).

• z = x�x, in which case if we generate G2(n, z), all two in-edges to vertex x

and two out-edges from x are deleted but as prescribed by Algorithm 1, an

edge labelled x�x is added from x to x, resulting in a non-trivial disconnected

component (see Figure 4).

• z = 1n−20�01n−2 = x�y, up to a renaming of letters, in which case if we build

G2(n, z), the edge from y to x remains, both in-edges of y are deleted, both

out-edges of x are deleted, an edge from x to y is added, and all four edges of

1n−1 remain (with one out-edge connected to x and one in-edge connected to y),

resulting in a disconnected component with three vertices and �ve edges (see

Figure 5).
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Figure 3. First class of problem words

Figure 4. Second class of problem words
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Figure 5. Third class of problem words

This brings us to a conjecture that these three classes of problem words are the

only ones which induce disconnected components of G2(n, z).

Conjecture II.4. Let n ≥ 4, and let z = x�y such that Mz(n) = 2n. Then z is

either a problem word of the �rst, second, or third class, or z is a good word.

Table 1 gives data on the number of candidate words z over the alphabet {0, 1}

such that Mz(n) = 2n versus the number of such candidate words that are good

words.
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Table 1. Number of good z's over {0, 1} for 4 ≤ n ≤ 8

n Number of z's such that Mz(n) = 2n Number of good z's

4 14 4

5 98 50

6 546 434

7 2768 2444

8 12832 12098

9 56352 54550

10 239088 235072

After applying the algorithm described in the proof of Theorem II.2 (see Algo-

rithm 1), we get a 2-ary de Bruijn partial word of order n of length 2n − 1 with one

hole. We let G2(n, z) denote the graph built by Algorithm 1. Note that Algorithm 1

is e�cient, as an Eulerian path can be found in linear time.

Algorithm 1 ([8]) Constructing a 2-ary de Bruijn word of order n with one hole,
where n ≥ 4

1: Build G = G2(n)
2: Select a good word z = x�y with |x| = |y| = n− 1 and Mz(n) = 2n
3: Compute S = Subz(n)
4: Create graph G′ from G by deleting the edges in the set S along with any resulting

isolated vertices, and add an edge from vertex x to vertex y labelled by z
5: Find an Eulerian path p in G′ from y to x
6: return p
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Example II.5 (H). For k = 2 and n = 4, if we select z1 = 001�110 then Algorithm 1

produces the graph on the left in Figure 6.

The 2-ary word w = 1101001�1100001 of length 24 − 1 = 15 is such that pw(4) =

24 = 16. It can be checked that

110
1101−→ 101

1010−→ 010
0100−→ 100

1001−→ 001
001�110−→ 110

1100−→ 100
1000−→ 000

0000−→ 000
0001−→ 001

is an Eulerian path from y = 110 to x = 001 in the trimmed graph G2(4, z1).

Figure 6. Left: G2(4, 001�110); Right: G2(4, 001�001)
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2.2 The ternary one-hole case

The di�culty in building a de Bruijn partial word for k = 3, n = 4, and h = 1 for

instance, is that we have to compensate for the indegree and outdegree of the nodes

connected by the edge labelled by a word with one hole. If we select a candidate word

z = x�y that is a good word according to the criteria for the binary one-hole case,

thus having the maximum number kn = 3n of subwords of length n, a �schism� is

created in which ideg(x) = 3 and odeg(x) = 1, while ideg(y) = 1 and odeg(y) = 3.

For example, if we take z = 001�110, the node 001 will now have outdegree 1 because

of the edge labelled by z, and indegree 3, while 110 only has indegree 1 but will have

outdegree 3 (see Figure 7).

Figure 7. Vertices 001 and 110 in G3(4, 001�110)

With k = 2, we compensate for this schism by starting the de Bruijn partial word

from y (that has outdegree 2 and indegree 1), and by ending with x (that has indegree

2 and outdegree 1). Since each vertex other than x and y is balanced, this e�ectively

�skips� the problem entirely. When we try to compensate in a similar fashion for a

3-letter alphabet, we end up having to add an extra edge.

