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Chapter 1

Introduction

Diabetes mellitus (DM) is the fastest growing disease in the world with over 400 million
sufferers [Atlas]. As the world grows wealthier and access to large quantities of food with
high glucose content increases the incidence of metabolic diseases follows. This is especially
true in developing countries where the local culture regarding food has to adapt to not only
an increase in the quantity of food but also an influx of western-style foods, many of which
are more energy dense than the native diet [Hu, 2011]. As an example, many pacific islands
have an adult population that are over 70% overweight, with American Samoa reaching
close to 90% and an associated diabetes rate of almost 50% [Hawley and McGarvey, 2015].
Furthermore, some populations, such as south Asian people, are thought to have a genetic
predisposition to diabetes and associated diseases [Chowdhury et al., 2014].

Aside from being a common disease DM is also one of the world’s oldest known. The
name “diabetes” derives from “to pass through” in ancient Greek, which relates to the
excessive urination of sufferers. DM shares this name with the unrelated disease diabetes
insipidus. The word “mellitus” means sweet and refers to the excess of glucose in the urine
making it smell sweeter than normal. Even with such ancient origins, it took until the
turn of the century until it was understood as a disease of the pancreas, and about 20
years more until insulin could be isolated [Eknoyan and Nagy, 2005]. Before the discovery
of insulin as the treatment of diabetes very few sufferers survived for long, especially in
the case of type 1 diabetes as it is more severe and occurs early in life. Nowadays people
with well-controlled diabetes live relatively normal lives although usually with eventual
chronical problems at older ages and slightly shorter life spans [Miller et al., 2012].

With the frequency of diabetes increasing much research is focused on understanding the
origin of the disease. An adjacent field, more commonly studied by medical professionals,
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are the effects of diabetes on the sufferers. While complications such as diabetic foot ulcers
and diabetic glaucoma are well known, not as much is known about the holistic chronic
effects of hyperglycemia on the body as most research is performed on mice, an animal not
so close to humans in metabolism. This work is thus concerned about the effect of chronic
insulin deficiency and hyperglycemia in pigs, an animal remarkably similar to humans in
metabolism and anatomy. The Munich MIDY Pig biobank, which was conceived shortly
before the start of this project as a source for controlled and translational diabetes research,
serves as the perfect research subject to answer these type of questions. This work describes
the thorough multiomics analysis of the MIDY pig liver as well as the more recent analysis
of adipose tissues in the biobank.

The work described in this dissertation is also part of two publications:

M. Backman, F. Flenkenthaler, Andreas B., M. Dahlhoff, E. Ländström, S. Renner, et
al. Multi-omics insights into functional alterations of the liver in insulin-deficient diabetes
mellitus. Mol Metab, 26:30–44, 2019.

A. Blutke, S. Renner, F. Flenkenthaler, M. Backman, S. Haesner, E. Kemter, et al.
The munich midy pig biobank - a unique resource for studying organ crosstalk in diabetes.
Mol Metab, 6(8):931–940, 2017.



Chapter 2

Literature review

2.1 Sub-types of Diabetes mellitus

Traditionally diabetes as a disease is divided into three major classes along with numerous
smaller groups.

2.1.1 Diabetes mellitus type 1 (DM1)

DM1 is a chronic disease that typically manifests during childhood or teenage years. The
disease currently has no cure, however, treatment is sufficiently advanced that sufferers
can live a relatively normal life when handled well. The origin of DM1 is complex, en-
vironmental triggers lead to an autoimmune attack on the insulin-producing beta cells of
the pancreas which causes a reduced insulin output and eventually a total loss of beta cells
leading to chronic hyperglycemia. The exact cause of this autoimmune response has not
yet been elucidated, it is thought that antibodies against beta cell antigens in combination
with dysregulated immune cells are at least part of the pathogenesis [Kahaly and Hansen,
2016]. There is a genetic component as the disease tends to run in families with multiple
genes known to increase susceptibility. Most notable are the genes of the MHC class II,
aka the HLA genes, as they modulate histocompatibility which is important for autoim-
mune responses. The incidence of DM1 worldwide is 40 million [Tuomilehto, 2013]. The
incidence rate varies greatly between parts of the world with richer countries, particularly
those of northern Europe, generally having a higher rate of incidence, however, the number
of sufferers have been steadily rising every year.



4 2. Literature review

2.1.2 Diabetes mellitus type 2 (DM2)

Contrary to DM1, DM2 is a disease of metabolic origin. The root of the disease is insulin
resistance, a condition where the cells of the body lose sensitivity to insulin signaling [Ce-
falu, 2001]. The primary tissues to be affected by insulin resistance are skeletal muscle and
adipose tissue as these tissues feature the insulin-dependent transporter GLUT4 [Mueckler,
2001]. Insulin resistance is not enough for a DM2 diagnosis, DM2 is a combination of in-
sulin resistance and beta-cell failure [Matveyenko and Butler, 2008]. DM2 generally occurs
later in life and is closely associated with obesity and a sedentary lifestyle. As the symp-
toms of insulin resistance develop slowly, the period of transition to full DM2 is termed
as prediabetes. Due to the lifestyle origin of DM2, it is usually seen as more preventable
compared to DM1. However, it should be noted that DM2 has a very strong co-occurrence
between identical twins even if the disease sets in at different times, suggesting a significant
genetic background [Medici et al., 1999]. Worldwide the incidence of DM2 is around 350
million, a number that is quickly rising due to mentioned lifestyle changes.

2.1.3 Gestational diabetes

Gestational diabetes is the final major diabetes group. Just as in DM2 the cause of gesta-
tional diabetes is insulin resistance, however, with gestational diabetes this is temporary
and associated with pregnancy. Although the pathogenesis of gestational diabetes is un-
known, it is thought to originate from already fragile beta-cells in combination with the
changes in hormone signaling during pregnancy [Kaaja and Ronnemaa, 2008]. The inci-
dence of gestational diabetes is around 5% per pregnancy, however very few women retain
the diabetic phenotype after the gestational period is over, although some develop DM2
afterwards [Kampmann et al., 2015]. Notably, children from mothers with gestational
diabetes are more likely to be obese and to develop DM2 at an early age [Group, 2002].

2.1.4 Other diabetes types

The fourth category of diabetes is composed of several different origins grouped together.
These are diabetes types that occur in low frequency and thus are not in the focus of most
research. Maturity-onset diabetes of the youth (MODY) is a group of monogenic diabetic
diseases that due to an autosomal dominant mutation hinder insulin production. Other
causes can be related to another disease such as pancreatitis or cystic fibrosis, or when
diabetes is induced chemically or by drugs, for example by glucocorticoids.
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2.1.5 Diabetes as a spectrum

While the disease diabetes is normally divided into these groups, in reality the disease
is more of a spectrum, where DM1 partients sometimes also have lower levels of insulin
resistance and DM2 patients usually have some decrease in beta cell mass [Brooks-Worrell
and Palmer, 2011]. Thus, while the diseases have differences in their origins and exact
effect upon the sufferer, research findings from one subtype can still have an impact on the
handling of the other. Even the origin of the diseases might be more closely linked than
previously thought; a recent hypothesis is that beta cell fragility, i.e. the susceptibility
of beta cells to apoptosis, might be a common factor that contributes to both diseases
[Dooley et al., 2016].

2.2 The long term complications of diabetes

Prolonged hyperglycemia and reduced insulin signaling affect the body in many different
ways. Two of the most common origins of complications are angiopathy and defective
wound healing. The glucose intake of the endothelial cells that line vasculature are inde-
pendent of insulin, which results in an increased sugar uptake proportional to the blood
glucose content into the endothelia during hyperglycemic conditions [Vithian and Hurel,
2010]. The high level of intracellular glucose also leads to higher levels of reactive oxygen
species (ROS). ROS originate from the energy metabolism of the mitochondria and are one
of the main perpetrators of oxidative stress in the cell [Brownlee, 2005]. Over time this will
lead to an increase in advanced glycation end products (AGEs) on the plasma membrane of
these cells, leading to a thicker basal membrane and thus vascular hypertension [Charonis
et al., 1990]. Additionally, AGEs can interact with the receptor for advanced glycation end
products (RAGE), which can further stimulate an increased ROS production, along with
an increase in anti-inflammatory response [Kay et al., 2016]. The production of ROS can
be altered by controlling the mitochondrial activity, for example by mitochondrial uncou-
pling [Mailloux and Harper, 2011a]. Mitochondrial uncoupling is when electrons are not
used for ATP generation because of some mechanism, such as an open proton transporter
through the inner membrane.

The effects of capillary damage are different depending on the location [Fowler, 2008].
Diabetic neuropathy is a progressive damage to neurons due to worsening blood flow [Ma-
lik, 2014]. Diabetic retinopathy has a similar pathogenesis with the retina degenerating
and malformed due to a lack of blood access [Ahsan, 2015]. Diabetic retinopathy is one
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of the leading causes of blindness and affects a majority of diabetes sufferers. Diabetic
nephropathy stems from the small blood vessels of the glomerulus, the blood filtration
unit, which are damaged during diabetes [Cao and Cooper, 2011]. Diabetic foot is a con-
sequence of neuropathy and decreased wound healing where a small wound can lead to the
amputation of a whole leg due to bad circulation and healing [Dinh and Veves, 2005].

2.3 Insulin expression

The hormone insulin is produced from the INS -gene, which is expressed only in the beta
cells of the pancreas. The beta cells are organized together with glucagon producing
alpha cells to form the Islets of Langerhans, cell clusters that are spread throughout the
pancreas in islands, which also is the origin of the name insulin. In addition, the Islets
of Langerhans include several other minor endocrine cells such as the delta cells which
produce the endocrine regulating hormone somatostatin, epsilon cells which produce the
hunger hormone ghrelin, and PP cells which produce pancreatic polypeptides that regulate
the other cells of the pancreas. In total, the beta cells make up only around 1% of the
pancreatic cells [McEvoy, 1981]. As the beta cells’ main function is the production of
insulin, the biology of the cells is centered around this task as well. When glucose reaches
the cells after food intake, it activates several transcription factors that activate the beta
cells and induces insulin production [Andrali et al., 2008]. Since the functional insulin
hormone is a processed polypeptide, several steps of posttranslational modifications are
carried out. As the translation of the polypeptide is carried out, the signal peptide will
anchor the ribosome to the ER and the growing peptide, the pre-proinsulin, will complete
its formation inside the organelle [Kim et al., 2012]. Once translation has completed,
proinsulin is formed by the removal of the signaling peptide. Proinsulin is composed of three
peptide chains; the A-chain, the C-peptide, and the B-chain. In the final insulin product
the C-peptide is removed and two disulfide bonds are formed between the A-chain and the
B-chain cysteines, while a third disulfide bond is formed between cysteines in the A-chain.
The processing steps to this point also involve the packaging of the proinsulin into secretory
vesicles by the Golgi apparatus [Huang and Arvan, 1994, Weiss, 2009]. Conveniently the C-
peptide is released together with the finished insulin product, allowing for the quantification
of endogenous insulin when insulin is administered as a treatment [Van Cauter et al., 1992];
although it should be noted that C-peptide has some functions of its own [Marques et al.,
2004]. It also happens that proinsulin is released before it is processed, and as proinsulin
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is more stable than insulin a moderate amount can be found in the blood. In most cases of
diabetes the expression of insulin is altered. DM2 usually has a minor to an intermediate
reduction in beta-cell function, while in DM1 the beta cell mass is almost completely lost.

2.4 Mutant Insulin induced Diabetes of the Youth

Within the MODY denomination of diabetes an insulin specific mutant group named Mu-
tant INS-gene-induced Diabetes of the Youth, aka MIDY exists [Liu et al., 2010]. The
individuals who have this type of mutation are typically diabetic from birth and require
insulin treatment their entire life. The molecular origin of the MIDY condition depends
on which specific amino acid is mutated, however most mutations lead to errors in the
folding of the proinsulin peptide. Most commonly a cysteine residue is mutated resulting
in an altered disulfide bond configuration and thus a misfolded peptide. The misfolded
proinsulin peptides form complexes which impair the normal proinsulin trafficking to the
Golgi apparatus. Eventually, the proinsulin buildup in the ER will overwhelm the cellular
machinery and induce apoptosis of the beta cells, something already described in other
forms of diabetes [Eizirik et al., 2007]. As the beta cells die off, fewer insulin producers
remain which increases the demand on the remaining cells and thus induce a positive re-
inforcement loop where all beta cells eventually die off. The MIDY subsection of diabetes
thus mimics DM1 without including the autoimmune component. As insulin secretion oc-
curs already in embryos [Ashworth et al., 1973], sufferers will exhibit a neonatal diabetes
which requires treatment to survive.

Several animal models of MIDY exist, the most notable of them being the Akita mouse
[Yoshioka et al., 1997]. The Akita mouse has a C96Y (cysteine mutated to tyrosine at
position 96) mutation in the Ins2 gene [Wang et al., 1999], one of the two insulin genes
in mouse, which causes a phenotype of total beta-cell loss. This reflects a rare human
mutation requiring life-long diabetes care [Ahamed et al., 2008]. The Akita mouse is used
to study complications such as renal dysfunction [Kitada et al., 2016] and retinopathy [Han
et al., 2013].

2.5 The liver

As the main organ regulating metabolism, the liver is closely connected to diabetes. The
liver has muliple functions, such as handling toxic metabolites [Jaeschke et al., 2012],
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producing bile acids [Russell, 2003], and maintaining homeostatic levels of metabolites
[Klover and Mooney, 2004, Cynober, 2002, Raghow et al., 2008]. New nutrients enter
the bloodstream by the intestines and are then directly transported to the liver by the
hepatic portal vein to be processed. The liver is supplied with blood from two sources; the
aforementioned hepatic portal vein which brings nutrient-filled but deoxygenated blood,
and the hepatic artery which brings the oxygen required for the organ to function [Waseem
and Chen, 2016]. Importantly, the portal vein also brings insulin directly from the pancreas
to the liver, allowing for a rapid response to changes in blood glucose. When insulin
stimulates the liver it is taken up and partially degraded by the hepatocytes, which means
that the rest of the body experiences a lower insulin dose compared to the liver [Geho,
2014]. Around 12000 genes are transcribed in the liver, which is around 60% of all active
genes in humans [Uhlén et al.].

2.5.1 Structure of the liver

The human liver is made up of four lobes, widely different in size but similar in function
[Bismuth, 1982]. The porcine liver has three lobes structured differently, however these are
quite similar to humans as the sub-segmentation matches between the species [Court et al.,
2003]. The organ as a whole is relatively homogeneous without great differences in function
for the different lobes. On a microscopic level however, the liver is highly structured and
heterogeneous. Hepatic lobules are structural units of the liver that are hexagonal and
works as the building blocks of the liver. They contain, in the inward direction, the portal
triad, the sinusoids, and the central vein. The portal triad consists of the portal venule
and hepatic arteriole bringing blood to the tissue together, as well as the bile duct leading
bile away from the tissue. The blood is led from the portal triad towards the central vein
passing through the hepatic sinusoids, with hepatocytes closer to the portal vein having
functions and oxygen levels different to the cells close to the central vein [Matsumura et al.,
1986].

2.5.2 The sinusoid

The sinusoid is the functional unit of the liver. The sinusoid is surrounded by epithelial
cells which are highly fenestrated (that is to say contain many openings) and are in turn
surrounded by hepatocytes [Braet and Wisse, 2002]. The space between the epithelial cells
and the hepatocytes are called the perisinusoidal space, or the space of Disse, and contain
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blood plasma filtered by the epithelial cells. Additionally, the perisinusoidal space contains
the Hepatic Stellate Cells (HSC) which are the pericytes of the liver, comprising around
15% of the livers cells [Geerts, 2001]. As the name suggests these cells are star-shaped and
surround the capillaries. During normal hepatic conditions, the HSCs are used as storage
for retinol (vitamin A) containing 80% of the body’s total retinoid content [Blomhoff and
Blomhoff, 2006]. During times of stress however, the HSCs become activated and drasti-
cally change their function into fibroblasts, disposing collagen into the perisinusoidal space
[Mormone et al., 2011]. Overproduction of this collagen is the pathogenesis of cirrhosis, the
final stage of fatty-liver. The final important cell type of the sinusoid is the Kupffer cell,
the liver’s resident macrophage. The Kupffer cells are scavengers which by endocytosis take
up and break down bacteria and red blood cells. As the liver is located directly after the
intestines in the blood flow and thus receives the brunt of endotoxic and xenobiotic mate-
rial [Fox et al., 1987], the immune system of the liver is more immunotolerant compared to
other organs [Thomson and Knolle, 2010]. The Kupffer cells reflect this immunotolerance
by being able to suppress t-cell function in several ways [Ju et al., 2003], one being the
suppression of regulatory t-cell activity in the liver [Breous et al., 2009].

2.6 Metabolism of the liver

Metabolically the liver is responsible for maintaining the glucose homeostasis along with
taking part of regulating the concentrations of other metabolites such as amino acids and
lipids [Klover and Mooney, 2004, Cynober, 2002, Raghow et al., 2008]. Hepatocytes have
two metabolic modes; when glucose is available in high levels glycolysis is active, and when
glucose is low gluconeogenesis is active. Glycolysis is the conversion of glucose to ATP,
a process that is active in most cells. This conversion happens through several metabolic
steps that end with the citric acid cycle (TCA cycle). When glycolysis is active the liver
focuses on maintaining the levels of other metabolites, mainly lipids in the form of tria-
cylglycerol (TAG). The liver then exports TAG to the bloodstream where it can be taken
up and stored by adipose tissue. During gluconeogenesis however, the liver reverses the
glycolysis reaction and starts producing glucose from ATP and TCA cycle components in
order to export glucose into the blood and maintain blood sugar levels. This is a reaction
that mainly occurs in hepatocytes [Widmaier et al., 2008]. The gluconeogenesis pathway
uses the same metabolic intermediates as glycolysis with three enzymes, glucokinase, phos-
phofructokinase, and pyruvate kinase being replaced by gluconeogenic enzymes glucose 6
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phosphatase (G6Pase), fructose 1,6-bisphosphatase (Fbpase), pyruvate carboxylase (PC),
and phosphoenolpyruvate carboxykinase (PEPCK) [Oh et al., 2013]. To feed gluconeoge-
nesis, hepatocytes start to break down amino acids and fatty acids so that they can be
converted into TCA components. During the breakdown of fatty acids, the amount of
acetyl-CoA is disproportionately high compared to oxaloacetate, and can thus not enter
the TCA cycle properly. When this happens acetyl-CoA can be funneled into producing
ketone bodies through the process known as ketogenesis [Newman and Verdin, 2014]. Ke-
tone bodies are an alternative energy source to glucose, and more specifically the ketone
body beta-hydroxybutyrate is exported to the blood from the liver under low glucose con-
ditions. Ketone bodies are however acidic meaning that there is a limit on how many of
them can be released before blood acidity becomes damaging.

2.7 Diabetes and the liver

Diabetes is known to affect the liver in multiple ways. As the liver is the first organ to
receive secreted insulin through the portal vein it also receives the highest amount of the
hormone. Since the liver clears most of the insulin after endocytosis, it is exposed to a far
higher level of insulin compared to other tissues [Wang et al., 2014, Bojsen-Møller et al.,
2018, Geho, 2014]. Contrary to adipose and muscle tissues which use GLUT4 as a glucose
transporter, the liver uses GLUT2 which is not affected by insulin [Dimitriadis et al.,
2011]. Instead, insulin affects the rate of glycolysis which in turn lowers the intracellular
glucose levels facilitating glucose intake. In a diabetic organism with high blood sugar and
no insulin, constitutive gluconeogenesis and glucose export from the liver will lead to even
higher blood glucose levels. Since ketogenesis is ongoing, ketone bodies will make the blood
progressively more acidic, and in DM1, where insulin is totally absent, this can lead to the
condition of diabetic ketoacidosis where the blood becomes so acidic that the sufferer is in
mortal danger [Chua et al., 2011]. It has been shown that during treatment of diabetes
most subcutaneously administered insulin is absorbed by periphery organs with barely any
hormone reaching the liver [Geho et al., 2009].

Associated with DM2 is NAFLD, aka non-alcoholic fatty liver disease. Although dia-
betic NAFLD is not entirely understood, it is thought to be related to insulin resistance
[Tilg et al., 2017]. Increased fat deposition in the liver eventually causes storage of fatty
acids to reach damaging levels as the tissue is inflamed and scarring occurs. Even in DM1
this can be an issue, although to a lower degree. DM1 fatty liver is not well studied,



2.8 Insulin signaling in the liver 11

although there are hypotheses for its origin including dysregulated lipoprotein ratios and
abnormal lipid biogenesis [Regnell and Lernmark, 2011]. There are some evidence that
NAFLD and insulin resistance leads to a higher level of endotoxins in sufferers [Harte
et al., 2010].

2.8 Insulin signaling in the liver

Since much of research on the diabetic liver is focused on NAFLD and insulin resistance, not
as much is known about the effects of pure insulin deficiency on the organ. Nevertheless,
research has been done on the insulin signaling within the organ. Insulin is bound to
the insulin receptor (INSR) which starts a chain reaction of signaling protein activations
[White, 1998]. Insulin receptor substrate 2 (IRS2) and to a lesser degree also insulin
receptor substrate 1 (IRS1) are activated by the insulin receptor [Rother et al., 1998, Kido
et al., 2000], which in turn activate PI3K, a regulatory enzyme involved in many processes.
PI3K activates AKT, which in turn inhibits gluconeogenesis by inhibition of PEPCK and
G6Pase, and enhances glycogen synthesis. Lipid catabolism is also stimulated by insulin
through sterol regulatory element-binding proteins (SREBPs) transcribed by the SREBF1
and SREBF2 genes. SREBF1 is responsible for lipogenesis and low-density lipoprotein
(LDL) production while SREBF2 activation leads to transcription of enzymes involved in
sterol synthesis [Horton et al., 2002].

2.9 Adipose tissue and diabetes

Contrary to insulin signaling in the liver, insulin directly influences the uptake of glucose
into adipose tissue by GLUT4 [Kandror and Pilch, 1996]. In the absence of insulin GLUT4
is stored in intracellular vesicles which are translocated to the cell membrane upon insulin
stimulation and activation of PI3K and AKT. The main goal of insulin in adipose tissue is
to suppress lipolysis, the enzymes responsible for freeing fatty acids from the adipocytes.
With low levels of insulin more than normal lipase activity is happening, leading to an
increase in FFA.
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2.10 Gluconeogenesis and amino acids

Amino acids can be categorized in several different ways. Glycogenic amino acids are the
amines which when metabolized for energy are converted into a Krebs cycle intermediate
and can thus be utilized in the production of glucose through gluconeogenesis. Ketogenic
amino acids are in contrast converted into acetyl-CoA and can thus not be utilized for
glucose production under gluconeogenic conditions. Out of the proteogenic amino acids,
only lysine and leucine are fully ketogenic, while tryptophan, tyrosine, threonine, isoleucine,
and phenylalanine are both ketogenic and glycogenic.

2.10.1 Amino acids relevant to diabetes

In addition to the glucogenic/ketogenic categorization, amino acids have other metabolic
functions relevant to the diabetic condition. When amino acids are broken down they leave
behind nitrogen in the form of ammonia, which is toxic. To get rid of the ammonia the
liver uses the urea cycle to convert it into urea which is soluble and can be excreted in the
urine. Glutamate functions as the carrier of ammonium and enters the urea cycle together
with aspartate, eventually generating urea along with metabolites alpha-ketoglutarate and
oxaloacetate. Arginine is a part of the urea cycle together with non-proteinogenic amino
acids ornithine and citrulline [Morris Jr, 2002]. Branched-chain amino acids (BCAAs)
are mainly metabolized in the skeletal muscle, contrary to other amino acids which are
metabolized in the liver [Vary and Lynch, 2007]. BCAAs have an anabolic effect and are
linked to the development of DM2 by their activation of mTORC1 [Yoon, 2016].

The amino acids serine, glycine, and methionine are part of the folate metabolism,
an anabolic network that produces both building blocks for cell growth in the form of
one-carbon units, as well as methylations [Locasale, 2013]. The system relies on tetrahy-
drofolate (THF) to manage one-carbon units. Cleaving glycine through the glycine cleavage
system produces methyltetrahydrofolate (MTHF) from THF. Serine in reaction with THF
creates glycine as well as MTHF. Methionine is a source of methylations in the form of
S-adenosylmethionine (SAM), and methionine can later be renewed from homocysteine by
using MTHF.

Some amino acids also have anti-oxidative properties, such as cysteine and glycine.
Cysteine has a thiol group which gives it strong antioxidant ability, however due to its
instability, it is mainly used in the cell in the form of glutathione, a tripeptide consisting
of cysteine, glycine and glutamate [Wu et al., 2004]. Cysteine can also be converted into
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taurine, a compound which is part of bile and also has antioxidant properties. As the final
stage of methionine metabolism is cysteine, methionine can also be considered a source of
anti-oxidants.

2.11 Animal models of diabetes

Traditionally the animal used to study most human diseases has been the mouse. Mice are
quick to breed and the costs of maintenance are relatively low compared to other mammals.
Additionally, as the mouse is the most studied mammalian animal model, the accumulated
knowledge about its biology and genetic techniques makes it a convenient choice. However,
since diabetes is a disease of metabolic origin the organism in where it should be studied
has to be relatively similar to humans as metabolism varies greatly between organisms of
different sizes and with differing diets. Furthermore, to study the effect of diabetes on
different organs the anatomy of the model organism also needs to be similar to humans for
the study to have translational value. Thus while mice are suited to mechanistic studies,
once the disease is studied as a whole, a more suitable animal model is needed. To induce
diabetes in rodents, chemical, surgical, viral, dietary, and genetic methods have been used
[King, 2012].

