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Abstract

Microscopes have been an invaluable tool throughout the history of the life sci-
ences, as they allow researchers to observe the miniscule details of living systems
in space and time. However, modern biology studies complex and non-obvious phe-
notypes and their distributions in populations and thus requires that microscopes
evolve from visual aids for anecdotal observation into instruments for objective
and quantitative measurements. To this end, many cutting-edge developments
in microscopy are fuelled by innovations in the computational processing of the
generated images. Computational tools can be applied in the early stages of an
experiment, where they allow for reconstruction of images with higher resolution
and contrast or more colors compared to raw data. In the final analysis stage,
state-of-the-art image analysis pipelines seek to extract interpretable and humanly
tractable information from the high-dimensional space of images.

In the work presented in this thesis, I performed super-resolution microscopy and
wrote image analysis pipelines to derive quantitative information about multiple
biological processes. I contributed to studies on the regulation of DNMT1 by im-
plementing machine learning-based segmentation of replication sites in images and
performed quantitative statistical analysis of the recruitment of multiple DNMT1
mutants. To study the spatiotemporal distribution of DNA damage response I
performed STED microscopy and could provide a lower bound on the size of the
elementary spatial units of DNA repair. In this project, I also wrote image anal-
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ysis pipelines and performed statistical analysis to show a decoupling of DNA
density and heterochromatin marks during repair. More on the experimental side,
I helped in the establishment of a protocol for many-fold color multiplexing by it-
erative labelling of diverse structures via DNA hybridization. Turning from small
scale details to the distribution of phenotypes in a population, I wrote a reusable
pipeline for fitting models of cell cycle stage distribution and inhibition curves
to high-throughput measurements to quickly quantify the effects of innovative
antiproliferative antibody-drug-conjugates.

The main focus of the thesis is BigStitcher, a tool for the management and align-
ment of terabyte-sized image datasets. Such enormous datasets are nowadays gen-
erated routinely with light-sheet microscopy and sample preparation techniques
such as clearing or expansion. Their sheer size, high dimensionality and unique
optical properties poses a serious bottleneck for researchers and requires special-
ized processing tools, as the images often do not fit into the main memory of
most computers. BigStitcher primarily allows for fast registration of such many-
dimensional datasets on conventional hardware using optimized multi-resolution
alignment algorithms. The software can also correct a variety of aberrations such as
fixed-pattern noise, chromatic shifts and even complex sample-induced distortions.
A defining feature of BigStitcher, as well as the various image analysis scripts de-
veloped in this work is their interactivity. A central goal was to leverage the user’s
expertise at key moments and bring innovations from the big data world to the
lab with its smaller and much more diverse datasets without replacing scientists
with automated black-box pipelines. To this end, BigStitcher was implemented
as a user-friendly plug-in for the open source image processing platform Fiji and
provides the users with a nearly instantaneous preview of the aligned images and
opportunities for manual control of all processing steps. With its powerful features
and ease-of-use, BigStitcher paves the way to the routine application of light-sheet
microscopy and other methods producing equally large datasets.
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Chapter 1

Introduction

A defining feature of life as we know it is the formation and upholding of intricate,
non-random molecular structures in space and time. Life seems to be able to,
in contrast to physical principles at first sight, perpetuate order over long time
periods by feeding on negative entropy in its environment, as famously described
by Erwin Schrödinger in his seminal book What is life? [1]. How the complex
spatiotemporal patterns of life are formed from molecules obeying physical and
chemical laws can be seen as the main question studied by modern biology over
more than a century.

Many key principles of molecular biology, like the structure of deoxyribonucleic
acid (DNA), the genetic code or the mechanisms of gene expression have been
unraveled in the decades since Schrödinger posed his famous central question. But
while the main mechanics of life might seem resolved at first glance, there are many
layers of epigenetic regulation, e.g. non-coding ribonucleic acids (RNAs) or DNA
and histone modifications, with myriads of interacting molecules on top of them.
Progress is made continuously, but, as more and more factors in the systems of life
are discovered, it is safe to assume that it will be a long time still until biologists
can answer with confidence the simple question of what life is.

1



2 CHAPTER 1. INTRODUCTION

Nowadays, a relatively complete census of the molecules present in a biological
system can easily be established by biochemical methods, like (R/D)NA sequenc-
ing or mass spectroscopy, albeit normally at the expense of spatial and temporal
information. Clever chemical tricks allow researchers to also encode this infor-
mation into the molecules of a system, for example by cross-linking of spatially
close molecules, making it possible to reconstruct it by computational means as
is done in chromatin immunoprecipitation-eequencing (ChIP-Seq), chromatin con-
formation capture or DNA microscopy, for example [2–4]. The rapid advances in
omics technologies over the last years have reduced the size of systems studied by
biochemical methods to single cells and it is safe to assume that human ingenuity
will continue to push the boundaries of what information can be extracted from
omics data.

But there is also a second line of investigation that has accompanied the science
of biology since its inception, which consists of methods that aim to produce an
image of the systems of life in space and time as perceived by us humans. For
example, microscopes made the first observations of eukaryotic cells and microbes
passible in the seventeenth century and X-ray crystallography and (cryo-)electron
microscopy (EM) made it possible to ”see” the large biomolecules contributing to
life in the twentieth century. Improvements in microscope instrumentation and
sample preparation continue to be made, with the main goal of producing a bet-
ter representation of biological reality. Better might mean many things: improved
spatial or temporal resolution, but also specificity to a subset of components of the
system under study. The results of imaging experiments often appear more natural
to scientists: since humans are visual animals, microscopy images seem more com-
patible with the human mind than list of tens of thousands of relative expression
levels derived from an RNA-Seq experiment, for example. Whereas it is obvious
that the high-dimensional results of omics must be compressed by computational
statistics into a low-dimensional representation before arriving at an interpretable
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result, microscopy-based experiments often result in the qualitative interpretation
by a trained expert. As more and more of ”simple” questions about phenotypes
that are obvious to humans are answered, the need for data analysis to infer infor-
mation from imaging experiments increases, for example when features of an entire
population of cells need to be studied that might be ignored by an experimenter
subjectively searching for ”representative” cells. Like omics data, images can be
seen as a high-dimensional representation of reality that can be compressed into a
manageable number of quantitative measurements by computational means.

Modern microscopy-based science can be seen as a two-step process (figure 1.1):
first, to provide an as-faithful-as-possible image of reality and secondly, to extract
meaningful scientific insights from it. From the beginning, but even more as one
goes to later stages, computational tools are enabling experiments: computational
methods can, for example, improve spatial resolution, e.g. through structured illu-
mination or single molecule localization, or allow increased spectral multiplexing
[5] during image acquisition but become indispensable during later stages of the
pipeline. While the technical challenges to image interpretation have long been
how to preserve and record an image of the specimen, for example by drawing or
photography, digital image detectors have opened the way to interpreting images
as just a collection of numbers and image analysis pipelines that derive quantita-
tive measurements from them.

1.0.1 A brief history of microscopy

The development of biology into a modern science from the 17th century onwards
happened in parallel to and was often fueled by novel developments in microscopy.
Indeed, the moment the English naturalist Robert Hooke observed cork under a
self-built microscope in 1665 and saw regular structures that he termed ”cells” can
be seen as the inception of cell biology. Likewise, the Dutch lens maker Antoni
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A) B)  C)

Figure 1.2: Microscopic inventions and discoveries in the seventeenth century. A) shows a

drawing of an early microscope constructed by Robert Hooke. B) is a drawing of cells in cork,

first observed by Hooke. C) is a drawing of microorganisms, first observed by Leeuwenhoek. All

images are in the public domain and were taken from [7, 8]. The figure also appears in this form

in [9].

van Leeuwenhoek, who first observed microorganisms (”animalcules”) in the 1670s,
could be considered the first forefather of microbiology (figure 1.2) [6].

While the usefulness of microscopes was widely accepted and saw continuous im-
provement, both in technical aspects, but also in sample fixation and staining meth-
ods, it remained a rather informal ”art of lens making” for quite some time.

The 19th century saw the elevation of microscope building to a formal, theory-
backed process, with descriptions of the physical limits of light microscopy by
Ernst Abbe in 1873, followed by Helmholtz and Lord Rayleigh. Microscope in-
strumentation of the time already approached those theoretical limits. Based on
increasing knowledge of the physics behind optics, new contrast methods like phase
contrast or differential interference contrast (DIC) were developed in the 20th cen-
tury. An avenue towards imaging structures at the molecular scale came with the
development of X-ray crystallography of biomolecules and EM, far surpassing the
limits of light microscopes. However, light microscopy has kept its importance due
to developments in specific labelling of molecules by fluorescent markers, for ex-
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ample recombinant fluorescent proteins [10] that allow for specific labelling in live
samples, and indicators for various biological properties. Innovations into digital
recording of images have also turned images into quantitative measurements and
allow for computer-based image processing and analysis, which continues to fuel
developments and novel insights in- and outside of biological research.

1.0.2 A microscope is only as good as its sample

The first step in microscopy-based experiments is to generate an as-accurate-as-
possible image of the system under study. Taking an accurate image might actually
mean many things: an obvious task is to record images at the highest possible
spatial resolution and with high contrast, i.e. high signal-to-noise ratio (SNR),
but to make sense of the myriads of molecules in a biological system, a further
criterion for a ”good image” is also specificity - it is mainly in this task that
light microscopy excels. While EM enables molecular (or even atomic) resolution,
the imaging of specific molecules within a highly complex biological environment
remains a challenge for this technique.

Developments in light microscopy instrumentation were accompanied by improve-
ments in staining and labelling techniques from the very beginning, as early micro-
scopes operated in bright-field mode in which contrast is formed by absorption of
light in the sample. To increase contrast in systems such as translucent eukaryotic
cells or microbes and specifically label various structures, a multitude of stain-
ing protocols were developed. Famous examples include the Gram stain which
allowed classification of bacteria into Gram-positive and Gram-negative species
with or without a thick cell wall that retains the dye Crystal Violet, respectively.
Another example that still sees extensive use in histology today is the Hematoxylin
& Eosin (H&E) stain. Most staining protocols are not compatible with living cells,
however, and require fixation prior to labelling. Thus, physical ways of achiev-
ing contrast in a microscopy image were developed that do not interfere with the
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biological system, such as darkfield microscopy, that achieves contrast by record-
ing only light that is scattered in the sample, polarization microscopy and phase
contrast or DIC microscopy, which generate contrast from the refractive index
differences within the sample.

In recent decades, this specificity is most often achieved through fluorescence
microscopy, in which only light from specifically labelled structures is collected,
and a variety of target-specific labeling strategies, like antibody labeling, fluo-
rescent fusion proteins or specific molecular interactions (e.g. the DNA-binding
fluorophore 4’,6-diamidino-2-phenylindole (DAPI), or fluorescent labels conjugated
to the actin-binding fungal toxin phalloidin). One can also label DNA oligomers
and use them to selectively attach a label to their complementary sequence in a
cellular system. This basic idea of fluorescence in-situ hybridization (FISH) pro-
vides a way towards microscopic genotyping and allowed for detailed study of the
spatial organization of nuclei [11], but can also be extended to other applications
such as the labeling and quantification of mRNAs [12, 13] and as a building block
for sequential multiplexed labeling (see 1.2.1).

The discovery of fluorescent proteins [14] and their introduction as fusion pro-
teins into new biological systems via molecular biology complements traditional
fluorescent labeling with its live-cell compatibility and high specificity [15]. The
importance of fluorescent proteins as a tool for specific imaging in live biological
systems was honored by the awarding of the 2008 Nobel Prize in chemistry [16]
to Osamo Shimomura, Martin Chalfie and Roger Y. Tsien, respectively for the
discovery, adoption in molecular biology and characterization and modification of
the green fluorescent protein (GFP), the prototypical fluorescent protein. Even
though they added a groundbreaking new tool to the toolbox of molecular biol-
ogy, fluorescent proteins are typically less bright and photostable than synthetic
fluorophores, so their adaptation to tasks typically reserved for conventional flu-
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orophores, such as, for example, specific labeling of single genomic loci remains
challenging [17, 18]. As an alternative, proteins such as the HALO or SNAP tags
[19, 20], which bind free dye molecules added to the medium, can be employed for
bright staining of specifically tagged proteins in living cells.

While fluorescent labelling allows for high specificity, the number of fluorophores
that can be imaged simultaneously is limited to about a handful by their spectral
overlap. If one wants to specifically image many molecular structures, a possible
solution is to physically remove labels from the sample and replace them by new
ones, thus allowing the sequential imaging of many targets [21].

1.0.3 The current status and future of microscopy

Microscopy has been an invaluable tool in biology over the past few centuries
from the scientific revolution onwards. Yet, until recently, microscopes have re-
mained high-performance visual aids and were rarely seen as data collection in-
struments. Biochemical methods can nowadays often provide detailed molecular
insight into phenomena that were previously reserved for microscopic investiga-
tion. Researchers naturally treat the highly specific results from such experiments
as ”just data”, whereas micrographs are often taken as snapshots of the physical
world and considered a result as-is.

Modern Omics has pushed into the singe-cell domain, but subcellular details often
remain a task for light or (cryo-)EM, or just light microscopy in the case of live dy-
namics of cells. Thus, microscopy is set to continue to be an indispensable tool for
biology. To reconcile the high-level overview that conventional micrographs pro-
vide with the intricate molecular processes studied in modern biology, microscopy
will need to evolve in parallel to the questions studied. The improvements can
come from optics and microscope instrumentation, but also from sample prepara-
tion and specific labelling and, most importantly, from computational tools that
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both increase the amount of information that can be extracted from a sample and,
on the other hand, help to condense that high-dimensional information into quan-
titative results understandable by humans. The coming years will hopefully see an
integration of multi-modality data from both microscopy and biochemical sources
to reach a heightened understanding of diverse biological processes and structures
[22].
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1.1 Modern microscopy

1.1.1 Fluorescence microscopy basics

As mentioned above, the majority of modern microscopy techniques rely on fluores-
cent labels to specifically image particular structures of interest. Furthermore, flu-
orescent labels are essential for many advanced techniques such as super-resolution
microscopy.

Fluorescence is a process in which a molecule, called a fluorophore, is excited by
absorbing a photon of a specific wavelength (i.e. energy). The molecule transitions
to an excited singlet state, in which some energy is typically lost as heat to the
environment. Shortly thereafter, the molecule returns to the ground state by
emitting a photon again (figure 1.3). Due to energy loss as heat, the emitted photon
will typically be of longer wavelength than the exciting photon (as phenomenon
called Stokes shift). All the possible energy differences between the ground state
and excited states determine at which wavelengths it can absorb photons (the
absorption spectrum) and likewise, the emission spectrum is determined by the
possible energy differences from excited states to the ground states.

Apart from the possibility of very specific labelling, a further advantage of fluo-
rescence microscopy is the relatively easy construction of a microscope optimized
for fluorescence (figure 1.4). Light is emitted from a source such as a laser or light
emitting diode (LED), reflected and focused onto the sample along the optical
axis (z) by the objective, where fluorescence emission is excited. The emission
light, which has a longer wavelength, is collected again by the objective and is
transmitted through the main dichroic and a tube lens onto a detection device
such as a digital camera or eyepiece. Unlike transmitted light microscopy, fluores-
cence microscope can use the same high-quality objective for both excitation and
detection.
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The fluorescence properties of a fluorophore depend strongly on its molecular en-
vironment. An excited fluorophore might transfer its energy to other molecules
which dissipate it in a non-radiative way. This effect is typically unwanted and
called quenching. On the other hand, the molecular environment of a fluorophore
can be adjusted to increase photostability through anti-bleaching agents.

The dependence of fluorescence on the environment also gives an opportunity for
the establishment of fluorescent indicators of environmental factors such as cal-
cium concentration, pH or the presence of another fluorophore in close proximity
to which excitation is transferred via Förster resonance energy transfer (FRET)
[15].

1.1.2 Super-resolution microscopy

A first, obvious desired property of a ”good image” of a sample is high spatial
resolution, i.e. the ability to distinguish detailed structures. However, due to
physical properties, the resolution of an optical instrument is fundamentally lim-
ited to roughly half the wavelength of light used. This posed significant challenges
to the study of molecular systems with typical sizes on the order of a few or a few
tens of nanometers with light microscopy using visible light at wavelengths of a few
hundred nanometers. In the last decades, several techniques have been developed
to circumvent this limit that can be roughly classified into two groups: Extended
resolution techniques, which extend the resolution of a microscope by a defined
factor include, among others, structured illumination, image scanning microscopy
and (practically infeasible due to low signal) confocal microscopy with an infinitely
small pinhole. These extensions arise from purely physical considerations and typ-
ically do not place constraints on the labelling of the sample. On the other hand,
some techniques, such as STED and localization microscopy, allow for fundamen-
tally unlimited resolution, but require the use of specific fluorophores.



14 CHAPTER 1. INTRODUCTION

As all methods with fundamentally unlimited resolution are the result of an in-
terplay of optics and the chemical labels in the sample, it is not easy to classify
super-resolution microscopy solely into the domain of physics or chemistry. In this
section, the physical basics of the diffraction limit, as well as three hallmark tech-
niques for super-resolution that were employed in the work presented in this thesis:
SIM, STED and SMLM, which each encompass unique microscope instrumentation
and data analysis, will be discussed. Methods that rely more heavily on proper-
ties or labelling will be described in the following section on sample preparation.
PAINT, while providing an avenue towards localization-based super-resolution by
itself, can also be seen as a flexible framework of labelling to extract various molec-
ular properties of the sample under study, and will therefore be discussed below.
Likewise, expansion microscopy relies much more on the modification of the sam-
ple than on the actual microscope used to image it and will also be described
below.

The diffraction limit

A first formal study into the fundamental limits of optical systems was done by
Ernst Abbe, working for the Carl Zeiss microscope company that sought to place
its manufacturing onto solid theoretical foundations, in 1873 [23]. In his studies,
Abbe considered passing light through a simple line grid and collecting it with an
objective. He could prove that only if the first diffraction maximum of the grid
could be passed through the aperture of the optical system, an image of the grid can
be generated. As shown by Abbe, the minimal grid spacing d (and consequently,
since any object can be seen as a sum of spatial frequencies, the minimal distance
between arbitrary structures), that can be resolved with a given objective is:

d =
λ

2NA
=

λ

2 sin(α)n (1.1)
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Here, λ is the wavelength of light, n is the refractive index of the medium and
α is the maximum half-angle at which light is collected by the microscope. This
assumes that a condensor with the same properties as the objective (or one objec-
tive for both illumination and detection) is used to illuminate the grid from all
sides. Illuminating from just one direction, without a condensor, would result in a
twice as large minimal distance. Since the resolving power of an objective is thus
solely determined by the maximum angle of light it can capture in its designated
medium, the denominator NA = n sin(α), its numerical aperture, became one of
the main indicators describing the optical quality of an objective and is extensively
used to this day.

Later studies into the resolution limits of microscopy were done by Helmholtz and
Lord Rayleigh [24], who studied the problem from the perspective of imaging single,
light emitting points through a microscope. Due to diffraction, an infinitesimally
small point emitter will not be imaged as a point, but as a smeared-out disk
surrounded by concentric rings, the so-called point spread function (PSF). Rayleigh
derived an analytic expression for the PSF intensity h at a given distance r from
the center (in the focal plane) of a microscope with an objective, of given NA:

h(r) = I0

(
2J1

(
2πrNA

λ

)
2πrNA

λ

)2

(1.2)

Here J1 is the Bessel function of the first kind of order 1 and I0 is the PSF intensity
at the maximum. When imaging more complex samples, the resulting image I is
the result of a convolution of the underlying structure s (i.e. the distribution of
light-emitting molecules) with the PSF h:

I(x) = (s ∗ h)(x) =
∫ ∞

−∞
s(τ)h(x− τ)dτ (1.3)
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Employing this view, a slightly more conservative limit for the minimal resolvable
distance, the Rayleigh criterion, can be constructed, which states that two point-
emitters can still be separated if the PSF intensity maximum of one coincides with
the first intensity minimum of the other, and vice-versa (figure 1.5). This is the
case at a distance dRayleigh = 0.61λ

NA
.

Another way of describing the resolution limit is to think about images in terms
of their Fourier transforms (often abbreviated by the algorithm used to compute
them, the Fast Fourier Transform, FFT): any signal, including images, can be
seen as a sum of simple sine waves; the (complex-valued) Fourier transform de-
termines for every possible frequency (and orientation in the >1D case) at which
phase and amplitude the corresponding wave contributes to the whole signal. In
the conventional, spatial view, imaging a structure through a diffraction-limited
microscope corresponds to convolving the structure s with a PSF h. Due to the
Fourier convolution theorem F(s ∗ h) = F(s)F(h), we have an analogous view of
this process in frequency space: The FFT of the underlying structure is multiplied
by the object transfer function (OTF), the FFT of the PSF (figure 1.6). In a
diffraction limited system, the OTF is nonzero only up to a finite radius around
the origin (the frequency corresponding to the smallest resolvable distances). This
Fourier-optics view is not just a mathematical abstraction, as the light in the back
focal plane of an objective actually corresponds to the FFT of the structure in the
image plane. Therefore, placing a small aperture in the BFP (or conjugated plane)
results in a narrower OTF and thus reduced resolution, for example.

Structured Illumination

Various techniques exist that can expand upon the diffraction limit by a defined
factor. For example, in confocal laser scanning microscopy (CLSM), lateral resolu-
tion can in theory be improved by a factor of

√
2, as the effective PSF is a product

of the excitation and detections PSFs and thus has a smaller full width at half
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Figure 1.5: Simulated images of point-like light sources (left) and their convolution with the

PSF of an objective with NA = 1.4 and λ = 594nm (middle) as well as graphs of horizontal cuts

through the images at the center of the simulated spots (right). PSFs were simulated according to

equation 1.2. A) shows a single point-like light source, B) two point-like light sources resolvable

according to the Rayleigh criterion and C) two point-like light sources closer than the diffraction

limit. The scalebar equals 200 nm. Figure taken from [9].
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Figure 1.6: An image and its Fourier transform are equivalent views of the same object in

ordinary or frequency space, related by forward or inverse Fourier transforms. Bottom left: In

ordinary space, an image acquired by a microscope can be seen as the convolution of an underlying

structure (for this illustration, a high-resolution STED image of EdU-labelled DNA is used) with

the microscopes PSF (an idealized Gaussian in this case). Bottom right: In frequency space, the

imaging process can be described as the elementwise product of the FFT of the underlying

structure with the OTF.
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maximum (FWHM). Likewise, in 2 photon microscopy (2PM), the 2P excitation
depends on the square of the illumination light intensity, again yielding a

√
2 res-

olution improvement. In practice, however, these improvements have little effect,
as resolution improvement in CLSM would require infinitely small pinholes and
in 2PM, the resolution gain through the square illumination dependence is more
than offset by the 2 times longer wavelengths used.

A technique that has in practice allowed a resolution increase by a factor up to
two in every dimension is structured illumination (SIM). By taking multiple images
with varying, non-uniform illumination patterns, high-resolution information that
is mixed into the images can be computationally reconstructed. A commonly
observed phenomenon based on the same principles that is often used to illustrate
SIM is the Moiré effect: when overlaying two grid-like structures, intensity fringes
of longer period than the original grids can be observed.

The process of generating images with increased resolution via SIM can be best
understood in frequency space: If the underlying structure is not illuminated uni-
formly (i.e. it is multiplied point-wise by the illumination pattern), the image
formation process takes the form of a convolution of the FFT of the structure
with the FFT of the pattern, followed by multiplication by the OTF. It is the
convolution with the pattern that can lead to high-frequency information (outside
the support of the OTF) to be mixed into low-frequency parts that can pass the
OTF. If multiple images of the same structure with different illumination patterns
(e.g. grids with varying phase) are acquired, information that was moved into the
central part of the FFT via convolution can be extracted and computationally
moved back to its original position (figure 1.7).

Various implementations of the SIM principle exist, allowing xy-resolution dou-
bling [25, 26], improved optical sectioning [27] or even resolution doubling in all
dimensions by using a 3D illumination pattern [28]. Due to its capability to image
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A B C

Figure 1.7: Principles of SIM, illustrated using images of a DAPI-stained HeLa nucleus imaged

on a Deltavision OMX 3D-SIM microscope, courtesy of Andreas Maiser. (A) The diffraction limit

corresponds to only the central, low-frequency parts of the FFT of the structure (F(s) = S) being

passed through an optical system, due to multiplication with the OTF (F(h) = H) with limited

support. (B) When non-uniform illumination (p,F(p) = P ) is used, higher-frequency compo-

nents of the structure are mixed into the observable region via convolution. By taking several

images with modified illumination patterns, e.g. phase-shifted grids, the individual components

can be recovered and assigned to their original position in frequency space. (C) By acquiring

images at several phases and grid orientations, a larger coverage of frequency space and therefore

a super-resolved image can be reconstructed (reconstruction performed with the manufacturer’s

software, SoftWorX, slight asymmetries of the FFT due to misalignment of the instrument).
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whole 3D volumes at improved resolution without requiring special fluorophores or
excessive illumination intensities, SIM has become a workhorse technique for the
study of subcellular and subnuclear structures [29, 30]. For conventional SIM, the
resolution improvement is limited to a factor of two, as the illumination pattern
itself is subject to the diffraction limit. By using saturable optical effects, like
in STED (see below), an unlimited resolution improvement with saturated SIM
(SSIM) can be implemented [31, 32].

STED

The theoretical description of Stimulated Emission Depletion (STED) microscopy
by Hell and Wichmann in 1994 [33] provided a first avenue towards far-field mi-
croscopy without a fundamental resolution limit. The first practical implemen-
tations of the concept came around the turn of the millennium [34] and STED
has since proven to be a reliable general-purpose super-resolution method in many
studies. For his contributions to optical super-resolution microscopy by the devel-
opment of STED, Stefan Hell was awarded the Nobel prize in chemistry in 2014
[35].

STED takes advantage of the phenomenon of stimulated emission: whereas in
normal fluorescence, a molecule absorbs a photon and is pushed to an excited state
and, after vibrational relaxation, eventually (typically after a few ns) falls back to
the ground state by emitting a lower energy photon, stimulated emission happens
when an excited molecule absorbs a second photon (with energy corresponding to a
possible emission energy difference), which causes it to immediately fall back to the
ground state, emitting two copies of the depleting photon in the process (figure 1.8).
Stimulated emission is the process by which lasers (LASER: Light Amplification
by Stimulated Emission of Radiation) generate highly coherent light.
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Figure 1.8: Energy transitions of a fluorophore during normal fluorescence and stimulated emis-

sion. Left: In normal fluorescence, the molecule is pushed into an excited state by absorption of a

photon and will drop back into the ground state after vibrational relaxation, emitting a (typically

longer wavelength) photon In the process. Right: In stimulated emission, an excited fluorophore

absorbs a second photon with energy corresponding to an emission. This will cause the molecule

to immediately drop back into the ground state, emitting two photons with exactly the same

properties of the depleting photon. The depletion light can however also cause excitation into

reactive higher states, in which photobleaching can occur due to interactions of the fluorophore

with its environment [36].
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When fluorophores are illuminated with both excitation and depletion light, the
light they emit is predominantly in the form of stimulated emission, normal fluo-
rescence emission is depleted. To make this effect usable for super-resolution, the
depletion laser spot is shaped so that it will cause more depletion in some parts
of the excited volume than others. For example, by using a ring (often referred
to as a doughnut in STED literature) of depletion light surrounding an excitation
light spot, only molecules in the very center exhibit normal fluorescence, whereas
molecules on the side emit through stimulated emission. By scanning the combined
excitation and depletion light across the sample (like in a conventional confocal
laser scanning microscope) and only collecting normal fluorescence by filtering out
the specific wavelength of stimulated emission, a super-resolution image can be
acquired point-by-point (figure 1.9).

Since the depletion pattern is itself diffraction limited, it does not immediately
provide unlimited resolution. To fully break the barrier, STED makes use of the
fact that fluorescence depletion by stimulated emission is a non-linear, saturable
process (the probability of depletion cannot go over 1, even if the depletion light
intensity is further increased). By using more and more intense depletion light,
the area in which depletion is not saturated (and in which normal emission can
still occur) can be made arbitrarily small (figure 1.10). The resolution achievable
by STED is thus dependent on the maximum depletion light intensity (Imax) and
the fluorophore-specific intensity required for saturation (Isat) which is reflected in
the extended resolution formula (with the parameter α describing the steepness of
the depletion light intensity gradient around the zero):

d ≈ λ

2NA
√
1 + αImax

Isat

(1.4)

The extremely high intensity depletion light is a major disadvantage of STED,
since it places strong requirements on the photostability of the dyes used and
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Figure 1.9: Comparison of image acquisition in a confocal laser scanning microscope and a

STED microscope as well as sample images of 40 nm Crimson fluorescent beads. The scalebar

equals 500 nm. Figure taken from [9].
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places additional constraints on experiments. The problem can be alleviated by
specialized acquisition schemes: for example, in the MINFIELD approach [38], the
recorded image is smaller than the diameter of the depletion doughnut, and the
fluorophores are never exposed to the maximum of the doughnut. Another possi-
bility is to dynamically adjust dwell times at each location depending on whether
fluorophores are present or not, preventing premature bleaching of fluorophores at
succeeding positions [39–41].

Localization Microscopy

The fact that any point emitter imaged with a microscope will be smeared out into
a blob by the instruments PSF limits the distance between two emitters that can be
resolved. It does not limit, however, the precision with which a single emitter can
be localized. One can think of the PSF as a probability distribution on the location
of detected photons, given an emitter location. From basic statistic considerations,
it follows that the mean location of the photons, i.e. the location of the emitter,
can be localized with a standard error proportional to the inverse square root of
the number of photons detected N (figure 1.11 A). Taking the discretized pixel
nature of the acquired images and background noise into account, a more realistic
estimate of localization precision is given in [42] as σi =

√
s2i
N
+ a2/12

N
+

8πs4i b
2

a2N2 , with
si denoting the standard deviation of the PSF along axis i, a denoting the pixel
size and b denoting the standard deviation of the background noise.

Initially, single molecule localization in micrographs was employed in particle track-
ing, e.g. [43]. A single fluorescent molecule imaged repeatedly over time will appear
as a blob, but its center can be tracked with nanometer-scale accuracy. Particle
tracking has been intensively employed in the study of the dynamics of motor
proteins, for example. Furthermore, distances between two particles with distinct
labels (e.g. different fluorophores) can be determined with similar high accuracy
[44].
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To actually generate an image and not just measure distances, each fluorophore in
the sample would have to have a distinct label, e.g. color [45]. Since even on a state-
of-the-art microscope it is tricky to distinguish more than a handful of different
colors due to overlaps in the spectra of the fluorophores, the separation in single
molecule localization microscopy (SMLM) comes through the alternative route of
separation in time. By making sure that only a few labels are in an emitting state
at a single timepoint, a small (non-overlapping) subset of them can be localized
(figure 1.11 B). If there exists a way of then switching on a different subset of
the labels, the process can be repeated for many frames, building a super-resolved
image point-by-point.

The labels of choice for the real-world application of this principle are photoswitch-
able dyes [46], molecules that change their fluorescence properties upon illumina-
tion with light of a specific wavelength, e.g. photoactivatable dyes that are irre-
versibly switched from a dark to a bright state. By only activating a few of the
fluorophores with a weak flash of activation light and then imaging them until they
bleach and thus turn dark again and then repeating the process, the principle of
SMLM can be implemented in practice.

First practical implementations of SMLM were independently described in 2006
by several research groups under the names photoactivated localization microscopy
(PALM) [47], fluorescence photoactivation localization microscopy (fPALM) [48]
or stochastic optical reconstruction microscopy (STORM) [49]. For work on the
fundamental properties of photoswitchable molecules and a first application of
localization of single photoswitchable molecules for super-resolution microscopy,
William Moerner and Eric Betzig, respectively, were awarded the Nobel prize in
Chemistry in 2014 [35].

Typically, SMLM is performed on time series of single xy-planes, often employing
total internal reflection fluorescence (TIRF) illumination, in which the illumination
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Figure 1.11: Principles of SMLM on simulated data A: A point emitter imaged through any

microscope will be blurred by the instrument’s PSF and the image will suffer from various types

of noise. B: The center of the recorded PSF can be localized with high precision, however

(distribution of centers of mass of 5000 simulated point emitters). C: When imaging a densely

labelled structure with SMLM, subsets of the fluorophores are activated, imaged and localized

in an iterative process (left). The resulting localizations can be combined to form an image with

much higher resolution than the sum of the diffraction limited raw images (right).
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light is reflected on the coverslip-sample border, and only a thin slice (of less
than 200 nanometers thickness) above the coverslip is excited by an evanescent
wave [50]. Since biological structures are inherently three-dimensional, methods
to encode z information into the 2D images have been developed. The simplest
way of extracting z information from the single planes is to deliberately introduce
aberrations into the detection beam path that result in anisotropy of the PSF.
For example, by inserting a cylindrical lens into the detection path, the recorded
PSFs will be stretched in x if the emitter lies above the focal plane and in y if it
lies below the focal plane, or vice-versa [51]. By using a pre-recorded calibration
curve and calculating an x/y ratio by fitting a PSF function to the emitters, the z
component can be recovered. There exist many different approaches of encoding
z information via PSF engineering [52, 53], with various trade-offs between xy-
precision, z precision and the depth-of-field in which three-dimensional localization
can be performed. An alternative approach to extracting z information is to split
the emission light into two paths with a slight path length difference and record
it on two cameras (or two separate areas on one camera), so that the relative z
location is encoded in the ratio of PSF sizes of one emitter in the two images
[54].

Other super-resolution techniques

While SIM, STED and SMLM are the best known super-resolution microscopy
techniques, there exists a multitude of other techniques that also promise extended
or fully unlimited resolution, like, for example, image scanning microscopy (ISM,
commercialized by Zeiss under the name AiryScan), in which point scanning is
combined with array detection to achieve the resolution improvements of a confocal
microscope with an infinitely small pinhole while still collecting enough light to
preserve workable SNR [55]. A further family of techniques, consisting of SOFI
[56] and SRRF [57], takes a time series of sequential images of the same structure
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and reconstructs a super-resoled image from temporal fluctuations in the emissions
of single fluorophores, which can be seen as a bulk version of SMLM.

A final development worth mentioning is MINFLUX [58], developed in the lab
of STED inventor Stefan Hell, in which single molecule imaging is ingeniously
combined with repeated point measurements with a doughnut-shaped excitation
beam. In MINFLUX, accurate localization places the emitter in the zero of the
doughnut and corresponds to a minimal number of fluorescence cycles by the
fluorophore. Thus, localization precision no longer requires a maximum number
of photons to be collected and the technique, though still awaiting widespread
adaptation, promises single-nanometer resolution in biological samples [59].

1.1.3 Light-sheet microscopy

The developments of super-resolution fluorescence microcopy over the last two
decades allowed for tremendous advances in imaging tiny subcellular structures.
Another complementary but equally challenging task for microscopy is the cap-
ture of large, multicellular, three-dimensional objects such as tissues or organs
and live organisms in their entirety. Many approaches have been developed to
meet this challenge, for example confocal and two-photon microscopy [60], and
their development often went hand in hand with computational advances, such as
deconvolution [61].

While these techniques achieve optical sectioning, allowing imaging of large, fixed
samples, they come with downsides that often limit the imaging of live organisms.
Because illumination and detection are done by one objective, along a common
axis, the whole sample is illuminated for every plane that is detected, which can
lead to photobleaching or damage the (living) sample. Furthermore, many of
these techniques work by scanning the sample point-by-point, which limits the
acquisition speed and makes it hard to cope with moving samples.
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Figure 1.12: Principles of light-sheet fluorescence microscopy in comparison to conventional con-

focal microscopy. In conventional microscopes (left) illumination and detection happen through

one objective lens along the same optical axis. This results in the illumination, and consequently

in photodamage or background signal, behind and in front of the focal plane. In confocal micro-

scopes, out-of-focus signal can be rejected via a pinhole, which however requires slow, point-by-

point scanning. In LSFM (right) the sample is illuminated through a separate objective, oriented

perpendicular to the main detection axis. In this way, only the focal plane can be illuminated,

resulting in both reduced photodamage and reduced out-of-focus background (i.e. optical sec-

tioning). LSFM does not require point-by-point scanning - an image of the entire focal plane

can be captured with a widefield camera. Figure inspired by [62].
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Light sheet fluorescence microscopy (LSFM) circumvents most of these problems
in an elegant way: by illuminating the sample from the side using a second illu-
mination objective at 90 degrees to the detection objective (figure 1.12). Through
optical elements or by line scanning, the illumination can be focused into a thin
sheet along the z-dimension, leading to illumination of only a thin plane in the sam-
ple that is aligned to the focal plane of the detection optics. That way, fluorophores
outside the focal plane are not excited, limiting photodamage and phototoxicity
outside the area of interest. Since the whole focal plane is illuminated at once
and an image can quickly be recorded using a high-speed widefield camera, this
also avoids the high peak intensities of a point-scanning confocal microscope [62–
64].

Illumination through a perpendicular beam path is not a new development: In fact,
it saw a famous early utilization under the name of ultramicroscopy by Zsigmondy
and Siedentopf in their Nobel Prize-winning studies on colloid particles in glass
in the early 20th century [65]. It took until the end of the 20th century for the
principle of orthogonal illumination to see its earliest applications in biological
imaging [66], and its potential finally reached widespread recognition under the
name of selective plane illumination microscopy (SPIM) by Huisken and colleagues
in 2004 [67].

Modern LSFM

A large variety of designs and optical configurations for light-sheet microscopes
were described in the years following the initial SPIM paper, for example with
upright [68], inverted [69] or horizontal beam path geometries, but also with illu-
mination from multiple parallel directions [70, 71] and the capability to rotate the
sample within the imaging chamber, e.g. [72]. Aside from just the layout of the
optical axes, a major differentiating factor between the various designs is how the
light-sheet is generated in the focal plane. Assuming that illumination happens



1.1. MODERN MICROSCOPY 33

along the x axis in image space, the goal is to focus the illumination light in just
the z direction, while keeping widefield illumination in the y direction. Similar to
the trade-off between lateral resolution and depth-of-field in detection optics, the
light-sheet generation can be optimized for a light-sheet that is thin center of the x
axis but broadens quickly or a thick sheet that remains at relatively uniform thick-
ness for a long distance. The simplest way of creating a light-sheet is to introduce
a single cylindrical lens into the illumination path, which results in a thick, but
relatively uniform sheet, ideal for imaging large (millimeter- to centimeter-sized)
samples such as entire organs [73]. Alternatively, in the initial SPIM design, the
illumination light is focused along one axis by a cylindrical lens but then passed
through a higher-NA objective lens to form an orthogonal sheet with a thinner cen-
tral section. Light-sheets can also be generated virtually by using just an objective
to focus light along the illumination axis and then using a scanner to rapidly move
the illumination beam in the y direction, resulting in a time-averaged light-sheet
in the xy-plane [74].

To counteract the thickness vs. lateral length tradeoff, various approaches have
been described. One example is the use of non-diffracting beams formed through
interference, such as Bessel [75, 76] and Airy beams [77] or optical lattices [78].
Alternatively, one can introduce a quick focusing element, e.g. an electrically
tunable lens (ETL) into the illumination path and quickly scan the center of the
light-sheet along the x-axis, resulting in a more uniform thickness in the time-
average [79].

Light-sheet microscopy is a relatively young field and the scientific community
around it is still dominated by a tinkerer mentality of building a microscope around
the sample. There exist designs specifically tailored for very large samples [73, 80]
or detailed imaging of small structures [78], as well as single lens implementations
of the light-sheet principle [81], for example. A unifying theme and challenge is
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the large amount of image data that can be generated by these fast microscopes
with large sample and live imaging compatibility, which pose new and specific
challenges to downstream image analysis pipelines.

1.1.4 High-throughput and automated microscopy

Aside from, e.g., high spatial or temporal resolution, generating an accurate image
of a biological system often also consists of acquiring a large dataset of individual
images to capture distributions of features in a population. A simple example
could be the distribution of the different cell cycle stages, which can be considered
random when imaging a single cell and only becomes apparent when imaging large
fields of many cells. Yet, the cell cycle distribution might be an essential readout
when screening for the effects of antiproliferative drugs, for example [82]. Such
screening studies, which are also common in the pharmaceutical industry, are
often conducted using specialized high-content microscopes that are optimized for
high throughput imaging of standardized multi-well plates [83].

While it is obvious that computational image processing can improve experimental
results through downstream analysis or reconstruction of improved images from
raw data, another way it can be employed in the experimental pipeline is during the
image acquisition process itself. When studying rare phenotypes or the distribution
of features at a fine spatial scale in a large population, a bulk high-throughput
approach often becomes infeasible, which is why solutions for smart microscopy
were developed that, for example, perform a pre-screening of the whole sample,
e.g. multi-well plate, at a very coarse resolution and use image analysis to select
candidate regions that are re-imaged at higher resolution [84–86].

Another application of smart microscopy comes from the fact that large samples
typically introduce optical aberrations that might also vary in different regions of
the sample and that cannot be accounted for by tweaking of the optical parameters
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before image acquisition is started. A possibility to counteract this phenomenon
is with adaptive optics, components like spatial light modulators (SLMs) or de-
formable mirrors that can adjust physical properties of the imaging system via
electronic commands to adapt the microscope to provide optimal image quality
throughout the experiment. For example, similar to applications in astronomy
where optical parameters are automatically adjusted to spatially minimize the
impulse response of a guide-star laser spot projected into the sodium layer of the
Earth’s atmosphere to account for aberrations introduced by the lower layers of the
atmosphere, laser guide-stars can also be projected into a biological sample and
serve as an optimization target for the adaptive optical elements of the system
[87]. Another approach is to continuously adapt optical parameters to maximize
a quality criterion derived from the detected images themselves [88].

It is my strong opinion that such smart microscopy approaches, where computa-
tional improvements are introduced at the earliest stages of an experiment, will
continue to grow in importance in the coming years. Specifically, two implemen-
tations of the overview → candidate region detection → high-resolution imaging
scheme on different microscopes were developed by me during the work leading up
to this thesis, but are yet unfinished and unpublished.
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1.2 Sample preparation

While the general importance of sample preparation and labelling was already
discussed above, the focus of this section will be on three recent innovative tech-
niques that were successfully employed in the papers presented below [21, 89]. For
example, the fluorophore blinking necessary for SMLM can alternatively be im-
plemented by transient binding of fluorophores to the labelled structure via DNA
hybridization. This framework of PAINT can be used in a variety of ways, includ-
ing spectral multiplexing. A further creative way of achieving increased spatial
resolution is to physically enlarge the sample, as is done in expansion microscopy.
In the other direction of spatial scale, very large samples often cause problems in
imaging due to light scattering and attenuation, which can be counteracted by
sample clearing techniques.

1.2.1 PAINT

In conventional SMLM, the number of photons that can be detected from a sin-
gle emitter is limited by the inevitable eventual bleaching of the fluorophore. A
strategy to circumvent this limitation is to associate each molecule that should
be imaged not with a single fluorophore but with a handle that allows transient
binding of a practically unlimited pool of fluorophores in the imaging buffer. In
the technique of point accumulation for imaging in nanoscale topology (PAINT),
this is implemented by attaching short DNA oligonucleotides to the molecule of
interest, e.g. by labeling them with antibodies conjugated to the oligomer. These
docker strands hybridize transiently with complementary imager strands with at-
tached dye molecules in the buffer. By using short oligomers, the unstable binding
kinetics lead to virtual blinking of the emitters, and localizations over a long series
of frames can be combined to create final images with localization accuracies in
the single-nanometer range.
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The basic PAINT principle can be applied for a variety of tasks aside from very
high resolution imaging [90], such as accurate estimation of molecular concentra-
tions from fluorescence traces at a single location from the binding kinetics and
associated blinking [91]. By labelling a variety of structures of interest with dif-
ferent docker strands and exchanging the complementary imager strands in the
buffer in many rounds, PAINT can be used to enable many-fold color multiplexing
[92], which is not only compatible with localization microscopy but many other
super-resolution modalities [21]. Along the same lines, the principle can be used to
sequentially image closely spaced loci on chromosomes, essentially walking along
the DNA to capture the three-dimensional structure of chromatin point-by-point
[93–95].

1.2.2 Clearing

Thick samples such as whole animal organs or embryos pose unique challenges
to microscopic studies as light attenuation and light scattering at refractive in-
dex boundaries (e.g. membranes) lead to a deterioration of image quality as a
function of imaging depth. While some microscopy modalities such as two-photon
microscopy are less susceptible to these effects due to the long wavelengths em-
ployed and allow for imaging deep inside the brain of living mice [96], for example,
the classical approach to imaging large structures was to physically cut them into
thin slices and image the slices individually. Aside from distortions introduced by
the cutting, that require laborious image registration after acquisition to recon-
struct a three-dimensional volume, the sample preparation itself is also time- and
work-intensive.

Clearing protocols [97] seek to enable the imaging of intact samples by making
them optically transparent, which corresponds to equalizing the refractive index
(RI) throughout the sample as much as possible. They therefore typically include
steps of fixation, permeabilization and finally immersion of the sample in a defined
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refractive index-matching medium. If there are pigment molecules in the sample,
specialized chemical bleaching or decoloring agents can be used to reduce light
attenuation. Likewise, lipids can be removed, e.g. by detergents, to reduce the
amount of RI boundaries. Lipid removal is prone the disrupting the structural
integrity of the sample, though, as membranes serve as an anchoring scaffold for
many biomolecules.

A relatively novel clearing strategy consists of hydrogel-embedding-based protocols,
such as CLARITY [98] and SWITCH [99] that seek to remove lipids from the
sample in bulk while also retaining the structural integrity of the rest of it. To
this end, hydrogel monomers are first crosslinked to the non-lipid structures in
the sample and then the gel is made to polymerize around the sample. With
the gel now replacing the lipids as a form of molecular scaffolding, the lipids
can be removed with detergents or even electrophoresis before final incubation
in a RI-matching medium (figure 1.13). A positive side-effect of such protocols
is that the lipid removal leaves to sample very accessible to other molecules, for
example antibodies, which often suffer from poor penetration depth in unmodified
samples.

1.2.3 Expansion Microscopy (ExM)

Expansion microscopy (ExM) [100] is a perfect example of how out-of-the-box
thinking can lead to surprising new solutions of longstanding problems. Instead
of trying to improve the resolution of a microscope to allow the imaging of tiny
samples, ExM seeks to physically enlarge the sample itself so that fine details can
be imaged on a lower resolution microscope.

The basic workflow of ExM is very similar to sample clearing via hydrogel embed-
ding, e.g. the CLARITY protocol. The sample structures of interest (e.g. proteins,
RNA or other biomolecules) are crosslinked to hydrogel monomers and the gel is
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Lipid removal

Hydrogel monomers

Polimerization

Light

Figure 1.13: Tissue clearing using the CLARITY protocol. (A) Imaging deep within tissues is

difficult mainly due to light scattering at refractive index boundaries (left). Schematic workflow

of CLARITY: Hydrogel monomers are linked to the sample and polymerized around it. After

passive or active electrophoretic removal of light-scattering lipids, imaging deep within the sample

becomes possible. (B) CLARITY applied to and adult mouse brain: Photographs of a brain

before (top) and after (bottom) clearing. Figure adapted from [89].

polymerized, followed by fragmentation of the sample (but not the hydrogel), typ-
ically via enzymatic digest. By employing special polymers that can be swollen by
e.g. changing the osmolarity of the buffer, the sample fragments crosslinked to it
can be displaced accordingly. Care needs to be taken in this step to ensure that
all parts of the polymer expand by the same factor and that expansion happens
equally in all directions, so-called isotropic expansion. A downside of ExM is that
due to the harsh denaturing treatment involved, the protocols need to be adapted
so that they leave specific structures of interest intact [101–103].

To measure absolute and not just relative lengths in an expanded sample, the
expansion factor needs to be known. Expanded lengths can be converted into
original sample lengths by dividing by the expansion factor, which can be estimated
accurately from the chemical properties of the polymer mesh used. In addition
to the resolution improvement, ExM also leaves the sample components more
accessible, allowing for easier staining with antibodies deep in the sample, for
example. This is another property that ExM shares with clearing protocols such
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as CLARITY or SWITCH. By adapting the ExM protocol, the expansion process
can also be compounded: an expanded sample can be expanded again for further
resolution gain, a process called iterative expansion microscopy [104].
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1.3 Computer Vision

Many modern microscopy modalities require processing of the raw data to form
an image. This is often referred to as reconstruction of the image. For example,
all super-resolution microscopy techniques rely on some form of computational re-
construction to some extent to form a final, high-resolution image. Even in STED,
often termed a what-you-see-is-what-you-get (WYSIWYG) method, the recorded
image, like in any point scanning microscope, cannot be observed by eye but only
rendered on a computer after arranging the individual point measurements into a
regular grid. The subfield of computer science concerned with processing images
and extracting information from them is called computer vision [105, 106]. Digital
image processing and analysis is an indispensable part of most microscopy-based
science, from the stage of image acquisition to the final interpretation of the results
(fig 1.1).

Every study presented in this thesis relies on image analysis to some extent, so
this section will briefly cover the basics of image processing and a few selected
examples that are of importance to the presented studies, before elaborating on
the tasks of image alignment - the main problem solved by BigStitcher, the core
paper of this thesis - and image segmentation, a task that repeatedly came up in
the other projects in this thesis.

1.3.1 Basics of digital images

Digital images are a collection of numbers arranged into a regular grid or matrix
(figure 1.14). The individual entries of the matrix are referred to as picture ele-
ments, or pixels [107]. For conventional color photographs, the pixel values are
the color components, which in the simplest case form a red, green, blue 3-tuple
(r,g,b), though different color models exist. Alternatively, one can think of a color
image as a 3D array, with one axis containing the color components. The im-
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      [[344, 331, 328, 312, 303, 308, 303, 297, 313, 298],
       [333, 321, 334, 319, 331, 315, 314, 320, 305, 312],
       [360, 342, 350, 345, 353, 348, 338, 321, 317, 310],
       [355, 353, 391, 402, 433, 430, 399, 338, 326, 317],
       [377, 404, 490, 560, 584, 575, 474, 390, 352, 359],
       [431, 535, 666, 739, 714, 653, 508, 419, 375, 377],
       [569, 637, 776, 800, 783, 680, 507, 432, 392, 433],
       [683, 700, 709, 711, 679, 584, 446, 404, 413, 473],
       [663, 625, 601, 561, 543, 441, 415, 414, 456, 544],
       [529, 497, 472, 454, 423, 412, 430, 501, 582, 596]]

      [[344, 331, 328, 312, 303, 308, 303, 297, 313, 298],
       [333, 321, 334, 319, 331, 315, 314, 320, 305, 312],
       [360, 342, 350, 345, 353, 348, 338, 321, 317, 310],
       [355, 353, 391, 402, 433, 430, 399, 338, 326, 317],
       [377, 404, 490, 560, 584, 575, 474, 390, 352, 359],
       [431, 535, 666, 739, 714, 653, 508, 419, 375, 377],
       [569, 637, 776, 800, 783, 680, 507, 432, 392, 433],
       [683, 700, 709, 711, 679, 584, 446, 404, 413, 473],
       [663, 625, 601, 561, 543, 441, 415, 414, 456, 544],
       [529, 497, 472, 454, 423, 412, 430, 501, 582, 596]]

Figure 1.14: An image is just a collection of pixels, a matrix of light intensity measurements at

distinct points in time and space. In color images, each pixel contains a list of measurements in

each channel, e.g. red, green and blue components in conventional digital photographs.

ages encountered in biomedical image analysis often contain other axes such as
z-focus position, time, or rotation (e.g. in multi-view LSFM or raw tomographic
images) and can, in general, be considered n-dimensional arrays or rank-n tensors.
It should also be noted that for microscopy images, in many cases, the color axis
no longer represents vector components in a color space but results from multiple
exposures taken with the same grayscale camera, but distinct filter sets to specif-
ically detect certain wavelengths. Images can also be thought of as mappings of
pixel coordinates to light intensity measurements I : Nn → R. Pixel coordinates
can be mapped to real (relative) locations in time and space through a transfor-
mation T : Nn → R4, which in the simplest case is just multiplication with pixel
distances and inverse objective magnification and time intervals between acquisi-
tions, but might be more complex if the camera is rotated or time intervals are not
constant, for example. In real applications, the pixel values are stored in computer
memory and need to be represented by bits. While low bit depth requires less stor-
age, precaution has to be taken to not run into over- or underflow of the dynamic
range, or numerical inaccuracies if integer representation instead of floating-point
representation is used.
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1.3.2 Overview of computer vision tasks and techniques

Since images are just a collection of numbers, there are obvious mathematical
operations one can perform on them to build image analysis routines. The pixel
values in an image or a subregion can be summed, averaged or other statistical
measurements can be performed to achieve a low-dimensional summary. Regions
can also be described by their shape parameters, like total area, circularity and
so forth. Many steps in image analysis pipelines also rely on filters that calculate
a number at each pixel location from its surroundings, which is typically imple-
mented as a convolution I ∗h with the filter kernel h, or the gradients of the image
along its axes ∂I

∂xi
.

While image processing can be done to manupulate images for purely aesthetic
purposes, in biological image analysis the goal is to extract interpretable infor-
mation from the input. Common tasks that occur again and again in computer
vision include image alignment (or: registration) that seeks to combine multiple,
partially overlapping images into one, image restoration - the transformation of
real-world images to an estimate of the underlying structure without the contri-
butions of random noise (or the optical system used to acquire the image in the
case of deconvolution), the detection of objects and their description by geometric
primitives, or segmentation of the images - the classification of all of the pixels
into a defined set of labels.

1.3.3 Selected applications of computer vision in biology/microscopy

Principles of image analysis pipelines

While there is a staggering amount of possible processing steps in computer vision,
producing enhanced images from input images, segmentation masks from images,
lists of shape parameters from masks and so forth, their application to real bio-
logical data is done with the ultimate goal of extracting meaningful information
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from raw data [108]. Like an experiment in a lab, an image analysis workflow will
typically follow common steps: image pre-processing, such as denoising, flatfield-
correction or fusion of tiled images into one, identification of biologically relevant
objects, e.g. by segmentation or object detection, extraction of a low-dimensional
description of the objects, and finally a statistical analysis of the resulting features
to e.g. compare effects of mutations or drug treatments.

By keeping this structure of a pipeline made up of individual steps in mind, one
can easily replace the individual processing steps if a new situation requires it, e.g.
segmentation by a simple automatic threshold calculation that works on images of
DNA-stained nuclei might be replaced by a machine-learning-based segmentation
for more complex samples. If the building blocks adhere to a more or less strict
contract, e.g. of a segmentation step producing a binary foreground-background
image, they can be quickly replaced and put together in novel ways. Some software
packages for (image) data analysis like KNIME [109] or CellProfiler [110, 111], but
also novel developments in ImageJ/Fiji [112] try to incorporate this concept of
analysis pipelines into their core user experience to make complicated workflows
tractable to non-specialists.

Flatfield correction

One of the simplest examples of how computational image processing can be inte-
grated into microscopy image acquisition and restoration is through the correction
of uneven illumination and background signal. As the illumination light intensity
is often highest in the center of the field-of-view and lower on the sides, vignetting
artefacts that prevent accurate quantitative measurements can occur. Likewise, a
digital camera might not register zero counts in the absence of light, leading to
an offset that should also be corrected before intensity measurements are made in
the image. If one knows the dark image, i.e. the image returned by the camera
without any light exposure (Id), and the bright image(Ib), i.e. the response to a
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sample with uniform fluorophore density, one can easily correct for these effects
by calculating:

C(x) =
(R(x)− Id(x))(Ib − Id)

(Ib(x)− Id(x))
(1.5)

Here, R denotes the raw intensities and C the corrected intensities and (Ib − Id)

the average of (Ib − Id). While Id and Ib can be experimentally determined by
acquiring them in addition to the images of the sample, they can also be automati-
cally estimated after the fact from multiple sample images acquired with the same
instrument settings [113, 114].