To produce a de Bruijn partial word in which a single subword occurs twice, use

a good word of the form x�x. For example, using 012�012 eliminates all edges to

and away from the node 012. This removes the issue of compensating for an unbal-
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anced vertex: each vertex has equal indegree and outdegree (note that ideg(012) =

odeg(012) = 1 due to the edge 012�012 from 012 to 012). However, the vertex 012

becomes isolated. Since all edges from 012 have been deleted, an additional edge is

required to connect 012 to the rest of the graph. Here, use the edge (012, 122) labelled

by 0122 for instance (see Figure 8). This process can be generalized to arbitrary n,

as described in Theorem II.6.

Figure 8. Vertex 012 from G3(4, 012�012) with added edge 0122

Theorem II.6 ([8]). For n ≥ 2, we have L3(n, 1) = 3n − n.

Proof. The equality L3(n, 0) = 3n +n− 1 implies L3(n, 1) = (3n−M3(n, 1) + |z|) + 1

(for an extra edge), and so L3(n, 1) = 3n − 3n + 2n− 1 + 1 = 3n − n.

Example II.7. The partial word u = 01�010200022202111221210 is a 3-ary de Bruijn

partial word of length 24 with one hole of order n = 3 (see Figure 11), while

v = 012�01222202221221022002211202021201020

00020112121102100211110001001101011122

of length 77 is one of order n = 4. Note that u has the subword 010 occurring twice,

while v has the subword 0122 occurring twice as explained above.

22



For a good word of the form z = x�x in the ternary one-hole case, we have

Mz(n) = M3(n, 1) = Mk(n, 1); this characteristic is shared with good words in the

binary one-hole case. However, some good words of the form z = x�y exist in the

ternary one-hole case, in which one subword occurs twice in z (see Example II.8). For

such a good word z = x�y with Mz(n) = M3(n, 1)− 1, we can construct a de Bruijn

partial word graph without adding an extra edge. Thus we have two algorithms for

constructing a 3-ary de Bruijn partial word of order n with h holes, both with linear

complexity. Algorithm 2 is used when a good word of the form z = x�x is selected.

Algorithm 2 Constructing a 3-ary de Bruijn word of order n ≥ 2 with one hole,
using a good word of the form z = x�x
1: Build G = G3(n)
2: Select a good word z = x�x with |x| = n− 1 and Mz(n) = 3n
3: Compute S = Subz(n)
4: Select some edge e connecting x and some vertex y in G (for a ∈ Σ, we have

either e = xa where e connects x to y, or e = ax where e connects y to x)
5: Create graph G′ from G by deleting the edges in the set S\{e} along with any

resulting isolated vertices v 6= x, and add an edge from vertex x to vertex x
labelled by z

6: Find an Eulerian path p in G′ (from x to y, if e = xa, or from y to x, if e = ax)
7: return p

Algorithm 3 is used to build a ternary de Bruijn partial word with one hole for a

good word of the form z = x�y.
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Algorithm 3 Constructing a 3-ary de Bruijn word of order n ≥ 2 with one hole,
using a good word of the form z = x�y, x 6= y

1: Build G = G3(n)
2: Select a good word z = x�y with |x| = |y| = n− 1 and Mz(n) = 3n− 1
3: Compute S = Subz(n)
4: Create graph G′ from G by deleting the edges in the set S along with any resulting

isolated vertices, and add an edge from vertex x to vertex y labelled by z
5: Find an Eulerian path p in G′ from y to x
6: return p

Example II.8. We construct a 3-ary de Bruijn partial word of order 3 with one hole

using Algorithm 3. First, we build the graph G = G3(3) (see Figure 9). Next, we

select good word z = x�y = 01�10 such thatMz(3) = 3(3)−1 = 8. When we compute

S = Subz(n) = {010, 011, 012, 101, 111, 121, 110, 210}, we �nd a repeated subword of

length 3, 010. Next, we create G′ by removing the edges corresponding to subwords

in S from the graph G and adding the new edge for z connecting vertices x and y

(see Figure 10). Finally, we �nd an Eulerian path from vertex y to vertex x. One

such path gives the de Bruijn partial word: 10002221122001�102021201. Figure 10

shows our path before travelling the edge corresponding to our good word z and our

path after the edge for z.
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Figure 9. G3(3)

Figure 10. G3(3, 01�10)
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Figure 11. G3(3, 01�01) with added edge 010

2.3 The k-ary one-hole case

Using good words of the form z = x�x, we can extend these results to Lk(n, 1) for

the k-letter alphabet for n ≥ 3 using Algorithm 4.