2.11.1 Diabetic pigs

An interesting animal of choice for diabetes studies is the pig (reviewed in [Wolf et al.,
2014]). The metabolism and physiology of pigs are remarkably similar to that of humans
due to both organisms being mammal omnivores of similar size. Furthermore, pigs have
short generation time for a large animal and a large litter size, allowing for efficient breeding
[Aigner et al., 2010]. There are several ways of inducing diabetes in pigs: by surgically
removing parts of the pancreas [Morel et al., 1991] or by injecting the pig with Alloxan
[Tyrberg et al., 2001] or STZ [Dufrane et al., 2006] a phenotype similar to that of DM1
can be established. However, these techniques are invasive which leads to questions about
the inherent translational value of the disease model. Several different models of DM2 also
exist [Bellinger et al., 2006].
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2.12 Biobanks

An inherent issue in working with large animal models is the maintenance cost and time
involved in breeding and maintaining the animals until adulthood. Conversely, an inherent
advantage of such a model organism is the large amount of available tissue from a single
animal. This makes large animal models perfect candidates for biobanking, an emerging
practice of storing tissue and body fluids for use at a later point [Agca, 2012]. For large
animal models of diseases such as the MIDY pig this allows for the storage of all tissues
and subsequently a truly full-scale characterization of the diseased animal. Except for the
scientific value biobanks of large animal models provide, they also have an ethical value as
they reduce the number of needed test animals.

2.13 Munich MIDY Pig Biobank

With the goal of studying the chronic effects of diabetes and hyperglycemia on the body
of a clinically relevant organism, the Munich MIDY pig biobank was established [Blutke
et al., 2017]. Under controlled conditions, 10 sows, 5 wild-type and 5 diabetic, were housed
for 2 years together. The diabetic animals were all from the MIDY subtype and in order
to minimize the outside effects all pigs were littermates. During this time the animals
were regularly measured for their insulin and glucose content. The diabetic animals were
treated with both short and long-acting insulin in order to keep them alive as the diabetes
would have caused an early death otherwise. The animals were only treated during the
day and were affected by hyperglycemia during the night in order to mimic the conditions
of a poorly compliant diabetes sufferer. At several points in the pigs’ lifetime clinical blood
measurements were taken. At the age of 2 years the pigs were euthanized. Following the
moment of death, an organized dissection of the animal’s tissues occurred whereupon the
sampled tissues were stored in a biobank. The procedure for each organ is described in Albl
et al. [2016a], and the procedure was highlighted in Abbott [2015]. In total the biobank
has around 19000 samples from over 50 different tissues and body fluids, prepared and
stored in a way suitable for a future analysis type such as omics analysis, histology, etc.
(Figure 2.1).
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Figure 2.1: Figure summarizing the Munich MIDY biobank. MIDY diabetic pigs are
grown along with WT litter mates under treatment until the age of two, when they are
euthanized and dissected, and then stored in a biobank. Heterogeneous tissues such as
the liver is randomly sampled. Tissues are prepared in such a way to make it convenient
for several different analysis including omics analyses and subsequently gene ontology and
pathway analyses. Adapted from Backman et al. [2019].

2.14 Molecular characterization of tissue

Omics is the word for high dimensional biological data obtained by experiments intended to
capture every type of a biological molecule or biological information. As data storage space
and processing speed have rapidly increased in recent years along with decreased costs of
data acquisition, omics data is more and more becoming a central part of life sciences. The
most common types of omics studies are genomics which is concerned about finding the
exact genotype of an organism by DNA sequencing [Koboldt et al., 2013], transcriptomics
which studies the changes in mRNA concentrations between organisms by sequencing of
cDNA libraries [Conesa et al., 2016], proteomics which establishes the state of an organism’s
protein content by mass spectrometry [Bantscheff et al., 2012], and metabolomics which
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measures the concentration of different metabolites again by mass spectrometry [Guasch-
Ferré et al., 2016]. Each omics data can either be looked at separately or together with
other omics types if available. The simultaneous analysis of several omics types is called
multi-omics and is one of the emerging fields in computational life science.

2.15 Transcriptomics

Contrary to the expression of proteins, which requires both transcription and translation
before they can respond to change, the expression of mRNA only requires transcription
and is thus very dynamic and rapidly changes whenever the cell is developing or adapting
to stimuli. mRNA concentration is determined by two things, transcription speed, which
varies but is on average around 3.1-3.8 kb/min, and degradation speed which varies but is
usually in the order of hours [Maiuri et al., 2011, Horvathova et al., 2017]. Due to this,
the study of transcriptome profiles by RNA-Seq experiments is popular when comparing
the biology of perturbed organisms to that of control animals. Especially in exploratory
studies this is useful as by design the entirety of the animals mRNA is captured. In the
past, microarrays were the primary tool of expression analysis, however with the advances
in sequencing technologies and the associated reduction in cost, sequencing of mRNAs have
become the preferred technology [Bottomly et al., 2011]. Another goal of transcriptomics
is finding alternate splicing events and alternatively spliced transcripts [Lee and Rio, 2015].
In recent years, the prospect of sequencing single cells has also become a reality.

2.15.1 Library preparation

The procedure of preparing RNA for sequencing is called library construction and is a vital
part of the RNA-Seq workflow. The first step is the conversion of non-ribosomal RNA to
double stranded DNA. This is followed by ligation of sequencing adapters and a PCR
reaction to amplify to levels required for sequencing. RNA is extracted with Trizol or a
similar reagent and purified after thorough homogenization of the tissues. It is important to
prevent RNAse activity as it will quickly degrade RNA. After this step library preparation
varies a lot depending on the technique. As described in the next section, rRNA removal
is an important issue, as is the way of obtaining shorter fragments that are needed for
Illumina sequencing. Tailored fragmentation of cDNA is common here using sonication or
tagmentation, however other techniques like Lexogene sense circumvent that by the use of
start/stop primers. Another approach is to not sequence the whole transcript and instead
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only sequence one read per transcript at it´s 3´end. While this is simpler and allows for
differential expression analysis, it is not possible to investigate splicing differences using
these techniques as all measured transcripts will be biased towards the 3’ end.

2.15.2 Ribosomal RNA

A major issue of mRNA analysis is the fact that 85% of the RNA in any organism is
composed of ribosomal RNA (rRNA) [Scott et al., 2010]. There are several approaches to
enriching mRNA from this total RNA pool. If this step is not done the required sequencing
depth will be much higher and an RNA-Seq experiment will be far more expensive. One
way to get rid of rRNA is to enrich only mRNAs with a polyA tail using polyT coated
beads. Another technique is to bias the random hexamer reverse transcription primers
against rRNA sequences and thus minimize rRNA cDNAs available in the library [Adomas
et al., 2010, Bhargava et al., 2013]. Both these techniques will have some bias against
different mRNA species, however the bias should be the same for genes in the same species
even if the experimental condition is different, unless alternate splice isoforms are used. A
downside of using the polyA approach is that non-coding RNAs will be excluded.

2.15.3 Sequencing of cDNA libraries

Once cDNA libraries have been established some sequencing technique has to be used for
the measurement of transcripts. The most common sequencing technique for short length
reads is the Illumina array based sequencing by synthesis. Fragments are attached to the
so called flow cell, the glass slide with reaction chambers coated with primers fitting to
adaptors used for library construction. Once attached by hybridization, the DNA strand
is converted to a double strand. After denaturing of the double stranded fragment, the
free end of the fragment hybridizes to a complementary oligonucleotide attached at the
surface of the flow cell. The elongation of this oligo creates a double-stranded DNA bridge
that is used to generate clusters of DNA by solid phase amplification. After several rounds
of amplification, sequencing is performed using dyed nucleotides blocked at the 3´-end.
The complementing strand is used as a template for the stepwise incorporation of the
dyed nucleotides, followed by capturing the color of clusters by excitation. Serially taken
pictures are used to infer the nucleotide sequence. The alternate to short read sequencing
is long read sequencing, typically performed by PacBio, or recently the nanopore.
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2.15.4 Data processing

Once cDNA is sequenced several steps of data processing commence. Each read contains
additional information like a unique identifier and quality score for each nucleotide. The
sequence data is stored in a FASTQ file, a modification of the standard FASTA sequence
data file with added quality scores [Cock et al., 2009]. Usually most reads will be in the
length of 100bp, the standard for short read sequencing, but occacionally it can be even
lower at 50bp or less. A de-multiplexing step is usually performed if multiple samples are
involved as each sample would be assigned to its own tag. This is so that all samples will
be treated equally when sequenced. Following this step, a round of quality control reveals
if there is any general sequencing error or contamination in the data. Several library
preparation methods will require that adapters are trimmed before the read is ready for
further analysis.

2.16 Bioinformatics analysis of transcriptomic data

Once data is processed each read is aligned to the reference genome of the sequenced
organism, a process commonly referred to as mapping. As transcriptomics data is gapped
due to introns, a reference file containing known gene locations usually has to be supplied,
although some mappers can find these splice sites by themselves. For transcriptomics data
several well-known read mappers exist. In the past the Tophat aligner [Kim et al., 2013],
a gapped version of the Bowtie DNA mapper, was dominant as the quickest mapper, now
several algorithms outcompete it. Most used is STAR, an extremely fast mapper that is
specifically tailored for reporting splicing events [Dobin et al., 2013].

Once mapping is done the analysis path is dependent upon the type of experiment
conducted. For differential expression analysis, the number of reads mapping to each gene
needs to be calculated. Several methods exist for this purpose, one example being HTSeq
counts [Anders et al., 2015]. The resulting count data is what is then used as an estimation
of gene expression for each gene in each sample.

When determining whether or not a scientific hypothesis is significant or not some
type of statistical test is employed. For biological data which is usually low in sample
size, Student’s t-test tends to be the method of choice. If multiple factors are involved
Analysis of Variance (ANOVA) is the preferred method for finding which factor or factor
combination induces the most variance to the data. For counts data such as the results from
an RNA-Seq experiment however, a more sophisticated method is required. Tools such as
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DESeq2 [Love et al., 2014] and EdgeR [Robinson et al., 2010] are popular; both providing
methods for sophisticated dispersion shrinkage and uses Generalized Linear Models (GLM)
[Nelder and Wedderburn, 1972].

2.16.1 Gene set identification

While the identification of individual genes is informative on the biological perturbations
in a tissue, pathways and sets of genes are typically more relevant for carrying out different
functions. Several databases exist which assign classifiers to individual genes and sort
them into groups; the GO consortium [Consortium, 2019] divides genes into different gene
ontologies in three domains: cellular component, molecular function, and biological process.
Another database, Kyoto encyclopedia of genes and genomes aka KEGG [Kanehisa and
Goto, 2000], has a highly curated collection of biological pathways where genes are sorted
depending on their function. Several other databases exist, such as the reactome [Joshi-
Tope et al., 2005] and biocarta [Nishimura, 2001, Schaefer et al., 2008]. All the above
pathway databases are compiled in the MSigDB, a large collection of gene sets [Liberzon
et al., 2011].

When analyzing over-represented pathways within high dimensional data, one impor-
tant question is how to select what genes to include in the enrichment analysis. Two main
schools of thought exist here: to take only genes above a certain threshold e.g. only sta-
tistically significant genes or those with a large enough effect size (or both), or to take
every gene and include a ranking criteria to indicate the importance of individual genes
[Tarca et al., 2013]. In the first approach you risk losing information from small changes in
gene expression, while in the second you increase the influence of noise on your analysis.
Fischer’s exact test is the typical statistical test for the first approach where one treats the
significant genes as a set of their own.

Gene set enrichment analysis (GSEA) is the most well-known rank-based method
for finding overrepresented pathways [Subramanian et al., 2005]. GSEA depends on a
Kolmogorov-Smirnoff-like running score which reads the barcode of genes belonging to the
investigated pathway in the ranked list. The list will be ranked depending on certain cri-
teria such as the signal to noise ratio in the data. A high enrichment score will appear
when most genes show up at either end of the list and thus create a large peak or trough.
The enrichment score, ES, will be normalized into NES depending on the gene set size and
then used to calculate significance. Significance is established by permuting the list and
recalculating the score a large number of times. The permutation can be done either by
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switching the labels of genes or the labels of phenotypes. Alternatively one can supply an
already ranked list to GSEA which will start from the scoring step and exclusively uses
gene label permutation.

2.17 Proteomics

The proteome consists of all proteins expressed in a measured biological source. The
analysis of differential expression of proteins is similar to that of differential expression of
mRNA in that in both cases what is measured is gene expression, though proteins are one
regulatory level after mRNA. However, the analysis of proteins differs from the analysis of
mRNA and DNA as there is no convenient way to do sequencing by synthesis for peptides.
Instead, peptides are cut into smaller segments which are analyzed individually by a mass
spectrometer and then computationally reassembled. By the nature of this approach, the
analysis is less accurate than the sequencing-based approach, and many of the proteins from
genes with a lower expression level are unquantifiable. Another issue that faces proteomics
is alternate isoforms, leading to a proteome that contains up to 100,000 proteins [Horgan
and Kenny, 2011].

2.18 Metabolomics

Ametabolite is a small molecule that is an intermediate product in metabolism. Metabolomics,
the study of chemical metabolites, is measured similarly as in proteomics using a mass spec-
trometer [Dettmer et al., 2007] or alternatively using nuclear magnetic resonance, NMR
[Nicholson and Wilson, 2003]. In contrast to transcriptomics and proteomics, there is no
sequence information in metabolomics data. Instead, the challenge of metabolomics is the
large amount of different metabolic molecules and their derivations that are available to
be measured in the cell. For example, in plants the number of metabolites is in the order
of 200,000 [Weckwerth, 2003]. Therefore, some techniques, called targeted metabolomics,
focus on only identifying the amounts of metabolites important to the scientific question
at hand, such as amino acids, sugars, and lipids in the case of diabetes.
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2.19 Lipidomics

Lipidomics is a subsection of metabolomics where instead of measuring the whole metabolome
the focus is on lipids. The challenge is also similar to metabolomics since lipids are possibly
the metabolites with most structural variation [Wang et al., 2016]. As many lipids contain
one or more long carbon tails that can vary in bond configuration in combination with
one of several lipid heads, the possible configurations are far more than can be measured.
For questions such as the influence of metabolic disease, lipidomics can be more precise
compared to general targeted metabolomics approaches [Lydic and Goo, 2018].

2.20 Multi-omics

Integrating different omics techniques is one of the current hot topics of the bioinformatics
world [Sun and Hu, 2016]. Due to the properties of the different omics data, there are
great difficulties in making conclusive and coherent analyses. There are many different
approaches to integrating multi-omics data, however, so far none has shown itself to be
superior [Huang et al., 2017]. Network-based approaches are greatly limited by the current
biological knowledge and by missing data. Multivariate techniques are powerful but can
only be used for correlations and associations. Furthermore, all techniques are limited by
small sample sizes, a common occurrence in biological studies.

2.21 Statistical treatment of multivariate data

Ordinary linear regression is a technique for modeling data where a response variable,
i.e. gene expression in terms of counts or mass-spectrometry intensities, is dependent on
one or more independent variables such as genotype, sex, drug treatment, etc [Harrell Jr,
2015]. Ordinary linear models effectively model the means of the response variable with
the deviating spread of data points being referred to as residuals. Residuals should follow a
normal distribution for the linear model to have been used accurately. One of the strengths
of linear model regression is the ability to model out the influence of one independent
variable that could somehow influence the desired comparison. GLMs are a way of modeling
data using linear regression but allowing for non-normally distributed data to be analyzed
[Nelder and Wedderburn, 1972]. In the case of modeling transcriptomics counts data the
negative binomial distribution is the most accurate [Robinson and Smyth, 2007].
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Removing batch effects by linear modeling is possible when using the batch as an extra
factor. If the batch effect is hidden, methods such as Surrogate Variable Analysis (SVA)
[Leek and Storey, 2007] can help with identification and removal. Methods for estimating
differential expression such as DESeq2 [Love et al., 2014] are estimating a null-distribution
from the observed data which is then used to calculate significance using Wald’s test. In
this case outlier samples or hidden batch effects can cause an under or over-estimation of
the null-distribution variance which will lead to an abnormal number of false positives. To
help remove this incorrect estimation the null-distribution can be explicitly modeled using
the test score, here z-score, in some programs such as fdrtool [Strimmer, 2008].

2.22 Multiple testing correction

In many biological and medical studies there is a small set of hypotheses being considered,
such as the measurement of a set of genes by qPCR. Normally the end product is the
p-value, the well-known, controversial, and often misinterpreted probability value which
indicates the probability of obtaining a more extreme result than obtained in the experi-
ment under the null-hypothesis [Greenland et al., 2016]. A cutoff, usually at <0.05, is used
to reject the null-hypothesis and to consider the result significant. The cutoff however is
not an accurate indicator when many hypotheses are under consideration. When testing
many hypotheses simultaneously a number of them will be true due to chance as p-values
are uniformly distributed under the null-hypothesis [Shaffer, 1995]. To counteract this a
correction to the significance cutoff is required in order to minimize the false positives. A
simple solution is to divide the cutoff with the number of tested hypotheses, the so-called
Bonferroni correction. However, with large number of tests this correction tends to be con-
servative [Narum, 2006]. More exactly, the Bonferroni correction controls the familywise
error rate (FWER), which is the probability of producing one false positive.

For a study with a large number of hypotheses such as an exploratory omics study, it
is preferred to find the false discovery rate, aka the FDR. The FDR reports the proportion
of hypotheses that will be false positives and can be computed by the Benjamini-Hochberg
procedure [Benjamini and Hochberg, 1995]. Alternatively one can empirically establish
the FDR by permutating labels such as sample or gene labels [Goeman and Solari, 2014].
Several other methods exist for FDR calculation, some measure the local FDR which is
distinct from the normal FDR as it is a Bayesian posterior probability [Efron, 2005].



Chapter 3

Materials and Methods

3.1 Munich MIDY Pig Biobank

A cohort of 10 sows consisting of 5 MIDY and 5 WT pigs, were brought up together
until the age of 2 years. During this time they were fed once daily and had free access
to water. The sows were treated with both long-acting and short-acting insulin. The
treatment was only during daytime in order to simulate poorly controlled diabetes. At the
age of 2, the pigs were estrous synchronized [Kurome et al., 2015] and then inseminated
in order to exclude the effects of estrous cycles on the molecular profiles of tissues and
body fluids, 12 days after this they were euthanized. Systemic and controlled necropsies
were performed, dissecting complex tissues and performing "systemic random sampling" on
homogeneous tissues. Body fluids were sampled as well including both blood plasma and
serum. Collected samples were shock-frozen on dry ice and stored at -80 degrees within
20 minutes after death. All samples were stored in Munich MIDY Biobank [Blutke et al.,
2017] until further analysis was carried through. For all subsequent steps, all samples were
processed in parallel.

3.2 RNA Sequencing

Preparation and sequencing of MIDY RNA-Seq libraries were carried out by Julia Philippou-
Massier, Stefan Krebs, and Helmut Blum. All samples for RNA-Sequencing originated from
the Munich MIDY Pig Biobank. Four different library preparation methods were used in
this thesis. For the liver, Nugen Encore Complete, Lexogen Sense, Lexogen QuantSeq and
a bulk version of the single-cell SCRB-Seq was used, while for adipose tissue only Lexogen
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Sense was used for all four tissues types. Samples were homogenized in Trizol and to-
tal RNA was isolated with chloroform following the manufacture’s protocol. Isolated total
RNA was quantified using s Nanodrop and quality controlled by a Bioanalyzer 2100. Good
quality RNA (RIN >7.0) was used to construct sequencing libraries.

The NuGEN library was performed using the rRNA avoiding "not-so-random" priming
of the first strand synthesis, followed by second strand synthesis after RNA degradation.
The second strand contains nucleotide analogs used for strand selection. cDNAs are soni-
cated using Covaris. Adaptors are added, the forward adaptor contains the same nucleotide
analogs as used for second strand synthesis. Base excision and heat is then used to remove
miss-aligned adaptors to maintain strand specificity for the sense direction. This is followed
by a PCR reaction for amplification.

The Lexogen Sense library preparation started with denatured RNAmixed with oligodT
beads, capturing only polyadenylated RNAs. Other RNAs are washed away, purifying
mRNA. Starter/stopper heterodimers are added to the mix which randomly hybridizes to
the RNA strand. Heterodimers are used to perform reverse transcription, creating short
cDNA reads. RNA is then hydrolyzed when the second strand is synthesized, creating dou-
ble stranded cDNA. After magnetic beads are washed away, a PCR reaction is performed
and adaptor sequences are added.

The QuantSeq library preparation started with oligodT priming, synthesizing the first
strand. RNA is then removed, allowing for random priming of second strand synthesis. A
PCR reaction is then performed for amplification.

SCRB Seq library preparation starts with the priming of a cDNA strand containing
oligodT to the polyA tail. The second strand is then synthesized. Tagmentation is used
for inserting Nextera primer that are used for PCA amplification.

All libraries were sequenced on a HiSeq 1500 (Illumina) as 100 bp single reads with the
exception of SCRB-Seq, which use 50 bp reads. Due to poor mRNA quality, the adipose
tissue had to be sequenced in two batches.

3.3 Analysis environments

The R statistical computational environment [Rco] along with the Rstudio IDE [Team
et al., 2015] was utilized for data processing and statistical analyses. The Galaxy platform
[Giardine et al., 2005, Afgan et al., 2018] was used for data pre-processing, processing,
storage and organization of sequencing data.



3.4 RNA-Seq data pre-processing 25

3.4 RNA-Seq data pre-processing

For all data, raw FASTQ files were demultiplexed using 6-nucleotide long barcodes with
an in-house script allowing for one miss-match. For Lexogen Sense data, a head-crop was
performed in order to remove the 12 first bases using the Trimmomatic tool [Bolger et al.,
2014]. Encore Complete RNA-Seq library system originating data required no head crop.
The FastQC tool [Andrews, 2010] was used along with the MultiQC tool [Ewels et al., 2016]
in order to visualize and quality control sequencing data. If Illumina adaptor content was
high enough for a data set to give a warning, Trimmomatic was once again used for adaptor
clipping.

3.5 RNA-Seq data mapping

Mapping of short reads against the susScr11.1.91 ensembl reference genome (FASTA genome
and gtf annotation files) was performed using the STAR [Dobin et al., 2013] ultra-fast
short read mapper. Default parameters were used with an sjdbOverhang of 100. Mapping
efficiency was analyzed by MultiQC on the STAR output logs. For control of mapped
transcripts the Integrative Genomics Viewer, IGV [Robinson et al., 2011, Thorvaldsdóttir
et al., 2013], was used.

Counting of reads mapped to specific genes was performed by HTSeq [Anders et al.,
2015]. The susScr11.1.91 gff3 file was used as a reference, ‘exon’ was used as feature and
‘gene’ was used as feature ID. Minimum alignment quality was set to 10 and ‘intersection-
strict’ was used as counting mode. For Lexogen Sense libraries, the reverse strand inter-
pretation was used.

For the SCRB-Seq library preparation method a paired-end single-cell method used
here on bulk tissue. The Je suite [Girardot et al., 2016] was used for both UMI clipping
and PCR duplicate removal with 1 miss-match allowed.

3.6 Annotation

The R package biomaRt [Durinck et al., 2005, Smedley et al., 2009] was used for con-
version of ENSEMBL identifiers into gene symbols. Matching was done with the “ss-
crofa_gene_ensembl” database against “hgnc_symbol”, “external_gene_name”, and “wiki-
gene_name” in that order. For converting gene symbols to full gene names the HGNC
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database tool multi-symbol checker [Yates et al., 2016] was used. When such matches
could not be found, i.e. when “LOC”, “orf” or “SLA” genes were retrieved from biomaRt,
a BLAST [Altschul et al., 1990] was attempted in order to find the closest matching or-
tholog gene.

3.7 RNA-Seq normalization

For comparison of gene expression levels between different genes, TPM (Transcripts Per
Million) were used [Li et al., 2010]. TPM normalizes for sample depth and transcript
length. TPM is calculated as follows:

1. Divide each transcript’s read counts by its length in bases.

2. Divide the length normalized counts by the sum of all length normalized counts in
the sample.

3. Multiply by 106.

TPMi = Xi

l̃i
∗

 1∑
j

Xj

l̃j

 ∗ 106 (3.1)

Where l is the gene length and X is raw-counts data.
For gene expression estimation within a condition the DESeq2 [Love et al., 2014] normal-

ized counts data was used. The DESeq2 normalization, commonly referred to as "median
of ratios", are done by dividing all the counts of a sample by a "size factor". The size factor
is calculated by taking the geometric mean of all sample counts within a gene and then
calculating the ratio of each count to that geometric mean. For each sample, the median
of all ratios within the sample is the size factor. The calculation looks as follows:

sj = median
Xij m∏

j=1
Xij

1/m
(3.2)

Where sj is the size factor for a particular sample, Xij is raw-counts data and m is
sample size.
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3.8 Differential expression analysis

Individual HTSeq output columns were labeled according to their pig of origin and com-
bined into an R data frame. Genes with an average count of less than 10 were excluded
from further analysis in order to remove noise. DESeq2 [Love et al., 2014] was used for
the establishment of differential expression. Outlier replacement and independent filtering
were used for all experiments. A DESeq2 design formula of ~Genotype was used in the
case of the liver NuGEN analysis (“MIDY” vs “WT”). For analysis of different adipose
tissues SVA [Leek and Storey, 2007] was used with 1-3 surrogate variables estimated from
the counts data and as such the design formula was ~SV1 + ... + Genotype. For PCA’s
of sequencing data, the “rlog” function in the DESeq2 package was used. The significance
cutoff was set at an FDR of 0.05.

The VennCounts function from the limma R package [Ritchie et al., 2015] was uti-
lized together with the VennDiagram function from the same package for creating Venn
diagrams. Different data were merged using the gene or gene set name as a common identi-
fier, with NA’s and non-common features being filled as 0. When the significance of genes
or gene sets was included, the cutoff was at 0.05 for the adjusted p-values.

3.9 Gene set enrichment analysis

Gene names along with logarithmized and signed p-values from DESeq2, alternatively
corrected log2 fold changes from DESeq2, were imported to the GSEA [Subramanian et al.,
2005] program. Gene Ontology (GO) [Consortium, 2019], Kyoto Encyclopedia of Genes and
Genomes (KEGG) [Kanehisa and Goto, 2000] and the Reactome [Joshi-Tope et al., 2005]
was the primary gene set databases used. These datasets are part of MSigDB [Liberzon
et al., 2011], however a pig specific KEGG gene set collection was also created by pulling
data from the KEGG repository and filtering out unrelated disease gene sets. In this
way larger gene sets made up of several smaller ones such as “Amino Acid Metabolism”
were also constructed. Additionally, gene sets were constructed manually in order to check
certain hypotheses, using literature as a guide. The pre-ranked analysis was used with 1000
permutations as standard. The maximum gene set size was put at 1000 and minimum at
15. Both weighted and unweighted analyses were performed. The significance cutoff was
set at 0.05 FDR.
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3.10 Gene network visualization

The network visualization program Cytoscape [Shannon et al., 2003] was used along with
the plug-ins ClueGO [Bindea et al., 2009] and Cluepedia [Bindea et al., 2013]. GO and
KEGG gene set collections for pig was utilized. Genes significant at an FDR cutoff of
0.05 were considered as significant and genes were seperated into up and down-regulated
groups. The parameter network specificity was set to default in the case of KEGG and
increased for analyzing GOs due to a large number of connections.