Improvements of LSFM through computational means

The technical innovations of modern light-sheet microscopy, even in its earliest
implementations [67], were complemented by image processing strategies to further
emphasize the advantages of the novel technique. As the sample is often mounted
in a way that it can be rotated around the axis perpendicular to the illumination &
detection plane, it can easily be imaged from multiple sides. The individual image
stacks can then be computationally combined into a single stack in a process called
multi-view reconstruction (MVR) [115]. MVR expands the capabilities of the
microscope in two ways: first, by combining opposing views, larger samples can be
imaged even if light attenuation and scattering make it impossible to image them
in their entirety from one side. Second, by combining views from perpendicular
axes, the resolution of the reconstructed image stack can be made isotopic. As the
lateral (xy) resolution of objectives is higher than the axial (z) resolution, acquiring
a second image stack at a perpendicular angle to the first (in which the original z
axis becomes one of the lateral axes) and fusing both stacks can produce results
in which spatial resolution is equal along all spatial axes.
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Light-sheet microscopy is also well suited for the imaging of very large samples
due to its speed. While light-sheet designs for the explicit purpose of imaging
large, cleared samples such as mouse brains exist, they often rely on large-FOV
(field-of-view), low-NA objectives to capture the entirety of the specimen. These
objectives lack the resolution to image intracellular details, however. To achieve
high spatial resolution as well as large sample coverage, images can be acquired
in a tiled fashion and later combined into one by a process called image stitching
[89]. As light-sheet datasets can easily reach sizes of hundreds of gigabytes, they
present distinct challenges to stitching software.

Quality control in (super-resolution) microscopy

In all super-resolution microscopy techniques that do not have fundamental reso-
lution limits, such as STED and SMLM, the image quality achieved in practice
depends not only on the physical characteristics of the microscope, but also on the
sample itself, e.g. through the choice of fluorophores. But even in methods with
deterministic resolution, such as SIM (or even conventional non-super-resolution
methods), the resolution can be affected by improper alignment of the instrument,
sample-dependent aberrations, low signal-to-noise ratio or reconstruction artifacts.
To avoid arriving at false conclusions, it is therefore good scientific practice to do
some quality control of the acquired image.

The simplest way of measuring resolution in an image is to manually look for small
structures, usually points or filaments. One can plot the intensity along a cross-
section of the object and in the resulting line profile determine the FWHM, which
corresponds closely to the resolution according to the Abbe criterion (figure 1.15,
A). For a more robust estimate, point-like objects can be detected automatically
and a PSF function can be fitted to them to get an average estimate from multiple
PSFs. If enough small structures are available distributed across the whole FOV,
one can also detect non-uniformity in the resolution across the FOV.
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A less biased method for resolution quantification, that has been applied in electron
microscopy for a long time, is Fourier ring/shell correlation (FRC) [116]. FRC
proceeds by taking two independent images of the same structure (or, in the case of
SMLM, randomly splitting all localizations into two groups and rendering images
from each) and calculating the (cross-)correlation of rings of pixels around the
origin of the Fourier transform of both images. Close to the origin, the FFTs
will contain highly correlated, low frequency information, but as the radius is
increased and exceeds the resolution of the images, the two FFTs will only contain
uncorrelated noise. Automatic thresholding methods exist to determine a cutoff
frequency that corresponds to the highest usable resolution in the images. A
recently proposed alternative to FRC that can work on single images but follows
similar basic ideas is decorrelation analysis [117].

As the amount of digital (pre)processing that is applied to images is increased,
methods for the automatic detection of reconstruction artifacts gain in importance.
A straightforward method to identify reconstruction artifacts in super-resolution
images derived from computational reconstruction is to compare an artificially
blurred version of the reconstructed image to a diffraction-limited image (that can
usually be generated easily from raw data). Areas with a large difference between
the two images indicate the presence of reconstruction artifacts [118]. A similar
approach can be used to ensure fidelity to the original data in deep learning-based
super-resolution [119].

1.3.4 Image alignment

One of the most common tasks in computer vision is the alignment of multiple
images. Applications that require image alignment include the stitching of panora-
mas from photographs or maps from satellite images, but also video compression
[120]. Likewise, in microscopy, multiple images have to be aligned when imaging
large histological slides or when compensating for optical effects such as chromatic
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Figure 1.15: Methods to assess the resolution of microscope images. (A) The simplest way

of estimating the resolution of a microscope is to acquire an image of an object smaller than

the diffraction limit, which will be imaged as a blob corresponding to the microscope PSF. By

plotting the intensity along a cross-section, the full width at half maximum (FWHM) and thus

the minimal resolvable distance can be determined. (B) A more robust estimate (or distribution,

bottom) of the FWHM can be obtained by automatically fitting a PSF model to a large number

of point emitters. (C) In Fourier Ring Correlation, two independent images of the same sample

are acquired, and the correlation of their FFTs at various distances from the origin is calculated.

Due to the finite OTF, high-frequency information will not pass the optical system leaving only

uncorrelated noise. The frequency at which the correlation drops below a pre-set threshold

corresponds to the resolution of the system.
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aberration (in which case the images of different spectral channels have to be
aligned), or in general when trying to reconcile large samples with high resolution
imaging (in which case the field-of-view is often limited). Furthermore, microscopy
images often take the form of three-dimensional z-stacks. While this actually sim-
plifies some alignment steps (e.g. it removes the need to separately account for
three-dimensional camera movements), many standard algorithms for image align-
ment that have been developed for photographs have to be adapted to work in
three dimensions.

The process of image alignment can be broken up into several steps: calculating
pairwise transformations between overlapping images, finding an optimal global
alignment that takes all pairwise transformations into account and saving or ren-
dering the final composed result.

For the first step, the estimation of pairwise transformations Tij, two main ap-
proaches can be distinguished: intensity-based alignment that seeks to minimize
the difference of pixel values of two images, and interest-point based alignment
that first detects corresponding keypoints (e.g. corners and bright or dark blobs)
in each image and then fits a transformation mapping the locations to each other
(figure 1.16).

1.3.5 Intensity-based image alignment

The first class of image alignment procedures are called intensity-based since they
evaluate the intensities of all pixel pairs in the two images, with one of them trans-
formed according to a transformation T with parameters t. For each image pair
(I1, I2), the goal is to find parameters for the transformation tij that minimize some
error/loss function L, calculated from the pixel intensities at x and T (x, t):

tij = arg min
t

∑
x

L (I1 (x) , I2 (T (x, t))) (1.6)
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∆

(A) input: overlapping image pair

(B) intensity-based alignment (C) interest point-based alignment

Figure 1.16: Strategies for pairwise image alignment. The input to the problem consists of

two images of the same structure with nonzero overlap (A). Strategies for alignment include

intensity-based methods, which seek to minimize some error metric calculated from all pixels in

the overlapping region (after applying the transformation) (B), or interest point-based methods,

which detect interest points in each image and then estimate a transformation from point corre-

spondences (C). Example images from [121], two overlapping confocal images of the Drosophila

central nervous system.
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The resulting optimal parameters that describe how image I1 should be trans-
formed, so its pixel intensities have the least discrepancy with the corresponding
intensities in I2. An example for a basic error metric is the sum of squared differ-
ences (SSD):

SSD =
∑
x

||I1(x), I2(T (x, t)||2 (1.7)

Since the images only overlap 100% in the most trivial edge case, special care has
to be taken of how to handle intensities at transformed coordinates that lie outside
the image. Using a simple indicator function w(x) that is 1 if the coordinates x

are inside image I2 and 0 otherwise, this gives the following windowed SSD:

SSDw =
∑
x

w(T (x, t))||I1(x), I2(T (x, t)||2 (1.8)

Calculating a difference between the two images with a given shift and N pixels
overlap has computational cost of O(N), and since this has to be repeated for
every possible parameter value, we end up with O(KN) operations for K possible
parameter values. For example, the computational cost for checking all possible in-
teger translations is O(N2). Since this can quickly become prohibitively expensive,
different strategies to reduce the computational cost of intensity-based alignment
methods have been developed.

Hierarchical methods

For many computer vision tasks it is helpful to work with multiresolution pyra-
mids of images. In the simplest case, one can construct a pyramid by repeatedly
downsampling the image by a factor of 2. The image at level l of the pyramid is
given by I l(x) = I(x ∗ 2l) (note that the original image should be smoothed prior
to downsampling to prevent aliasing artifacts). For hierarchical image alignment,
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one starts at the coarsest resolution lmax, checking all possible values of transfor-
mation parameters (sampled in an appropriately coarse grid). One then proceeds
down the pyramid, refining the parameter estimate, but limiting the parameter
search space to the vicinity of the parameters determined at the previous pyramid
level, until level l0 (full resolution images) is reached.

Fourier-based correlation

An alternative metric for the alignment quality is the cross correlation I1⋆I2 of the
two images at a given shift t, which in this case is just the sum of the element-wise
product of the images:

I1 ⋆ I2(t) =
∑
x

I1(x)I2(x+ t) (1.9)

Here, the transformation is assumed to be just a translation of I1 by the shift vector
t. An optimal alignment maximizes this cross correlation (or normalized versions
that are less susceptible to very bright areas in the images). Like any other pixel-
based objective, evaluation the cross correlation for every possible shift vector t is
expensive, but similar to convolutions, cross-correlations can be calculated much
faster by taking advantage of the Fourier correlation theorem (with ∗ denoting
complex conjugation):

F(I1 ⋆ I2) = F(I1)F(I2)
∗ (1.10)

Multiplying the two images elementwise in Fourier space and inverse transform-
ing the result thus gives the correlation values at each possible shift. A modi-
fied version of this approach is phase correlation [121], in which the frequency
space product is normalized elementwise. This has the advantage that if I2 is
just a shifted version of I1 (I2(x) = I1(x + t12) and by the Fourier shift theorem
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input image pair

phase correlation matrix

aligned images

Figure 1.17: Image alignment with phase correlation. By multiplying and normalizing the FFTs

of both images elementwise and inverse-transforming them, a phase correlation matrix (PCM) is

calculated. Ideally, the PCM contains a single δ-peak at the position corresponding to the shift

vector between the two images. Example images from [121].

F(I2)(f) = F(I1)(f)e
−2πit12f ), the resulting phase correlation matrix (PCM) con-

tains a single intensity peak at the location corresponding to the shift vector t12

(figure 1.17):

F(PCM(x)) =
I1(f)

(
I1(f)e

−2πit12f
)∗

|I1(f) (I1(f)e−2πit12f )∗ |

=
I1(f)I1(f)

∗e2πit12f

|I1(f)I1(f)∗|

= e2πit12f

PCM(x) = δ(x+ t12) (1.11)
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Here, I1 = F(I1) is the Fourier transform of I1. Since Fourier transforms can be
computed in O(NlogN) time using FFT algorithms, the overall time complexity
of Fourier-based image alignment is also O(NlogN). Since the Fourier shift and
correlation theorems assume circular shifts of the images, there is some ambiguity
to the results, which can be resolved by calculating the real space cross-correlation
of the 2n possible shifts or windowed versions of Fourier correlation. The method
can also be extended to more complex transformations, e.g. it can determine scale
and rotation transformations by working in log-polar coordinates [122].

Gradient-descent based methods

A third computationally effective strategy of optimizing the transformation pa-
rameters t consists of performing some sort of gradient descent on the parameters,
removing the requirement to evaluate the error metric (e.g. SSD) for every possible
transformation. Starting from some initial guess p0, the parameters are iteratively
updated by the local gradient of the error metric ∂L

∂p
(pi) until a local minimum is

reached:

pi+1 = pi + ϵ ∗ ∂L(pi)

∂p
(1.12)

Here, ϵ indicates the learning rate of the optimization algorithm. High learning
rates might lead to faster convergence, but could also cause the optimization to
overshoot and miss the minimum. Gradient descent is a very general method
for any kind of optimization problem and various extensions of the basic strategy
exist, for example the Lucas-Kanade method, which is specifically tuned for image
alignment [123].
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1.3.6 Interest point-based image alignment

The second approach to finding the pairwise transformations between overlapping
images is by detecting corresponding interest points in both of them and aligning
those interest points. Most commonly used transformations between two overlap-
ping images can be estimated if a set of corresponding landmarks is known. For
example, if the images are shifted by a translation, a single point pair is enough to
align the two images, by simply shifting one image so that the two points coincide.
Likewise, an affine transform (with augmented matrix Ab) between two images
can be determined from at least 1+n n-dimensional point correspondences (xi, x

′
i)

by solving the linear system (the 2D case is shown for simplicity):



x1 y1 1 0 0 0

0 0 0 x1 y1 1

x2 y2 1 0 0 0

0 0 0 x2 y2 1
...


(a11, a12, b1, a21, a22, b2)

⊤ = (x′
1, y

′
1, x

′
2, y

′
2, . . . ) (1.13)

While this provides a convenient framework for manual image alignment by picking
interest points by hand and aligning them, high-throughput image analysis calls for
automated methods. In general, automatic interest-point based alignment follows
the following steps: landmark detection in both images, descriptor generation,
descriptor matching, outlier removal and estimation of the transformation from
matched inliers.

The first task in interest-point based registration is the detection of suitable land-
marks in the images. Good classes of landmarks should be independent of the
specific images of an experiment. Therefore, a sensible choice is to look for dis-
tinct low-level image features that may occur in any type of image. Examples of
low-level features are corners and isolated bright or dark spots, that correspond
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to maxima of the responses to single small filters or combinations of small sets of
filters, such as the gradients of the images along the axes. Examples for this are
the Harris corner detector which makes use of the structure tensor or the FAST
corner detector. Another possibility is to filter the image with a Laplacian-of-
Gaussian (LoG) kernel hLoG = ∇2

(
1√

(2πσ2)n
e−

||x||2
2σ2
)

[124] or its approximation by
a Difference-of-Gaussians (DoG), which give strong negative or positive response
at blob-like structures of a predefined size and easily generalize to more than two
dimensions.

Next, a descriptor of the interest point, a vector of defined length summarizing it
and its surroundings, must be generated. An important property of a descriptor
is invariance to the transformation one wants to estimate. For example, by cal-
culating gradient orientations at a scale proportional to the detection σmax in a
pyramid of DoG responses with different σs and at an orientation relative to the
dominant gradient direction, the SIFT [125] descriptor of an interest point will
be similar in a rotated or scaled version of the image. An alternative that is also
feasible in three dimensions is to describe an interest point by the distances to its
nearest neighbors, which can be expressed in a local coordinate system that is also
invariant to scale and rotation [115].

The next step is to match the descriptors in two images. This is typically done
by comparing the distance of the feature vectors according to some metric, e.g.
the Euclidean distance for real valued descriptors or Hamming distance for binary
descriptors such as the ones generated in ORB [126]. To perform fast matching of
the descriptors in one image to their nearest neighbors among the descriptors in the
other image without having to do an expensive all-to-all comparison, spatial search
data structures like k-d-Trees or approximate algorithms are often employed.

Simple descriptor matching will often produce some amount of erroneous correspon-
dences, which is why the matching is often followed by a step of outlier removal. An
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almost ubiquitous example for an outlier removal procedure in the context of image
registration is the model-guided random sample consensus (RANSAC) algorithm.
RANSAC works by randomly selecting a small subset of the correspondences, try-
ing to fit a transformation to them and then expanding the correspondence set to
other inlier correspondences that agree with the model. The process is repeated
for a predefined number of iterations, and the largest inlier set discovered this way
is retained at the end.

1.3.7 Global optimization

If only two images are to be aligned, the registration process is finished at this
point. However, when aligning more than two images, one has to determine the
transformations in a global coordinate system. It is convenient to view the images
as forming a graph, with vertices corresponding to images and edges between over-
lapping images. One can just create a spanning tree of this graph and propagate
the transformations from one fixed starting image. This alignment may not be op-
timal in the case of more than one contradictory pairwise transformation for one
image. An improvement is to require that the spanning tree be minimal according
to some quality criterion, e.g. the pairwise cross-correlation of the images [127],
but this is still not globally optimal. The whole problem can also be formulated as
a (overdetermined) linear system which can be solved in a least-squares optimal
way via singular value decomposition [128, 129]. Alternatively, the problem can
be solved via iterative re-application of pairwise transformations [130], allowing
for easy introduction of weights for the pairwise transformations or iterative link
removal during the optimization process.

1.3.8 Image composition and rendering

The final step after a global transformation Ti for each image Irawi has been de-
termined is to fuse the individual images into one resulting composite image. In
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the simplest case, this can be achieved by simply averaging the transformed im-
ages:

Ifused =

∑
i I

raw
i (T−1

i (x))wi(T
−1
i (x))∑

i wi(T
−1
i (x))

(1.14)

Here wi can be a simple windowing function, but also a more sophisticated weight
for a given input pixel, e.g. to de-emphasize contributions from image borders or
regions of low SNR. Of course, care has to be taken in the implementation of the
average to set locations where none of the input images contribute to a predefined
background value to prevent division by zero. The resulting composite image
can either be saved or rendered on-the-fly. For very large datasets, for example
LSFM data, on-the-fly rendering combined with hierarchical data representation in
multiresolution pyramids, as it is done by BigDataViewer [131], is often desirable
to allow quick inspection on conventional hardware (figure 1.18).

1.3.9 Image segmentation

Image alignment is an example of a task that typically occurs in the earlier steps of
an experiment: it produces, for example, a new image providing a high-resolution
view at a large sample constructed from many small fields-of-view or improved
optical quality through fusion of many images. A later step in the experimental
pipeline is to actually measure the properties of the biological system studied. In
many cases, the system consists of distinct parts: specific tissues in a slice, single
cells, organelles or other subcellular structures. Researchers are interested in the
properties of those structures, which occupy only a subset of all pixels in an image,
which leads to the tasks of object detection and image segmentation. Specifically,
object detection refers to the extraction of a set of geometric primitives from the
images, for example interest point localization as described above, detection of
bounding boxes around non-point like objects or even more complex tasks such
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Figure 1.18: On-the-fly visualization of large multi-image datasets with BigDataViewer. The

dataset is a multi-view LSFM recording of a cleared coronal slice through an adult mouse brain

expressing H2B-GFP in BSX expressing neurons imaged at 2.5x magnification, consisting of 12

(6 shown) tiled and rotated image stacks, totalling at 166GB of data, as presented in [89]. The

images were aligned using BigStitcher and the results can be inspected immediately without

having to write a fused volume to disk. Individual images are shown in different false colors.
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object detection segmentation

center coordinate, bounding box background, nucleus

Figure 1.19: Principles of object detection and segmentation, illustrated on an image of DNA-

stained nuclei taken from the Kaggle Data Science Bowl 2018 [133] training dataset (which

contains manually labelled nuclei). The task in object detection (left) consists of extracting a set

of geometric primitives describing instances of objects in the image, e.g. their center coordinate or

an axis-aligned bounding box. In segmentation (right), each pixel of the input image is assigned

a class identity (e.g. background, nucleus), so the result of the operation is another image.

as the extraction of a biometric face description from human portraits or pose
descriptors (i.e. body part locations) from videos of animal tracking experiments
[132]. Segmentation, on the other hand, refers to the task of assigning labels
to every pixel (in the simplest case of binary segmentation the labels are just
foreground and background). The result of segmentation is not a set of object
descriptors, but rather another image (figure 1.19).

The most basic segmentation algorithm is to pick a threshold intensity value t

and set every pixel brighter than t to foreground and the others to background.
The threshold could be picked interactively by hand, but also through an auto-
matic procedure, such as the minimization of intra-class variance in Otsu’s method
[134].
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In this simple case, segmentation just gives a global labelling of the input image,
but one is typically more interested in segmentation of all the instances of an
object class (e.g. cell or nucleus). This problem is called instance segmentation,
the subdivision of the mask image of a class into individual instances of objects.
If the objects have round shapes and are only rarely touching, as is the case for
DNA-stained nuclei, an instance segmentation can be achieved through simple
morphological operations, e.g. the watershed transform, on the mask image. More
powerful algorithms that provide instance segmentation from the start include
Active Contours [135, 136], in which polygons are iteratively updated to minimize
an energy function including shape constraints (calculated from the geometry of
the polygons themselves, e.g. roundness) and intensity constraints (calculated from
image or filter intensities at the locations of geometrical objects, e.g. response to
an edge filter) and related methods of iterative region competition [137].

Specialized methods for many types of samples exist, but a general and powerful
way to look at the problem is as a classification task on pixel features. To achieve
robust performance on a variety of image datasets, looking at just the intensity
of pixels is often not enough. A very general approach is to calculate a vector of
features at each pixel, which can then be classified by machine learning (ML) ap-
proaches, either through unsupervised clustering or supervised classification using
user-provided labels for some of the pixels in the dataset. Due to its importance in
many cutting-edge computer vision applications, the principles of machine learning
will be elaborated upon below.

1.3.10 Machine learning

While the field of machine learning is much broader than its applications in com-
puter vision, it is that area that has seen some of the most spectacular applications
of machine learning, and specifically deep leaning, in recent years. Machine learn-
ing, a subfield of computer science, aims to solve problems not by implementing



62 CHAPTER 1. INTRODUCTION

−20 0 20 40 60

−20

0

20

40

60

0 20 40 60 80 100
50

100

150

200

250

300

350

400

450

Unsupervised
x: known
y: unknown

Supervised
x: known
y: known

�nd

ŷ = f(x’)
given

x
(input)

y
(target)

e.g.: Gaussian Mixture Model e.g.: Linear Regression

x1

x2 x

y

cluster 1

cluster 2

Figure 1.20: Principles of supervised and unsupervised machine learning. In supervised ML

(right), the goal is to find parameters of a model to estimate a target ŷ given an input x′. The

parameters are set based on example (ground-truth) pairs of (x, y). In unsupervised learning

(left), only the input x, but no explicit target y, is given for the example data. The goal of

unsupervised methods is to automatically find patterns in the input features, e.g. to divide them

into a number of clusters, or to use dimensionality reduction to find a compressed representation

of the input for easy visualization and downstream processing.

step-by-step programs with manually written instructions, but by fitting flexible
statistical models to data; a ML-based program thus learns from experience pre-
sented to it. While ML shares many concepts with statistical modelling, a field
that has seen extensive study for over a hundred years, it differs in the aims it seeks
to achieve. Whereas in statistical modeling, the fitted model is usually the end
result of analysis and should ideally provide condensed and interpretable informa-
tion about the matter of interest, ML typically employs similar methods to solve
any kind of task that is hard to encode in a conventional algorithm, but for which
example data can be provided by human operators. Methods and models used in
this way do not necessarily need to be easily interpretable and can therefore be
made much more complex.
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More formally, the task solved in machine learning is to automatically find a pro-
cedure to produce an estimate ŷ given a (new) input x′. While the general nature
of the procedure is given, parameters are optimized given known inputs x, and
often known outputs y, the so-called ground-truth data. Depending on whether y

is known or not, we talk about supervised or unsupervised learning.

In unsupervised learning, only the input x, but no hard target y is known and
the goal is often to produce a representation of x (or a new x′) that is easier to
handle or interpret, or an implicit target, e.g. assignment of the data points to sim-
ilar subgroups. Typical tools of unsupervised learning include clustering methods
that assign inputs into distinct groups (e.g. via K-Means or hierarchical cluster-
ing/Gaussian mixture models, figure 1.20) or dimensionality reduction methods
such as PCA or t-SNE that seek to encode input vectors into lower dimensionality
representations, that are more amenable to further automatic or manual analysis
and visualization.

In supervised learning, pairs of (xi, yi) are provided and the goal is to find a
procedure to estimate the target y from the input x. The ys might be values
from a continuous space, in which case the task of estimating y is often referred
to as regression, or form a discrete set of classes or labels, in which case the task
of finding the most likely label or a probability for each label is referred to as
classification. Simple examples of supervised learning are linear regression, which
seeks to fit a line (or hyperplane for inputs of dimensionality >1) through a set
of (x, y)-pairs, such that the square distance of y to ŷ (the residual) is minimized:
arg min(α,β)(Xα + β − y)⊤(Xα + β − y) (with X being a design matrix whose
rows are xi and y the vector of all ys) or logistic regression in which the output
of a linear transformation on x is fed into a logistic sigmoid function to produce a
binary classification probability P (class = 1) = σ(xα + β).
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Modern high-capacity models [138] for classification tasks include support vector
machines (SVMs), in which classes are separated by hyperplanes of maximal mar-
gin (and nonlinear variants thereof in which the feature vectors are projected into
a higher dimensional space through kernel functions) and decision tree models.
Decision trees have the advantage of being easily interpretable for humans. On
the other hand, one can construct very powerful classifiers by constructing an en-
semble classifier from many decision trees, e.g. generated through Random Forest
or boosting strategies.

Another very flexible type of machine learning model are artificial neural networks
(ANNs), which have been studied for a long time, but saw a resurgence in recent
years due to improvements in computational capacity and availability of training
data (see below).

While it is tempting to use the most flexible and powerful (high capacity) models,
that can approximate a difficult regression task or classification boundary arbi-
trarily well, extra care has to be taken to avoid overfitting: the model can learn
to reproduce the target perfectly for xs in the ground-truth data by ”learning the
dataset by heart”, but fail to generalize to new x′. It is therefore standard prac-
tice among machine learning practitioners to split the ground truth data into a
training set and a test set - while the training set is used to fit a model, the test
set is reserved for evaluation of how well the model generalizes to new data.

Image segmentation by machine learning

As motivated above, every pixel in an image can be described not only by its own
intensity I(x), but by the results of different filters F applied to the image F (I)(x),
somewhat analogous to the expansion of the feature space in kernel SVMs. Thus,
each pixel has a feature vector fx = (F1(I)(x), F2(I)(x), . . . )

⊤ associated with it.
The pixel features can either be used as-is to cluster the pixels into a set of classes
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in an unsupervised manner or be assigned ground-truth labels and then be used
to train a supervised learning model that is capable of assigning classes to the yet
unlabeled pixels. Most tools for ML-based image segmentation [139, 140] follow the
second route: the user has to manually draw labels onto some pixels in their image
dataset, the tool will then calculate a set of feature maps (e.g. blurred versions of
the input, edge or spot filters, such as a LoG with various σ or texture features
such as the eigenvalues of the structure tensor). The features at each labelled pixel
and the label itself are then used to train a model (with Random Forests being a
popular choice) that can predict the class identity for other pixels.

While a generic set of low-level image features promises, and achieves, good per-
formance on many segmentation tasks done in this manner, a step further is to
make the features themselves a learnable part of the model. This is possible by us-
ing models based on ANNs, which underlie many state-of-the-art computer vision
systems. The effectiveness of neural-network based models in image analysis tasks
can be seen as the driving force behind the current resurgence of these models
under the name of deep learning [141].

Deep learning

At the time of writing of this thesis, the terms deep learning and machine learning
(as well as the more general principle of artificial intelligence, AI) are often used
synonymously. However, more specifically, deep learning refers to machine learning
performed with artificial neural networks. ANNs are models that propagate their
input through an interconnected set (or network) of units called artificial neurons,
due to their similarity to a coarse model of biological neurons.

Artificial neurons can also be seen as a flexible, general-purpose unit of compu-
tation. The output of an artificial neuron is defined as a nonlinear activation
function fa applied the weighted sum of the inputs plus an optional bias term:
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Figure 1.21: Building blocks of artificial neural networks. Left: A single artificial neuron

computes a linear function of the inputs, i.e. a weighted sum plus a bias. A nonlinear activation

function is applied to the intermediate result y to generate an output z. During training, the

weights wi of all neurons in a network are updated to approximate the desired ground-truth

output. Right: By combining many artificial neurons and organizing them in layers, an artificial

neural network (ANN) is constructed. The first (input) layer corresponds to the data x fed

into the network, the activations of the last layer should correspond to the desired output y,

intermediate layers are called hidden layers.

y = fa(a
⊤w + b) (figure 1.21). Using multiple neurons with different weights and

biases, a hidden layer whose output is h = (y1, y2, . . . , yn)
⊤ can be formed. The

outputs of a hidden layer n can be fed into the next layer n + 1 to give rise to a
multilayer feedforward neural network, with the outputs of the last layer giving
the targets ŷ to be estimated. If an ANN consists of many layers (current archi-
tectures might have several dozens of layers), it is referred to as a deep neural
network, hence the name deep learning. Multilayer networks also motivate the
necessity of a nonlinear activation function fa, since without that, all the inter-
mediate linear transformations could be collapsed into one, making the network
equivalent to simple linear regression.

The task of training a network consists of setting the weights wi, bi for every hidden
unit so that the discrepancy of ŷ and the ground truth targets y, according to some
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task-specific loss function L(y, ŷ), is minimized. Since the network can be seen as
a concatenation of many simple, differentiable functions, the gradient of L with
respect to all the weights ∇wL can be easily computed using a procedure called
backpropagation. The weights can then be updated using simple gradient-based
optimization [142].

When trying to process images with ANNs, one quickly runs into limitations as
the inputs often consist of millions of pixels and it is not computationally feasible
to calculate a weighted sum of all of them for every hidden unit. Furthermore,
structures in images usually do not span the entire image and might occur at
different locations in different instances of images of the same object. A way around
these problems is to assign every hidden unit in a layer a position corresponding
to the input image and not compute the weighted sum of all input pixels, but
only of those in close proximity to it. Also, to get the same results for the same
input structure at different locations, the hidden units are made to share the
same weights. This corresponds to calculating a convolution with learnable kernels
at every hidden layer (or, in practice, a predefined number of convolutions) and
ANNs that follow the rules of weight sharing and local connectivity are called
convolutional neural networks (CNNs, figure 1.22) [143].

Like in fully connected networks, multiple convolutional layers are stacked in CNNs.
The outputs of them can be thought of as responses to a set of filters at the first
hidden layer and filters applied to those responses at latter layers, with the ker-
nels of the filters being learnable parameters. Other architectural features often
encountered in CNNs include pooling layers that downsample their input, con-
densing it and expanding the field-of-perception, but also upsampling steps and
convolutions with fractional stride, which can be used to synthetize an image from
a low-dimensional representation. Depending on how the layers in a CNN are ar-
ranged, the final output could be just a class probability vector for classification of
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Figure 1.22: Principles of convolutional neural networks (CNNs). Left: CNNs implement the

principles of parameter sharing and local connectivity: a neuron in layer n+1 is only connected

to a subset of neurons in layer n; furthermore, the same weights (different colored arrows) are re-

used (with shifted inputs) for all neurons in layer n+1. Right: When processing images, weighted

sums of the neighbourhood with weight sharing correspond to convolutions that produce feature

maps from input images (in practice, multiple convolution kernels are learned at each layer to

produce multiple features maps). Convolutional layers are typically interleaved with pooling

(downsampling) layers, and the same architectural building blocks are repeated for many layers,

generating more abstract but semantically rich features-of-features as one goes deeper into the

network. In the last layers of the network, images have been condensed into a large feature stack

with low spatial dimension that can either directly be interpreted as an output or fed into a few

fully connected layers to produce results such as class probabilities.
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the image into distinct categories, another image (that is denoised, for example),
an image of class probabilities at each pixel (and thus a segmentation of the input)
or more complex, structured output that encodes, e.g. the presence and location
of bounding boxes for object detection tasks. Aside from ubiquitous applications
in industry, CNNs are used more and more in science and achieve unparalleled
performance in biological tasks such as cell or nucleus segmentation [133, 144], cell
type classification [145] or restoration of low SNR images [146] and computational
super-resolution [119].
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Light-sheet imaging of cleared and expanded samples creates 
terabyte-sized datasets that consist of many unaligned three-
dimensional image tiles, which must be reconstructed before 
analysis. We developed the BigStitcher software to address 
this challenge. BigStitcher enables interactive visualization, 
fast and precise alignment, spatially resolved quality estima-
tion, real-time fusion and deconvolution of dual-illumination, 
multitile, multiview datasets. The software also compensates 
for optical effects, thereby improving accuracy and enabling 
subsequent biological analysis.

Sample clearing1 and expansion microscopy (ExM)2 are power-
ful protocols that create large transparent volumes of whole tissues 
and organisms (Fig. 1a,b and Supplementary Notes 1–3; Methods). 
Using light-sheet microscopy3–5 (Fig. 1c), these samples can be 
imaged with subcellular resolution in their entirety within a few 
hours6. These acquisitions have the potential to be powerful tools 
for whole-tissue and whole-organism studies because they preserve 
endogenous fluorescent proteins (Supplementary Fig. 1) and are 
compatible with most staining methods.

However, the raw data acquired with the microscope are not 
directly suitable for visualization and analysis. Many large overlap-
ping three-dimensional (3D) image tiles are collected that amount 
to many terabytes in size and require image alignment (Fig. 1d–n). 
Owing to sample-induced refraction and scattering of the light 
sheet in the direction of illumination7, 3D image tiles are typically 
acquired twice with alternating illumination from opposing direc-
tions5 to achieve full coverage (Figs. 1d and 2, and Supplementary 
Fig. 2). Similarly, emitted light is distorted by the sample, effectively 
limiting the maximal imaging depth at which useful data can be 
collected (Fig. 1n and Supplementary Fig. 1). Additionally, over-
lapping images suffer from spherical and chromatic aberrations 
(Supplementary Figs. 3 and 4). For reconstruction, and to make 
these complex datasets easily accessible to biologists and computer 
scientists, we developed the BigStitcher software. It enables interac-
tive visualization using BigDataViewer8, fast and precise alignment, 
quality estimation, real-time fusion, deconvolution and alignment 
of multitile acquisitions taken from different physical orientations 
(so-called multitile ‘views’), thereby effectively doubling the size of 
specimens that can be imaged (Fig. 1n), while further orthogonal 
views can render the resolution isotropic.

BigStitcher features a new user-friendly importer for a multitude 
of vendor-specific and custom formats that is based on BioFormats9, 

and accesses image data through memory-cached virtual loading10, 
which can optionally be combined with virtual flat-field correction 
(Supplementary Figs. 5 and 6, and Supplementary Notes 4 and 5). 
Performance is optimal when images are initially converted to a mul-
tiresolution, blocked and compressed format such as HDF5 (ref. 8)  
enabling interactive visualization, processing and interaction with 
terabyte-sized image datasets.

Accurate reconstruction of these large complex datasets requires 
compensation for the different types of image and intensity trans-
formations that are introduced by the acquisition process. We there-
fore developed an interactive stepwise process that compensates 
for all relevant transformations while providing spatially localized 
feedback on the quality of the acquired image data (Supplementary  
Figs. 7 and 8).

First, overlapping 3D image tiles are acquired to cover the entire 
sample for each acquisition angle. Although approximate tile loca-
tions are typically known, translation stages usually show substantial 
inaccuracies (Supplementary Fig. 9). To compute locations for every 
image tile, we developed an image stitching algorithm optimized for 
very large datasets that can deal with acquisitions arranged in non-
regular grids (Fig. 3a) containing empty images and multiple inde-
pendent samples (Supplementary Fig. 10). As acquisitions often 
consist of hundreds of gigabyte-sized image tiles, each containing 
very different information (Fig. 3), we initially compute each shift 
for all pairs of overlapping tiles (links) using the parameter-free 
phase correlation method11–14 on downsampled images. It computes 
all possible shifts between two images, and intensity peaks in the 
resulting phase correlation matrix correspond to shifts with high 
correlation that we localize with subpixel precision (Supplementary 
Fig. 11 and Supplementary Note 6; Methods). Using simulations, 
we showed that our new pairwise stitching method achieved 
errors below 1 pixel while reducing computation times 100-fold 
(Supplementary Figs. 12–15 and Supplementary Note 7; Methods). 
As correlation-based approaches can fail for image pairs charac-
terized by repetitive patterns, noise or low information content, 
computing final image tile locations requires global optimization, 
which sometimes needs to be combined with manual curation 
(Supplementary Fig. 16 and Supplementary Video 1). Our new 
global optimization method extends the concept of identifying tile 
positions by minimizing the distance between all links12,15, which, 
in comparison to computing a minimum spanning tree16, averages 
out normally distributed link errors (Supplementary Fig. 15) dur-
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ing optimization, as tiles are typically linked to many neighbors  
(Fig. 3a). Incorrect links are filtered by quality and by iteratively 
removing the link that disagrees most with the global optimization 
result12 using a new compound metric. In current implementations, 
unconnected tiles (for example, empty images) and multiple inde-
pendent objects in an acquisition are handled by ignoring them12,13, 
or assuming regular two-dimensional (2D) translational grids14. 
Here we present a generic solution to this problem by introducing 
the concept of strong and weak links (Supplementary Fig. 10), which 
is independent of the original tile arrangement and not limited 
to translations. Strong links correspond to confirmed links, while 
weak links are derived from current transformations (for example, 
approximately known tile positions). Optimizing both link types in 
an acquisition yields accurate registration results within strongly 
linked regions and optimal alignments for weakly linked groups of 
tiles (Fig. 3a and Supplementary Fig. 10; Methods). However, cor-
rect tile placement (that is, solving the classical stitching problem) 
represents the first step and is usually not sufficient to properly align 
dual-illumination, multitile datasets (Fig. 2).

Second, because microscopy images suffer from spherical and 
chromatic aberrations that can be approximated reasonably well by 
affine transformations if distortions are in the range of a few pix-
els (Supplementary Figs. 3 and 4), we implemented a single-step 
interest-point-based alignment step that automatically extracts 
interest points and applies a variation of the iterative closest point 
algorithm (ICP)17 on affine transformations. In combination with 
our new global optimization BigStitcher is able to compensate for 
small affine distortions that arise from spherical, and also chromatic 

aberrations if the same autofluorescent structures are visible across 
channels (Fig. 1i,j and Supplementary Figs. 3, 4 and 9; Methods).

Third, although samples are highly transparent (Fig. 1b), light 
scattering is an issue when imaging in tissues at depths on the 
order of centimeters. Although improved designs were recently 
proposed18, dual-sided light-sheet illumination5 (Fig. 1c,d) remains 
the most prominent method to double the sample size for which 
high-resolution image data can be collected laterally. Before align-
ment, we automatically suggest the best illumination direction for 
each tile by estimating image sharpness (Fig. 1d) using newly devel-
oped methods (Supplementary Fig. 2; Methods). Unexpectedly, we 
observed non-rigid image deformations between image tiles with 
different illumination direction (Figs. 1d and 2a–d). To understand 
how these transformations are created, we performed simulations of 
light propagation in tissue using ray tracing (Fig. 2e–h; Methods). 
These simulations showed that refractions within the illumination 
light path can lead to different parts of the sample being illumi-
nated, and these parts can both lie in focus of the same detection 
objective owing to typical depths of field being in the range of sev-
eral tens of micrometers (Supplementary Table 1). To compensate 
for these transformations, we implemented a virtual non-rigid 
alignment method based on identified corresponding interest 
points19, as well as a piecewise ICP-based affine alignment based on 
virtual splitting of image tiles into smaller blocks (Fig. 2b–d,i–m;  
Methods). Depending on the magnitude of refraction, affine, split-
affine or non-rigid alignment was the best choice for precise align-
ment (compare Fig. 2a–d and Fig. 2k–m), which is possible as long 
as the light-sheet remains within focus. However, once the light 
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sheet is out of focus, blurred image data, which cannot be recon-
structed using BigStitcher, are acquired. Such first-order defocusing 
can, however, be minimized by employing autofocusing during the 
acquisition process20,21.

Finally, as emitted light is distorted by the sample, maximum 
imaging depth is limited. To overcome this problem, we acquired 
samples from opposing directions by rotation (Fig. 1c) or by 
simultaneous acquisition with two objectives4. We developed an 
optimized method for registration of large multitile views, where 
each view consists of a set of aligned image tiles from one physical 
orientation (Supplementary Note 8). This method robustly aligns 
large volumes using affine transformations, effectively doubling the 
imaging depth of any sample (Fig. 1n and Supplementary Table 2). 
Subsequently, applying ICP-based non-rigid, split-affine or affine 
registration allows precise multiview alignment that accounts 
for additional light refraction in the excitation light path. Using 
example data, we quantified theoretically possible and practically 
achievable registration performance (Fig. 2c,d,k, Supplementary 
Figs. 3, 4 and 17, and Supplementary Note 9), which illustrates 
that translations alone are not sufficient to achieve high-quality 
image reconstructions.

As image quality is not constant across the sample, it needs to be 
quantified to ensure that every part of the reconstructed dataset was 
acquired with high quality. However, manual inspection at the high-
est resolution for the entire sample is impossible owing to its size. 

Therefore, we developed relative Fourier ring correlation (rFRC), 
which is based on Fourier ring correlation (FRC)22. rFRC is able to 
automatically and rapidly estimate image quality throughout tera-
byte-sized light-sheet acquisitions while accounting for common 
scientific complementary metal oxide semiconductor (sCMOS) 
camera patterns (Supplementary Figs. 1, 7 and 8; Methods).

For downstream analysis, datasets can be fused or directly 
analyzed using BigDataViewer plugins. We implemented a new 
algorithm for real-time fusion by multithreaded processing of the 
currently visible plane in virtual images using blockwise multireso-
lution loading (Methods), which can optionally be performed with 
downsampling and on regions of the sample (Supplementary Fig. 18) 
while supporting brightness equalization. It enables fusion of tera-
byte-sized images on machines with little memory (Supplementary 
Fig. 19), while increased memory and compute power enable faster 
processing (Supplementary Table 2).

Deconvolution is an established method to increase contrast 
and resolution in light microscopy acquisitions, and required point 
spread functions (PSF) are typically estimated using fluorescent 
beads23. To handle multitile, multiview acquisitions, we extended 
deconvolution code23 allowing BigStitcher to deconvolve selected 
regions and improve image quality (Fig. 3b–f and Supplementary 
Note 10). To estimate required PSFs in cleared samples, we devel-
oped a new protocol for embedding fluorescent beads in polymeriza-
tion solution (Fig. 3b,e and Supplementary Note 11). Furthermore, 
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we combined ExM with IsoView light-sheet microscopy4 allowing 
acquisition of multiview, multitile datasets of expanded tissues, 
which in turn enabled reconstruction of entire Drosophila larval 
nervous systems with a spatially isotropic subcellular resolution of 
~100 nm (Fig. 3c,e). Image acquisition took 10 min as compared to 
the over 2 d that is required to image an expanded sample of similar 
volume using lattice light-sheet microscopy24, although the acquisi-
tion was at lower resolution (Methods).

BigStitcher enables efficient and automatic processing of tera-
byte-sized datasets and addresses major unsolved issues such as 
easy import, management of large images, datasets acquired in a 
non-regular grid, globally optimal alignment of sparse datasets, illu-
mination selection, rigid and non-rigid multiview alignment of mul-
titile acquisitions, PSF extraction, quality estimation and interactive 
fusion. The aligned dataset and intermediate steps are interactively 
displayed, enabling the user to verify and interact with the alignment 
process to confirm and potentially guide proper alignment of com-
plicated datasets (Supplementary Figs. 5, 16, 20 and 21). Automatic 
reconstruction of even large datasets can be achieved within tens 
of minutes, and BigStitcher outperforms existing software in 
terms of functionality, user-interaction and performance12,13,16,24 
(Supplementary Table 2; Methods). BigStitcher supports cleared 
samples (Fig. 3a,b,d), ExM samples (Fig. 3c,e and Supplementary  
Fig. 22), and standard 2D and 3D confocal and wide-field acquisi-
tions, as well as tiled multiview light-sheet acquisitions (Fig. 3f). 
BigStitcher is open-source, implemented in ImgLib2 (ref. 10) and pro-
vided as a Fiji25 plugin with comprehensive documentation (https://
imagej.net/BigStitcher). Most of its functionality is compatible with 
the ImageJ macro language (Methods) and can thus easily be auto-
mated. These properties make BigStitcher a powerful and scalable 
tool for the handling and reconstruction of tiled high-resolution 
image datasets acquired by new light microscopy technologies.

online content
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Methods
Animals. For clearing, we used a previously generated BsxH2BeGFP mouse line26, in 
which exon 1 of the Bsx gene is replaced (starting at the ATG) with a sequence 
encoding a histone 2B–enhanced green fluorescent protein (eGFP) fusion protein. 
Brains from 10-week-old female BsxH2BeGFP/+ mice were used for tissue clearing and 
imaging. C. elegans dauer larvae expressing the tagRFP fluorescent protein fused to 
a nuclear localization sequence in all neurons27 (strain AML32) were obtained by 
selecting dauer larvae in 1% SDS for 30 min (ref. 28). Dauer larvae were fi ed with 
4% paraformaldehyde for 30 min on ice, placed in 70% ethanol overnight at 4 °C 
and subsequently stained with DAPI. Experiments were conducted according to 
the institutional guidelines of the Max Delbrück Center for Molecular Medicine in 
the Helmholtz Association after approval from the Berlin State Office or Health 
and Social Aff irs (LAGeSo, Landesamt für Gesundheit und Soziales). Drosophila 
larvae used for ExM were obtained from the strain w;;attp2, carrying an empty 
attp2 landing site29.

Clearing and expansion. Tissue clearing was performed using the CLARITY 
protocol1 (Supplementary Note 1). Before imaging, the tissue samples were placed 
overnight in FocusClear for refractive index matching. For ExM, the nervous 
system of a first-instar Drosophila larva was extracted, fixed and stained with 
anti-tubulin antibodies (Supplementary Note 2). The stained sample was washed 
in 1× PBS and then processed using a modified ExM method to achieve 7.5-fold 
expansion in each dimension (Supplementary Note 2). In summary, the specimen 
was treated with acryloyl-X30 as in standard ExM and embedded using a gel recipe 
modified from the original method2. The modified recipe uses a reduced cross-
linker concentration to achieve greater expansion. After digestion with proteinase 
K, a new re-embedding step toughens up the gel, which would otherwise have  
poor mechanical properties.

Imaging. 3D images of cleared mouse brains placed in a FocusClear-filled imaging 
chamber were acquired using the Zeiss light-sheet Z.1 microscope. Fixed C. elegans 
dauer larvae were embedded in agarose that contains fluorescent beads, and 
imaged using the same microscope in a water-filled sample chamber. 3D images of 
the cleared and expanded central nervous system of a Drosophila first-instar larva 
were acquired using an IsoView light-sheet microscope4 that has been modified 
for multitile acquisition. The ability of the IsoView microscope to rapidly record 
large specimens allowed us to image the entire 7.5-fold expanded nervous system 
(2,040 × 1,108 × 1,201 μm = 2.7 mm3) in 10 min with an isotropic resolution of 
approximately 100 nm, acquiring two volumes that were oriented orthogonally 
to each other each with a spatial sampling of 55 × 55 × 110 nm (unexpanded 
volume). In comparison, acquisition of a 4.09-fold expanded volume of half the 
size (1,400 × 2,700 × 370 μm = 1.4 mm3) with two channels using lattice light-sheet 
microscopy24 took 2.61 d; however, the image acquired using lattice light-sheet 
microscopy had a higher spatial sampling of 23.7 × 23.7 × 44.0 nm (unexpanded 
volume). Details of the imaging strategies are described in Supplementary Note 3  
and a summary of the most important acquisition parameters can be found in 
Supplementary Table 1.

Data processing pipeline. All data shown in this paper were processed using 
the BigStitcher Fiji25 plugin. Zeiss CZI files and TIFF files exported by custom 
microscopes were imported using AutoLoader and subsequently converted to 
HDF5. For Zeiss CZI files, approximate tile positions and rotation angles were 
imported automatically; for other files, these parameters were specified by hand 
using BigStitcher tools (Supplementary Figs. 5 and 21). If not stated otherwise, 
reconstruction was performed using the following steps. For each tile, the 
best illumination was selected. Tiles were aligned using the phase correlation 
method using two-round global optimization followed by ICP17 refinement on 
an affine model. Interest-point detection was performed for each multitile view. 
Either our extension of the fast descriptor-based rotation-invariant algorithm31 
or the descriptor-based translation-invariant algorithm32, which was used after 
application of manual rotation, was used to register the interest points of each 
angle, and another round of ICP refinement was performed on all image tiles of the 
acquisition. Fused and deconvolved images were exported as TIFF files.

Pairwise stitching using Fourier-based phase correlation. We calculated pairwise 
translational shifts using our ImgLib2 (ref. 10) implementation of the Fourier-based 
phase correlation algorithm11. The processing time was substantially reduced, while 
our simulations showed that, at the same time, registration errors below 1 pixel 
were achieved by computing the phase correlation on downsampled images and 
performing subpixel localization of the shift vector33 (Supplementary Notes 6  
and 7, and Supplementary Figs. 11–15).

Global optimization. To calculate the final transformations of each image tile we 
extended the concept of globally optimal registration by iterative minimization of 
square displacement of point correspondences12,15,31,32 (Supplementary Note 12).  
Erroneous pairwise links that might not have been filtered out before global 
optimization (for example, wrong links caused by average cross-correlation, 
repetitive patterns or a low number of correspondences in the ICP refinement) 
lead to high registration errors after global optimization. This manifests in a 

large distance error, which is the difference between the individually computed 
distance between images (link) and the actual distance between images after 
global optimization. Iterative removal of the link with the highest distance error 
from the link graph and repetition of the global optimization lead to convergence 
to user-defined thresholds12. We extended this concept from Preibisch et al.12 to 
affine transformations, introduced a new heuristic that additionally incorporates 
link quality, and implemented it in an extendable framework required for the two-
round global optimization (Supplementary Note 12). If the dataset contains empty 
tiles or even consists of multiple disconnected objects, the final transformations 
are not propagated between them (Supplementary Fig. 10). We therefore 
developed a two-round global optimization that is capable of aligning independent 
connected components of the link graph using weak links defined by the current 
transformations of each tile (for example, approximate locations from metadata 
or manual alignments), which optimally preserves distances between neighboring 
objects (Supplementary Note 12 and Supplementary Fig. 10).

Our global optimization is agnostic to the nature of the point correspondences 
and transformation model, which allows us to use the same algorithm for 
translation-based alignment of tiled datasets using phase correlation, as well as 
affine registrations of multitile, multiview datasets based on ICP refinement or 
geometric descriptor matching.

Iterative closest point refinement. Although the phase-correlation-based image 
stitching produces relatively high-quality alignments, smaller errors can remain 
(Supplementary Figs. 13–15). Furthermore, this method is not able to correct  
for non-translational effects such as chromatic and spherical aberration or  
sample-induced light refraction (Fig. 2 and Supplementary Figs. 3, 4, 9 and 17).  
These effects can be better approximated using affine transformations. We 
therefore automatically detect interest points and run an ICP algorithm17 for 
each overlapping pair of images, where the assignment of correspondences is 
limited by a distance threshold. We used the identified corresponding points of 
all pairwise links and computed a globally optimal affine transformation for each 
tile using our new global optimization algorithm. To avoid scaling of datasets, we 
regularized the affine transformation using a rigid transformation15. The resulting 
alignment usually improved the alignment quality and the same strategy could 
be applied to multichannel alignment if the same autofluorescent structures 
were visible in multiple channels (Supplementary Fig. 3). However, only small 
chromatic aberrations within a few pixels could be corrected by approximations 
based on affine or split-affine transformations (Supplementary Fig. 3). At the 
same time, non-rigid transformations can easily be unstable for this purpose as 
correspondences between different channels would have to be distributed over the 
entire image. Therefore, in those cases, it is better to use specialized software such 
as that described by Matsuda et al.34 to correct for chromatic aberrations before 
importing data into BigStitcher.

Illumination selection. When imaging large samples using sequential dual-sided 
illumination5, typically only illumination from one direction provided good 
image quality (Supplementary Fig. 2). We therefore implemented an illumination 
selection functionality in BigStitcher. We first combined all (selected) images 
by their illumination attribute and thereby grouped all images that shared other 
attributes besides illumination direction. In each of the resulting groups, we 
selected the best image. As quality criteria, we offered either the rFRC on full-
resolution images or a fast approximation obtained using mean intensity or mean 
gradient magnitude at the lowest resolution level. While rFRC provided the highest 
distinctive power, both fast approximations were typically sufficient for robust 
estimation of the higher-quality illumination direction (Supplementary Fig. 2 
and Fig. 1d). The image with the highest quality score was kept, while all other 
images were marked as missing in the dataset, which led to them being ignored 
in subsequent processing steps. However, before applying automatic illumination 
estimation, the user has the option to verify and potentially change the result. 
Optional resaving of the dataset after this step potentially decreases the storage 
requirement twofold.

Simulation of light propagation in tissue using ray tracing. We observed non-
rigid deformations occurring in areas where image data from opposing light sheets 
were recorded by the same camera (Fig. 2a). While it is intuitive and clear from 
existing simulations of light propagation35 that imaging of the same light sheet 
from opposing objectives can lead to non-rigid deformations caused by different 
aberrations in the detection light paths, we wanted to understand how changing 
just the light-sheet direction can introduce non-rigid deformations. These effects 
were clearly visible in large samples like entire mouse brains (Fig. 2a), which 
are still beyond the range of simulation using reasonable efforts. We therefore 
developed a simple ray-tracing-based method to simulate light propagation, which 
aimed to recapitulate these observations at a smaller and more manageable scale 
(Supplementary Note 13).

Although quite simple, this simulation recapitulated the effects observed 
in cleared images (Fig. 2a,h) and illustrated that different refraction of the 
illumination light sheets alone can lead to non-rigid deformations in the acquired 
image stacks as it lead to illumination of different contents of the sample in the z 
axis (Fig. 2g,h and Supplementary Video 2). As detection objectives with relatively 
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low numerical aperture (NA; and therefore large depth of field) are typically 
used for detection (Supplementary Table 1), both light sheets can still appear in 
focus despite being tens of micrometers away from each other. Therefore, these 
transformations need to be corrected for.

Non-rigid transformation. To be able to compensate for potentially strong 
aberrations introduced by light refraction due to the sample, we implemented a 
non-rigid alignment method. It is based on the concept of moving least squares19 
that has been shown to perform well in biomedical applications15. We implicitly 
regularized moving least squares using ICP17 or random sample consensus36 
(Supplementary Note 14). Moving least squares requires computation of a 
transformation for each pixel, which is computationally expensive. We therefore 
implemented a virtual cached layer that only computes a transformation for 
every mth pixel (m being the distance between pixels for which transfomations are 
computed) and linearly interpolates affine transformations for pixels in between. 
As BigDataViewer currently only supports affine transformations, we additionally 
implemented a multiresolution preview based on virtually fused non-rigid volumes 
that can be interactively displayed in an extra BigDataViewer window. BigStitcher 
also supports ‘hybrid’ fusion of non-rigid- and affine-transformed image tiles 
as non-rigid registration requires substantially increased computational effort 
(Supplementary Fig. 17).

Virtual reblocking. To allow piecewise affine transformations or a more refined 
illumination selection, we developed virtual reblocking of all 3D image stacks of an 
acquisition (Fig. 2l,m). The implementation distributes 3D blocks onto each input 
image stack using a defined overlap and thereby defines a new set of input image 
stacks for the acquisition. The new virtual image stacks are computed on the fly 
for all resolution levels from the original image data. Any ImgLoader is supported, 
including multiresolution image stacks. Optional resaving of the dataset as HDF5 
or TIFF transforms the virtual image stacks into physical representations.

Quality estimation on the basis of Fourier ring correlation. To estimate image 
quality across entire terabyte-sized acquisitions, we developed an extension of the 
FRC22 that is robust and insensitive to camera noise. FRCr1 ;r2 ðfÞ

I
 constitutes the per-

spatial-frequency (f) correlation between two independent realizations, r1 and r2, of 
the same signal. In localization-based super-resolution, point clouds are therefore 
typically split into two sets of independent pixels. Here we use consecutive slices 
instead and take advantage of the fact that they are nearly identical owing to the 
axial extent of the PSF. As a result, FRCr1 ;r2 ðfÞ

I
 constitutes an entire correlation 

spectrum for each z plane, and we compute a single quality value Q(z) by 
integration over all frequencies f

QFRCðzÞ ¼
Z

f

FRCz;zþ1 fð Þ

A smoother symmetric result can be obtained by averaging the FRC spectra 
obtained using z planes above and below the measured plane

QFRCðzÞ ¼
Z

f

FRCz;zþ1 fð Þ þ FRCz;z�1ðf Þ
2

For computing the 2D FRC, we adapted methods from the FRC ImageJ plugin 
(Supplementary Note 15). This results in a precise estimation of image quality, 
except if patterned noise (for example, sCMOS camera noise) is the dominant 
source of signal (Supplementary Fig. 1). To overcome this instability, we developed 
the rFRC, which subtracts a locally estimated scatterplot smoothing (loess)-
smoothed37 baseline FRC of z planes spaced by m slices that are beyond the axial 
extent of the PSF

QrFRC zð Þ ¼
Z

f

FRCz;zþ1 fð Þ þ FRCz;z�1 fð Þ
2

� loess FRCz�m;zþm fð Þ
� 

This effectively measures which additional frequencies the central planes z, 
z + 1 and z −1, z have in common, as compared to the planes z − m, z + m that are 
beyond the axial size of the PSF. The resulting values QrFRC zð Þ

I
 robustly measure 

image quality in the sample (Supplementary Figs. 1g, 7 and 8). As image content 
can change drastically within a slice, we support computation using a manually 
defined block-size (for example, 512 × 512) and with z stepping (for example, 
every 20 planes). To estimate the quality metric for entire acquisitions, we compute 
QrFRC zð Þ
I

 for defined points in each image stack. Over all input stacks, these 
measurements are held as sparse representations using ImgLib2 (ref. 10) that can be 
rendered virtually and overlaid onto entire fused volumes (Supplementary Figs. 7 
and 8, and Supplementary Video 8 and 9).