Algorithm 4 Constructing a k-ary de Bruijn word of order n ≥ 3 with one hole,
using a good word of the form z = x�x
1: Build G = Gk(n)
2: Select a good word z = x�x with |x| = n− 1 and Mz(n) = kn
3: Compute S = Subz(n)
4: Select some edge e connecting x and some vertex y in G (for a ∈ Σ, we have

either e = xa where e connects x to y, or e = ax where e connects y to x)
5: Create graph G′ from G by deleting the edges in the set S\{e} along with any

resulting isolated vertices v 6= x, and add an edge from vertex x to vertex x
labelled by z

6: Find an Eulerian path p in G′ (from x to y, if e = xa, or from y to x, if e = ax)
7: return p
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This gives us the following result for the length of k-ary de Bruijn partial words

with one hole for k ≥ 3.

Theorem II.9 ([8]). For k ≥ 3 and n ≥ 3, we have Lk(n, 1) = kn − (k − 2)n.

Proof. For any k ≥ 3 and n ≥ 3, we can �nd a good word of the form z = x�x

with the maximum number of subwords of length n. Letting z = x�x = 0n−21�0n−21,

the �rst n− 1 factors of length n begin with a di�erent number of 0's, and are thus

distinct. The remaining factor ends with 01, making it distinct from any preceeding

factors.

Let G′ be the graph constructed using Algorithm 4. To determine if G′ has an

Eulerian path, �rst consider node x and its neighbor. If the connecting edge begins

at x, then ideg(x) = 1 and odeg(x) = 2, and ideg(y) = k and odeg(y) = k − 1.

Likewise, if it ends at x, then ideg(x) = 2 and odeg(x) = 1, and ideg(y) = k and

odeg(y) = k − 1.

Next, consider all vertices other than x and y. Some vertices have the same

degree as their counterparts in G, so they are balanced. Others have a lesser degree

than their G counterparts. These represent the subwords of length n − 1 that are

compatible with factors of z with one hole, or factors in the multiset F1(z, n − 1).

Each occurrence of such factor in z is associated with two factors of length n, once

with the factor as a pre�x and once with the factor as a su�x. This means that, for

any of the vertices in this group, an equal number of incoming and outgoing edges

were removed. These all remain balanced. Therefore, G′ satis�es Lemma II.1, with

an Eulerian path either starting or ending at x.

To derive the length of a de Bruijn partial word represented by G′, we start with

kn + n− 1, the length of a de Bruijn full word corresponding to G. We subtract the
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number of edges removed from G when constructing G′, or kn. We add n, which is

the number of additional characters needed to add the edge corresponding to x�x.

Finally, we add one for the additional edge reconnecting x to the remainder of G′.

This gives Lk(n, 1) = (kn + n− 1)− kn + n + 1 = kn − (k − 2)n.

2.4 Counting binary de Bruijn partial words with one hole

Another main question is to compute the number of k-ary de Bruijn partial words

with h holes of order n, which we denote by Nk(n, h). It is well known that Nk(n, 0) =

k!k
n−1

, which can be calculated by counting the number of Eulerian cycles in Gk(n).

In the binary one-hole case, this can be done by using the so-called BEST theorem,

named after de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, that counts the

number of Eulerian cycles in directed graphs.

Theorem II.10 ([14]). Let G = (V,E) be an Eulerian digraph, and let LG denote the

Laplacian matrix of G de�ned as follows: for i = j, LG(i, j) = odeg(vi)− e, and for

i 6= j, LG(i, j) = −e, where e is the number of edges from vi to vj. Then the number

of non-equivalent Eulerian cycles in G is

C
∏
v∈V

(odeg(v)− 1)! = C
∏
v∈V

(ideg(v)− 1)! (II.1)

with C any cofactor of LG.

To compute N2(n, 1), we need to modify Theorem II.10, since we want to count

the number of Eulerian paths.
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Theorem II.11 ([8]). Let G = (V,E) be a digraph, and let x, y ∈ V be such that

odeg(x) = ideg(x) + 1 and ideg(y) = odeg(y) + 1. Suppose that G satis�es the

conditions of Lemma II.1 to have an (x, y)-Eulerian path. Let LG denote the Laplacian

matrix of G de�ned as above. Then the number of (x, y)-Eulerian paths in G is given

by (II.1) with C the cofactor of LG with the row and column corresponding to vertex

y removed.