3.11 Proteomics

The proteome analysis was performed on the same liver localizations as RNA-Seq measure-
ments by Dr. Florian Flenkenthaler and Dr. Thomas Fröhlich. Sample were homogenized
as described [Fröhlich et al., 2016]. Protein concentration was determined as described in
[Antharavally et al., 2009]. For each sample 100 µg of protein was digested with Lys-C
and trypsin as described in [Blutke et al., 2017]. A Q Exactive HF-X mass spectrometer
was used for nano-LC-MS/MS analysis. 2.5 µg of peptides were separated at 200 nL/min.
Spectra were acquired at 120,000 resolution between 380 and 2000 m/z. MS/MS scans of
the 24 most intense peaks were performed at a resolution of 15,000. MaxQuant [Cox and
Mann, 2008] and the NCBI RefSeq Sus scrofa database was used for protein identification
and label-free quantification. For each group (MIDY, WT) 3 valid identifications were
required to keep the protein for further analysis. Perseus was used for normal distribution
based imputation [Tyanova et al.]. Significance was calculated using the SAM statistic
[Chu et al., 2001].

3.12 Metabolomics

In order to analyze metabolites in plasma and tissues, the team of Dr. Jerzy Adamski
performed liquid chromatography-electrospray ionization-tandem mass spectrometry and
flow injection analysis-electrospray ionization tandem mass spectrometry in a targeted
metabolomics approach with the AbsoluteIDQTM p180 Kit (Biocrates Life Sciences AG).
Liver tissue first had to be homogenized using an ethanol/phosphate buffer. In total
188 metabolites were quantified. The Hamilton Microlab STAR robot and an Ultravap
nitrogen evaporator was used for sample handling. API 4000 triple quadrupole system
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equpped with an 1200 Series HPLC and a HTC PAL auto sampler was used for mass
spectrometry analysis. This was controlled by the software Analyst 1.6.2. Metabolites
were quantified using the MultiQuant 3.0.1 software and the MetIDQ software package.
Concentrations of all metabolites were calculated using internal standards. For a more
detailed description of methods, refer to [Zukunft et al., 2018, 2013].

3.13 Metabolomics data analysis

For all metabolomics datasets, raw metabolite concentrations were imported into R for
processing. Limit of Detection (LOD) for each metabolite was calculated by multiplying the
median value of three ethanol/phosphate zero-samples by three. Metabolites missing more
than half of their data points were excluded. Remaining missing data points were imputed
using half the value of the lowest metabolite in said batch (multiplied by a randomized
value between 0.75 and 1.25). Normalization was done by plate for each metabolite using
the following formula:

Norm(mx) = Pa(mx)
P (mx) ∗ C(mx) (3.3)

Where:

P (mx) =
∑
C(mx)

N sample
(3.4)

And:

Pa(mx) =
∑
P (mx)
Nplate

(3.5)

mx is one metabolite needing to be normalized, the calculation should be carried out for
each metabolite individually (m1,m2...mn where n is the number of metabolites). C(mx)
is the concentration of a metabolite in the plate, Nsample is the number of samples for the
plate and Nplate is the number of plates. P is the mean of plate, while Pa is the mean
of means of plates. The ratio Pa(mx)/P(mx) signifies the plate factor which is used to
normalize the concentrations.

When modeling the metabolites for t-tests, each data point was logarithmized by a
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generalized logarithm:

log2 ∗
(
x+
√
x2 + a2

2

)
(3.6)

Where x is a data point and a is a constant with a value of 1.
Metabolites were then Pareto scaled:

x̃ij = xij − x̃i√
si

(3.7)

Where xij is a data point and si is the standard deviation of each metabolite.
Student’s t-tests were performed assuming equal variance and multiple testing were

calculated using Benjamini Hochberg (BH) [Benjamini and Hochberg, 1995] or the qvalue
[Dabney et al., 2010] R package. An FDR of below 0.05 was considered significant. PCA
was performed using the mixOmics [Rohart et al., 2017] R package with centered and
scaled values. Barplots were constructed using an R script. Heatmaps were made using
the pheatmap package.

3.14 Lipidomics

Lipidomics experiments were performed by the team of Dr. Ünal Coskun as described
in [Sampaio et al., 2011]. Liver samples were homogenized on ice in an ammonium-
bicarbonate buffer (150 mM ammonium bicarbonate, pH 7) with an ultra-turrax homoge-
nizer. Lipids were extracted using a chloroform/methanol procedure [Ejsing et al., 2009],
followed by extraction of the organic phase which was transferred to an infusion plate
and then dried in a speed vacuum concentrator. Protein content was assessed using BCA
Protein Assay Kit (Thermo Fisher). Equivalents of 20 µg of protein were taken for mass
spectrometry analysis. 1st step dry extract was re-suspended in 7.5 mM ammonium ac-
etate (Sigma) in chloroform/methanol/propanol (1:2:4, v:v:v) and 2nd step dry extract in
33 ethanol solution of methylamine in chloroform/methanol (0.003:5:1; v:v:v). The Hamil-
ton Robotics Starlet robotic platform was used for sample handling. At a resoultion of
Rm/z=200 = 280,000 for MS and Rm/z=200 = 17,500 for MS/MS experiments, samples were
analyzed in both positive and negative ion modes. An inclusion list of corresponding MS
mass ranges scanned in 1 Da increments were used for triggering MS/MS.
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3.15 Lipidomics data analysis

Data were analyzed with a lipid identification software based on LipidXplorer [Herzog et al.,
2011]. Only lipid identifications with a signal-to-noise ratio >5, and a signal intensity 5-
fold higher than in corresponding blank samples were considered for further data analysis.
Raw lipid expression files were imported into R. Lipid species with more than five missing
values were excluded from the analysis. PCA was performed using the mixOmics [Rohart
et al., 2017] R package with centered and scaled values. Lipid species were grouped by
lipid family and normalized as a percentage of total lipid content. Student’s t-test was
applied in the same way as the metabolomics data.

3.16 Multiomics integration

For the integration of transcriptomics and proteomics data the 2D-enrichment method [Cox
and Mann, 2012] of the Perseus software [Tyanova et al.] was used. Identifier matching
was done using an R script. 0.05 was the significance cutoff for pathway enrichment.

3.17 Retinoid Measurements

Retinoid measurements was performed by Dr Micheal Rothe. Folch’s protocol was used for
lipid extraction from homogenized liver tissue [Folch et al., 1957]. HPLC-MS/MS was used
with an Agilent 1290 HPLC coupled with a triple quadrupole mass spectrometer Agilent
6470 equipped with an electrospray jetstream ion source. Positive/negative switching mode
was used to capture retinoic acid as its signal is more selective in negative mode. Retinoid
contents were normalized to tissue protein content and then tested for significance using
student’s t-test. Significance was considered at p below 0.05.

3.18 Glutathione Measurements

Glutathione measurements were performed by Dr. Simone Renner. Both glutathione
(GSH) and the fraction of its oxidized form (GSSG) were measured using a Glutathione
Colorimetric Detection Kit (EIAGSHC, Invitrogen) according to the instructions of the
manufacturer. Free glutathione concentration was calculated by subtracting GSSG from
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GSH. All measurements were normalized to the protein content of the samples and then
tested for significance using student’s t-test. Significance was considered at p below 0.05.

3.19 Quantification of Kupffer cells

Kupffer cells were detected using immunohistochemistry on randomly sampled liver tissue
samples, performed by PD Dr. Andreas Parzefall. Goat polyclonal anti-IBA1 antibody and
biotinylated rabbit anti-goat Ig secondary antibody were used. The principle of Delesse
was used to calculate the volume density of Kupffer cells. Differential points counting was
used for calculating area densities [Albl et al., 2016b].

3.20 Western blotting

Insulin receptor signaling molecules and their phosphorylation levels were measured by
Western blot [Streckel et al., 2015, Hinrichs et al., 2018], peformed by PD Dr. Maik
Dahlhoff. SDS-PAGE was used to separate protein from liver tissue homogenized in
Laemmli buffer. Proteins were transferred to PVDF membranes (Millipore) by electro-
blotting. After processed as described above, bound antibodies were detected using the
ECL Advance Western Blotting Detection Kit (GE Healthcare). The Imagequant software
(GE Healthcare) was used to quantify band intensities. A square root transformation of
the densiometric data approximated a normal distribution wich was assesed for differences
using Student’s t-test.



Chapter 4

Results

4.1 RNA Sequencing of MIDY liver by NuGEN En-
core complete

As the first transcriptome sequencing was performed with the NuGEN Encore Complete
library preparation kit, the mRNA enrichment procedure was based on rRNA depletion.
rRNA levels in NuGEN samples were still fairly high at around 38.7% (Table 4.2). This is
likely due to the non-random priming process not being intended for pigs as it was originally
derived from humans and mice. Due to this, extra depth for the NuGEN experiment was
generated and combined with previous reads, allowing for an average read depth of 31.9
million reads per sample.

4.1.1 Removal of outlier sample 742

One transgenic sow, pig 742, was discovered to have an unusual insulin expression, reaching
several magnitudes higher than other pigs of both conditions (Figure 4.1). The pig was an
outlier in several datasets, including the metabolomics (Figure 4.2) and proteomics data,
although it generally clustered with the other transgenic sows. The glucagon expression of
742 was almost identical to that of WT pigs, while beta-hydroxybutyrate levels were only
slightly increased. As glucose levels were still moderately increased, this indicated that
the animal had mainly an increase in levels of misfolded non-functional insulin, possibly
functional enough to have a minor effect on insulin signaling. As the MIDY pig model
organism is based on total insulin deficiency, the animal was removed from further analysis.
Even with the decrease in power from a 4vs5 design compared to a balanced 5vs5 design,
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Sample Sex Pregnancy status Genotype Weight (kg)
S736 female + WT 244
S737 female - TG 215
S738 female - WT 224.5
S739 female + TG 185
S740 female + TG 184
S741 female + WT 237.5
S742 female + TG 210
S743 female + WT 247
S744 female + TG 217
S745 female - WT 238

Table 4.1: Table describing the MIDY samples of the biobank. Sample S742 was removed
from the biobank due to aberrant behaviour.

Sample mapped (M) rRNA (M) % rRNA mapped to genes (M)
S736 44.51 17.22 38.70 27.28
S737 52.53 21.33 40.61 31.19
S738 60.19 25.04 41.59 35.16
S739 50.37 22.20 44.08 28.16
S740 54.57 18.95 34.72 35.62
S741 56.97 25.35 44.50 31.62
S743 47.35 18.09 38.19 29.27
S744 50.98 15.86 31.10 35.13
S745 50.38 17.07 33.88 33.31
Mean 51.98 20.12 38.71 31.86

Table 4.2: Sequencing statistics for the MIDY biobank livers using NuGEN Encore Com-
plete. Reads are counted in million reads (M).
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Figure 4.1: The concentrations of blood glucose, insulin, glucagon and beta-
hydroxybutyrate during the lifetime of the pig. Means and standard deviations for each
group is shown. MIDY animal 742 is displayed as grey and not grouped with other MIDY
animals in order to show its aberrant phenotype. Significance is indicated between groups
excluding 742 (*p <0.05; **p <0.01; ***p <0.001). Borderline significance (p <0.08) is
indicated by °.

the number of significantly differentially expressed genes grew on the transcriptomics level,
suggesting that pig 742 was more similar to the WT pigs. While the suggestion that the
pig was suffering from insulinoma was made, no evidence of said growth could be detected.
Another possibility could be alternate regulation of the mutant insulin cassette due to
mutation or homologous recombination. The decision was made to not analyze sow 742 at
all in other tissues.

4.1.2 Differential expression

In the MIDY vs WT analysis of hepatic tissue 533 significantly differentially expressed
genes were detected, 320 upregulated and 213 downregulated (Figure 4.3 A, B), (Table
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Figure 4.2: PCA of metabolomics data from the MIDY liver samples showing the seperation
of MIDY and WT samples. Animal 742 is marked as grey, showing its clustering with WT
samples.

4.3, Table 4.4). Most highly upregulated was ADAMTS17, which encodes ADAM with
thrombospondin type 1 motif 17. ADAMTS17 has a relatively low expression in the WT
pigs where the TPM is around 0.1, whereas the TPM in the MIDY pig is around 1.4.
With DESeq2 corrected fold changes this gives a log2fold change of 2.7. The most highly
downregulated gene was SHROOM3, with a log2fold change of -1.25. As reflected in the
number of differentially expressed genes the log2fold changes of upregulated genes were
generally higher than that of the downregulated ones (Figure 4.4). A list of all significant
genes including their p-values and log2 fold changes discussed in this thesis can be found
in (Supplementary Table A.1).
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Gene symbol Mean expression (counts) l2fc (MIDY/WT) p-value FDR
ADAMTS17 39.89 2.69 6.37E-31 9.42E-27
SLC25A47 1539.32 1.83 5.88E-23 4.35E-19
BMP8B 50.19 2.02 1.42E-18 6.98E-15
SLX4IP 887.15 1.13 1.03E-17 3.82E-14
CBR4 456.42 1.23 1.46E-15 4.33E-12
GPT2 6504.60 1.47 2.96E-15 7.30E-12
KLHL3 1383.27 0.92 2.83E-14 5.99E-11
RDH11 3019.80 1.00 4.60E-14 8.51E-11
GOT1 1147.73 1.16 5.30E-14 8.72E-11
LOC102165634 68.65 1.89 7.85E-14 1.06E-10
LOC106505246 50.25 1.88 1.03E-13 1.27E-10
CTH 5813.01 1.27 1.82E-13 2.07E-10
HMGCS2 1613.50 1.79 1.37E-12 1.45E-09
GYS2 9890.09 0.93 1.51E-12 1.49E-09
ELOVL6 6439.98 0.94 7.09E-12 6.55E-09
ARFGAP3 1829.70 0.93 1.22E-11 1.06E-08
ASS1 9331.15 0.80 1.31E-11 1.08E-08
MIGA2 220.90 1.01 3.81E-11 2.96E-08
SEC16A 1099.80 0.78 5.62E-11 4.15E-08
LOC106506349 47.33 1.61 2.04E-10 1.44E-07

Table 4.3: The 20 most significantly upregulated genes in the MIDY pig liver. Mean
expression and log2 fold change (l2fc) are DESeq2 normalized. LOCXXXXXXXXX genes
are unannotated genes.

4.1.3 Amino acid metabolism

The most common theme in the upregulated transcripts is one of amino acid metabolism.
Most amino acids had one or more catabolic enzymes upregulated. Specifically, the
increased enzymes were: glutamic-pyruvic transaminase 2 (GPT2; alanine), glutamic-
oxaloacetic transaminase 1 (GOT1; aspartate), glutaminase (GLS2; glutamine), arylfor-
mamidase (AFMID; tryptophan), homogentisate 1,2-dioxygenase (HGD; tyrosine, pheny-
lalanine), serine dehydratase (SDS; serine), histidine ammonia-lyase (HAL; histidine),
aminoadipate-semialdehyde synthase (AASS; lysine), aldehyde dehydrogenase 7 family
member A1 (ALDH7A1; lysine), and kynurenine aminotransferase 1 (KYAT1; tryptophan,
cysteine conjugates).
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Gene symbol Mean expression (counts) l2fc (MIDY/WT) p-value FDR
SHROOM3 232.91 -1.25 6.16E-14 9.12E-11
IGFALS 641.04 -0.80 2.45E-10 1.65E-07
MEGF9 253.65 -1.03 5.14E-10 2.62E-07
CRP 3637.87 -1.18 6.15E-10 2.93E-07
PFKFB3 80.71 -1.15 7.63E-09 3.05E-06
THRB 837.77 -0.68 2.27E-08 7.63E-06
SFRP1 378.50 -0.99 1.05E-07 3.05E-05
TMSB4X 3052.66 -0.51 3.16E-07 7.53E-05
GIPC2 114.86 -0.97 3.39E-07 7.95E-05
PDE4B 201.77 -0.83 3.65E-07 8.31E-05
MOB3B 167.14 -0.94 3.87E-07 8.68E-05
AMPD3 532.75 -0.77 4.68E-07 9.75E-05
SGK1 2932.51 -0.88 6.24E-07 0.000123991
VIL1 92.67 -1.05 9.56E-07 0.000181266
SETBP1 424.61 -0.77 1.29E-06 0.000235104
LOC110258394 32.74 -1.19 1.41E-06 0.000250803
NREP 405.63 -1.06 1.81E-06 0.000310762
LOC110256685 151.76 -0.81 2.43E-06 0.000386522
LURAP1L 482.52 -0.72 2.79E-06 0.000430362
LOC110255180 191.79 -0.92 3.46E-06 0.000511224

Table 4.4: The 20 most significantly downregulated genes in the MIDY pig liver. Mean
expression and log2 fold change (l2fc) are DESeq2 normalized. LOCXXXXXXXXX genes
are unannotated genes.

4.1.4 Gene set enrichment analysis

Due to the count-based nature of RNA-Seq, the standard microarray-based GSEA was
avoided and pre-ranked GSEA was utilized. Both weighted and unweighted (“classic”)
analyses were performed, however the unweighted approach was given more importance
as the weighted analysis is not designed for the pre-ranked analysis type. For the ranked
approach either signed log-transformed p-values or log2 fold change values for genes can be
used as input. Both approaches were found to give similar results, and for compatibility
with other approaches using p-values as cutoffs, the preferred input was -log10 transformed
p-values signed by the direction of the change. In total, 40 gene sets were found significantly
increased in the MIDY liver, while 90 in total were found decreased (Table 4.5, Table
4.6), showing a reversion of the gene-level trend where upregulated transcripts were more
common (Figure 4.4, Supplementary Figure B.1). Increased gene sets in the MIDY
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Figure 4.3: A MA-plot showing the distribution of expression and differential expression
among MIDY transcripts. Log2 fold change here describes the DESeq2 corrected log2
fold change, while the normalized counts is the DESeq2 normalization. Red circles repre-
sent significantly upregulated transcripts, blue circles represent significantly downregulated
transcripts (p<0.05). B Heatmap showing the expression of the top 20 most significantly
changed genes in each direction. Each gene is normalized in expression. Adapted from
[Backman et al., 2019].

pig were almost exclusively metabolic in nature. The most enriched gene set was of amino
acid metabolism, with the gene sets of carbohydrate metabolism, propanoate metabolism
and TCA-cycle following. Several individual pathways of amino acid metabolism were also
increased. Non-metabolism connected pathways included folding, sorting and degradation,
autophagy, and aging. Insulin signaling and insulin resistance pathways were also signif-
icant to a smaller degree. In the gene sets found decreased in the MIDY liver were an
abundance of immune response-related gene sets. Infectious Diseases: Parasitic was the
most enriched of all gene sets, followed by Hematopoietic Cell Lineage, Development, and
Immune Diseases. A focus seemed also to be on Focal Adhesion and ECM interaction.
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Figure 4.4: Histogram of the distribution of log2fold changes in mRNA between MIDY
and WT in the liver showing more upregulated genes than downregulated ones.

Many gene sets here were irrelevant to the liver such as osteoclast differentiation, digestive
system, and hypertrophic cardiomyopathy. The Diabetes Type I pathway was also found
to be decreased.

4.1.5 Gene network

The alternate approach to the rank-based GSEA is to make an interaction network using
only the significant genes. This was done using ClueGO, generating a network where
similar trends to the results found in the GSEA approach could be identified (Figure 4.5).
Metabolism pathways were dominant among genes increased in MIDY liver while Immune
Response and ECM interaction were featured among genes decreased in the MIDY liver.
Signaling pathways such as PPAR signaling and Sphingolipid signaling pathways served as
the link between the two groups of genes.
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Gene set name Size NES p-value FDR
amino acid metabolism 259 4.43 0.00E+00 0.00E+00
carbohydrate metabolism 304 4.01 0.00E+00 0.00E+00
propanoate metabolism 30 3.55 0.00E+00 0.00E+00
citrate cycle (tca cycle) 29 3.45 0.00E+00 0.00E+00
valine, leucine and isoleucine degradation 48 3.28 0.00E+00 0.00E+00
metabolism of cofactors and vitamins 172 3.15 0.00E+00 0.00E+00
folding, sorting and degradation 441 3.09 0.00E+00 0.00E+00
arginine biosynthesis 19 2.78 0.00E+00 2.11E-04
pyruvate metabolism 36 2.50 0.00E+00 1.90E-03
mtor signaling pathway 143 2.48 2.02E-03 1.88E-03
glycine, serine and threonine metabolism 36 2.45 1.98E-03 2.03E-03
protein processing in endoplasmic reticulum 157 2.45 0.00E+00 2.15E-03
cysteine and methionine metabolism 42 2.45 0.00E+00 1.99E-03
metabolism of other amino acids 91 2.43 0.00E+00 2.20E-03
ampk signaling pathway 116 2.37 0.00E+00 3.12E-03
selenocompound metabolism 17 2.34 2.09E-03 3.50E-03
autophagy animal 122 2.34 0.00E+00 3.29E-03
butanoate metabolism 23 2.34 0.00E+00 3.16E-03
autophagy other 31 2.28 0.00E+00 5.25E-03
glycolysis / gluconeogenesis 57 2.27 0.00E+00 5.16E-03

Table 4.5: Upregulated gene sets from the GSEA of the liver tissue in the Munich MIDY
Pig biobank.

4.2 Sequencing of MIDY liver by alternate sequenc-
ing libraries

Three alternate library sequencing techniques, Lexogen Sense, Lexogen QuantSeq, and
SCRBSeq, were tested on the MIDY biobank liver samples in order to establish the pre-
ferred sequencing method for the remaining tissues. All three sequencing kits are cheaper
than the NuGEN Encore Complete kit, which makes them preferred alternatives if effective.

4.2.1 Lexogen Sense library

The Sense library kit gave results similar to the ones from the sequencing of the NuGEN
kit, however seemingly with lower power as only around two thirds as many significantly
differentially expressed genes were found when sequencing depth was much larger (Figure
4.7). Of note is that the Sense kit cannot find non-polyA RNA as it enriches mRNA by
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Gene set name Size NES p-value FDR
infectious diseases: parasitic 237 -5.03 0.00E+00 0.00E+00
hematopoietic cell lineage 79 -4.31 0.00E+00 0.00E+00
development 263 -4.23 0.00E+00 0.00E+00
immune diseases 187 -4.16 0.00E+00 0.00E+00
cytokine-cytokine receptor interaction 192 -4.14 0.00E+00 0.00E+00
focal adhesion 184 -4.06 0.00E+00 0.00E+00
cell adhesion molecules (cams) 124 -3.86 0.00E+00 0.00E+00
graft-versus-host disease 28 -3.75 0.00E+00 0.00E+00
complement and coagulation cascades 75 -3.69 0.00E+00 0.00E+00
infectious diseases: bacterial 309 -3.68 0.00E+00 0.00E+00
cardiovascular diseases 253 -3.64 0.00E+00 0.00E+00
intestinal immune network for iga production 36 -3.63 0.00E+00 0.00E+00
ecm-receptor interaction 75 -3.58 0.00E+00 0.00E+00
leukocyte transendothelial migration 96 -3.39 0.00E+00 0.00E+00
allograft rejection 30 -3.20 0.00E+00 8.13E-05
tight junction 149 -3.17 0.00E+00 7.62E-05
pi3k-akt signaling pathway 305 -3.07 0.00E+00 7.17E-05
chemokine signaling pathway 162 -3.07 0.00E+00 6.78E-05
axon guidance 171 -3.07 0.00E+00 6.42E-05
age-rage signaling pathway in diabetic complications 97 -3.03 0.00E+00 6.10E-05

Table 4.6: Downregulated gene sets from the GSEA of the liver tissue in the Munich MIDY
Pig biobank.

binding to the tail, effectively lowering the potential amount of transcripts to be found.
Still, the amount of non-coding transcripts is not enough to explain the discrepancy be-
tween the techniques. Samples still separated clearly on PC1 (Figure 4.6 A) and the
p-value distribution was normal (Figure 4.6 B), even as the Lexogen samples were se-
quenced in two different runs, adding a batch effect. Gene set enrichment results were
similar to that of NuGEN however with emphasis on different pathways (Supplementary
Figure A.4, A.5).

4.2.2 Lexogen QuantSeq library

The QuantSeq kit from Lexogen yielded 74 significant genes (Table 4.7), representing a
way to get a quick and cheap overview of transcription change. QuantSeq only sequences
the 3’ end of the transcript and as such cannot estimate alternative splicing events. Issues
in the library preparation protocol were found as while PC2 of the PCA corresponded to



44 4. Results

−0.5 0.0 0.5

−0.4

−0.2

0.0

0.2

PC1: 66% expl. var

P
C

2:
 1

4%
 e

xp
l. 

va
r

Lexogen Sense p−value distribution

pvalue

F
re

qu
en

cy
0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

A B
745

744

737
740

739

738

736

743
741

Figure 4.6: A PCA of the Lexogen Sense sequencing library. B A histogram showing
the distribution of p-values from the differential expression analysis of the Lexogen Sense
sequencing library.

the genotype separation, PC1 was found to correspond to the sample handling number
(Supplementary Figure B.2), suggesting an important step of pipetting needed to be
handled quicker, alternatively simultaneously. Due to this, a change was made in the
protocol to use a multi-pipet, which solved the issue after the new procedure and sequencing
were carried out. Separation of samples on PCA was not strong but visible, and the p-value
histogram showed a balanced experiment (Figure 4.7).