Virtual image fusion. A set of overlapping transformed image tiles are fused into 
one output image using a per-pixel weighted average that minimizes boundary 
artifacts and can increase contrast by incorporating entropy estimation38 
(Supplementary Note 16). To correct for unequal brightness and contrast in 

adjacent images, we optionally perform adjustment of the pixel intensities using 
a linear transformation for each image. An optimal brightness and contrast 
adjustment can be estimated using the same optimization framework used for 
image registration39 (Supplementary Note 17). The memory requirements for 
fusion of large volumes can easily exceed the available random access memory 
(RAM) on a machine owing to the size of the output and the combined size of the 
input images. We, therefore, developed a framework for intensity transformations 
and coordinate transformations that is based on ImgLib2 (ref. 10) and virtually 
fused all pixels of a defined bounding box using all input images and their 
associated weights. As the input images are provided through virtual image 
loading, the size of a virtually fused image is close to zero, irrespective of the size 
of input and output images. Ideally, input images are available in blocks so that 
affine transformations that slice the image stacks in arbitrary orientations do not 
require loading of the entire image8. The output image can now be rendered on a 
pixel-by-pixel basis with minimal memory requirements. Additional caching of 
the input image and the output images allows an efficient multithreaded fusion for 
optimally fast processing given the available memory. Therefore, more RAM will 
effectively speed up the fusion process (Supplementary Table 2 and Supplementary 
Fig. 17), but even machines with very low RAM are able to fuse terabyte-sized 
volumes (Supplementary Fig. 19). Fused images can be saved by choosing cached 
or virtual fusion and subsequently saving the ImageJ virtual stack using ‘Save as 
image sequence…’.

Downsampling of the output can easily be incorporated by scaling the 
bounding box and preconcatenation of the downsampling transformation with 
each image transformation. If the input files are multiresolution, we automatically 
compute the optimal resolution level at which the input needs to be loaded. To 
optionally further reduce the image size of the fused image, the graphical user 
interface offers to conserve the original anisotropy between lateral and axial 
orientations of the acquired sample, which is a sensible choice if the dataset 
contains a single view or opposing (for example, 0° and 180°) multitile views.

Macro automation and headless operation. In addition to the graphical user 
interface, we offer standalone Fiji plugins for most of the individual steps, such 
as data import, illumination selection, pairwise shift calculation, link filtering, 
multiview alignment, global optimization, and image fusion and deconvolution. In 
macro mode results will not be displayed interactively but are instead saved to the 
XML project file or output files immediately. The individual steps can be recorded 
as ImageJ macros and easily combined into a script for headless batch processing40.

Limitations of the framework and other software solutions. BigStitcher is 
designed for the reconstruction of large multitile, dual-illumination, multiview 
datasets, and supports affine, split-affine and non-rigid registrations to solve 
the alignment process for terabyte-sized image data. Several solutions based on 
image correlation support multitile-only data, such as Terastitcher16, XUVTools13 
and ImageJ Stitching11; however, these solutions only support translation models, 
making them unsuitable for the types of datasets described above (Fig. 2 and 
Supplementary Figs. 3, 4, 9 and 17). A recent stitching solution developed by the 
Saalfeld lab that is also based on ImgLib2 (ref. 10) can handle even larger datasets 
(up to hundreds of terabytes) and supports affine transformations based on local 
cross-correlation24. It is, however, also focused on multitile-only acquisitions, 
is designed to run on a cluster or in the cloud, does not support non-linear tile 
deformations, and has no user interface to access its functionality. Currently, 
BigStitcher scales well up to 1,000 large 3D image tiles per time point and image 
sizes on the order of tens of terabytes per time point. This is, however, mostly 
due to a limit in the rendering capacity of BigDataViewer. Future optimizations 
of BigDataViewer8 and/or BigStitcher will further increase this limit. BigStitcher 
can correct for chromatic and spherical aberrations by approximation with 
affine transformations if errors are within a few pixels. For chromatic aberration 
correction, enough autofluorescent structures must be visible across channels 
(Supplementary Figs. 3, 4 and 9). Although BigStitcher can correct for geometric 
transformations introduced by the acquisition process (Fig. 2 and Supplementary 
Fig. 17), it is not possible to correct for images that are out of focus.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Small example datasets are available for download from the Open Science 
Foundation at https://osf.io/bufza/. Larger datasets are available on request. 
Additional datasets uploaded at a later stage will be linked from the documentation 
page which can be found at https://imagej.net/BigStitcher#Example_Datasets. 
Example datasets are explained in detail in Supplementary Note 18.

Code availability
All source code used in this publication (BigStitcher, phase correlation simulation 
and benchmarks, and the simulation of light propagation in tissue using ray 
tracing) is open-source and published under the GNU General Public License 
version 2. The latest stable releases used in this publication are provided as 
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Supplementary Software; current versions that include bugfixes and updates can 
be downloaded from GitHub (at https://github.com/PreibischLab/BigStitcher; 
https://github.com/PreibischLab/multiview-reconstruction; and https://github.
com/PreibischLab/multiview-simulation; see Supplementary Notes 19 and 20 
for further explanations). Details on how to use the software are described in 
Supplementary Note 21.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Simulated data was created using the net.preibisch.simulation.SimulateMultiViewAberrations class in the multiview-simulation package 
(release version 0.2.2). Since it is a Maven artifact, the versions of all dependencies are clearly defined and the corresponding version can 
be built automatically from that source code state (https://github.com/PreibischLab/multiview-simulation/commit/
b41b74cce9287f804b670d7de3396605446818a8).

Data analysis The data was reconstructed using BigStitcher (release version 0.3.3). Since it is a Maven artifact, the versions of all dependencies (e.g. 
multiview-reconstruction) are clearly defined and the corresponding version can be built automatically from that source code state 
(https://github.com/PreibischLab/BigStitcher/commit/0d7f79a59ab15fb1805157ab72c5bc9802b02fbd).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Small example datasets are available online:  https://osf.io/bufza/ (Open Science Foundation). Larger datasets are available on request. When we find ways to host 
larger datasets, they will be linked from the documentation page: https://imagej.net/BigStitcher#Example_Datasets
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size of 8 acquired samples was chosen to show a wide variety of samples and sample preparation that can be reconstructed using 
BigStitcher. Some samples are quite similar (clearing), some were chosen to highlight the generality (expanded, only fixed). 

Data exclusions No data was excluded.

Replication In total 8 different samples (cleared, expanded, only fixed) were acquired and reconstructed for this publication. Furthermore, one sample 
was simulated and reconstructed. Additionally, the BigStitcher reconstruction pipeline has been applied to >50 samples in our lab (not part of 
the publication, most are prepared in collaboration on other projects), which highlights the generality of the method. The tissue sections 
shown in Fig. 3a + Suppl. Fig. 1 + Suppl. VIdeo 1 as well as Fig. 3b are very similar and highlight reproducibility.

Randomization Randomization was used for a) the simulation and benchmarking of phase correlation (Supplementary Fig. 12-15), as well as b) for the 
raytracing (Fig. 2b-e). For a) random overlaps (uniformly distributed) were simulated 300 times for each condition, and the noise for the 
image generation process is based on Poisson noise. For b), illumination and detection rays in defined areas are sent randomly (uniformly 
distributed) into the scene. 

Blinding Blinding is not applicable for this study since there is no process that requires it.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For clearing we used a previously generated BsxH2BeGFP mouse line, where the exon 1 of the bsx gene is replaced starting at 
the ATG with the coding sequence for histone2B eGFP. Brains from 10-week old female BsxH2BeGFP/+ mice were used for tissue 
clearing and imaging. C. elegans dauer larvae expressing tagRFP fused to a nuclear localizing sequence under the pan-neuronal 
rab-3 promotor in all neuron nuclei were obtained by selecting dauer larvae in 1% SDS for 30 minutes. Drosophila larva used for 
ExM were obtained from the strain w;;attp2, carrying an empty attp2 landing site. 

Wild animals No wild animals were used.

Field-collected samples No field-collected samples were used.

Ethics oversight Experiments were conducted according to institutional guidelines of the Max Delbrück Center for Molecular Medicine in the 
Helmholtz Association after approval from the Berlin State Office for Health and Social Affairs (LAGeSo, Landesamt für 
Gesundheit und Soziales, Berlin, Germany)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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SUPPLEMENTARY FIGURES
SUPPLEMENTARY FIGURE 1: Quantification of fluorescence preservation in cleared tissue

Supplementary Figure 1: Quantification of fluorescence preservation in cleared tissue. (a-f) Optical sections
through an CLARITY-cleared adult mouse hypothalamus expressing H2B-GFP in all bsx neurons. Fluorescence
is preserved throughout the clearing procedure. However, the signal is degrading with imaging depth and can
typically be recorded up to 1 – 2 cm into the sample, depending on the tissue type and the quality of the clearing
process limiting the size of the sample that can be acquired from a single orientation. Brightness and contrast
was adjusted individually. (g) Quantification of image quality using (relative) Fourier Ring Correlation ([r]FRC,
see Online Methods) in BigStitcher. Note that FRC produces high values for the camera patterns if no signal is
present. The rFRC accurately measures image quality as illustrated by the position of the panels (a-f). As part
of this publication similar experiments were performed 4× with comparable clearing results (Fig. 1n, 3b, 3d).
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SUPPLEMENTARY FIGURE 2: Quantification of automatic illumination selection

Supplementary Figure 2: Automatic illumination selection. (A) A small 166GB multi-view, dual-illumination,
multi-tile dataset specifically acquired for verification purposes, here to quantify the properties of automatic
illumination selection. Shown is a slice through the first of two angles, where six tiles and two illumination
directions are highlighted. We manually confirmed that the left three tiles need to be assigned to left illumination,
and the right three tiles to right illumination. (B) compares the distinction power of the methods Mean intensity,
Gradient magnitude, and Relative Fourier Ring Correlation (see Online Methods) by their respective quality
scores. All methods correctly predict the assignment, while the Relative Fourier Ring Correlation distinguishes
the illumination directions best. Note that Mean intensity almost produces an error for tile 8 of the second angle
(180 degrees) (C) Another example of best illumination for three consecutive tiles (left to right), selected based
on Mean intensity for each tile. Close-ups shows the specified region for both illumination directions. (A,C) As
part of this publication automatic illumination selection was performed on 4 datasets (see also Fig. 1d, 3b, 3d).

5



SUPPLEMENTARY FIGURE 3: Chromatic aberration correction

Supplementary Figure 3: Chromatic aberration correction. If sufficient autofluorescent signal is in common
between channels the ICP refinement on an affine model can be used to approximately correct chromatic aber-
rations are within the range of a few pixels. Here, the 488 and 561 channels are shown in magenta and green,
respectively. Zoom-ins (i) – (iv) illustrate the correction on one example image tile 1920×1920 pixels in size. In
the bottom right the interest points (all points of the entire stack are shown for one slice) used for alignment are
shown. Please note that for example the point in zoom-in (ii) was not used for alignment. If aberrations are sig-
nificantly bigger than illustrated in this example or if not enough common autofluorescence between channels
exist, images can be preprocessed with dedicated chromatic aberration software before import into BigStitcher
(see Limitations section in Online Methods). Chromatic aberration correction was applied to all 26 image tiles
of this dataset (Supplementary Video 3) as well as to all cleared samples that were acquired with 2 channels
(Supplementary Table 1).
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SUPPLEMENTARY FIGURE 4: Spherical aberration correction

Supplementary Figure 4: Spherical aberration correction. (A-C) show the same area a cleared adult mouse
hypothalamus expressing H2B-GFP in all bsx neurons where the corners of 4 image tiles of the same wave-
length overlap. Zoom-ins (i)–(iv) show the alignment quality by overlaying different colors (1st row), after image
fusing using blending (2nd row), and the sobel-filtering of the blending fusion (3rd row). (A) shows results for
stitching, (B) when using affine refinement, and (C) when using affine refinement on re-blocked images. Note
that affine, and split-affine improve the alignment quality. Blending-fusion can reduce artifacts as it reduces the
contribution of pixels close to image borders. Arrows outline cases where artifacts persist after blending-fusion.
E.g., the artifact visible in the fusion in (iii) stems from misalignments of the pink and red tile, since the green
tile is almost invisible after fusion. (A-C) Spherical aberration correction using affine transformations achieving
similar results was applied to all 26 tiles of the dataset, as well as the datasets shown in (Fig. 1n, 3b-d).
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SUPPLEMENTARY FIGURE 5: Manual alignment

Supplementary Figure 5: Interactive manual alignment of tiled images. The BigStitcher GUI offers various ways
of manually (pre-)aligning tiled images after import. (A) images can be moved to a regular grid with a given tile
order and overlap. (B) image locations can also be read from a simple tile configuration text file. (C) selected
image(s) can be moved along axes via sliders. (D) all changes will be displayed in the BigDataViewer window
immediately (D) for quick verification.
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SUPPLEMENTARY FIGURE 6: Flat-field correction

Supplementary Figure 6: On-the-fly flat-field correction. The BigStitcher offers correction for camera offsets,
fixed pattern noise or uneven illumination. (A) Simulation of the effects of a constant background offset and
Gaussian illumination/detection efficiency (C) on tiled images. By subtracting the dark image and modulating
with the inverse relative intensity of the bright image, such artifacts can be corrected easily (B). The correction
is calculated virtually, with optional caching, to allow for immediate inspection of the results. (A-C) Flatfield
correction as illustrated in this figure is a feature supported by BigStitcher, but has not been applied to any of
the datasets shown in this publication.
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SUPPLEMENTARY FIGURE 7: Automatic quantification of image quality

Supplementary Figure 7: Automatic Quantification of Image Quality. (a-d) Four different z-planes from a volume
that overlays the results of the relative Fourier Ring Correlation (rFRC, see Online Methods) computed in
128×128 blocks using a spacing of 10 pixels (magenta) and cleared image data (same as Supplementary Fig.
1). The rFRC robustly detects areas with high image quality. Note that (a) is deepest inside the tissue and (d)
is at the surface of the sample. See Supplementary Video 8 for an animation of the entire stack. The rFRC
was successfully applied to all cleared datasets in this publication (Supplementary Table 1), results are also
shown in Supplementary Fig. 1, 8 and Supplementary Video 8,9.
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SUPPLEMENTARY FIGURE 8: Quality estimation in whole-brain mouse acquisition

Supplementary Figure 8: Quality Estimation in Whole-Brain Mouse Acquisition. Application of our relative
Fourier Ring Correlation (rFRC, see Online Methods) to the reconstruction of an entire adult mouse brain.
The rFRC was computed in 512×512 blocks using a spacing of 256 pixels and transformed and rendered
as the reconstructed volume (see Fig. 3d). (a,b,c) single slice through rFRC volume based on image data
acquired with left illumination (a), right illumination (b), and both overlaid (c), dotted lines outline the orthogonal
shown views in (d-h). (d-h) orthogonal views to (a-c) highlighting the contribution in image quality from different
illumination directions and acquisition angles. (i) illustration of the color scheme used in (h) and the type of
data displayed in (d-g). See Supplementary Video 9 for an animation of the entire stack. The rFRC was
successfully applied to all cleared datasets in this publication (Supplementary Table 1), results are also shown
in Supplementary Fig. 1, 7 and Supplementary Video 8,9.
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SUPPLEMENTARY FIGURE 9: Affine refinement via ICP

Supplementary Figure 9: Illustration of different steps for multi-tile alignment (A) Four randomly colored, over-
lapping image tiles show the typical error when using microscope metadata only. (B) Shows the same image
tiles as (A), but without random color coding. (C) Quality of the registration after applying the phase-correlation
based stitching with downsampling 4 and two-round global optimization. (D) Result after applying the automatic
ICP refinement for tile alignment, spherical and chromatic aberration correction. (A-D) Insets highlight spe-
cific areas to better appreciate quality differences. (A-D) ICP-refinement using affine transformations achieving
similar results was applied to all 26 tiles of the dataset, as well as the datasets shown in (Fig. 1n, 3b-d).
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SUPPLEMENTARY FIGURE 10: Global optimization

Supplementary Figure 10: Global optimization of pairwise registration in sparse datasets connected by ”empty
tiles” (noise only) . (A) Simulation of a tiled image dataset with sparse objects: tiled images of multiple translated
Julia fractals moved to a grid according to approximate metadata (with too high overlap). Centers of images for
which pairwise shifts can be determined via phase correlation are connected by green lines, whereas centers
of neighboring tiles for which no meaningful shift can be calculated are linked by dashed grey lines. Manually
measured distances between distinct points in the three fractals are shown in red. (B) performing global opti-
mization with absolute shifts (as it is done BigStitcher’s predecessor, the ImageJ Stitching plugin) will correctly
align images within connected components of the link graph but place all fractals close to the origin. (C) by
using relative shifts, BigStitcher will leave disconnected objects at their initial location while still aligning within
connected components. (D) as registrations are not propagated between unconnected tiles, distances between
neighboring objects might change. By running a second round of optimization to align connected components
according to metadata shifts and applying the results to the in-component registrations, distances between
neighboring objects are preserved as-good-as-possible. (A-D) Two-round global optimization as illustrated in
this figure is a feature supported by BigStitcher, which has been applied to all datasets used in this publication.
Especially the dataset shown in Fig. 1d,e and Fig. 3d profits from it since it contains empty tiles.
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SUPPLEMENTARY FIGURE 11: Pairwise registration by phase correlation

Supplementary Figure 11: Pairwise registration by phase correlation. (A,B) Central slices of image stacks
from a tiled acquisition (non-regular tiling) of a cleared adult mouse hypothalamus. (C) Phase correlation matrix
(PCM) calculated from the two images shows a single, distinct peak above nearly constant background. The
peak location corresponds to the relative translation t of both tiles. (D) Central slice through the images aligned
according to t, as displayed in interactively during the reconstruction process. (A-D) The pairwise registration
using phase correlation was used as a first step in the alignment of all cleared and expanded samples used in
this publication (Supplementary Table 1).
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SUPPLEMENTARY FIGURE 12: Downsampling with different SNR

Supplementary Figure 12: Effects of downsampling on simulated data with different SNR. (A) Simulated im-
age stacks of spheroid-like objects deteriorated by anisotropic sampling, light attenuation, convolution with an
anisotropic PSF, and pixel intensity generation using Poisson processes to archive desired signal-to-noise-ratios
(SNRs). A central slice through 3d volumes is shown. (B,C,D) Effects of downsampling on the simulated im-
ages. The effects of Poisson Shot Noise are gradually reduced by the blurring of increasing downsampling. (A)
For quantification of the alignment quality using these simulations, 300 independent simulations were run for
each combination of SNR and downsampling (see Supp. Fig. 13 – 15).
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SUPPLEMENTARY FIGURE 13: Downsampling statistics 1

Supplementary Figure 13: Processing times and overall errors. (A) Processing times for sub-pixel precise
identification of overlap between simulation spheroids. With increasing downsampling, the computation time
drops significantly. Red dots show individual measurements, note the log-scale. Average (StDev) of computing
time is 7122 (2224) msec, 1910 (681) msec, 271 (155) msec, and 62 (80) msec for downsampling 1, 2, 4 and
8, respectively. The speed increments are computed as the ratio of the average compute times, i.e. 1×, ∼4×,
∼26×, and ∼115×, respectively. Compute times were measured in a single thread on a Intel Xeon E5-2640 v4.
(B) Average errors including their standard deviation for all combinations of SNR and downsampling. (A,B) All
errors are in units of the input images (no downsampling). For each combination of SNR and downsampling
300 independent simulations were run to compute the values.

SUPPLEMENTARY FIGURE 14: Downsampling statistics 2

Supplementary Figure 14: Errors for different downsamplings at SNR=8. (A-D) Histograms showing the distri-
butions of error of the simulations. Errors initially decrease due to the smoothing effect of the downsampling. All
errors are in pixel units of the original resolution (DS1). Each histogram consists of 300 independent simulations.
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SUPPLEMENTARY FIGURE 15: Downsampling statistics 3

Supplementary Figure 15: Absolute distance errors at SNR=8. (A-D) Histograms showing the absolute dis-
tances between computed and known shift between two simulated spheroids, split by dimension. It illustrates
a normal distribution of the error made during the pairwise phase correlation. All errors are in pixel units of the
original resolution (DS1). Each histogram consists of 300 independent simulations.
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SUPPLEMENTARY FIGURE 16: Interactive inspection and curation of pairwise links

Supplementary Figure 16: Interactive visualization of links in the link explorer. The BigStitcher GUI offers to
explore and modify calculated links between corresponding tiles in the link explorer menu. (A) tiles containing
links are displayed in yellow and can be selected. (B) display corresponding tiles of the selected view. Single
links can be removed manually or through available filtering options. (C) corresponding links of the selected
view are displayed in real-time in the BigDataViewer.
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SUPPLEMENTARY FIGURE 17: Quantification of image registration quality

Supplementary Figure 17: Quantification of Image Registration Quality. A multi-view, dual-illumination, multi-tile
dataset specifically acquired for verification purposes was used to quantify the registration error (see Online
Methods, Fig. 2k-m, and Supplementary Fig. 2). (A): Schematic description of the quantification process for
registration accuracy. Interest points are first automatically detected in all images of the dataset (1). Of those, a
subset of truly corresponding points interest points was selected for each pair of images (2). After registration
with BigStitcher using various transformation models (translation, affine, split-affine, non-rigid), the remaining
distance between the manually curated point pairs is used as a measure of registration error (3), actual errors
are shown in Fig. 2m. (B) All interest points detected in two images of the example dataset overlaid on a
slice view (left), manually selected corresponding points (middle, note the ”doubling” of the paired points as
they are not yet aligned, arrows indicate examples) and the same points after registration (right). (C) Time
required for registration (left) and fusion (right) of the dataset, for a single angle (top) or both angles (bottom).
The single angle values are averages of both angles. Fusion was done at full resolution, preserving original
data anisotropy. Multi-resolution pyramids of the images were computed beforehand. Processing was done on
2 Intel Xeon E5-2680v4 processors and 256GB RAM, data was loaded from SSDs in RAID0 configuration. This
error quantification was performed only on this specifically acquired dataset.
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SUPPLEMENTARY FIGURE 18: Bounding-box definition

Supplementary Figure 18: Interactive definition of bounding boxes. The BigStitcher GUI offers the possibility
of defining or modifying regions of interest via the creation of bounding boxes. (A) Choose the method used to
define a new bounding box. In this case the interactive mode is selected. (B) manually define the bounding box
range (C) Preview the size of the specified bounding box in the BigDataViewer in real-time.
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SUPPLEMENTARY FIGURE 19: Virtual fusion of large Image

Supplementary Figure 19: Virtual Fusion. Screenshot of a Fiji instance running with 1.25GB of RAM success-
fully fusing and saving a 787GB volume 5818×12414×2925 pixels in size. This is achieved through virtual
fusion combined with virtual, cached loading of blocked, multi-resolution input images. Red boxes highlight
memory consumption, size, and progress. During the fusion process, the BigStitcher and BigDataViewer are
interactively accessible.

21



SUPPLEMENTARY FIGURE 20: Interest point visualization

Supplementary Figure 20: Interactive visualization of interest points. The interest points explorer allows the
visualization of interest points and corresponding interest points between views. (A) select desired interest
points for visualization. (B) preview the interest points overlaid in the BigDataViewer. Red dots intersect with
the current image plane, green dots are projections from different z-planes. The white box marks the zoom-in
shown in (C). (C) Zoom-in into the region outlined in (B).
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SUPPLEMENTARY FIGURE 21: Manual transformation of multi-view datasets

Supplementary Figure 21: Interactive transformation of views. Different transformation models can be applied
to one or more views and simultaneously visualized in the BigDataViewer. (A) Choose transformation model
grouping. (B) Further define the transformation model. In this case a rotation around the axis is selected. (C)
Select rotation axis and angle. (D) Visualize rotation of the view in the BigDataViewer.
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SUPPLEMENTARY FIGURE 22: Expansion microscopy reconstruction

Supplementary Figure 22: Expansion microscopy stitching (A) All tiles (randomly colored) of one view of
the expanded Drosophila central nervous system. Dotted lines highlight orthogonal sections in (B) and (C).
(B,C) Alignment of an orthogonal view showing at two different cut planes. Red scalebar takes expansion into
account. (A-C) Expansion microscopy alignment using phase correlation followed by ICP refinement using
affine transformations was performed only on this dataset.
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SUPPLEMENTARY FIGURE 23: Principles of non-rigid alignment

Supplementary Figure 23: Principle of Non-Rigid Alignment. The non-rigid alignment applies a different affine
transformation to each pixel of each transformed image. This continuous transformation space is defined by cor-
responding interest points between overlapping images. We therefore first identify all sets of all corresponding
interest points that belong to each other as defined by pairwise correspondences (see Example Correspon-
dences). Each individual set of correspondences across n images then define a unique point, of which typically
hundreds to thousands per image exist. The left part of the figure illustrates a single unique point, which is
defined as the average position of all corresponding interest points. Once all unique points are assigned to
each correspondence, the non-rigid transformation can be individually computed for each transformed image.
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SUPPLEMENTARY NOTES

1. Sample clearing
Clearing of brain tissue was performed using the CLARITY protocol.1 Mice were deeply anesthetized by in-
traperitoneal injection of 100 mg/kg Ketamine and 15 mg/kg Xylazine. Mice were exsanguinated by transcardial
perfusion with 25 ml cold PBS followed by whole body perfusion with 25 ml cold monomer solution (4% v/v
acrylamide, 4% w/v Paraformaldehyde (PFA), 0.25% w/v VA-044 in PBS). The brains were collected and fixed
in monomer solution for 2 more days. Next, the whole brains were placed in fresh monomer solution and oxygen
was removed from the tubes by vacuum and flushing the tube with nitrogen gas for 15 minutes. The samples
were then polymerized by placing the tubes in a 37◦C water bath under gentle shaking for 2 hours. Polymerized
brains were placed in clearing solution (4% SDS in 200 mM Boric acid). Brains were incubated in clearing so-
lution for 1 week at 37◦C with daily solution change. Then, the brains were actively cleared using the X-Clarity
setup from Logos Bioscience for 24 hours with a current of 1 A at 37◦C. Cleared brains were washed twice
overnight with 0.1% v/v Triton X-100 in PBS and once with PBS.

2. Expansion microscopy (ExM)
Expansion microscopy sample preparation

For Expansion Microscopy (ExM), the nervous system of a 1st instar Drosophila larva of was extracted, fixed
in 4% PFA/1xPBS/0.1%Triton for 1 hour and washed 2x10 min in 1xPBS/0.1% Triton. Before each antibody
usage, the nervous system and the antibodies were blocked in 5% goat serum/1xPBS/0.1% Triton for one hour.
Following the blocking, the nervous system was incubated overnight at 4◦C in 1:500 monoclonal Anti-α-Tubulin
antibody produced in mouse (Sigma Aldrich T6199 1mg/ml). After 5x10 min washing (1xPBS/0.1% Triton),
the secondary antibody 1:250 Anti-Mouse CFTM488A antibody produced in goat (Sigma Aldrich AB4600387
2mg/ml) was added overnight at 4◦C.

Detailed expansion microscopy protocol

Acryloyl-X, SE (6-((acryloyl)amino)hexanoic acid, succinimidyl ester; here abbreviated AcX; Thermo-Fisher)
was resuspended in anhydrous DMSO at a concentration of 10 mg/mL, aliquoted and stored frozen in a des-
iccated environment. AcX stock solution was diluted in 1xPBS to a final concentration of 0.1 mg/mL AcX.
Specimens were incubated in this 0.1mg/mL AcX solution for >6 h, at RT. Monomer solution (1xPBS, 1M NaCl,
1.84M sodium acrylate, 0.35M acrylamide, 3.2mM N,N’-methylenebisacrylamide) was mixed, frozen in aliquots,
thawed fully, vortexed, and cooled to 4◦C before use. Concentrated stocks of the initiator ammonium persulfate
(APS, 10% w/w), accelerator tetramethylethylenediamine (TEMED, 10% v/w) and inhibitor 4-hydroxy-2,2,6,6-
tetramethylpiperidin-1-oxyl (4-HT, 0.5% w/w) were prepared as concentrated stock solutions, which were frozen
in aliquots and then fully thawed and vortexed before use. Initiator, accelerator and inhibitor stock solutions
were added to the monomer solution at a ratio of 2uL each per 94uL monomer solution to produce complete
monomer solution. Specimens were washed 2x15min in complete monomer solution, on ice with shaking.
Specimens were transferred to 3D-printed gelation chambers sized 1cm x 1cm and 0.3mm deep, along with
30uL of complete monomer solution. Chamber was covered with a cover glass and transferred to a humidified
37◦C incubator for 2hr for gelation and gel curing.

Proteinase K (New England Biolabs) was diluted 1:100 to 8 units/mL in digestion buffer (50 mM Tris (pH 8),
1 mM EDTA, 0.5% Triton X-100, 1 M NaCl) to produce proteinase solution. Gel was recovered from chamber
and incubated fully immersed in proteinase solution overnight at RT, with shaking. The digested gel was next
incubated in at least a 10-fold excess volume of monomer solution with accelerator and inhibitor (no initiator)
2x15min, followed by complete monomer solution 2x15min on ice, with shaking. (Initiator is omitted from the
first two washes to prevent premature gelation.) During incubation, a glass slide and cover glass are coated with
parafilm by laying parafilm with paper backing onto the glass surface (parafilm down) and scraping a razor blade
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across the backing, then removing the backing. A 5mL syringe filled with silicone grease was used to apply four
dabs (approx. 50uL each) of grease to the glass slide, at the corners of a rectangle slightly smaller than the
cover glass. The gel was transferred to the coated slide and excess fluid was removed. The cover glass was
placed over the gel, parafilm side down, contacting the dabs of grease. The cover glass was gently pressed
down, squeezing the grease, until the coverglass contacted and sat flat across the gel. Excess complete
monomer solution was backfilled into the resulting chamber to impede access of atmospheric oxygen to the gel.
The completed chamber was moved to the 37◦C humidified incubator for 2hr for gelation and curing.

The resulting doubly-gelled specimen was recovered from the chamber, and excess gel was trimmed away.
The trimmed double gel was washed in excess volumes of doubly deionized water for 0.25-2 h to expand. This
step was repeated 3-5 times in fresh water, until the size of the expanding sample plateaued.

3. Imaging strategies
3D images of cleared mouse brains were imaged using the Zeiss Lightsheet Z.1 microscope. Each sample
was attached to the sample holder using a cyanoacrylate-based glue. The mounted sample was placed in
the FocusClear pre-filled imaging chamber. Images were acquired using the EC Plan-NEOFLUAR 5×/NA 0.16
objective together with the LSFM 5×/NA 0.1 illumination objectives on a Zeiss Light-sheet Z.1. The data was
acquired using dual side illumination and from different angles. Images were collected with two 1920×1920
pixel sCMOS cameras and stored in the Zeiss CZI file format.

Fixed C. elegans dauer larvae were embedded in 1.2% agarose containing fluorescent beads and imaged
using the same microscope in a water-filled sample chamber. Imaging was performed using the 20×/NA 1.0
objective with additional 2× zoom.

3D images from a cleared and expanded central nervous system of a Drosophila 1st instar larva were ac-
quired using an IsoView light-sheet microscope2 that has been modified for multi-tile acquisition. To prepare the
sample for imaging, excess gel surrounding the expanded sample was removed using a scalpel, leaving four
flat and smooth gel surfaces for imaging. Some extra gel was left underneath the sample for mounting, and the
sample was affixed to a cylindrical post using a cyanoacrylate-based glue. The mounted sample was placed
in the imaging chamber filled with deionized water. Orthogonal views for each tile of the sample were acquired
sequentially by switching the illumination and detection orders in IsoView. Images were acquired using Spe-
cialOptics 16×/NA 0.71 objectives and recorded using full frames (2048×2048 pixels, pixel pitch of 0.4125 µm
in sample space) of Orca Flash 4.0 v2 sCMOS cameras. The sample was held stationary during multi-view
acquisition of each tile, and depth-sectioned images were acquired every 0.8125 µm by translating the detec-
tion piezos over a range of 750 µm. A tile for each view thus covered a field of 832 µm (X), 832 µm (Y), and
750 µm (Z). Automated tiling across the entire sample was achieved by moving the sample in predefined steps
of 600 µm in X, Y, and Z until full coverage was achieved. Bi-directional light-sheet illumination was achieved
using opposing SpecialOptics objectives and the illumination NA was chosen to be 0.0315 for a confocal pa-
rameter of approximately 416 µm. The light-sheets from opposing arms were shifted approximately by their
Rayleigh length (208 µm) toward the illumination objectives so that each light-sheet provided uniform coverage
of the respective half in the acquired image.

A summary of the most important acquisition parameters can be found in Supplementary Table 1.

4. Data import
Import of data

Microscopy acquisitions are saved in a multitude of vendor-specific formats, custom formats, and general for-
mats such as TIFF stacks. We developed an extendable, user-friendly interface that automatically imports
almost any format and extracts relevant metadata such as illumination directions, sample rotation, and approx-
imate image positions using Bioformats.3 The assignment of attributes to the image stacks in the raw data is
usually automatic, or can be achieved with minimal interaction from the users. Therefore, the importer supports
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interactive placement of image tiles using regular grids or text file-based definitions (Supplementary Fig. 5).
BigStitcher accesses image data through memory-cached, virtual loading,4 optionally combined with virtual flat-
field correction (Supplementary Fig. 6 and Supplementary Note 5). Performance is optimal when images are
stored using a multiresolution, blocked, compressed format enabling interactive visualization, processing and in-
teraction with terabyte-sized image datasets. The importer therefore suggests by default to resave single-block
images (e.g. TIFF) into the BigDataViewer HDF5 format.5 Alternatively, by making use of cached ImgLib2 data
structures, we support virtual loading of image planes from the raw files including caching of already loaded
planes.

Data import is described in detail on the BigStitcher Wiki https://imagej.net/BigStitcher_Define_new_
dataset. We additionally added an example youtube video that illustrates how the most generic import from
TIFF stacks works in BigStitcher: https://youtu.be/aUofNP6V0lg. In case direct import from a custom format
fails, we therefore suggest to manually re-save data as TIFF stacks and subsequently importing them into
BigStitcher. It is important to preserve the calibration of the image stacks in the process.

SpimData data format
We internally represent our image data and metadata using an extended version of the SpimData data format
of BigDataViewer.5 Each image stack is defined by a (ViewSetup, TimePoint)-combination. We extend the
format by giving each ViewSetup the following attributes: Channel to represent color channels, Illumination to
represent illumination directions, Angle to represent multi-view acquisition angles and finally Tile, representing
(local) x,y points in a multipoint acquisition.

In addition to those attributes, we store detected interest points, bounding boxes (named sub-volumes in
which we can fuse or deconvolve images), point spread functions for deconvolution and pairwise registrations
(that have yet to be used in global optimization) for each (ViewSetup, TimePoint) view. For each image stack,
we also store its registration (i.e. the transformation from pixel to world coordinates) as a list of affine transform
matrices. The registration steps described below will typically prepend another transformation matrix to this list.
Finally, the SpimData is associated with an ImgLoader object that can make image pixel data available as an
ImgLib24 RandomAccessibleInterval given a (ViewSetup, TimePoint) view id.

The SpimData data structure can be saved as an XML project file, allowing users to manually edit it with
any text editor. We automatically save previous versions of the project file to provide the user with the ability to
un-do registration steps.

5. Flat-field correction
Flat-field correction is the process of correcting for image artifacts due to uneven illumination or detection ef-
ficiency or fixed-pattern noise. Aside from being visually unpleasing, especially in tiled acquisitions, these
artifacts can also effect image registration and downstream quantitative image analyses. We therefore offer
simple on-the-fly correction for a dark image (which might be nonzero due to e.g. camera offset) and a bright
image (representing uneven illumination or detection efficiency across the field-of-view). We calculate corrected
pixel intensities C from a raw image R and bright and dark images B and D as:

Cx =
(Rx −Dx′) ∗ (B −D)

(Bx′ −Dx′)
(1)

The correction images can either have the same dimensionality as the raw images, in which case x′ = x,
or have lower dimensionality (e.g. when using 2D correction images on a 3D image stack), in which case
x′ = (x1 . . . xn) with n being the dimensionality of the correction images. If a dark image is not provided by the
user, we assume it to have constant intensity of 0 (corresponding to no background offset). Likewise, if no bright
image is provided, we assume it to have constant intensity of 1 (uniform illumination and detection efficiency).

We implemented the flat-field correction as a wrapper around an ImgLoader, calculating corrected pixel
intensity values on-the-fly (with optional caching) every time an image is loaded. That way, the corrected
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images are available for all other processing steps such as intensity-based registration, interest point detection
or image fusion, but it is still possible to activate or de-activate the correction or change bright or dark images
after the initial flat-field correction. A separate (bright, dark)-correction image pair can be set for every image in
the dataset by modifying the XML project file, while in the GUI we offer user-friendly assignment of correction
images to every (channel, illumination direction)-pair.

6. Pairwise shift calculation
In BigStitcher, we currently offer three ways of calculating shifts between a pair of images: the Fourier-based
phase correlation algorithm, the Gradient-descent-based Lucas-Kanade algorithm, both intensity-based meth-
ods, as well as interest point-based alignment.

Phase correlation
By default, we calculate pairwise translational shifts of two images I1 and I2 using phase correlation6,7 using
our new ImgLib2 implementation.4 In noiseless images, the method produces a phase correlation matrix (PCM)
Q containing a single δ-impulse at the location corresponding to the shift between the two images. Real images
might contain multiple peaks (Supplementary Fig. 11) and we localize the n highest peaks in Q by detecting
peaks with subpixel accuracy using a n-dimensional implementation of a quadratic fit.8 Aside from allowing
subpixel-accurate registration, we can use the precision obtained from the subpixel accuracy of the phase cor-
relation to counteract the effects of downsampling (Supplementary Fig. 12), allowing us to achieve registration
of similar quality to full-resolution with significant performance gains (Supplementary Fig. 13–15). Due to the
periodic nature of the Fourier shift theorem, each peak in the PCM actually correspond to 2n possible shifts in
n dimensions. We therefore test each of these candidate shifts by calculating the cross-correlation between
the images I1 and I2, optionally with interpolation in the case of sub-pixel shifts.8 We choose the shift vec-
tor t corresponding to the highest cross correlation as the final result after applying downsampling correction, if
necessary.

It is often necessary to not only align two single images but groups of images, e.g. all channels of a tile.
We therefore implemented a flexible framework for the registration of grouped images (see below). The two
images I1 and I2 can have arbitrary affine pre-registrations such as sample rotation, correction of axial scaling,
or already performed registration steps. If pre-registrations of I1 and I2 are identical, or are only based on
different translations or axis-aligned scalings, we run the phase correlation on (downsampled) raw input images,
otherwise on virtually fused images (Supplementary Note 16).

Lucas-Kanade
In addition to the default phase correlation-based pairwise shift calculation, we offer registration via an ImgLib2
implementation of the inverse compositional formulation of the gradient descent-based Lucas-Kanade optical
flow algorithm.9 While the algorithm is applicable to a variety of transformation models, we currently stick to
estimating a translation vector t. If the pairwise registration converges, we calculate the cross correlation of the
overlapping portions of the images as a quality metric for the pairwise registration.

Intensity-based registration of grouped images
In many use cases, one might want to align not single images but groups of images, e.g. all channels of a tile,
in the pairwise registration step. For this, we implemented a flexible framework for the registration of grouped
images.

Each attribute of the images can be set to be an axis of application, an axis of comparison or an axis of
grouping. The registration will proceed by first splitting the images by the application attributes, i.e. grouping all
images that have the same value for these attributes. In each group, the images are then split by the comparison
attributes and finally, the remaining image groups (that differ only in the grouping attributes) are combined into
one image stack by either averaging all images for each grouping attribute or picking the image with a specific
instance of the attribute.
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In a typical application, the stitching of tiled datasets, we would, for example, start by applying the registration
to all (Angle, TimePoint)-combinations individually, comparing by Tiles and finally grouping by Illumination

and Channel for each tile, e.g. by averaging illumination directions and picking a specific channel.

Intensity-based registration of images with pre-registrations

The two images I1 and I2 can have arbitrary pre-registrations, i.e. pixel coordinates xpx are mapped to world
coordinates xw via the affine transforms xw,I1 = AI1xpx,I1 + bI1 and xw,I2 = AI2xpx,I2 + bI2 . Depending on
the values of AI1 and AI2 , we consider two cases: If they are equal, i.e. the pre-registrations differ only by
a translation, we perform the shift calculation on the raw pixel data of the overlapping volume to get a shift
vector t for I2 in pixel coordinates. The transformation in world coordinates is then given by R

(
I t

0 ··· 0 1

)
R−1

with R =
(

AI2
bI2

0 ··· 0 1

)
. If the pre-registrations differ in more than just translation, we create virtually transformed

images of the smallest rectangular bounding box enclosing the overlapping volume and use them as input to the
registration. As the virtual input images are already in world coordinates in this case, the resulting transformation
matrix for I2 is simply

(
I t

0 ··· 0 1

)
Interest-point based

For interest-point based pairwise registration, we detect local extrema in either Difference-of-Gaussian or
Difference-of-mean filtered images, optionally followed by subpixel refinement of the detections via a quadratic
fit.8 If we are registering a pair of image groups, the interest points of each image in the group are pooled, with
optional replacement of point clusters within a user-defined radius by their center.

For each image, we apply the current (affine) registrations to the pixel-coordinate interest points and then
determine candidate point matches via descriptor matching.10,11 We then perform model-based outlier removal
via the RANSAC algorithm,12 yielding a set of inlier point pairs, Cinliers, and an optimal translation t for I2,
minimizing

∑
(ip1,ip2)∈Cinliers

||ip1 − ip2 − t||2

7. Quantification of pairwise image stitching using downsampling
To assess the effect of downsampling on the pairwise stitching we use simulations of spheroid-like objects at
different signal-to-noise ratios (SNRs) as ground truth. We create realistic images by mimicking image creation
in light-sheet microscopy including optical sectioning, 3-fold anisotropy between xy and z, light attenuation,
convolution, and pixel intensity generation using Poisson processes.13 Importantly, pairs of overlapping images
that we use for benchmarking the subpixel phase correlation method are created using different Poisson pro-
cesses and are additionally rendered with half a pixel offset of the full resolution images to avoid nearly identical
overlaps at high SNRs due to the simulation process (Supplementary Fig. 12).

We simulate 300 pairwise overlaps, each at SNRs ranging from 1 to 32, and lateral downsamplings ranging
from 1× to 8×, where axial downsampling is matched as good as possible to achieve near-isotropic resolu-
tion as in the actual software. We illustrate that across SNRs downsampled images yield a constant registration
quality, which even exceeds that of registration at full resolution for low SNRs. This is achieved through a combi-
nation of the smoothing effect during downsampling (Supplementary Fig. 12) and precise subpixel-localization
(Supplementary Fig. 13–15). Due to the smoothing effect, registration quality therefore initially increases at
2-fold and 4-fold downsampling (Supplementary Fig. 13–15), while when using more downsampling, the loss
of pixel resolution outweighs the effect of smoothing and hence the quality drops. Registrations with a constant
quality of an average error of below one pixel can be computed at a fraction of the computing time compared to
full resolution, typically 4 - 115 times faster. Existing outliers are filtered during global optimization and overall
registration quality can further be improved during the ICP14refinement step.

Simulated data was created using the net.preibisch.stitcher.headless.StitchingPairwise class in the BigStitcher
package (release version 0.3.3). Since it is a Maven artifact, the versions of all dependencies are defined
and the corresponding version can be built automatically from that source code state (https://github.com/
PreibischLab/BigStitcher/commit/0d7f79a59ab15fb1805157ab72c5bc9802b02fbd).

33



8. MultiView Registration
For MultiView registration, i.e. alignment of image taken from different angles (or also time series stabilization), we first
detect interest points in the individual images as described above (6). Images may be grouped (and are by default if we are,
e.g. registering tiled acquisitions from multiple angles for which we already aligned the tiles via an intensity-based method)
according to their attributes, by pooling their interest points and optionally merging clusters of interest points.

Pairwise point correspondences can either be established by geometric local descriptor matching, a modified version
of the iterative closest point (ICP14) algorithm or by simply matching the center of mass of the point clouds of both images
(note that in this case the registration will be constrained to be a translation). Using the link graph (V,C) and pairwise point
correspondences Pij established thus, we calculate the final registration by performing global optimization as described
above (12), optionally with iterative link removal and a second round to preserve metadata.

Geometric Local Descriptor Matching
To identify corresponding interest points in between two point clouds, geometric local descriptor matching combined with
random sample consensus (RANSAC12) has been proven to be a powerful technique.10,11 The basic idea to express
each interest point as a geometric constellation using its n (typically three) nearest neighboring interest points. The vector
difference between two descriptors then describes how similar the local area of two points is. A geometric local descriptor
(GLD) is assumed to be a correspondence candidate if it is at least m (typically one to ten) times more similar than the
second most similar GLD.8 True corresponding interest points between two point clouds are finally identified using RANSAC
on a regularized affine transformation model. However, fast GLD matching using the rotation-invariant technique based
on geometric hashing10 requires relatively randomly distributed points to robustly identify correspondences, while the non-
accelerated, redundant, translation-invariant counterpart11 identifies correspondences reliably in non-rotated point clouds
of only up to a few thousand points in reasonable time. Here, we developed a new matching procedure by extending both
techniques to better suit the requirements when attempting to identify corresponding interest point in between point clouds
of prior unknow size derived from imaged structures that are potentially rotated relative to each other.

Redundancy is a powerful mechanism for GLD matching. It uses additional nearest neighbors but excludes some of
them sequentially during matching making it more robust to potentially mis-detected interest points.11 We therefore extend
the fast rotation-invariant technique based on geometric hashing10 with the capability for redundancy. This significantly
increases the chance of being able to align randomly oriented point clouds very fast, albeit at low inlier ratios (ratio of true
correspondences to total number of correspondence candidates). Rotation invariance is not desired if both point clouds
are known to be approximately in same orientation, for example if the rotation of the sample performed by the microscope
was known and has been applied to the dataset. Checking for potential rotations simply increases the chance for wrong
correspondence candidates. We therefore implemented a fast translation-invariant GLD based on geometric hashing that
supports redundancy. All four versions of GLD are available in BigStitcher to enable robust multi-view alignment.

9. Quantification of overall registration quality
To quantify registration quality, we acquired an as-small-as-possible (166GB), cleared section of an adult mouse brain. It is
imaged at lower magnification from two angles (0◦ and 180◦) and in a 2×3 tile configuration with dual-sided illumination for
each angle (Fig. 2l,m, Supplementary Fig. 2,17 and Supplementary Table 1).

We identified a ground-truth set of corresponding interest points in directly adjacent images by manually selecting bright
spots from a set of interest points that were automatically detected using Difference-of-Gaussian filtering and subpixel-
accurate local maxima determination (Supplementary Fig. 17a,b). For each image pair, we selected between 19 and 52
corresponding points, in total 692.

We then registered the dataset in BigStitcher for tiled acquisition only, tiled acquisition across illumination directions, and
for the multi-tile, dual illumination, multi-view case. This is achieved by grouping the images either by angle and illumination
direction, just by angle, or not at all. For the single-view cases, we performed translational alignment by stitching the
images using phase correlation. For an all-to-all registration with a translation model, the images of angle 2 were manually
rotated by 180◦ and then all images were aligned using interest points by fast translation-invariant GLD matching followed
by RANSAC12 and global optimization using a translation model. All translation-model alignments were refined using ICP14

as described above. The point correspondences determined during ICP were further used for non-rigid refinement.

For virtual re-blocking, each original image was split into 2×2×2 sub-blocks (with 120px overlap in xy and 100px overlap
in z). After the re-blocking, 4–28 manually selected point correspondences remained between each set of directly adjacent
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blocks. For each of the image groupings and registration models used, we calculated an average error of the manually
selected point correspondences:

eavg =
1

|I|
∑
i1∈I

(
1

|C(i1)|
∑

i2∈C(i1)

( 1

|PM(i1, i2)|
∑

(p1,p2)∈PM(i1,i2)

||T i1(p1)− T i2(p2)||2
))

(2)

With I being the set of images, C(i) the adjacent images of an image i (ignoring diagonal pairs for which no correspond-
ing interest points were manually selected as well as pairs that are not in the same group, e.g. when grouping by angle and
illumination direction, and pairs from the same original image in the virtually blocked dataset), PM(i, j) the corresponding
manually selected interest points of images i, j and Ti the transformation of image i.

To estimate the lowest theoretically achievable errors given a certain transformation, we use only the manually selected
point correspondences to calculate a globally optimal registration (and optionally the non-rigid refinement thereof) of the
images and then calculate the average error from the same point correspondences as described above. In the virtually
blocked case, we also use manually selected point correspondences (826 in total) between adjacent blocks within the same
original image for the registration (but ignore them for the final error calculation).

Despite relatively small aberrations in this sample as compared to entire mouse brains (compare with Fig. 2b,c,d and
Fig. 2k) we illustrate that using only translation as transformation model is only reasonable for tiled acquisitions that do
not include multiple illuminations or multiple acquisition angles, yet even there spherical aberrations persist that question
the standard use of translation models in general (Supplementary Fig. 4,9). The alignment errors increase when aligning
across illumination directions and greatly increase when aligning different acquisition angles. Importantly, please note that
the alignment quality across different illumination directions is significantly reduced on larger samples when using only
translation models (compare Fig. 2b,c,d and Fig. 2k). Using the affine, split-affine or non-rigid registration functionality,
BigStitcher can sharply reduce the registration errors in large cleared and expanded samples. As a trade-off between speed
and quality we usually choose affine or split-affine registrations.

10. Multiview deconvolution
In addition to real-time image fusion, we offer deconvolution of bounding-box-defined volumes using a multi-view formulation
of the iterative Richardson-Lucy deconvolution algorithm15,16 with Tikhonov regularization17 and various optimizations.13

The PSFs required for deconvolution can be extracted from interest points detected in the images (e.g. when subdiffraction
fluorescent beads were incorporated with the sample, see section 11) or supplied as TIFF stacks with odd dimensions by
the user. BigStitcher offers GPU acceleration of the deconvolution on CUDA-capable Nvidia GPUs.

To allow deconvolution of multi-tile views, we extended the original deconvolution13 to be based on the virtual fusion.
Thereby, any number of input image tiles are virtually fused and serve as one of input views for the multi-view deconvolu-
tion. Proper multi-view deconvolution of partly overlapping samples requires sophisticated weight normalization in between
views,13 which we implemented to be computed virtually. Since also the input views are also virtually loaded, the memory
requirement of the deconvolution solely depends on the output image size and shows a significantly increased memory-
efficiency. All virtual inputs and weights are additionally cached, ensuring highest-possible processing performance for
systems with large amounts of RAM.

11. PSF measurement and PSF extraction
In light-sheet microscopy, measured PSFs often differ significantly from simulated ones due to variable precision of light-
sheet alignment in every experiment. Therefore, light-sheet deconvolution usually relies on the extraction of PSFs from the
actual experiment19,25. To be able to perform PSF extraction in cleared tissue we developed a new protocol. Estapor
Fluorescent Microspheres (F-XC 030) were diluted 1:20000 in monomer solution containing bis-acrylamide (0,05% v/v bis-
acrylamide, 4% v/v acrylamide, 4% w/v Paraformaldehyde (PFA), 0.25% w/v VA-044 in PBS). The monomer solution was
polymerized under constant vacuum and shaking at 37◦C for 2 hours. The formed hydrogel was incubated in FocusClear
overnight and imaged using the Zeiss Lightsheet Z.1 microscope with the same experimental settings used to acquire
previous samples. For C. elegans dauer imaging fixed larvae were embedded in 1.2% agarose together with Estapor
Fluorescent Microspheres (F-Z 030), diluted 1:2000. For ExM data acquired on the IsoView microscope depth-sectioned
images (0.4125 µm step) of fluorescent beads (200nm diameter) embedded in 0.6% low-melting-temperature agarose were
imaged using the same experimental settings as for sample imaging. For all samples, PSFs were extracted by detecting
interest points in the acquired bead images. Potential bead aggregates were excluded by manual removal on the maximum
intensity projection using the BigStitcher module “Manage Interest Points > Remove Interactively”.
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12. Global optimization
Estimation of globally optimal transformations
The pairwise registration step results in links between image (groups) V (note that since we do not use the actual image
content in the global optimization, we will refer to the images by their integer id in this section: V ⊂ N). The links can be
either in the form of pairwise transformations T p (such that coordinates x from two images Vi and Vj can be transformed
according to T pij(xj) = xi) or point correspondences PM from which such transformations can be estimated. The pairwise
registrations thus form a link graph (V,C) with edges C = {(i, j) ∈ V × V |T pij ∈ T

p} between image pairs for which we
could determine pairwise transformations. Simply traversing a spanning tree of the link graph and propagating the pairwise
transformations can lead to the compounding of pairwise registration errors, even if the traversal is done along a minimal
spanning tree determined according to some quality metric qij , e.g. cross-correlation, of the pairwise registrations.

We thus make use of an algorithm for globally optimal registration by iterative minimization of square displacement of
point correspondences18,19 for reaching a reasonable consensus in this case. This point match-based framework allows for
flexible grouping and fixing of images, is applicable to, among others, time series-, chromatic channel- or view-registration
and can easily be adapted to incorporate the pairwise transformations from e.g. phase correlation. The algorithm is agnostic
of the transformation model (e.g. translation, affine transform,...), with the only requirement being that the model parameters
can be estimated by a least-squares fit from point correspondences.

We determine the globally optimal registrations R given the image (groups) V , pairwise links C, pairwise n-dimensional
point matches PM with PMij ⊂ Rn × Rn and a set of fixed views F ⊆ V by minimizing:

argmin
R\{Ri|Vi∈F}

∑
(i,j)∈C

( ∑
(xk,yk)∈PMij

||Ri(xk)−Rj(yk)||2
)

(3)

Note that for all fixed views, the registration will be constrained to be the identity transformation I: ∀Vi ∈ F : Ri = I.

Global optimization given pairwise transformations
The intensity-based pairwise shift calculations do not directly give us the point correspondences we need for the global
optimization step, instead the results are pairwise transformations T p in the form of affine transform matrices. We can,
however, easily construct point correspondences by taking a set of points and transforming them with the inverse transform
(the only requirement being that the n-dimensional points do not all lie in a subspace of lower dimensionality of Rn).

Using the 3-dimensional pairwise transformations T p (T pij(xj) = xi) between two image (groups) Vi and Vj given their
existing registrations Rmeta, we use the 8-point approximate bounding box of their overlapping region BBij to construct the
point correspondences: PMij = {

(
bbk, (T

p
ij)
−1(bbk)

)
|bbk ∈ BBij}. We can then determine the globally optimal registrations

R by performing the minimization described above (3).

Global optimization with iterative link dropping
Once the global optimization terminates due to convergence or exceeding of the maximum number of iterations, we can
calculate the error of the individual images as the average displacement of all interest points in an image to their point
matches:

ei =

∑
{j:(i,j)∈C}

∑
(xk,yk)∈PMij

||Ri(xk)−Rj(yk)||∑
{j:(i,j)∈C} |PMij |

(4)

If the link graph (V,Cn) contains links with contradicting point correspondences, stopping after one round of global
optimization might leave us with unsatisfying results. In the iterative version of the global optimization, we therefore check
that both the average error of all images and the ratio of maximal and average error fall below a user-defined threshold. If
these conditions are not yet met, we will proceed to iteratively remove disagreeing links from the link graph and repeat the
global optimization. To do this, we first determine the link with the highest error by maximizing:

cworst = argmax
(i,j)

max
(xk,yk)∈PMij

(
(1− qij)2

√
dijk log10

(
max

(
deg(i), deg(j)

)))
(5)
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with dijk denoting the distance of the k’th point match of the link (i, j), dijk = ||Ri(xk) − Rj(yk)||, deg(i) denoting the
degree (number of neighbors) of an image Vi in the link graph and qij being a quality metric ∈ (0, 1) of the link, e.g. 0-
truncated cross correlation. We then remove the worst link from the links (Cn+1 ← Cn \ cworst) and repeat the optimization
step 3 with the new link graph (V,Cn+1). The whole process is repeated until the errors fall below a user-defined threshold
(in the worst case, links will be dropped until we end up with spanning trees of the connected components in the link graph).

Two-round global optimization using metadata
If some cases, the link graph might contain multiple connected components, e.g. in datasets from screening applications,
where the actual sample only occupies isolated ”islands” and most images contain only background. In this case, we can
only reliably determine pairwise transformations within the connected components and align images within the components
in the global optimization step. We might, however, have reasonable registrations Rmeta from metadata and wish to keep
as closely as possible to those if we do not have strong links.