With 2-ary de Bruijn partial words of order n with one hole, as mentioned in

Section 4, we need to apply Theorem II.10 to more than one graph since every word

z of length 2n− 1, with a hole in the middle and such that Mz(n) = M2(n, 1) = 2n,

can potentially serve as the new edge added to the graph G2(n). But after deleting

the edges corresponding to subwords of length n of z, we do not necessarily have an

Eulerian path, so we must only count those paths in the G2(n, z)'s, where z is good.

This suggests an algorithm, Algorithm 5, to count the number of 2-ary de Bruijn

partial words of order n with one hole.

Algorithm 5 ([8]) Computing the number N2(n, 1), where n ≥ 4

1: Find the set Z of all good z's of the form x�y such that |x| = |y| = n − 1 and
Mz(n) = M2(n, 1) = 2n

2: for all z ∈ Z do

3: Construct the Laplacian matrix Lz = LG2(n,z)

4: Eliminate all rows and columns of Lz that have all zero entries
5: Calculate the determinant of the matrix Lz after removing the row and column

that correspond to x
6: return The sum of the determinants

Remark. Step 4 is necessary since some vertices may have become isolated. This still

would allow for Eulerian paths, but would make the determinant zero if those rows

and columns were left in the Laplacian matrix. We also eliminate the row and column
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corresponding to x to form the cofactor, since by Theorem II.2, x must be the last

vertex of the path because ideg(x) = odeg(x) + 1. In step 5, the (ideg(x) − 1)!

multiplicative factor is always 1 since ideg(x) = 2. Unfortunately, unlike the full

case where the sum falls out easily since all cofactors of the single matrix have the

same value, the cofactors of the Lz's may be di�erent.

Example II.12. Returning to Example II.3 with k = 2 and n = 4, up to reversal

and renaming of letters, we only need to consider z1 = 001�110 to compute N2(n, 1).

Referring to the graph on the left in Figure 6, LG2(4,z1) is shown in Figure 12. Note

that the rows and columns corresponding to the vertices 011 and 111 have been

removed since all their entries are zeros. If we remove the row and column of vertex

001, we get a determinant of 4. So there are 4 Eulerian paths from 110 to 001 in

G2(4, z1):

11001�110100001, 1100001�1101001, 1101001�1100001, 110100001�11001

Since the only candidate words that are good words are 001�110, its reversal, and

their renamings, we get N2(4, 1) = 4× 4 = 16.
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Figure 12. LG2(4,z1)
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CHAPTER III

DE BRUIJN PARTIAL WORDS WITH TWO OR MORE HOLES

In this chapter, we extend the method of constructing de Bruijn partial words

with one hole to include de Bruijn partial words with h ≥ 2 holes. We then present

results for some known lengths of de Bruijn partial words.

3.1 Minimal partial words of maximal subword complexity

As shown in the binary one-hole case, we can �nd a k-ary de Bruijn partial word

of order n with h holes by modifying Gk(n) as follows: we select a good word z = x�y,

we remove all edges from Gk(n) corresponding to words in Subz(n), and then add an

edge z from vertex x to vertex y.

When h > 1, if we use this approach, G′ is often neither weakly-connected nor

weakly-balanced. Thus, we must build an Eulerian path by adding edges. This

is seen in the k-ary one-hole case for k ≥ 3, but as we increase the number of

holes, more edges must be added to build an Eulerian path in G′. For exam-

ple, G′ = G2(6, 00110���10001) is neither weakly-balanced nor weakly-connected

(Fig. 13). Therefore, we must �rst reconnect G′. This requires two edges: after

adding 110101 and 1100100, G′ is weakly-connected but not weakly-balanced. We

can weakly-balance G′ by adding edge 11011100, after which G′ has an Eulerian path

corresponding to a de Bruijn partial word. The binary de Bruijn partial word

01000000111111011100100110���100010111010101 (III.1)

32



of length 44 corresponds to the Eulerian path from 01000 to 10101 in G′. A de Bruijn

full sequence with the parameters n = 6, k = 2 has length 69, much longer than the

44 length sequence that uses three wildcards.