4.2.3 SCRB-Seq library

SCRB-Seq (Single-Cell RNA Barcoding and Sequencing) yielded 19 significant genes (Table
4.7). Few PCR duplicates were detected, arguing against the technique as a correction
against PCR duplicates. There are no clear separation on the PCA and the p-value his-
togram is not uniformly distributed (Figure 4.8), although this might be because of the
low depth of the technique. Nevertheless, the 19 genes are very representative of the most
interesting findings in the other library preparation methods, and as such, the method is
still usable for a quick analysis.
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Figure 4.7: A PCA of the Lexogen QuantSeq sequencing library. B A histogram show-
ing the distribution of p-values from the differential expression analysis of the Lexogen
QuantSeq sequencing library.

4.3 Comparison of sequencing techniques

The different depth of the sequencing libraries prevents an easy comparison for the ideal
sequencing library, and in addition the goal of the different techniques is also different.
Table 4.7 shows a comparison of the different techniques together with additional details.
Supplementary Figure B.3 shows the gene coverage saturation plots, clearly showing
that both NuGEN and Lexogen Sense have reached saturation. While QuantSeq is almost
at saturation. SCRB-Seq requires far more depth to reach saturation, however the two last
techniques are intended to be used for quick overviews of the data rather than in-depth
analyses and as such do not aim to reach the same saturation level. While QuantSeq finds
more significant genes in general, comparison of the overlap between significant genes in
different techniques (Figure 4.9 A) reveals that 81% of the significant genes in QuantSeq
can be found in either of the two deeper techniques, for SCRB Seq this number is 95%.
This suggests that while SCRB seq has a very shallow depth, it is very accurate with
the genes it does find. When looking at gene sets found by GSEA however (Figure 4.9
B) there is not much difference as 92% of QuantSeq gene sets are found in NuGEN and
Lexogen Sense, while for SCRB Seq the number is 89%. In the end, due to the low cost
and high output, the Sense library preparation was chosen to be used for the rest of the
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Figure 4.8: A PCA of the SCRB Seq sequencing library. B A histogram showing the dis-
tribution of p-values from the differential expression analysis of the SCRB Seq sequencing
library.

biobank. For mass sequencing with a lower budget however, the QuantSeq technique might
be more suitable.

4.4 Proteomics

2,535 proteins were identified with high confidence (FDR <0.01, [Elias et al., 2005]), and
samples separated clearly into MIDY and WT on both hierarchical clustering and PCA
(Figure 4.10 A, B). 60 of the identified proteins were considered significantly more
abundant while 84 were significantly less abundant after multiple testing. RDH16, retinol
dehydrogenase 1, had the highest abundance increase at a log2 fold change of 4.7, followed
by HMGCS2, 3-hydroxy-3-methylglutaryl-CoA synthase 2 at a log2 fold change of 2.7. GO
annotations and KEGG pathways were found using STRING analysis (Supplementary
Figure B.4) which similar to the transcriptomics analysis found an increase in amino
acid metabolism and central energy metabolism, while pathogen defense response, cellular
stress response, and cell signaling were found lowered.
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Library NuGEN Sense QuantSeq SCRB-Seq
M Reads 32 117 13.9 0.8
M Reads mapped to genes 16.6 89.7 6.6 0.3
Mapped to genes % 52% 77% 47% 33%
No. 10x covered genes 12311 13573 9492 2034
Genes found significant 533 367 74 19
Length (time) 08:30 06:00 05:00 08:30
Cost* 70€/sample 50€/sample 25€/sample 3€/sample
Notes 3x runs 2x runs

Table 4.7: Overview of the different sequencing techniques used on the liver tissue in the
Munich MIDY Pig biobank. Read depth is counted in million (M) reads. Cost only refers
to the cost of library preparation, not sequencing. Both the NuGEN and Sense libraries
were run multiple times as indicated.

4.5 Integration of transcriptomics and proteomics data

Transcript IDs matching protein IDs were used for data integration and concurrent analysis.
1572 matches were found and thus used for both integration and correlation. Individual
gene correlation was created using log2 differential abundance values from both experi-
ments, which in the case of transcriptomics were corrected for dispersion (Figure 4.11
A). Correlation between mRNA and protein was moderate (R = 0.34) which was as ex-
pected, since transcript amounts alone are not able to accurately predict protein amounts
[Liu et al., 2016]. However, for the more strongly affected proteins such as HMGCS2,
RDH16, SLC22A7 and COL1A1, transcript abundances correlated strongly, suggesting
that transcripts can work as a replacement for proteins where proteomics fails, for example
with lowly abundant proteins and low confidence measurements. The 2D pathway enrich-
ment of transcripts and proteins showed few significant anti-correlating pathways, with
most gene sets ending up on the correlating diagonal (Figure 4.11 B). Results are similar
to the enrichments found in the individual omics enrichments, with metabolic pathways
such as gluconeogenesis, urea cycle, glucagon signaling pathway, and biosynthesis of amino
acids found increased while ECM and immune response were found decreased.

4.6 Metabolomics characterization of MIDY pig plasma

For the initial characterization of the Munich MIDY pig biobank, a metabolomics measure-
ment of the plasma was made in addition to the clinical characterization. The MIDY and
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Figure 4.9: Venn diagrams showing the overlap between sequencing techniques, comparing
A overlapping significant genes, and B overlapping significant GSEA KEGG pathways.

WT pigs separated clearly on the first PC (Figure 4.12 A) indicating substantial differ-
ences in the metabolic makeup. As expected, hexose levels were significantly increased in
the MIDY pig, as well as the proportion of unsaturated fatty acids. The ratio of long-chain
acylcarnitines to free carnitine, aka the CPT1 ratio, was significantly increased, showing
increased beta-oxidation. Other changes included an increase in branched-chain amino
acids and the amino acids lysine, phenylalanine and tryptophan. Metabolites decreased in
the MIDY pigs were sphingomyelins and the ratio of total dimethylated arginine to total
unmodified arginine (Figure 4.12 B) (Supplementary Table A.2). Free fatty acids
were measured as they regulate hepatic triglyceride content. Concentration of FFA was
increased in MIDY plasma, although not significantly (Supplementary Figure B.5).
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Figure 4.10: Proteome analysis of MIDY and WT pigs using mass spectrometry. A shows
unsupervised hierarchical clustering of normalized LFQ intensity values. B shows a PCA
that separates MIDY and WT pigs on the first component. C shows a volcano plot
of log2 fold changes between MIDY and WT. Red and blue circles indicate significantly
differentially abundant proteins. The black curves show the FDR cutoff for significance.
Adapted from [Backman et al., 2019].
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Figure 4.11: Correlation between transcriptomics and proteomics measurements on genes
found in both measurements. A shows the correlation between transcriptomics and pro-
teomics data. Red color indicates significance in transcriptomics but not in proteomics,
blue color indicates significance in proteomics but not in transcriptomics, purple indicates
significance in both. C shows the 2D annotation enrichment analysis between the two data
sets. Transcriptomics and proteomics scores are displayed only for pathways with a p-value
of p <0.01. Pathways are colored according to the database they belong to. Adapted from
Backman et al. [2019].

4.7 Metabolomics characterization of MIDY pig liver

As a trend, amino acids were increased in the MIDY pigs (Figure 4.13 A). Especially
increased were the amino acids lysine and methionine, which were around 170% of their
WT concentration. Branched amino acids were also increased to around 125% of their WT
concentrations. Only three amino acids were lower in the MIDY pigs; arginine was not
detectable in the MIDY condition and thus could not be analyzed for significance. Serine
was only around 60% of its WT concentration while glycine had a very minor decrease in
concentration. Several biogenic amines were also changed (Figure 4.13 B), such as an
increase in spermine and histamine levels and a decrease in creatinine and serotonin levels
in MIDY. Several other metabolites such as kynurenine and dimethylated arginine were
irregularly increased.
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Figure 4.12: The results of the metabolomics characterization of the MIDY plasma. A
shows the PCA of MIDY and WT control samples, B shows the relative change in expres-
sion of selected relevant metabolites using WT as a base line (gray striped line). SEM are
indicated for both conditions. Adapted from Blutke et al. [2017]

4.7.1 Acylcarnitines

The indicator of beta-oxidation, the CPT1 ratio, was significantly increased in MIDY pigs
(Figure 4.13 C). The CPT1 ratio is the ratio of long-chain acylcarnitines, C16+C18, to
that of free carnitine, C0. C0 did not have any change, however both C16 and C18 were
significantly increased in MIDY pig liver. Furthermore, short length acylcarnitines and
the total amount of acylcarnitines were decreased. Modified acylcarnitines, i.e. dicarboxy-
acylcarnitines and hydroxy-acylcarnitines, were increased in comparison with total acyl-
carnitine levels.

4.7.2 Lipids

Lipidomics and metabolomics experiments both found phosphocholines to be unchanged
while sphingomyelins were reduced in the MIDY pigs. As a trend other lipids were reduced
in MIDY samples (Figure 4.13 D), notable exceptions being diacylglycerol (DAG) and
triacylglycerol (TAG). lyso-phosphatidylserine (LPS) and phosphatidic acid (PA) had a
marked reduction, while cholesterol and phosphatidylserine (PS) had minor reductions.
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Figure 4.13: The results of the metabolomics and lipidomics characterization of the MIDY
liver. The graphs show the relative abundances of amino acids A, biogenic amines B, and
selected metabolic indicators C, determined by targeted metabolomics. Graph D shows
the relative abundance of lipid groups determined by lipidomics. The abundance is shown
as a percentage of WT expression, which is shown as 100% (gray striped line). SEM is
indicated for both conditions. Adapted from Backman et al. [2019].
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4.8 Insulin signalling

The phosphorylation state of several important proteins of the insulin signaling pathway
was determined by western blot in order to verify the effect of lower plasma insulin (Figure
4.14, Supplementary Figure B.6). Insulin receptor (INSR) phosphorylation levels
were significantly reduced in contrast to INSR transcript and protein amounts which were
significantly increased. Phosphoinositide 3-kinase PI3K phosphorylation levels were not
changed although the protein and transcript amounts were as a trend reduced. MIDY
3-phosphoinositide-dependent protein kinase-1 (PDPK1), protein kinase B (PKB, AKT)
and glycogen synthase 3 beta (GSK3B) all had significantly reduced phosphorylation levels
compared to WT. Both forkhead box protein O1 (FOXO1) protein and phosphorylation
levels were lower in MIDY, although not significantly. Mechanistic target of rapamycin
(mTOR), AMP-activated protein kinase (AMPK), and ribosomal protein S6 were not
changed either in protein abundance or transcript amount.

4.9 Retinoid signaling

The substantial increase in abundance of RDH16 led to a quantification of retinoid levels in
the MIDY liver (Figure 4.15). Retinol, retinal and retinoic acid (atRA) were quantified
by mass spectrometry, revealing a significant increase in retinol and atRA levels, while
retinol remained largely the same.

4.10 Glutathione

For measurement of oxidation levels, glutathione (GSH) and its reduced form GSSG were
measured (Supplementary Figure B.7). While no significant differences were noticed,
the amount of GSSG in MIDY pigs was close to being significantly increased (p=0.076).
Another potential indicator of oxidation, taurine, was also almost significantly increased
in the MIDY pig (p=0.06). Methionine sulfoxide is also a reliable indicator of oxidation,
however the compound had missing values in the WT pigs, which along with the increased
methionine content made the compound an unreliable indicator.
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Figure 4.14: Western blot analysis of activation in insulin receptor and downstream
molecules. The bar diagrams show means and standard deviations. Significant differ-
ences between MIDY and WT pigs are indicated by asterisks: *p <0.05; **p <0.01; ***p
<0.001; °borderline significance (p <0.07). Adapted from Backman et al. [2019].
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Figure 4.15: Summary of retinol metabolism and levels in MIDY liver. A shows the
pathway from retinol to active atRA. B shows RDH16 levels in MIDY liver which is
correlated to C which describes the levels of retinol, retinal and atRA in the MIDY liver.
Concentrations are in ng per g liver tissue. Significance was determined using student’s
t-test. Adapted from Backman et al. [2019].

4.11 Kupffer cells

Kupffer cells were measured in order to investigate whether the immune system between
the MIDY and WT livers was activated in different levels. No significant differences could
be found between the two tissues, however a minor decrease and a more narrow variation
in volume density could be found in the MIDY pigs (Figure 4.16).
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Figure 4.16: Quantification of IBA1-positive macrophages (Kupffer cells) in MIDY and
WT liver. A shows macrophages detected by immunohistochemistry and B shows the
volume density as a percentage of total liver cell volume. Adapted from Backman et al.
[2019].

4.12 Adipose tissue sequencing

Four different fat tissues were available for sequencing in the MIDY biobank: Subcutaneous
adipose tissue from the abdomen and the back, mesenteric adipose, and perirenal adipose
tissue. Sequencing of subcutaneous back and mesenteric tissue was performed first, due
to quality issues resequencing was required, adding batch effects. In the end, complete
resequencing of the mesenteric tissue and sequencing of the other two adipose tissues was
performed. While this new sequencing of the mesenteric tissue retained an outlier, it was
good enough to be used for analysis. All tissues were distinguishable from each other when
looking at a PCA on PC2 and PC3 (Figure 4.17).

4.12.1 Differential expression analysis of adipose tissue

None of the adipose tissues were able to be analyzed by simply applying DESeq2 to the
samples, some type of uncorrected batch factor seemed to exist even when the different
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Figure 4.17: PCA showing how the adipose tissue samples from the MIDY biobank cluster
together on the second and third principal component.

sequencing runs and even the pregnancy status of the animals were taken into account.
This effect could be seen on the p-value histograms, which were either overly liberal as
in the “subcutaneous abdomen” or overly conservative as seen in the rest (Figure 4.18,
Supplementary Figure B.8). Due to this SVA was employed to correct the distribution.
“Subcutaneous rear” was corrected using 3 SVs yielding 161 significant genes, “subcuta-
neous abdomen” using 2 SVs yielding 84 significant genes, “mesenteric” by 2 SV yielding
160 significant genes, and “perirenal” by 2 SVs yielding 91 significant genes (Figure 4.18,
Supplementary Figure B.8). A Venn diagram (Figure 4.19 A) of the significantly
differentially expressed genes showed a minor overlap between the different tissues, with
the only gene to be altered in all tissues being retinol dehydrogenase 16, aka RDH16, a
prominent gene in the hepatic tissue analysis as well. The minor overlap could signify a
too heavy correction by SVA, or simply more difference between locations than expected.
A Venn diagram over gene sets found significant by GSEA showed a similar overlap as on
the gene level, with mostly the mesenteric tissues showing a strong phenotype (Figure
4.19 B). Only TCA-cycle was found upregulated in all tissues.
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Figure 4.18: Plots showing the SVA correction of the two visceral adipose tissues with A,C
showing the p-value histogram before correction while B,D show the p-value histogram
after correction.
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Figure 4.19: Venn diagram of the A genes and B gene sets significantly differentially
expressed genes in MIDY adipose tissue





Chapter 5

Discussion

In this thesis, the livers of Munich MIDY Pig biobank sows were analyzed on different
omics levels. These levels contribute to the holistic profile of the organ differently: RNA-
Seq captures changes in the whole genome and is sensitive to genes which have lower
expression, proteomics represent fewer but more functionally interpretable changes, and
metabolic/lipidomic characterization show a limted but direct readout of cellular pertur-
bations. The multiomics analysis, being exploratory in nature, reveals both expected and
unexpected biological perturbations. While they are expected, the details of the metabolic
changes still reveal new findings.

5.1 Evidence for stimulated gluconeogenesis

While not quite significant on the mRNA level, the parallel proteomics experiment found
the abundance of phosphoenolpyruvate carboxykinase (PCK1), the rate-limiting enzyme
of gluconeogenesis [Obrochta et al., 2015], to be significantly increased. The reason for the
discrepancy between mRNA and protein could be time related as proteins represent long
term changes while transcripts are short term changes. The mRNA of several other en-
zymes involved in gluconeogenesis, i.e., glutamic-pyruvic transaminase 2 (GPT2), L-lactate
dehydrogenase A chain (LDHA), L-lactate dehydrogenase B chain (LDHB), and alanine-
glyoxylate aminotransferase (AGXT) were significantly increased in the MIDY samples. In
concordance, since gluconeogenesis and glycolysis cannot be active at the same time, the
transcript level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key
stimulator of glycolysis (reviewed in [De Bock et al., 2013]), was significantly decreased.
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5.2 No increased glycogen synthesis in spite of upreg-
ulated GYS2

The rate-limiting step of glycogen synthesis in the liver is glycogen synthase 2 (GYS2)
[Roach et al., 2012], which was significantly more abundant in the MIDY samples than in
WT. Since the phosphorylation level of GSK3B (an inhibitor of GYS2) was reduced however
(Figure 4.14), increased glycogen synthesis in the liver of MIDY pigs was not expected and
could not be observed. Reductions in both synthesis and breakdown of hepatic glycogen
have been found in patients with poorly controlled type 1 diabetes [Bischof et al., 2001,
Regnell and Lernmark, 2011].

5.3 Increased RDH16 expression as a potential link
between insulin deficiency and stimulated gluco-
neogenesis

The mRNA of two retinol dehydrogenase genes were found to be upregulated in the MIDY
liver; RDH11 and RDH16. Simultaneous proteomic studies showed that RDH16 was the
most increased protein in the MIDY pig liver. This was however not a surprise as RDH16
is negatively regulated by insulin through signaling by FOXO1 [Obrochta et al., 2015].
RDH16, which is also known as RDH1 in mouse [Zhang et al., 2001], is known to be one
of the two retinol dehydrogenases responsible for creating the active form of vitamin A,
all-trans retinoic acid (atRA), along with RDH10 (Figure 5.1) [Belyaeva et al., 2008,
Napoli, 2012]. RDH10 however, is the dominant enzyme, the RDH10 null mutant is lethal
whereas RDH16 is not [Rhinn et al., 2011]. Obrochta et al. [2015] showed that RDH10 and
RDH16 regulate gluconeogenesis, this could imply that RDH16 is the version of retinol
dehydrogenase required for hypoglycemic stress. We measured levels of retinol, retinal
and atRA to verify this and found atRA to be significantly increased in the MIDY liver.
Supporting the idea of an atRA enrichment in the MIDY liver is the significant increase in
the CYP26A1 gene expression, the main catabolic enzyme of atRA. A null-mutant mouse
for RDH1 showed a decrease in CYP26A1 suggesting the two genes have a connection in
regulation [Zhang et al., 2007].
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5.3.1 RDH16 was also increased in abundance in adipose tissue

After sequencing of the transcriptomes of the adipose tissues, it was found that RDH16
was also increased in these tissues, it was in fact the only transcript found significantly
differentially expressed in all four sub-tissues. In three of the four tissues, the exception
being mesenteric tissue, RDH16 is the most significantly increased transcript. Once again
this result was confirmed in a proteomic experiment analyzing two of the tissues where
RDH16 was the most significantly increased protein. This is at odds with the idea that
RDH16 is mainly responsible for gluconeogenesis activation since adipose tissue does not
have gluconeogenesis. atRA binds to RAR and RXR elements, motifs that when bound
increase transcription of nearby genes [Marill et al., 2003]. RAR and RXR elements regulate
not only metabolism, but also development and immune response. While developmental
effects should be unimportant in the adult sows, immune response is found to be reduced
in all MIDY tissues analyzed so far with no obvious explanation as to why. As a possibility,
RDH16 could be a mechanism for counteracting this reduction. A more worrying possibility
is that RDH16 is a pig specific response to diabetes, which explains why the change in
expression has never been observed before. Another possibility is that insulin signaling does
not take into account the tissue, and thus only one of the tissues requires the regulation of
RDH16 by insulin, while in the other it is just upregulated as a side-effect. Clearly, other
tissues of the MIDY biobank should be explored in order to research deeper into this issue.

Pigs are notorious for being a mammal lacking brown adipose tissue (BAT) [Trayhurn
et al., 1989]. BAT generates heat by using uncoupling protein 1 (UCP1) which uses the
built up electron potential in the mitochondrial membrane to generate heat instead of ATP,
and which is dysfunctional in pigs [Berg et al., 2006]. RDH16 has recently been shown
to regulate browning in mice [Krois et al., 2019], leading to questions whether there is
an alternate heat-generating mechanism utilized in pigs that is regulated by RDH16. As
discussed later on, one gene that was found upregulated in the liver is the liver-specific
uncoupling gene SLC25A47, hinting that perhaps another similar gene could exit for pig
adipose tissue.

5.4 Changes in amino acid metabolism

Under conditions of constant gluconeogenesis leading to an increase in amino acid catabolism,
it would be expected that more than normal amounts of ammonia would be produced, thus
requiring a more active urea cycle than under normal conditions. Indeed, the KEGG path-
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Figure 5.1: Overview of atRA metabolism in the liver. White rectangles indicate genes
while grey indicates metabolites. Insulin leads to transcription of RDH16 through FoxO1.
RDH16 turns Retinol into atRA, an important transcriptional activator. CYP26A1 is
responsible for atRA clearance.

way for the urea cycle is significantly increased, with most enzymes showing an increase in
transcription. The mRNA levels for urea cycle enzymes carbamoyl-phosphate synthase 1
(CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthase 1 (ASS1), and
arginase 1 (ARG1) were significantly increased in MIDY samples. This was corroborated
by the parallel proteomics study which found increased levels of OTC and ARG1. The
increase of ARG1, responsible for converting arginine to urea and ornithine [Morris Jr,
2002], could be a possible explanation as to why arginine can not be detected in the MIDY
samples while it is found in all but one of the WT samples. Ornithine also has a minor
increase in abundance in accordance with this theory.

One amino acid with a high increase in the MIDY pig is lysine. Lysine degradation
is more complicated than most amino acids, requiring several steps. The first enzyme of
the pathway, alpha-aminoadipic semialdehyde synthase (AASS), was found significantly
increased in the MIDY liver, suggesting that the liver is trying to metabolize lysine. Sac-
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charopine, the product of lysine metabolization by AASS has found to be toxic, suggesting
there might be an alternate mechanism preserving lysine [Leandro and Houten, 2019]. As
one of the two purely ketogenic amino acids, it would be expected that less lysine is used for
energy than other amino acids as ketone body generation is mainly derived from fatty acid
degradation. With an increase in protein degradation to fuel gluconeogenesis, an increase
in lysine would then be expected. The other purely ketogenic amino acid is leucine, which
as a branched-chain amino acid is mainly metabolized in adipose and skeletal muscle, ex-
plaining the difference between lysine and leucine concentrations. Lysine is interestingly
the precursor of carnitine [Vaz et al., 2001], however, since carnitine levels are stable there
is no indication that the increased lysine levels affect carnitine levels.

5.4.1 Methionine, serine and cysteine metabolism

Methionine is an essential amino acid that has an important role in the cell as it is necessary
for methylation reactions and provides a source for the production of cysteine. The path-
way leading from methionine to cysteine involves 5 enzymes, 4 of which are significantly
increased in the MIDY pig liver. Nevertheless, the abundance of methionine is increased
in the MIDY pig liver, leading to questions about the cause of this increased methionine
content. The start of Methionine metabolism lies in the methionine cycle, a metabolic
recycling mechanism for maintaining a pool of methionine [Martinov et al., 2010]. The
mRNA of methionine adenosyltransferase 1A (MAT1A), the one enzyme not significantly
increased, is still increased by 20%, meaning the whole pathway is increased. Glycine N-
methyltransferase (GNMT), the enzyme causing S-adenosyl methionine (SAM) turnover,
requires glycine in order to function properly as it transfers the methyl group of SAM onto
glycine to create S-adenosyl homocysteine (SAH) and sarcosine. However, glycine levels in
the MIDY liver were only slightly decreased, most likely not hindering the reaction. Homo-
cysteine is then created by metabolizing SAH using the enzyme adenosylhomocysteinase
(AHCY). Homocysteine, which is toxic to the cell, can be used to regenerate methion-
ine by using the enzyme methionine synthase (MTR). The MTR transcript had a minor
insignificant decrease, most likely not enough to be the reason for methionine enrichment.

Homocysteine can be utilized in the transsulfuration pathway to produce cysteine [Sbo-
dio et al., 2019]. To do this homocysteine is combined with serine by the enzyme cystathio-
nine beta-synthetase (CBS). Since serine is reduced in the MIDY liver, one reason for the
methionine enrichment could be a slower than normal transsulfuration pathway. The fi-
nal step of the transsulfuration pathway produces cysteine by cystathionine gamma-lyase
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(CTH). Cysteine cannot be measured by the targeted metabolomics kit used, and due to
the instability of thiols it cannot be measured so long after sampling. However, while
cysteine itself cannot be measured its polypeptide form glutathione can be measured. In
a human hepatoma cell line, it has been shown that 50% of cysteine derived from the
transsulfuration pathway is incorporated into glutathione [Mosharov et al., 2000]. Glu-
tathione is the most important antioxidant of the body and is formed by conjugating
glycine and glutamate onto serine [Lu, 2013]. Total glutathione levels were not altered,
however the levels of oxidized glutathione, GSSG, were changed as a trend, showing some
amount of oxidative stress. It should also be noted that due to the age of the samples and
as the instability of thiols apply to glutathione as well, both the ratios and total amount of
glutathione could have been changed. Cysteine can also be converted into taurine, another
antioxidant, starting with the enzyme cysteine dioxygenase 1 (CDO1). While Taurine lev-
els were increased by a non-significant amount, CDO1 was markedly reduced in expression,
suggesting the MIDY liver is trying to conserve cysteine residues.

Serine levels could be reduced due to several different reasons. The most probable
reason is a significant increase in serine dehydratase (SDS), the enzyme responsible for
serine catabolism [Xue et al., 1999]. SDS produces pyruvate from serine which can then be
shuttled into the gluconeogenesis pathway. Serine is also used to produce sphingomyelins,
a lipid family that was found reduced in the MIDY liver in the targeted metabolomics
experiment and also together with its precursor ceramide in the lipidomics experiments
(Figure 4.13 C, D). This reduction could just be due to the lower serine content in the
first place as serine is rate-limiting for this production [Merrill Jr et al., 1988]. Another
reason for serine depletion could be it being used as a fuel for one-carbon metabolism
[Scott and Weir, 1998]. Serine provides the one-carbon units of tetrahydrofolate, which
ultimately comes full circle as donor of methyl groups to homocysteine, regenerating it to
methionine. Possibly due to the toxicity of homocysteine, it is being recycled at a higher
rate by an increase in tetrahydrofolate. Under normal circumstances serine could simply
be synthesized by the hepatocyte, however as the metabolite used for serine production,
3-phosphoglycerate, is located in the middle of the gluconeogenic chain, with active serine
conversion into pyruvate, this essentially creates a futile cycle.