For this, we developed a two-round version of the global optimization. In the first round, we determine registrations
Rstrong as described above, using the graph of strong links, i.e. links that are backed by pairwise transformations. In the
second round, we determine the connected components in the (V,Cstrong) graph and a mapping CC : N→ N from image
(group) indices to connected component indices as well as weak links Cweak = {(i, j) ∈ V × V |CC(i) 6= CC(j)} between
images in different components. We then determine transformations Rcc for each connected component not containing a
fixed image by minimizing:

argmin
Rcc\{rcci ∈R

cc|CCi∩F 6=∅}

∑
(i,j)∈Cweak

∑
bbk∈BBij

||RccCC(i)

(
Rstrongi (bbk)

)
−RccCC(j)

(
Rstrongj (bbk)

)
||2 (6)

Note that we use the corners bbk of the bounding box BBij of the overlapping volume of two images Vi and Vj as the
point correspondences. The overlap is determined according to the metadata transformations Rmeta and we essentially
try to ”un-do” the registrations of the first round as well as possible (while keeping the registrations within the connected
components). The final transformations R are the concatenation of the registrations within the connected components with
the relative transformations of the connected components: Ri ← RccCC(i)R

strong
i .

13. Simulation of light propagation in tissue using raytracing
To describe the scene we will simulate we use two phantom images of the same size that separately define the visible light
image (corresponding to fluorescent probe distribution) and the refractive indices map (Fig. 2e,f). We deliberately embed
the spheroid-like object of varying refractive index (Ri = 1.1–1.21) within a dense, invisible material with high refractive
index (Ri = 1.1) surrounded by air (Ri = 1.0) to recapitulate significant aberrations in the illumination light path using a
relatively small simulation volume of 289×289×289px. The object simulations are implemented in the multiview-simulations
package.13

We virtually scan a concave lightsheet (diameter of 1 pixel in the center, and 3 pixels at the edge) in 1-pixel steps and
alternating left and right illumination through the sample (Fig. 2g), simulating an entire volume for each lightsheet position
and direction (Fig. 2h and Supplementary Video 2). Therefore, we send 200.000 individual rays originating from random
positions within the concave lightsheet through the sample for each lightsheet simulation. The initial vector of each ray
points approximately along the lightsheet illumination direction and moves in 1-pixel steps through the volume. After each
move we locally compute the Eigenvector of the largest Eigenvalue using the refractive index map, which defines the normal
vector of the refractive surface at the current, sub-pixel ray position. Using this estimated refraction surface, we compute
the refraction angle using raytracing algebra,20 update the ray vector accordingly, and add a Gaussian distribution with an
intensity defined by the visible light image to the simulation volume. For simplicity we ignore total reflection since it is mostly
caused by numerical instabilities. We confirmed correct refraction of rays based on our computation of local Eigenvectors
in discrete pixel-images by comparing it to refraction of rays in the corresponding continuous, parametric description of the
same scene (not shown).

The result of these simulations are 578 3d-volumes that recapitulate the principles of dual-sided lightsheet illumination
(Fig. 2g). Inspired by classical raytracing, we perform a simplified detection simulation and therefore invert the ray path
and only modulate signal intensity as a function of distance from the focal plane. Per camera pixel (289×289) we send 500
rays at random positions within each pixel into the scene that are refracted as described above. For detection, we use the
same the same refractive index map, and the result of each respective lightsheet illumination simulation serves as image

37



data. However, since we assume an extremely high refractive index mismatch for illumination simulation to recapitulate
the behavior in large samples, we assume a lower refractive index mismatch for the embedding material (Ri = 1.01) to
acquire reasonably distorted images. The relative refractive index mismatch within the spheroid-like object is conserved
(Ri = 1.01–1.11). We assume the focal point of the objective to lie in the center of the currently simulated lightsheet
position. The light captured by each ray on its path through the sample is then computed as the sum of all light integrated
when traveling through the sample, at each ray location gaussian-weighted (σ = 3.5) by the distance to the expected
lightsheet position. The simulations were performed in parallel on the local compute cluster at the MDC.

Simulated data was created using the net.preibisch.simulation.SimulateMultiV iewAberrations class in the multiview-
simulation package (release version 0.2.2). Since it is a Maven artifact, the versions of all dependencies are defined and
the corresponding version can be built automatically from that source code state (https://github.com/PreibischLab/
multiview-simulation/commit/b41b74cce9287f804b670d7de3396605446818a8).

14. Non-rigid transformation
The underlying principle of moving least squares21 is to non-rigidly transform images using a set of corresponding points.
Therefore, a local transformation is computed for each pixel using a distance-weighted fit of all corresponding points ensuring
smoothness. In BigStitcher, corresponding points are a direct result of all interest point-based registration algorithms. To
provide a sufficient amount of corresponding interest points, it is yet most useful to derive them using ICP.14 Regularization
is achieved on the registration side as corresponding interest points are identified on a regularized affine transformation
model either using RANSAC12 or ICP,14 which both specify a maximum error. This ensures that corresponding points
cannot diverge more than this specified error from the regularized affine transformation of each image tile. In combination
with virtual re-blocking, this error can be limited to smaller regions than the acquired, physical tiles.

When computing local transformations for each image, it is necessary to ensure smoothness across n overlapping
images by defining appropriate point correspondences. However, the registration identifies only pairwise correspondences
in between pairs of images. From those, we therefore first identify all unique interest points across all images defined by all
pairwise correspondences (Supplementary Fig. 23). The location of each unique point is then determined by averaging
the locations of all contributing interest points after applying their respective affine transformations. Thereby, the non-rigid
transformation only accounts for the remaining error after affine alignment. For each image, corresponding points required
for moving least squares are then subsequently defined between the unique point and the corresponding interest point of
the transformed image only.

15. Quality estimation using relative Fourier Ring Correlation
For computing the 2d-Fourier Ring Correlation22 we adapted methods from the FRC ImageJ plugin23 as outlined in the
Online Methods.

16. Image fusion
We fuse multiple images by performing a weighted average of the raw images Iraw transformed by their registrations R.
Each raw image Irawi has a set weight images Wi. For example, we allow the user to weigh the images with a cosine-
shaped fade-out, de-emphasizing the artifact-prone border regions of the individual images, as well as by the approximate
local entropy, to emphasize images with sharper structures in overlapping regions. Since the raw images will be evaluated
at non-integer coordinates, we offer the choice between nearest-neighbor and linear interpolation. Downsampling can easily
be achieved by prepending a scaling transformation to each of the registrations R. The intensity of the fused volume at a
coordinate x is given by:

Ifused(x) =

∑
Iraw
i ∈Iraw

(
Irawi

(
R−1
i (x)

)
∗
∏
wj∈Wi

wj
(
R−1
i (x)

))
∑
Iraw
i ∈Iraw

(∏
wj∈Wi

wj
(
R−1
i (x)

)) (7)

In practice, we evaluate Ifused only at integer coordinates of a user-defined bounding box. We implemented the image
fusion to perform all calculations virtually on-the-fly, with caching of previously computed planes using imglib2-cache. This
allows the quick inspection of fusion results as well as creation and planewise saving of images that might exceed the RAM
available to the user.
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17. Brightness and contrast adjustment
Even after correcting for fixed-pattern noise (5), differences in brightness and contrast between images, e.g. due to bleach-
ing, might persist and be visible in the fused images. To correct for this, we estimate optimal linear transforms of pixel
intensities in adjacent images24 to achieve uniform brightness and contrast in the whole dataset. We minimize the inten-
sity difference of all pixels in the overlapping volume OAB of two images IA, IB (with corresponding coordinates (xA, xB)

according to the current registrations):

argmin
α,β

∑
IA∈I

( ∑
IB∈I\IA

( ∑
(xA,xB)∈OAB

(
IB(xB)−

[
αIAIA(xA) + βIA

] )2)) (8)

Since this is equal to one-dimensional point correspondence registration, we can make use of the same iterative op-
timization algorithm used for image registration (12). To reduce influence of noise and computational costs, we use (pre-
computed) downsampled versions of the images for the optimization. A problem with unconstrained optimization is the
possibility of convergence to the trivial solution of setting all pixel intensities to zero. We therefore formulate the linear
transform I(x) ∗ α+ β as a weighted average between a linear transform, an additive transform and the identity transform:

αI(x) + β = λ1 ∗ (α′I(x) + β1) + λ2 ∗ (I(x) + β2) + λ3 ∗ I(x) (9)

with user-definable regularization parameters λ1, λ2, λ3 : λ1 + λ2 + λ3 = 1. By using nonzero λ2, λ3, we can constrain
the optimization to not converge to the trivial solution.

The size of overlaps between image tiles can differ significantly. Therefore, intensity transformations supported by many
overlapping pixels will implicitly have a higher weight, which can lead to the fact that visible intensity differences between
tiles with little overlap persist. To compensate this effect we allow to balance overlaps by setting a maximal number of
corresponding pixels. To ensure equal distribution of these corresponding pixels, we randomly remove pixels from the set of
all pixels until the desired number is achieved.

18. Example datasets for BigStitcher
We prepared three different examples of different size and complexity for testing the BigStitcher. We suggest to run
BigStitcher on these first before applying it to your dataset. This allows you to quickly test features in an environment
where you can easily ask for advice on GitHub or the ImageJ Forum.

The data can be downloaded from the Open Science Foundation (a Nature recommended data repository https:

//www.nature.com/sdata/policies/repositories) at https://osf.io/bufza/.

2d multi-tile dataset (2.8 MB)
Maximum intensity projection of the nervous system of a Drosophila larva containing 6 tiles and 3 channels each.
You can download the raw input at http://preibischlab.mdc-berlin.de/BigStitcher/Grid_2d.zip and a recon-
structed BigStitcher project at http://preibischlab.mdc-berlin.de/BigStitcher/Grid_2d_h5_aligned.zip. In
the reconstructed project, the images were imported into the BigStitcher using the AutoLoader (with immediate re-
saving as HDF5 and Movement to a regular 2-by-3 grid with 10% overlap between the tiles). We calculated pairwise
shifts using phase correlation with default parameters, using the precomputed 2x2 downsampling and averaging the
channels. We ignored links with correlation < 0.7 and calculated the final registration using the two-round global
optimization with strict constraints.

3d multi-tile dataset (123 MB)
3d confocal scan of the nervous system of a Drosophila larva containing 6 tiles and 3 channels each, channels are dis-
tributed over different files. You can download the raw input at http://preibischlab.mdc-berlin.de/BigStitcher/
Grid_3d.zip and the reconstructed project at http://preibischlab.mdc-berlin.de/BigStitcher/Grid_3d_h5_

aligned.zip. In the reconstructed project, we ran the same import and reconstruction steps as for the 2d dataset and
in addition performed affine refinement of the registration using IPC with default parameters and simple tile refinement
to create the final reconstructed project.

We will add larger and more complex examples on the BigStitcher website https://imagej.net/BigStitcher and will
also link videos of the alignment process from there.
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19. Links to the current source codes
The BigStitcher is distributed over two projects. Both are licensed under the GPL(v2) and the source code is freely available
on GitHub, at https://github.com/PreibischLab/BigStitcher and https://github.com/PreibischLab/multiview-reconstruction,
respectively.

The CUDA code for accelerated interest point detection and devonvolution is available from https://github.com/

StephanPreibisch/SeparableConvolutionCUDALib and https://github.com/StephanPreibisch/FourierConvolutionCUDALib,
respectively.

The light simulation is a standalone software and part of the multiview-simulation package https://github.com/

PreibischLab/multiview-simulation, the main class can be found here: https://github.com/PreibischLab/multiview-simulation/
blob/master/src/main/java/net/preibisch/simulation/SimulateMultiViewAberrations.java. The license is also
GPL(v2).

Newer versions will be hosted using GitHub, and release announcements will be done via Twitter (https://twitter.
com/preibischs), on the GitHub page (https://github.com/PreibischLab/BigStitcher), and on the ImageJ wiki (http:
//imagej.net/BigStitcher). Releases are and will be provided to end users via the Fiji update mechanism.25

The following classes are the main classes for the respective codes:

BigStitcher: net.preibisch.stitcher.plugin.BigStitcher (in BigStitcher)

Light simulation: net.preibisch.simulation.SimulateMultiV iewAberrations (in multiview-simulation)

Phase correlation simulation: net.preibisch.stitcher.headless.StitchingPairwise (in BigStitcher)

20. Bug reports and feature requests
For bug reports and feature requests regarding BigStitcher please use the GitHub issue system available here: https:

//github.com/preibischLab/BigStitcher/issues.

21. BigStitcher user guide
The BigStitcher comes with extensive documentation that is hosted on the ImageJ wiki. The current version of the continu-
ously updated user guide can be found at https://imagej.net/BigStitcher#Documentation.
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Abstract: Super-resolution microscopy allows optical imaging
below the classical diffraction limit of light with currently up to
20 X higher spatial resolution. However, the detection of
multiple targets (multiplexing) is still hard to implement and
time-consuming to conduct. Here, we report a straightforward
sequential multiplexing approach based on the fast exchange of
DNA probes which enables efficient and rapid multiplexed
target detection with common super-resolution techniques such
as (d)STORM, STED, and SIM. We assay our approach using
DNA origami nanostructures to quantitatively assess labeling,
imaging, and washing efficiency. We furthermore demonstrate
the applicability of our approach by imaging multiple protein
targets in fixed cells.

Super-resolution microscopy allows researchers to obtain
images with currently up to 20 X higher spatial resolution than
the classical diffraction limit.[1] Although current techniques
are already starting to transform research in the life scien-
ces,[2] most implementations are still limited to the observa-
tion of only a few molecular species in the same sample, so-
called multiplexing. Exchange-PAINT,[3] a recent implemen-
tation of the PAINT[4] concept (points accumulation in
nanoscale topography) and extension of DNA-PAINT,[5]

enables multiplexed super-resolution imaging by using tran-
sient, programmable binding between dye-labeled ™ imagerº
strands and target-bound complementary ™d ockingº strands
during sequential imaging rounds. Although Exchange-
PAINT allows spectrally unlimited multiplexing independent
of different dye spectra (i.e. by using the same dye for each
exchange round), imager strands are not fluorogenic, which
firstly limits its applicability beyond total internal reflection
(TIR) or oblique illumination away from the coverslip and

secondly sets an upper limit for the achievable image speed.
Recently, sequential labeling and imaging approaches have
been devised for (d)STORM[6] ((direct) stochastic optical
reconstruction microscopy), where a target is immunolabeled
and imaged, followed by a fluorophore inactivation or
quenching step.[7] This procedure is repeated sequentially
for the acquisition of all remaining targets. Although these
implementations allow spectrally unlimited multiplexing, the
fluorophore quenching step followed by immunolabeling of
the next target is time-intensive, which overall limits exper-
imental throughput. Furthermore, relabeling and reimaging
of targets from previous rounds is difficult to achieve.
Recently, Exchange-PAINT was applied to STED[8] (stimu-
lated emission depletion) microscopy.[9] To achieve this, the
concentration of imager strands in Exchange-PAINT was
increased to render most target strands ™o ccupiedº during
image acquisition. While this allows for rapid probe exchange
between sequential imaging rounds, it comes at the cost of
potentially unoccupied target strands (as a result of the
stochastic binding and unbinding of strands) and increased
background fluorescence because of elevated concentrations
of imager strands in solution, both ultimately limiting the
achievable image resolution and quality.

To overcome limitations of current sequential multiplex-
ing approaches and translate DNA-based multiplexing to
super-resolution techniques such as (d)STORM, STED, or
SIM, we here describe a universal implementation using
exchangeable DNA probes. We devised a procedure
(Figure 1) that allows us to efficiently attach, image, and
detach dye-modified DNA strands (™l abelingº strands) to and
from corresponding complementary handles coupled to
different targets. To achieve this, we designed labeling strands
that are optimized for stable binding during image acquisition
but can still be efficiently removed from their targets using
low-salinity washing buffer containing denaturing agents such
as formamide. First, all target species (e.g. proteins P1 to Pn)
are labeled with orthogonal DNA strands (e.g. using DNA-
conjugated antibodies for proteins) in a one-pot reaction
(Figure 1a). Then, buffer containing complementary labeling
strands to targets P1 is introduced and DNA hybridization
can occur (Figure 1b). Next, the labeling buffer is exchanged
by imaging buffer (optimized for dSTORM, STED, or SIM),
which does not contain any unbound labeling strands, and
image acquisition is performed (Figure 1c). Subsequently, the
imaging buffer is exchanged by low-salinity washing buffer
containing 30% of the denaturing agent formamide (for more
details see the Supporting information for experimental
details), thereby facilitating the dissociation of the labeling
strands from their targets by virtually ™d ecreasingº the DNA
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melting temperature.[10] This washing procedure is usually
performed for about 10 min, until all the labeling strands have
dissociated. Finally, the washing buffer is replaced by hybrid-
ization buffer and the whole procedure is repeated for all the
remaining target species. In the resulting multiplexed super-
resolution micrograph, a unique pseudocolor is assigned to
each imaging round (and, thus, each target). Most impor-
tantly, multiplexing is not limited by distinct spectral colors
anymore, as the labeling strands for each exchange round
carry the same spectral dye. The only limitation is the number
of orthogonal DNA sequences (as in Exchange-PAINT),
which could easily reach hundreds.

To demonstrate the feasibility of our approach, we used
self-assembled DNA origami[11] (Figure 2). We designed so-
called six-helix-bundle (6HB) structures[12] carrying four
orthogonal single-stranded extensions on staple strands
(which allows for four labeling and imaging rounds) at
specific positions[13] (Figure 2a). For Exchange-STED and
Exchange-dSTORM imaging, we arranged the sequences in
four spots, approximately 113 nm apart (Figure 2 a). For
Exchange-SIM, we opted for a structure displaying three
spots spaced about 168 nm apart (Figure S2). Each spot
consists of six strands available for hybridization. Represen-
tative images of the respective imaging rounds are shown in
Figure 2b,c for Exchange-STED and Exchange-dSTORM,
respectively (see Figures S3 and S4 for expanded views). To
assay the efficiency of our multiplexing approach, we
interactively analyzed approximately 100 structures in the
Exchange-STED and Exchange-dSTORM experiment. For
quantification of correct versus incorrect spots in each
labeling and imaging round, it is important to note that
false negatives as well as false positives will lead to an ™er rorº;
however, these two ™fai lure modesº have different root
causes, and are thus important to distinguish. False positives
occur when washing is inefficient, that is, labeling strands

have not dissociated from their respective targets. False
negatives occur when labeling or imaging is inefficient, that is,
labeling strands have not hybridized to target strands or dyes
are already bleached. The origami platform allows us to
uncover both failure modes independently and thus reveals
any potential bias of our approach. We analyzed each spot in
each round separately to additionally assay for potential
biases of different locations on the DNA origami structures.
The results from our analysis show that on average about
91% of spots are correct in the Exchange-STED experiments
(Figure 2b) and 92 % in the Exchange-dSTORM experiments
(Figure 2c).

To demonstrate that the order of Exchange rounds does
not affect the experimental outcome, we varied the order for
the dSTORM experiments. We found that, indeed, the
outcome of the experiment is not affected by the order. We
note, that in round 2 of the dSTORM experiment (Figure 2c),
we do see a higher than expected number of false positives for
spots 3 and 4 (70 % and 77% correct, respectively). This
potentially suggests insufficient washing between rounds
1 and 2. However, we also note that the expected number
of correct spots was restored in round 3. To assay the
influence of different washing and hybridization times, we
performed additional experiments (Figure S5), where we first
decreased the incubation time with the labeling strands from
10 min to 1 min (keeping the washing times constant). In
a following experiment, we increased the washing time from
2 X 3 min to 3 X 10 min (keeping the incubation time of 10 min

Figure 1. a) Targets 1@n are labeled with orthogonal approximately
12 nucleotide long DNA sequences P1±P n. b) Dye-modified ™la belingº
strands stably hybridize to complementary target strands P1.
c) Acquisition is carried out in imaging buffer without free labeling
strands in solution. d) Imaging buffer is replaced by denaturing
washing buffer to facilitate the dissociation of labeling strands from
targets P1. The labeling and washing procedure is repeated for all
subsequent targets. Note that the labeling strands are coupled to the
same spectral dye (e.g. Alexa 647) in each round, thus enabling
spectrally unlimited multiplexing.

Figure 2. a) Illustration of the 6HB DNA origami ™b arcodeº. Four
spots (with 6 binding sites each), spaced approximately 113 nm apart,
can be ™d ecoratedº with up to four orthogonal target sequences each
(colored in red, green, cyan, and magenta). b) Resulting super-
resolution images of four rounds of Exchange-STED (top) with
corresponding statistical analysis (bottom). Histograms for each
round depict the percentage of correctly identified spots. (i) Statistical
analysis showing the number of correct spots per structure in
Exchange-STED (14.6:0.7, mean : standard deviation). c) Corre-
sponding results for Exchange-dSTORM. (ii) Correct spots per struc-
ture in Exchange-dSTORM: 14.7:0.4 (mean : standard deviation).
Scale bars: 200 nm.
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constant). For the shorter probe incubation time, we detect
a lower percentage of correctly labeled spots (true positives,
see Figure S5). With longer washing times, we observe
a similar performance as with our standard conditions. In
conclusion, we note that our standard labeling and washing
conditions (i.e. 10 min labeling, 2 X 3 min washing) should
allow optimal results in exchange experiments. The statistical
analysis of both Exchange-STED and -dSTORM experiments
further shows that no positional dependency on the DNA
origami structure was observed. There was also no bias
towards false positives or negatives. Most importantly, there is
also no bias towards later washing or labeling rounds, thus
indicating that our approach is viable for more extensive
multiplexing experiments (i.e beyond four rounds). Over four
labeling and imaging rounds, we detected 14.6: 0.7 (mean :
standard deviation) correct spots in Exchange-STED (Fig-
ure 2b, (i)) and 14.7: 0.4 (mean : standard deviation)
correct spots in Exchange-dSTORM (Figure 2c, (ii)) from
a total of 16 spots. Detailed experimental conditions and
image processing specifics can be found in the Supporting
Information.

Next, to translate our multiplexing concept from in vitro
DNA origami structures to in situ labeling and imaging of
protein targets in cells, we used primary and DNA-conjugated
secondary antibodies against alpha-tubulin, LaminB, and
TOM20. The respective secondary antibodies were coupled to
three of our orthogonal target sequences. Hybridization,
imaging, and washing steps were performed similarly to the
in vitro studies on DNA origami. To demonstrate in situ
imaging, we opted for dSTORM and STED as super-
resolution methods (Figure 3), but the same procedure can
be performed for SIM as well. The results for the respective
three imaging rounds demonstrate the applicability of our
labeling, washing, and imaging scheme to in situ cell samples.

Relabeling and reimaging of targets from earlier imaging
rounds is also possible with similar performance, thus high-
lighting the fact that labeling strands indeed dissociate, rather
than being bleached and staying bound to their target strands
(Figure S6).

In conclusion, we have devised a ™ universalº DNA-based
multiplexed labeling and imaging technique that brings the
advantages of DNA-PAINTand Exchange-PAINT imaging to
super-resolution techniques such as dSTORM, STED, and
SIM, while simultaneously overcoming some of the limita-
tions of DNA-PAINT, that is, nonfluorogenic imager strands
in solution and slower image acquisition. However, we also
note that our presented multiplexing approach–as is the case
for all sequential imaging techniques–i s limited to fixed cell
applications and is not compatible with the imaging of live
cells. Our concept has several advantages over previously
reported sequential labeling and imaging approaches for
multiplexed target detection: 1) Our approach is considerably
faster than sequential immunolabeling[7,14] or DNA strand
exchange cascades,[15] as immunolabeling of all target species
is performed simultaneously and washing and labeling only
takes about 20 min per round. Furthermore, the sample can
remain on the microscope, thus no new registration is
necessary. 2) Compared to Exchange-PAINT approaches,[9]

no free ™i magerº strands are present in the imaging buffer, as
labeling strands stably hybridize to their targets, which
furthermore ensures that these are constantly ™l abeledº.
This allows for optimized image-acquisition conditions for the
respective super-resolution technique. 3) Targets can be
relabeled and reimaged in subsequent rounds, which can
provide ™r esistanceº to bleaching and increase image effi-
ciency. Finally, by using DNA origami structures, we were
able to assay the efficiency in labeling, imaging, and washing
steps in a quantitative fashion.

Figure 3. Three-round Exchange-dSTORM and Exchange-STED in situ. a) Alpha-tubulin is imaged in round 1. b) LaminB is imaged in round 2.
c) TOM20 is imaged in round 3. d) Overlay of three-round Exchange-dSTORM. e) Zoom-in of the highlighted area from (d) with the corresponding
diffraction-limited representation (bottom) demonstrating the increased spatial resolution in dSTORM. f±j) Corresponding Exchange-STED results
for the same protein targets. Scale bars: 5 mm (a±d and f±i ), 1 mm (e, j).
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Supplementary Information 
 
Materials.	Unmodified,	dye-labeled	and	biotinylated	DNA	oligonucleotides	were	purchased	 from	MWG	Eurofins.	 Streptavidin	
was	 purchased	 from	 Invitrogen	 (catalog	 number:	 S-888).	 Bovine	 serum	albumin	 (BSA,	 catalog	 number:	A4503-10G)	 and	BSA-
Biotin	was	obtained	from	Sigma-Aldrich	 (catalog	number:	A8549).	Coverslips	were	purchased	 from	Menzel-Gläser	 (Cover	slips	
24	´	60	mm,	#1.5,	 catalog	number:	BBAD02400600#A*).	 Flow	chambers	were	purchased	 from	 ibidi	 (Sticky-Slide	VI	 0.4	 catalog	
number:	 80608).	M13mp18	 scaffold	was	 obtained	 from	New	 England	 BioLabs	 (catalog	 number:	 N4040s).	 Freeze	 ‘N	 Squeeze	
columns	 were	 ordered	 from	 Bio-Rad	 (catalog	 number:	 7326165).	 Monoclonal	 antibodies	 against	 Alpha-tubulin	 (Thermo	
Scientific;	 catalog	 number:	MA1-80017)	were	 purchased	 from	Thermo	 Scientific.	 Polyclonal	 antibodies	 against	 LaminB	 (Santa	
Cruz;	 catalog	 number:	 sc-6217)	 and	 TOM20	 (Santa	 Cruz;	 catalog	 number:	 sc-11415)	 were	 ordered	 from	 Santa	 Cruz.	 The	
secondary	 antibodies	 Anti-Rat	 (catalog	 number:	 712-005-150),	 Anti-Rabbit	 (catalog	 number:	 711-005-152)	 and	 Anti-Goat	
(catalog	number:	705-005-147)	were	purchased	form	Jackson	 ImmunoResarch.	Cell	 imaging	coverglass	 (catalog	number:	0030	
742.036)	was	purchased	from	Eppendorf.	Formamide	(catalog	number:	F9037-100ML),	Protocatechuate	3,4-Dioxygenase	from	
pseudomonas	 (PCD)	 (catalog	 number:	 P8279),	 3,4-Dihydroxybenzoic	 acid	 (PCA)	 (catalog	 number:	 37580-25G-F)	 and	 (+-)-6-
Hydroxy-2,5,7,8-tetra-methylchromane-2-carboxzlic	acid	(Trolox)	(catalog	number:	238813-5G)	were	obtained	from	Sigma.	1M	
Tris	pH	8.0	(catalog	number:	AM9856)	was	obtained	from	Ambion,	Beta	Mercaptoethanol	(Catalog	number:	63689-25ml)	from	
Sigma,	 D+	 Glucose(w/vol)	 (catalog	 number:	 410955000)	 from	 Acros,	 Glucose	 Oxidase	 (catalog	 number:	 G7141-50KU)	 from	
Sigma,	 Glycerol	 (catalog	 number:	 G5516-25UN)	 from	 Sigma,	 Catalase	 (catalog	 number:	 C3155-50MG)	 from	 Sigma	 and	 H2O	
(catalog	number:	10977-035)	was	ordered	from	gibco.	
	
The	following	buffers	were	used:	

• Buffer	A:	10	mM	Tris-HCl,	100	mM	NaCl,	0.05	%	Tween	20,	pH	7.5	
• Buffer	B:	5	mM	Tris-HCl,	10	mM	MgCl2,	1	mM	EDTA,	0.05	%	Tween	20,	pH	8.0	
• Buffer	C:	1	×	PBS,	500	mM	NaCl,	pH	8.0	
• 1.2	´	BME:	Tris	pH	8.0	50	mM,	beta	Mercaptoethanol	179	mM,	MgCl	50	mM,	Glucose	12.5	mM	in	H2O	
• 6	´	GLOX:	Glucose	Oxidase	2.5	mg,	Tris	50	mM,	Glycerol	10	mM,	Catalase	200	mg/ml	in	H2O	
• 40	´	PCA:	PCA	solution	consists	of	154	mg	PCA	in	10	ml	water	adjusted	to	pH	9.0	with	NaOH	
• 100	´	PCD:	9.3	mg	PCD,	13.3	ml	of	buffer	(50	%	glycerol	stock	in	50	mM	KCl,	1	mM	EDTA	and	100	mM	Tris-HCl	pH	8.0)	
• 100	´	Trolox:	100	mg	Trolox,	430	µl	100	%	Methanol,	345	µl	1	M	NaOH	in	3.2	ml	H2O	

	
DNA	origami	self-assembly.	The	6	helix	bundle	(6HB)	DNA	origami	structures	for	the	dSTORM,	STED	and	SIM	experiments,	were	
formed	in	a	one-pot	reaction	with	a	40	µl	total	volume	containing	10	nM	scaffold	strand	(M13mp18),	100	nM	folding	staples	and	
biotin	handles,	1000	nM	biotin	anti-handles	and	500	nM	DNA-PAINT	docking	strands	in	folding	buffer	(1×	TE	buffer	with	12	mM	
MgCl2).		
The	 solution	 was	 annealed	 using	 a	 thermal	 ramp	 cooling	 from	 80	°C	 to	 14	°C	 over	 the	 course	 of	 15	h.	 After	 self-assembly,	
monomeric	 structures	 were	 purified	 by	 agarose	 gel	 electrophoresis	 (1.5	%	 agarose,	 1×	TBE,	 10	mM	 MgCl2,	 1×	 SybrSafe)	 at	
3	V/cm	for	3	h.	Gel	bands	were	cut,	crushed	and	filled	into	a	Freeze	‘N	Squeeze	column	and	spun	for	5	min	at	1	000×	g	at	4	°C.		
	
Cell	 culture.	 Cells	 were	 grown	 in	 Falcon	 Tissue	 Culture	 Treated	 Flasks	 (catalog	 number:	 353136)	 from	 Falcon.	 A	 mixture	 of	
500	ml	Dulbecco's	Modified	 Eagle	Medium	 (catalog	 number:	 31966-021),	 50	ml	 Fetal	 Bovine	 Serum	 (catalog	 number:	 10500-
064)	 and	 5	ml	 Penicillin	 Streptomycin	 (catalog	 number:	 15140-122)	 was	 used	 as	 growing	 media	 purchased	 from	 gibco.	 For	
passaging	and	washing	the	cells,	1×	PBS	pH	7.2	(catalog	number:	20012-019)	and	0.05	%	Trypsin	–	EDTA	(catalog	number:	25300-
054)	 were	 purchased	 from	 gibco.	 For	 the	 fixation	 paraformaldehyde	 and	 glutaraldehyde	 were	 obtained	 from	 Electron	
Microscopy	 Sciences.	 Quenching	 was	 done	 using	 Sodium	 Borohydride	 >97%	 (catalog	 number:	 4051.1)	 from	 Roth.	 For	
permeabilization	and	blocking,	Triton	X	100	(catalog	number:	6683.1)	from	Roth	and	Bovine	Serum	Albumin	(catalog	number:	
A4503-10G)	were	used.		
	
Immunostaining	of	cells.	HeLa	cells	were	cultured	with	Dulbecco's	Modified	Eagle	Medium	supplemented	with	10	%	(v/v)	heat	
inactivated	 FBS	 with	 1	%	 (v/v)	 penicillin	 and	 streptomycin	 and	 incubated	 at	 37	°C	 with	 5	%	 CO2.	 At	 approximately	 30	%	
confluence,	 cells	 were	 seeded	 into	 Eppendorf	 chambered	 coverglass	 ~24	h	 before	 fixation.	 Microtubules,	 mitochondria	 and	
Lamin	 were	 immunostained	 using	 the	 following	 procedure:	 fixation	 in	 a	 mixture	 of	 3	%	 paraformaldehyde	 and	 0.1	%	
glutaraldehyde	in	PBS	for	10	min;	3	×	washing	with	PBS	for	5	min;	reduction	with	~1	mg/ml	NaBH4	for	7	min;	3	×	washing	with	
PBS	 for	 5	min;	 blocking	 and	 permeabilization	 with	 3	%	 (w/v)	 BSA	 and	 0.25	%	 (v/v)	 Triton	 X-100	 in	 1	×	 PBS	 for	 2	h;	 staining	
overnight	at	4	ºC	with	the	primary	antibodies	against	alpha-tubulin,	TOM20	and	LaminB	(antibodies	were	diluted	to	10	µg/ml	in	
5	%	BSA);	3	×	washing	with	PBS	for	5	min	each;	and	finally	were	stained	for	1	h	at	RT	with	preassembled	secondary	antibody-
DNA	conjugates[1]	against	Rat-antibody,	Rabbit-Antibody	and	Goat-Antibody	(conjugates	were	diluted	to	10	µg/ml	in	5	%	BSA);	
3	×	washing	with	PBS	for	5	min	each;	post	 fixation	 in	a	mixture	of	3	%	paraformaldehyde	and	0.1	%	glutaraldehyde	 in	PBS	for	
10	min;	and	3	×	washing	with	PBS	for	5	min	each.	
	
Super-resolution	 setups.	dSTORM.	 Fluorescence	 imaging	was	 carried	 out	 on	 an	 inverted	Nikon	 Eclipse	 Ti	microscope	 (Nikon	
Instruments)	with	the	Perfect	Focus	System,	applying	an	objective-type	TIRF	configuration	with	an	oil-immersion	objective	(CFI	
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Apo	 TIRF	 100×,	 NA	 1.49,	 Oil).	 For	 excitation	 and	 dark	 state	 transition	 of	 Alexa647	 fluorophores,	 a	 640	nm	 laser	 (150	mW	
nominal,	Toptica	iBeam	Smart)	was	used.	For	facilitation	of	the	transition	back	form	the	dark	state	to	the	ground	state,	a	405	nm	
laser	 (150	mW	 nominal,	 Toptica	 iBeam	 Smart)	 was	 used.	 The	 laser	 beams	 were	 passed	 through	 a	 cleanup	 filter	
(ZET405/488/561/640x,	Chroma	Technology,	Bellows	Falls,	VT)	 and	 coupled	 into	 the	microscope	objective	using	a	quad-band	
beam	 splitter	 (ZT405/488/561/640rpc,	 Chroma	 Technology).	 Fluorescence	 light	was	 spectrally	 filtered	with	 an	 emission	 filter	
(ZET405/488/561/640m-TRF,	 Chroma	 Technology)	 and	 imaged	 on	 an	 EMCCD	 camera	 (iXon	 Ultra	 897	 EMCCD,	 Andor	
Technology).	Imaging	was	performed	without	additional	magnification	in	the	detection	path	and	yielding	a	pixel	size	of	160	nm.	
STED.	 Stimulated	 Emission	 Depletion	 images	 were	 acquired	 using	 a	 3D	 STED	 microscope	 (Abberior	 Instruments,	 Göttingen,	
Germany).	The	system	was	equipped	with	594	nm	and	640	nm	pulsed	excitation	lasers	and	a	pulsed	775	nm	depletion	laser.	The	
depletion	pattern	was	generated	via	phase-modulation	by	a	SLM	(Abberior	 Instruments	easy3D	STED	module).	The	objectives	
employed	were	a	UPlanSApo	100x	/	1.4	NA	oil	 immersion	objective	and	a	UPlanSApo	60x	/	1.2	NA	water	 immersion	objective	
(Olympus,	 Tokyo,	 Japan).	 Unless	 noted	 otherwise,	 images	 were	 acquired	 with	 the	 100x	 objective.	 Image	 acquisition	 was	
controlled	via	the	software	ImSpector	(Abberior	Instruments	and	MPI	for	Biophysical	Chemistry,	Göttingen,	Germany).	
SIM.	Structured	Illumination	images	were	acquired	using	a	commercial	Zeiss	Elyra	PS.1	(Carl	Zeiss	Microscopy,	Germany)	system.	
A	63x	Plan-Apochromat	1.40	Oil	objective	and	37.5	mW	@	642	nm	laser	excitation	power	was	used	to	acquire	the	images	onto	a	
PCO	Edge	sCMOS	camera.	SIM	image	acquisition	and	reconstruction	was	carried	out	using	Zeiss	ZEN	software,	according	to	the	
instructions	from	the	manufacturer.	
	
Sample	preparation	and	image	acquisition	of	DNA	origami	structures.	dSTORM.	First,	the	 ibidi	 flow	chamber	was	cleaned	by	
rinsing	100	µl	of	 isopropanol	 through	the	chamber	and	 then	washed	3	×	with	ultra-pure	water.	Then,	200	µl	of	biotin-labeled	
bovine	albumin	(1	mg/ml,	dissolved	 in	buffer	A)	was	flown	 into	the	chamber	and	 incubated	for	5	min.	The	chamber	was	then	
washed	using	100	µl	of	buffer	A.	200	µl	of	streptavidin	(0.5	mg/ml,	dissolved	in	buffer	A)	was	then	flown	into	the	chamber	and	
allowed	to	bind	for	5	min.	After	washing	with	100	µl	of	buffer	A	and	subsequently	with	100	µl	of	buffer	B,	50	µl	of	biotin-labeled	
DNA	structures	 (~100	pM	monomer	concentration)	 in	buffer	B	were	finally	 flown	 into	the	chamber	and	 incubated	for	45	min.	
The	 chamber	was	washed	using	100	µl	of	buffer	B.	Next,	 the	 sample	was	 incubated	with	100	nM	Alexa647-modified	 labeling	
strands	 in	buffer	B	 for	10	min.	Finally,	 the	 imaging	buffer	containing	1×	BME	and	1×	GLOX	was	 flown	 into	 the	chamber.	After	
image	acquisition,	the	chamber	was	flushed	with	30	%	formamide	in	1×	PBS	twice	for	2	times	~	3min.	Then	washing	with	1×	PBS	
was	performed	to	exchange	the	washing	buffer	and	subsequently	buffer	B	was	added.	Afterwards	the	next	Alexa647-modified	
labeling	strands	were	introduced.	Acquisition	and	washing	steps	were	repeated	until	all	targets	were	imaged.	The	CCD	readout	
bandwidth	 was	 set	 to	 17	MHz	 at	 16	bit	 and	 5.1	pre-amp	 gain.	 100	 electron	 multiplying	 (EM)	 gain	 was	 used.	 Imaging	 was	
performed	using	TIR	illumination	with	an	excitation	intensity	of	~1	kW/cm2	at	640	nm	and	~8	W/cm2	at	405	nm.		
Image	 acquisition	parameters:	 50	ms	 integration	 time,	 10	000	 frames	per	 exchange	 round.	 RAW	data	was	processed	using	 a	
custom	 software	 package	 called	 “Picasso”[2]	 (www.jungmannlab.org,	 https://github.com/jungmannlab/picasso),	 employing	
single-molecule	 spot	 detection	 and	 standard	 maximum	 likelihood	 fitting	 routines[3].	 For	 the	 in	 vitro	 DNA	 origami	 data,	 we	
detected	on	average	3	475	photons	per	localization	and	achieved	an	average	NeNA[4]	localization	precision	of	~9.8	nm,	yielding	a	
FWHM	resolution	of	~23	nm.	
STED	and	SIM.	First,	the	ibidi	flow	chamber	was	cleaned	by	rinsing	100	µl	of	isopropanol	through	the	chamber	and	then	washed	
3	×	with	 ultra-pure	water.	 Then,	 200	µl	 of	 biotin-labeled	 bovine	 albumin	 (1	mg/ml,	 dissolved	 in	 buffer	 A)	was	 flown	 into	 the	
chamber	and	 incubated	 for	5	min.	The	chamber	was	 then	washed	using	100	µl	of	buffer	A.	200	µl	of	 streptavidin	 (0.5	mg/ml,	
dissolved	in	buffer	A)	was	then	flown	through	the	chamber	and	allowed	to	bind	for	5	min.	After	washing	with	100	µl	of	buffer	A	
and	subsequently	with	100	µl	of	buffer	B,	50	µl	of	biotin-labeled	DNA	structures	(~100	pM	monomer	concentration)	in	buffer	B	
were	finally	flown	into	the	chamber	and	incubated	for	45	min.	The	chamber	was	washed	using	100	µl	of	buffer	B.	The	chamber	
was	washed	using	100	µl	of	buffer	B.	Then	the	sample	was	incubated	with	100	nM	Atto647N-modified	labeling	strand	in	buffer	B	
for	 10	min.	 After	 three-times	 3	min	 of	 washing,	 the	 imaging	 buffer	 was	 introduced.	 Finally,	 the	 imaging	 buffer	 containing	
1×	Trolox,	 1×	PCA	 and	 1×	PCD	 (diluted	 in	 buffer	 B)	 was	 flown	 into	 the	 chamber.	 After	 image	 acquisition,	 the	 chamber	 was	
flushed	with	30	%	 formamide	 in	1x	PBS	 twice	 for	~3	min.	Then	washing	with	1×	PBS	was	performed	to	exchange	 the	washing	
buffer	 and	 subsequently	 Buffer	 B	 was	 added.	 Afterwards	 the	 next	 Atto647N-modified	 labeling	 strand	 was	 introduced.	
Acquisition	and	washing	steps	were	repeated	until	all	 targets	were	 imaged.	 Images	were	acquired	with	20	nm	pixel	steps	and	
10	µs	 pixel	 dwell	 time	 and	 10-fold	 line	 accumulation.	 The	 average	 laser	 powers	 in	 the	 back	 focal	 plane	were	 set	 to	 ~13	µW	
(640	nm	excitation)	and	~195	mW	(775	nm	depletion).	The	size	of	the	confocal	pinhole	was	set	to	1	A.U.	For	the	 in	vitro	DNA	
origami	data,	we	achieved	an	average	localization	precision	of	~30	nm,	yielding	a	FWHM	STED	resolution	of	~68	nm.	
	
	
Sample	preparation	and	image	acquisition	of	cell	samples.	dSTORM.	An	Eppendorf	chamber	was	adapted	for	fluid	exchange.	
Images	were	acquired	with	an	EMCCD	readout	bandwidth	of	17	MHz	at	14	bit,	5.1	pre-amp	gain	and	100	EM	gain.	Imaging	was	
performed	using	oblique	illumination.	Sequential	labeling,	imaging	and	washing	was	performed	analogous	to	the	DNA	origami	in	
vitro	experiments.	The	laser	power	densities	at	640	nm	were	~2	kW/cm2	and	405	nm	at	~6	W/cm2.	
Image	 acquisition	parameters:	 50	ms	 integration	 time,	 50	000	 frames	per	 exchange	 round.	 RAW	data	was	processed	using	 a	
custom	 software	 package	 called	 “Picasso”[2]	 (www.jungmannlab.org,	 https://github.com/jungmannlab/picasso),	 employing	
single-molecule	 spot	 detection	 and	 standard	maximum	 likelihood	 fitting	 routines[3].	 For	 the	 in	 situ	 cell	 data,	we	 detected	 on	
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average	 5	400	 photons	 per	 localization	 and	 achieved	 an	 average	 NeNA[4]	 localization	 precision	 of	 ~19	 nm,	 yielding	 a	 FWHM	
resolution	of	~44	nm.	
STED.	Images	were	acquired	with	20	nm	pixel	steps	and	10	µs	pixel	dwell	time	and	3-fold	line	accumulation.	The	average	laser	
powers	 in	 the	 back	 focal	 plane	 were	 set	 to	 ~13	µW	 (640	nm	 excitation)	 and	 ~190	mW	 (775	nm	 depletion).	 The	 size	 of	 the	
confocal	pinhole	was	set	to	1	A.U.	
The	STED-stack	(Supplementary	Video	1)	was	acquired	with	the	60x	water	immersion	objective.	The	pixel	steps	were	40	nm	in	x	
and	y	and	400	nm	in	z,	with	a	pixel	dwell	time	of	15	µs	and	2-fold	line	accumulation.	The	average	laser	powers	in	the	back	focal	
plane	were	set	to	~13	µW	(640	nm	excitation)	and	~195	mW	(775	nm	depletion).	The	size	of	the	confocal	pinhole	was	set	to	1	
A.U.	 33	%	 of	 the	 depletion	 laser	 power	 was	 subjected	 to	 a	 circular	 phase	mask	 to	 achieve	 axial	 resolution	 improvement	 in	
addition	to	the	lateral	super-resolution.	
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Supplementary Figures 

 
Supplementary	Figure	1	|	DNA	origami	designs.	(a)	6HB	origami	for	dSTORM	and	STED	study.	(b)	6HB	origami	for	SIM	study.	
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Supplementary	Table	1	|	Strand	sequences	for	6HB	DNA	origami	structure	used	for	Exchange-STED	and	Exchange-dSTORM	
 
Positon Sequence Color Spot Number / Mod 

0[293]4[280] TGCTGAACCTCAAATAAAGCCAGAATGGGGAAGGTAAATATT    
0[335]4[322] CGCTGAGAGCCAGCAGTAAGCGTCATACAGCGCCAAAGACAA    
0[377]4[364] GAGGTGAGGCGGTCGGTAATAAGTTTTAGTTTATTTTGTCAC    
0[419]4[406] CCATTAAAAATACCCCGTATAAACAGTTGGTGGCAACATATA    
0[461]4[448] CTATTAGTCTTTAATATTCTGAAACATGATTACGCAGTATGT    
0[503]4[490] GAAAGCGTAAGAATGAGAAGGATTAGGAATAACGGAATACCC    
0[545]4[532] AAAGGGACATTCTGGATAAGTGCCGTCGAGCCGAACAAAGTT    
0[587]4[574] TTATTTACATTGGCTAGGTGTATCACCGTAGCTATCTTACCG   

 
0[797]4[784] AGGCCACCGAGTAAAAGTTTTGTCGTCTATTTTAAGAACTGG   

 
0[839]4[826] AACGGTACGCCAGATATGGGATTTTGCTTGGTTTAATTTCAA   

 
0[881]4[868] CGGGAGCTAAACAGGAGAATAGAAAGGACTGACGAGAAACAC    
0[923]4[910] TTGACGAGCACGTATTTTCACGTTGAAAATCAACGTAACAAA    
0[965]4[952] CCGCGCTTAATGCGCCTTTAATTGTATCATCAAGAGTAATCT    
0[1007]4[994] CGAAAAACCGTCTATTCTTAAACAGCTTATGAACGGTGTACA    
0[1049]4[1036] AAGAGTCCACTATTACAACCATCGCCCAAATCATAAGGGAAC    
0[1091]4[1078] GAATAGCCCGAGATGCTTGCAGGGAGTTACCTGCTCCATGTT    
1[280]3[293] AAAGAAATTGCGTATAATTTAGGCAGAGCCGACTTGCGGGAG    
1[322]3[335] TACAGTAACAGTACAGGGCTTAATTGAGGCTATTTTGCACCC    
1[364]3[377] TTCGCCTGATTGCTGTTATACAAATTCTACGCTAACGAGCGT    
1[406]3[419] AGGCGAATTATTCAGGAATCATAATTACAAATAAACAGCCAT   

 
1[448]3[461] TGAAACAAACATCACCGACCGTGTGATAGATTTTTTGTTTAA   

 
1[490]3[503] TTTCATTTGAATTAAGTTAATTTCATCTAGAGAGAATAACAT   

 
1[532]3[545] CAATATATGTGAGTCGCAAGACAAAGAAAATTAACTGAACAC    
1[574]3[587] TATTAATTAATTTTTTGGGTTATATAACGCTAATATCAGAGA    
1[784]3[797] GCTTCTGGTGCCGGTTGTTAAAATTCGCCTTTAAACAGTTCA    
1[826]3[839] AGGCTGCGCAACTGAAGATTGTATAAGCTCAGGTCTTTACCC    
1[868]3[881] TCGCTATTACGCCAATATGTACCCCGGTTTGCATCAAAAAGA    
1[910]3[923] CGATTAAGTTGGGTAGAGAATCGATGAAATCGCGTTTTAATT    
1[952]3[965] TGTAAAACGACGGCACAAAGGCTATCAGCAAACTCCAACAGG    
1[994]3[1007] GACTCTAGAGGATCGATAAATTAATGCCCCTTTTGATAAGAG    
1[1036]3[1049] ATGGTCATAGCTGTACAGTCAAATCACCATTGCTGAATATAA    
1[1078]3[1091] AATTCCACACAACATAATGTGTAGGTAACAACTAAAGTACGG   

 
2[307]0[294] ACAACGCCAACATGGATTTTCAGGTTTACTAAAGCATCACCT   

 
2[349]0[336] CAACGCTCAACAGTCTTTTACATCGGGACTGCAACAGTGCCA   

 
2[391]0[378] TTAGTATCATATGCTTGAATACCAAGTTCAGAAGATAAAACA    
2[475]0[462] AATGGTTTGAAATAAGAAAACAAAATTAATATTTTTGAATGG    
2[517]0[504] TTCAAATATATTTTCCTTTTTTAATGGAAACCCTTCTGACCT    
2[559]0[546] GATGCAAATCCAATGAATAACCTTGCTTCACGACCAGTAATA    
2[601]0[588] ACCTCCGGCTTAGGCCCTTAGAATCCTTTCGTCTGAAATGGA    
2[811]0[798] TAAACGTTAATATTAAACCAGGCAAAGCTTTTATAATCAGTG    
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2[853]0[840] GCCCCAAAAACAGGTTGGGAAGGGCGATGGATTTTAGACAGG   
 

2[895]0[882] CTAGCATGTCAATCGCTGGCGAAAGGGGCGTTAGAATCAGAG    
2[937]0[924] GTCTGGAGCAAACAAACGCCAGGGTTTTGTACTATGGTTGCT    
2[979]0[966] TTTTTGAGAGATCTCAGTGCCAAGCTTGAACCACCACACCCG    
2[1063]0[1050] GAGAAAGGCCGGAGTTCCTGTGTGAAATTTCCAGTTTGGAAC    
2[1105]0[1092] ATGCAATGCCTGAGTACGAGCCGGAAGCCTTATAAATCAAAA    
3[294]5[307] GTTTTGAAGCCTTAACCGATTGAGGGAGAAAGCGCAGTCTCT    
3[336]5[349] AGCTACAATTTTATTCATATGGTTTACCATGGCTTTTGATGA    
3[378]5[391] CTTTCCAGAGCCTAACACCACGGAATAAACGGGGTCAGTGCC    
3[420]5[433] ATTATTTATCCCAAAATACATACATAAAAATGCCCCCTGCCT    
3[462]5[475] CGTCAAAAATGAAAGATTAAGACTCCTTAAAGTATTAAGAGG   

 
3[504]5[517] AAAAACAGGGAAGCGAGGAAACGCAATATTAGCGGGGTTTTG   

 
3[546]5[559] CCTGAACAAAGTCAAAAAGTAAGCAGATAGAGGGTTGATATA   

 
3[588]5[601] GATAACCCACAAGACAATGAAATAGCAATACTCAGGAGGTTT    
3[798]5[811] GAAAACGAGAATGAAATTACCTTATGCGTTCCAGACGTTAGT    
3[840]5[853] TGACTATTATAGTCAATTGGGCTTGAGAAAACAACTTTCAAC    
3[882]5[895] TTAAGAGGAAGCCCGAATAAGGCTTGCCACAACTAAAGGAAT    
3[924]5[937] CGAGCTTCAAAGCGTATTCATTACCCAAATCTCCAAAAAAAA    
3[966]5[979] TCAGGATTAGAGAGGCTGGCTGACCTTCGGTTTATCAGCTTG    
3[1008]5[1021] GTCATTTTTGCGGATTGAAAGAGGACAGGATACCGATAGTTG    
3[1050]5[1063] TGCTGTAGCTCAACAGGCGCAGACGGTCCGCATAACCGATAT    
3[1092]5[1105] TGTCTGGAAGTTTCTGTCGAAATCCGCGAAAGGCCGCTTTTG    
4[279]2[266] GACGGAAATTATTCTTTTAGCGAACCTCGCATTTTCGAGCCA   

 
4[321]2[308] AAGGGCGACATTCAAATCAAGATTAGTTAATCGCCATATTTA   

 
4[363]2[350] AATCAATAGAAAATCCTGAATCTTACCATACCAGTATAAAGC   

 
4[405]2[392] AAAGAAACGCAAAGATTTGCCAGTTACATAGAAAAAGCCTGT    
4[447]2[434] TAGCAAACGTAGAATCCAAATAAGAAACAATAAGGCGTTAAA    
4[489]2[476] AAAAGAACTGGCATATAGCAGCCTTTACTCTGACCTAAATTT    
4[531]2[518] ACCAGAAGGAAACCGCATTAGACGGGAGCGCGAGAAAACTTT    
4[573]2[560] AAGCCCTTTTTAAGGAGGGTAATTGAGCTATATGTAAATGCT    
4[783]2[770] CTCATTATACCAGTATCCCCCTCAAATGATTAAATTTTTGTT    
4[825]2[812] CTTTAATCATTGTGCCATAAATCAAAAAAAATATTTAAATTG    
4[867]2[854] CAGAACGAGTAGTAAGAAGCAAAGCGGATGATAATCAGAAAA    
4[909]2[896] GCTGCTCATTCAGTGAAAGACTTCAAATCGGTAATCGTAAAA    
4[951]2[938] TGACAAGAACCGGAAACCAGACCGGAAGGTCATTGCCTGAGA   

 
4[993]2[980] GACCAGGCGCATAGTACCTTTAATTGCTGGAGAGGGTAGCTA   

 
4[1035]2[1022] CGAACTGACCAACTTGGCTTAGAGCTTAATCAATATGATATT   

 
4[1077]2[1064] ACTTAGCCGGAACGATGTTTTAAATATGAGATTCAAAAGGGT    
5[266]1[279] AAATAAATCCTCATTATCAAACCCTCAACGTAAAACAGAAAT    
5[308]1[321] GAATTTACCGTTCCAGCAAATGAAAAATACGTCAGATGAATA    
5[350]1[363] TACAGGAGTGTACTAGTATTAACACCGCGAAACAATAACGGA    
5[392]1[405] TTGAGTAACAGTGCGAACGAACCACCAGACAAAATCGCGCAG    
5[434]1[447] ATTTCGGAACCTATTGCGCGAACTGATAGCAAAAGAAGATGA    
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5[476]1[489] CTGAGACTCCTCAAACGTGGCACAGACAATTACATTTAACAA   
 

5[518]1[531] CTCAGTACCAGGCGGCCAACAGAGATAGAACAGTACATAAAT    
5[560]1[573] AGTATAGCCCGGAAAGATTCACCAGTCACTGTAAATCGTCGC    
5[770]1[783] AGCGTAACGATCTAAAGAGTCTGTCCATAGCTTTCCGGCACC    
5[812]1[825] AAATGAATTTTCTGATCCTGAGAAGTGTGCCATTCGCCATTC    
5[854]1[867] AGTTTCAGCGGAGTGAGGCCGATTAAAGCGGTGCGGGCCTCT    
5[896]1[909] TGCGAATAATAATTTAACGTGCTTTCCTGATGTGCTGCAAGG    
5[938]1[951] GGCTCCAAAAGGAGCCGCTACAGGGCGCCCCAGTCACGACGT    
5[980]1[993] CTTTCGAGGTGAATTCAACGCTGCGCGTCATGCCTGCAGGTC    
5[1022]1[1035] CGCCGACAATGACAAAAGAACGTGGACTTCGAATTCGTAATC    
5[1064]1[1077] ATTCGGTCGCTGAGAGGGTTGAGTGTTGTGTTATCCGCTCAC   