Figure 13. G2(6, 00110���10001)

This allows us to generalize our set of construction algorithms to a single algorithm

that applies to all cases for h ≥ 1, k ≥ 2, n ≥ 3. However, we have another problem:

for a given h, k, and n, how do we �nd a good word z? To address this, we can

write our algorithm for the general case to apply to any candidate word z, so that

the resulting constructed word corresponding to an Eulerian path is a 2k-complex

word of minimal length with h holes in which z appears as a factor. Furthermore,

this can help us with the problem of discovering good words by comparing results for

the algorithm over the set of all possible candidates. Those producing the results of

shortest length are de Bruijn partial words.
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Algorithm 6 ([6]) Constructing a minimal kn-complex partial word with h holes
containing a candidate word of the form z = xz′y as a factor

1: Build G = Gk(n)
2: Select a candidate word z = xz′y with |x| = |y| = n− 1, where the �rst and last

position of z′ is a hole and z′ contains h holes
3: Compute S = Subz(n)
4: Create graph G′ from G by deleting the edges in the set S and add an edge from

vertex x to vertex y labelled by z
5: Delete any isolated vertices
6: Add the set of edges R, where each edge in R is from a vertex u to a vertex v

with label uv′, where uv′ is the shortest full word with u as a pre�x and v as a
su�x, such that G′ contains an Eulerian path with the smallest possible sum of
lengths of edge labels

7: Find an Eulerian path p in G′

8: return p

We refer to the resulting graph G′ as Gk(n, z, R). We use this algorithm in Section

3.2 to show the construction of some known de Bruijn partial words, and in Section

4.1 we use it to conjecture about the lengths of binary de Bruijn partial words in the

h ≥ 2, n = h + 3 case.

3.2 Closed formulas for known lengths of de Bruijn partial words

In this section, we give some closed formulas for the length Lk,h(n) of a k-ary

de Bruijn partial word with h holes of order n where h ≥ 1. Firstly, Lk,n(n) = n

since �n is a de Bruijn partial word of order n with n holes over a k-letter alphabet,

compatible with all words of length n over the k letters. For the binary (n− 1)- and

(n− 2)-hole cases, we have the following.
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Theorem III.1 ([6]). Let h be a non-negative integer and let n = h + 1. Then (1)

the partial word �h01n is 2n-complex and (2) each factor of length 2n of 0n1�h01n

is 2n-complex. Consequently, L2,n−1(n) = 2n and the only binary de Bruijn partial

words of order n with n − 1 holes are the factors of length 2n of 0n1�n−101n and

1n0�n−110n.

Similarly, for h ≥ 1, L2,n−2(n) = 3n−1. Furthermore, each of those partial words

of length 3n−1 is constructed with a good word that is a factor of either 0n−11�h10n−1

or 1n−10�h01n−1.

Proof. For (1), �h01n has 2n distinct subwords of length n = h+1. Those 2h that end

with 0 are compatible with the factor �h0, those 1 + · · ·+ 2h−1 ending with 01i, where

1 ≤ i ≤ h, are compatible with �h−i01i, and 1n appears as a factor, for a total of 2n

subwords. For (2), set w = 0n1�h01n. The pre�x of length 2n is 0n1�h and the su�x

of same length is its reverse complement, and so these factors are 2n-complex by (1).

For 1 ≤ i ≤ n, consider the factor ui = 0n−i1�n−101i−1 that starts at position i of w.

It has all words of length n that start with 1 or end with 0 as subwords, since they

are compatible with 1�n−1 or �n−10, respectively. Now, consider a word of length n

that starts with 0 and ends with 1. Either it has a pre�x of the form 0j1 for some

1 ≤ j ≤ n− i, compatible with 0j1�n−j−1, or it has a su�x of the form 01j for some

1 ≤ j ≤ i− 1, compatible with �n−j−101j. Consequently, L2,n−1(n) ≤ 2n holds and it

is not di�cult to see that L2,n−1(n) ≥ 2n also holds.

Thirdly, we show that L2,2(n) = 2n − 2n + 2 for n ≥ 6. We �rst show that

2n − 2n + 2 is an upper bound. For n ≥ 6, we de�ne a digraph G′n as follows: Start

with the de Bruijn graph Gn = G2(n). Trim Gn by deleting all edges that are in
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Subz(n), where z = 0110n−4��10n−2. Then, add a new edge from 0110n−4 to 10n−2

labelled by z. Remove any isolated vertices.