Serine can also be generated by the glycine cleavage system, which interlinks the two
aminoacid pools [Locasale, 2013]. While serine can directly be converted to glycine, two
glycines are required by the cleavage system, one of which will be consumed. Glycine levels
were also reduced in MIDY pigs but only to a minor degree (Figure 4.13 A). One pressure
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on the glycine concentration could be the production of glutathione.
In summary, what is going on in methionine-serine metabolism is most likely a reduc-

tion in available serine due to gluconeogenesis, which then leads to a lack of serine for the
transsulfuration pathway. Instead, homocysteine will be used to regenerate methionine
which requires a one-carbon unit, further putting pressure on serine levels. An increased
level of methionine means more methylation substrates, possibly leading to hypermethyla-
tion. Lack of transsulfuration instead could mean less production of cysteine and thus less
antioxidation potential in the cell.

Figure 5.2: A condensed view of Methionine/Serine metabolism. White rectangles indicate
genes while grey indicates metabolites. Shown genes are genes highlighted in the discussion
showing especially the methionine cycle and the transsulfuration pathway.



68 5. Discussion

5.5 Stimulated ketogenesis and beta-oxidation

5.5.1 Acylcarnitines

Stimulated ketogenesis could be detected in the MIDY pigs by measurement of beta-
hydroxybutyrate, which was significantly increased in the MIDY pigs [Blutke et al., 2017].
In ketogenesis, acetyl-CoA is produced by the metabolism of fatty acids (reviewed in [New-
man and Verdin, 2014]). In order to metabolize the fatty acids, they need to be transferred
into the mitochondria across the mitochondrial membranes. As mitochondria are imperme-
able to acyl-CoAs, the fatty acid is instead transferred onto carnitine which can move across
the membranes in the so-called carnitine shuttle. The enzyme carnitine palmitoyltrans-
ferase 1A (CPT1A) is the enzyme responsible for this conversion. The ratio of long-chain
to short-chain acylcarnitines ((C16 + C18)/C0) is indicative of the activity of CPT1A, and
thus also beta-oxidation. The enzymes involved in beta-oxidation are increased as a trend,
but not significantly so. In addition, there was an increase in the levels of dicarboxylated
acylcarnitines which is indicative of a higher level of omega-oxidation of fatty acids [Longo
et al., 2016]. At first this could seem counter-intuitive as omega-oxidation is generally
active when beta-oxidation is defective, however, it could also be that a higher level of
acyl-CoA overloads the beta-oxidation system and thus omega-oxidation can help reduce
pressure.

5.5.2 Carnitine as a buffer for free CoA

While carnitine’s main function is the shuttling of fatty acids into the mitochondria, they
have another role as regulators of the availability of free CoA. When excess levels of mito-
chondrial acyl-CoA exist, they can be transesterified with l-carnitine to form acylcarnitine
and free CoA. As a proxy to measuring the ratio of mitochondrial acyl-CoA to free CoA,
the extracytosolic ratio of acylcarnitine to free carnitine (C0) can be used as the ratios are
reflective of each other [Reuter and Evans, 2012]. As excess acyl-CoA can mean mitochon-
drial disturbance, the ratio of total acylcarnitine to free carnitine can be used to measure
mitochondrial disturbance. The normal ratio in human liver has been measured in two
different studies to be 35%/65% and 44%/56% [Harper et al., 1993, De Sousa et al., 1990].
The first ratio is close to the values measured in the WT controls of this study which is
37%/63%. The MIDY pig had a ratio of 30%/70% due to reduced amounts of short-chain
acylcarnitines. This suggests that acyl-CoAs could be efficiently processed in the MIDY
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pig and that free CoA pools were maintained correctly. Acetylcarnitines could also be
exported from hepatocytes to economize COA, however this was unlikely since the plasma
acylcarnitines and liver acylcarnitines of this study has similar levels (1.07± 0.56 µM) and
WT controls (1.05± 0.34 µM) [Blutke et al., 2017].

5.5.3 Markedly upregulated HMGCS2

The first and rate-limiting step of ketogenesis is carried out by the mitochondrial enzyme
3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). Transcript levels of HMGCS2
were highly increased, and in the parallel proteomic analysis HMGCS2 was also the most
increased protein. Transcription of HMGCS2 is activated by FOXA2 [Newman and Verdin,
2014] which in turn is inactivated by insulin signaling through the PI3K-AKT pathway
[Wolfrum et al., 2003]. The reduced AKT activation is thus likely the cause of increased
HMGCS2 levels. Enzymes involved in ketogenesis downstream of HMGCS2 such as 3-
hydroxy-3-methylglutaryl-CoA lyase (HMGCL) and 3-hydroxybutyrate dehydrogenase 1
(BDH1) were not increased in abundance in the MIDY liver samples. This supports the
notion that HMGCS2 alone is sufficient for stimulated ketogenesis in the liver.

5.6 Upregulation of antioxidative mechanisms

Several antioxidative mechanisms were found in the MIDY liver, in accordance with the
fact that hyperglycemia increases oxidative stress [Mohamed et al., 2016]. The transcript
abundance of the solute carrier 25 A47 (SLC25A47), which encodes a liver mitochondria
specific uncoupling protein that facilitates proton leak in the mitochondrial matrix and
thus leads to less ATP and H2O2 production [Jin et al., 2009, Mailloux and Harper,
2011b], was significantly increased. SLC25A47 is not well described and has so far not
been described in the context of diabetes. As none of the other uncoupling proteins are
increased, the identification of the transcript as highly increased suggests that it’s one of the
main antioxidative proteins of the liver for hyperglycemic conditions. On the proteomics
level glutathione S-transferase mu 2 (GSTM2), which has been found to protect against
oxidative stress, was significantly increased [Hayes et al., 2005]. Furthermore, protein levels
of glutathione peroxidases 1 & 4 (GPX1, GPX4) were also increased. This could explain
the fact that glutathione was not found significantly oxidized as the glutathione peroxidases
would counter this (Figure B.7).

Isocitrate dehydrogenase 1 (IDH1), the cytosolic version of isocitrate dehydrogenase,
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which has antioxidant properties by producing NADPH for the regeneration of glutathione
[Itsumi et al., 2015], was also increased in abundance in MIDY samples both on the
transcript and protein level. IDH1 requires the presence of cytosolic isocitrate, as isoc-
itrate mostly resides in the mitochondrial TCA-cycle. Accordingly, mRNA levels for the
mitochondrial citrate/isocitrate transporter solute carrier 25 A1 (SLC25A1) were signif-
icantly increased in the MIDY pigs. In addition, the mRNA level for the plasma mem-
brane transporter of citrate/isocitrate, SLC13A5, was significantly increased. Plasma cit-
rate/isocitrate transporter (SLC13A5) transcripts were significantly increased as well, pos-
sibly indicating uptake of circulating plasma isocitrate. All this together shows an ongoing
enrichment of cytosolic citrate/isocitrate, most likely in order to fuel IDH1 in producing
NADPH.

5.7 Alterations of lipid metabolism

Both triacylglycerides (TAG) and diacylglycerides (DAG) were found to be increased in the
MIDY liver (Figure 4.13 D), suggesting increased synthesis, storage or uptake of lipids.
The increase of DAG, which is the precursor of TAG, most likely means an increase in TAG
synthesis. It has been shown in rat that plasma free fatty acids levels were the main factor
in the esterification of fatty acids into hepatic TAG, with insulin action being largely
independent [Vatner et al., 2015]. Since the plasma concentration of TAG was slightly
increased [Blutke et al., 2017] it might contribute to hepatic TAG levels, however the
reverse might be true as well. While TAG was increased there was no signs of nonalcoholic
fatty liver disease (NAFLD). In humans, NAFLD is found in up to 40% of adult patients of
type 1 diabetes [Targher et al., 2018]. This discrepancy could be either due to the younger
age of the pigs or due to the natural resistance of pigs against NAFLD [Renner et al.,
2018].

5.7.1 Apolipoproteins

Apolipoproteins are protein-lipid complexes that function as transporters of lipids, mainly
TAG and cholesterol, in the bloodstream. While no part of cholesterol metabolism was al-
tered in the MIDY pig liver, the main protein of high-density lipoprotein (HDL), apolipopro-
tein A1 (APOA1), was found increased on the protein level. Since HDL transports choles-
terol from peripheral tissues towards the liver, cholesterol would be expected to be increased
in the liver, which is, the reverse of our lipidomics results (Figure 4.13 D). Cholesterol
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is not increased in plasma either [Blutke et al., 2017] suggesting either an increase in
cholesterol catabolism or a localization towards peripheral tissues. Apolipoproteins 4 & 5
(APOA4, APOA5) were found increased in the transcriptome. APOA5 is closely related
to TAG transport as part of several lipoproteins and has been found to facilitate cytosolic
storage of TAG in hepatocytes [Shu et al., 2010], possibly contributing to the increase of
hepatic TAG.

5.8 Changes in extracellular matrix

ADAMTS17 was the most increased transcript in the MIDY pig, going from an almost
non-expressed level in the WT. ADAMTS17 is not very well described, it is known to
be expressed in the liver, however its upregulation in diabetes is not yet described. The
members of the ADAMTS family have a number of different functions relating to the
ECM as secreted zinc metalloproteases [Apte, 2009]. Several different collagens were found
significantly decreased in the MIDY pig liver; COL1A1 were found both on transcriptome
and proteome level, COL1A2, COL5A2, COL6A2, and COL6A3 were significant on the
transcriptome level while COL6A5 and COL14A1 were significant on the proteome level.
In general, the vast majority of collagens were decreased, suggesting a decrease in ECM
in MIDY pigs compared to WT pigs. COL1 is specifically the collagen of scar tissue
and frequent in nonalcoholic steatohepatitis (NASH) [Lefebvre et al., 2017], however, in
the MIDY pigs the collagen expression is decreased instead of increased, something not
previously described. AKT, which in MIDY pigs have reduced activation, is involved
in activating collagen synthesis and could thus provide an explanation to the decreased
collagen levels. Inflammation of the liver leads to fibrosis through the stimulation of hepatic
stellate cells (HSC) [Koyama and Brenner, 2017]. HSCs are in turn activated by the
hepatic macrophages, Kupffer cells. As such, volume densities of MIDY and WT Kupffer
cells were compared, showing a non-significant decrease of Kupffer cells in MIDY samples
(Figure 4.16). The variance in MIDY sample Kupffer cell mass was more narrow showing
a higher variance in WT pigs which could possibly explain the non-significant but consistent
decreases in individual ECM and immune system genes which can be seen as significantly
downregulated pathways in the rank-based GSEA results enriched in the WT pig (Figure
4.6).
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5.9 Reduced activation of immune and inflammatory
mechanisms

Immune function was in general downregulated in the MIDY pigs, both on the mRNA and
the protein levels. This was a surprise as inflammation would usually occur in diabetic
livers. Multiple explanations for this behavior could exist. Since the liver is connected to
the gut via the portal vein there can be a direct influence of gut-derived substances such as
remains of gut-flora on the cells of the liver including immune cells [Szabo, 2015]. As small
amounts of microbial remainders reach the liver they are taken up by the Kupffer cells, the
resident hepatic macrophages that mainly work as scavengers. It is possible that a change
in the intestinal microbiome results in less activation of the immune system. Another pos-
sibility is a difference in blood content in the organ, stemming from narrower sinusoids due
to ECM remodeling for example. The possibility of fewer resident macrophages, Kupffer
cells, were investigated and discussed in the previous section. As the MIDY pigs are dia-
betic during development, there is also a possibility that the development of their immune
system is stunted. This is supported by the fact that the immune system seems to be
compromised in adipose tissue as well.

5.9.1 Inflammatory mechanisms

Pattern recognition receptors (PRRs) are the activators of the innate immune system by
recognizing either pathogen-associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) [Lu et al., 2016, Cui et al., 2014]. In the liver data there
were several activators of immune response that were downregulated: One of the main ac-
tivators of inflammation C-reactive protein (CRP), was significantly downregulated in the
transcriptome. It has been reported that CRP levels increase in plasma under conditions
of insulin resistance and DM2, however here we see the complete opposite in a DM1-like
condition [Nesto, 2004, Grossmann et al., 2015]. It is however possible that the MIDY pig
has some sight insulin resistance [Blutke et al., 2017], something shown to be occurring also
in Akita mice [Hong et al., 2007], which would further add a complication to the immune
response question. The DAMP high mobility group protein B1 (HMGB1) was found to
be decreased in the proteome analysis. HMGB1 is an early inflammatory mediator and
activator of the PRR toll-like receptor 4 (TLR4). Accordingly, the levels of several TLR4
regulated proteins [Abbas et al., 2005] were downregulated: proteasome activator complex
subunit 2 (PSME2), GMP reductase 1 (GMPR), protein transport protein Sec61 subunit
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beta (SEC61B), and 2-5-oligoadenylate synthetase 2 (OAS2). Other proteins connected to
TLR signaling were also found downregulated: Rac family small GTPase 1 (RAC1), pro-
tein phosphatase 2 scaffold subunit A alpha (PPP2R1A), ubiquitin-conjugating enzyme
E2 D2 (UBE2D2), S100 calcium-binding protein A1 (S100A1), legumain (LGMN), and
mitogen-activated protein kinase 3 (MAPK3).

5.9.2 MHC molecules

One consistent finding in the transcriptome is the downregulation of major histocompat-
ibility complex class 2 (MHC2) genes, suggesting a change in macrophage and lympho-
cyte number or activation. MHC2 is the MHC unique to antigen-presenting cells, i.e.
macrophages and dendritic cells, and serves an important part of the adaptive immune
system. Three of the pig counterparts to human HLA genes, SLA-DQA1, SLA-DQB1, and
SLA-DRA are all significantly downregulated, and all other MHC2 genes are downregu-
lated by a substantial amount. Additionally, the gene regulatory factor X5 (RFX5) which
regulates the expression of MHC2 genes [Van Den Elsen, 2011] was found significantly
reduced, serving as an explanation. SLA1, SLA2, and SLA3, genes of MHC1, were also all
reduced, though SLA2 was the only significant one. MHC1 can be found on all cells and
thus only tells about the activation levels and not the cell numbers.

5.10 Conclusion

5.10.1 Benefits of large animal models

The field of large animal model diabetes is a relatively unexplored field due to the high
costs of animal maintenance and expertise required, even with the clear benefits that
animals close to humans in phenotype provides. Previous to the results explained in this
thesis, no other study has looked on the liver of a clinically relevant large animal model
under controlled conditions. Several findings such as the role of RDH16, expression of
ADAMTS17 and changes in sulfur amino acid metabolism have never been studied before
and thus show the value of the model organism.
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5.10.2 Benefits of biobanking

The system of using biobanks to make use of every part of an animal is not only more
ethical and cost-saving in many cases, but also allows for discoveries to be made that
otherwise would not be found. In the case of RDH16, it was thought to be upregulated
in the liver due to its effect on energy metabolism and gluconeogenesis, however, it was
discovered to be the one gene found significantly increased in all adipose tissues where
gluconeogenesis does not occur. If only the liver had been studied it would not have been
taken into consideration that another reason for the increase of RDH16 could exist, such
as in adipose tissue. Furthermore, some tissues, such as adipose tissue and liver tissue,
have a high level of crosstalk with each other and thus should ideally not be studied in
isolation if a holistic picture of the disease is to be created. Biobanking also allows for an
exploratory approach to be followed up with hypothesis-driven studies in the same system
as ample amounts of samples exist.

5.10.3 Future prospects

As demonstrated by the numerous insights generated by only the analysis of liver tissue,
much can be gained by a holistic exploratory approach to disease research. While the
adipose tissue has not yet thoroughly been explored, the discovery of RDH16 suggests that
much more will be gained by further analysis of other tissues and retinol levels should be
checked in relevant tissues. A deeper look into the actual function of RDH16 might require
an RDH16 knockout, perhaps even a MIDY/INSC94Y knockout to find whether RDH16
is required for correct atRA signaling under hyperglycemic stress. The point about the
alternate browning of porcine adipose tissue is also interesting to consider, even though
not related to the topic of diabetes.

Two other not so well described genes were found that might be of interest in further
studies: ADAMTS17 is largely undescribed, most likely due to its low expression level
in WT tissue, and its function can only be guessed from its family members. As most
other ECM related genes are downregulated, the upregulation of ADAMTS17 might be a
countermechanism to this. Except for being the liver-specific uncoupling protein SLC25A47
is not described. The reason for upregulation in diabetes is almost certainly to reduce
oxidative stress from overactive mitochondria, as the other function of uncoupling proteins,
heat generation, is not an issue in the liver.

More time should also be put into investigating the origin of the immune system per-
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turbations. One of the few differences between the effects of MIDY diabetes and DM1 is
the timing of the onset of diabetes. As MIDY diabetes is neonatal it will affect the pigs
from birth while DM1 will have an onset in childhood, leading to possible developmental
problems. If pigs are indeed immune-compromised, the question becomes how early in
development this perturbation happens, and how applicable this would be to young DM1
patients.

While transcriptomic RNA-Seq analyses should most likely be carried out on all tissues
due to its wide-reaching approach, the effect of MIDY diabetes might not be strong enough
on some tissues for a proteomics analysis to be worth it, as the sensitivity to small changes
is weaker as seen here where the RNA-Seq approach finds more than twice the number of
significant genes as the proteomics approach. For more metabolically active organs such as
mesenteric adipose tissue and skeletal muscle, metabolomics experiments should be carried
out. Lipidomics is probably not very relevant except in adipose tissue.

All in all, the project so far has met its goal in establishing the MIDY biobank and
using the liver as the proof of concept of a multi-layered omics analysis. The point of
tissue cross-talk is something that is only just touched upon here and will likely be the
main focus in the future of the biobank.





Summary

With the increasing prevalence of diabetes across the world, research into the chronic
effects of hyperglycemia is more relevant than ever. While research of single diabetic
complications is common, holistic studies of diabetic organisms and tissue crosstalk can
reveal novel insights otherwise hidden. This kind of research however is not possible on
human patients and as such requires an animal model organism.

The mouse as a model organism, while convenient, is not suitable for translational
studies of diabetes due to differences to humans in terms of metabolism and physiology.
The pig as a model organism minimizes these differences with largely similar metabolism
and physiology to that of humans, and as a large animal, it also provides a large amount of
tissue. This makes the pig ideal for use in biobanking, the practice of storing body fluids
and tissues over long periods of time and using them when it is suitable. For these reasons,
the Munich MIDY Pig biobank was created, hosting over 19000 samples from nine pigs.

The MIDY pig (Mutant INS-gene-induced Diabetes of the Youth) is a transgenic insulin
C94Y mutant, causing beta-cell failure due to the misfolding of proinsulin. MIDY pigs are
severely diabetic and retain next to none of their beta-cell mass, requiring constant insulin
treatment. To mimic a poorly compliant diabetes patient, insulin treatment was minimal.
A cohort of 4 MIDY and 5 WT sows were kept under these conditions for 2 years and then
euthanized. Tissues were dissected and various body fluids were recovered and then stored
in -80 degrees Celsius.

As the most metabolically active organ, the liver was chosen as the first to go through
molecular characterization. Using a multi-omic approach in order to carry out an in-
depth exploratory study of the organ, tissue samples were used for RNA-Seq, protein mass
spectrometry, targeted metabolomics, and shot-gun lipidomics. In addition, western blots
of insulin receptor signaling were produced. The data were analyzed both on individual
levels and integratively, using bioinformatics tools.

The results of this analysis contained both expected and unexpected findings. As an



78 Summary

organ in gluconeogenic mode, the liver actively metabolized amino acids into glucose and
fatty acids into ketone bodies. Several mechanisms for reducing oxidative stress were
identified in the MIDY pig including the increased transcription of SLC25A47, a liver
unique uncoupling protein, and NADPH production for glutathione regeneration.

An interesting finding was the expression of retinol dehydrogenase 16, RDH16, in MIDY
pigs, which was found increased in the liver and later in adipose tissue. Due to the role
of RDH16 in all-trans Retinoic Acid (atRA) biosynthesis, and thus in energy regulation
through RAR elements, retinoids were measured and it was indeed found that atRA levels
were higher in the MIDY pigs.

Unexpectedly parts of the immune system and ECM components were found to be less
expressed in MIDY pigs, which is contrary to the higher levels of hepatic inflammation
usually seen in diabetic sufferers. Especially Toll-like receptor signaling expression, MHC
gene expression, and collagen gene expression were decreased. While MHC2 genes were
decreased in expression, no decrease in Kupffer cell volume could be found.

As the first biobank for deep characterization of diabetes in a clinically relevant animal
model, the Munich MIDY Pig biobank has already revealed several novel findings from
the liver. The unique opportunity for a controlled multiomics investigation on a diabetic
liver shows the advantages of using several omics layers when characterizing a disease. The
ongoing characterization of adipose and other tissues is expected to contribute to a new,
holistic understanding of the molecular changes caused by diabetes.



Zusammenfassung

Bioinformatische Analyse von Multiomics-Daten aus der Munich MIDY Pig
Biobank

Mit der zunehmenden Häufigkeit von Diabetes auf der ganzen Welt ist die Erforschung
der chronischen Auswirkungen von Hyperglykämie wichtiger denn je. Üblicherweise wer-
den einzelne diabetische Komplikationen erforscht, wogegen holistische Untersuchungen
zur Auswirkung von Diabetes auf das gesamte Lebewesen oder auf die Wechselwirkung
verschiedener Gewebe neue Einblicke ermöglichen, die ansonsten verborgen bleiben. Diese
Art der Untersuchung ist jedoch am menschlichen Patienten nicht möglich und daher wird
ein Tiermodell benötigt.

Die Maus als Modellorganismus ist zwar praktisch, eignet sich aber aufgrund der Unter-
schiede zum Menschen in Bezug auf Stoffwechsel und Physiologie nicht für translationale
Untersuchungen von Diabetes. Der Modellorganismus Schwein minimiert diese Unter-
schiede, weil sein Stoffwechsel und seine Physiologie dem Menschen weitgehend ähnlichen
sind. Zudem liefert es als Großtier auch eine große Menge an Gewebe. Dadurch ist das
Schwein ideal zum Anlegen einer Biobank geeignet, in der Körperflüssigkeiten und Gewebe
über einen langen Zeitraum aufbewahrt und bei Bedarf zur Verfügung gestellt werden. Aus
diesen Gründen wurde die "Munich MIDY Pig Biobank“ etabliert, die über 19.000 Proben
von neun Schweinen enthält.

Das MIDY-Schwein („Mutant INS-gene-induced Diabetes of the Youth“) trägt eine
transgene Insulin-C94Y-Mutante, die aufgrund der Fehlfaltung von Proinsulin zu Betazell-
Versagen führt. MIDY-Schweine haben daher eine stark reduzierte Betazell-Masse, sind
klinisch diabetisch und benötigen deshalb eine ständige Behandlung mit Insulin. Im ver-
wendeten Modell wurde die Insulinbehandlung minimiert, um einen unzureichend behan-
delten Diabetespatienten nachzuahmen. Eine Gruppe von 4 MIDY- und 5 WT-Sauen
wurd zwei Jahre lang unter diesen Bedingungen gehalten und dann euthanasiert. Gewe-
beproben wurden entnommen und verschiedene Körperflüssigkeiten wurden gewonnen und
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dann jeweils bei -80 Grad Celsius gelagert.
Als metabolisch am stärksten aktivstes Organ wurde als erstes die Leber für die moleku-

lare Charakterisierung ausgewählt. In einem Multiomics-Ansatz wurden Gewebeproben
mittels RNA Sequenzierung, Protein-Massenspektrometrie, zielgerichteter Metabolomik
und „Shot-Gun“-Lipidomik untersucht, um eine detailierte explorative Studie des Organs
durchzuführen. Darüber hinaus wurdenWestern Blots zur Untersuchung des Insulinrezeptor-
Signalwegs durchgeführt. Die erzeugten Daten wurden sowohl separat als auch mit Multiomics-
Ansätzen analysiert.

Diese Analysen ergaben sowohl erwartete als auch unerwartete Ergebnisse. Als Or-
gan im glukoneogenen Modus verstoffwechselt die Leber aktiv Aminosäuren zu Glukose
und Fettsäuren zu Ketonkörpern. Darüberhinaus wurden mehrere Mechanismen zur Re-
duzierung des oxidativen Stresses beim MIDY-Schwein identifiziert, darunter die erhöhte
Transkription von SLC25A47, eines einzigartigen Entkopplungs-Proteins der Leber, und
von Genen der NADPH-Produktion zur Glutathionregeneration.

Ein interessanter Befund bei MIDY-Schweinen war, dass Retinoldehydrogenase 16 (RDH16),
in der Leber und auch im Fettgewebe stärker exprimiert wurde. RDH16 ist an der Biosyn-
these von all-trans Retinsäure (atRA) und damit an der Steuerung des Energiespiegels
durch RAR-Elemente beteiligt. Eine Messung der Retinoide ergab, dass die Konzentratio-
nen von atRA und seines Vorläufers Retinal bei den MIDY-Schweinen höher waren.

Ein unerwartetes Ergebnis war, dass Teile des Immunsystems und auch Komponenten
der extrazellulären Matrix bei MIDY-Schweinen weniger stark exprimiert waren. Dies steht
im Gegensatz dazu, dass bei Diabetikern häufiger entzündliche Veränderungen der Leber
beobachtet werden. Insbesondere der Signalweg der Toll-like-Rezeptoren, die Expression
von MHC und von Kollagen waren verringert. Während die MHC2-Gene reduziert ex-
primiert wurden, konnte kein Rückgang des Volumenanteils des Kupffer-Zellen festgestellt
werden.

Als die erste Biobank zur tiefen Charakterisierung von Diabetes in einem klinisch
relevanten Tiermodell hat die Münchner MIDY Pig Biobank bereits vielversprechende
neue Erkenntnisse von Leber geliefert. Die einzigartige Möglichkeit einer kontrollierten
Multiomik-Untersuchung an einer diabetischen Leber zeigt die Vorteile der Verwendung
mehrerer Omik-Schichten bei der Charakterisierung einer Krankheit. Es ist zu erwarten,
dass die laufenden Untersuchungen von Fett- und weiteren Geweben zu einem neuen,
ganzheitlichen Verständnis der molekularen Veränderungen beitragen, die Diabetes beim
Menschen verursacht.