 
0[251]4[238] GTTGGCAAATCAACCAGACGATTGGCCTATCACCGTCACCGA   1 

0[755]4[742] GTTGTAGCAATACTTAGCATTCCACAGAGAAAAATCTACGTT   2 

1[238]3[251] AGAACCTACCATATTAAAGTACCGACAATTATCCGGTATTCT   1 

1[742]3[755] TCGGCCTCAGGAAGTTTAACCAATAGGACTGCGGAATCGTCA   2 

2[265]0[252] GTAATAAGAGAATACAAAATTATTTGCATCAATATCTGGTCA   1 

2[769]0[756] AAATCAGCTCATTTATCGCACTCCAGCCCACGCAAATTAACC   2 

3[252]5[265] AAGAACGCGAGGCGATTAAAGGTGAATTTGATATTCACAAAC   1 

3[756]5[769] TAAATATTCATTGACAGGACGTTGGGAACAGCCCTCATAGTT   2 

4[237]2[224] CTTGAGCCATTTGGCAGATATAGAAGGCAAGGTAAAGTAATT   1 

4[741]2[728] AATAAAACGAACTAGATAGCGTCCAATAACGCCATCAAAAAT   2 

5[224]1[237] AGGTTGAGGCAGGTAGTTGAAAGGAATTATAATGGAAGGGTT   1 

5[728]1[741] AACTACAACGCCTGTCTTTGATTAGTAAGGACGACGACAGTA   2 

0[167]4[154] TCAATAGATAATACCACCCTCAGAGCCAGTCACCAATGAAAC   1 

0[671]4[658] AGAACAATATTACCCCTCATTTTCAGGGCATTCAACTAATGC   2 

0[1175]4[1162] GCGGTCCACGCTGGACAGAGGCTTTGAGTGACCCCCAGCGAT   3 

1[154]3[167] ATCATATTCCTGATATCAACAATAGATATCATCGAGAACAAG   1 

1[658]3[671] TTGACCGTAATGGGAACAACCCGTCGGAAACCAAAATAGCGA   2 

1[1162]3[1175] GCGCTCACTGCCCGAATACTTTTGCGGGTAGATACATTTCGC   3 

2[685]0[672] AAATGTGAGCGAGTATAGGTCACGTTGGTGCTGGTAATATCC   2 

2[1189]0[1176] CATTATGACCCTGTCTTTCCAGTCGGGAGAGAGTTGCAGCAA   3 

3[168]5[181] CAAGCCGTTTTTATGCAAGGCCGGAAACCCACCCTCAGAGCC   1 

3[672]5[685] GAGGCTTTTGCAAAATTTAGGAATACCAATAGCAAGCCCAAT   2 

3[1176]5[1189] AAATGGTCAATAACAAAACACTCATCTTGACTAAAGACTTTT   3 

4[153]2[140] CATCGATAGCAGCAACCAAGTACCGCACAGTCCTGAACAAGA   1 

4[657]2[644] AGATACATAACGCCCAGACGACGATAAATTCTCCGTGGGATA   2 

4[1161]2[1148] TATACCAAGCGCGATTTAGTTTGACCATAGAAGCCTTTATTT   3 

5[140]1[153] ACCCTCAGAACCGCATTTGAGGATTTAGGGAGCGGAATTATC   1 

5[644]1[657] CTCAGAGCCACCACGCCAGCCATTGCAAAAACAAACGGCGGA   2 

5[1148]1[1161] GGGTAGCAACGGCTTTTGCCCCAGCAGGACATTAATTGCGTT   3 

0[209]4[196] AAAATATCTTTAGGCACCAGAGCCGCCGAAAATCACCAGTAG   1 

0[713]4[700] TGAGTAGAAGAACTCGTAACACTGAGTTTTACAGGTAGAAAG   2 

0[1217]4[1204] CTGATTGCCCTTCACCATTAAACGGGTATAAAACGAAAGAGG   3 
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1[196]3[209] ATCCTGATTGTTTGACAATAAACAACATTCATTACCGCGCCC   1 

1[700]3[713] TCGTAACCGTGCATCTTCCTGTAGCCAGAGGGGGTAATAGTA   2 

1[1204]3[1217] GCTGCATTAATGAACATAAAGCTAAATCTTTCATTTGGGGCG   3 

2[223]0[210] CTGTCCAGACGACGGATTATACTTCTGAGAGGAAGGTTATCT   1 

2[1231]0[1218] ATAAAGCCTCAGAGTCGGCCAACGCGCGGAGACGGGCAACAG   3 

3[210]5[223] AATAGCAAGCAAATGAATTAGAGCCAGCCCAGCATTGACAGG   1 

3[714]5[727] AAATGTTTAGACTGACGGAACAACATTATCGTCACCAGTACA   2 

3[1218]5[1231] CGAGCTGAAAAGGTCGAAGGCACCAACCAAATACGTAATGCC   3 

4[195]2[182] CACCATTACCATTATTTCATCGTAGGAAGTTCAGCTAATGCA   1 

4[699]2[686] ATTCATCAGTTGAGAGAAGTTTTGCCAGCTTTCATCAACATT   2 

4[1203]2[1190] CAAAAGAATACACTCTGTTTAGCTATATGGTTGTACCAAAAA   3 

5[182]1[195] GCCACCAGAACCACAGCACTAACAACTAAATTCATCAATATA   1 

5[686]1[699] AGGAACCCATGTACCAAACTATCGGCCTTGTAGATGGGCGCA   2 

5[1190]1[1203] TCATGAGGAAGTTTCCGCCTGGCCCTGAAACCTGTCGTGCCA   3 

0[125]4[112] ACAAACAATTCGACCACCGGAACCGCCTGACAGAATCAAGTT   1 

0[629]4[616] ATGGAAATACCTACCAGAACCGCCACCCGGCATAGTAAGATA   2 

0[1133]4[1120] GATGGTGGTTCCGATCAGCAGCGAAAGAGAGATTTGTATCAT   3 

1[112]3[125] ATTTTGCGGAACAATCCTAATTTACGAGTCCTTATCATTCCA   1 

1[616]3[629] AGCTTAGATTAAGAATCATAGGTCTGAGAAGCAACACTATCA   2 

1[1120]3[1133] CTGGGGTGCCTAATAAATTTTTAGAACCTTGATTCCCAATTC   3 

2[139]0[126] AAAATAATATCCCAAGAAACCACCAGAAAAGTATTAGACTTT   1 

2[643]0[630] GTGAATTTATCAAACGCTGAGAAGAGTCCAGGAAAAACGCTC   2 

2[1147]0[1134] CAACGCAAGGATAAGAGTGAGCTAACTCCGAAAATCCTGTTT   3 

3[126]5[139] AGAACGGGTATTAACCGTAATCAGTAGCCCCTCAGAGCCGCC   1 

3[630]5[643] TAACCCTCGTTTACAAAAGGAATTACGATCAGAACCGCCACC   2 

3[1134]5[1147] TGCGAACGAGTAGAAACAAAGTACAACGCAGCATCGGAACGA   3 

4[111]2[98] TGCCTTTAGCGTCATAATCGGCTGTCTTCATGTAGAAACCAA   1 

4[615]2[602] ATAAGAGCAAGAAAATTGAGTTAAGCCCAGACTACCTTTTTA   2 

4[1119]2[1106] CGCCTGATAAATTGATTCCATATAACAGCTCATATATTTTAA   3 

5[98]1[111] GGAACCAGAGCCACAACTCGTATTAAATTGAGTAACATTATC   1 

5[602]1[615] AGTACCGCCACCCTATTTTGACGCTCAAGAAAACATAGCGAT   2 

5[1106]1[1119] CGGGATCGTCACCCAATCGGCAAAATCCATAAAGTGTAAAGC   3 

2[181]0[168] GAACGCGCCTGTTTTATCAGATGATGGCATAGATTAGAGCCG   Biotin 

2[433]0[420] TAAGAATAAACACCTTTCAATTACCTGAGCCCTAAAACATCG   Biotin 

2[727]0[714] AATTCGCGTCTGGCCTGCCAGTTTGAGGTAACATCACTTGCC   Biotin 

2[1021]0[1008] CAACCGTTCTAGCTCCCGGGTACCGAGCCCAACGTCAAAGGG   Biotin 

2[1271]2[1232] AAATCATACAGGCAAGGCAAAGAATTAGCAAAATTAAGCA   Biotin 
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Supplementary	Table	2	|	Strand	sequences	for	6HB	DNA	origami	structure	used	for	Exchange-SIM	
 
Position Sequence Color Spot Number / Mod 

0[293]4[280] TGCTGAACCTCAAATAAAGCCAGAATGGGGAAGGTAAATATT    
0[335]4[322] CGCTGAGAGCCAGCAGTAAGCGTCATACAGCGCCAAAGACAA    
0[377]4[364] GAGGTGAGGCGGTCGGTAATAAGTTTTAGTTTATTTTGTCAC   

 
0[419]4[406] CCATTAAAAATACCCCGTATAAACAGTTGGTGGCAACATATA    
0[629]4[616] ATGGAAATACCTACCAGAACCGCCACCCGGCATAGTAAGATA    
0[671]4[658] AGAACAATATTACCCCTCATTTTCAGGGCATTCAACTAATGC    
0[713]4[700] TGAGTAGAAGAACTCGTAACACTGAGTTTTACAGGTAGAAAG   

 
0[755]4[742] GTTGTAGCAATACTTAGCATTCCACAGAGAAAAATCTACGTT    
0[965]4[952] CCGCGCTTAATGCGCCTTTAATTGTATCATCAAGAGTAATCT    
0[1007]4[994] CGAAAAACCGTCTATTCTTAAACAGCTTATGAACGGTGTACA    
0[1049]4[1036] AAGAGTCCACTATTACAACCATCGCCCAAATCATAAGGGAAC   

 
0[1091]4[1078] GAATAGCCCGAGATGCTTGCAGGGAGTTACCTGCTCCATGTT    
1[280]3[293] AAAGAAATTGCGTATAATTTAGGCAGAGCCGACTTGCGGGAG    
1[322]3[335] TACAGTAACAGTACAGGGCTTAATTGAGGCTATTTTGCACCC    
1[364]3[377] TTCGCCTGATTGCTGTTATACAAATTCTACGCTAACGAGCGT   

 
1[406]3[419] AGGCGAATTATTCAGGAATCATAATTACAAATAAACAGCCAT    
1[616]3[629] AGCTTAGATTAAGAATCATAGGTCTGAGAAGCAACACTATCA    
1[658]3[671] TTGACCGTAATGGGAACAACCCGTCGGAAACCAAAATAGCGA    
1[700]3[713] TCGTAACCGTGCATCTTCCTGTAGCCAGAGGGGGTAATAGTA   

 
1[742]3[755] TCGGCCTCAGGAAGTTTAACCAATAGGACTGCGGAATCGTCA    
1[952]3[965] TGTAAAACGACGGCACAAAGGCTATCAGCAAACTCCAACAGG    
1[994]3[1007] GACTCTAGAGGATCGATAAATTAATGCCCCTTTTGATAAGAG    
1[1036]3[1049] ATGGTCATAGCTGTACAGTCAAATCACCATTGCTGAATATAA   

 
1[1078]3[1091] AATTCCACACAACATAATGTGTAGGTAACAACTAAAGTACGG    
2[307]0[294] ACAACGCCAACATGGATTTTCAGGTTTACTAAAGCATCACCT    
2[349]0[336] CAACGCTCAACAGTCTTTTACATCGGGACTGCAACAGTGCCA    
2[391]0[378] TTAGTATCATATGCTTGAATACCAAGTTCAGAAGATAAAACA   

 
2[643]0[630] GTGAATTTATCAAACGCTGAGAAGAGTCCAGGAAAAACGCTC    
2[685]0[672] AAATGTGAGCGAGTATAGGTCACGTTGGTGCTGGTAATATCC    
2[769]0[756] AAATCAGCTCATTTATCGCACTCCAGCCCACGCAAATTAACC    
2[979]0[966] TTTTTGAGAGATCTCAGTGCCAAGCTTGAACCACCACACCCG   

 
2[1063]0[1050] GAGAAAGGCCGGAGTTCCTGTGTGAAATTTCCAGTTTGGAAC    
2[1105]0[1092] ATGCAATGCCTGAGTACGAGCCGGAAGCCTTATAAATCAAAA    
3[294]5[307] GTTTTGAAGCCTTAACCGATTGAGGGAGAAAGCGCAGTCTCT    
3[336]5[349] AGCTACAATTTTATTCATATGGTTTACCATGGCTTTTGATGA   

 
3[378]5[391] CTTTCCAGAGCCTAACACCACGGAATAAACGGGGTCAGTGCC    
3[420]5[433] ATTATTTATCCCAAAATACATACATAAAAATGCCCCCTGCCT    
3[630]5[643] TAACCCTCGTTTACAAAAGGAATTACGATCAGAACCGCCACC    
3[672]5[685] GAGGCTTTTGCAAAATTTAGGAATACCAATAGCAAGCCCAAT   

 
3[714]5[727] AAATGTTTAGACTGACGGAACAACATTATCGTCACCAGTACA    
3[756]5[769] TAAATATTCATTGACAGGACGTTGGGAACAGCCCTCATAGTT    
3[966]5[979] TCAGGATTAGAGAGGCTGGCTGACCTTCGGTTTATCAGCTTG    
3[1008]5[1021] GTCATTTTTGCGGATTGAAAGAGGACAGGATACCGATAGTTG   
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3[1050]5[1063] TGCTGTAGCTCAACAGGCGCAGACGGTCCGCATAACCGATAT    
3[1092]5[1105] TGTCTGGAAGTTTCTGTCGAAATCCGCGAAAGGCCGCTTTTG    
4[279]2[266] GACGGAAATTATTCTTTTAGCGAACCTCGCATTTTCGAGCCA    
4[321]2[308] AAGGGCGACATTCAAATCAAGATTAGTTAATCGCCATATTTA   

 
4[363]2[350] AATCAATAGAAAATCCTGAATCTTACCATACCAGTATAAAGC    
4[405]2[392] AAAGAAACGCAAAGATTTGCCAGTTACATAGAAAAAGCCTGT    
4[615]2[602] ATAAGAGCAAGAAAATTGAGTTAAGCCCAGACTACCTTTTTA    
4[657]2[644] AGATACATAACGCCCAGACGACGATAAATTCTCCGTGGGATA   

 
4[699]2[686] ATTCATCAGTTGAGAGAAGTTTTGCCAGCTTTCATCAACATT    
4[741]2[728] AATAAAACGAACTAGATAGCGTCCAATAACGCCATCAAAAAT    
4[951]2[938] TGACAAGAACCGGAAACCAGACCGGAAGGTCATTGCCTGAGA    
4[993]2[980] GACCAGGCGCATAGTACCTTTAATTGCTGGAGAGGGTAGCTA   

 
4[1035]2[1022] CGAACTGACCAACTTGGCTTAGAGCTTAATCAATATGATATT    
4[1077]2[1064] ACTTAGCCGGAACGATGTTTTAAATATGAGATTCAAAAGGGT    
5[266]1[279] AAATAAATCCTCATTATCAAACCCTCAACGTAAAACAGAAAT    
5[308]1[321] GAATTTACCGTTCCAGCAAATGAAAAATACGTCAGATGAATA   

 
5[350]1[363] TACAGGAGTGTACTAGTATTAACACCGCGAAACAATAACGGA    
5[392]1[405] TTGAGTAACAGTGCGAACGAACCACCAGACAAAATCGCGCAG    
5[602]1[615] AGTACCGCCACCCTATTTTGACGCTCAAGAAAACATAGCGAT    
5[644]1[657] CTCAGAGCCACCACGCCAGCCATTGCAAAAACAAACGGCGGA   

 
5[686]1[699] AGGAACCCATGTACCAAACTATCGGCCTTGTAGATGGGCGCA    
5[728]1[741] AACTACAACGCCTGTCTTTGATTAGTAAGGACGACGACAGTA    
5[938]1[951] GGCTCCAAAAGGAGCCGCTACAGGGCGCCCCAGTCACGACGT    
5[980]1[993] CTTTCGAGGTGAATTCAACGCTGCGCGTCATGCCTGCAGGTC   

 
5[1022]1[1035] CGCCGACAATGACAAAAGAACGTGGACTTCGAATTCGTAATC    
5[1064]1[1077] ATTCGGTCGCTGAGAGGGTTGAGTGTTGTGTTATCCGCTCAC    
0[251]4[238] GTTGGCAAATCAACCAGACGATTGGCCTATCACCGTCACCGA   1 

0[587]4[574] TTATTTACATTGGCTAGGTGTATCACCGTAGCTATCTTACCG   2 

0[923]4[910] TTGACGAGCACGTATTTTCACGTTGAAAATCAACGTAACAAA   3 

1[238]3[251] AGAACCTACCATATTAAAGTACCGACAATTATCCGGTATTCT   1 

1[574]3[587] TATTAATTAATTTTTTGGGTTATATAACGCTAATATCAGAGA   2 

1[910]3[923] CGATTAAGTTGGGTAGAGAATCGATGAAATCGCGTTTTAATT   3 

2[265]0[252] GTAATAAGAGAATACAAAATTATTTGCATCAATATCTGGTCA   1 

2[601]0[588] ACCTCCGGCTTAGGCCCTTAGAATCCTTTCGTCTGAAATGGA   2 

2[937]0[924] GTCTGGAGCAAACAAACGCCAGGGTTTTGTACTATGGTTGCT   3 

3[252]5[265] AAGAACGCGAGGCGATTAAAGGTGAATTTGATATTCACAAAC   1 

3[588]5[601] GATAACCCACAAGACAATGAAATAGCAATACTCAGGAGGTTT   2 

3[924]5[937] CGAGCTTCAAAGCGTATTCATTACCCAAATCTCCAAAAAAAA   3 

4[237]2[224] CTTGAGCCATTTGGCAGATATAGAAGGCAAGGTAAAGTAATT   1 

4[573]2[560] AAGCCCTTTTTAAGGAGGGTAATTGAGCTATATGTAAATGCT   2 

4[909]2[896] GCTGCTCATTCAGTGAAAGACTTCAAATCGGTAATCGTAAAA   3 

5[224]1[237] AGGTTGAGGCAGGTAGTTGAAAGGAATTATAATGGAAGGGTT   1 

5[560]1[573] AGTATAGCCCGGAAAGATTCACCAGTCACTGTAAATCGTCGC   2 

5[896]1[909] TGCGAATAATAATTTAACGTGCTTTCCTGATGTGCTGCAAGG   3 

0[167]4[154] TCAATAGATAATACCACCCTCAGAGCCAGTCACCAATGAAAC   1 
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0[503]4[490] GAAAGCGTAAGAATGAGAAGGATTAGGAATAACGGAATACCC   2 

0[839]4[826] AACGGTACGCCAGATATGGGATTTTGCTTGGTTTAATTTCAA   3 

0[1175]4[1162] GCGGTCCACGCTGGACAGAGGCTTTGAGTGACCCCCAGCGAT   4 

1[154]3[167] ATCATATTCCTGATATCAACAATAGATATCATCGAGAACAAG   1 

1[490]3[503] TTTCATTTGAATTAAGTTAATTTCATCTAGAGAGAATAACAT   2 

1[826]3[839] AGGCTGCGCAACTGAAGATTGTATAAGCTCAGGTCTTTACCC   3 

1[1162]3[1175] GCGCTCACTGCCCGAATACTTTTGCGGGTAGATACATTTCGC   4 

2[517]0[504] TTCAAATATATTTTCCTTTTTTAATGGAAACCCTTCTGACCT   2 

2[853]0[840] GCCCCAAAAACAGGTTGGGAAGGGCGATGGATTTTAGACAGG   3 

2[1189]0[1176] CATTATGACCCTGTCTTTCCAGTCGGGAGAGAGTTGCAGCAA   4 

3[168]5[181] CAAGCCGTTTTTATGCAAGGCCGGAAACCCACCCTCAGAGCC   1 

3[504]5[517] AAAAACAGGGAAGCGAGGAAACGCAATATTAGCGGGGTTTTG   2 

3[840]5[853] TGACTATTATAGTCAATTGGGCTTGAGAAAACAACTTTCAAC   3 

3[1176]5[1189] AAATGGTCAATAACAAAACACTCATCTTGACTAAAGACTTTT   4 

4[153]2[140] CATCGATAGCAGCAACCAAGTACCGCACAGTCCTGAACAAGA   1 

4[489]2[476] AAAAGAACTGGCATATAGCAGCCTTTACTCTGACCTAAATTT   2 

4[825]2[812] CTTTAATCATTGTGCCATAAATCAAAAAAAATATTTAAATTG   3 

4[1161]2[1148] TATACCAAGCGCGATTTAGTTTGACCATAGAAGCCTTTATTT   4 

5[140]1[153] ACCCTCAGAACCGCATTTGAGGATTTAGGGAGCGGAATTATC   1 

5[476]1[489] CTGAGACTCCTCAAACGTGGCACAGACAATTACATTTAACAA   2 

5[812]1[825] AAATGAATTTTCTGATCCTGAGAAGTGTGCCATTCGCCATTC   3 

5[1148]1[1161] GGGTAGCAACGGCTTTTGCCCCAGCAGGACATTAATTGCGTT   4 

0[209]4[196] AAAATATCTTTAGGCACCAGAGCCGCCGAAAATCACCAGTAG   1 

0[545]4[532] AAAGGGACATTCTGGATAAGTGCCGTCGAGCCGAACAAAGTT   2 

0[881]4[868] CGGGAGCTAAACAGGAGAATAGAAAGGACTGACGAGAAACAC   3 

0[1217]4[1204] CTGATTGCCCTTCACCATTAAACGGGTATAAAACGAAAGAGG   4 

1[196]3[209] ATCCTGATTGTTTGACAATAAACAACATTCATTACCGCGCCC   1 

1[532]3[545] CAATATATGTGAGTCGCAAGACAAAGAAAATTAACTGAACAC   2 

1[868]3[881] TCGCTATTACGCCAATATGTACCCCGGTTTGCATCAAAAAGA   3 

1[1204]3[1217] GCTGCATTAATGAACATAAAGCTAAATCTTTCATTTGGGGCG   4 

2[223]0[210] CTGTCCAGACGACGGATTATACTTCTGAGAGGAAGGTTATCT   1 

2[559]0[546] GATGCAAATCCAATGAATAACCTTGCTTCACGACCAGTAATA   2 

2[895]0[882] CTAGCATGTCAATCGCTGGCGAAAGGGGCGTTAGAATCAGAG   3 

2[1231]0[1218] ATAAAGCCTCAGAGTCGGCCAACGCGCGGAGACGGGCAACAG   4 

3[210]5[223] AATAGCAAGCAAATGAATTAGAGCCAGCCCAGCATTGACAGG   1 

3[546]5[559] CCTGAACAAAGTCAAAAAGTAAGCAGATAGAGGGTTGATATA   2 

3[882]5[895] TTAAGAGGAAGCCCGAATAAGGCTTGCCACAACTAAAGGAAT   3 

3[1218]5[1231] CGAGCTGAAAAGGTCGAAGGCACCAACCAAATACGTAATGCC   4 

4[195]2[182] CACCATTACCATTATTTCATCGTAGGAAGTTCAGCTAATGCA   1 

4[531]2[518] ACCAGAAGGAAACCGCATTAGACGGGAGCGCGAGAAAACTTT   2 

4[867]2[854] CAGAACGAGTAGTAAGAAGCAAAGCGGATGATAATCAGAAAA   3 

4[1203]2[1190] CAAAAGAATACACTCTGTTTAGCTATATGGTTGTACCAAAAA   4 

5[182]1[195] GCCACCAGAACCACAGCACTAACAACTAAATTCATCAATATA   1 

5[518]1[531] CTCAGTACCAGGCGGCCAACAGAGATAGAACAGTACATAAAT   2 

5[854]1[867] AGTTTCAGCGGAGTGAGGCCGATTAAAGCGGTGCGGGCCTCT   3 
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5[1190]1[1203] TCATGAGGAAGTTTCCGCCTGGCCCTGAAACCTGTCGTGCCA   4 

0[125]4[112] ACAAACAATTCGACCACCGGAACCGCCTGACAGAATCAAGTT   1 

0[461]4[448] CTATTAGTCTTTAATATTCTGAAACATGATTACGCAGTATGT   2 

0[797]4[784] AGGCCACCGAGTAAAAGTTTTGTCGTCTATTTTAAGAACTGG   3 

0[1133]4[1120] GATGGTGGTTCCGATCAGCAGCGAAAGAGAGATTTGTATCAT   4 

1[112]3[125] ATTTTGCGGAACAATCCTAATTTACGAGTCCTTATCATTCCA   1 

1[448]3[461] TGAAACAAACATCACCGACCGTGTGATAGATTTTTTGTTTAA   2 

1[784]3[797] GCTTCTGGTGCCGGTTGTTAAAATTCGCCTTTAAACAGTTCA   3 

1[1120]3[1133] CTGGGGTGCCTAATAAATTTTTAGAACCTTGATTCCCAATTC   4 

2[139]0[126] AAAATAATATCCCAAGAAACCACCAGAAAAGTATTAGACTTT   1 

2[475]0[462] AATGGTTTGAAATAAGAAAACAAAATTAATATTTTTGAATGG   2 

2[811]0[798] TAAACGTTAATATTAAACCAGGCAAAGCTTTTATAATCAGTG   3 

2[1147]0[1134] CAACGCAAGGATAAGAGTGAGCTAACTCCGAAAATCCTGTTT   4 

3[126]5[139] AGAACGGGTATTAACCGTAATCAGTAGCCCCTCAGAGCCGCC   1 

3[462]5[475] CGTCAAAAATGAAAGATTAAGACTCCTTAAAGTATTAAGAGG   2 

3[798]5[811] GAAAACGAGAATGAAATTACCTTATGCGTTCCAGACGTTAGT   3 

3[1134]5[1147] TGCGAACGAGTAGAAACAAAGTACAACGCAGCATCGGAACGA   4 

4[111]2[98] TGCCTTTAGCGTCATAATCGGCTGTCTTCATGTAGAAACCAA   1 

4[447]2[434] TAGCAAACGTAGAATCCAAATAAGAAACAATAAGGCGTTAAA   2 

4[783]2[770] CTCATTATACCAGTATCCCCCTCAAATGATTAAATTTTTGTT   3 

4[1119]2[1106] CGCCTGATAAATTGATTCCATATAACAGCTCATATATTTTAA   4 

5[98]1[111] GGAACCAGAGCCACAACTCGTATTAAATTGAGTAACATTATC   1 

5[434]1[447] ATTTCGGAACCTATTGCGCGAACTGATAGCAAAAGAAGATGA   2 

5[770]1[783] AGCGTAACGATCTAAAGAGTCTGTCCATAGCTTTCCGGCACC   3 

5[1106]1[1119] CGGGATCGTCACCCAATCGGCAAAATCCATAAAGTGTAAAGC   4 

2[181]0[168] GAACGCGCCTGTTTTATCAGATGATGGCATAGATTAGAGCCG   Biotin 

2[433]0[420] TAAGAATAAACACCTTTCAATTACCTGAGCCCTAAAACATCG   Biotin 

2[727]0[714] AATTCGCGTCTGGCCTGCCAGTTTGAGGTAACATCACTTGCC   Biotin 

2[1021]0[1008] CAACCGTTCTAGCTCCCGGGTACCGAGCCCAACGTCAAAGGG   Biotin 

2[1271]2[1232] AAATCATACAGGCAAGGCAAAGAATTAGCAAAATTAAGCA   Biotin 

 
 
 
Supplementary	Table	3	|	DNA	Exchange	extensions	and	labeling	strand	sequences	
 
Name Sequence Corresponding “color” or antibody 

S1 anti-handle 5’-GTGGTAGAGGAA-dye-3’  

S2 anti-handle 5’-GTTAGGAATGTTA-dye-3’  

S3 anti-handle 5’-TGGTGAGGGATT-dye-3’  

S4 anti-handle 5’-AGGTGGTAAGTT-dye-3’  

Biotin anti-handle 5’-GAATCGGTCACAGTACAACCG  

S1 handle 5’-TTCCTCTACCAC-3’ Anti-rat (alpha-tubulin) 

S2 handle 5’-TAACATTCCTAAC-3’ Anti-goat (LaminB) 

S3 handle 5’-AATCCCTCACCA-3’ Anti-rabbit (TOM20) 

S4 handle 5’-AACTTACCACCT-3’  

Biotin handle 5’-Staple-TTCGGTTGTACTGTGACCGATTC-3’  
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Supplementary	Table	4	|	Scaffold	strand	sequence	M13mp18	
 
TGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGC
TATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGC
AACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCT
CTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAG
CTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGC
TATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACG
TCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGA
TCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGA
TCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGT
CAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAAT
TATTTTTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATA
TTTGCTTATACAATCTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGAT
TCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGATCTCTCAAAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGA
ACGGTTGAATATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAA
ATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGAT
TTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTAATGCTACTACTATTAGTAGA
ATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCT
ACTCGTTCGCAGAATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGCAT
TATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTT
GCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCT
TCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGATTCAATGAAT
ATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTAT
TTTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTT
GAATGTGGTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCTTCCCAA
CGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACTA
CTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGTTCTTGTCAAGA
TTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTG
ACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGT
TTCGCGCTTGGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTA
CGTATTTTACCCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTT
CGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGT
CATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCT
TTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAAGTTGTT
TAGCAAAATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACTATGAGGGCTGTCTGTGGAATG
CTACAGGCGTTGTAGTTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGGTGGCT
CTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCA
ACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGT
TTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACTGTTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGT
ACACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATGAGGATTTATTTG
TTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGGCGGCTCTGAGGGTG
GTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGGTGATTTTGATTATGAAAAGATGG
CAAACGCTAATAAGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACG
GTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTC
AAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTG
GCGCTGGTAAACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTATATGTTGCCACCTTTATGT
ATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGTTT
CCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTAT
TGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTAA
TGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAAATCGTTTCTTATTTGGATTGGGATAA
ATAATATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCA
AAATAGCAACTAATCTTGATTTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGATAAGCCTT
CTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGATGAAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTA
ATACCCGTTCTTGGAATGATAAGGAAAGACAGCCGATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGTTCAGG
ACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTA
CTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTG
AGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATTATGATTCCGGTGTTTATTCTTATTTAA
CGCCTTATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTC
TTTGTCTTGCGATTGGATTTGCATCAGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATT
TTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATT
TACAGAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGAAATTGTTAAATGTAATTAATTTT
GTTTTCTTGATGTTTGTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAA
TCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATT
TCTGTTTTACGTGCAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATTG
CCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATT
AATAACGTTCGGGCAAAGGATTTAATACGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCT
AATCTATTAGTTGTTAGTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGATTTGCCAACTGACCAGATATTGATTGAG
GGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAGGCGGTGTTAATACTGAC
CGCCTCACCTCTGTTTTATCTTCTGCTGGTGGTTCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGC
CATTCAAAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGT
GTGACTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCT
GGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCT
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ACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACCGTTCCTGTCT
AAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCC
CTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTT
CCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGA
CCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCC 
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D
NA double-strand breaks (DSBs) are the most harmful
lesions induced by either endogenous (for example,
replication) or exogenous (for example, ionizing radia-

tion-IR) genotoxic stress, which may lead to chromosomal
aberrations and tumorigenesis if not correctly repaired. To deal
with DSBs, cells activate a rapid and hierarchically coordinated
signalling cascade known as DNA damage response (DDR),
leading to cell cycle arrest and allowing the DNA repair
machinery to exert its function. One of the earliest events
of DDR is the phosphatidylinositol-3-kinase-like-dependent
phosphorylation of serine 139 of histone H2AX (gH2AX)1,
a histone H2A variant whose role at the interface of DNA repair,
chromatin structure regulation and cell cycle checkpoint
activation2 is yet to be fully elucidated.

Detection of gH2AX has become the most widely used method
for quantification of DSBs and their repair kinetics. Activated
DDR, as scored by quantification of nuclear gH2AX focal
structures, has been extensively described in both precancerous
and cancer cells3,4. The majority of these studies were performed
by conventional microscopy techniques, including confocal
microscopy, and the structures resolved were in the micrometre
or sub-micrometre range, with a predicted DNA content in the
megabase-pair (Mbp) range. Indeed, gH2AX is proposed to
spread up to several Mbps from the original lesion site, in higher
eukaryotes5. The distribution of such histone modification is
neither symmetrical around DSB sites nor uniform on chromatin,
as assessed by chromatin immunoprecipitation (ChIP) studies
conducted in mammals6–8 and yeast9,10. Such uneven spreading
may be accounted for by gene transcription11, or cohesin complex
binding12, which antagonize gH2AX formation along the
chromosomes.

An increasing body of evidence underlines the crucial role of
genome topology and chromatin spatial organization in the
regulation of biological processes13. Recent chromosome
conformation capture studies have revealed the complexity of
genome architecture, with large compartments in the Mbp range
conserved across cell lineages and species14,15, as well as smaller
contact domains with a variable size in the range of a few
hundreds of kilobase pairs (kb)15. This spatial organization can be
dynamic and underlines cell-type-specific networks, possibly
driving the expression of specific sets of genes16 or organizing the
replication process17.

Nonetheless, the three-dimensional (3D) arrangement of
gH2AX-decorated chromatin in the nuclear volume and its
dynamic evolution during the DDR remains elusive. Here we
investigate the DDR over time at nanometre resolution by
employing super-resolution microscopy techniques on human
cells exposed to X-ray radiation. By overcoming the optical
diffraction limit, structured illumination microscopy (3D-SIM)18

and stimulated-emission-depletion (STED)19 fluorescence
microscopy present high prospecting capacity, thus allowing us
to dissect complex structures of gH2AX-decorated chromatin at
nanometre resolution (B100 nm). Furthermore, the integration
of the microscopy results with CRISPR-Cas-targeted DNA
damage, RNAi of the key structural factor CCCTC-binding
factor (CTCF), gH2AX ChIP-Seq(uencing) profiles during DDR,
and more than 60 genomic features reveal temporal, functional
and structural insights into the elementary chromatin units read
by the DNA DSB repair machinery.

Results
Cellular system and experimental strategy validation. For our
study, we employed HeLa cells, an established human cell
line whose (epi)genome is extensively annotated in the context
of the ENCODE project (genome.ucsc.edu/ENCODE/). To test

the DDR, we assessed the formation of gH2AX before and after
exposure to IR. We investigated the early (0.5 h), mid (3 h) and
late (24 h) stages of DDR, which, according to earlier reports20,
represent 60–100%, 20–60% and less than 10% of the initial
DSBs, respectively. Our confocal immunofluorescence analysis of
gH2AX revealed that the show endogenous gH2AX signal. This is
frequently observed in cancer cell lines and can be attributed to
randomly produced DSBs at stalled and collapsed replication
forks21,22. On exposure to IR, gH2AX followed the predicted
repair kinetics, with nuclear gH2AX fluorescence intensity
increasing, and then decreasing over time (Supplementary
Fig. 1A). Similar kinetics was observed by western blot analysis
(Supplementary Fig. 1B). Together, these methods revealed a
four- to eightfold increase in gH2AX signal after IR. Overall, cells
were able to activate a DDR and underwent cell cycle arrest,
accumulating in S-phase (Supplementary Fig. 1C). No apoptosis
was detected (Supplementary Fig. 1D), and 24 h post IR cells were
viable, re-entered the cell cycle (Supplementary Fig. 1C) and
proliferated, although at a lower rate compared with the mock-
irradiated controls (Supplementary Fig. 1E).

To investigate gH2AX kinetics at high resolution, we recorded
super-resolution image sets before and during DDR, and acquired
gH2AX ChIP-Seq genome-wide data at matching time points
(Fig. 1a). In all of our immuno-based approaches, we probed
gH2AX-decorated chromatin with the same antibody, whose
specificity was verified by slot blot analysis employing the
gH2AX-immunizing peptide (Supplementary Fig. 1F). The repro-
ducibility of the sequencing data was assessed and confirmed by
comparing biological replicates (Supplementary Fig. 1G).

Super-resolution microscopy of cH2AX kinetics during DDR.
To first address the effect of improved optical resolution, we
compared the number of gH2AX foci from cells imaged by
conventional confocal and 3D-SIM microscopy, and analysed in
addition the pseudo-wide-field images re-computed from the
same 3D-SIM images, before and after deconvolution (Fig. 1b).
A detailed analysis workflow is in the ‘Methods’ section and
summarized in Supplementary Fig. 1H. Compared with confocal
images (Fig. 1c), we observed a fivefold increase in foci numbers
in pseudo-wide-field images, with an additional twofold increase
in deconvolved images (Fig. 1d). Despite employing IR doses that
are challenging for conventional confocal microscopy (10 Gy
X-ray), the enhanced optical resolution enabled us to resolve
thousands of foci, increasing by about one order of magnitude the
foci counts compared with the pseudo-wide-field, and about two
orders of magnitude when comparing with confocal microscopy
(Fig. 1e). Thus, it becomes obvious that a single focus identified
by confocal microscopy can be further resolved by 3D-SIM into
substructures (Fig. 1b, bottom panels, and Supplementary
Fig. 2A), which we referred to as nano-foci. In addition, we
controlled the imaging and reconstruction process of 3D-SIM by
visual inspection of the reconstructed images in Fourier’s space
(Supplementary Fig. 2B). No reconstruction artifacts are visible as
can be seen from the fast Fourier transformed images, which
would contain regular stripe patterns otherwise.

Coherently, we observed a two- to fourfold decrease in the
diameters of the segmented objects, when comparing 3D-SIM
images with re-computed pseudo-wide-field images, with or
without deconvolution, respectively (Supplementary Fig. 3A).
Notably, in the 3D-SIM images, the nano-foci diameters were
constant during the DDR (median lateral diameter: B200 nm;
Fig. 2a), indicating that we detected the smallest substructures of
gH2AX-decorated chromatin at the limit defined by the foci
segmentation process (eight voxels). To gauge the actual size of
gH2AX nano-foci, we recorded gH2AX immunofluorescence
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Figure 1 | Characterization of cH2AX foci at different resolution levels. (a) Schematics of the experimental approach. (b) Mid-nuclear sections of

confocal microscopy (z: 200 nm) and 3D-SIM (z: 125 nm) representative images of cells, 24 h post IR. Only for 3D-SIM, the same exemplary cell is shown

as re-computed pseudo-wide-field image before or after deconvolution as well as the original 3D-SIM output. The total number of detected foci

(highlighted in colours) in the whole nuclear volume is shown in the DAPI panels. The lower panels show magnified views of the yellow dashed frame. Scale

bars, 5 mm and 500 nm for main micrographs and magnified regions, respectively. gH2AX foci number distributions before and during DDR,

from confocal images (c), 3D-SIM re-computed pseudo-wide-field of identical cell nuclei, before or after deconvolution (d) and original 3D-SIM

images (e). n: total number of imaged cells from three independent experiments. All boxes and whiskers represent 25–75 percentiles and three times

the IQD. The mean number of foci and corresponding s.d., the median as well as the 95% confidence intervals (CI) for the median are shown below

each box. NA: not applicable. For c–e: one-way ANOVA with Dunnett’s correction; ***Po10� 3.
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Figure 2 | Metrics of cH2AX nano-foci dimensions and DNA content. (a) Quantification of nano-foci diameters in the three dimensions (filled boxes, top)

during DDR. From these three dimensions, the volumes were calculated (empty boxes, bottom). The difference between lateral and axial measurements is

due to the lower resolution in the axial direction. Figures in nm or nm3� 106 are shown. (b) STED microscopy of gH2AX immunofluorescence. (left)

Quantification of lateral diameters of gH2AX nano-foci. Statistics and size scale are as in a. (right) Exemplary STED images of cells before and after IR are

shown together with the magnified views of the light-blue boxes. Scale bars, 5 mm and 500 nm for main micrographs and magnified regions, respectively.

(c) DNA content distributions of gH2AX nano-foci before and during DDR. Only in IR-exposed cells, we found nano-foci larger than 1 Mbp (dashed boxes),

and their frequency never exceeded 1% (0.14%, 0.28%, 0.95% for 0.5 h, 3 h and 24 h, respectively). Kruskal–Wallis w2¼ 18,503, df¼ 3, Po2.2� 10� 16.

Statistics (in kb) are shown next to each distribution. All boxes and whiskers are as in Fig. 1. n: total number of measured nano-foci from all imaged cells in

two independent experiments, for 3D-SIM (a,c) or STED (b).
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images by STED microscopy. Compared with our 3D-SIM set-up,
STED provided a twofold increase in optical resolution18. Yet,
the measured lateral diameters (Fig. 2b) were statistically
undistinguishable from those recorded by 3D-SIM under
sham-irradiation conditions (unpaired two-tailed t-test:
P40.05). Upon irradiation, the mean lateral diameters imaged
by STED were only B20% smaller than those we measured by
3D-SIM imaging (unpaired two-tailed t-test: Po10� 3). These
results validate our 3D-SIM measurements and indicate that
gH2AX nano-foci are the chromatin elementary units of the
cellular response to DSBs.

Next, to estimate the DNA content of nano-foci, we related the
integrated 4,6-diamidino-2-phenylindole (DAPI) intensity of
each gH2AX nano-focus to the total DNA content represented
by the integrated whole nuclear DAPI intensity (Supplementary
Fig. 3B). The resulting DNA fractions were first corrected for the
total HeLa genome size (determined by spectral karyotyping,
Supplementary Fig. 3C), and then further corrected for the cell
cycle phase of each given cell (Supplementary Fig. 3D). Finally,
values smaller than the 0.5th and bigger than 99.5th percentile
were discarded to avoid artifactual biases. The resulting
distributions are shown in Fig. 2c. Before exposure to IR, the
interquartile distance (IQD) of the nano-foci DNA content was
B23–65 kb. On IR (0.5 h)—after gH2AX spreading—it increased
to B34–159 kb, with a median length of 75 kb (Fig. 2c and
Supplementary Tables 1 and 2).

To provide another line of evidence supporting our 3D-SIM
metrics, we produced gH2AX ChIP-Seq profiles under the
same experimental conditions employed for the microscopic
analysis. Next, we integrated the genomic data with the
super-resolution microscopy data to establish a novel combined
approach (described in detail in the Methods and Supplementary
Fig. 4) and, thus, provide estimates of the gH2AX-decorated
chromatin domain size. Overall, the resulting gH2AX genomic
domains’ size was in good agreement with that of 3D-SIM
gH2AX nano-foci, although the former were B30% smaller
(IQD: 10–110 kb at 0.5 h). Because our approach only takes into
account the in cis contribution to the size of the genomic
domains, the difference between the latter and those measured by
3D-SIM can be attributed to inter-chromosomal contribution23.

The DDR uncouples histone modifications and DNA compaction.
To characterize the (epi)genetic composition of gH2AX-
decorated chromatin during DDR, we related the ChIP-Seq
gH2AX profiles to multiple genomic features, (Supplementary
Table 3). First, we computed the density of such genomic features
as well as the abundance of gH2AX in 10 kb genomic intervals.
Next, we calculated the genome-wide Spearman’s r correlation
coefficient of each feature with gH2AX profiles before and during
the DDR (Fig. 3a). The outcome of the analysis showed a strong
correlation at early time post IR between gH2AX and euchro-
matic features such as GC content (Supplementary Fig. 5A;
maximum Spearman’s r: 0.81, Po2.2� 10� 16), DNase hyper-
sensitivity sites, Regions of IncreaseD Gene Expression (RIDGEs),
early replication timing and histone modifications associated with
transcriptionally active chromatin state (for example, H3K36me3,
H3K4me1/2/3 and H3K9ac). Heterochromatic features, such as
AT content (Topo.CAT-YTA-RAK motif), lamin-binding sites,
late replication timing, intensity of Giemsa shades and H3K9me3,
were negatively correlated to gH2AX, instead. Notably, this trend
was inverted at later times, with heterochromatic features corre-
lating to residual gH2AX levels. An exemplary gH2AX profile on
chromosome 21 is shown in Fig. 3b. Quantification of gH2AX
levels, before and during DDR, in (anti-)RIDGEs, Giemsa shades
as well as in H3K36me3- and H3K9me3-decorated chromatin

domains is shown in Supplementary Fig. 5B–D and Suppleme-
ntary Table 4.

To validate and extend these findings at the single-cell level,
we recorded 3D-SIM images of gH2AX immunofluorescence
combined with either H3K36me3 or H3K9me3 labelling (Fig. 4a).
These two histone modifications recapitulate the results
from Fig. 3a, with the former being mainly associated with
actively transcribed genes24, while the latter is abundant
in heterochromatic (for example, pericentromeric regions) and
transcriptionally silent regions25. We segmented gH2AX
nano-foci as previously described and, in addition, we
measured the H3K36me3 or H3K9me3 fluorescence intensity in
the volume occupied by gH2AX nano-foci. In the latter,
H3K36me3 signal was high at early time points, but not at 24 h
post IR, as opposed to H3K9me3 signal, which was low at early
time points but higher 24 h post IR (Fig. 4b). We observed similar
results when measuring gH2AX fluorescence intensity in the
volume of H3K36me3- and H3K9me3-decorated chromatin
(Fig. 4c). Together, these findings recapitulate our genomic
results, indicating that gH2AX nano-foci are mainly associated to
an active chromatin state during the early and
mid-stages of DDR, whereas the residual phosphorylation signal
is enriched in heterochromatin at later times.

Based on these data, we expected an enrichment of gH2AX
nano-foci in compact chromatin (that is, DAPI-dense structures)
at later times. However, the mean DAPI content of gH2AX
nano-foci remained unvaried over the time, and, if at all, was
lower at 24 h (Fig. 4d). In fact, gH2AX nano-foci were located in
close proximity to DAPI-dense structures, and the two seldom
overlapped. To quantify this, we measured the maximum DAPI
intensity in a 3D-region dilated by three voxels in all dimensions
around each gH2AX nano-focus, which we referred to as ‘shell’
(Supplementary Fig. 5E). Shells always presented higher DAPI
signal than the nano-foci (Fig. 4e). This is in agreement with
previous observations, whereby gH2AX-decorated chromatin
was excluded from DAPI-dense structures following DSB
induction26,27. These findings prompted us to investigate the
condensation state of H3K9me3-decorated chromatin after DNA
damage induction. On IR, we observed a progressive decrease of
DAPI intensity in H3K9me3-decorated chromatin, up to
24 h (Fig. 4f). Such decrease was not observed in H3K36me3-
decorated chromatin. Together, this implies that heterochromatic
regions underwent DNA decondensation, although they retained
their histone marks. To independently validate this finding, we
investigated gH2AX and H3K9me3 levels before and after the
induction of CRISPR-Cas9-mediated DNA DSBs targeted at
heterochromatic murine major satellite repetitive DNA elements,
in C2C12 cells (Fig. 5a). These genomic regions are
predominantly found at H3K9me3-rich chromatin and are the
most condensed chromatin domains in the mouse genome
(chromocentres). As early as the ectopically expressed Cas9 was
active (43 h), gH2AX was visible at H3K9me3-decorated
chromatin (chromocentres) (Fig. 5b). Quantification of the
H3K9me3 and gH2AX fluorescence intensity in the segmented
chromocentres revealed that both signals co-localized (Fig. 5c).
Next, we analysed the condensation state of Cas9-targeted
chromocentres by means of dual-colour STED microscopy and
DNA density measurements. On Cas9-mediated DSBs induction,
chromocentres were dramatically decondensed (Fig. 5d,e).
Remarkably, they retained the gH2AX mark, which was more
abundant where the DNA signal was diminished (Fig. 5d). This
observation is in agreement with our 3D-SIM data, whereby the
gH2AX nano-foci present a partially decondensed state, with
diminished DNA levels relative to their surroundings (Fig. 4f).

Taken together, these findings show that gH2AX nano-foci are
chromatin units over represented in transcriptionally active

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15760 ARTICLE

NATURE COMMUNICATIONS | 8:15760 | DOI: 10.1038/ncomms15760 | www.nature.com/naturecommunications 5



0.3 0.6

202

15

30

45

−1.0 0.0 1.0

GC

H3-
K9me3 K36me3 γH2AX

Mbp
0.5 h
3.0 h
24 h

Chr 21

Spearman’s rho

–0.6 0.60.0

L2

Replication timing S2

GC content
Rel. BRCA1
Rel. MBD4

Rel. Pol2

Quadruplex repeats
Rel. Rad21

Rel. Pol2 S2

Average DNA methylation
DNase

No. DNA Methyl.
Replication timing G1b

CpG island

H3K9ac
H3K4me1

Topo. CTY
H3K4me2

GC low complexity repeats

H3K4me3

Replication timing S1
H3K27me3

H4K20me1
Alu repeats

Dist. centromeres
Direct repeats
Slipped motif

TSS

Z-DNA motif

RIDGES
H3K36me3

Genic region

Triplex motif

Expression

Ori. cadoret
Simple repeats

H3K27ac
SMC3 (cohesin)

Mirror repeats
miRNA

Topo.YCCTT
Lexo

Z-DNA Hotspot
BrIP + Lexo

MIR repeats

Purine content
Origins replication BrIP

Microsatellite
Inverted repeats

MER repeats

H3K79me2
Cruciform motif

Topo.GTY

Replication timing G2

Lamin-associated domains
A-Phased repeats

FAIRE
Replication timing S3

Dist. Telomeres

H2A.Z

G Banding
AT low complexity repeats

Replication timing S4
H3K9me3
Topo.CAT
Topo.RAK
Topo.YTA

LINE 1 repeats

LINE 2 repeats

20

25

35

40

U
ni

r

0.
5 

h

3 
h

24
 h

a b

H3K9me3

H3K36me3
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Figure 4 | 3D-SIM chromatin composition analysis of cH2AX nano-foci before and during DDR. (a) Exemplary 3D-SIM images of gH2AX (red) and

H3K9me3/H3K36me3 (green) co-immunostaining before and after IR. Top panels: mid-nuclear sections showing gH2AX and histone marks with (right

half) or without (left half) DAPI counterstaining. The dashed lines depict the nuclear contour. Bottom panels: magnification of the yellow dashed boxes with

corresponding reference number. Scale bars, 5mm and 500 nm for main micrographs and magnified regions, respectively. (b) Quantification of the

H3K36me3 and H3K9me3 fluorescence intensities measured in gH2AX nano-foci volumes. Kruskal–Wallis w2¼ 19.875, df¼ 3, P¼ 1.802� 10�4 and

Kruskal–Wallis w2¼ 24,451, df¼ 3, P¼ 2.011� 10� 5. (c) Quantification of the gH2AX fluorescence intensity in H3K36me3- (Kruskal–Wallis w2¼ 261,960,

df¼ 191,020, Po2.2� 10� 16) and H3K9me3- (Kruskal–Wallis w2¼ 246,300, df¼ 232,750, Po2.2� 10� 16) decorated chromatin. (d) Mean DAPI

intensity in gH2AX nano-foci. Kruskal–Wallis w2¼ 247,910, df¼ 245,320, P¼ 1.129� 10�4. (e) Quantification of maximum DAPI intensity in the volume

occupied by gH2AX nano-foci (regular boxes) and shells (pattern), relative to the maximum integrated nuclear intensity. Shells represent 3D hollow

structures surrounding gH2AX nano-foci (Supplementary Fig. 5E and ‘Methods’ section). Wilcoxon rank sum all o2.2� 10� 16. (f) Mean DAPI

fluorescence intensity in H3K36me3- or H3K9me3-decorated chromatin. Kruskal–Wallis w2¼ 303,050, df¼ 292,700, Po2.2� 10� 16 and Kruskal–Wallis

w2¼ 25,500, df¼ 25,002, P¼0.01338. Dotted lines: mean DAPI intensity measured over the whole analysed nuclei. All boxes and whiskers are as

in Fig. 1. AU: arbitrary units. Results are from two independent experiments.
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Figure 5 | Analysis of cH2AX and H3K9me3 levels at heterochromatin-targeted CRISPR-Cas9-mediated DSBs. (a) Schematics of the CRISPR-Cas9-

mediated DSBs induction at murine major satellites DNA. C2C12 cells were transfected with Cas9 and major satellites gRNAs plasmids and fixed after the

indicated times. (b) Representative immunofluorescence images of gH2AX and H3K9me3 in C2C12 cells. Scale bars, 10mm and 2 mm for micrograph and

inset, respectively. (c) Quantification of gH2AX and H3K9me3 fluorescence intensity from DAPI-segmented chromocentres. Mean and s.d. from (b) are
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(d) Representative STED immunofluorescence images of gH2AX and SiR-labelled DNA as indicated. Yellow lines: line profiles (shown below). For the latter,

fluorescence intensities were normalized to the min–max range of values of each profile. Lines were smoothed by a 5-window running median.

(e) Chromocentres decondensation after major satellite-targeted Cas9, assessed as mean chromocentre circularity in transfected (n¼9) and
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(***Po10� 3). Scale bar, 2 mm.
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regions early on exposure to IR. During the late stage of DDR,
they mark heterochromatic regions whose DNA is in a locally
decondensed state while keeping the characterizing histone marks
(for example, H3K9me3). We propose that by retaining their
histone mark, the chromatin identity of such domains is
preserved. This not only indicates that the actual chromatin
compaction state can be uncoupled from the histone modifica-
tions of a given chromatin domain, but also it suggests
a modality to reestablish the original chromatin state, once
DNA repair is accomplished.

cH2AX foci consist of spatially clustered cH2AX nano-foci. On
exposure to IR, and as DDR progressed, gH2AX nano-foci were
distributed throughout the nuclear volume, though they appeared
to be spatially clustered (Fig. 6a and Supplementary Fig. 6A). To
investigate such spatial clustering, we reconstructed the position of
gH2AX nano-foci in the 3D nuclear space by collecting their 3D
coordinates. Next, we measured the distances between the centroid
of each nano-focus and all the other nano-foci in the nucleus. If the
centroids of two objects were closer than a given cutoff distance, we
assigned the corresponding nano-foci to the same cluster (Fig. 6b
and Supplementary Fig. 1H and ‘Methods’ section). Based on the
median lateral nano-focus radius of B100 nm, we reasoned that
two adjacent nano-foci would be spatially positioned so that their
centroids would be at least 200 nm (2� radius) away. Indeed,
cutoff distances smaller than 300 nm resulted in poor clustering
(Supplementary Fig. 6B). Similarly, distances bigger than 700 nm
reduced the number of clusters at all time points, cancelling out
differences over the time and, hence, impeding the analysis of the
repair kinetics (Supplementary Fig. 6B). A cutoff distance of
500 nm (Fig. 6b) resulted in the highest number of clusters and a
clear repair kinetics (Fig. 6c and Supplementary Table 5). Overall,
the number of clusters was significantly higher than that of foci
resolved by confocal microscopy, and comparable to the number of
foci observed in pseudo-wide-field images (Fig. 1b,d). After IR,
clusters were composed of a median number of four nano-foci
(Fig. 6d), with the distributions remaining remarkably similar for
all time points. This indicates that at times when the DSBs are
repaired, the complete clusters, rather than single nano-foci, are
removed en bloc. Coherently, clusters had an integrated median
volume of about 0.05mm3 (Supplementary Fig. 6C), which
decreased at later times. The average inter-centroid distance mea-
sured between all nano-foci belonging to a given cluster, the
shortest path connecting all the centroids in a given cluster, and the
inter-focal volume delimited by the 3D coordinates of the centroids
of each nano-focus belonging to a cluster showed similar
kinetics (Fig. 6b and Supplementary Fig. 6D–F). In all cases,
these parameters increased after IR and then decreased, indicating
that the nano-foci in each cluster were progressively closer to
one another as the DDR progressed. One possible explanation
is an active chromatin structure change bringing the clustered
nano-foci in close proximity and, thus, facilitating the repair
process of complex lesions at later times. However, the
possibility that the clusters repaired at later times might
correspond to a subset of damaged chromatin fibres whose location
was in close spatial proximity already at earlier times is equally
possible.

Finally, based on the previous nano-foci DNA content
estimates, we calculated the DNA content of clusters by summing
the DNA content of all gH2AX nano-foci belonging to a given
cluster (Supplementary Tables 1 and 2). After IR, we observed
broad-size distributions, with IQDs of about 197–938, 137–622
and 112–554 kb for 0.5 h, 3 h and 24 h time points, respectively
(Fig. 6e). Overall, the cluster DNA content is in the (sub-)Mbp
range, being directly relevant to genome regulation processes, as

reported by genomic14,15,17 or super-resolution microscopy28

methods.
In view of these findings, and taking into account that the

cutoff distance we applied for the cluster analysis is comparable in
size to the gH2AX objects segmented in the pseudo-wide-field
images (Supplementary Fig. 3A), we conclude that gH2AX
foci, as previously identified by conventional microscopy
techniques, correspond to spatially organized clusters, composed
of several distinct nano-foci of phosphorylated H2AX in close
spatial proximity whose pattern in the nucleus depends on the
progression of DDR. While clusters are chromatin higher-order
organization units in the half-a-megabase-pair size range,
nano-foci are lower-order chromatin organization units whose
size spans 40–160 kb.

cH2AX clusters contain single DNA DSBs. As previously
reported, in higher eukaryotes6–8, gH2AX is proposed to spread up
to Mbps from the lesion site in a non-homogenous non-symmetrical
fashion11,12. This implies that gH2AX may also be found reasonably
far from the actual DNA break. Indeed, on severe localized DNA
damage (for example, caused by accelerated charged particles),
pan-nuclear H2AX phosphorylation is promptly induced by ATM
and DNA-PK29. It is then obvious that not all gH2AX-decorated
chromatin contains a DNA DSB in the immediate vicinity.