Lemma III.2 ([6]). For n ≥ 6, if G′n is weakly-connected, then G′n has an Eulerian

path.

Proof. Using Lemma II.1, it is su�cient to show that there exist vertices x, y in G′n

such that odeg(x) = ideg(x) + 1 and ideg(y) = odeg(y) + 1, and for all vertices v /∈

{x, y}, ideg(v) = odeg(v). Note that z = 0110n−4��10n−2 satis�es pz(n) = 4n − 2,

with repeated subwords 0110n−3 and 110n−2. Then, observe that 0110n−4 and 10n−2

have degree (1, 1). Now suppose that v is a subword of z of length n − 1 not equal

to 0110n−4, 10n−2, 110n−41, or 010n−3. Note that v is a pre�x of some v1 and a su�x

of some v2, where v1 and v2 are subwords of length n of z. Therefore, v remains

balanced (e.g., ideg(v) = odeg(v)). Finally, vertices 110n−41 and 010n−3 have degree

(1, 0) and (0, 1), respectively.

Lemma III.3 ([6]). For n ≥ 6, G′n is weakly-connected.

Proof. We show that there exists a path from any vertex u in G′n to v = 110n−41.

First, 11110n−4, 1110n−41 6∈ Subz(n), so it is su�cient to show that there exists a

path from u to v′ = 11110n−5. Since z avoids 14, if u ends in 111 we are done, as

u[0..n−4)14, u[1..n−4)140, . . . , 140n−4 is a valid path to v′. So, if we can reach a vertex

ending in 111 we are done. Now, suppose that u ends in 11, and that u1 ∈ Subz(n)

(so there is no edge from u to a vertex ending in 111). This implies u = 10n−411.

However, 10n−4110, 0n−41101, 0n−511011, 0n−6110111 provides a valid path to a vertex

ending in 111, implying that there exists a path from u to v as desired. So, if we can

reach a vertex ending in 11 we are done.
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Next, suppose that u ends in 01, and that u1 ∈ Subz(n) (so there is no edge

from u to a vertex ending in 11). This implies u = v or u = 10n−31. In this case,

10n−310, 0n−3101, 0n−41011 provides a valid path to a vertex ending in 1. Therefore,

if we can reach a vertex ending in 1 we are done. Furthermore, 0n−11 6∈ Subz(n), so

there exists a path from 0n−1 to v. Last, suppose that u ends in 0. If u1 6∈ Subz(n)

we are done. Furthermore, if u0, u1 ∈ Subz(n), we have that odeg(u) = 0, so that

u = v or u is isolated. Thus, if u 6= v and u is not isolated, u is connected to a vertex

ending in 00. Repeating the above argument, we get that either u is connected to v,

or u is connected to un−2 = 0n−1. In either case, u is connected to v.

Lemma III.4 ([6]). Let u = x�w�y, where x,w, y are full words, be 2n-complex.

Then (1) |u| ≥ 2n − 2n + |w|, with equality only if u has no repeated subwords and

(2) if |x| = n − 2 − |w| − p (similarly, |y| = n − 2 − |w| − p) for p ≥ 0, then

|u| ≥ 2n − 2n + 3p + |w|, with equality only if u has no repeated subwords.

Proof. Note that |F0(u, n)| = |u|−n+1−|F1(u, n)|−|F2(u, n)|. For (1), looking at the

positions of the holes in u, we have |F1(u, n)| ≤ 2|w|+ 2 and |F2(u, n)| ≤ n− |w| − 1.

Notice that if |w| ≥ n, then |F2(u, n)| = 0. Thus, 2n ≤ |u| − n + 1 + |F1(u, n)| +

3|F2(u, n)| ≤ |u| + 2n − |w|. For (2), we have |F1(u, n)| ≤ 2|w| + 1 and |F2(u, n)| ≤

n−1−p−|w|. Thus, 2n ≤ |u|−n+1+|F1(u, n)|+3|F2(u, n)| ≤ |u|+2n−3p−|w|−1.

Theorem III.5 ([6]). For n ≥ 6, L2,2(n) = 2n − 2n + 2.