Appendix A

Reference tables of genes and
metabolites

Gene symbol Full gene name log2FoldChange adjusted p-value
ADAMTS17 ADAM metallopeptidase with thrombospondin type 1 motif 17 2.694 9.42E-27
SLC25A47 solute carrier family 25 member 47 1.829 4.35E-19
BMP8B bone morphogenetic protein 8b 2.018 6.98E-15
SLX4IP SLX4 interacting protein 1.133 3.82E-14
CBR4 carbonyl reductase 4 1.23 4.33E-12
GPT2 glutamic–pyruvic transaminase 2 1.469 7.3E-12
KLHL3 kelch like family member 3 0.923 5.99E-11
RDH11 retinol dehydrogenase 11 0.997 8.51E-11
GOT1 glutamic-oxaloacetic transaminase 1 1.158 8.72E-11
SHROOM3 shroom family member 3 -1.254 9.12E-11
LOC102165634 ncRNA 1.887 1.06E-10
LOC106505246 ncRNA 1.882 1.27E-10
CTH cystathionine gamma-lyase 1.271 2.07E-10
HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 1.795 1.45E-09
GYS2 glycogen synthase 2 0.933 1.49E-09
ELOVL6 ELOVL fatty acid elongase 6 0.942 6.55E-09
ARFGAP3 ADP ribosylation factor GTPase activating protein 3 0.928 1.06E-08
ASS1 argininosuccinate synthase 1 0.796 1.08E-08
MIGA2 mitoguardin 2 1.012 2.96E-08
SEC16A SEC16 homolog A, endoplasmic reticulum export factor 0.783 4.15E-08
LOC106506349 ncRNA 1.609 0.000000144
IGFALS insulin like growth factor binding protein acid labile subunit -0.801 0.000000165
ALDOB aldolase, fructose-bisphosphate B 0.899 0.000000186
AFMID arylformamidase 0.884 0.000000229
KIAA1211 KIAA1211 1.565 0.000000229
AGXT alanine–glyoxylate and serine–pyruvate aminotransferase 1.3 0.000000262
ATE1 arginyltransferase 1 0.572 0.000000262
CYP8B1 cytochrome P450 family 8 subfamily B member 1 1.494 0.000000262
MEGF9 multiple EGF like domains 9 -1.032 0.000000262
ATG2A autophagy related 2A 0.811 0.000000288
CRP C-reactive protein -1.178 0.000000293
SFXN3 sideroflexin 3 1.459 0.000000565
GLS2 glutaminase 2 0.654 0.000000599
SLC4A4 solute carrier family 4 member 4 0.788 0.000000999
HGD homogentisate 1,2-dioxygenase 0.905 0.00000235
LOC106505250 ncRNA 1.467 0.00000246
PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 -1.154 0.00000305
LOC102167599 ncRNA 0.848 0.00000373
LOC110260953 ncRNA 1.452 0.00000373
NFIC nuclear factor I C 0.632 0.00000431
UBL3 ubiquitin like 3 0.725 0.0000053
MIA3 MIA SH3 domain ER export factor 3 0.556 0.00000672
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Gene symbol Full gene name log2FoldChange adjusted p-value
LDHB lactate dehydrogenase B 1.108 0.00000694
THRB thyroid hormone receptor beta -0.68 0.00000763
PSEN2 presenilin 2 0.917 0.00000916
IDH1 isocitrate dehydrogenase (NADP(+)) 1, cytosolic 0.759 0.0000102
PAPSS2 3’-phosphoadenosine 5’-phosphosulfate synthase 2 0.668 0.000013
HAL histidine ammonia-lyase 0.889 0.0000197
PPARA peroxisome proliferator activated receptor alpha 0.745 0.0000257
ARG1 arginase 1 1.051 0.0000287
SFRP1 secreted frizzled related protein 1 -0.994 0.0000305
LOC110262053 protein coding 1.293 0.0000306
FAM114A1 family with sequence similarity 114 member A1 0.859 0.0000338
PHACTR2 phosphatase and actin regulator 2 0.575 0.0000362
MTURN maturin, neural progenitor differentiation regulator homolog 0.933 0.0000378
LOC106506856 protein coding 1.129 0.0000466
BNIP3 BCL2 interacting protein 3 0.493 0.0000502
BMP8A bone morphogenetic protein 8a 1.319 0.0000509
ITPR2 inositol 1,4,5-trisphosphate receptor type 2 0.557 0.0000639
SLC35E2B solute carrier family 35 member E2B 0.629 0.0000639
CGNL1 cingulin like 1 0.629 0.0000723
TMSB4X thymosin beta 4 X-linked -0.512 0.0000753
GIPC2 GIPC PDZ domain containing family member 2 -0.97 0.0000795
NDFIP2 Nedd4 family interacting protein 2 0.775 0.0000831
PDE4B phosphodiesterase 4B -0.827 0.0000831
MOB3B MOB kinase activator 3B -0.937 0.0000868
HNF4G hepatocyte nuclear factor 4 gamma 0.831 0.0000901
TBC1D8B TBC1 domain family member 8B 0.729 0.0000935
TMEM263 transmembrane protein 263 0.651 0.0000935
AASS aminoadipate-semialdehyde synthase 0.775 0.0000939
AMPD3 adenosine monophosphate deaminase 3 -0.775 0.0000975
SDS serine dehydratase 1.266 0.000103
GART GAR transformylase 0.67 0.000114
LOC110260020 pseudo gene 1.071 0.000124
SGK1 serum/glucocorticoid regulated kinase 1 -0.882 0.000124
AHCY adenosylhomocysteinase 0.599 0.000128
SLC13A5 solute carrier family 13 member 5 0.973 0.000139
VIL1 villin 1 -1.05 0.000181
EXTL2 exostosin like glycosyltransferase 2 0.739 0.000209
DMTN dematin actin binding protein 0.844 0.00021
SETBP1 SET binding protein 1 -0.765 0.000235
TMEM181 transmembrane protein 181 0.836 0.000249
LOC110258394 immunoglobulin -1.191 0.000251
ERBB3 erb-b2 receptor tyrosine kinase 3 0.654 0.000271
FBP1 fructose-bisphosphatase 1 0.797 0.00028
NREP neuronal regeneration related protein -1.061 0.000311
TMEM245 transmembrane protein 245 0.442 0.000331
OAT ornithine aminotransferase 0.932 0.000334
KYAT1 kynurenine aminotransferase 1 0.956 0.000342
EEA1 early endosome antigen 1 0.483 0.00038
MXI1 MAX interactor 1, dimerization protein 0.663 0.00038
TRAM2 translocation associated membrane protein 2 0.658 0.00038
LOC110256685 ncRNA -0.812 0.000387
SEC23A Sec23 homolog A, coat complex II component 0.694 0.000401
PMM1 phosphomannomutase 1 1.153 0.000404
LURAP1L leucine rich adaptor protein 1 like -0.716 0.00043
EAF1 ELL associated factor 1 0.767 0.00047
NT5E 5’-nucleotidase ecto 1.022 0.000474
LOC110255180 ncRNA -0.923 0.000511
TBX3 T-box 3 0.788 0.000511
DPH6 diphthamine biosynthesis 6 -0.712 0.000519
PEG3 paternally expressed 3 0.71 0.000519
CBR1 carbonyl reductase 1 -1.099 0.000528
ARHGAP35 Rho GTPase activating protein 35 0.443 0.000529
MGP matrix Gla protein -0.815 0.000544
PIGR polymeric immunoglobulin receptor -0.9 0.000544
SULT2A1 sulfotransferase family 2A member 1 0.77 0.000565
CYP2C34 cytochrome P450 2C34 0.988 0.000607
LDHA lactate dehydrogenase A 0.69 0.000609
LOC110256684 ncRNA -0.935 0.000622
HDAC4 histone deacetylase 4 1.001 0.000622
SLC25A42 solute carrier family 25 member 42 0.875 0.000661
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SLA-DQA1 MHC class II histocompatibility antigen SLA-DQA -0.681 0.000685
SLCO2A1 solute carrier organic anion transporter family member 2A1 1.134 0.000688
MAG myelin associated glycoprotein 1.074 0.000703
GCA grancalcin 0.73 0.000729
LOC110260079 protein coding 0.803 0.000744
NEB nebulin 1.145 0.000744
ABHD15 abhydrolase domain containing 15 0.697 0.000751
ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1 -0.627 0.000774
HIGD1A HIG1 hypoxia inducible domain family member 1A 0.672 0.000774
GNMT glycine N-methyltransferase 0.772 0.000808
SLA-DQB1 SLA-DQ beta1 domain -0.598 0.000854
ACTN1 actinin alpha 1 -0.461 0.000954
ADD3 adducin 3 -0.517 0.00105
RHPN1 rhophilin Rho GTPase binding protein 1 1.077 0.00106
MFAP3L microfibril associated protein 3 like 0.771 0.00106
TAGAP T cell activation RhoGTPase activating protein -0.882 0.00108
CYP26A1 cytochrome P450 family 26 subfamily A member 1 -0.903 0.0011
PPTC7 PTC7 protein phosphatase homolog -0.564 0.00111
CORO1A coronin 1A -0.715 0.00119
MTSS1 MTSS I-BAR domain containing 1 -0.569 0.0012
MAP6D1 MAP6 domain containing 1 0.903 0.00121
LOC110261188 ncRNA 0.988 0.00134
NRP1 neuropilin 1 -0.455 0.00137
MAPK9 mitogen-activated protein kinase 9 0.53 0.00143
TUFT1 tuftelin 1 0.871 0.00152
SH3YL1 SH3 and SYLF domain containing 1 0.872 0.00156
CCDC13 coiled-coil domain containing 13 1.098 0.00158
P2RY4 pyrimidinergic receptor P2Y4 1.096 0.00162
PCMTD1 protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1 0.354 0.0017
CROT carnitine O-octanoyltransferase 0.582 0.00176
LOC102161293 ncRNA 1.046 0.00191
CPS1 carbamoyl-phosphate synthase 1 0.567 0.00196
PRELP proline and arginine rich end leucine rich repeat protein -0.692 0.00199
AKAP7 A-kinase anchoring protein 7 0.629 0.00201
DAPK2 death associated protein kinase 2 -0.797 0.00201
B3GNT3 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3 -0.837 0.0021
MYBPC1 myosin binding protein C, slow type 1.079 0.0021
SEPHS1 selenophosphate synthetase 1 0.554 0.0021
SLC22A7 solute carrier family 22 member 7 -0.785 0.00229
TMEM38A transmembrane protein 38A 0.746 0.00229
CIART circadian associated repressor of transcription -1.037 0.00235
CREB3L3 cAMP responsive element binding protein 3 like 3 0.652 0.00238
GPAM glycerol-3-phosphate acyltransferase, mitochondrial -0.797 0.00238
CD74 CD74 molecule -0.662 0.00251
LRMDA leucine rich melanocyte differentiation associated -0.68 0.00251
NT5DC3 5’-nucleotidase domain containing 3 0.837 0.00269
GSTM3 glutathione S-transferase mu 3 1.057 0.00277
ADCY9 adenylate cyclase 9 0.519 0.00281
KITLG KIT ligand -0.727 0.00295
COL1A2 collagen type I alpha 2 chain -0.691 0.00297
IREB2 iron responsive element binding protein 2 0.538 0.00303
CERS6 ceramide synthase 6 -0.615 0.00316
TLE3 TLE family member 3, transcriptional corepressor -0.613 0.00316
TKFC triokinase and FMN cyclase 0.551 0.00316
KIAA0040 KIAA0040 -0.636 0.0032
PDK4 pyruvate dehydrogenase kinase 4 0.626 0.0032
INSR insulin receptor 0.401 0.00324
EMCN endomucin -0.653 0.00325
KRT8 keratin 8 -0.584 0.00325
LOC102163364 ncRNA 0.7 0.00325
RASL11B RAS like family 11 member B 0.852 0.00325
ZBTB7B zinc finger and BTB domain containing 7B 0.694 0.00325
APOA5 apolipoprotein A5 0.827 0.00338
DPP4 dipeptidyl peptidase 4 0.381 0.00341
COL1A1 collagen type I alpha 1 chain -0.824 0.00347
NQO2 N-ribosyldihydronicotinamide:quinone reductase 2 0.492 0.00351
SMAP2 small ArfGAP2 0.608 0.00351
TTC38 tetratricopeptide repeat domain 38 0.49 0.00351
ZNF385B zinc finger protein 385B -0.748 0.00351
SEC24D SEC24 homolog D, COPII coat complex component 0.573 0.00361
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Gene symbol Full gene name log2FoldChange adjusted p-value
DAPK1 death associated protein kinase 1 -0.578 0.00363
RNF217 ring finger protein 217 0.633 0.00364
SAR1B secretion associated Ras related GTPase 1B 0.473 0.00366
TPM2 tropomyosin 2 -0.684 0.00367
TFRC transferrin receptor -0.872 0.00368
CD2 CD2 molecule -0.753 0.00386
OTC ornithine carbamoyltransferase 0.408 0.00389
TCEA3 transcription elongation factor A3 -0.531 0.00393
TVP23B trans-golgi network vesicle protein 23 homolog B 0.526 0.00395
SYTL5 synaptotagmin like 5 -0.978 0.00427
GADD45B growth arrest and DNA damage inducible beta -0.784 0.00436
LOC110258705 immunoglobulin -1.017 0.00451
EIF4EBP2 eukaryotic translation initiation factor 4E binding protein 2 0.501 0.00467
FAM114A2 family with sequence similarity 114 member A2 0.544 0.00475
ZNF622 zinc finger protein 622 0.499 0.00475
LOC100624435 cytochrome P450 2C42-like -0.912 0.00496
ADIPOR2 adiponectin receptor 2 0.489 0.00496
FMO5 flavin containing monooxygenase 5 0.481 0.00505
NTRK3 neurotrophic receptor tyrosine kinase 3 -0.943 0.00541
LGR4 leucine rich repeat containing G protein-coupled receptor 4 0.488 0.00558
PPP2R5A protein phosphatase 2 regulatory subunit B’alpha 0.454 0.00567
ACAD11 acyl-CoA dehydrogenase family member 11 0.478 0.00568
APOA4 apolipoprotein A4 0.983 0.00568
CDC14B cell division cycle 14B 0.57 0.00568
PPP2R1B protein phosphatase 2 scaffold subunit Abeta 0.44 0.00568
ADRB2 adrenoceptor beta 2 -0.698 0.00572
ARHGDIB Rho GDP dissociation inhibitor beta -0.627 0.00572
NFE2L1 nuclear factor, erythroid 2 like 1 0.464 0.00572
LOC102163250 ncRNA -0.963 0.00576
FOXN2 forkhead box N2 0.816 0.00617
AHR aryl hydrocarbon receptor -0.607 0.00622
LOC102167466 immunoglobulin -0.899 0.00622
RUNX1T1 RUNX1 translocation partner 1 -0.538 0.00622
ETFRF1 electron transfer flavoprotein regulatory factor 1 0.594 0.00637
LOC106506356 ncRNA 0.791 0.00637
SMARCA1 ATP-dependent helicase SMARCA1 0.394 0.00659
NNT nicotinamide nucleotide transhydrogenase 0.613 0.0066
SLC13A3 solute carrier family 13 member 3 -0.679 0.0066
LAD1 ladinin 1 0.875 0.00667
MCFD2 multiple coagulation factor deficiency 2 0.515 0.00674
FRY FRY microtubule binding protein -0.599 0.00685
NPC1L1 NPC1 like intracellular cholesterol transporter 1 0.827 0.00685
ID2 inhibitor of DNA binding 2 -0.548 0.00693
MUC16 mucin-16 0.852 0.00702
MASP2 mannan binding lectin serine peptidase 2 -0.66 0.00713
PDCL3 phosducin like 3 -0.526 0.00728
SIK2 salt inducible kinase 2 0.592 0.00733
ATPAF1 ATP synthase mitochondrial F1 complex assembly factor 1 0.449 0.00751
LOC110260960 ncRNA 0.894 0.00762
HACL1 2-hydroxyacyl-CoA lyase 1 0.459 0.00763
C2CD2 C2 calcium dependent domain containing 2 0.621 0.00786
CLUH clustered mitochondria homolog 0.56 0.00849
AEBP1 AE binding protein 1 -0.761 0.00859
CD59 CD59 molecule (CD59 blood group) -0.462 0.00867
RDH16 retinol dehydrogenase 16 0.642 0.00872
ISCA1 iron-sulfur cluster assembly 1 0.4 0.00879
LOC110256694 ncRNA -0.964 0.00897
LOC110260756 ncRNA -0.746 0.00897
ACTG1 actin gamma 1 -0.526 0.00909
LOC110262159 ncRNA -0.901 0.00909
EIF5 eukaryotic translation initiation factor 5 0.339 0.00921
SEPSECS Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase 0.601 0.00921
SLC16A7 solute carrier family 16 member 7 -0.47 0.00956
CYP2C32 cytochrome P450 2C32 -0.792 0.00963
ADGRA2 adhesion G protein-coupled receptor A2 -0.627 0.00972
PPA1 pyrophosphatase (inorganic) 1 0.512 0.00982
FGD5 FYVE, RhoGEF and PH domain containing 5 -0.479 0.00996
BFAR bifunctional apoptosis regulator 0.625 0.00999
GSDMD gasdermin D 0.592 0.00999
MKKS McKusick-Kaufman syndrome 0.574 0.00999
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CFD complement factor D -0.595 0.01
RAC2 Rac family small GTPase 2 -0.595 0.0103
ACE2 angiotensin I converting enzyme 2 0.776 0.0103
PLSCR1 phospholipid scramblase 1 -0.633 0.0104
ITPKA inositol-trisphosphate 3-kinase A 0.716 0.0107
LOC110256479 carbonyl reductase [NADPH] 1-like 0.929 0.0107
BBS12 Bardet-Biedl syndrome 12 -0.703 0.0108
POMT2 protein O-mannosyltransferase 2 0.828 0.0108
SAA3 serum amyloid A3, pseudogene -0.922 0.0109
DHTKD1 dehydrogenase E1 and transketolase domain containing 1 0.548 0.011
BLNK B cell linker -0.862 0.0112
LOC106504205 ncRNA 0.782 0.0113
SEPT9 septin 9 -0.429 0.0114
LOC110259119 stabilin-2-like -0.665 0.0117
PLBD2 phospholipase B domain containing 2 0.43 0.0117
PLB1 phospholipase B1 0.906 0.0118
ADAMTSL4 ADAMTS like 4 0.646 0.0121
AQP7 aquaporin 7 0.929 0.0122
TSPAN33 tetraspanin 33 -0.919 0.0122
NFIC nuclear factor I C 0.452 0.0123
NAXD NAD(P)HX dehydratase 0.412 0.0129
PLCXD3 phosphatidylinositol specific phospholipase C X domain containing 3 -0.904 0.0131
GPCPD1 glycerophosphocholine phosphodiesterase 1 -0.692 0.0133
LOC110258666 immunoglobulin -0.901 0.0133
KIF21A kinesin family member 21A 0.603 0.0134
SPRYD3 SPRY domain containing 3 0.512 0.0135
TECTB tectorin beta -0.928 0.0137
DDAH1 dimethylarginine dimethylaminohydrolase 1 0.599 0.0141
NQO1 NAD(P)H quinone dehydrogenase 1 0.705 0.0141
LOC106509766 immunoglobulin -0.905 0.0141
EVI2B ecotropic viral integration site 2B -0.594 0.0144
SLA-2 MHC class I antigen 2 -0.696 0.0144
STMN1 stathmin 1 -0.684 0.0145
TMEM86B transmembrane protein 86B -0.535 0.0148
SULT1C2 sulfotransferase 1C2 0.735 0.0149
MEGF10 multiple EGF like domains 10 0.852 0.015
ITGA8 integrin subunit alpha 8 -0.883 0.0151
HDAC6 histone deacetylase 6 0.411 0.0151
LOC102167708 ncRNA -0.86 0.0155
TUBA1A tubulin alpha 1a -0.76 0.0155
LEPR leptin receptor 0.909 0.0156
TTC39C tetratricopeptide repeat domain 39C -0.375 0.0162
THEMIS thymocyte selection associated -0.872 0.0165
CXCL16 C-X-C motif chemokine ligand 16 -0.39 0.0167
PKP4 plakophilin 4 -0.445 0.0168
SLC16A10 solute carrier family 16 member 10 0.514 0.0168
SPX spexin hormone 0.765 0.0168
STK17B serine/threonine kinase 17b -0.544 0.0168
OGDH oxoglutarate dehydrogenase 0.474 0.017
NFXL1 nuclear transcription factor, X-box binding like 1 0.537 0.0171
ACAA1 acetyl-CoA acyltransferase 1 0.518 0.0174
SLC15A2 solute carrier family 15 member 2 0.354 0.0174
AOC2 amine oxidase copper containing 2 0.899 0.0176
NMRAL1 NmrA like redox sensor 1 0.67 0.0177
ITGB3 integrin subunit beta 3 -0.701 0.018
LOC110255435 ncRNA 0.495 0.0181
SFMBT2 Scm like with four mbt domains 2 0.497 0.0181
C6H1orf109 protein coding 0.487 0.019
TCF7 transcription factor 7 0.621 0.0191
SLC25A1 solute carrier family 25 member 1 0.55 0.0191
HAAO 3-hydroxyanthranilate 3,4-dioxygenase 0.445 0.0193
INHBC inhibin subunit beta C -0.643 0.0193
LOC110262160 ncRNA -0.848 0.0193
PHLPP1 PH domain and leucine rich repeat protein phosphatase 1 0.408 0.0193
RORC RAR related orphan receptor C 0.62 0.0195
PGM2 phosphoglucomutase 2 -0.622 0.0199
HIST1H2AH histone cluster 1 H2A family member H -0.881 0.0202
GPC5 glypican 5 -0.807 0.0204
ACTB actin beta -0.445 0.0206
CD84 CD84 molecule -0.608 0.0206
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Gene symbol Full gene name log2FoldChange adjusted p-value
CEP192 centrosomal protein 192 0.373 0.0208
LPIN3 lipin 3 0.742 0.0208
UTP11 UTP11 small subunit processome component 0.584 0.0208
SUOX sulfite oxidase 0.489 0.021
AMPD2 adenosine monophosphate deaminase 2 0.528 0.0211
ACOX2 acyl-CoA oxidase 2 0.49 0.0212
TOR1AIP2 torsin 1A interacting protein 2 0.469 0.0213
DLL3 delta like canonical Notch ligand 3 0.8 0.0214
ENTPD5 ectonucleoside triphosphate diphosphohydrolase 5 (inactive) 0.625 0.0214
OSTM1 osteoclastogenesis associated transmembrane protein 1 0.48 0.0214
SIT1 signaling threshold regulating transmembrane adaptor 1 -0.88 0.0214
OTULIN OTU deubiquitinase with linear linkage specificity 0.436 0.0215
LYPD6 LY6/PLAUR domain containing 6 0.787 0.0217
GTF2A1L general transcription factor IIA subunit 1 like -0.764 0.0217
PREX1 phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 -0.485 0.022
CYR61 cellular communication network factor 1 -0.624 0.0223
LOC110257744 ncRNA -0.868 0.0223
PKHD1 PKHD1 ciliary IPT domain containing fibrocystin/polyductin -0.618 0.0226
BNC2 basonuclin 2 -0.656 0.0226
FAM84A LRAT domain containing 1 0.863 0.0228
INTS3 integrator complex subunit 3 0.385 0.0228
SP100 nuclear body protein SP140-like protein -0.437 0.0231
PAQR7 progestin and adipoQ receptor family member 7 -0.799 0.0231
LOC100524773 low-density lipoprotein receptor-related protein 2-like -0.876 0.0232
FSTL1 follistatin like 1 -0.443 0.0236
ATP23 ATP23 metallopeptidase and ATP synthase assembly factor homolog -0.635 0.0237
COPB1 coatomer protein complex subunit beta 1 0.474 0.0237
RNF152 ring finger protein 152 0.54 0.0237
WFS1 wolframin ER transmembrane glycoprotein 0.687 0.0237
ZFP36L2 ZFP36 ring finger protein like 2 -0.478 0.0237
SLC37A4 solute carrier family 37 member 4 0.613 0.0243
SYDE2 synapse defective Rho GTPase homolog 2 -0.432 0.0248
PSKH1 protein serine kinase H1 0.389 0.0248
PPP1R15A protein phosphatase 1 regulatory subunit 15A -0.619 0.0255
RFX5 regulatory factor X5 -0.477 0.0256
CLPX caseinolytic mitochondrial matrix peptidase chaperone subunit 0.474 0.0263
IRAK4 interleukin 1 receptor associated kinase 4 0.609 0.0263
NOTCH2 notch receptor 2 -0.332 0.0263
C6H19orf12 protein coding 0.749 0.0265
DOLPP1 dolichyldiphosphatase 1 0.563 0.0265
LOC106505550 ncRNA 0.746 0.0265
LOC110262128 ncRNA -0.852 0.0265
SLC27A1 solute carrier family 27 member 1 0.502 0.0265
CD58 CD58 molecule 0.502 0.0266
FBLN2 fibulin 2 -0.613 0.0267
CHRDL1 chordin like 1 -0.772 0.0267
HIST1H2BM histone cluster 1 H2B family member M -0.762 0.0269
COTL1 coactosin like F-actin binding protein 1 -0.532 0.027
SLC39A3 solute carrier family 39 member 3 -0.593 0.0273
TGM3 transglutaminase 3 -0.833 0.0273
CREB3L1 cAMP responsive element binding protein 3 like 1 -0.658 0.0273
RASSF9 Ras association domain family member 9 -0.692 0.0273
ABCD3 ATP binding cassette subfamily D member 3 0.651 0.0273
FAM160B2 family with sequence similarity 160 member B2 0.455 0.0274
DPT dermatopontin -0.671 0.0279
OGN osteoglycin -0.702 0.0279
ILDR2 immunoglobulin like domain containing receptor 2 -0.348 0.0281
WBP1L WW domain binding protein 1 like 0.431 0.0284
USP12 ubiquitin specific peptidase 12 0.506 0.0289
SLC26A1 solute carrier family 26 member 1 -0.558 0.029
ALDH7A1 aldehyde dehydrogenase 7 family member A1 0.511 0.029
CLDN2 claudin 2 -0.751 0.029
ING1 inhibitor of growth family member 1 0.485 0.029
LOC100623670 protein coding -0.85 0.029
GGCX gamma-glutamyl carboxylase 0.343 0.0296
CHD4 chromodomain helicase DNA binding protein 4 0.365 0.0299
RABEP1 rabaptin, RAB GTPase binding effector protein 1 0.318 0.0299
TIMP3 TIMP metallopeptidase inhibitor 3 -0.336 0.0299
LYPD6B LY6/PLAUR domain containing 6B 0.851 0.03
CA2 carbonic anhydrase 2 -0.464 0.03
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Gene symbol Full gene name log2FoldChange adjusted p-value
PDGFC platelet derived growth factor C -0.448 0.03
CRISPLD2 cysteine rich secretory protein LCCL domain containing 2 -0.633 0.0301
SLC37A2 solute carrier family 37 member 2 -0.757 0.0304
MRC2 mannose receptor C type 2 -0.812 0.0307
NDFIP1 Nedd4 family interacting protein 1 0.416 0.0307
EXD3 exonuclease 3’-5’ domain containing 3 -0.633 0.031
CBS cystathionine-beta-synthase 0.488 0.0314
PLIN5 perilipin 5 0.547 0.0314
LOC100739791 ncRNA 0.747 0.0318
GLUL glutamate-ammonia ligase -0.714 0.0321
LOC100514282 prolyl-tRNA synthetase associated domain-containing protein 1 0.627 0.0324
SUCO SUN domain containing ossification factor 0.45 0.0327
PALM2 paralemmin 2 -0.594 0.0327
CCDC6 coiled-coil domain containing 6 0.461 0.0328
CCDC80 coiled-coil domain containing 80 -0.653 0.0328
CDK18 cyclin dependent kinase 18 0.518 0.0328
CHMP3 charged multivesicular body protein 3 -0.595 0.0328
DCTD dCMP deaminase 0.492 0.0328
FLNA filamin A -0.654 0.0328
ORM1 orosomucoid 1 -0.516 0.0328
SH3BP5 SH3 domain binding protein 5 0.545 0.0328
SLC2A3 solute carrier family 2 member 3 -0.62 0.0328
UBXN2A UBX domain protein 2A 0.416 0.0328
CYSLTR1 cysteinyl leukotriene receptor 1 -0.745 0.033
DBP D-box binding PAR bZIP transcription factor -0.655 0.033
TK2 thymidine kinase 2 0.516 0.033
SGMS2 sphingomyelin synthase 2 0.624 0.0333
LOC110261663 histone H2B type 1 -0.672 0.0333
NLN neurolysin 0.423 0.0335
OLR1 oxidized low density lipoprotein receptor 1 -0.636 0.0335
SEC31A SEC31 homolog A, COPII coat complex component 0.358 0.0335
ELMO1 engulfment and cell motility 1 0.401 0.0336
LOC110258332 ncRNA 0.837 0.0336
LOC110256392 ncRNA 0.837 0.0337
MARCO macrophage receptor with collagenous structure 0.724 0.0342
SMPDL3A sphingomyelin phosphodiesterase acid like 3A -0.634 0.0342
RMND5A required for meiotic nuclear division 5 homolog A 0.37 0.0343
CLPB ClpB homolog, mitochondrial AAA ATPase chaperonin 0.482 0.0344
PLEC plectin 0.293 0.0346
RNF14 ring finger protein 14 0.47 0.0348
TMTC2 transmembrane and tetratricopeptide repeat containing 2 0.431 0.0348
EPHA3 EPH receptor A3 -0.833 0.0349
R3HCC1L R3H domain and coiled-coil containing 1 like 0.464 0.035
C12H17orf75 protein coding 0.468 0.035
FAM131C family with sequence similarity 131 member C 0.778 0.035
LOC102160793 ncRNA -0.828 0.035
SLA-DRA MHC class II DR-alpha -0.585 0.035
ATP1B1 ATPase Na+/K+ transporting subunit beta 1 -0.428 0.035
CLMN calmin 0.565 0.035
UBE2QL1 ubiquitin conjugating enzyme E2 Q family like 1 -0.831 0.0352
SLC43A3 solute carrier family 43 member 3 -0.809 0.0353
FAM91A1 family with sequence similarity 91 member A1 0.399 0.0353
PXN paxillin 0.419 0.0355
TMEM176A transmembrane protein 176A 0.81 0.0355
BPIFC BPI fold containing family C 0.773 0.0356
LOC102157807 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase-like -0.75 0.0357
CA14 carbonic anhydrase 14 -0.72 0.0359
MMP7 matrix metallopeptidase 7 -0.737 0.0362
TRAPPC8 trafficking protein particle complex 8 0.405 0.0362
P4HA1 prolyl 4-hydroxylase subunit alpha 1 0.595 0.0363
COPA coatomer protein complex subunit alpha 0.444 0.0366
RALGPS2 Ral GEF with PH domain and SH3 binding motif 2 0.577 0.0368
PRKCA protein kinase C alpha 0.603 0.037
FLT1 fms related tyrosine kinase 1 -0.405 0.0374
WRN Werner syndrome RecQ like helicase 0.453 0.0374
ASB13 ankyrin repeat and SOCS box containing 13 0.523 0.0374
BASP1 brain abundant membrane attached signal protein 1 -0.499 0.0374
MADCAM1 mucosal vascular addressin cell adhesion molecule 1 -0.707 0.0374
LOC100623255 UDP-glucuronosyltransferase 2B31 0.338 0.0381
RPS2 ribosomal protein S2 0.417 0.0382
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ALPK2 alpha kinase 2 0.789 0.0386
LOC102165887 ncRNA -0.811 0.0386
PARVG parvin gamma -0.656 0.0386
POR cytochrome p450 oxidoreductase -0.429 0.039
ANKRD1 ankyrin repeat domain 1 -0.779 0.0392
SULT1B1 sulfotransferase family cytosolic 1B member 1 0.774 0.0392
TFG trafficking from ER to golgi regulator 0.477 0.0393
GPR52 G protein-coupled receptor 52 0.542 0.0393
SMIM14 small integral membrane protein 14 0.377 0.0399
FCGR3A Fc fragment of IgG receptor IIIa -0.433 0.0399
COL6A2 collagen type VI alpha 2 chain -0.546 0.0401
LNX2 ligand of numb-protein X 2 0.564 0.0402
PNPLA7 patatin like phospholipase domain containing 7 0.407 0.0402
LOC110262161 ncRNA -0.734 0.0411
NLRX1 NLR family member X1 0.666 0.0414
LRPPRC leucine rich pentatricopeptide repeat containing 0.314 0.0418
KLHL25 kelch like family member 25 0.714 0.0418
LOC110260620 ncRNA 0.804 0.042
C14H1orf198 protein coding 0.473 0.0421
LOC110256243 ncRNA 0.812 0.0421
C7H6orf62 protein coding 0.335 0.0421
LOC110262064 ncRNA -0.59 0.0421
SACS sacsin molecular chaperone 0.328 0.0424
EIF5A2 eukaryotic translation initiation factor 5A2 0.638 0.0428
LOC110260355 ncRNA 0.603 0.0429
ALDH1B1 aldehyde dehydrogenase 1 family member B1 -0.634 0.043
ARHGEF12 Rho guanine nucleotide exchange factor 12 0.298 0.043
BAIAP2L1 BAI1 associated protein 2 like 1 0.48 0.043
CLIP1 CAP-Gly domain containing linker protein 1 -0.291 0.043
KLF9 Kruppel like factor 9 0.441 0.043
PPIF peptidylprolyl isomerase F 0.557 0.043
GALNT2 polypeptide N-acetylgalactosaminyltransferase 2 0.543 0.0434
HSD3B1 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 -0.331 0.0434
GSE1 Gse1 coiled-coil protein -0.599 0.0435
YTHDC2 YTH domain containing 2 -0.431 0.0435
B3GALT2 beta-1,3-galactosyltransferase 2 -0.806 0.0442
TET2 tet methylcytosine dioxygenase 2 -0.482 0.0449
C15H2orf88 protein coding 0.726 0.045
LOC106504343 ncRNA -0.795 0.045
SEC23IP SEC23 interacting protein 0.349 0.0451
APOBR apolipoprotein B receptor -0.572 0.0453
BCL11A BAF chromatin remodeling complex subunit BCL11A -0.76 0.0453
HSD17B6 17-beta-hydroxysteroid dehydrogenase type 6 -0.519 0.0453
DHX40 DEAH-box helicase 40 0.397 0.0453
COPZ2 coatomer protein complex subunit zeta 2 0.462 0.0453
LOC100153139 HLA class II histocompatibility antigen, DRB1-4 beta chain-like -0.756 0.0453
LOC110256556 ncRNA 0.798 0.0456
CFAP100 cilia and flagella associated protein 100 0.799 0.0465
PMM2 phosphomannomutase 2 0.494 0.0468
DNM3 dynamin 3 -0.468 0.047
KIAA1456 tRNA methyltransferase 9B (putative) -0.62 0.047
PARP9 poly(ADP-ribose) polymerase family member 9 -0.575 0.047
PVRIG PVR related immunoglobulin domain containing -0.79 0.047
STBD1 starch binding domain 1 -0.508 0.0471
STXBP5L syntaxin binding protein 5 like 0.777 0.0471
LMAN1 lectin, mannose binding 1 0.448 0.0472
PFKFB1 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 -0.404 0.0472
RNF144A ring finger protein 144A 0.508 0.0472
SLC25A37 solute carrier family 25 member 37 -0.533 0.0472
PIM1 Pim-1 proto-oncogene, serine/threonine kinase 0.68 0.0474
RBKS ribokinase 0.563 0.0474
RNLS renalase, FAD dependent amine oxidase 0.536 0.0474
TRIP11 thyroid hormone receptor interactor 11 0.395 0.0481
FNDC4 fibronectin type III domain containing 4 0.764 0.0485
IDO2 indoleamine 2,3-dioxygenase 2 -0.374 0.0485
ORAI3 ORAI calcium release-activated calcium modulator 3 0.571 0.0485
RHPN2 rhophilin Rho GTPase binding protein 2 -0.727 0.0485
IMPA1 inositol monophosphatase 1 0.616 0.0486
LEAP2 liver enriched antimicrobial peptide 2 -0.561 0.0487
RNF43 ring finger protein 43 -0.692 0.0491
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RBM3 RNA binding motif protein 3 -0.458 0.0494