Based on the linear increase of gH2AX nano-foci numbers, we
observed up to 10 Gy (Supplementary Fig. 6G), and on the
assumption that 1 Gy X-ray induce 30–55 DSBs per diploid
human genome30–33, we estimated that 10 Gy X-ray would
result in 470–860 DSBs in the ploidy-adjusted genome. Such
numbers are conspicuously close to the number of gH2AX
clusters we observed on IR (95% confidence interval of median
cluster number at 0.5 h: 767–1,133; Fig. 6c and Supplementary
Fig. 6H).

To directly estimate the number of DNA DSBs before and
during the DDR, we recorded 3D-SIM super-resolution images of
immunofluorescently labelled phospho-Ku70 proteins, which are
directly associated to the broken ends, together with gH2AX. As
shown in Fig. 7a,b, most of the phospho-Ku70 signal was
surrounded by several gH2AX nano-foci. Remarkably, the number
of phospho-Ku70 focal structures matched with good agreement
that of our previously measured clusters (Fig. 7c). Also, the slopes
of the linear regression lines computed while fitting the number of
phospho-Ku70 and gH2AX nano-foci or clusters indicate that we
measured B3.4 gH2AX nano-foci per phospho-Ku70 focal
structure, or in other words, that there are B1.3 phospho-Ku70
focal structures per gH2AX cluster (Fig. 7d,e). We observed similar
results by assessing the number of DNA DSBs by terminal
deoxynucleotidyl transferase dUTP nick end-labelling (TUNEL).
TUNEL signal was often surrounded by several gH2AX nano-foci
(Fig. 7f,g) and the number of TUNEL focal structures recapitulates
the DDR (Fig. 7h). Finally, we observed a robust agreement
between the numbers of TUNEL focal structures and phospho-
Ku70 (Fig. 7i) or gH2AX clusters (Fig. 7j). Together, these data
demonstrate that gH2AX clusters are gH2AX-decorated multi-unit
chromatin structures containing a single DNA DSB.

CTCF delimits phosphorylated H2AX chromatin domains.
Altogether, the structural features we described about gH2AX
clusters underpin the role of a structural organization factor in
regulating their formation and kinetics. CTCF is involved in
diverse cellular processes, including V(D)J recombination34,
regulation of transcription35,36 and replication17. It mainly acts
as a regulator of chromatin architecture37,38 by forming and
keeping chromatin loops, and the presence of CTCF-binding
motif close to the boundaries of large looping chromatin domains
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has been recently confirmed by in situ Hi-C15. In view of these
observations, and based on CTCF insulating properties, we next
investigated the relationship between CTCF and gH2AX levels
during DDR.

We identified the genomic location of putative CTCF-binding
sites, based on a consensus motif modified from previous
studies15,39 (Supplementary Fig. 7A). The analysis resulted in
3,909 CTCF-binding sites, separated by a median intervening
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distance of B370 kb (IQD: 127–914 kb; Supplementary Fig. 7B).
The orientation of CTCF motif had little to no impact on the
measured distances (Supplementary Fig. 7B). This size range was
comparable to that of gH2AX clusters rather than with that of
single gH2AX nano-foci (Supplementary Fig. 7B), suggesting that
individual clusters can be delimited by CTCF-binding sites. To
validate such hypothesis at genomic level, we integrated our
3D-SIM-filtered gH2AX ChIP-Seq profiles (Supplementary
Fig. 4) with publicly available HepG2 CTCF ChIP-Seq data.
We identified B140,000 CTCF genomic footprints, including
CTCF occupancy levels ranging from very low to very highy.
Due to the inherent nature of this ChIP-Seq data, it is unlikely
that all those CTCF peaks would actually be present at the same
time in a given cell. Therefore, we focused our analysis only on
those CTCF genomic footprints whose occupancy score
was maximum, assuming these sites would be conserved among
different cell types. This reduced the number of CTCF footprints
to 5,322. Remarkably, these sites were flanking most of the
genomic gH2AX domains, before and during the DDR (Fig. 8a),
yet the two signals seldom overlapped. In addition, CTCF ChIP-
Seq signal intensity (that is, CTCF abundance) was higher
upstream or downstream of the borders of each gH2AX genomic
domain than that computed inside the domain (Fig. 8b),
indicating that high-occupancy CTCF sites function as barriers
for gH2AX spreading.

Next, we investigated the 3D-distribution of gH2AX and CTCF
before and during DDR at single-cell level by 3D-SIM. On IR,
CTCF foci were often in the immediate proximity of gH2AX
nano-foci (Fig. 8c and Supplementary Fig. 7C,D). The majority
(B75%) of the centroid-to-centroid distances between each
gH2AX nano-focus and the closest CTCF focal structure were
within 400 nm, and starting from 3 h post infrared, they
all were below 200 nm (Fig. 8d). In all cases, the measured
distances were smaller than distances between simulated random
objects whose populations were comparable in numbers to those
of CTCF and gH2AX nano-foci at each stage of DDR (Fig. 8d and
Supplementary Fig. 7E). Because gH2AX nano-foci in our
3D-SIM images have a radius of B100 nm, and CTCF focal
structures showed comparable size, our results imply that the two
objects would thus be in tight contact, with CTCF focal structures
flanking gH2AX nano-foci. On exposure to IR, and based on the
higher CTCF density in GC-rich regions, the expected gH2AX-
to-CTCF distance should be equal to, if not shorter than, that we
observed in the control sample (Fig. 8d, Unir, median: 131 nm).
However, 0.5 h post IR, the median gH2AX-to-CTCF distance
was two times longer (259 nm). Moreover, during the late stage of
the DDR, the majority of DSBs were associated to heterochro-
matic regions (with lower GC content). In these regions, CTCF
density is lower (compared with euchromatin) and the expected

gH2AX-to-CTCF distance should be equal to, if not longer than,
that we measured in a random distribution. Yet, the observed
median gH2AX-to-CTCF distance was only half of that we
obtained from a random distribution (Fig. 8d, 24 h measured:
176 nm; 24 h random: 331 nm). Such close spatial proximity was
confirmed by the observation that CTCF signal was more
abundant in the surroundings of gH2AX nano-foci (as measured
in the previously described shells) rather than overlapping with
them (Fig. 8e and Supplementary Fig. 7F).

Taken together, our genomic and microscopy data strongly
support that CTCF delimits gH2AX chromatin, and the two are
in close spatial proximity.

CTCF is critical for spatial regulation of cH2AX chromatin.
Finally, we investigated whether the perturbation of CTCF levels
would affect the spatial distribution of gH2AX-decorated
chromatin. While CTCF knockout is lethal, a number of
studies have shown neither effects on the cellular and nuclear
morphology, nor in the cell cycle progression up to 72 h
post CTCF knockdown40,41. In our experimental system,
esiRNA-mediated CTCF depletion to B40% of the control
protein levels (Supplementary Fig. 8A,B), resulted in a mild
radiosensitization (B20%; Supplementary Fig. 8C) and a
coherent decrease (70–85%) of CTCF foci in 3D-SIM
micrographs, before and during DDR (Fig. 9a). Notably, CTCF
depletion strongly impaired the formation of gH2AX nano-foci
(Fig. 9b), which were smaller, diminished in numbers, and
presented decreased volume and DNA content (Fig. 9c,d and
Supplementary Fig. 8D,E). Only at 24 h post IR, the
number of gH2AX nano-foci was comparable to that of the
mock-knockdown samples, although with decreased fluorescence
intensity, indicating a defect in the activation of the DDR. Indeed,
CTCF-depleted cells showed a diminished DNA repair capability
as assayed by comet single-cell analysis (Fig. 9e). Such defect was
more prominent at the mid and late stages of DDR, suggesting
that optimal CTCF levels are required to mount an efficient DDR.
In this context, CTCF role in chromatin structural regulation may
be crucial. Overall, the diminished gH2AX response resulted in a
B2.9-fold decrease in cluster formation (Fig. 9f). Remarkably,
ATM and DNA-PKcs, the main signalling effectors involved in
H2AX phosphorylation, were promptly activated on IR in both
mock- and CTCF-depleted cells (Supplementary Fig. 9A,B),
indicating that the presence of functional key factors of the DDR
is necessary but not sufficient to trigger a proper response to
DNA damage. In conclusion, we propose that CTCF, by
preserving the 3D organization of the chromatin, is critical for
the activation of an efficient DDR and, in such context, it
functions as a regulator of the structural component of DDR.

Figure 8 | Genomic and microscopic analysis of CTCF spatial distribution in cH2AX-decorated chromatin. (a) Genomic localization of gH2AX ChIP-Seq

domains (coloured bars) and CTCF genomic footprint (dashed green lines) in a representative region of chromosome 16. Dashed black line: magnification.

Coloured arrowheads: orientation of CTCF-binding sites (red: forward; green: reverse). Details about gH2AX ChIP-Seq domains are in Supplementary

Methods and Supplementary Fig. 4. ChIP-Seq CTCF profiles were retrieved from publicly available databases (UCSC Accession: Encode wgEH000080,

wgEH000543, wgEH000401 and wgEH000470). (b) CTCF occupancy outside or inside gH2AX ChIP-Seq domains. The intensity of each CTCF peak in

100 kb bins upstream and downstream of the border of gH2AX ChIP-Seq domains (grey box) is summed and then presented as one-sided distribution. The

bins range from ±300 to ±200, ±200 to ±100, ±100 to 0 and 0 to ±100 kb (inside the domain), with 0 being the border of each domain.

AU: arbitrary unit. Genome-wide CTCF footprint localization relative to gH2AX ChIP-Seq domains’ borders. For each domain, the distance in kb between its

boundaries and the closest CTCF peak is measured and plotted as a bar (dashed lines). (c) Representative 3D-SIM images of immuno-stained gH2AX and

CTCF before and during DDR. Scale bar, 500 nm. (d) Quantification of the closest centroid-to-centroid distance between CTCF and gH2AX nano-foci from

3D-SIM images. Measured (filled boxes) and simulated (patterned boxes) distances are shown. The latter were obtained from simulated random

distributions of CTCF and gH2AX nano-foci (100 iterations). (e) Quantification of maximum CTCF intensity in gH2AX nano-foci and in surrounding shells.

Maximum CTCF fluorescence in the segmented space normalized over the maximum CTCF fluorescence of the entire nucleus is plotted. All boxes and

whiskers are as in Fig. 1. n: measured distances (d) or analysed shells (e) from two independent experiments. d,e: Mann–Whitney test: Po10� 3.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15760 ARTICLE

NATURE COMMUNICATIONS | 8:15760 | DOI: 10.1038/ncomms15760 | www.nature.com/naturecommunications 13



Discussion
In this study, the use of high prospecting super-resolution light
microscopy technologies enabled us to identify the elementary
structural units read by the DNA repair machinery, analysed
as gH2AX focal structures following the exposure to IR.

The gH2AX nano-foci we identified are two- to threefold
smaller—with lateral diameters of B200 nm—and contain
B10% of the conventionally estimated Mbp DNA
content42. Similar gH2AX substructures sizes were recently
measured after heavy ion irradiation43, despite the highly
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ionizing power charged particles possess, thus further supporting
our findings.

Importantly, gH2AX nano-foci form clusters of approximately
four chromatin units, and each cluster, rather than each of its
structural components, contains one DSB, assessed by direct
DNA end-labelling or by the presence of phospho-Ku70. This is
supported by the good agreement between the predicted number
of DSBs induced by the dose of IR employed in this
work and the numbers of gH2AX clusters in control cells.
gH2AX clusters are spatially distributed in the nuclear space
according to a pattern that is dependent on the progression of
DDR. Such pattern recapitulates the previously described repair
kinetics, underlining an euchromatin-to-heterochromatin repair
trend, which is likely dictated by the chromatin compaction
state: chromatin regions that were already in an open state
(for example, marked by H3K36me3) would be repaired earlier,
while compact chromatin requires further structural remodelling
before the DNA repair machinery could eventually exert its
activity (Fig. 9g), For the latter, actual DNA decondensation,
assessed as decrease of DAPI intensity, occurred while maintain-
ing the main local histone modification (for example, H3K9me3),
thus uncoupling DNA compaction from histone modifications.
While chromatin relaxation seems to be dispensable for the DNA
repair to occur at pericentromeric heterochromatin44, we propose
that the uncoupling of chromatin modifications and the actual
chromatin decondensation is crucial to reestablish the original
chromatin structure once DNA repair is accomplished.

In our 3D-SIM images, gH2AX clusters presented a discontin-
uous phosphorylation pattern, with gH2AX and CTCF showing
mutually exclusive signals, although the two were in close spatial
proximity. However, not all gH2AX nano-foci presented proximal
CTCF foci. The latter likely consist of more than one CTCF
molecule, and their detection may be influenced by a variety of
factors, such as the CTCF-binding site density, differences in the
binding affinity45 of such sites and CTCF protein levels. It is
tempting to speculate that the discontinuously phosphorylated
pattern we observed is due to the presence of multiple CTCF
molecules bound to their cognate consensus sequences but not
resolvable by our imaging techniques. To discriminate between
each individual chromatin loop bound by a pair of CTCF
molecules, would demand single molecule sensitivity in situ 3D
methods. Nonetheless, it is equally possible that other chromatin
structure regulators (for example, cohesion complex12), histone
turnover (for example, during DNA repair46) as well as biological
processes such as transcription11 antagonizing gH2AX formation
and/or spreading along the chromosome contribute to the
discontinuously phosphorylated pattern.

Finally, we show that CTCF has a critical role in the formation
and spatial clustering of gH2AX nano-foci. CTCF-depleted cells
present less gH2AX nano-foci, which are smaller and contain less
DNA than those we observed in mock-treated cells. As a
consequence, the DDR is delayed and the repair capability is

diminished, despite the efficient activation of the main signalling
effectors involved in H2AX phosphorylation (for example,
DNA-PKcs or ATM). This indicates that a structural organization
impairment—caused by CTCF depletion—results in a poor DDR.
On CTCF depletion, the frequency of interactions of CTCF
molecules with one another is decreased, leading to a diminished
loop formation and a more sparse (that is, non-clustered)
distribution of gH2AX nano-foci (Fig. 9b–g). Overall, this
scenario emphasizes the need for a (dynamically) regulated
3D organization of the chromatin, whereby the 3D spatial
proximity of chromatin loops could boost the local processivity of
the committed kinases and assure an efficient DDR. In such
context, because the CTCF-knocked-down cells display similar
numbers of gH2AX nano-foci to the number of nano-foci cluster
in control cells, we propose that in the absence of CTCF,
spreading of gH2AX is impaired and, thus, this mark is restricted
to the vicinity of the DSBs, that is, within one nano-focus
(Fig. 9g).

In conclusion, our study demonstrates that the decreased levels
of a single structural factor (CTCF), accounting for the (dynamic)
stability of chromatin, per se dramatically hinder gH2AX
spreading. While it is likely that additional factors (for example,
DNA and histone methylation readers) contribute to this process,
namely at heterochromatic regions, we propose that CTCF
functions as a regulator of the structural component of DDR,
preserving a crucial (dynamic) 3D organization of the chromatin
and, thus, enabling an efficient DDR.

Methods
Cell culture and irradiation. Cervical carcinoma HeLa cells (ATCC No. CCL-2)
cells were used throughout the study. A single exposure to 10 Gy X-ray was applied
(250 kV, 16 mA, 2.5 Gy min� 1 – GE Isovolt Titan) to induce DNA damage and
trigger DDR. On exposure to IR, cells were incubated in a humidified environment,
with 5% CO2 at 37 �C as indicated. Sham-irradiated control cells were included.
C2C12 (ATCC No CRL-1772) cells were used for CRISPR-Cas9 experiments. HeLa
and C2C12 cells were cultured in DMEM (4.5 g l� 1 glucose, Biochrom AG) sup-
plemented with 10% and 20% fetal calf serum (Biochrom AG), respectively. All
media were supplemented with 2 mM L-glutamine (Sigma), 100 U per ml penicillin
and 100mg ml� 1 streptomycin (Sigma). All cell lines were tested for mycoplasma
and found free of contamination (MycoAlert, Lonza).

Growth curve and cell cycle distribution. Cells were seeded 24 h before exposure
to IR. After IR, cells were incubated for indicated times, before trypsinization and
count with a coulter counter, in triplicates. The remaining cells were then fixed in
2% formaldehyde, permeabilized for 8 min with 0.5% Triton X-100 in PBS, stained
with DAPI (1 mg ml� 1) and analysed at the flow cytometer Partec PAS III system
(Partec) for cell cycle distribution. Data were analysed with FlowJo software (Tree
Star, Inc.).

Apoptosis assay. To detect apoptosis, TUNEL assay was performed according to
the manufacturer’s instructions (Roche, #11684795910) and a minimum of 1,000
cells was scored by microscopy in two independent experiments.

Spectral karyotyping. Cells were treated with colcemid (0.1 mg ml� 1; Invitrogen,
Darmstadt, Germany) 2 h before collecting to accumulate metaphase cells.

Figure 9 | CTCF depletion inhibits cH2AX nano-foci and cluster formation and diminishes the DNA repair capability. (a) Number of CTCF foci in

esiRNA-depleted cells before and during DDR. Black dots: median number of CTCF foci in wild-type cells. (b) Impairment of gH2AX nano-foci and 3D-

clusters formation during DDR as assessed by immunofluorescence of 3D-SIM images in CTCF-depleted cells. Scale bar, 5 mm. (c) gH2AX nano-foci

number distributions before and after IR, in CTCF siRNA-treated cells. Black dots: median number of gH2AX nano-foci of untreated cells (from Fig. 1).NS:

two-tailed t-test, P40.05. (d) gH2AX nano-foci DNA content distributions before and after IR, in CTCF siRNA-treated cells. Black dots: median DNA

content of gH2AX nano-foci of untreated cells (from Fig. 2). (e) DNA fragmentation measured by the neutral comet assay. Boxes represent the mean of

medians from four replicates (two biological replicates in duplicate), each consisting of 60 comet measurements. NS: not significant (t-test, P40.05). (f)

gH2AX cluster distributions before and after IR, in CTCF siRNA-treated cells. Black dots: median number of gH2AX clusters in untreated cells (from Fig. 6).

All boxes and whiskers are as in Fig. 1. Comparisons between time points (one-way ANOVA with Dunnett’s correction) or between esiRNA-treated and

wild-type cells (Wilcoxon/Mann–Whitney rank sum) are all statistically significant unless otherwise specified. (g) Model for cluster special arrangement

during DDR, showing the time-dependent euchromatin-to-heterochromatin repair trend (top) and how gH2AX spreading is hampered by CTCF depletion

with the concomitant loss of 3D-arrangement of chromatin loops (bottom).
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Chromosome preparations were made according to standard procedures
and hybridized with the 24XCyte Multicolor FISH Probe Kit (MetaSystems,
Altlussheim, Germany). Metaphase spreads were examined with an Axio Imager
Z1 microscope (Zeiss, Oberkochen, Germany) equipped with appropriate filter
sets. At least 100 images of metaphases were taken, further processed using ISIS
software (MetaSystems) and analysed to produce the karyotype.

CTCF knockdown. A number of 105 cells were transfected with 15 nM of a
esiRNA pool (Sigma-Aldrich) using HiPerfect (Qiagen). The CTCF esiRNA is
corresponding to the region 692–1195 of the human CTCF transcript
(NM_006565.3). For mock treatments, cells were transfected using an esiRNA pool
(Sigma-Aldrich) targeting the GFP gene. Cells were incubated 24–96 h post
transfection and knockdown efficiency was monitored every 24 h.

Immunoblotting. Whole-cell extracts were prepared by freeze and thaw lysis
(three cycles) in 600 mM NaCl, 20 mM Tris-HCl pH 7.8, 20% glycerol. After
SDS–PAGE, proteins were transferred onto PVDF membrane in semi-dry
conditions. The membrane was then blocked in 5% non-fat dry milk buffer
and incubated with mouse anti-gH2AX (Clone JBW301, Upstate, 1:5,000).
Immunoblots were stained with corresponding HRP-conjugated secondary
antibodies (GE Healthcare, 1:20,000) and detected with the enhanced
chemiluminescence detection system (Amersham Biosciences). Quantification was
performed using ImageJ.

For the validation of antibody specificity and cross-reactivity, a dilution series of
synthetic peptides (CKATQASQEY; Peptide Specialty Laboratories GmbH), with
the underlined serine in either phosphorylated or non-phosphorylated form, was
immobilized on a nitrocellulose membrane at the indicated concentrations and
probed with anti-gH2AX and anti-H2AX as described above.

CTCF knockdown western blots were developed using a rabbit anti-CTCF
(#D31H2, Cell Signaling, 1:700) and a mouse anti-actin (AC-40, Sigma-Aldrich,
1:1,000) and overnight incubation at 4 �C, followed by a direct immuno-
fluorescence detection using anti-rabbit-IgG-Cy5 (#711-175-152, Jackson, 1:1,000)
and an anti-mouse-IgG-Alexa488 (A11029, Invitrogen, 1:1,000). Images were
recorded using a AI600 Imager (Amersham) and quantified using ImageJ.

Immunofluorescence. Cells were fixed in 3.7% formaldehyde and permeabilized
in 0.5% Triton X-100 in PBS at room temperature (RT). The following primary
antibodies were used: mouse anti-gH2AX (Clone JBW301, 1:500, Upstate),
rabbit anti-H3K9me3 (#07–422, Upstate, 1:500), rabbit anti-H3K9me3 (#39161,
Active Motif, 1:500), rabbit anti-H3K36me3 (ab9050, Abcam, 1:2,000); rabbit
anti-phospho-Ku70 (pS5) (#ab61783, Abcam, 1:400); mouse anti-phospho-ATM
(pS1981) (#MAB3806, Millipore, 1:100); rabbit anti-phospho-DNA-PKcs (pS2056)
(#ab18192, Abcam, 1:100) and rabbit anti-CTCF (#2899, Cell Signaling, 1:900). For
phospho-Ku70 detection cells were prefixed in 1% formaldehyde and then
extracted with 0.7% Triton X-100 two times by 5 min47 and subsequently
fixed in 3.7% formaldehyde. Antibody incubation was performed at 4 �C over
night in 1% BSA in PBS. For CLSM and 3D-SIM, signals were detected with goat
anti-mouse-IgG-AlexaFluor 488, goat anti-rabbit-IgG-AlexaFluor 594 (1:800,
Invitrogen), donkey anti-mouse-IgG-AlexaFluor 488 (A-21202, Thermo Fisher
Scientific, 1:400), donkey anti-rabbit-IgG-AlexaFluor 594 (A-21207, Thermo Fisher
Scientific, 1:400). For STED, gH2AX was detected with goat anti-mouse-IgG STAR
635P (#2-0002-007-5, Abberior, 1:100) or goat anti-mouse-IgG STAR 580
(#2-0002-005-1, Abberior, 1:100). DNA was counterstained with 36 nM DAPI
(for 3D-SIM), 1 mM propidium iodide (confocal microscopy) or 2.5 mM SiR-DNA
(Spirochrome), before cells were mounted with Vectashield antifade medium
(Vectorlabs).

CRISPR-Cas9 targeting to heterochromatic major satellite DNA. Subconfluent
C2C12 cells were transfected with Cas9 (pCMV-hCas9, Addgene ID: 41815)
and major satellite gRNAs (U6-MaSgRNA) by means of Lipofectamine 3000
(Thermo Fisher Scientific) according to the manufacturer’s instructions. Cells
were then fixed in 3.7% formaldehyde for 10 min and immunofluorescence
followed (as described above).

DNA DSB detection by TUNEL assay. Cells were grown and irradiated as
described above. At the indicated time points, cells were fixed in 3.7% paraformal-
dehyde for 10 min. The fixation was quenched with 125 mM glycine in PBS for
10 min. Fixed cells where permeabilized in 0.5% Triton X-100 for 20 min, and
equilibrated for 10 min in blunting buffer (100 mM Tris-HCl, 50 mM NaCl,
10 mM MgCl2, 0.025% Triton X-100 and 5 mM DTT, pH 7.5). End repair was
performed using 4ml T4 polymerase (NEB: M0203S 3,000 units ml� 1) and 4 ml T4
polynucleotide kinase (NEB: M0201S 10,000 units ml� 1) in 82ml blunting buffer,
supplemented with 10ml 1 mM dNTPs for 45 min. Slides were then equilibrated in
TdT buffer for 10 min and the TUNEL reaction was performed according to the
‘In Situ Cell Death Detection Kit’ (Roche) with Fluorescein modified dUTPs, for
4 h at 37 �C according to the manufacturer’s instructions. Following the TUNEL
reaction, cells were blocked in 1% BSA in PBS for 20 min. gH2AX staining was
performed as described above. Incorporated fluorescein-dUTPs were detected by a

rabbit anti-FITC (CUSABIO, 1:500) and a anti-rabbit-IgG Alexa488 secondary
antibody (Jackson ImmunoResearch, 1:800). All steps were conducted at RT, unless
otherwise specified.

Comet assay. DNA repair kinetics in CTCF knockdown cells were measured
using the neutral comet assay. In brief, CTCF was depleted as described above and
72 h post esiRNA transfection, the cells were exposed to 10 Gy X-ray. At the
indicated time points, cells were trypsinized and 2� 105 cells ml� 1 were
embedded in 0.8% low-melting point agarose (Sigma type VII). Lysis was
performed for 4 h at 4 �C in lysis buffer (10 mM Tris, 150 mM NaCl, 1% N-lauryl-
sarcosinate, 1% Triton X-100, 0.5% DMSO, pH 8.0) and electrophoresis was done
in 1� TBE at 4 �C (1 V cm� 1) for 25 min. Slides were then dehydrated in
70% ethanol and rehydrated in staining buffer (TBE supplemented with SybrGreen,
1:10,000) to stain the DNA48. Two biological replicates (in duplicates)
were performed and 60 comets per slide were scored using Komet 4 (Kinetic
Imaging Ltd.).

Microscopy. Confocal microscopy images were acquired using a Spinning Disk
microscope (Perkin Elmer Vox1000) equipped with a � 60 NA 1.4 oil immersion
lens (CFI Apochromat TIRF), with a pixel size of 120 nm or with a Leica TCS SP5
confocal microscope using a Plan Apo � 63 NA 1.4 oil immersion objective. Cells
were recorded as z-stacks with a z-spacing of 0.2 mm.

Super-resolution microscopy images were acquired using a 3D structured
illumination microscope (DeltaVision OMX V3, GE Healthcare) and a 2C STED
775 QUAD Scan microscope (Abberior Instruments). 3D-SIM was performed with
a � 100 NA 1.4 objective lens with a pixel size of 39 nm and a z-spacing of 125 nm
(ref. 18). STED was performed with a � 100 NA 1.4 Olympus UPlanSApo
objective lens with a pixel size of 20 nm and excitation lasers of 488, 594 or 640 nm,
and a 775 nm depletion laser.

High-content imaging was performed using the Operetta system (Perkin
Elmer). Samples were imaged using a � 20 NA 0.45 air objective with three planes
of 1mm spacing, using the following filters: DAPI: excitation wavelength (ex):
360–400 nm, emission wavelength (em): 420–480 nm; Alexa488: ex: 460–490 nm,
em: 500–550 nm; Alexa594: ex: 560–580 nm, em: 590–640 nm.

Image analysis. For confocal microscopy, the images were analysed in ImageJ
using the nuclear staining as a mask to measure the total intensity of the gH2AX
signal per nucleus. Foci were scored in 3D using Volocity (Perkin Elmer) by the
following workflow: find objects (nucleus), threshold automatic, size minimum
500 mm3; find foci: threshold 4,000 constant for pseudo-wide-field and 5,000 for
deconvolved images, respectively. Minimum size: 0.05mm3, followed by ‘separate
touching objects’ with a guide size of 0.5 mm3. Different thresholds were applied,
because pseudo-wide-field and deconvolved images are in different bit depth. All
counts were double-checked by manual counting of randomly chosen samples by
at least three experimenters.

For CRISPR-Cas9 experiments, confocal images of C2C12 cells were segmented
into background, nuclei and chromocentres by pixel-wise classification via
supervised machine learning (default Random Forest classifier and pixel features
from the Trainable Weka Segmentation plugin in Fiji). The classifier was trained on
manually labelled pixels of the DAPI channel in one image and then applied to all
images. For each image, mean intensities in the H3K9me3 and gH2AX channels
were determined for each chromocentre object (4100 px2) within the largest
object in the nuclear mask. To analyse DNA decondensation at repair sites in
CRISPR-Cas9 experiments STED images of C2C12 cells were segmented into
background, nuclei and chromocentres by pixel-wise classification as described
above for confocal images. The classifier was trained on manually labelled pixels of
the SiR-DNA channel in one image and then applied to all images (each image’s
pixel intensity range was mapped to the 8-bit range to account for differences in
staining intensities). For each image, the circularity of chromocentre objects
(4100 px2) within the nucleus was determined. Three rounds of binary erosion
with a 3� 3 px-box followed by three rounds of binary dilation were applied to the
segmentation results to smooth the borders of segmented objects.

3D-SIM images were exported from the DeltaVision software (softWoRx 6.0
Beta 19, Applied Precision) and converted to 16-bit images per channel. Foci
counting was done using Volocity 6.3 (Perkin Elmer) or with the 3D foci picker
plugin in ImageJ (imagej.nih.gov/ij/). Nearly identical results were obtained and the
numbers from Volocity were used. In detail, the individual z-sections were
imported and merged to a volume with the above-mentioned pixel sizes and
z-spacing. First, the nucleus was identified by setting a manual threshold and a
lower volume limit of 200 mm3 followed by a ‘Fill in Holes’ step and two iterations
of ‘Dilate’ and ‘Close’ to fill in all the DAPI weak volumes. The intensities and voxel
coordinates of the whole nucleus were registered. Next, the gH2AX and H3K36me3
or H3K9me3 foci were identified with a lower threshold of 1,000 and a minimum
object size of 0.001mm3. To separate close spaced objects, a final ‘Separate
Touching Objects’ step with a nominal volume of 0.05 mm3 was used. The foci
identified were restricted to the previously defined nuclear volume to remove
possible unspecific signals from outside of the nucleus.

3D-SIM pseudo-wide-field imaging: after sample acquisition, the pseudo-wide-
field images were calculated using softWoRx 6.0 Beta 19 according to the following
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workflow: the raw data from each 3D-SIM image z-stack was subdivided to isolate
the first angle of acquisition. To this purpose, the maximum number of z-sections
in each individual stack is divided by three. Then the projected five grid shifted
section is averaged per z-position and colour channel. After that, the voxel
dimensions are adjusted from 0.625 to 0.125 mm in the z-dimension by adjusting
the file headers. The alignment of the new stack was done with the parameters used
for 3D-SIM reconstruction. The following parameters of the softWoRx software
were used: normalize intensity, use photosensor, correct bleaching, replace z-lines
and smooth z-lines. To reverse the optical distortion in the images, the aligned 3D
stack was deconvolved with the instrument-specific optical transfer function (OTF)
with the following settings: ‘enhanced ratio (aggressive)’ and ‘noise filtering
medium’.

For CTCF distance analysis, the previously described protocol was extended as
follows: CTCF domains detection was restricted to the nuclear volume, with an
automated threshold and a minimum size of 0.001 mm3. Then, the segmented
gH2AX nano-foci were extended in all dimensions by three voxels
(117� 117� 375 nm) and the resulting gH2AX nano-foci volume was subtracted
to obtain the gH2AX foci shells. Finally, the Euclidian distances between each
gH2AX nano-focus and the closest CTCF domain were measured. All identified
foci with the corresponding 3D coordinates and intensities for all recorded
channels were exported and post-processed in R49. ImageJ and UCSF chimera50

were used for image visualization and 3D rendering, respectively. Simulations of
CTCF and gH2AX distributions were run under R, using rgl and sphereplot
packages. Hundred simulations of a sphere matching the average nuclear size of
cells were run per time point. Every simulation contained objects whose numbers
matched CTCF and gH2AX foci we recorded in 3D-SIM images.

For STED images, object dimensions (for example, diameters) were measured
by manual object segmentation of randomly selected foci in ImageJ, using the
analyse particle tool. For high-content images, analysis was performed using
Harmony software (Perkin Elmer) with the following workflow: maximum
projection of the planes, flatfield correction, find nuclei in DAPI channel, method
M, splitting coefficient 0.1, general threshold 0.4 and guide size of 15mm in
diameter. Calculate intensity and morphology parameters for the nuclei. Discard
nuclei touching the border, smaller than 100 mm2 and larger than 350mm2. Filter
nuclei for roundness 40.83 and with a 4 px Haralick contrast 40.8 and a DAPI
signal CV of less than 30%. Measure the mean and integrated intensity for DAPI,
gH2AX and CTCF in the selected nuclei areas.

ChIP. Cells were fixed with 1% formaldehyde for 10 min at RT and
cross-link was quenched with 125 mM glycine (5 min at RT). Nuclei were isolated
after mild lysis in hypotonic buffer (10 mM HEPES pH 8, 1.5 mM MgCl2,
60 mM KCl) and 20 strokes in a tight dounce homogenizer. Chromatin was
sheared in sonication buffer (0.5% SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.1).
Fragmentation of chromatin was carried out by ultrasound treatment (Bioruptor
UCD200) so that fragments of 200–300 bp length were obtained. Chromatin from
1� 106–2� 106 cells was immunoprecipitated with anti-gH2AX (Clone JBW301,
Upstate, 3 mg) antibody. Chromatin was then incubated ON at 4 �C with protein
G-coated magnetic beads (ChIP-IT Express, Active Motif). The collected chro-
matin (ChIP sample) was then reverse-crosslinked in the presence of 200 mM NaCl
at 65 �C for at least 5 h, followed by RNase A (50mg ml� 1) treatment for 30 min at
37 �C and proteinase K (100 mg ml� 1) treatment for 3 h at 50 �C. DNA elution was
carried out in 1% SDS, 100 mM NaHCO3, in a rotary shaker at RT for 15 min. Pure
DNA was isolated using the Qiagen PCR purification kit and 15–30 ng of size
selected DNA fragments (Qubit fluorometric quantification) were used to produce
ChIP-seq libraries (Illumina ChIP-Seq DNA sample Prep Kit). Input sample was
essentially prepared following the same protocol, but the immunoprecipitation step
was skipped.

Next-generation sequencing and data analyses. ChIP-Seq libraries were
processed through a high-throughput sequencing pipeline (Illumina Genome
Analyzer II). Reads were mapped to the human genome (University of
California, Santa Cruz (UCSC) hg19 assembly, based on the National Center for
Biotechnology Information (NCBI) build 37.1) by means of SOAP2 software51,
allowing up to two mismatches for each 36 bp read. All data sets were deposited in
the Gene Expression Omnibus database (accession number: GSE60526). All
gH2AX ChIP-Seq tracks were smoothed with a moving average of five intervals
before further analysis. Genomic features and correlation analysis: all genomic
features data were retrieved from publicly available databases (UCSC)
(Supplementary Table 3). Most of the data were generated in HepG2 cells, but not
all. Data that were originally generated in the hg18 assembly were transposed to
hg19 using LiftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Reads per
kilobase per million reads (RPKM)52 were calculated for non-overlapping 10 kb
genomic intervals for all sequence tracks. The features were further normalized to
the corresponding genome-wide average and correlation with gH2AX tracks was
performed (Spearman’s r correlation coefficient with Po2.2� 10� 16 in all cases).

Statistical analysis. Overall, sample size was chosen so that groups (for example,
time points) had comparable numbers (for example, number of imaged cells),
whenever possible. High-content microscopy and next-generation sequencing

provided large data sets ensuring statistical significance. All statistical analysis has
been performed using R or GraphPad Prism. Briefly, in case data were normally
distributed (Shapiro–Wilk test), ANOVA or Student’s t-test were performed for
groups or pairs, respectively. Else, Kruskal–Wallis or Wilcoxon/Mann–Whitney
rank sum tests were used for groups or pairs, respectively.

Integration of 3D-SIM and ChIP-Seq data. To integrate the ChIP-Seq data with
3D-SIM information, we first generated 25 independent profiles by applying a
smoothing factor to each gH2AX ChIP-Seq data set (Supplementary Fig. 4A). Such
smoothing factor is a moving average ranging from 1 (no smoothing) to 25
genomic intervals (indicated as ‘1D’, in Supplementary Fig. 4A). In parallel, we
measured the volume fraction occupied by gH2AX nano-foci as well as their
corresponding DNA content, before and during the DDR (Supplementary Fig. 4B).
In response to ionizing radiation, we observed an increase of the mean
gH2AX-occupied nuclear volume (from 0.21±0.21% to 7.81±3.19%), which
recapitulated the DDR (the volume was reduced to 3.70±1.39% and 0.66±0.43%,
at 3 h or 24 h post-ionizing radiation, respectively). Next, we applied the mean
volume fractions (0.21%, 7.81%, 3.70% and 0.66% for unirradiated, 0.5 h, 3 h and
24 h, respectively) to filter the previously smoothed genomic gH2AX ChIP-Seq
data so that only the 10 kb genomic intervals from the top percentiles of the read
density distributions were retrieved (Supplementary Fig. 4C). For example, as for
the unirradiated cells, we sampled the 99.79th percentile (top 100–0.21%) of
the intervals, while for the 0.5 h time point, we sampled the 92.19th percentile
(top 100–7.81%) of the total RPKM gH2AX ChIP-Seq distribution. A repre-
sentative image of filtered ChIP-Seq profiles is shown in Supplementary Fig. 4D. By
applying these imaging-based thresholds, we obtained a linear coverage of 4.7 Mbp,
159.0 Mbp, 92.3 Mbp and 21.8 Mbp, at unirradiated, 0.5 h, 3 h and 24 h time points,
respectively (Supplementary Fig. 4E). Finally, we employed the numbers of 3D
gH2AX nano-foci to match the numbers of 1D nano-domains as follows: first, the
number of 3D gH2AX nano-foci before and after the DDR was scaled down to
the haploid genome size to match the genomic data (ploidy correction factor:
HeLagenome size/haploid referencegenome size¼ 3.12); next, we chose the smoothing
factor at which the number of gH2AX nano-foci and the number of retrieved
genomic intervals matched best, at any given time point (Supplementary Fig. 4A,
over-imposed crosses). All ChIP-Seq domains identified via such approach are
referred to as ‘1D domains’ and an estimate of the 1D domain size distribution is
presented in Supplementary Fig. 4F.

Data availability. Next-generation sequencing results are available at GEO
(https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE60526.
Other data that support the findings of this study are available from the
corresponding author on reasonable request.
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Supplementary Figure 1. Characterization and validation of cellular system and 

experimental strategy. To characterize the DDR as assessed by γH2AX formation, cells 

were exposed to 10 Gy X-ray and incubated as indicated. (A) Confocal microscopy 

immunofluorescence analysis of γH2AX before and after exposure to ionizing radiation 

(IR). Total γH2AX fluorescence intensity (Arbitrary Units) with exemplary micrographs 

matched to the corresponding time point is shown. In the micrograph: γH2AX (green); 

propidium iodide counterstained DNA (red).  Results are mean and standard deviation 

from two independent experiments. *: significantly different from the mean of control 

unirradiated cells (one-way ANOVA, p<10-4). (B) Immunoblot analysis of γH2AX (top 

blot) before and after exposure to IR. Loading control: β-actin (bottom blot). The ratios 

between γH2AX and β-actin chemiluminescence signal intensities is normalized to one 

for the unirradiated sample (Unir) and shown as bars in an exemplary barplot. (C) Cell 

cycle analysis by flow cytometry. After exposure to IR, cells underwent cell cycle arrest 

and accumulated in S-phase up to five hours post IR. After repair of DNA damage, cells 

progressed from the S-phase arrest into G2-phase (24h). Note the reduced population 

in S-phase 24h post IR. Fraction of cells in S-phase is indicated in each box. Two 

independent experiments were performed and ~25,000 cells per time point were 

analyzed. (D) Apoptosis analysis by TUNEL assay. Cells were treated with TSA or 

bleomycin at the indicated concentrations, or exposed to 10 Gy X-ray and incubated for 

24h prior to analysis. “DNAse” (positive control) and unirradiated sample (negative 

control) are included. Results are mean and standard deviation from two independent 

experiments (n = 30; 15 imaged fields per condition per experiment). Total numbers of 

screened cells for each sample are indicated above each bar. The fraction of apoptotic 

cells never exceeded 1% in irradiated cells. *: two-tailed t-test, p<10-4. n.s.: not 

significant. (E) Growth curve of cells before and after IR (cyan curve) as opposed to 

unirradiated control (black curve). Cells were seeded 24h before irradiation or mock-

irradiation and cell number was assessed at indicated times. Note that after growth 

arrest, cells re-entered cell cycle and started proliferating again (24h post IR). Results 
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represent mean ± SEM from three independent growth curves, each performed in 

triplicate. *: two-tailed t-test, p<10-2. (F) Slot blot analysis to test γH2AX antibody 

specificity. The γH2AX and H2AX peptides used for immunization were blotted at 

increasing indicated amount. The membrane was then probed with γH2AX antibody. 

Little (250 ng) to no cross-reactivity of anti-γH2AX antibody with H2AX peptide was 

observed. (G) ChIP-Seq reproducibility was assessed by comparing the RPKM values 

from two biological replicates. γH2AX ChIP and ChIP-Seq library preparation from two 

independent experiments are compared. γH2AX RPKM values were computed in 10 

kbp genomic intervals, totalling 286,729 intervals. The two biological replicates show 

high linear correlation, with a Pearson’s r of 0.982 (p<2.2×10-16). (H) Workflow of the 

image analysis protocol to quantify 3D-SIM data, including nuclear segmentation (top), 

γH2AX (nano-)foci segmentation (mid) and cluster analysis (bottom). A minimum 

segmentation unit of 2×2×2 voxels was allowed. An exemplary cell from the 24h time 

point is shown, together with the number of foci/clusters at all stages (in red). A detailed 

protocol of the microscopy analysis is in the “Image analysis” section in Methods. 
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Supplementary Figure 2. (A) Segmentation of γH2AX nano-foci in 3D-SIM images 

before and during the DNA damage response. Mid-nuclear section (z: 125 nm) of 

representative images of cells before or after exposure to 10 Gy X-ray. The same cell is 

shown as re-computed pseudo-wide field image before or after deconvolution, as well 

as the original 3D-SIM output. The total number of segmented focal structures is 

presented in the middle panel, together with DAPI. The lower panels show magnified 

views of the yellow dashed frame. Scale bars: 5 µm and 500 nm for main micrographs 

and magnified regions, respectively. (B) 3D-SIM images represented in the Fourier’s 

space. To avoid reconstruction artifacts, the images were controlled in Fourier space. 

Here, sample images from the γH2AX and TUNEL co-staining are presented with the 

Fast Fourier Transformed (FFT) images of mid nuclear sections together with the 

underlying images as insets. No reconstruction artifacts are visible in the information 

containing central rosettes.  
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Supplementary Figure 3. Spectral karyotyping analysis of HeLa cells and DAPI-based 

cell cycle correction. (A) Quantification of the lateral and axial diameters of segmented 

objects in re-computed images, before and during DDR. The difference between lateral 

and axial measurements is due to the decreased resolution in the axial direction. (B) 

Schematic representation of the measurement of γH2AX nano-foci DNA content. The 



Natale, Rapp et al. 
	

	 7 

whole procedure is summarized in bullet points as follows: i) the nucleus of a cell 

(excluding the nucleoli) and each γH2AX nano-focus are segmented; ii) the sum of all 

voxel in the segmented nucleus corresponds to the total integrated DAPI intensity 

(indicated as „2.“); iii) for each γH2AX nano-focus, the DAPI values of each voxel 

belonging to the segmented volume are summed (indicated as „1.“); iv) the resulting 

values are then normalized over the total integrated DAPI intensity (indicated as „3.“); v) 

this provides the fraction of total DAPI embedded in a single nano-focus, independent 

of the local DNA condensation state; vi) finally, to estimate the DNA content, the DNA 

fractions were corrected for the total genome size (determined by spectral karyotyping, 

panel C) and the cell cycle phase (panel D) (C) Relative haploid chromosome 

frequencies were combined with the human reference chromosome length to generate 

frequency-adjusted haploid pseudo-chromosomes. The total pseudo-haploid genome 

(5.06 Gbp) is the sum of all pseudo-chromosomes. A summary of all statistics from SKY 

is shown in the bottom box and reveals HeLa quasi-tetraploidy. (D) Distribution of the 

nuclear volume of all wild type cells analyzed during the DDR (n = 177). The distribution 

was arbitrarily split into two halves, and the corresponding “genome size” correction 

factor was used to adjust the nano-foci size (Fig. 2C). The major contribution to the 

nano-foci size is provided by the “1× genome” fraction. 
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Supplementary Figure 4. Integration of 3D-SIM and ChIP-Seq data to estimate the 

size of genomic γH2AX-decorated chromatin. (A) generation of 25 independent profiles 

by applying a smoothing factor (moving average) to each γH2AX ChIP-Seq dataset 

(middle panel, coloured lines). Such smoothing factor is a moving average ranging from 

1 (no smoothing) to 25 genomic intervals (indicated as “1D”). Crosses (indicated as 

“3D”) are the ploidy-corrected 3D-SIM γH2AX nano-foci. The smoothing factor is 

chosen according to the best fit between genomic and microscopy data.  (B) Volume 

fraction occupied by γH2AX nano-foci as well as their corresponding DNA content, 

before and during the DNA damage response. (C) Filtering the previously smoothed 

genomic γH2AX ChIP-Seq data by applying the mean volume fractions measured in 

(B), so that only the 10 kbp genomic intervals from the top-percentiles of the read 

density distributions at matched time-points were retrieved. (D) Exemplary panel 

showing the filtered intervals from the underlying ChIP-Seq profiles. (E) Linear 

coverage of the filtered ChIP-Seq datasets. The total genomic coverage corresponds to 

the DNA content estimate we measured in the mean volume fraction from (B). (F) 

Estimate of the 1D domain size distribution. 
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Supplementary Figure 5. Genomic and microscopic analysis of γH2AX-decorated 

chromatin. (A) Genome-wide correlation between γH2AX levels and GC content before 

and after IR. Normalized levels were calculated as follows: [(γH2AXinterval 

RPKM/inputinterval RPKM)-(γH2AXaverage RPKM/inputaverage RPKM)], where “interval” is a 

10 kbp genomic interval and “average” is the genome-wide RPKM average value of all 

intervals in each corresponding dataset. Data are presented as density scatter plots of 

normalized γH2AX levels as a function of GC content. The early (0.5h, orange) mid- 

(3h, red) and late (24h, purple) stages of DDR as well as the sham-irradiated levels 

(Unir, grey) are shown. Black line: linear regression. Positive correlation with increasing 

GC content was observed before and up to 3h post IR. At 24h, the tendency was 

inverted, as indicated by the negative slope of the regression line. (B) γH2AX levels in 
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(anti-)RIDGEs before and after IR. Normalized levels are presented as [(γH2AX (anti-

)RIDGE RPKM/input(anti-)RIDGE RPKM) - (γH2AXaverage RPKM/inputaverage RPKM)] where 

“(anti-)RIDGE” is the total genomic coverage for all RIDGEs or anti-RIDGEs and 

“average” is the genome-wide RPKM average value of all genomic intervals. Upon IR, 

γH2AX is enriched in RIDGEs, whereas at later times the trend is inverted. Wilcoxon 

rank sum rest; p<10-5. (C) γH2AX levels in Giemsa-shaded band ideograms before and 

after IR. Normalized levels are presented as [(γH2AXband type RPKM/inputband type RPKM) - 

(γH2AXaverage RPKM/inputaverage RPKM)] where “band type” is the total genomic 

coverage for each band and “average” is the genome-wide RPKM average value of all 

genomic intervals. Upon IR, γH2AX is enriched in Giemsa light bands (negative and 

25%) whereas at later times the trend is inverted (75-100%). Kruskal-Wallis test and p-

values in Supplementary Table 4. (D) Genome-wide γH2AX levels before and after IR. 

Each dot in the scatterplot represents a 10 kbp genomic interval whose coordinates 

correspond to H3K9me3 (x-axis) and H3K36me3 (y-axis) levels. The relative γH2AX 

enrichment in each genomic interval is presented as a heat-map, increasing from blue 

to red. It is to be noted that, upon IR, γH2AX is enriched in H3K36me3-rich/H3K9me3-

poor compartments. Conversely, at later times, residual γH2AX signal is mainly found in 

H3K36me3-poor/H3K9me3-rich compartments. (E) γH2AX nano-foci (green) are 

segmented as described in Methods. The resulting volume units are then enlarged by 

three voxels in the three dimensions. All overlapping regions are merged to form a 

distinct volume unit. Finally, the volume of the original γH2AX nano-foci is subtracted to 

generate γH2AX shells. Fluorescence intensity of other probed features (e.g. H3K9me3, 

red) are then measured in the shells. The enlarged panels correspond to regions 

defined by the yellow frames. All boxes and whiskers represent 25-75 percentiles and 

three times the interquartile distance. 
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Supplementary Figure 6. Validation of γH2AX nano-foci and nano-foci clusters in cells. 

(A) Exemplary 3D-SIM images of γH2AX (red) before and during DDR showing a 3D 

representation of γH2AX nano-foci with DAPI channels in xy and yz mid-nuclear cross-

sections. (B) Effect of cut-off distance between nano-foci for the cluster analysis. 10 

cells per time point were analyzed for the effect of the clustering threshold distance 

(from 100 to 1,000 nm) and the resulting distributions are presented as boxplots. (left) 

Sum of 3D-clusters plus individual non-clustered nano-foci. (right) Total number of 3D-

clusters. 500 nm was the cut-off distance resulting in both the highest number of 

clusters and clear repair kinetics. Solid lines connect the medians of each distribution. 
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(C) γH2AX 3D cluster integrated volume distributions. The volume of each nano-focus 

included in a cluster is summed. Kruskal-Wallis chi-squared = 2,941.4, df = 3, 

p<2.2×10-16. (D) Distribution of the average inter-centroid distances measured between 

each nano-focus belonging to a given cluster.	Kruskal-Wallis chi-squared = 1,889.3, df 

= 3, p<2.2×10-16. (E) Distributions of the shortest paths connecting the centroids of all 

nano-foci belonging to a 3D cluster Kruskal-Wallis chi-squared = 2,223.7, df = 3, 

p<2.2×10-16. (F) Inter-focal 3D-clusters volume distributions, presented as the volume 

delimited by the centroids of each nano-focus belonging to a 3D-clusters Kruskal-Wallis 

chi-squared=2,217.5, df=3, p<2.2×10-16. (G) Dose-curve showing linear increase of 

γH2AX nano-foci. Cells were irradiated with 0.5, 1, 2, 5 and 10 Gy X-ray and incubated 

0.5h before fixation. γH2AX immunofluorescence was followed by nano-foci 

quantification on 3D-SIM images. The number of imaged cells per dose is shown in 

italic. Dashed line: linear regression calculated over the median of each distribution, 

after subtracting the median number of nano-foci from unirradiated cells. Estimated 

nano-foci per Gy: 495, after background subtraction. Kruskal-Wallis chi-squared = 

88.028, df = 5, p<2.2×10-16. All boxes and whiskers are 25th-75th percentile and three 

times the interquartile distance, respectively. n: number of analyzed 3D clusters. (H) 

Comparison between the numbers of γH2AX clusters, 0.5h post IR and the predicted 

number of DSBs induced by 10 Gy X-ray. 
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Supplementary Figure 7. Spatial localization of CTCF with respect of γH2AX-

decorated chromatin. (A) CTCF consensus motifs used in this work and from previous 

works. (B) Size comparison between CTCF-delimited chromatin segments and γH2AX 

3D-nano-foci and clusters. Because the CTCF motif is not a palindrome, two adjacent 

motifs can have four possible orientations. Recent findings indicate that, when a 
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chromatin loop is formed, the CTCF sites are facing one another in a convergent 

fashion in almost all cases. The distances between all adjacent CTCF genomic sites 

independent of their orientation (grey curve) as well as those between two adjacent 

convergent (black solid curves) or divergent (dashed curves) CTCF genomic sites are 

shown. The IQD of the “convergent adjacent” distribution (grey box; dashed line: 

median) is compared to that of γH2AX 3D clusters (left; orange box; line: median) or 

γH2AX nano-foci size (right; orange box; line: median). Little to no difference is 

observed when comparing distances between convergent adjacent CTCF sites and 

distances between random or divergent orientation (IQD: 150-987 kbp).  (C) 3D-SIM 

images of immuno-stained γH2AX and CTCF before and during DDR. The DAPI 

channel represents the mid-nuclear section. The dotted curved line delimits the nuclear 

contour. Panels on the right are enlarged views of a representative region (yellow 

dashed lines). (D) Three-dimensional rendering of γH2AX (green) and CTCF (red) 

immunostaining in a mid nuclear section, 24h after IR. The enlarged region represents 

γH2AX foci clusters surrounded by CTCF. White dashed lines: exemplary 

measurements. (E) Graphical representation of simulated γH2AX and CTCF foci 0.5h 

post IR in a sphere of volume comparable to that of a cell nucleus. The number of 

γH2AX and CTCF foci used in the simulation are matched to the number of foci 

detected in 3D-SIM images of each time-point. Specifically, 5,348, 6,731, 8,154, 7,497 

CTCF and 374, 4,357, 4,065 and 1,200 γH2AX nano-foci were used for unirradiated, 

0.5h, 3h and 24h time points, respectively. (F) Shell segmentation and analysis 

workflow for the measurement of CTCF proximity to γH2AX foci: i) γH2AX foci are 

segmented; ii) CTCF foci are segmented; iii) the closest Euclidian distance between the 

centroids of γH2AX and CTCF foci is measured. 
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Supplementary Figure 8. CTCF knock-down via RNAi. (A) Left, representative 

immunoblot of CTCF protein in the absence or presence of CTCF-esiRNA; lanes 1 and 

15: protein ladder; lanes 2 to 5: loading control with increasing amount from left to right 

(the cell number is indicated below); lanes 6 to 9: mock (GFP) esiRNA, quadruplicate; 

lane 10: untransfected control; lanes 11 to 14: CTCF esiRNA, quadruplicate. Right, 

quantification of CTCF protein levels, relative to the untransfected control. 72h after 

incubation with CTCF esiRNA, we observed the maximum depletion, with CTCF protein 

levels being about 40%, compared to the corresponding mock-treated sample (ANOVA 

with Dunnett’s correction; *: p<0.05, relative to control). (B) High-content 

immunofluorescence microscopy of cells in which CTCF protein was knocked-down via 
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esiRNA. Wide field images of DNA (up) and CTCF (down) immunofluorescence in the 

absence or presence of CTCF-esiRNA for the indicated times are shown. GFP esiRNA 

(middle panels) was used as mock transfection control. Scale bar: 100 µm. Right, the 

boxes are the distributions of total nuclear CTCF fluorescence intensity from at least 

4,500 cells at the indicated times post esiRNA treatment. Kruskal-Wallis test with 

Dunn’s multiple comparison correction. **: p<10-2; n.s.: not significant; all other pairs are 

significantly different with a p<10-3. (C) Diminished CTCF levels increase 

radiosensitivity. Colony formation assay was performed after exposing cells to the 

indicated X-ray doses. Values are mean and standard deviation from two independent 

assays. For each experiment, 3 and 6 technical replicates, for unirradiated and 

irradiated samples at the indicated doses, respectively, were analyzed. Two-tailed t-test 

with p<0.05 (*) or 0.01 (**). (D) Quantification of γH2AX nano-foci diameters in CTCF 

siRNA-treated cells before and after IR. Black dots: median length of γH2AX nano-foci 

diameters in untreated cells (from Fig. 2A). ***: Wilcoxon rank-sum test, p<<10-3. (E) 

γH2AX 3D-clusters integrated volume distributions (as in Supplementary Fig. 6C) in 

untreated (control), mock- and CTCF-depleted cells. n.s.: Kruskal-Wallis test with 

Dunn’s multiple comparison, with p>0.05. 

  



Natale, Rapp et al. 
!

! 18 

 

 

Supplementary Figure 9. High content immunofluorescence microscopy of phospho-

ATM (A) or phospho-DNA-PKcs (B) before or during DDR, in CTCF-depleted cells. 

Briefly, cells were exposed to 10 Gy IR, incubated for the indicated times and then 

fixed. High content immunofluorescence microscopy and analysis were then performed 

with an Operetta System. Scale bar: 100 "m, inset scale bar: 10 "m. Results are from 

two independent experiments, with >5,000 individual cells per condition per time-point 

analyzed. Kruskal-Wallis test with Dunn’s multiple comparison correction; all pairs are 

significantly different with a p<10-3. All boxes and whiskers represent 25-75 percentiles 

and three times the interquartile distance. 