Proof. From Lemmas III.2 and III.3, there exists an Eulerian path in G′n. Traversing

it generates a word w of length 2n − pz(n) + |z| = 2n − 4n + 2 + 2n = 2n − 2n + 2

with pw(n) = 2n, and so L2,2(n) ≤ 2n − 2n + 2. Now let u = x�w�y be 2n-complex,

where x,w, y are full. By Lemma III.4, if |u| < 2n − 2n + 2, we have |w| ≤ 1 and
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|x|, |y| ≥ n−2−|w|. Furthermore, [8, Corollary 2] tells us |u| ≥ 2n−2n, so for n ≥ 6,

if |x| = n − 2 − |w|, then |y| ≥ n − 1 − |w|, and similarly, if |y| = n − 2 − |w|, then

|x| ≥ n− 1− |w|. Let a, b be the letters of the alphabet.

First, assume that |x| = n− 2− |w| (the case where |y| = n− 2− |w| is similar).

Thus, |y| ≥ n− 1− |w| and by Lemma III.4(2), |u| < 2n − 2n+ 2 only if |w| = 0 and

u has no repeated subwords. Therefore, we can write u = x��ỹcy′, where y = ỹcy′,

c ∈ {a, b}, y′ is some (perhaps empty) full word and |ỹ| = n − 2. Now let ỹa = aỹ

and ỹb = bỹ. Note that ỹac, ỹbc ∈ Subu(n). Furthermore, ỹac, ỹbc are also full words

of length n, where c is complement of letter c, and thus must appear starting at a

di�erent index in u as well. At most one of ỹac, ỹbc is compatible with a pre�x of u.

Assume without loss of generality that ỹac is not compatible with a pre�x of u. Thus,

eỹac, for some letter e, appears somewhere implying that eỹa ∈ Subu(n) is a repeated

subword, a contradiction.

Next, assume that both |x|, |y| ≥ n − 1 − |w|. By Lemma III.4(1), |w| < 2 and

|u| < 2n − 2n + 2 only if u has zero or one repeated subwords. We show that u

contains at least two repeated subwords. We can write u = x′dx̃�w�ỹcy′, where

x = x′dx̃, y = ỹcy′, c, d ∈ {a, b}, x′, y′ are some (perhaps empty) full words and

|x̃| = |ỹ| = n − 2 − |w|. Similar to above, let x̃a = x̃aw, x̃b = x̃bw, ỹa = waỹ, and

ỹb = wbỹ. All of dx̃a, dx̃b, ỹac, ỹbc ∈ Subu(n). By similar reasoning to above, without

loss of generality dx̃a appears (not compatible with a su�x) somewhere else in u.

This implies that x̃af is a repeated subword for some letter f . Likewise, eỹa is also

a repeated subword for some letter e, implying that |u| ≥ 2n − 2n + 2. This case is

summarized below:
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u = x′0 · · · · · ·x′i−1d
x̃a, x̃b︷ ︸︸ ︷

x̃0 · · · · · · x̃n−3−|w|�w �ỹ0 · · ·

dx̃af︷ ︸︸ ︷
· · · ỹn−3−|w|cy′0 · · · · · · y′j−1

u = x′0 · · ·

eỹac︷ ︸︸ ︷
· · ·x′i−1dx̃0 · · · · · · x̃n−3−|w|�

ỹa, ỹb︷ ︸︸ ︷
w�ỹ0 · · · · · · ỹn−3−|w| cy′0 · · · · · · y′j−1

Thus, |u| ≥ 2n − 2n + 2, so L2,2(n) ≥ 2n − 2n + 2.
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CHAPTER IV

DISCUSSION

In this chapter, we o�er conjecture for the length of binary de Bruijn partial words

in the case where h ≥ 2, n = h + 3 and present open questions.

4.1 Conjecture for the binary h ≥ 3, n = h + 3 case

There is evidence suggesting that in the h ≥ 2, n = h+3 case, there exist 2-ary de

Bruijn partial words that can be constructed from good words z that follow a pattern.

Conjecture IV.1. Let h ≥ 2 and let n = h+ 3. Then a 2-ary de Bruijn partial word

w of order n with h holes can be built by �rst selecting a good word z as follows:

z =


0001��0110 if n = 5;

0n−21�h01
n−2
2 0

n−2
2 if n is even;

0n−21�h01
n−3
2 0

n−1
2 otherwise.

Then w corresponds to an Eulerian path in G = G2(n, z, R) constructed as described

in Algorithm 6.