Table A.1: List of all genes significantly diferentially expressed in the MIDY liver sorted
by their p-value. Genes described in text are mentioned in the abbreviation section.

Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value LOD [µM] Mean above LOD
C0 6.6577 7.7013 -0.1852 0.3008 2.3709 TRUE
C2 1.0732 1.0453 0.0338 0.9342 0.1189 TRUE
C3 0.1072 0.1098 -0.0305 0.8701 0.0716 TRUE
C3-OH 0.0224 0.024 -0.0871 0.4404 0.0513 FALSE
C3:1 0.0144 0.0154 -0.0829 0.6249 0.036 FALSE
C3-DC (C4-OH) 0.0742 0.0773 -0.0525 0.6319 0.0362 TRUE
C4 0.0697 0.0662 0.0675 0.3733 0.0476 TRUE
C4:1 0.0626 0.036 0.7286 0.0058 0.0367 TRUE
C5 0.0336 0.0345 -0.0344 0.8499 0.0627 FALSE
C5-OH (C3-DC-M) 0.0474 0.0415 0.1718 0.3323 0.0697 FALSE
C5-M-DC 0.028 0.0284 -0.0204 0.8854 0.0552 FALSE
C5-DC (C6-OH) 0.015 0.0177 -0.2091 0.1794 0.0351 FALSE
C5:1 0.0294 0.0285 0.0403 0.6264 0.0627 FALSE
C5:1-DC 0.0134 0.0113 0.2195 0.1703 0.0233 FALSE
C6 (C4:1-DC) 0.0436 0.0464 -0.0812 0.4755 0.1179 FALSE
C6:1 0.0258 0.0277 -0.0894 0.3077 0.0599 FALSE
C7-DC 0.0157 0.0155 0.0157 0.9425 0.0427 FALSE
C8 0.0681 0.0656 0.0479 0.703 0.1321 FALSE
C9 0.0212 0.0213 -0.0029 0.9742 0.0355 FALSE
C10 0.1725 0.0934 0.8103 0.0041 0.095 TRUE
C10:1 0.0283 0.0289 -0.0276 0.8113 0.0869 FALSE
C10:2 0.0428 0.0402 0.0783 0.2849 0.0508 FALSE
C12 0.0432 0.0372 0.1931 0.2251 0.0928 FALSE
C12-DC 0.095 0.0965 -0.02 0.6833 0.3288 FALSE
C12:1 0.036 0.0337 0.0865 0.5555 0.0861 FALSE
C14 0.0134 0.0094 0.4619 0.0563 0.0252 FALSE
C14:1 0.0167 0.0133 0.2926 0.1107 0.01 TRUE
C14:1-OH 0.006 0.0054 0.1336 0.3714 0.0165 FALSE
C14:2 0.005 0.0043 0.2038 0.4329 0.0111 FALSE
C14:2-OH 0.0074 0.0061 0.2435 0.1715 0.0151 FALSE
C16 0.0239 0.0167 0.464 0.186 0.014 TRUE
C16-OH 0.0442 0.0381 0.1897 0.3672 0.0104 TRUE
C16:1 0.0312 0.0295 0.0721 0.6149 0.0838 FALSE
C16:1-OH 0.0049 0.0049 -0.0043 0.989 0.0116 FALSE
C16:2 0.0055 0.0042 0.3306 0.0533 0.0139 FALSE
C16:2-OH 0.0119 0.0121 -0.0233 0.8257 0.0322 FALSE
C18 0.0166 0.0099 0.6787 0.0074 0.0111 TRUE
C18:1 0.0235 0.0146 0.6309 0.2123 0.0172 TRUE
C18:1-OH 0.0102 0.0097 0.0701 0.4933 0.0217 FALSE
C18:2 0.0079 0.0053 0.5034 0.1103 0.0087 FALSE
Ala 325.6455 348.372 -0.0862 0.6355 5.9335 TRUE
Arg 208.7214 210.6499 -0.0118 0.9143 0.5 TRUE
Asn 29.4186 27.7052 0.0772 0.5175 1.5 TRUE
Asp 19.8956 23.2538 -0.1982 0.3153 1.5 TRUE
Cit 91.023 98.0928 -0.0955 0.508 1 TRUE
Gln 399.1926 446.3814 -0.1424 0.1346 1.5 TRUE
Glu 132.2972 142.6014 -0.0958 0.6193 2 TRUE
Gly 634.9126 897.1689 -0.4341 0.052 0.5 TRUE
His 93.724 86.2438 0.1071 0.4696 0.5 TRUE
Ile 194.4627 140.5584 0.4232 0.0177 1.5739 TRUE
Leu 276.4739 195.696 0.4509 0.0018 1.5 TRUE
Lys 157.0419 132.7425 0.2175 0.0315 0.5 TRUE
Met 43.4574 42.7889 0.0199 0.8946 0.1 TRUE
Orn 61.2988 51.8737 0.216 0.1482 0.5 TRUE
Phe 92.8511 78.172 0.2227 0.0161 0.1 TRUE
Pro 260.7201 241.8348 0.0968 0.2368 1 TRUE
Ser 111.0086 111.0663 -0.0007 0.9945 0.912 TRUE
Thr 156.613 134.9053 0.1929 0.2449 0.5 TRUE
Trp 77.2174 63.4342 0.2548 0.0227 0.5 TRUE
Tyr 81.4021 74.9213 0.1069 0.5844 0.5 TRUE
Val 348.9504 284.4986 0.2647 0.0107 0.5 TRUE
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Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value LOD [µM] Mean above LOD
Ac-Orn 3.569 5.2537 -0.484 0.1286 0.2 TRUE
ADMA 0.958 1.0554 -0.1234 0.3018 0.08 TRUE
alpha-AAA 10.4663 11.4459 -0.1141 0.7141 0.4 TRUE
c4-OH-Pro 0 0 NA NA 0.1 FALSE
Carnosine 18.1588 21.5567 -0.2178 0.1179 0.1 TRUE
Creatinine 162.7676 191.1159 -0.204 0.0376 1 TRUE
DOPA 0 0 NA NA 0.2 FALSE
Dopamine 0 0 NA NA 0.1 FALSE
Histamine 4.3084 3.5689 0.2439 0.2351 0.01 TRUE
Kynurenine 0.5452 0.6277 -0.1793 0.4004 0.1728 TRUE
Met-SO 1.2791 1.26 0.0193 0.8958 0.3 TRUE
Nitro-Tyr 0 0 NA NA 0.3 FALSE
PEA 0 0 NA NA 0.02 FALSE
Putrescine 0.315 0.3346 -0.0773 0.657 0.0015 TRUE
SDMA 0.3366 0.4647 -0.4055 0.0798 0.3 TRUE
Serotonin 2.809 4.0676 -0.464 0.1035 0.03 TRUE
Spermidine 0.1294 0.1411 -0.1111 0.3787 0.1611 FALSE
Spermine 0.1668 0.1854 -0.1347 0.2154 0.5 FALSE
t4-OH-Pro 23.4815 29.2584 -0.2784 0.1472 0.1 TRUE
Taurine 90.742 105.8048 -0.1952 0.0964 0.8 TRUE
total DMA 0.8804 1.1476 -0.3346 0.017 0.1 TRUE
lysoPC a C14:0 2.7803 2.5639 0.1044 0.0166 5.7537 FALSE
lysoPC a C16:0 31.0509 30.3973 0.0273 0.8568 0.0699 TRUE
lysoPC a C16:1 1.1032 0.9014 0.2619 0.0122 0.1276 TRUE
lysoPC a C17:0 1.2225 1.4121 -0.1834 0.3695 0.0336 TRUE
lysoPC a C18:0 20.3696 19.3171 0.0682 0.7459 0.1303 TRUE
lysoPC a C18:1 13.0533 10.2147 0.3185 0.0117 0.0659 TRUE
lysoPC a C18:2 19.4206 15.0328 0.3328 0.0652 0.1083 TRUE
lysoPC a C20:3 1.1283 1.4515 -0.3181 0.1445 0.1534 TRUE
lysoPC a C20:4 8.2415 6.492 0.3098 0.0917 0.0269 TRUE
lysoPC a C24:0 0.862 0.7381 0.2006 0.0314 0.8528 FALSE
lysoPC a C26:0 0.7805 0.6237 0.2911 0.1593 0.0839 TRUE
lysoPC a C26:1 0.3834 0.3379 0.163 0.3885 0.0602 TRUE
lysoPC a C28:0 1.1128 0.9961 0.143 0.3766 0.1637 TRUE
lysoPC a C28:1 1.4664 1.052 0.4331 0.0128 0.0556 TRUE
PC aa C24:0 0.9265 0.7082 0.3493 0.016 0.0526 TRUE
PC aa C26:0 2.311 1.8878 0.2622 0.111 1.2045 TRUE
PC aa C28:1 0.7794 0.6145 0.3086 0.0198 0.1739 TRUE
PC aa C30:0 1.1832 1.0984 0.0957 0.2368 0.1354 TRUE
PC aa C30:2 0.3489 0.2821 0.2754 0.0992 0.0042 TRUE
PC aa C32:0 3.4038 3.2133 0.0741 0.5653 0.0282 TRUE
PC aa C32:1 1.942 1.4438 0.3859 0.1485 0.009 TRUE
PC aa C32:2 0.7405 0.5353 0.4231 0.0148 0.009 TRUE
PC aa C32:3 0.1428 0.1121 0.3149 0.0523 0.007 TRUE
PC aa C34:1 70.2812 52.0358 0.3914 0.054 0.0705 TRUE
PC aa C34:2 105.5119 79.929 0.3612 0.0077 0.0943 TRUE
PC aa C34:3 5.4335 3.6093 0.5353 0.006 0.0128 TRUE
PC aa C34:4 0.3074 0.2062 0.5226 0.0014 0.0113 TRUE
PC aa C36:0 0.334 0.3182 0.0623 0.8061 0.113 TRUE
PC aa C36:1 41.4207 29.7946 0.4296 0.0224 0.0295 TRUE
PC aa C36:2 129.4485 94.2682 0.4133 0.0113 0.0566 TRUE
PC aa C36:3 27.952 21.5308 0.3392 0.0158 0.0129 TRUE
PC aa C36:4 56.2459 42.2574 0.3721 0.021 0.025 TRUE
PC aa C36:5 4.6895 3.0911 0.5456 0.0034 0.0106 TRUE
PC aa C36:6 0.138 0.0885 0.5823 0.0015 0.0061 TRUE
PC aa C38:0 0.5047 0.4079 0.2762 0.0505 0.0493 TRUE
PC aa C38:1 0.6732 0.535 0.2983 0.065 0.0086 TRUE
PC aa C38:3 21.7686 23.0063 -0.0707 0.6121 0.0265 TRUE
PC aa C38:4 133.7782 92.7396 0.4786 0.0174 0.0493 TRUE
PC aa C38:5 33.0113 24.2485 0.4019 0.0054 0.0216 TRUE
PC aa C38:6 9.033 5.2563 0.7125 0.001 0.0081 TRUE
PC aa C40:1 0.2632 0.2298 0.1751 0.1202 0.7127 FALSE
PC aa C40:2 0.3604 0.2751 0.3512 0.014 0.0347 TRUE
PC aa C40:3 0.4616 0.4556 0.0167 0.8211 0.0019 TRUE
PC aa C40:4 3.4628 4.0858 -0.2101 0.311 0.0258 TRUE
PC aa C40:5 23.9301 21.3692 0.146 0.1279 0.04 TRUE
PC aa C40:6 6.5201 4.7344 0.4171 0.0843 0.2097 TRUE
PC aa C42:0 0.1656 0.1368 0.2476 0.0213 0.0584 TRUE
PC aa C42:1 0.1117 0.0917 0.2562 0.0148 0.0177 TRUE
PC aa C42:2 0.1234 0.1161 0.0778 0.4356 0.0669 TRUE
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Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value LOD [µM] Mean above LOD
PC aa C42:4 0.0957 0.0867 0.1284 0.1567 0.0054 TRUE
PC aa C42:5 0.1298 0.113 0.179 0.1758 0.0114 TRUE
PC aa C42:6 0.3079 0.283 0.1087 0.0839 0.4702 FALSE
PC ae C30:0 0.2465 0.2244 0.1207 0.1572 0.1838 TRUE
PC ae C30:1 0.4129 0.3443 0.2353 0.2481 0.0073 TRUE
PC ae C30:2 0.3162 0.2909 0.1076 0.1516 0.5916 FALSE
PC ae C32:1 1.0029 0.8285 0.2475 0.069 0.0053 TRUE
PC ae C32:2 0.3041 0.2678 0.164 0.0508 0.0223 TRUE
PC ae C34:0 0.4343 0.4138 0.0619 0.6062 0.0327 TRUE
PC ae C34:1 3.464 2.8613 0.2476 0.191 0.0122 TRUE
PC ae C34:2 3.6972 2.8691 0.3295 0.0642 0.0062 TRUE
PC ae C34:3 2.3024 1.69 0.4029 0.0816 0.0194 TRUE
PC ae C36:0 0.2683 0.25 0.0912 0.5969 0.0881 TRUE
PC ae C36:1 3.4558 3.2809 0.0668 0.7759 0.1183 TRUE
PC ae C36:2 6.8446 6.2993 0.1069 0.5116 0.0287 TRUE
PC ae C36:3 2.5593 1.9077 0.3825 0.0483 0.0166 TRUE
PC ae C36:4 2.2783 1.7337 0.3552 0.0298 0.0098 TRUE
PC ae C36:5 1.5037 1.099 0.4085 0.0193 0.008 TRUE
PC ae C38:0 0.6545 0.4038 0.634 0.0012 0.1125 TRUE
PC ae C38:1 0.6039 0.5143 0.2077 0.2211 0.0051 TRUE
PC ae C38:2 1.2999 1.1994 0.1036 0.4808 0.0058 TRUE
PC ae C38:3 1.2865 1.4222 -0.1279 0.401 0.0017 TRUE
PC ae C38:4 5.5341 4.9905 0.1333 0.3165 0.0092 TRUE
PC ae C38:5 2.8477 2.1015 0.3958 0.0167 0.0031 TRUE
PC ae C38:6 0.6321 0.4358 0.4859 0.0067 0.0053 TRUE
PC ae C40:1 0.9485 0.5443 0.7311 0.0144 0.0122 TRUE
PC ae C40:2 0.4461 0.4173 0.0859 0.4015 0.0038 TRUE
PC ae C40:3 0.4738 0.4755 -0.0047 0.9516 0.0061 TRUE
PC ae C40:4 1.3404 1.2677 0.0718 0.3829 0.0796 TRUE
PC ae C40:5 1.5436 1.5236 0.0168 0.8937 0.008 TRUE
PC ae C40:6 0.5829 0.4512 0.3328 0.0216 0.0081 TRUE
PC ae C42:0 0.596 0.5727 0.0513 0.1754 1.3755 FALSE
PC ae C42:1 0.5472 0.4237 0.3324 0.0398 0.1838 TRUE
PC ae C42:2 0.6215 0.4623 0.3853 0.0277 0.0125 TRUE
PC ae C42:3 0.1878 0.1348 0.4326 0.0199 0.0016 TRUE
PC ae C42:4 0.1346 0.1417 -0.0658 0.4012 0.3 FALSE
PC ae C42:5 0.8138 0.7737 0.065 0.2005 1.5056 FALSE
PC ae C44:3 0.117 0.1042 0.1501 0.4015 0.0249 TRUE
PC ae C44:4 0.0947 0.0828 0.1732 0.1008 0.1042 FALSE
PC ae C44:5 0.1151 0.0935 0.2693 0.0399 0.1166 FALSE
PC ae C44:6 0.1213 0.1094 0.1334 0.4483 0.051 TRUE
SM (OH) C14:1 2.0191 2.201 -0.1101 0.5405 0.025 TRUE
SM (OH) C16:1 2.3309 2.7009 -0.1873 0.2184 0.012 TRUE
SM (OH) C22:1 3.4258 3.2764 0.0573 0.7176 0.0312 TRUE
SM (OH) C22:2 1.3815 1.5801 -0.1709 0.3224 0.0064 TRUE
SM (OH) C24:1 0.4216 0.4175 0.0123 0.9437 0.0186 TRUE
SM C16:0 49.7431 46.8082 0.0782 0.4683 0.0293 TRUE
SM C16:1 5.2457 4.8345 0.1051 0.5065 0.011 TRUE
SM C18:0 10.7454 9.7661 0.1232 0.4526 0.07 TRUE
SM C18:1 2.9899 2.6396 0.1609 0.3365 0.0117 TRUE
SM C20:2 0.1879 0.1382 0.3995 0.0747 0.005 TRUE
SM C22:3 0.0967 0.0626 0.5706 0.3645 0.0088 TRUE
SM C24:0 8.4521 9.0901 -0.0929 0.4551 0.0382 TRUE
SM C24:1 9.519 11.2511 -0.2123 0.2248 0.0151 TRUE
SM C26:0 0.0943 0.1061 -0.1501 0.643 0.015 TRUE
SM C26:1 0.0682 0.091 -0.3625 0.5715 0.0103 TRUE
H1 17367.5027 6337.6666 1.3488 0.0032 20 TRUE
C2 / C0 0.1545 0.1366 0.1588 0.6197 NA NA
(C2+C3) / C0 0.1706 0.1511 0.1569 0.5924 NA NA
CPT1 ratio 0.0061 0.0036 0.6877 0.0092 NA NA
Total AC / C0 0.3594 0.2939 0.2607 0.0928 NA NA
Total AC-DC / 0.0726 0.0777 -0.0871 0.6341 NA NA
Total AC
Total AC-OH / 0.079 0.0814 -0.0386 0.8301 NA NA
Total AC
SFA (PC) 11.0284 9.6354 0.1744 0.0321 NA NA
MUFA (PC) 125.9065 93.5426 0.3869 0.0447 NA NA
MUFA (PC) / 11.3841 9.7641 0.1985 0.0797 NA NA
SFA (PC)
PUFA (PC) 601.9406 455.024 0.364 0.0023 NA NA
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Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value LOD [µM] Mean above LOD
PUFA (PC) / 54.6959 47.3265 0.187 0.0489 NA NA
SFA (PC)
PUFA (PC) / 4.8437 4.8608 -0.0045 0.9647 NA NA
MUFA (PC)
Total PC 738.8756 558.202 0.3648 0.0019 NA NA
Total lysoPC 102.9753 91.5306 0.152 0.2442 NA NA
Total lysoPC / 0.1398 0.1637 -0.2006 0.1175 NA NA
Total PC
Total PC aa 688.2423 515.1954 0.3769 0.0017 NA NA
Total PC ae 50.6332 43.0066 0.2112 0.0746 NA NA
Total SM 96.721 94.9636 0.0235 0.8381 NA NA
Total (PC+SM) 835.5966 653.1656 0.3199 0.0036 NA NA
Total SM / 0.1158 0.1451 -0.2854 0.01 NA NA
Total (SM+PC)
Total SM / 0.131 0.17 -0.3288 0.0114 NA NA
Total PC
Total SM-non OH 87.1422 84.7876 0.0352 0.7635 NA NA
Total SM-OH 9.5788 10.176 -0.0773 0.544 NA NA
Total SM-OH / 0.1104 0.1197 -0.1032 0.2019 NA NA
Total SM-non OH
Orn / Arg 0.2963 0.2487 0.2269 0.2068 NA NA
Tyr / Phe 0.8723 0.9487 -0.1071 0.4446 NA NA
AAA 251.4707 216.5275 0.1934 0.0956 NA NA
BCAA 819.887 620.7529 0.3619 0.0028 NA NA
ESAA 1440.7919 1159.0397 0.2822 0.0067 NA NA
GAA 1071.5667 1356.6073 -0.2983 0.0919 NA NA
KAA 1036.0622 820.4297 0.3029 0.0086 NA NA
BCAA/AAA 3.2656 2.9018 0.1524 0.1204 NA NA