  



Natale, Rapp et al. 
	

	 19 

Supplementary Table 1 

DNA content of γH2AX nano-foci and clusters 

	
3D nano-foci (kbp) Min. LowQ Med. Mean SD UpQ Max 
Unirradiated (n = 16,798) 0.8 23.8 38.9 53.6 48.1 64.9 369.2 
0.5 h (n = 233,515) 0.7 31.7 69.7 119.9 142.5 148.5 1,100.0 
3 h (n = 166,841) 1.9 27.9 57.8 106.6 138.3 125.9 1,281.0 
24 h (n = 50,143) 0.7 17.8 32.7 80.8 174.7 67.7 2,008.0 
3D clusters (kbp) Min. LowQ Med. Mean SD UpQ Max 
Unirradiated (n = 2,698) 21.1 81.7 132.1 190.7 173.8 234.6 1,624 
0.5 h (n = 37,820) 20.7 195.3 424.2 687.2 782.6 884.6 10,224 
3 h (n = 31,641) 21.7 141.5 300.7 478.9 547.8 622.1 12,251 
24 h (n = 7,990) 20.9 87.7 189.1 286.9 299.8 377.3 3,746 

 

Supplementary Table 2 

Ploidy-corrected DNA content of γH2AX nano-foci and clusters 

	
3D nano-foci (kbp) 
ploidy-corrected 

Min. LowQ Med. Mean SD UpQ Max 

Unirradiated (n = 16,798) 0.7 23.4 38.9 53.2 48.1 64.9 369.2 
0.5 h (n = 233,515) 0.7 33.7 74.6 126.9 149.9 159.1 1,137.0 
3 h (n = 166,841) 1.9 27.9 57.4 106.2 138.2 125.2 1,281.0 
24 h (n = 50,143) 0.7 25.1 48.1 104.2 180.2 104.4 2,008.0 
3D clusters (kbp) Min. LowQ Med. Mean SD UpQ Max 
Unirradiated (n = 2,698) 2.1 74.2 123.3 178.1 154.2 223.1 1,035.8 
0.5 h (n = 37,820) 10.2 197.3 440.8 710.2 767.3 937.7 5,324.3 
3 h (n = 31,641) 15.1 136.8 296.1 469.8 469.7 622.4 3,539.2 
24 h (n = 7,990) 4.3 111.9 269.2 400.3 389.8 553.9 2,439.3 
	

n: number of nano-foci (top) or clusters (bottom); Min., Max.: minimum and maximum value in the 
distribution; LowQ, UpQ: 25th and 75th percentiles of the distribution; Med.: median; SD: standard 
deviation. 
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Supplementary Table 3  

Overview of genomic features used 

	
Feature Cell Type Type of Data Data Source / Reference 
General Features 
G-banding Human % Shading UCSC Genome Brower 
Distance to the telomere  Hg19 Distance in bp UCSC Genome Brower 
Distance to the centromere  Hg19 Distance in bp UCSC Genome Brower 
Purine percent  Hg19 Percentage In-house calculation 
GC content Hg19 Percentage In-house calculation 
DNase HepG2 DNase-seq GSM816662 
FAIRE HepG2 FAIRE-seq GSM864354 
CpG island Hg19 Count UCSC Genome Brower 
Transcription 
miRNA  Human Count miRBase1 
TSS Hg19 Distance in bp UCSC Genome Brower 
Expression HepG2 Micro array GSM646144-52 
Rel. Pol2 HepG2 Chip-Seq GSM822284 
Rel. Pol2_S2 HepG2 Chip-Seq GSM935543 
RIDGES Human Coordinates http://r2.amc.nl 
Genic region Hg19 Count UCSC Genome Brower 
DNA Methylation 
Average DNA Methylation HepG2 Micro array GSM999338 
Number of DNA methylation sites 
(No. DNA Methyl.) 

HepG2 Micro array count GSM999338 

Relative MBD4 abundance (Rel. 
MBD4) 

HepG2 ChIP-seq GSM1010740 

Histones and Histone Modifications  
H2A.Z HepG2 Chip-Seq GSM7337743 
H3K4me1 HepG2 Chip-Seq GSM7983213 
H3K36me3 HepG2 Chip-Seq GSM7336853 
H3K9me3 HepG2 Chip-Seq GSM10035193 
H3K79me2 HepG2 Chip-Seq GSM7336413 
H3K27ac HepG2 Chip-Seq 3 
H3K27me3 HepG2 Chip-Seq 3 
H3K4me2 HepG2 Chip-Seq 3 
H3K4me3 HepG2 Chip-Seq 3 
H3K9ac HepG2 Chip-Seq 3 
H4K20me1 HepG2 Chip-Seq 3 
DNA Sequence Elements  
Alu repeats Human Count RepeatMasker4 
MIR repeats  Human Count RepeatMasker4 
LINE1 repeats Human Count RepeatMasker4 
LINE2 repeats Human Count RepeatMasker4 
MER repeats Human Count RepeatMasker4 
AT Low Complexity repeats Human Count RepeatMasker4 
GC Low Complexity repeats Human Count RepeatMasker4 
Simple repeats Human Count RepeatMasker4 
G-Quadruplex Forming repeats 
(Quadruplex repeats) 

Human Count RepeatMasker4 

Z-DNA Motif Human Count 5 
Z-DNA hotspot Human Count 5 
Inverted repeats Human Count 5 
Cruciform Motif Human Count 5 
Direct repeats Human Count 5 
Slipped Motif Human Count 5 
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Mirror repeats Human Count 5 
Triplex Motif Human Count 5 
A-Phased repeats Human Count 5 
Microsatellite Human Count RepeatMasker4 
DNA Replication 
Replication timing S1 GM12801 RepliSeq GSM9234406 
Replication timing S2 GM12801 RepliSeq GSM9234406 
Replication timing S3 GM12801 RepliSeq GSM9234406 
Replication timing S4 GM12801 RepliSeq GSM9234406 
Replication timing G1b GM12801 RepliSeq GSM9234406 
Replication timing G2 GM12801 RepliSeq GSM9234406 
Origins of replication by lambda 
exonuclease digestion (Origin 
Replication Lexo) 

HeLa Genomic array 7 

Origins of replication by anti-
bromodeoxyuridine IP (Origin 
Replication BrIP) 

HeLa Genomic array 7 

Origins of replication by common 
anti-bromodeoxyuridine IP and 
lambda exonuclease digestion 
(Lexo + BrIP) 

HeLa Genomic array 7 

Origins of replication (Ori. 
Cadoret) 

HeLa Genomic array 8 

Topoisomerase motif (Topo.CAT) Hg19 Density 9 
Topoisomerase motif (Topo.CTY) Hg19 Density 9 
Topoisomerase motif (Topo.GTY) Hg19 Density 9 
Topoisomerase motif (Topo.RAK) Hg19 Density 9 
Topoisomerase motif 
(Topo.YCCTT) 

Hg19 Density 9 

Topoisomerase motif (Topo.YTA) Hg19 Density 9 
DNA Binding Factors 
SMC3 (cohesin) HepG2 ChIP-seq GSM935542 
Lamina Associated Domain Tig3ET Coverage 10 
Rel.BRCA1 HepG2 ChIP-seq 3 
Rel.Rad21 HepG2 ChIP-seq 3 
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Supplementary Table 4 
Summary of statistical analyses related to figure S5 
 

Figure  Sample Test p-value Comment 
S5B Unir Wilcoxon rank sum 2.91e-6 RIDGEs (xx) vs. anti-RIDGEs (xx) 
S5B 0.5 h Wilcoxon rank sum 2.98e-10 RIDGEs (xx) vs. anti-RIDGEs (xx) 
S5B 3 h Wilcoxon rank sum 2.95e-9 RIDGEs (xx) vs. anti-RIDGEs (xx) 
S5B 24 h Wilcoxon rank sum < 2.2e-16 RIDGEs (xx) vs. anti-RIDGEs (xx) 
S5C Unir “0 vs 25” Kruskal-Wallis < 5e-2 Giemsa bands group comparison 
S5C Unir “0 vs 50” Kruskal-Wallis n.s.  
S5C Unir “0 vs 75” Kruskal-Wallis < 1e-3  
S5C Unir “0 vs 100” Kruskal-Wallis < 1e-3  
S5C Unir “25 vs 50” Kruskal-Wallis < 1e-2  
S5C Unir “25 vs 75” Kruskal-Wallis < 1e-3  
S5C Unir “25 vs 100” Kruskal-Wallis < 1e-3  
S5C Unir “50 vs 75” Kruskal-Wallis < 1e-3  
S5C Unir “50 vs 100” Kruskal-Wallis < 1e-3  
S5C  Unir “75 vs 100” Kruskal-Wallis < 5e-2  
S5C 0.5 h “0 vs 25” Kruskal-Wallis < 1e-2  
S5C 0.5 h “0 vs 50” Kruskal-Wallis n.s.  
S5C 0.5 h “0 vs 75” Kruskal-Wallis < 1e-3  
S5C 0.5 h “0 vs 100” Kruskal-Wallis < 1e-3  
S5C 0.5 h “25 vs 50” Kruskal-Wallis < 1e-2  
S5C 0.5 h “25 vs 75” Kruskal-Wallis < 1e-3  
S5C 0.5 h “25 vs 100” Kruskal-Wallis < 1e-3  
S5C 0.5 h “50 vs 75” Kruskal-Wallis < 1e-3  
S5C 0.5 h “50 vs 100” Kruskal-Wallis < 1e-3  
S5C 0.5 h “75 vs 100” Kruskal-Wallis < 1e-2  
S5C 3 h “0 vs 25” Kruskal-Wallis < 1e-3  
S5C 3 h “0 vs 50” Kruskal-Wallis n.s.  
S5C 3 h “0 vs 75” Kruskal-Wallis < 1e-3  
S5C 3 h “0 vs 100” Kruskal-Wallis < 1e-3  
S5C 3 h “25 vs 50” Kruskal-Wallis < 1e-2  
S5C 3 h “25 vs 75” Kruskal-Wallis < 1e-3  
S5C 3 h “25 vs 100” Kruskal-Wallis < 1e-3  
S5C 3 h “50 vs 75” Kruskal-Wallis < 1e-3  
S5C 3 h “50 vs 100” Kruskal-Wallis < 1e-3  
S5C 3 h “75 vs 100” Kruskal-Wallis < 1e-2  
S5C 24 h “0 vs 25” Kruskal-Wallis < 1e-2  
S5C 24 h “0 vs 50” Kruskal-Wallis n.s.  
S5C 24 h “0 vs 75” Kruskal-Wallis < 1e-3  
S5C 24 h “0 vs 100” Kruskal-Wallis < 1e-3  
S5C 24 h “25 vs 50” Kruskal-Wallis < 1e-3  
S5C 24 h “25 vs 75” Kruskal-Wallis < 1e-3  
S5C 24 h “25 vs 100” Kruskal-Wallis < 1e-3  
S5C 24 h “50 vs 75” Kruskal-Wallis < 1e-2  
S5C 24 h “50 vs 100” Kruskal-Wallis < 1e-3  
S5C 24 h “75 vs 100” Kruskal-Wallis n.s.  
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Supplementary Table 5 
Summary of γH2AX (nano-)foci and cluster numbers 
 

%	DDR* %	DDR*

Unir 13±10 (11) 46±33 (44) 75±26 (77.5) 392±347 (208) (4.1) 68±70 (23) (2.5)
0.5	h 53±20 (47) 268±56 (268) 427±83 (406) 6,287±2,785 (5,083.5) (100) 970±297 (920.5) (100)
3	h 44±14 (46) 194±73 (174) 361±111 (336) 3,603±1,148 (3,166.5) (62.3) 663±171 (623) (67.7)
24	h 23±19 (20) 128±55 (129) 197±45 (209) 1,210±406 (1,267) (24.9) 203±74 (220) (23.9)

microscopy pseudo-wide	fieldpseudo-wide	field

γH2AX	nano-foci	clusters
3D-SIM	cluster

γH2AX	foci
Confocal

γH2AX	nano-foci
deconvolved 3D-SIM

 
 
Indicated are the mean number of γH2AX (nano-)foci ± SD as well as the median (in brackets). 
*: assessed as percentage of γH2AX nano-foci or clusters relative to the median value from 0.5h (100%). 
Note that percentages are comparable between nano-foci and clusters, indicating that the cut-off 
distance from Supplementary Figure 6B did not impede the analysis of DDR. 
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Technical Note

Introduction

Biological drugs such as therapeutic antibodies are in the pro-
cess of replacing chemical compounds as the major class of 
future medicines. Therapeutic antibodies are often character-
ized by complex modes of action, such as inhibition of cell 
proliferation, induction of apoptosis, and targeted immune 
recruitment. Moreover, antibody drug conjugates (ADCs) 
that combine chemotherapeutic cytotoxicity with antibody-
mediated tumor specificity even increase the diversity of 
potential modes of action.1 Thus, the functional characteriza-
tion during early drug development requires sensitive cell-
based high-throughput assays that address this complexity 
and measure multiple cellular parameters.2 One of the major 
modes of action of therapeutic antibodies is based on inhibi-
tion of target cell growth by, for example, blocking growth 
signaling pathways in cancer cells.3 For assessing the antip-
roliferative potency of such candidates, several methods have 
been described.4 A simple approach to quantify the number 
of cells that survive treatment consists of automated cell 
counting.5 However, a significant proportion of remaining 
cells is likely to have entered apoptosis or cell cycle arrest, 
leading to an overestimation of the proliferating cell 

population. A more precise approximation of proliferation 
can be achieved by detecting metabolic activity in viable 
cells and thus excluding apoptotic cells. Compounds such as 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) are converted to a colored product by NAD(P)H- 
dependent cellular oxidoreductases, providing a quantifiable 
measure for metabolic activity.6 An alternative approach to 
assess viability is the detection of intracellular adenosine tri-
phosphate (ATP), which is maintained only at high levels in 
metabolically active cells and declines rapidly upon cell 
death or apoptosis. The release of intracellular ATP and its 
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Abstract
Monoclonal antibodies (mAbs) have become a central class of therapeutic agents in particular as antiproliferative compounds. 
Their often complex modes of action require sensitive assays during early, functional characterization. Current cell-based 
proliferation assays often detect metabolites that are indicative of metabolic activity but do not directly account for cell 
proliferation. Measuring DNA replication by incorporation of base analogues such as 5-bromo-2′-deoxyuridine (BrdU) 
fills this analytical gap but was previously restricted to bulk effect characterization in enzyme-linked immunosorbent assay 
formats. Here, we describe a cell-based assay format for the characterization of antiproliferative mAbs regarding potency 
and mode of action in a single experiment. The assay makes use of single cell–based high-content-analysis (HCA) for 
the reliable quantification of replicating cells and DNA content via 5-ethynyl-2′-deoxyuridine (EdU) and 4′,6-diamidino-
2-phenylindole (DAPI), respectively, as sensitive measures of antiproliferative mAb activity. We used trastuzumab, an 
antiproliferative therapeutic antibody interfering with HER2 cell surface receptor-mediated growth signal transduction, 
and HER2-overexpressing cell lines BT474 and SKBR3 to demonstrate up to 10-fold signal-to-background (S/B) ratios 
for treated versus untreated cells and a shift in cell cycle profiles indicating antibody-induced cell cycle arrest. The assay 
is simple, cost-effective, and sensitive, providing a cell-based format for preclinical characterization of therapeutic mAbs.
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detection via ATP-dependent luciferase activity is widely 
used in proliferation assays.7

However, cells that have undergone cell cycle arrest are still 
metabolically active and consequently not distinguishable 
from proliferating cells by above-described assays. A major 
characteristic of proliferating cells is the replication of DNA 
during S phase. Thus, the incorporation of nucleotide ana-
logues such as 5-bromo-2′-deoxyuridine (BrdU) into chromo-
somal DNA during replication allows for the distinction 
between proliferating and arrested cells. BrdU can be detected 
by antibodies and thus may be implemented with highly sensi-
tive enzyme-linked immunosorbent assay (ELISA)–based 
multiwell assays.8 It has been shown that a wider separation 
between signals from treated and untreated samples (signal-to-
background [S/B] ratio) can be achieved with BrdU incorpora-
tion compared with assays detecting metabolic activity.9 
5-Ethynyl-2′-deoxyuridine (EdU), an alternative nucleotide 
analogue, enables a simpler, milder, and more efficient detec-
tion via copper-catalyzed azide alkyne cycloaddition (CuAAC) 
of fluorescent dyes, such as 6-FAM–azide. The use of EdU 
coupled to fluorescent dyes simplifies the assay procedure and 
in addition improves compatibility with other nuclear stains 
such as 4′,6-diamidino-2-phenylindole (DAPI), thus represent-
ing the method of choice for sensitive microscopy-based 
detection of proliferation.

Accurate distinction between proliferating and nonpro-
liferating cells improves the sensitivity of an antiprolifera-
tive potency assay (Fig. 1). Changing the mode of signal 
detection, on one hand, can further improve sensitivity but 
also provide additional information about the antiprolifera-
tive effect. Plate reader–based readouts are commonly used 
in screening experiments to validate lead candidates and 
produce statistically relevant data. Commonly used colori-
metric multiwell proliferation assays are restricted to single- 
course parameters such as mean metabolic activity per well. 
To better understand the mode of action underlying an 

antiproliferative effect, cellular or subcellular information 
on signal localization and intensity may prove useful, which 
is usually not accessible with plate reader systems. 
Fluorescence microscopy is the method of choice to gain 
information about single cells with a variety of microscopic 
high-content screening (HCS) platforms developed in 
recent years that allow for automated image acquisition and 
analysis in a high-throughput manner.10

In the present study, we describe a simple and sensitive 
microscopic high-content assay for the quantification and 
characterization of the antiproliferative potency of thera-
peutic antibodies. The quantification of replicating cells, 
via EdU incorporation, as a measure for proliferation allows 
for most sensitive distinction between proliferating and 
nonproliferating cells. In addition to quantifying the antip-
roliferative potency of a monoclonal antibody (mAb), the 
mode of action can be investigated in the course of the same 
experiment. For example, potential induction of cell cycle 
arrest can be studied by cell cycle profiling based on nuclear 
DNA content quantification.

Materials and Methods

Cell Lines and Cell Culture

Antibodies were produced in FreeStyle HEK 293-F cells 
(Thermo Fisher Scientific, Waltham, MA, USA) cultured in 
FreeStyle 293 Expression Medium and maintained at cell 
densities from 3 × 105 to 3 × 106 cells/mL in a shaker flask 
at 37 °C, 5% CO2, shaking at 120 rpm.

HER2 overexpression cell lines BT474 (ATCC HTB20) 
and SKBR3 (ATCC HTB30) and a control cell line with 
neglectable HER2 expression levels (1000-fold less than 
SKBR3), MDA-MB-468 (ATCC HTB-132), were cultured 
in Dulbecco’s modified Eagle’s medium (DMEM)/F12 + 
Gibco Glutamax-I (Thermo Fisher Scientific, Waltham, 

Figure 1. Addressing proliferation at different layers. Antiproliferative antibodies interfere with a cell’s ability to replicate. Directly, 
detecting replicating cells (green) allows for the largest separation between maximal and minimal number of affected cells. Indirectly, 
restrained DNA replication also reduces the amount of metabolically active cells and the total number of cells remaining after 
treatment. However, the detection of metabolically active cells (magenta) includes arrested cells, resulting in an overestimation of 
proliferating cells. This effect is even more drastic when further generalizing the detection to all remaining cells (orange), which also 
includes apoptotic cells.
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MA, USA) supplemented with 10% fetal calf serum (FCS) 
at 37 °C, 5% CO2.

Protein Expression and Purification

Trastuzumab was expressed in FreeStyle HEK 293-F cells as 
described previously from the pVITRO1-trastuzumab-IgG1/κ 
vector (Addgene plasmid 61883; Addgene, Cambridge, MA, 
USA).11

Antibody purification from cleared and sterile filtered cell 
culture supernatants was performed with an Äkta purifier 
system equipped with a 1-mL HiTrap Protein A HP column 
(GE Healthcare, Piscataway, NJ). The system was operated 
with a constant flow rate of 1 mL/min. After sample applica-
tion, the column was washed with 10 column volumes (CVs) 
of wash buffer (20 mM phosphate buffer, 150 mM NaCl, pH 
7.3). Bound antibody was eluted with a one-step pH decrease 
to 3.0 (10 mM Na-citrate buffer, pH 3.0). Eluted fractions of 
size 0.2 mL or 0.5 mL were collected followed by immediate 
neutralization of the pH with one-third volume 1 M Tris HCl, 
pH 8.0. Peak fractions were pooled and concentrated using 
an Amicon Ultra 4-mL Centrifugal Filter NMWL 10 kDa 
(Merck Millipore, Billerica, MA, USA) and stored at 4 °C or 
snap frozen in liquid nitrogen and transferred to −80 °C for 
long-term storage.

Antibody Treatment, EdU Incorporation, and 
Nuclear Staining

In total, 1 × 104 cells were seeded in each well of a 96-well 
optical cell culture plate supplemented with 100 µL culture 
media. To ensure proper attachment, cells were incubated for 
4 h prior to addition of antibody. The 1:3 serial dilutions of 
trastuzumab in culture media were performed at threefold the 
desired final concentration, ranging from 50 nM to 0 nM. 
Then, 50 µL of each dilution was added in triplicates to indi-
vidual wells. Cells were incubated with antibody for 4 days 
followed by the addition of EdU to a final concentration of 10 
µM. To guarantee labeling of all proliferating cells, EdU 
treatment was done for 20 h followed by fixation of cells in 
phosphate-buffered saline (PBS) + 4% paraformaldehyde 
(PFA), permeabilization in PBS + 0.5% Triton X-100, and 
blocking of the well surface with PBT (PBS, 2% BSA, and 
0.02% Tween 20). EdU was labeled via CuAAC by the addi-
tion of 30 µL of staining reagent (4 mM CuSO4, 20 µM 
6-FAM–azide, 50 µM Na-ascorbate in 100 mM Tris/HCl, pH 
7.0) per well and incubated for 30 min at room temperature. 
Remaining unconjugated dye was removed by washing three 
times with 100 µL PBST (PBS + 0.02% Tween 20). Then, 
100 ng/mL DAPI in PBST was added for 10 min at room 
temperature to counterstain nuclear DNA, followed by three 
washing steps with PBST and one additional wash with 
ddH2O.

Image Acquisition and Data Analysis

Images were acquired with an Operetta High-Content 
Imaging system (PerkinElmer, Waltham, MA, USA) 
equipped with a 40× high NA objective. The 380/40-nm 
excitation and 410- to 480-nm emission filters were used to 
image DAPI, and the 475/30-nm excitation and 500- to 
550-nm emission filters were used to image 6-FAM–EdU.

DAPI images were used to segment and count the total 
number of nuclei for each well, representing the total cell 
count. Each antibody concentration was tested in technical 
triplicates. Total cell counts of triplicates were averaged and 
normalized to the cell count of an untreated control 
(c(trastuzumab) = 0). Averaged and normalized cell counts 
were plotted against log10-transformed antibody concentra-
tions. Fitting a nonlinear four-parametric model equation 
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modeling S phase, were fitted to the DAPI intensity proba-
bility densities px and histogram bin centers x to model the 
DNA content distribution throughout the cell cycle. The 
function was fitted by globally minimizing the squared 
error via simulated annealing using the GenSA package in 
R. By integrating over the respective term of the derived fit 
equation representing the G1, S, or G2/M phase, the relative 
proportion of each phase of the whole cell population was 
calculated—for example,
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Based on 6-FAM–EdU signal, nuclei were classified as pro-
liferating or nonproliferating. Data averaging, normaliza-
tion, and curve fitting were done in a similar manner as 
described above for total cell counts.

All image processing was performed with the Harmony 
software (PerkinElmer); data analysis and curve fitting were 
done in MATLAB and R (2016, https://www.R-project.org). 
The R script used for the estimation of cell cycle distribu-
tions from DAPI intensity distributions is available at https://
github.com/hoerldavid/CellCycleFit.

Results and Discussion

In the field of biologics, therapeutic antibodies have 
emerged as an especially promising drug format over the 
past years.2 A role model for this class of drugs is trastu-
zumab, which binds the extracellular domain of the HER2 
cell surface receptor. In a subset of breast cancers, the 
growth factor receptor HER2 is overexpressed and medi-
ates increased proliferation.12 Trastuzumab counteracts this 
accelerated growth by reducing HER2-mediated signaling 
and therefore acting as an antiproliferative drug on HER2-
overexpressing cells.13 To assess the antiproliferative potency 
of a therapeutic antibody, cells are subjected to a range of 
antibody concentrations. Higher antibody concentrations 
are expected to lead to lower numbers of viable cells and  
an even more pronounced decrease in proliferating cells 
(Fig. 1).

In the described assay, HER2-overexpressing cells (BT474 
and SKBR3) and control cells (MDA-MB-468) were supple-
mented with EdU after 4 days of trastuzumab treatment. The 
proliferating fraction of the cell population incorporates EdU 
molecules into newly synthesized DNA during S phase. 
Surviving cells are stained with DAPI, whereas the incorpo-
rated EdU is labeled by CuAAC-mediated coupling of the 
fluorescent dye 6-FAM–azide. Imaging of stained cells on an 
Operetta system facilitates the detection and segmentation of 
nuclei, DNA content analysis using the DAPI signal, and 
definition of the proliferation status according to the EdU sig-
nal. Testing multiple antibodies over a range of concentra-
tions is conveniently done in a multiwell tissue culture plate, 
which is compatible with the Operetta HCS imaging system. 
With this setup, an inhibition curve with 10 data points as 
technical triplicates can easily be generated for two individ-
ual antibodies in a 96-well format. Quantification of counted 
nuclei and detected proliferating cells can readily be done 
with the built-in software package of the Operetta system 
(Harmony), whereas statistical analysis and curve fitting are 
conveniently handled with respective MATLAB toolboxes. 

Besides the quantification of total cell counts and proliferat-
ing cells, the relative intensities of the DAPI and/or EdU sig-
nal per nucleus provide additional information with regard to 
cell cycle phase distributions.

Cell Survival and Cell Cycle Progression

Treatment of HER2-overexpressing cell lines with trastu-
zumab leads to a reduction in cell growth, but BT474 cells 
have been reported to be more susceptible than SKBR3 
cells.14 After 4 days of treatment, fluorescence microscopy 
of DAPI-stained nuclei indicates a clear reduction in cells 
with increasing concentrations of trastuzumab for BT474 
(Fig. 2A) as well as SKBR3 cells. Next, we performed 
high-content image analysis by nuclei segmentation and 
subsequent quantification of surviving cells as a function of 
antibody concentration. By fitting a four-parametric nonlin-
ear model to the obtained data points, we calculated inhibi-
tion curves. These fits revealed a decrease in total cell 
number with increasing antibody concentration and S/B 
ratios lower than 3 for BT474 (Fig. 2B) and SKBR3 (Fig. 
2C). The maximal induction of cell death is 64% with a 
concentration of half maximal inhibition (IC50) of 1.8 nM 
for BT474 cells and 65% with an IC50 value of 1.9 nM for 
SKBR3 cells. The low S/B values can be explained by the 
specific mode of action mediated by trastuzumab, deceler-
ating cell proliferation rather than actively promoting cell 
death.14 Therefore, cells that have already passed G1 phase 
will further progress in cell cycle. With BT474 and SKBR3 
cells exhibiting long doubling times (2–3 days), S/B ratios 
greater than 4 (two doublings) are not to be expected in the 
time course of the assay, which holds also true for other 
assays merely detecting survival or viability.9 Moreover, a 
very low Hill slope could be observed for SKBR3 cells 
compared with BT474, which is linked to the lower suscep-
tibility of SKBR3 to trastuzumab.9,14 Consistently, an 
unsusceptible cell line (MDA-MB-468) showed no differ-
ence in the number of viable cells between treated and 
untreated conditions (Fig. 2B,C). These results indicate that 
exclusively measuring cell survival is limiting the S/B ratio 
of proliferation assays, since arrested cells, which are still 
metabolically active, cannot be distinguished from prolifer-
ating cells.

High-content image analysis of DAPI-stained nuclei allows 
not only segmentation and quantification of nuclei but also 
the measurement of relative nuclear DNA contents. Since the 
amount of chromosomal DNA doubles through S phase from 
G1 to G2 phase, the absolute DAPI signal per nucleus can be 
used to analyze changes in cell cycle distributions. In this 
line, we generated frequency histograms of the absolute 
DAPI intensity per nucleus (Fig. 3A and Suppl. Fig. S1). 
Fitting a three-term model function to the data allowed us to 
determine the proportion of cells within each cell cycle phase 
(Fig. 3B). SKBR3 cells exhibited a clear change in cell cycle 
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profiles upon trastuzumab treatment. The quantification of 
these data shows a decrease in the G2 phase population with 
increasing antibody concentration, which suggests an arrest 
in either G1 or S phase. This is consistent with the proposed 
G1 arrest induced by trastuzumab.15

Cell cycle profiles are an additional readout of the 
described assay and provide supplementary information 

about the mode of action of an antiproliferative antibody. 
Investigation of potency and mode of action in a single exper-
iment was facilitated by increasing resolution to the single-
cell level combined with high-throughput sample and data 
handling implemented in HCS systems. Cell cycle analysis of 
the less susceptible SKBR3 cell line showed that we are able 
to analyze an antibody’s mode of action even if the overall 

Figure 2. Quantification of antiproliferative potency by counting nuclei of surviving cells. 4′,6-Diamidino-2-phenylindole (DAPI)–
stained nuclei were imaged with an Operetta high-content screening (HCS) system. Representative images of BT474 cells for four 
different antibody concentrations are shown in (A). Scale bar represents 100 µm. The observed decrease in surviving cells was 
quantified from technical triplicates for nine individual antibody concentrations (0.008–50 nM) and an untreated control. Averaged 
triplicates normalized to untreated control were plotted against log10-transformed trastuzumab concentrations for BT474 (B) and 
SKBR3 (C) and fitted to a four-parametric inhibition curve model equation (solid lines). Proliferation of a negative control cell line, 
MDA-MB-468, was unaffected by trastuzumab treatment (dashed line). The maximal difference in the number of surviving cells was 
2.7-fold for BT474 as well as for SKBR3 cells.

Figure 3. Shift in cell cycle distribution of trastuzumab-treated SKBR3 cells. Nuclear 4′,6-diamidino-2-phenylindole (DAPI) intensities 
were analyzed to categorize cells into cell cycle phases according to their relative DNA content. Probability density histograms of 
DAPI intensities were used to fit a model equation to the observed distribution. An exemplary histogram for c(trastuzumab) = 16 nM 
is given in (A) with the fitted curve in cyan and respective cell cycle phase terms in red (G1), blue (S), and green (G2/M). Integration 
over the individual terms yields the proportion of cells in each cell cycle phase treated with different trastuzumab concentrations (B). 
High concentrations of trastuzumab lead to a reduction in the G2/M phase proportion, indicating cell cycle arrest.
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antiproliferative effect is weak. Nevertheless, it is also 
desirable to detect this weak proliferation inhibition with 
greater resolution. To address this need, we chose EdU 
incorporation for sensitive detection of proliferating cells.

Increased Assay Sensitivity via Quantification of 
EdU Incorporating Cells

Since DNA replication is a major characteristic of prolifera-
tion, we decided to use EdU incorporation as a marker for 
proliferating cells. Labeling EdU with a fluorescent dye 
allowed the distinction between proliferating and nonprolif-
erating cells by fluorescence microscopy. Automated quan-
tification of EdU-positive cells increased the S/B ratio to 10 
for treated versus untreated BT474 cells (Fig. 4B). A con-
centration of half maximal inhibition (IC50) of 4.9 nM was 
obtained from the fitted inhibition curve, whereas the 

maximal induction of proliferation inhibition was 90%. For 
SKBR3 cells, we observed a maximal induction of prolif-
eration inhibition of 64% and IC50 of 3.9 nM. To ensure that 
the detected inhibition of proliferation was due to trastuzumab-
mediated effects, we subjected a control cell line, 
MDA-MB-468, to the same treatment. As expected, we 
could not observe any difference in the proliferating frac-
tion upon addition of trastuzumab (Fig. 4B,C). We could 
show that EdU incorporation-based detection of proliferat-
ing cells by microscopy greatly increases the S/B ratio com-
pared with detecting surviving cells and improves the 
inhibition curve parameters such as Hill slope in the case of 
SKBR3 (Fig. 4C). A 10-fold change in proliferation has 
recently also been demonstrated with a DELFIA-BrdU–
based assay.9 However, the assay described in the present 
article uses the more sensitive and mild EdU staining 
method, provides the possibility for multiplexed readout of 

Figure 4. Improving assay sensitivity by detecting proliferating cells via 5-ethynyl-2′-deoxyuridine (EdU) incorporation. EdU, 
incorporated into chromosomal DNA during replication, was labeled by copper-catalyzed azide alkyne cycloaddition (CuAAC) with 
6-FAM and imaged with an Operetta high-content screening (HCS) system. Representative images of BT474 cells are shown in (A). 
Scale bar represents 100 µm. Segmented nuclei from Figure 2A were classified as proliferating (green) or nonproliferating (red) 
based on EdU signal presence. It is clearly visible that only a small fraction of all surviving cells is still proliferating at high antibody 
concentrations. Results of quantification of proliferating cells and data fitting similar to data in Figure 2 are shown for BT474 cells 
(B) and SKBR3 cells (C). The signal to background (S/B) ratio could be greatly improved for BT474 cells from 2.7 to 10 compared 
with surviving cell quantification (Fig. 2). SKBR3 cells exhibit an S/B ratio of 2.8, which is comparable to the value derived from 
4′,6-diamidino-2-phenylindole (DAPI)–based quantification of surviving cells (2.7).
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various parameters, and increases the assay resolution by 
the detection of single cells instead of averaging over a bulk 
population.

In summary, we could show that EdU-based labeling of 
proliferating cells with subsequent automated imaging and 
analysis combined with DAPI-based cell cycle profiling is 
a simple and sensitive way for parallel investigation of anti-
proliferative potency and mode of action of therapeutic 
antibodies.
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Figure S1 Histograms of total nuclear DAPI intensities and fitted cell cycle 

phase curves. Total DAPI intensities per nucleus were calculated for SKBR3 cells 

and plotted as probability density histograms at four different trastuzumab 

concentrations. A prominent peak for G1 phase was observed, a plateau 

representing S phase and a smaller peak at approximately two times the DNA 

content of G1 phase cells, consisting of cells in G2/M phase. Solid line graphs 

represent either the G1 phase term (red), S phase term (blue) or G2/M phase term 

(green) of the resulting fit (cyan). Integration over the individual terms yielded relative 

quantities for each cell cycle phase (see Figure 2). 

  



Figure S2 Quantification of proliferating cells improves assay sensitivity 

compared to counting total surviving cells. Total cell count (orange) and 

proliferating cell fraction (green) are depicted for different trastuzumab 

concentrations. With increasing antibody concentration the number of cells surviving 

treatment is decreased for BT474 as well as for SKBR3 cells. Even more pronounced 

is the decrease in proliferating cells of the surviving cell population illustrating the

increased sensitivity demonstrated with the described assay. These data reflect the 

assay schematic given in Figure 1.
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DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes 
hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. 
With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 
PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase ac-
tivity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-de-
ficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics 
and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of 
DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and 
subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory 
mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and il-
lustrate the multifaceted interplay between DNA and histone modifications. The identification and functional charac-
terization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquiti-
nation might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.
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Introduction

E pi ge ne t i c  m e c h a ni s m s  i nc l u d i ng D N A  a nd  h i s t o ne  
modifications are crucial for the regulation of gene ex -
pr e s s i o n d u r i ng d e v e l o pm e nt .  D N A  m e t h y l a t i o n o c c u r s  

a t  t h e  C 5  po s i t i o n o f  c y t o s i ne  r e s i d u e s ,  m o s t l y  w i t h i n 
c yt os i ne - gua ni ne  di nuc l e ot i de s  ( C pG ) , a nd i s  i nvol ve d i n 
i m pr i nt i ng, X - c hr om os om e  i na c t i va t i on, s t a bl e  t r a ns c r i p-
t i o na l  r e pr e s s i o n,  ge no m e  s t a b i l i t y  a nd  t u m o r i ge ne s i s  
[ 1] . D N A  m e t hyl a t i on pa t t e r ns  a r e  e s t a bl i s he d by t he  de 
novo m e t h yl t r a ns f e r a s e s  D N M T 3 A  a nd  D N M T 3 B  du r i ng 
ga m e t oge ne s i s  a nd e a r l y de ve l opm e nt , a nd a r e  pr opa ga t -
e d  b y  t h e  m a i nt e na nc e  m e t h y l t r a ns f e r a s e  D N M T 1  a f t e r  
D N A  r e pl i c a t i on i n s om a t i c  c e l l s .

D N M T 1  c o m pr i s e s  a  r e gu l a t o r y  N - t e r m i na l  d o m a i n 
( N T D ) , w hi c h c ove r s  t w o- t hi r ds  of  t he  m ol e c ul e , a nd a  
C - t e r m i na l  c a t a l yt i c  dom a i n ( C D ) , w hi c h c ont a i ns  a l l  e s -
s e nt i a l  m ot i f s  of  a c t i ve  C 5 D N A  m e t hyl t r a ns f e r a s e s . T he  
N T D  c o nt r o l s  t h e  s u b c e l l u l a r  d i s t r i b u t i o n o f  D N M T 1  
d u r i ng t h e  c e l l  c y c l e  a nd  i t s  e nz y m a t i c  a c t i v i t y .  A  s u b -
dom a i n i n t he  N T D  w a s  i ni t i a l l y de s c r i be d a s  a  t a r ge t i ng 
s e q u e nc e  ( T S )  a s  i t  w a s  f o u nd  t o  m e d i a t e  t h e  a s s o c i a -
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t i o n o f  D N M T 1  w i t h  l a t e  r e pl i c a t i ng pe r i c e nt r o m e r i c  
h e t e r o c h r o m a t i n [ 2 ] .  S u b s e q u e nt  s t u d i e s  d e f i ne d  a  d i s -
t i nc t  pr o l i f e r a t i ng c e l l  nu c l e a r  a nt i ge n ( P C N A )  b i nd i ng 
d o m a i n ( P B D )  r e s po ns i b l e  f o r  t h e  i nt e r a c t i o n w i t h  t h e  
r e pl i c a t i o n m a c h i ne r y  [ 3 ] .  T h e  s u b nu c l e a r  l o c a l i z a t i o n 
of  D N M T 1 unde r go e s  c ha r a c t e r i s t i c  c ha nge s  t hr oughout  
t h e  c e l l  c y c l e  r e f l e c t i ng P B D - m e d i a t e d  P C N A  b i nd i ng 
dur i ng S  pha s e  a nd T S  dom a i n- m e di a t e d he t e r oc hr om a -
t i n a s s oc i a t i on d ur i ng l a t e  S  a nd G 2 pha s e  [ 4, 5] . T he  a s -
s oc i a t i on of  D N M T 1 w i t h t he  r e pl i c a t i o n m a c hi ne r y e n-
hances methylation efficiency, but is not strictly required 
f or  pos t r e pl i c a t i ve  m a i nt e na nc e  D N A  m e t hyl a t i on [ 6, 7] . 
I n c o nt r a s t , t he  T S  dom a i n w a s  f ound t o be  r e qui r e d f or  
D N M T 1 e nz ym a t i c  a c t i vi t y [ 8 , 9] . H ow e ve r , t he  m ol e c -
ul a r  m e c ha ni s m  of  T S  dom a i n f unc t i on i n t he  r e gul a t i on 
of  m a i nt e na nc e  D N A  m e t hyl a t i on r e m a i ns  e l us i ve .

B e s i d e s  i t s  r o l e  i n r e pl i c a t i o n- i nd e pe nd e nt  h e t e r o c h -
r o m a t i n b i nd i ng,  t h e  T S  d o m a i n m e d i a t e s  D N M T 1  h o -
m odi m e r i z a t i on [ 9]  a nd a ut oi nhi bi t i on [ 10, 1 1] . A  r e c e nt  
c r y s t a l  s t r u c t u r e  s h o w s  t h a t  t h e  T S  d o m a i n i ns e r t s  i nt o  
t he  D N A  bi ndi ng poc ke t  of  t h e  C D , i ndi c a t i ng a  r ol e  of  
i nt r a m ol e c ul a r  i nt e r a c t i ons  i n t he  r e gul a t i on of  D N M T 1 
a c t i vi t y [ 10, 1 1] . M o r e ove r , t he  T S  dom a i n i nt e r a c t s  w i t h 
t h e  S E T -  a nd  R I N G - a s s o c i a t e d  ( S R A )  d o m a i n o f  u b i q -
uitin like, containing PHD and RING finger domains 1 
( U H R F 1)  [ 12- 14] . I n c ont r a s t  t o U H R F 2, t he  i nt e r a c t i on 
o f  U H R F 1 w i t h D N M T 1 w a s  f o un d t o  b e  S  ph a s e - d e pe n-
de nt  [ 15] .

U H R F 1, a l s o kn o w n a s  N P 95 ( m ous e )  or  I C B P 90 ( hu -
m a n) , ha s  be e n r e por t e d a s  a  c r uc i a l  c of a c t or  f or  m a i n-
t e na nc e  D N A  m e t h y l a t i o n.  M i c e  l a c k i ng U H R F 1  s h o w  
a  s i m i l a r  phe not ype  a s  Dnmt1 nul l  ( Dnmt1−/−)  m i c e  t ha t  
m a ni f e s t s  i n ge nom i c  D N A  hypom e t hyl a t i on a nd  de ve l -
opm e nt a l  a r r e s t  a t  e m br yoni c  da y 9.5 [ 16- 18] . T h e  S R A  
dom a i n of  U H R F 1 pr e f e r e nt i a l l y bi nds  t o he m i m e t hyl a t -
e d  D N A  r e s u l t i ng f r o m  s e m i c o ns e r v a t i v e  D N A  r e pl i c a -
t i on a nd i s , t he r e f or e , t hought  t o pl a y a n i m por t a nt  r ol e  
i n l o a d i ng D N M T 1  o nt o  ne w l y  s y nt h e s i z e d  D N A  s u b -
s t r a t e s  [ 16, 17, 19- 2 2] . T he  he t e r oc hr om a t i n a s s o c i a t i on 
of  U H R F 1 i s  a l s o m e di a t e d by t he  t a nde m  T udor  d om a i n 
(TTD), which forms an aromatic cage for specific bind-
i ng o f  h i s t one  H 3 t a i l s  c ont a i ni ng a  t r i m e t hyl a t e d l ys i ne  
9 ( H 3 K 9m e 3)  r e s i due  [ 22- 25] . T he  pl a nt  hom e odom a i n 
( P H D )  w a s  r e por t e d  t o a c t  i n c om bi na t i on w i t h t he  T T D  
t o  r e a d  t h e  H 3 K 9 m e 3  m a r k  [ 2 6 ]  a nd  t o  c o nt r i b u t e  t o  
l a r ge - s c a l e  r e or ga ni z a t i on of  pe r i c e nt r om e r i c  he t e r oc hr o -
m a t i n [ 27] . I n a ddi t i on, U H R F 1 ha r bor s  a  r e a l l y i nt e r e s t -
i ng ne w  ge ne  ( R I N G )  d o m a i n e nd o w e d  w i t h  u b i q u i t i n E 3  
l i ga s e  a c t i vi t y in vitro, w hi c h i s  r e qui r e d f or  gr ow t h r e g-
ul a t i on of  t um or  c e l l s  [ 24, 28] . T he  ub i qui t i na t i on s t a t e  
a nd s t a bi l i t y of  D N M T 1 i s  c ont r ol l e d by U H R F 1 a nd t he  
ubiquitin-specific protease USP7 [29, 30]. UHRF1 over-

e xpr e s s i on l e a d s  t o D N A  hypom e t hyl a t i on by t he  de s t a -
b i l i z a t i o n a nd  d e l o c a l i z a t i o n o f  D N M T 1  [ 3 1 ] .  B e s i d e s  
i t s  r ol e  i n m a r ki ng D N M T 1 f or  pr ot e a s om a l  de gr a da t i on, 
U H R F 1 a l s o e xe r t s  i t s  ubi qui t i n E 3 l i ga s e  a c t i vi t y  on hi s -
t one  s ubs t r a t e s  [ 24, 25] .

A  r e c e nt  s t u d y  d e s c r i b e s  r e pl i c a t i o n- d e pe nd e nt  H 3K 23 
u b i q u i t i n a t i o n b y  U H R F 1  i n Xenopus  e x t r a c t s  [ 3 2 ] .  
K n o c k d o w n a n d  r e s c u e  e x p e r i m e n t s  i n H e L a  c e l l s  
s how e d t ha t  S R A  dom a i n- m e d i a t e d D N A  bi ndi ng a s  w e l l  
a s  R I N G  dom a i n- de pe nde nt  E 3 ubi qui t i n l i ga s e  a c t i vi t y 
o f  U H R F 1  a r e  r e q u i r e d  f o r  H 3  u b i q u i t i na t i o n.  E x pr e s s i o n 
o f  t h e  S R A  a nd  R I N G  d o m a i n m u t a nt s  i n Uhrf1−/− m o u s e  
c e l l s  c oul d ne i t he r  r e s t or e  D N M T 1 r e pl i c a t i on t a r ge t i ng 
nor  D N A  m e t hyl a t i on l e ve l s . A  de l e t i on of  l a r ge  pa r t s  of  
t he  D N M T 1 T S  dom a i n a bol i s he d bi ndi ng t o ubi qui t i na t -
e d  H 3 K 2 3  in vitro,  b u t  e f f e c t s  o n e nz y m a t i c  a c t i v i t y  w e r e  
not  i nve s t i ga t e d . I n pa r t i c ul a r , t he  s t r uc t ur e  a nd f unc t i on 
of  t he  r a t he r  l a r ge  T S  dom a i n w i t h i t s  m ul t i pl e  r ol e s  a nd 
interactions remain to be clarified.

I n t hi s  s t udy , w e  e l uc i da t e  t he  c om pl e x i nt e r pl a y be -
t w e e n U H R F 1  a nd  D N M T 1 .  W h i l e  w e  c o u l d  c o nf i r m  
t he  ge ne r a l  r ol e  of  U H R F 1 i n r e c r ui t i ng D N M T 1 t o s ub -
s t r a t e  s i t e s  by d i r e c t  i nt e r a c t i on, w e  f ound t ha t  D N M T 1 
t a r ge t i ng a nd a c t i vi t i e s  a r e  e s s e nt i a l l y c ont r ol l e d by s pe -
c i f i c  b i nd i ng t o  h i s t o ne  t a i l s  u b i q u i t i na t e d  b y  U H R F 1 .  
W e  ge ne r a t e d  d e f i ne d  m u t a t i o ns  i n d i f f e r e nt  U H R F 1  
d o m a i ns  t h a t  r e t a i ne d  S R A  d o m a i n- m e d i a t e d  b i nd i ng 
t o  h e m i m e t h y l a t e d  D N A  s u b s t r a t e  s i t e s ,  T T D - m e d i a t e d  
r e c o gni t i o n o f  H 3 K 9 m e 3  a nd  b i nd i ng o f  D N M T 1 ,  b u t  
di d not  a l l ow  m a i nt e na nc e  D N A  m e t hyl a t i on. W e  c oul d 
show that binding to unmodified H3R2 via the PHD and 
u b i q u i t i na t i o n o f  H 3 K 1 8  v i a  t h e  R I N G  d o m a i n a r e  r e -
qui r e d f or  U H R F 1 t o m e di a t e  m a i nt e na nc e  D N A  m e t hyl -
ation. In turn, we identified a ubiquitin interacting motif 
( U I M )  i n t he  T S  dom a i n of  D N M T 1 t ha t  r e a ds  t hi s  ubi q -
ui t i n m a r k a nd i s  s t r i c t l y r e qui r e d f or  m a i nt e na nc e  D N A  
m e t h y l a t i o n in vivo .  T h e s e  r e s u l t s  s h o w  t h e  m a ni f o l d  
r e gul a t or y m e c ha ni s m s  c ont r ol l i ng D N M T 1 a c t i vi t y a nd 
i l l u s t r a t e  t h e  m u l t i f a c e t e d  i nt e r pl a y  b e t w e e n D N A  a nd  
histone modifications.

Results

The interaction of DNMT1 with UHRF1 is required for 
maintenance DNA methylation

T o  t e s t  w h e t h e r  t h e  i n t e r a c t i o n o f  D N M T 1  w i t h  
U H R F 1 i s  i nde e d r e qui r e d f or  m a i nt e na nc e  D N A  m e t h -
yl a t i on, w e  ge ne r a t e d s t a bl e  c e l l  l i ne s  ba s e d on Dnmt1−/− 
ESCs expressing green fluorescent protein (GFP) fusions 
o f  e i t h e r  D N M T 1  w i l d - t y p e  ( G F P - D N M T 1  w t )  o r  a  
t r u nc a t e d  T S  d o m a i n d e l e t i o n m u t a nt  ( G F P - D N M T 1  
∆458-500) that is defective in binding to UHRF1 (Figure 
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Figure 1 The DNMT1 TS domain is required for UHRF1 interaction, heterochromatin targeting and maintenance DNA methyl-
ation. (A) Schematic outline of DNMT1 domains and the TS domain deletion (∆458-500). DNMT1 comprises a large N-termi-
nal domain (NTD) harboring the PCNA binding domain (PBD), the targeting sequence (TS) domain and two bromo adjacent 
homology (BAH) domains. The active catalytic center of DNMT1 resides within its C-terminal domain (CD). (B) Co-immu-
noprecipitation of UHRF1-His and the GFP-DNMT1 TS domain (309-628) wild-type (wt) or ∆458-500 constructs. Both con-
structs were co-expressed in HEK 293T cells and after immunoprecipitation of GFP fusions, bound proteins were detected 
by western blot with an anti-UHRF1 and an anti-GFP antibody. GFP was used as negative control. I, input; B, bound. (C) 
Confocal mid sections of fixed ESCs stably expressing GFP-DNMT1 wt or ∆458-500 mutant constructs. Ch-UHRF1 was 
transiently co-expressed to illustrate heterochromatic regions, DAPI was used for counterstaining. Scale bar, 5  µ m. (D) Co-
valent complex formation of GFP-DNMT1 wt and GFP-DNMT1 ∆458-500 mutant were analyzed by an in vivo trapping assay. 
Confocal mid-sections of ESCs stably expressing GFP-DNMT1 wt and deletion mutant constructs before and after treatment 
with the mechanism-based inhibitor 5-aza-dC are displayed. Scale bar, 10 µ m. (E) Local DNA methylation analyses at the 
major satellite repeats and the skeletal α-actin promoter. CpG methylation levels of mouse Dnmt1−/− ESCs stably expressing 
GFP-DNMT1 wt or GFP-DNMT1 ∆458-500 mutant constructs were analyzed by bisulfite treatment of genomic DNA, PCR 
amplification and direct pyrosequencing. The methylation level of the J1 wt cell line (endogenous DNMT1) and untransfected 
Dnmt1−/− cells are shown for comparison. Mean values ± SD from two different clones were calculated, respectively.
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1A  a nd 1B ) . T he  de l e t e d r e gi on w a s  de t e r m i ne d by a  s e -
que nc e  a l i gnm e nt  o f  T S  dom a i ns  f r om  hi ghe r  e uka r yot e s  
a nd a  c ons e r ve d c o r e  r e gi on o f  t he  dom a i n w a s  c hos e n 
f or  m ut a t i ona l  a na l ys i s  ( S uppl e m e nt a r y i nf or m a t i on, F i g-
ur e  S 1A ) . I n c o nt r a s t  t o G F P - D N M T 1 w t , G F P - D N M T 1 
∆458-500 d i d  no t  c o - l o c a l i z e  w i t h  c h e r r y  ( C h ) - U H R F 1  
a nd  s h o w e d  a  d i s pe r s e d  d i s t r i b u t i o n i n t h e  nu c l e u s  ( F i gu r e  
1 C ) ,  s u gge s t i ng t h a t  t h e  i nt e r a c t i o n w i t h  U H R F 1  i s  e s -
s e nt i a l  f or  s ubnuc l e a r  l oc a l i z a t i on of  D N M T 1.

N e xt , w e  i nve s t i ga t e d t he  r ol e  of  U H R F 1 i nt e r a c t i on 
f or  t he  c a t a l yt i c  f unc t i on of  D N M T 1. N ot a bl y , G F P - D N -
MT1 ∆458-500 that did not interact with UHRF1 was 
a bl e  t o f ul l y m e t hy l a t e  he m i m e t hyl a t e d D N A  s ubs t r a t e s  
in vitro ( S u ppl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  S 1 C ) .  T o  
t e s t  t he  D N A  m e t hyl a t i on a c t i v i t y of  t hi s  de l e t i on m ut a nt  
in vivo, w e  m a de  us e  of  a  t r a ppi ng a s s a y . I n t hi s  a s s a y , 
the cytosine analogue 5-aza-2′-deoxycytidine (5-aza-dC) 
f o r m s  a n i r r e v e r s i b l e  c o v a l e nt  c o m pl e x  w i t h  t h e  m e t h -
y l t r a ns f e r a s e  a t  t h e  C 6  po s i t i o n o f  t h e  c y t o s i ne  r e s i d u e  
w he n i nc or por a t e d i nt o D N A  dur i ng r e pl i c a t i on t he r e by 
t r a ppi ng t h e  e nz y m e  a t  D N A  r e pl i c a t i o n f o c i .  T r a ppe d  
D N M T 1 f r a c t i o ns  i nc r e a s e  ove r  t i m e  a nd a l l ow  m oni t or -
i ng t h e  a c t i v i t y - d e pe nd e nt  a c c u m u l a t i o n o f  D N M T 1  a t  i t s  
t a r ge t  s i t e s  [ 3 3 ] .  I n E S C s  s t a b l y  e x pr e s s i ng G F P - D N M T 1  
w t , f oc i  of  i m m obi l i z e d pr ot e i n e m e r ge d a l r e a dy w i t hi n 
20 m i n ( F i gur e  1D , l e f t  pa ne l ) .  I n c ont r a s t , G F P - D N M T 1 
∆458-500 w a s  not  e nr i c he d a t  r e pl i c a t i on f oc i  e ve n a f t e r  
1 10 m i n, i ndi c a t i ng t ha t  t he  de l e t i on m ut a nt  i s  una bl e  t o 
m e t hyl a t e  ne w l y r e pl i c a t e d D N A  i n l i vi ng c e l l s  ( F i gur e  
1D , r i ght  pa ne l ) . T o pur s ue  t hi s  i de a , w e  f ur t he r  a na l yz e d 
site-specific DNA methylation levels of stable GFP-DN -
MT1 wt and ∆458-500 ESC lines (Supplementary in -
f o r m a t i o n ,  F i g u r e  S 1 B ) .  G F P - D N M T 1  c o u l d  r e s t o r e  
l o c a l  D N A  m e t h y l a t i o n a t  t h e  m a j o r  s a t e l l i t e  r e pe a t s  i n 
Dnmt1−/− E S C s  l e a d i ng t o  a n a v e r a ge  m e t h y l a t i o n l e v e l  
of  62 %  t ha t  i s  c om pa r a bl e  t o t he  l e ve l  of  t he  w t  c e l l  l i ne  
e x pr e s s i ng t h e  e nd o ge no u s  pr o t e i n ( 7 4 % ,  F i gu r e  1 E ,  
left panel). In contrast, the DNMT1 mutant deficient in 
U H R F 1  b i nd i ng w a s  u na b l e  t o  r e e s t a b l i s h  l o c a l  D N A  
m e t h y l a t i o n pa t t e r ns  r e s u l t i ng i n d e c r e a s e d  l e v e l s  a t  
t h e  m a j o r  s a t e l l i t e  r e pe a t s  ( a v e r a ge  1 9 % )  s i m i l a r  t o  t h e  
Dnmt1−/− c ont r ol  c e l l  l i ne  ( a ve r a ge  18% ) . C ons i s t e nt l y , a  
similar defect of GFP-DNMT1 ∆458-500 in DNA meth-
yl a t i on a c t i vi t y w a s  obs e r ve d a t  t he  s i ngl e - c opy s e que nc e  
of  t he  skeletal α-actin pr om ot e r  ( F i gu r e  1E , r i ght  pa ne l ) . 
F u r t h e r m o r e ,  s i m i l a r  r e s u l t s  w e r e  o b t a i ne d  f r o m  D N A  
m e t h y l a t i o n a na l y s e s  a t  t h e  m i no r  s a t e l l i t e  r e pe a t s  a nd  
t h e  Dnmt1o promoter confirming that stable expression 
of GFP-DNMT1 ∆458-500 could not restore DNA meth-
yl a t i on i n a  Dnmt1−/− c e l l  l i ne  ( S upp l e m e nt a r y i nf o r m a -
t i on, F i gur e  S 1D ) .