Consider z = 0001��0110 for h = 2, n = 5. Let G′ = G2(5, 0001��0110). Then we

�nd a single Eulerian path from 1011 to 0010 in G′, which corresponds to the path

label 101111000001��011010010, a binary de Bruijn partial word of order 5 with 2

holes (see Figure 14).
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Figure 14. G2(5, 0001��0110)

For h = 3, n = 6, we take z = 00001���01100. The resulting graph G2(6, z) does

not have an Eulerian path; we build an Eulerian path with a label of minimal length

by adding edges 0101011, 0001010, and 0010011 (see Figure 15) and call the resulting

graph G′. We observe G′ contains the path

10111
101111−→ 01111

011111−→ 11111
111111−→ 11111

111110−→ 11110
111100−→ 11100

111000−→ 11000

110000−→ 10000
100000−→ 00000

000000−→ 00000
000001−→ 00001

00001���01100−→ 01100
011001−→ 11001

110010−→ 10010
100100−→ 00100

which is similar to the Eulerian path in the graph in Figure 14. Both paths start in

node 101n−3; both traverse 01n−1, then 1n, followed by a sequence of edges 1n−i0i for

1 ≤ i ≤ n, then 0n−11 and z.

Note that most vertices in G′ have both an indegree and an outdegree of 1. When

such a vertex is reached in a path in G′, there is only a single possibility for the

next traversed edge. Furthermore, when 0n−1 (or 1n−1) is �rst reached in an Eulerian
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path, 0n (or 1n) must be the very next edge travelled, followed by 0n−11 (or 1n−10).

This allows us to reduce the size of our digraph by replacing each longest sequence

of edges forming an �unavoidable� path in G′ from vertex u to vertex v with a single

edge (u, v) and removing isolated vertices. For example, the path above corresponds

to label 101111110000001���01100100; we can add an edge from 10111 to 00100 with

this label and remove all of the edges belonging to the path from our graph, along

with any vertices that become isolated (see Figure 16). Thus, we have a condensed

graph equivalent to G′. Figures 17 and 18 for the h = 4, n = 7 and h = 5, n = 8

cases are reduced in this way for clarity (otherwise, they contain too many vertices

to draw clearly). All edges added to weakly-connect or weakly-balance a digraph are

shown. Also note that each separate component of G′ existing before edges 0101011,

0001010, and 0010011 are added is enclosed in a grey box.

For h = 4, n = 7, we have:

01101110010001110011101111010000101101010010101111

11100000001����0110001001111

of length 78 for the potentially good word z = 000001����011000 (compared to length

134 for a binary de Bruijn full word of order 7), and for h = 5, n = 8, we have:

101011111111000000001�����011100010001111001100011

00111101100001001111101111001000011011111010000010

1110101000101010100110101100101001011011010010010
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of length 149 for the potentially good word z = 0000001�����0111000 (compared

to length 263 for a binary de Bruijn full word of order 8). While no shorter 27 or

28-complex words have been discovered in the course of this research, these have not

yet been veri�ed as de Bruijn partial words.

Figure 15. G2(6, 00001���01100) with added edges

Figure 16. G2(6, 00001���01100) with added edges, condensed
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Figure 17. G2(7, 000001����011000) with added edges, condensed

4.2 Conclusion

The question of binary de Bruijn partial word length has been determined for the

one- and two-hole cases, along with cases for n−1- and n−2-hole cases. A de Bruijn

partial word can be constructed for each of these cases in linear time. The question

of length is still open for binary de Bruijn partial words in the general case for h ≥ 2.

Figure 19 summarizes the �ndings of known 2n-complex words of minimal lengths for

cases of n and h, with �gures in bold representing lengths for con�rmed de Bruijn

partial words. Binary de Bruijn partial words with one-hole can be counted using

Laplacian matrices, and in the n − 1- and n − 2-hole cases, they can be counted by

counting factors of the special words constructed in Theorem III.1.
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Figure 18. G2(8, 0000001�����0111000) with added edges, condensed

For the k-ary case with k ≥ 3, the length of a k-ary de Bruijn partial word of

order n with h holes is known for the one-hole case and can be constructed e�ciently.

The length of k-ary de Bruijn partial words with h ≥ 2 is an open question. Counting

de Bruijn partial words is an open question for all k ≥ 3.
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Figure 19. Some L2,h(n) lengths
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