Table A.2: List of metabolites from the MIDY pig plasma with their associated statistics

Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value Mean above LOD
C2 1.0732 1.0453 0.0338 0.9342 TRUE
C3 0.1072 0.1098 -0.0305 0.8701 TRUE
C3-OH 0.0224 0.024 -0.0871 0.4404 FALSE
C3:1 0.0144 0.0154 -0.0829 0.6249 FALSE
C3-DC (C4-OH) 0.0742 0.0773 -0.0525 0.6319 TRUE
C4 0.0697 0.0662 0.0675 0.3733 TRUE
C4:1 0.0626 0.036 0.7286 0.0058 TRUE
C5 0.0336 0.0345 -0.0344 0.8499 FALSE
C5-OH (C3-DC-M) 0.0474 0.0415 0.1718 0.3323 FALSE
C5-M-DC 0.028 0.0284 -0.0204 0.8854 FALSE
C5-DC (C6-OH) 0.015 0.0177 -0.2091 0.1794 FALSE
C5:1 0.0294 0.0285 0.0403 0.6264 FALSE
C5:1-DC 0.0134 0.0113 0.2195 0.1703 FALSE
C6 (C4:1-DC) 0.0436 0.0464 -0.0812 0.4755 FALSE
C6:1 0.0258 0.0277 -0.0894 0.3077 FALSE
C7-DC 0.0157 0.0155 0.0157 0.9425 FALSE
C8 0.0681 0.0656 0.0479 0.703 FALSE
C9 0.0212 0.0213 -0.0029 0.9742 FALSE
C10 0.1725 0.0934 0.8103 0.0041 TRUE
C10:1 0.0283 0.0289 -0.0276 0.8113 FALSE
C10:2 0.0428 0.0402 0.0783 0.2849 FALSE
C12 0.0432 0.0372 0.1931 0.2251 FALSE
C12-DC 0.095 0.0965 -0.02 0.6833 FALSE
C12:1 0.036 0.0337 0.0865 0.5555 FALSE
C14 0.0134 0.0094 0.4619 0.0563 FALSE
C14:1 0.0167 0.0133 0.2926 0.1107 TRUE
C14:1-OH 0.006 0.0054 0.1336 0.3714 FALSE
C14:2 0.005 0.0043 0.2038 0.4329 FALSE
C14:2-OH 0.0074 0.0061 0.2435 0.1715 FALSE
C16 0.0239 0.0167 0.464 0.186 TRUE
C16-OH 0.0442 0.0381 0.1897 0.3672 TRUE
C16:1 0.0312 0.0295 0.0721 0.6149 FALSE
C16:1-OH 0.0049 0.0049 -0.0043 0.989 FALSE
C16:2 0.0055 0.0042 0.3306 0.0533 FALSE
C16:2-OH 0.0119 0.0121 -0.0233 0.8257 FALSE
C18 0.0166 0.0099 0.6787 0.0074 TRUE
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Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value Mean above LOD
C18:1 0.0235 0.0146 0.6309 0.2123 TRUE
C18:1-OH 0.0102 0.0097 0.0701 0.4933 FALSE
C18:2 0.0079 0.0053 0.5034 0.1103 FALSE
Ala 325.6455 348.372 -0.0862 0.6355 TRUE
Arg 208.7214 210.6499 -0.0118 0.9143 TRUE
Asn 29.4186 27.7052 0.0772 0.5175 TRUE
Asp 19.8956 23.2538 -0.1982 0.3153 TRUE
Cit 91.023 98.0928 -0.0955 0.508 TRUE
Gln 399.1926 446.3814 -0.1424 0.1346 TRUE
Glu 132.2972 142.6014 -0.0958 0.6193 TRUE
Gly 634.9126 897.1689 -0.4341 0.052 TRUE
His 93.724 86.2438 0.1071 0.4696 TRUE
Ile 194.4627 140.5584 0.4232 0.0177 TRUE
Leu 276.4739 195.696 0.4509 0.0018 TRUE
Lys 157.0419 132.7425 0.2175 0.0315 TRUE
Met 43.4574 42.7889 0.0199 0.8946 TRUE
Orn 61.2988 51.8737 0.216 0.1482 TRUE
Phe 92.8511 78.172 0.2227 0.0161 TRUE
Pro 260.7201 241.8348 0.0968 0.2368 TRUE
Ser 111.0086 111.0663 -0.0007 0.9945 TRUE
Thr 156.613 134.9053 0.1929 0.2449 TRUE
Trp 77.2174 63.4342 0.2548 0.0227 TRUE
Tyr 81.4021 74.9213 0.1069 0.5844 TRUE
Val 348.9504 284.4986 0.2647 0.0107 TRUE
Ac-Orn 3.569 5.2537 -0.484 0.1286 TRUE
ADMA 0.958 1.0554 -0.1234 0.3018 TRUE
alpha-AAA 10.4663 11.4459 -0.1141 0.7141 TRUE
c4-OH-Pro 0 0 NA NA FALSE
Carnosine 18.1588 21.5567 -0.2178 0.1179 TRUE
Creatinine 162.7676 191.1159 -0.204 0.0376 TRUE
DOPA 0 0 NA NA FALSE
Dopamine 0 0 NA NA FALSE
Histamine 4.3084 3.5689 0.2439 0.2351 TRUE
Kynurenine 0.5452 0.6277 -0.1793 0.4004 TRUE
Met-SO 1.2791 1.26 0.0193 0.8958 TRUE
Nitro-Tyr 0 0 NA NA FALSE
PEA 0 0 NA NA FALSE
Putrescine 0.315 0.3346 -0.0773 0.657 TRUE
SDMA 0.3366 0.4647 -0.4055 0.0798 TRUE
Serotonin 2.809 4.0676 -0.464 0.1035 TRUE
Spermidine 0.1294 0.1411 -0.1111 0.3787 FALSE
Spermine 0.1668 0.1854 -0.1347 0.2154 FALSE
t4-OH-Pro 23.4815 29.2584 -0.2784 0.1472 TRUE
Taurine 90.742 105.8048 -0.1952 0.0964 TRUE
total DMA 0.8804 1.1476 -0.3346 0.017 TRUE
lysoPC a C14:0 2.7803 2.5639 0.1044 0.0166 FALSE
lysoPC a C16:0 31.0509 30.3973 0.0273 0.8568 TRUE
lysoPC a C16:1 1.1032 0.9014 0.2619 0.0122 TRUE
lysoPC a C17:0 1.2225 1.4121 -0.1834 0.3695 TRUE
lysoPC a C18:0 20.3696 19.3171 0.0682 0.7459 TRUE
lysoPC a C18:1 13.0533 10.2147 0.3185 0.0117 TRUE
lysoPC a C18:2 19.4206 15.0328 0.3328 0.0652 TRUE
lysoPC a C20:3 1.1283 1.4515 -0.3181 0.1445 TRUE
lysoPC a C20:4 8.2415 6.492 0.3098 0.0917 TRUE
lysoPC a C24:0 0.862 0.7381 0.2006 0.0314 FALSE
lysoPC a C26:0 0.7805 0.6237 0.2911 0.1593 TRUE
lysoPC a C26:1 0.3834 0.3379 0.163 0.3885 TRUE
lysoPC a C28:0 1.1128 0.9961 0.143 0.3766 TRUE
lysoPC a C28:1 1.4664 1.052 0.4331 0.0128 TRUE
PC aa C24:0 0.9265 0.7082 0.3493 0.016 TRUE
PC aa C26:0 2.311 1.8878 0.2622 0.111 TRUE
PC aa C28:1 0.7794 0.6145 0.3086 0.0198 TRUE
PC aa C30:0 1.1832 1.0984 0.0957 0.2368 TRUE
PC aa C30:2 0.3489 0.2821 0.2754 0.0992 TRUE
PC aa C32:0 3.4038 3.2133 0.0741 0.5653 TRUE
PC aa C32:1 1.942 1.4438 0.3859 0.1485 TRUE
PC aa C32:2 0.7405 0.5353 0.4231 0.0148 TRUE
PC aa C32:3 0.1428 0.1121 0.3149 0.0523 TRUE
PC aa C34:1 70.2812 52.0358 0.3914 0.054 TRUE
PC aa C34:2 105.5119 79.929 0.3612 0.0077 TRUE
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Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value Mean above LOD
PC aa C34:3 5.4335 3.6093 0.5353 0.006 TRUE
PC aa C34:4 0.3074 0.2062 0.5226 0.0014 TRUE
PC aa C36:0 0.334 0.3182 0.0623 0.8061 TRUE
PC aa C36:1 41.4207 29.7946 0.4296 0.0224 TRUE
PC aa C36:2 129.4485 94.2682 0.4133 0.0113 TRUE
PC aa C36:3 27.952 21.5308 0.3392 0.0158 TRUE
PC aa C36:4 56.2459 42.2574 0.3721 0.021 TRUE
PC aa C36:5 4.6895 3.0911 0.5456 0.0034 TRUE
PC aa C36:6 0.138 0.0885 0.5823 0.0015 TRUE
PC aa C38:0 0.5047 0.4079 0.2762 0.0505 TRUE
PC aa C38:1 0.6732 0.535 0.2983 0.065 TRUE
PC aa C38:3 21.7686 23.0063 -0.0707 0.6121 TRUE
PC aa C38:4 133.7782 92.7396 0.4786 0.0174 TRUE
PC aa C38:5 33.0113 24.2485 0.4019 0.0054 TRUE
PC aa C38:6 9.033 5.2563 0.7125 0.001 TRUE
PC aa C40:1 0.2632 0.2298 0.1751 0.1202 FALSE
PC aa C40:2 0.3604 0.2751 0.3512 0.014 TRUE
PC aa C40:3 0.4616 0.4556 0.0167 0.8211 TRUE
PC aa C40:4 3.4628 4.0858 -0.2101 0.311 TRUE
PC aa C40:5 23.9301 21.3692 0.146 0.1279 TRUE
PC aa C40:6 6.5201 4.7344 0.4171 0.0843 TRUE
PC aa C42:0 0.1656 0.1368 0.2476 0.0213 TRUE
PC aa C42:1 0.1117 0.0917 0.2562 0.0148 TRUE
PC aa C42:2 0.1234 0.1161 0.0778 0.4356 TRUE
PC aa C42:4 0.0957 0.0867 0.1284 0.1567 TRUE
PC aa C42:5 0.1298 0.113 0.179 0.1758 TRUE
PC aa C42:6 0.3079 0.283 0.1087 0.0839 FALSE
PC ae C30:0 0.2465 0.2244 0.1207 0.1572 TRUE
PC ae C30:1 0.4129 0.3443 0.2353 0.2481 TRUE
PC ae C30:2 0.3162 0.2909 0.1076 0.1516 FALSE
PC ae C32:1 1.0029 0.8285 0.2475 0.069 TRUE
PC ae C32:2 0.3041 0.2678 0.164 0.0508 TRUE
PC ae C34:0 0.4343 0.4138 0.0619 0.6062 TRUE
PC ae C34:1 3.464 2.8613 0.2476 0.191 TRUE
PC ae C34:2 3.6972 2.8691 0.3295 0.0642 TRUE
PC ae C34:3 2.3024 1.69 0.4029 0.0816 TRUE
PC ae C36:0 0.2683 0.25 0.0912 0.5969 TRUE
PC ae C36:1 3.4558 3.2809 0.0668 0.7759 TRUE
PC ae C36:2 6.8446 6.2993 0.1069 0.5116 TRUE
PC ae C36:3 2.5593 1.9077 0.3825 0.0483 TRUE
PC ae C36:4 2.2783 1.7337 0.3552 0.0298 TRUE
PC ae C36:5 1.5037 1.099 0.4085 0.0193 TRUE
PC ae C38:0 0.6545 0.4038 0.634 0.0012 TRUE
PC ae C38:1 0.6039 0.5143 0.2077 0.2211 TRUE
PC ae C38:2 1.2999 1.1994 0.1036 0.4808 TRUE
PC ae C38:3 1.2865 1.4222 -0.1279 0.401 TRUE
PC ae C38:4 5.5341 4.9905 0.1333 0.3165 TRUE
PC ae C38:5 2.8477 2.1015 0.3958 0.0167 TRUE
PC ae C38:6 0.6321 0.4358 0.4859 0.0067 TRUE
PC ae C40:1 0.9485 0.5443 0.7311 0.0144 TRUE
PC ae C40:2 0.4461 0.4173 0.0859 0.4015 TRUE
PC ae C40:3 0.4738 0.4755 -0.0047 0.9516 TRUE
PC ae C40:4 1.3404 1.2677 0.0718 0.3829 TRUE
PC ae C40:5 1.5436 1.5236 0.0168 0.8937 TRUE
PC ae C40:6 0.5829 0.4512 0.3328 0.0216 TRUE
PC ae C42:0 0.596 0.5727 0.0513 0.1754 FALSE
PC ae C42:1 0.5472 0.4237 0.3324 0.0398 TRUE
PC ae C42:2 0.6215 0.4623 0.3853 0.0277 TRUE
PC ae C42:3 0.1878 0.1348 0.4326 0.0199 TRUE
PC ae C42:4 0.1346 0.1417 -0.0658 0.4012 FALSE
PC ae C42:5 0.8138 0.7737 0.065 0.2005 FALSE
PC ae C44:3 0.117 0.1042 0.1501 0.4015 TRUE
PC ae C44:4 0.0947 0.0828 0.1732 0.1008 FALSE
PC ae C44:5 0.1151 0.0935 0.2693 0.0399 FALSE
PC ae C44:6 0.1213 0.1094 0.1334 0.4483 TRUE
SM (OH) C14:1 2.0191 2.201 -0.1101 0.5405 TRUE
SM (OH) C16:1 2.3309 2.7009 -0.1873 0.2184 TRUE
SM (OH) C22:1 3.4258 3.2764 0.0573 0.7176 TRUE
SM (OH) C22:2 1.3815 1.5801 -0.1709 0.3224 TRUE
SM (OH) C24:1 0.4216 0.4175 0.0123 0.9437 TRUE
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Metabolite MIDY Mean [µM] WT Mean [µM] log2FC p-value Mean above LOD
SM C16:0 49.7431 46.8082 0.0782 0.4683 TRUE
SM C16:1 5.2457 4.8345 0.1051 0.5065 TRUE
SM C18:0 10.7454 9.7661 0.1232 0.4526 TRUE
SM C18:1 2.9899 2.6396 0.1609 0.3365 TRUE
SM C20:2 0.1879 0.1382 0.3995 0.0747 TRUE
SM C22:3 0.0967 0.0626 0.5706 0.3645 TRUE
SM C24:0 8.4521 9.0901 -0.0929 0.4551 TRUE
SM C24:1 9.519 11.2511 -0.2123 0.2248 TRUE
SM C26:0 0.0943 0.1061 -0.1501 0.643 TRUE
SM C26:1 0.0682 0.091 -0.3625 0.5715 TRUE
H1 17367.5027 6337.6666 1.3488 0.0032 TRUE
C2 / C0 0.1545 0.1366 0.1588 0.6197 NA
(C2+C3) / C0 0.1706 0.1511 0.1569 0.5924 NA
CPT1 ratio 0.0061 0.0036 0.6877 0.0092 NA
Total AC / C0 0.3594 0.2939 0.2607 0.0928 NA
Total AC-DC / 0.0726 0.0777 -0.0871 0.6341 NA
Total AC
Total AC-OH / 0.079 0.0814 -0.0386 0.8301 NA
Total AC
SFA (PC) 11.0284 9.6354 0.1744 0.0321 NA
MUFA (PC) 125.9065 93.5426 0.3869 0.0447 NA
MUFA (PC) / 11.3841 9.7641 0.1985 0.0797 NA
SFA (PC)
PUFA (PC) 601.9406 455.024 0.364 0.0023 NA
PUFA (PC) / 54.6959 47.3265 0.187 0.0489 NA
SFA (PC)
PUFA (PC) / 4.8437 4.8608 -0.0045 0.9647 NA
MUFA (PC)
Total PC 738.8756 558.202 0.3648 0.0019 NA
Total lysoPC 102.9753 91.5306 0.152 0.2442 NA
Total lysoPC / 0.1398 0.1637 -0.2006 0.1175 NA
Total PC
Total PC aa 688.2423 515.1954 0.3769 0.0017 NA
Total PC ae 50.6332 43.0066 0.2112 0.0746 NA
Total SM 96.721 94.9636 0.0235 0.8381 NA
Total (PC+SM) 835.5966 653.1656 0.3199 0.0036 NA
Total SM / 0.1158 0.1451 -0.2854 0.01 NA
Total (SM+PC)
Total SM / 0.131 0.17 -0.3288 0.0114 NA
Total PC
Total SM-non OH 87.1422 84.7876 0.0352 0.7635 NA
Total SM-OH 9.5788 10.176 -0.0773 0.544 NA
Total SM-OH / 0.1104 0.1197 -0.1032 0.2019 NA
Total SM-non OH
Orn / Arg 0.2963 0.2487 0.2269 0.2068 NA
Tyr / Phe 0.8723 0.9487 -0.1071 0.4446 NA
AAA 251.4707 216.5275 0.1934 0.0956 NA
BCAA 819.887 620.7529 0.3619 0.0028 NA
ESAA 1440.7919 1159.0397 0.2822 0.0067 NA
GAA 1071.5667 1356.6073 -0.2983 0.0919 NA
KAA 1036.0622 820.4297 0.3029 0.0086 NA
BCAA/AAA 3.2656 2.9018 0.1524 0.1204 NA

Table A.3: List of metabolites from the MIDY pig liver with their associated statistics



96 A. Reference tables of genes and metabolites

Gene set name Size NES p-value FDR
amino acid metabolism 237 3.58 0.00E+00 0.00E+00
membrane transport 33 2.87 0.00E+00 8.29E-04
abc transporters 33 2.81 0.00E+00 1.11E-03
arginine biosynthesis 18 2.60 0.00E+00 2.18E-03
carbohydrate metabolism 280 2.33 0.00E+00 1.22E-02
cysteine and methionine metabolism 41 2.30 2.02E-03 1.19E-02
valine, leucine and isoleucine degradation 46 2.25 0.00E+00 1.41E-02
propanoate metabolism 29 2.25 0.00E+00 1.26E-02
butanoate metabolism 21 2.20 0.00E+00 1.57E-02
glycine, serine and threonine metabolism 35 2.16 0.00E+00 1.74E-02
peroxisome 76 2.12 2.07E-03 2.17E-02
citrate cycle (tca cycle) 29 2.10 4.16E-03 2.20E-02
alanine, aspartate and glutamate metabolism 31 2.07 6.04E-03 2.53E-02
metabolism of cofactors and vitamins 157 2.00 6.12E-03 3.61E-02
tgf-beta signaling pathway 67 1.99 4.07E-03 3.61E-02
ppar signaling pathway 57 1.97 7.74E-03 3.95E-02
erbb signaling pathway 70 1.94 5.92E-03 4.46E-02
fatty acid degradation 36 1.93 1.18E-02 4.49E-02
signaling pathways regulating pluripotency of stem cells 98 1.92 9.78E-03 4.53E-02
lysine degradation 53 1.83 1.37E-02 6.87E-02

Table A.4: Upregulated genes in the Lexogen library GSEA showing a similar result to
that of the NuGEN library.
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Gene set name Size NES p-value FDR
ribosome 120 -5.03 0.00E+00 0.00E+00
signaling molecules and interaction 374 -4.22 0.00E+00 0.00E+00
immune diseases 148 -3.93 0.00E+00 0.00E+00
translation 400 -3.80 0.00E+00 0.00E+00
phagosome 117 -3.45 0.00E+00 0.00E+00
infectious diseases: parasitic 210 -3.33 0.00E+00 0.00E+00
intestinal immune network for iga production 29 -3.22 0.00E+00 0.00E+00
antigen processing and presentation 50 -3.12 0.00E+00 0.00E+00
complement and coagulation cascades 73 -3.12 0.00E+00 0.00E+00
ecm-receptor interaction 59 -3.03 0.00E+00 1.37E-04
graft-versus-host disease 22 -3.02 0.00E+00 1.25E-04
transcription 185 -3.02 0.00E+00 1.14E-04
allograft rejection 24 -2.93 0.00E+00 1.97E-04
infectious diseases: bacterial 273 -2.85 0.00E+00 1.82E-04
protein digestion and absorption 50 -2.81 0.00E+00 1.70E-04
hematopoietic cell lineage 63 -2.81 0.00E+00 1.60E-04
cytokine-cytokine receptor interaction 135 -2.76 0.00E+00 2.17E-04
type i diabetes mellitus 27 -2.67 0.00E+00 5.49E-04
focal adhesion 159 -2.66 0.00E+00 5.82E-04
proteasome 40 -2.51 0.00E+00 1.48E-03

Table A.5: Upregulated genes in the Lexogen library GSEA showing a similar result to
that of the NuGEN library.





Appendix B

Supplementary figures

Figure B.1: Graph showing the distribution of Enrichment Scores (ES) in the MIDY liver
GSEA results
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Figure B.2: PCA plot showing the sequencing of the first round of QuantSeq library
preparation. PC1 correlates to the sample handling order, which is the label on the samples.
Coloring indicate the two halves of samples processed.
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A B

C D

Figure B.3: Saturation plots showing how many genes are covered to a depth of 10 counts
per gene. Sequencing techniquesA NuGEN Encore complete, B Lexogen Sense, C Lexogen
Quant Seq, and SCRB Seq are shown
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Figure B.4: Proteomaps showing A upregulated gene sets, and B downregulated gene sets.
KEGG gene sets are grouped by functional relation. Each polygon represents the fraction
of mass the corresponding protein family takes up in the total amount of protein.
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Figure B.5: Quantification of non-esterified fatty acid (NEFA) concentrations in plasma
samples of INSC94Y transgenic (MIDY) pigs and wild-type (WT) controls

Figure B.6: Western blot analysis of abundance and phosphorylation levels of signaling
molecules in liver extracts from INSC94Y transgenic (MIDY) pigs and wild-type (WT)
controls.
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Figure B.7: Quantification of glutathione (GSH), oxidized glutathione (GSSG), and free
GSH concentrations in liver samples from INSC94Y transgenic (MIDY) pigs and wildtype
(WT) controls.
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Figure B.8: Plots showing the SVA correction of the two subcutaneous adipose tissues
with A,C showing the p-value histogram before correction while B,D shows the p-value
histogram after correction.
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