I n s u m m a r y ,  w e  p r o v i d e  s t r o ng e v i d e n c e  t h a t  t h e  

GFP-DNMT1 ∆458-500 mutant deficient in UHRF1 
bi ndi ng, e ve n t hough a bl e  t o m e t hyl a t e  D N A  s ubs t r a t e s  
in vitro ,  c a nno t  r e s t o r e  D N A  m e t h y l a t i o n pa t t e r ns  i n 
Dnmt1−/− E S C s .  T h e s e  f i nd i ngs  s u gge s t  t h a t  t h e  i nt e r -
a c t i on of  D N M T 1 w i t h U H R F 1 i s  r e qui r e d t o m a i nt a i n 
D N A  m e t hyl a t i on in vivo.

The PHD and RING domain of UHRF1 are essential for 
maintenance DNA methylation

C o o pe r a t i v e  b i nd i ng o f  t h e  U H R F 1  T T D  t o  d i -  a nd  
t r i m e t h y l a t e d  h i s t o ne  H 3 K 9  a nd  o f  t h e  S R A  d o m a i n t o  
h e m i m e t h y l a t e d  D N A  w a s  d e s c r i b e d  a s  a  pr e r e q u i s i t e  
f or  t a r ge t i ng D N M T 1 t o i t s  s ubs t r a t e  a nd f or  s ubs e que nt  
D N A  m e t h y l a t i o n [ 3 4 ] .  G i v e n t h e  r e gu l a t o r y  i m pa c t  o f  
t he s e  t w o dom a i ns , w e  w e r e  i nt e r e s t e d i n how  t he  P H D  
a nd R I N G  dom a i n o f  U H R F 1  m a y f unc t i ona l l y c ont r i b -
u t e  t o  m a i nt e na nc e  D N A  m e t h y l a t i o n b y  D N M T 1 .  T o  
t hi s  e nd, w e  i nt r oduc e d poi nt  m ut a t i ons  i n t he  P H D  a nd 
R I N G  d o m a i n ( U H R F 1 - G F P  H 3 4 6 G  a nd  U H R F 1 - G F P  
H 7 3 0 A ,  r e s pe c t i v e l y )  t h a t  a r e  e x pe c t e d  t o  pr e v e nt  c o o r d i -
nation of zinc ions by zinc-finger motifs (Figure 2A and 
S uppl e m e nt a r y i nf or m a t i on, F i gur e  S 2A ) . C ons e q ue nt l y , 
the mutation in the RING domain significantly reduced 
t he  E 3 ubi qui t i n l i ga s e  a c t i vi t y of  U H R F 1 in vivo ( S up -
pl e m e nt a r y i nf o r m a t i on, F i gur e  S 2C  a nd S 2D ) . N ot a bl y , 
t he  pr e f e r e nc e  of  U H R F 1- G F P  f or  he m i m e t hyl a t e d D N A  
w a s  not  i m pa i r e d by t he  P H D  a nd R I N G  dom a i n m ut a -
t i ons  ( S uppl e m e nt a r y i nf or m a t i on, F i gur e  S 2B ) .

F i r s t ,  w e  t e s t e d  w h e t h e r  t h e  po i nt  m u t a t i o ns  i n t h e  
P H D  a n d  R I N G  d o m a i n i nf l u e n c e  t h e  i n t e r a c t i o n o f  
U H R F 1  w i t h  D N M T 1 .  U H R F 1 - G F P  w t  a s  w e l l  a s  
U H R F 1 - G F P  H 3 4 6 G  a n d  U H R F 1 - G F P  H 7 3 0 A  s t i l l  
co-precipitated with red fluorescent protein (RFP)-DN -
M T 1, i ndi c a t i ng t ha t  t he  m ut a t i ons  do not  a f f e c t  t he  i n-
t e r a c t i on w i t h D N M T 1 di r e c t l y  ( F i gur e  2B ) . I n a ddi t i on, 
the unaltered interactions were confirmed by a fluores -
c e nt  t hr e e - hybr i d a s s a y [ 35, 36] . I n t hi s  a s s a y , U H R F 1-
G F P  f u s i o n c o ns t r u c t s  w e r e  u s e d  a s  b a i t s  b y  t e t h e r i ng 
t h e m  t o  a  lac o p e r a t o r  ( lac O )  a r r a y  p r e s e n t  i n b a b y  
ha m s t e r  ki dne y ( B H K )  c e l l s  t ha t  s i m ul t a ne ous l y e xpr e s s  
R F P - D N M T 1 a s  a  pr e y . A c c um ul a t i on of  R F P - D N M T 1 
a t  t he  lacO  s pot  e nr i c he d f or  U H R F 1- G F P  w t , U H R F 1-
G F P  H 3 4 6 G  o r  U H R F 1 - G F P  H 7 3 0 A  c l e a r l y  d e m o n -
s t r a t e s  t ha t  t he  m ut a nt  pr ot e i ns  w e r e  s t i l l  a bl e  t o i nt e r a c t  
w i t h D N M T 1 in vivo ( F i gur e  2C ) .

I n o r d e r  t o  pe r f o r m  f u nc t i o na l  s t u d i e s  o n t h e  P H D  
a nd  R I N G  d o m a i n m u t a nt s ,  w e  s t a b l y  e x pr e s s e d  G F P -
t a gge d U H R F 1 w t , U H R F 1 H 346G  or  U H R F 1 H 730A  i n 
Uhrf1−/ − E S C s . S i m i l a r  t o w t , a l s o U H R F 1- G F P  H 346G  
a nd  U H R F 1 - G F P  H 7 3 0 A  s h o w e d  f o c a l  e nr i c h m e nt  a t  
h e t e r o c h r o m a t i n ( F i gu r e  2 D ,  f i r s t  pa ne l  a nd  S u ppl e -
m e nt a r y  i nf o r m a t i o n,  F i gu r e  S 2 E ) .  T h u s ,  t h e  m u t a t i o ns  
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Figure 2 Mutations in the PHD and RING domain of UHRF1 affect DNMT1 targeting and maintenance DNA methylation, but 
not the interaction with DNMT1. (A) Schematic outline of the multidomain protein UHRF1. UHRF1 harbors a ubiquitin-like 
(Ubl) domain, a plant homeodomain (PHD) and a tandem Tudor domain (TTD) followed by a SET and RING-associated (SRA) 
domain and a really interesting new gene (RING) domain. UHRF1-GFP expression constructs carrying point mutations in the 
PHD (H346G) and RING domain (H730A) are illustrated. (B) Co-immunoprecipitation of UHRF1-GFP wt or PHD and RING 
domain mutants co-expressed with RFP-DNMT1 in HEK 293T cells. RFP-DNMT1 was immunoprecipitated using the RFP-
Trap and bound UHRF1-GFP was detected by western blot with an anti-GFP antibody. GFP was used as negative control. 
Immunoprecipitated RFP-DNMT1 is shown by Ponceau staining. I, input; B. bound. (C) Fluorescence three-hybrid assay for 
visualization of the interaction RFP-DNMT1 with UHRF1-GFP wt or PHD and RING domain mutants. Displayed are confocal 
mid sections of BHK cells carrying a stably integrated Lac-operator array that were triple transfected with LacI fused to the 
GFP-binder, UHRF1-GFP constructs and RFP-DNMT1. DAPI was used for chromatin counterstaining. Closed arrows indi-
cate the co-localization of both proteins at the lacO spot, open arrows indicate no co-localization. GFP was used as negative 
control. Scale bar, 5 µ m. (D) Confocal mid sections of fixed Uhrf1−/− ESCs stably expressing UHRF1-GFP wt or PHD and 
RING domain mutant constructs. RFP-DNMT1 was transiently co-expressed and DNA was counterstained by DAPI. Scale 
bar, 5 µ m. (E) Local DNA methylation analyses at major satellite repeats and the skeletal α-actin promoter. CpG site methyla-
tion levels of mouse E14 Uhrf1−/− ESCs stably expressing UHRF1-GFP wt or PHD and RING domain mutant constructs were 
analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. The methylation level of E14 
wt ESCs (endogenous UHRF1) and untransfected E14 Uhrf1−/− cells are shown for comparison. Mean values ± SD from two 
different clones were calculated, respectively.
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d o  no t  a f f e c t  l o c a l i z a t i o n o f  U H R F 1 .  I n c o nt r a s t  t o  i t s  
c h r o m a t i n a s s o c i a t i o n i n t h e  U H R F 1 - G F P  w t  c e l l  l i ne ,  
t r a ns i e nt l y c o- e xpr e s s e d R F P - D N M T 1 di d not  c o- l oc a l -
i z e  w i t h U H R F 1- G F P  H 346G  a nd U H R F 1- G F P  H 730A , 
b u t  s h o w e d  a  d i s pe r s e d  d i s t r i b u t i o n i n t h e  nu c l e u s  ( F i gu r e  
2 D ,  s e c o nd  pa ne l ) .  T h i s  o b s e r v a t i o n i s  c o ns i s t e nt  w i t h  
t he  r e s ul t  of  a  s t a i ni ng f or  e ndoge nous  D N M T 1 ( S uppl e -
m e nt a r y i nf or m a t i on , F i gur e  S 2F ) . O nl y  i n t he  U H R F 1-
G F P  w t  c e l l  l i ne , e ndoge nous  D N M T 1 w a s  e nr i c he d a t  S  
phase-specific replication sites, whereas it was diffusely 
di s t r i but e d i n t he  nu c l e us  of  t he  m ut a nt  c e l l  l i ne s  poi nt -
i ng t o w a r d s  a  d e f e c t i v e  D N M T 1  t a r ge t i ng m e c h a ni s m .  
T o e xa m i ne  i f  D N M T 1 m e t hy l a t i on a c t i vi t y de pe nds  on 
t h e  P H D  a nd  R I N G  d o m a i n o f  U H R F 1 ,  w e  pe r f o r m e d  
s i t e - s pe c i f i c  m e t h y l a t i o n a na l y s e s  a t  h e t e r o c h r o m a t i c  
r e gi ons . C ons i s t e nt  w i t h de f e c t s  i n t a r ge t i ng D N M T 1 t o 
r e pl i c a t i o n s i t e s ,  D N A  m e t h y l a t i o n l e v e l s  a t  t h e  m a j o r  
s a t e l l i t e  r e pe a t s  a nd  t h e  skeletal α-actin pr o m o t e r  r e -
ve a l e d t ha t  bot h  U H R F 1- G F P  H 346G  a nd U H R F 1- G F P  
H 730A  w e r e  no t  a b l e  t o m e di a t e  D N A  r e m e t hyl a t i on by 
D N M T 1 i n Uhrf1−/− E S C s  i n c ont r a s t  t o U H R F 1- G F P  w t  
( F i gur e  2E ) . E s pe c i a l l y a t  t he  m a j or  s a t e l l i t e  r e pe a t s , t he  
a ve r a ge  D N A  m e t h yl a t i on i n t he  P H D  m ut a nt  c e l l  l i ne s  
r e m a i ne d  ne a r l y  u nc h a nge d  ( 1 6 % )  f r o m  t h e  Uhrf1−/− 
c o nt r o l  c e l l  l i ne  ( 1 1 % ) .  A l s o ,  t h e  a v e r a ge  m e t h y l a t i o n 
l e ve l s  i n t he  R I N G  dom a i n m ut a nt  c e l l  l i ne s  ( 29 % )  di d 
no t  r e a c h  t h e  w t  D N A  m e t h y l a t i o n l e v e l  ( 6 2 % )  a t  t h e  
m a j o r  s a t e l l i t e  r e pe a t s .  S i m i l a r  r e s u l t s  w e r e  o b t a i ne d  
f or  t he  m i nor  s a t e l l i t e  r e pe a t s  a nd t he  Dnmt1o pr om ot e r  
( S u ppl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  S 3 A ) .  C o ns i s t e nt  
with this site-specific DNA hypomethylation, the stable 
U H R F 1 m ut a nt  c e l l  l i ne s  a l s o  s how e d de c r e a s e d  gl oba l  
D N A  m e t hyl a t i on l e ve l s  a s  c om pa r e d w i t h t he  w t  ( S up -
pl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  S 3 B  a nd  S 3 C ) .  P a r t i a l  
r e s c ue  of  gl oba l  D N A  m e t hyl a t i on i n t he  R I N G  dom a i n 
m u t a nt  c e l l  l i ne s  c o u l d  b e  d u e  t o  r e s i d u a l  E 3  u b i q u i t i n 
l i ga s e  a c t i vi t y of  U H R F 1- G F P  H 730A  ( F i gur e  3B , S up -
pl e m e nt a r y i nf or m a t i on, F i gur e  S 2C  a nd S 2D ) .

T o  e x c l u d e  t h e  po s s i b i l i t y  t h a t  D N A  h y po m e t h y l a -
t i on m i ght  r e s ul t  f r o m  l ow e r  e xpr e s s i on of  t he  P H D  a nd 
R I N G  dom a i n m ut a nt  ( F i gur e  3A ) , w e  pe r f or m e d a  t r a n-
s i e nt  r e s c u e  a s s a y  i n Uhrf1−/− E S C s .  E v e n t h o ug h  e x pr e s -
s i o n l e v e l s  o f  t h e  m u t a nt  c o ns t r u c t s  e x c e e d e d  t h o s e  o f  t h e  
U H R F 1 - G F P  w t ,  t h e  P H D  a nd  R I N G  d o m a i n m u t a nt s  
c oul d not  m e di a t e  r e m e t hyl a t i o n a t  t he  m a j or  s a t e l l i t e  r e -
pe a t s  ( S up pl e m e nt a r y i nf or m a t i on, F i gur e  S 3D  a nd S 3E )  
a r gui ng f or  f unc t i ona l  r a t he r  t ha n e xpr e s s i on de f e c t s .

I n s u m m a r y ,  t h e  P H D  a nd  R I N G  d o m a i n m u t a nt s ,  
a l t hough not  a f f e c t i ng U H R F 1 he t e r oc hr om a t i n l oc a l i z a -
t i o n o r  t h e  d i r e c t  i nt e r a c t i o n w i t h  D N M T 1 ,  c a nno t  m e -
di a t e  e i t he r  t a r ge t i ng of  D N M T 1 t o r e pl i c a t i on f o c i  nor  
maintenance DNA methylation. These findings suggest 

t ha t  t he s e  U H R F 1 dom a i ns  c ont r i but e  t o t he  r e c r ui t m e nt  
of  D N M T 1 by i ndi r e c t  m e c ha ni s m s .

The PHD and RING domain of UHRF1 are required for 
ubiquitination of histone H3

H i s t o ne  H 3  h a s  b e e n r e po r t e d  a s  a  U H R F 1 - d e pe n-
d e nt  u b i q u i t i na t i o n t a r ge t  i n Xenopus e gg e x t r a c t s  [ 3 2 ] ,  
pr o v i d i ng a  po t e nt i a l  m e c h a ni s m  f o r  t h e  r e c r u i t m e nt  o f  
D N M T 1  t o  c h r o m a t i n.  T h u s ,  w e  s e t  o u t  t o  i nv e s t i ga t e  
w h e t h e r  H 3  u b i q u i t i na t i o n r e q u i r e d  P H D - m e d i a t e d  h i s -
t o ne  b i nd i ng a nd  R I N G  d o m a i n- m e d i a t e d  u b i q u i t i n E 3  
l i ga s e  a c t i v i t y  o f  U H R F 1  i n m a m m a l i a n c e l l s .  T o  t h i s  
e nd ,  w e  e x t r a c t e d  h i s t o ne s  f r o m  w t  o r  Uhrf1− / −  E S C s  
and detected modified H3. As expected, histone H3 was 
l e s s  ubi qui t i na t e d i n t he  a bs e nc e  of  U H R F 1 ( F i gur e  3A  
a nd 3B ) , i ndi c a t i ng t ha t  U H R F 1 s e r ve s  a s  a  ubi qui t i n E 3 
l i ga s e  f o r  H 3  i n m a m m a l i a n c e l l s .  W e  a l s o  f o u nd  t h a t  
ubi qui t i na t i on l e ve l s  of  hi s t one  H 3 i n Uhrf1−/ − E S C s  s t a -
b l y  e x pr e s s i ng t h e  R I N G  d o m a i n m u t a nt  U H R F 1 - G F P  
H 730A  w e r e  not  r e s c ue d t o t he  l e ve l  of  w t  c e l l s . S ur pr i s -
i ngl y ,  t he  P H D  m ut a nt  U H R F 1- G F P  H 346G  a l s o c oul d 
not  r e s t or e  ubi qui t i na t i on of  hi s t one  H 3 ( F i gur e  3A  a nd 
3B ) .

S i nc e  t h e  P H D  h a s  b e e n r e po r t e d  t o  b i nd  t o  u nm o d -
i f i e d  H 3 R 2  [ 2 6 ,  3 7 - 3 9 ] ,  w e  i n v e s t i g a t e d  t h e  r o l e  o f  
t h i s  h i s t o ne  r e s i d u e  i n H 3  u b i q u i t i na t i o n b y  m u t a t i o na l  
a na l y s e s .  C o m pa r e d  w i t h  G F P - H 3  w t ,  u b i q u i t i na t i o n o f  
a  G F P - H 3  R 2 A  m u t a nt  e x pr e s s e d  i n h u m a n e m b r y o ni c  
k i d ne y  ( H E K )  2 9 3 T  c e l l s  w a s  c l e a r l y  r e d u c e d  ( F i gu r e  
3C )  poi nt i ng t ow a r d s  a n i m por t a nt  r ol e  of  t he  R 2 r e s i due  
f or  U H R F 1- de pe nde nt  H 3 ubi qui t i na t i on.

T o  f u r t h e r  t e s t  t h e  h i s t o ne  b i nd i ng pr o pe r t i e s  o f  t h e  
P H D  m u t a n t  in vitro ,  w e  p e r f o r m e d  a  p e p t i d e  p u l l -
dow n a s s a y w i t h w t  or  P H D  a nd R I N G  dom a i n m ut a nt  
U H R F 1 - G F P  u s i ng H 3  pe pt i d e s  w i t h  a n u nm o d i f i e d ,  
t r i m e t hyl a t e d or  a c e t yl a t e d K 9 r e s i due . T he  m ut a t i on i n 
t h e  R I N G  d o m a i n d i d  no t  a l t e r  t h e  h i s t o ne  b i nd i ng o f  
UHRF1-GFP showing a preference for unmodified and 
K 9  t r i m e t h y l a t e d  H 3  pe pt i d e s  s i m i l a r  t o  t h e  w t  pr o t e i n 
( F i gu r e  3 D ) .  T h e  m u t a t i o n i n t h e  P H D ,  h o w e v e r ,  d e -
creased the binding to both, the unmodified and the K9 
t r i m e t h y l a t e d  pe pt i d e .  W e  f u r t h e r  e x a m i ne d  t h e  h i s t o ne  
bi ndi ng pr e f e r e nc e s  of  U H R F 1- G F P  w i t h a n in vitro hi s -
t one  t a i l  bi ndi ng a s s a y . T he  r e s ul t s  r e ve a l e d t he  bi ndi ng 
of UHRF1-GFP to unmodified but not R2 dimethylated 
H 3  h i s t o ne  t a i l s  ( S u ppl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  
S 4) , c ons i s t e nt  w i t h pr i or  K d  m e a s ur e m e nt s  [ 39] .  A s  t he  
P H D  o f  U H R F 1  h a s  b e e n s h o w n t o  b i nd  u nm e t h y l a t e d  
H 3 R 2  r e s i d u e s  a nd  t o  c o nt r i b u t e  t o  t h e  K 9  m e t h y l a t e d  
H 3 hi s t one  bi ndi ng of  t he  T T D  [ 26, 37- 39] ,  w e  pr opos e  
t h a t  P H D - d e p e nd e n t  h i s t o n e  b i n d i ng i s  r e q u i r e d  f o r  
U H R F 1- m e di a t e d ubi qui t i na t i on of  hi s t one  H 3.
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Figure 3 Histone H3 ubiquitination requires the UHRF1 PHD and RING domain. (A) Western blot analyses of endogenous 
UHRF1 or stably expressed UHRF1-GFP wt or H346G and H730A mutants in E14 Uhrf1−/− ESCs with an anti-UHRF1 an-
tibody. Equal loading is shown by an anti-β-Actin antibody. (B) Analyses of H3 ubiquitination from acid extracted histones 
derived from the different cell lines in (A). A specific anti-H3 antibody was used for detection. (C) Ubiquitination of GFP-H3 in 
dependence on R2. GFP-H3 wt and the arginine to alanine mutant (R2A) were co-expressed with UHRF1-His in HEK 293T 
cells, respectively, and after immunoprecipitation with the GFP-Trap, the bound fraction was detected by western blotting with 
a specific anti-H3 antibody. I, input; B, bound. (D) In vitro peptide pull-down assay of UHRF1-GFP wt or the PHD and RING 
domain mutants from crude cells extracts of HEK 293T cells using H3 peptides (amino acid 1-20) that were either unmodified 
(me0), K9 trimethylated (me3) or K9 acetylated (ac) and functionalized on streptactin beads. The GFP-Ubl domain of UHRF1 
was used as negative control, Coomassie-stained streptactin is shown as loading control. I, input.

UHRF1 ubiquitinates histone H3 on K18 in mammalian 
cells

U s i ng Xenopus e x t r a c t s  i m m unode pl e t e d f or  D N M T 1, 
H 3  w a s  s h o w n t o  b e  u b i q u i t i na t e d  a t  t h e  K 2 3  r e s i d u e  [ 3 2 ] .  
T o m a p ub i qui t i na t i on s i t e s  on hi s t one  H 3 t a i l s  i n m a m -
m a l i a n c e l l s , w e  pe r f or m e d m a s s  s pe c t r om e t r y us i ng hu -
m a n a nd m ous e  c e l l s . I n c ont r a s t  t o t he  r e s ul t s  f r om  Xen-
opus e xt r a c t s , t he  K 18 r e s i due  of  hi s t one  H 3 w a s  i de n-
tified as novel ubiquitination site in mouse ESCs, while 
the K23 residue was unmodified or acetylated (Figure 4A 
and 4B). Relative quantification of H3 peptides contain-
ing ubiquitinated K18 and an unmodified or acetylated 
K 2 3  r e s i d u e  s h o w e d  a  r e d u c t i o n o f  K 1 8  u b i q u i t i na t i o n 
i n E S C s  l a c ki ng U H R F 1 ( F i gu r e  4C  a nd 4D ) . S i m i l a r l y , 
i m m u no pr e c i pi t a t i o n o f  G F P - U H R F 1  f r o m  H E K  2 9 3 T  
c e l l s  a nd  s u b s e q u e nt  m a s s  s pe c t r o m e t r y  a l s o  r e v e a l e d  
u b i q u i t i na t i o n a t  K 1 8  b u t  no t  a t  K 2 3  ( S u ppl e m e nt a r y  
i nf or m a t i on, F i gur e  S 5A ) . C om pa r i s on of  ubi qu i t i na t i on 
l e ve l s  of  ove r e xpr e s s e d G F P - H 3 c a r r yi ng R 2A , K 18A  or  

K 2 3 A  m u t a t i o ns  s u gge s t s  t h a t  i n t h i s  c o ns t e l l a t i o n K 2 3  
c o u l d  a l s o  b e  m o d i f i e d  ( S u ppl e m e nt a r y  i nf o r m a t i o n,  
F i gu r e  S 5 B ) .  I nt e r e s t i ngl y ,  t h e  G F P - H 3  R 2 A  c o ns t r u c t  
s how e d r e duc e d  ubi qui t i na t i on  l e ve l s  i ndi c a t i ng t ha t  t he  
R 2 r e s i due  pl a ys  a  r ol e  i n r e gul a t i ng H 3 ubi qui t i na t i on.

DNMT1 harbors a UIM that mediates binding to ubiq-
uitinated H3 and is essential for DNA methylation activi-
ty in vivo

T o  u nr a v e l  h o w  H 3  u b i q u i t i na t i o n m a y  c o nt r i b u t e  t o  
m a i nt e na nc e  D N A  m e t hyl a t i on, w e  s c r e e ne d D N M T 1 f or  
po t e nt i a l  b i nd i ng m o t i f s .  W i t h  b i o i nf o r m a t i c s  a na l y s e s ,  
we identified a ubiquitin interacting motif (UIM) in the 
N - t e r m i na l  r e gu l a t o r y  d o m a i n o f  D N M T 1 .  T h i s  m o t i f  
i s  l oc a t e d i n a  r e gi on s pa nni ng f r om  a m i no a c i d 380 t o 
399 of  m ous e  D N M T 1 a nd s how s  s t r i k i ng s i m i l a r i t y t o 
U I M s  o f  k no w n u b i q u i t i n i nt e r a c t i ng pr o t e i ns  ( F i gu r e  
5 A ) .  C o m pa r i s o n o f  t h e  u b i q u i t i n b i nd i ng pr o pe r t i e s  
b e t w e e n G F P - D N M T 1  w t  a nd  m u t a nt s  e i t h e r  l a c k i ng 
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Figure 4 UHRF1 ubiquitinates histone H3 at K18 in mammalian 
cells. (A) Identification of H3 18-26 peptides carrying ubiquitination 
(GG) at K18 and no modification (Pr) at K23 by LC-MS/MS. MS2 
fragmentation spectrum of the precursor ion is shown in the inset. 
An almost complete series of b and full y product ions generated 
by CID fragmentation were detectable providing a high confidence 
in its correct identification and localization of the ubiquitin modifi-
cation. Inset: mass, charge and measurement error determination 
of the H3 18-26 peptides K18GGK23Pr in the E14 wt sample. 
Displayed is the isotopic distribution of the H3 peptide from which 
the mass to charge ratio (m/z), the charge (2+) and the monoi-
sotopic mass value (m) were derived. Δm: difference between 
the expected and the measured masses; R: resolution of the MS 
measurement. (B) Identification of H3 18-26 peptides carrying 
ubiquitination (GG) at K18 and acetylation (Ac) at K23 by LC-MS/
MS as in (A). (C, D) Quantification of H3 18-26 peptides carrying 
ubiquitination (ub) at K18 and an unmodified (un) or acetylated (ac) 
K23 residue from E14 wt and E14 Uhrf1−/− samples. Extracted ion 
chromatograms of the ions corresponding to the peptides of inter-
est were used for the quantification. The signals were normalized 
against the total amount of analyzed H3 proteins.

the UIM (Δ356-404) or containing substitutions of the 
r e l e va nt  a nd c ons e r ve d a m i no  a c i ds  i n t he  m ot i f  t o a l a -
ni ne  ( D 3 8 1 A - E 3 8 2 A - S 3 9 2 A ,  D 3 8 1 A - E 3 8 2 A - M 3 8 5 A -
S 392A - D 395A , F i gur e  5A  a nd S uppl e m e nt a r y i nf or m a -
t i on, F i gur e  S 6A )  s h ow e d a  de f e c t  i n t he  a s s oc i a t i on w i t h 
u b i q u i t i na t e d  h i s t o ne  H 3  a nd  u b i q u i t i na t e d  H 2 A K 1 1 9  
( F i gu r e  5 B ,  5 C  a nd  S u ppl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  
S 6B - S 6D ) . T o f ur t he r  e l uc i da t e  U I M - de pe nde nt  ubi qui t i -
nated histone binding, we quantified modified H318-26 
pe pt i de s  b ound by G F P - D N M T 1 w t  or  t he  U I M  m ut a nt s  
b y  m a s s  s p e c t r o m e t r y .  W h e r e a s  H 3  h i s t o n e  pe pt i d e s  
ubiquitinated at K18 and acetylated or unmodified at K23 
c o- i m m unopr e c i pi t a t e d w i t h G F P - D N M T 1 w t , on l y l i t t l e  
t o no ubi qui t i na t e d pe pt i de  s i gna l s  w e r e  de t e c t e d f or  t he  
UIM mutants (Figure 6A, 6B). GFP-DNMT1 ∆458-500 
de f e c t i ve  i n U H R F 1 i nt e r a c t i o n ( F i gur e  1B )  s how e d r e -
duc e d ( F i gur e  6B )  or  unde t e c t a bl e  ( F i gu r e  5B , 5C )  bi nd -
i ng t o ubi qui t i na t e d H 3 a nd H 2A . T hi s  de l e t i on l oc a t e d 
i n a  T S  d o m a i n r e gi o n C - t e r m i na l  o f  t h e  U I M  m i gh t  
a f f e c t  t he  i nt e gr i t y a nd f unc t i ona l i t y of  t he  m ot i f  r e s pon -
s i bl e  f or  ubi qui t i n b i ndi ng. T he r e f or e , w e  c a nnot  r ul e  out  
t ha t  a pa r t  f r om  di s r upt e d U H R F 1 bi ndi ng a l s o de f e c t s  i n 
t he  a s s o c i a t i on w i t h  ubi qui t i na t e d hi s t one s  c ont r i b ut e d t o 
t he  o bs e r ve d c ha nge s  i n s ubnuc l e a r  di s t r i but i on a nd pr o -
tein function of GFP-DNMT1 ∆458-500 (Figure 1C-1E).

B e s i de s  a  de c r e a s e d bi ndi ng t o ubi qui t i na t e d H 3, t he  
T S  d o m a i n po i nt  a nd  d e l e t i o n m u t a nt s  e x h i b i t e d  a n i n-
c r e a s e d  b i nd i ng t o  H 3  o r  c o r e  h i s t o ne s  c o m pa r e d  w i t h  
GFP-DNMT1 wt (Figure 5B). Therefore, specific bind -
i ng o f  D N M T 1  t o  u b i q u i t i na t e d  H 3  v i a  i t s  U I M  m i gh t  
pr e v e nt  t h e  e nz y m e  f r o m  s t a b l e  c h r o m a t i n a s s o c i a t i o n 
a nd t he r e by f a c i l i t a t e  D N A  m e t hyl a t i on.

T o  c l a r i f y  t h e  f u nc t i o na l  r o l e  o f  t h e  U I M  i n m a i nt e -
na nc e  D N A  m e t h y l a t i o n in vivo ,  w e  pe r f o r m e d  a  f u nc -
t i o na l  c o m pl e m e nt a t i o n a s s a y  i n Dnmt1−/− E S C  l i ne s  
t r a ns i e nt l y  e x pr e s s i ng G F P - D N M T 1  w t ,  G F P - D N M T 1  
∆356-404, GFP-DNMT1 D381A-E382A-S392A or 
G F P - D N M T 1  D 3 8 1 A - E 3 8 2 A - M 3 8 5 A - S 3 9 2 A - D 3 9 5 A .  
L o c a l  D N A  m e t h y l a t i o n a na l y s e s  a t  t h e  m a j o r  s a t e l l i t e  
r e pe a t s  a nd t he  skeletal α-actin pr om ot e r  s how e d t ha t  t he  
U I M  m u t a nt s  w e r e  no t  a b l e  t o  r e e s t a b l i s h  D N A  m e t h -
y l a t i o n pa t t e r ns  ( F i gu r e  6 C ) .  G F P - D N M T 1  w t  r e s t o r e d  
D N A  m e t hyl a t i on a t  t he  m a j or  s a t e l l i t e  r e pe a t s  t o 48% . 
B y  c o m pa r i s o n,  t h e  U I M  d e l e t i o n a nd  po i nt  m u t a nt s  
w e r e  no t  a b l e  t o  r e s c u e  r e s u l t i ng i n l o w  a v e r a ge  m e t h -
y l a t i o n l e v e l s  o f  2 0 %  t o  2 3 %  c o m pa r a b l e  t o  u nt r a ns -
f e c t e d  Dnmt1−/−  E S C s  ( 1 5 % ) .  S i m i l a r  r e s u l t s  w e r e  a l s o  
o b s e r v e d  a t  t h e  m i no r  s a t e l l i t e  r e pe a t s  a nd  t h e  Dnmt1o 
pr om ot e r  ( S uppl e m e nt a r y i nf or m a t i on, F i gur e  S 7A ) .

G i v e n t h a t  t h e  G F P - D N M T 1  T S  U I M  d e l e t i o n a nd  
po i nt  m u t a nt s  w e r e  a b l e  t o  i nt e r a c t  w i t h  C h - U H R F 1  
( S u ppl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  S 7 B ) ,  w e  w e r e  i n-
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Figure 5 The TS domain of DNMT1 harbors a ubiquitin interacting motif (UIM) that is essential for binding to ubiquitinated H3 
and H2A. (A) Schematic outline of the UIM in the TS domain of DNMT1 and indication of the UIM deletion (∆356-404) and 
the point mutations (D381A-E382A-S392A and D381A-E382A-M385A-S392A-D395A). A peptide sequence of DNMT1 en-
compassing amino acid 380-399 was aligned with peptide sequences of proteins previously known to contain UIMs. Identical 
amino acids are highlighted in black, highly similar amino acids are framed in black. The secondary structure of the DNMT1 
region (pdb: 3EPZ [10]) harboring the UIM is displayed on top of the sequence alignment generated using ESPript [78]. The 
consensus sequence for single-sided UIMs [58] is shown below. The UIMs were found by scanning the protein primary se-
quences against a collection of motifs in ExPASy Prosite. Putative subgroups of UIMs are indicated on the left. (B) Ubiquiti-
nated histone H3 binding assay. After extraction of histones from HEK 293T cells, the extracts were incubated with GFP-DN-
MT1 wt or mutants immobilized on the GFP-Trap and the bound fractions were analyzed by western blotting with specific 
anti-H3 and anti-GFP antibodies. GFP was used as negative control. I, input; B, bound. (C) Ubiquitinated histone H2A binding 
assay as in (B). Bound fractions were analyzed by western blotting with specific anti-H2AK119ub and anti-GFP antibodies. 
Analyses of the anti-H2AK119ub antibody specificity and of peptides isolated from the corresponding band are shown in Sup-
plementary information, Figure S6C and S6D. H2Aub1, monoubiquitinated H2A; H2Aub2, diubiquitinated H2A.
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t h e  T T D ,  P H D  a nd  S R A  d o m a i n a nd  d e f e c t s  i n a ny  o f  
t h e s e  t h r e e  d o m a i ns  l e a d  t o  d e c r e a s e d  D N A  m e t h y l a t i o n 
b y  D N M T 1  [ 3 4 ,  4 5 ,  4 6 ] .  A c c o r d i ngl y ,  i t  w a s  po s t u l a t e d  
t h a t  U H R F 1  r e a d s  a nd  b i nd s  r e pr e s s i v e  h i s t o ne  m a r k s  
a nd  h e m i m e t h y l a t e d  D N A  a nd  v i a  d i r e c t  pr o t e i n- pr o t e i n 
i nt e r a c t i o n r e c r u i t s  D N M T 1  f o r  m a i nt e na nc e  D N A  m e t h -
y l a t i o n.

D e f e c t s  o f  a  R I N G  d o m a i n m u t a nt  ( C 7 1 3 A ,  C 5 1 5 A  
a nd  C 7 1 6 A )  i n r e s t o r i ng u b i q u i t i na t e d  H 3  i n H e L a  c e l l s  
a f t e r  k no c k d o w n o f  h u m a n D N M T 1  a nd  U H R F 1  h a v e  
pr e v i o u s l y  b e e n r e po r t e d  [ 3 2 ] .  W e  f o u nd  t h a t  t h e  R I N G  
d o m a i n,  t h o u gh  no t  d i r e c t l y  i nv o l v e d  i n U H R F 1  c h r o m a -
t i n b i nd i ng o r  i nt e r a c t i o n w i t h  D N M T 1 ,  i s  i nd i s pe ns a b l e  
f o r  D N A  m e t h y l a t i o n b y  D N M T 1 .  R e m a r k a b l y ,  a  U H R F 1  
R I N G  d o m a i n m u t a nt  ( H 7 3 0 A )  w i t h  d i m i ni s h e d  u b i q u i t i n 
E 3  l i ga s e  a c t i v i t y  ( S u ppl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  
S 2 C  a nd  S 2 D )  t h a t  c o u l d  s t i l l  b i nd  D N M T 1  ( F i gu r e  2 B ) ,  
h e m i m e t h y l a t e d  D N A  a nd  K 9  t r i m e t h y l a t e d  H 3  pe pt i d e s  
in vitro ( F i g u r e  3 D  a n d  S u ppl e m e n t a r y  i n f o r m a t i o n ,  
F i gu r e  S 2 B )  a nd  c h r o m o c e nt e r s  in vivo ( S u ppl e m e nt a r y  
i nf o r m a t i o n,  F i gu r e  S 2 E ) ,  no ne t h e l e s s  f a i l e d  i n r e c r u i t i ng 
D N M T 1  t o  r e pl i c a t i o n s i t e s  ( F i gu r e  2 D  a nd  S u ppl e m e n-
tary information, Figure S2F). These findings suggest that 
D N M T 1  r e c r u i t m e nt  t o  r e pl i c a t i o n f o r k s  i s  no t  b a s e d  o n 
d i r e c t  i nt e r a c t i o n w i t h  U H R F 1 ,  b u t  o n t h e  c a t a l y t i c  a c t i v -
i t y  o f  t h e  R I N G  d o m a i n.  P r e v i o u s l y ,  t h e  R I N G  d o m a i n o f  
U H R F 1  h a s  b e e n r e po r t e d  t o  h a v e  a n a u t o u b i q u i t i na t i o n 
a c t i v i t y  [ 2 8 ]  a nd ,  i n a d d i t i o n,  t o  u b i q u i t i na t e  D N M T 1  
[ 2 9 ,  3 0 ]  a nd  h i s t o ne  s u b s t r a t e s  [ 2 4 ,  2 5 ] .  A  r e c e nt  s t u d y  
d e s c r i b e s  t h a t  u b i q u i t i na t i o n o f  H 3  b y  U H R F 1  pr o v i d e s  
d o c k i ng s i t e s  f o r  D N M T 1  o n c h r o m a t i n a nd  t h u s  c o u -
pl e s  m a i nt e na nc e  D N A  m e t h y l a t i o n a nd  r e pl i c a t i o n [ 3 2 ] .  
While we could confirm the essential role of UHRF1, we 
o b t a i ne d  ne w  i ns i gh t s  i nt o  t h e  c o m pl e x  f u nc t i o na l  i nt e r -
pl a y  o f  U H R F 1  a nd  D N M T 1  d o m a i ns .

F i r s t ,  i n c o nt r a s t  t o  u b i q u i t i na t i o n a t  K 2 3  i n Xenopus 
egg extracts [32], our mass spectrometry results identified 
H 3 K 1 8  a s  u b i q u i t i na t i o n t a r ge t  o f  U H R F 1  i n m a m m a l i a n 
c e l l s  ( F i gu r e  4 A ,  4 B  a nd  S u ppl e m e nt a r y  i nf o r m a t i o n,  
F i gu r e  S 5 A ) .  B y  m u t a t i o na l  a na l y s i s  i n H E K  2 9 3 T  c e l l s ,  
w e  f o u n d  t h a t  i n a b s e n c e  o f  K 1 8 ,  t h e  m u t a t e d  G F P -
t a gge d  H 3  m i gh t  b e  u b i q u i t i na t e d  a t  K 2 3  ( S u ppl e m e nt a r y  
i nf o r m a t i o n,  F i gu r e  S 5 B ) .  H o w e v e r ,  b y  s e m i q u a nt i t a t i v e  
a na l y s i s  o f  e nd o ge no u s  u b i q u i t i na t e d  H 3  pe pt i d e s  i n w t  
v e r s u s  Uhrf1−/− m o u s e  E S C s  u s i ng m a s s  s pe c t r o m e t r y ,  
we clearly show the specificity of K18 ubiquitination by 
U H R F 1  a nd  i t s  r e d u c t i o n b y  U H R F 1  d e pl e t i o n ( F i gu r e  
4 C ,  4 D ) .  S e c o nd ,  i n t h e  pr e v i o u s  s t u d y ,  a  d e l e t i o n o f  
100 amino acids within the DNMT1 TS domain (∆325-
4 2 5 )  c a u s e d  a  l o s s  o f  h i s t o ne  b i nd i ng in vitro [ 3 2 ] .  T h e  
T S  d o m a i n i s ,  h o w e v e r ,  i nv o l v e d  i n m u l t i pl e  i nt e r a c t i o ns  
a nd  r e q u i r e d  f o r  pr o pe r  f o l d i ng,  s t a b i l i t y  a nd  a c t i v i t y  o f  
D N M T 1 .  T h e  i nc o m pl e t e  s t r u c t u r a l  i nf o r m a t i o n i nd i c a t e s  

terested in how the UIM in DNMT1 has an influence on 
t h e  s u b nu c l e a r  l o c a l i z a t i o n o f  t h e  pr o t e i n.  I m m u no s t a i n-
ing of replicating DNA with a specific anti-PCNA anti-
b o d y  i nd i c a t e d  t h a t  G F P - D N M T 1  w t  w a s  e nr i c h e d  a t  S  
phase-specific replication foci, while GFP-DNMT1 ∆356-
4 0 4 ,  G F P - D N M T 1  D 3 8 1 A - E 3 8 2 A - S 3 9 2 A  a nd  G F P - D N -
M T 1  D 3 8 1 A - E 3 8 2 A - M 3 8 5 A - S 3 9 2 A - D 3 9 5 A  s h o w e d  
o nl y  w e a k  a s s o c i a t i o n w i t h  t h e  P C N A - s t a i ne d  r e pl i c a t i o n 
s i t e s  e s pe c i a l l y  i n l a t e  S  ph a s e  ( S u ppl e m e nt a r y  i nf o r m a -
t i o n,  F i gu r e  S 8 ) .  T o  a na l y z e  t h e  U I M - d e pe nd e nt  e nr i c h -
m e nt  o f  D N M T 1  a t  l a t e - r e pl i c a t i ng h e t e r o c h r o m a t i n,  w e  
quantified mean fluorescence intensities at chromocenters 
c o m pa r e d  w i t h  t h e  nu c l e o pl a s m i c  r e gi o n ( F i gu r e  7 A ) .  I n 
late S phase ES and mouse embryonic fibroblasts (MEF) 
c e l l s ,  G F P - D N M T 1  w t  l o c a l i z e d  a t  c h r o m o c e n t e r s ,  
w h e r e a s  t h e  U I M  m u t a t i o ns  a b o l i s h e d  h e t e r o c h r o m a t i n 
e nr i c h m e nt  ( F i gu r e  7 B  a nd  7 C ) .  T h e s e  r e s u l t s  c l e a r l y  
d e m o ns t r a t e  t h e  k e y  r o l e  o f  t h e  U I M  i n D N M T 1  t a r ge t i ng 
v i a  u b i q u i t i na t e d  h i s t o ne  H 3  b i nd i ng a nd  f o r  m a i nt e na nc e  
D N A  m e t h y l a t i o n i n m a m m a l i a n c e l l s .

Discussion

D N A  m e t h y l a t i o n i s  a n i m po r t a nt  e pi ge ne t i c  m o d i f i -
c a t i o n r e gu l a t i ng ge ne  e x pr e s s i o n i n d e v e l o pm e nt  a nd  
d i s e a s e .  A  k e y  q u e s t i o n i s  h o w  m e t h y l a t i o n m a r k s  a r e  
s e t ,  m a i n t a i n e d  a n d  r e m o v e d .  A c c o r d i ng t o  p r e v i o u s  
m o d e l s ,  D N A  m e t h y l a t i o n m a r k s  a r e  s e t  b y  t h e  de novo 
m e t h y l t r a n s f e r a s e s  D N M T 3 A  a n d  D N M T 3 B  d u r i ng 
d e v e l o pm e nt  a nd  m a i nt a i ne d  b y  t h e  m a i nt e na nc e  D N A  
m e t h y l t r a ns f e r a s e  D N M T 1  t h a t  s pe c i f i c a l l y  r e c o gni z e s  
and modifies hemimethylated DNA substrates. However, 
t h e  pr e f e r e nc e  o f  D N M T 1  f o r  h e m i m e t h y l a t e d  D N A  m e a -
s u r e d  in vitro [40-43] is not sufficient to explain efficient 
m a i nt e na nc e  o f  D N A  m e t h y l a t i o n pa t t e r ns  o v e r  m a ny  
c e l l  d i v i s i o n c y c l e s  in vivo.  T h e  i nt e r a c t i o n o f  D N M T 1  
w i t h  t h e  r e pl i c a t i o n pr o t e i n P C N A  w a s  s h o w n t o  e nh a nc e  
m a i nt e na nc e  D N A  m e t h y l a t i o n b y  a  f a c t o r  o f  t w o ,  b u t  no t  
t o  b e  e s s e nt i a l  [ 6 ,  7 ] .  I n c o nt r a s t ,  t h e  i nt e r a c t i ng f a c t o r  
U H R F 1  r e c r u i t i ng a nd  a l l o s t e r i c a l l y  a c t i v a t i ng D N M T 1  
i s  e s s e nt i a l  f o r  D N A  m e t h y l a t i o n [ 1 4 ,  1 6 ,  1 7 ,  4 4 ] . I n t h i s  
s t u d y ,  w e  h a v e  no w  d i s s e c t e d  t h e  d i s t i nc t  r o l e  o f  d i f f e r e nt  
U H R F 1  a nd  D N M T 1  d o m a i ns  i n d i r e c t i ng D N A  m e t h y l a -
t i o n.

I n l i ne  w i t h  pr e v i o u s  s t u d i e s ,  w e  s h o w  t h a t ,  a l b e i t  b e -
i ng w e a k ,  t h e  T S  d o m a i n- m e d i a t e d  i nt e r a c t i o n o f  D N M T 1  
w i t h  t h e  S R A  d o m a i n o f  U H R F 1  i s  r e q u i r e d  f o r  t a r ge t i ng 
a nd  f u nc t i o n o f  D N M T 1  in vivo.  A c c o r d i ngl y ,  t r u nc a t e d  
DNMT1 (∆458-500) deficient in UHRF1 binding showed 
w e a k e r  a s s o c i a t i o n w i t h  c h r o m o c e nt e r s  i n l a t e  S  ph a s e  
mouse fibroblasts [4] and failed to maintain DNA methyl-
a t i o n i n E S C  ( F i gu r e  1 ) .

H e t e r o c h r o m a t i n b i nd i ng o f  U H R F 1  i s  m e d i a t e d  b y  
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Figure 6 The DNMT1 UIM is required for ubiquitinated H3K18 binding and for DNA methylation. (A) Ubiquitinated histone 
binding experiments using GFP-DNMT1 wt or UIM mutants as well as the ∆458-500 mutant deficient in binding to UHRF1. 
Equal amounts of GFP fusions were immobilized on the GFP-Trap and incubated with acid extracted histones. Bound pro-
teins were visualized by Coomassie staining and the fractions highlighted by black rectangles were analyzed by mass spec-
trometry. GFP was used as negative control. (B) Quantification of H3 18-26 peptides carrying ubiquitination (ub) at K18 and 
an acetylated (ac) or unmodified (un) K23 residue from histone binding experiment shown in (A). Extracted ion chromato-
grams of the ions corresponding to the peptides of interest were used for quantification (H3K18ubK23ac: m/z = 571.8353 ± 
10 ppm; H3K18ubK23un: m/z = 578.8441 ± 10 ppm). (C) Local DNA methylation analyses of J1 Dnmt1−/− ESCs expressing 
GFP-DNMT1 wt or ∆356-404 and UIM point mutants. CpG methylation levels at the major satellite repeats and the skeletal 
α-actin promoter were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. Meth-
ylation levels of untransfected J1 Dnmt1−/− cells are shown for comparison. Mean values ± SD from three to four biological 
replicates were calculated, respectively.
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d i f f e r e nt  T S  d o m a i n c o nf o r m a t i o ns  a nd  a  r o l e  i n a u t o -
i nh i b i t i o n o f  t h e  C D ,  b u t  d o e s  no t  pr o v i d e  a ny  f u r t h e r  
m e c h a ni s t i c  i ns i gh t s  [ 1 0 ,  1 1 ,  4 7 ] .  W i t h  b i o i nf o r m a t i c s  
and mutational analyses, we identified a conserved UIM 
l o c a t e d  i n t h e  T S  d o m a i n o f  D N M T 1  ( a m i no  a c i d s  3 8 1 -
3 9 5 )  t h a t  m e d i a t e s  t h e  r e c o gni t i o n o f  u b i q u i t i na t e d  H 3  in 
vitro ( F i gu r e  5 ,  6 A ,  6 B  a nd  S u ppl e m e nt a r y  i nf o r m a t i o n,  
F i gu r e  S 6 B ) .  L o c a l i z a t i o n a nd  a c t i v i t y  a na l y s e s  w i t h  
specific mutants in vivo c l e a r l y  i nd i c a t e d  t h a t  t h e  U I M  i s  
r e q u i r e d  f o r  D N M T 1  s u b nu c l e a r  d i s t r i b u t i o n a nd  m a i nt e -
na nc e  D N A  m e t h y l a t i o n ( F i gu r e s  6 C ,  7  a nd  S u ppl e m e n-
t a r y  i nf o r m a t i o n,  F i gu r e  S 7 A  a nd  S 8 ) .

L a s t ,  w e  c o u l d  s h o w  t h a t  b e s i d e s  h e m i m e t h y l a t e d  D N A  
b i nd i ng b y  t h e  S R A  d o m a i n [ 3 2 ] ,  U H R F 1  P H D  b i nd i ng 
t o  H 3 R 2  i s  a l s o  r e q u i r e d  f o r  H 3  u b i q u i t i na t i o n a nd  s u b s e -
q u e nt  D N A  m e t h y l a t i o n ( F i gu r e  2 E  a nd  3 B ) .  T h e r e f o r e ,  
w e  pr o po s e  t h a t  c o o pe r a t i v e  c h r o m a t i n b i nd i ng o f  t h e  
T T D ,  t h e  P H D  a nd  t h e  S R A  d o m a i n c o ns t i t u t e s  a  pr e -
r e q u i s i t e  f o r  H 3 K 1 8  u b i q u i t i na t i o n.  T h e s e  u b i q u i t i na t e d  
h i s t o ne  t a i l s  a r e  r e c o gni z e d  b y  t h e  U I M  a nd  t h u s  m e d i a t e  
D N M T 1  c h r o m a t i n b i nd i ng.  T h e r e b y ,  U H R F 1  a c t s  a s  a  
r e a d e r  a nd  w r i t e r  o f  h i s t o ne  m a r k s  a nd  v i a  r e c r u i t m e nt  
o f  D N M T 1  d y na m i c a l l y  l i nk s  D N A  a nd  h i s t o ne  m o d i -
fication pathways. Based on these results, we propose a 
u b i q u i t i na t i o n- d e pe nd e nt  c h r o m a t i n t a r ge t i ng m e c h a ni s m  
f o r  D N M T 1  t h a t  i s  e s s e nt i a l  f o r  m a i nt e na nc e  D N A  m e t h -
y l a t i o n a f t e r  r e pl i c a t i o n ( F i gu r e  8 A ) .  T h e  i d e nt i f i c a t i o n 
a nd  f u nc t i o na l  c h a r a c t e r i z a t i o n o f  a  U I M  i n D N M T 1  no t  
o nl y  c h a nge s  o u r  v i e w  o f  m a i nt e na nc e  D N A  m e t h y l a t i o n,  
b u t  a l s o  o pe ns  ne w  pe r s pe c t i v e s  f o r  t h e  i nv o l v e m e nt  o f  
D N M T 1  i n o t h e r  r e pr e s s i v e  e pi ge ne t i c  pa t h w a y s  ( F i gu r e  
8 B ) .

B e s i d e s  a s s o c i a t i o n w i t h  u b i q u i t i na t e d  H 3 ,  w e  f o u nd  
t h a t  D N M T 1  a l s o  b i nd s  u b i q u i t i na t e d  H 2 A K 1 1 9  ( F i gu r e  
5 C  a nd  S u ppl e m e nt a r y  i nf o r m a t i o n,  F i gu r e  S 6 C ,  S 6 D ) .  
C o ns i s t e nt l y ,  D N M T 1  w a s  r e c e nt l y  d e t e c t e d  a m o ng pr o -
t e i ns  b i nd i ng t o  H 2 A  u b i q u i t i na t e d  a t  K 1 1 8  i n Drosoph-
ila,  c o r r e s po nd i ng t o  K 1 1 9  i n m a m m a l s  [ 4 8 ] .  H 2 A K 1 1 9  
u b i q u i t i na t i o n i s  c a t a l y z e d  b y  R I N G 1 A / 1 B ,  t w o  c o m po -
ne nt s  o f  t h e  P o l y c o m b  r e pr e s s i v e  c o m pl e x  1  ( P R C 1 ) ,  a nd  
pl a y s  a n i m po r t a nt  r o l e  i n r e gu l a t i ng ge ne  e x pr e s s i o n [ 4 9 ] .  
S i m i l a r  t o  U H R F 1 - d e pe nd e nt  H 3  u b i q u i t i na t i o n,  H 2 A  
u b i q u i t i na t i o n b y  R I N G 1 A / 1 B  m i gh t  a l s o  c o nt r i b u t e  t o  
D N A  m e t h y l a t i o n.  W e  s pe c u l a t e  t h a t  U I M - m e d i a t e d  b i nd -
i ng o f  D N M T 1  t o  u b i q u i t i na t e d  H 2 A K 1 1 9  m i gh t  d i r e c t  
D N M T 1  t o  u n-  o r  h e m i m e t h y l a t e d  s i t e s  d e pe nd e nt  o n 
P R C 1  u b i q u i t i na t i o n a c t i v i t y  ( F i gu r e  8 B ,  l e f t  h a l f ) .

P R C 1 - d e pe nd e nt  H 2 A  u b i q u i t i na t i o n f u r t h e r  l e a d s  t o  
P R C 2  r e c r u i t m e nt  a nd  s u b s e q u e nt  H 3 K 2 7  m e t h y l a t i o n 
[ 5 0 ] .  E nh a nc e r  o f  Z e s t e  h o m o l o g 2  ( E Z H 2 ) ,  a  c o m po -
ne nt  o f  P R C 2 ,  w r i t e s  m e t h y l a t e d  H 3 K 2 7  a nd  i nt e r a c t s  
w i t h  D N M T s .  T h i s  i nt e r a c t i o n w a s  s h o w n t o  b e  r e q u i r e d  
f o r  D N A  m e t h y l a t i o n o f  E Z H 2  t a r ge t  pr o m o t e r s  [ 5 1 ] .  

D N M T 1  d e pl e t i o n i n d i f f e r e nt i a t e d  c e l l s  a f f e c t s  H 2 A  
u b i q u i t i na t i o n- d e pe nd e nt  P R C 2  r e c r u i t m e nt  a t  pe r i c e n-
t r o m e r i c  h e t e r o c h r o m a t i n [ 5 2 ] .  T h u s ,  U I M  b i nd i ng t o  
u b i q u i t i na t e d  H 2 A  i s  l i k e l y  D N A  r e pl i c a t i o n i nd e pe nd e nt  
a nd  D N M T 1  m i gh t  f u nc t i o n a s  a d a pt o r  pr o t e i n m e d i a t i ng 
P R C 2  r e c r u i t m e nt  a nd  r e pr e s s i v e  P o l y c o m b  d o m a i n f o r -
m a t i o n.

B e s i d e s  r e c r u i t i ng D N M T 1  t o  s pe c i f i c  s i t e s  o n c h r o -
m a t i n,  t h e  U I M  c o u l d  a l s o  pl a y  a  r o l e  i n t h e  a l l o s t e r i c  
a c t i v a t i o n o f  t h e  e nz y m e .  T h e  U I M  i s  l o c a t e d  w i t h i n t h e  
T S  d o m a i n o f  D N M T 1  t h a t  h a d  b e e n s h o w n t o  b i nd  t h e  
C D  a nd  t h e r e b y  i nh i b i t  c a t a l y t i c  a c t i v i t y  [ 1 0 ,  1 1 ] .  I t  i s  
t e m pt i ng t o  s pe c u l a t e  t h a t  c o m pe t i t i v e  U I M  b i nd i ng t o  
u b i q u i t i na t e d  h i s t o ne  t a i l s  d i s pl a c e s  t h e  T S  d o m a i n f r o m  
t h e  D N A  b i nd i ng po c k e t  a nd  a b o l i s h e s  a u t o i nh i b i t i o n o f  
D N M T 1 .

G i v e n t h e  e m e r gi ng r o l e  o f  u b i q u i t i na t i o n i n D N A  
m e t h y l a t i o n,  i t  i s  i nt e r e s t i ng t o  no t i c e  t h a t  u b i q u i t i na t i o n 
is a highly dynamic post-translational modification that 
c a n b e  r e v e r s e d  b y  u b i q u i t i n- s pe c i f i c  pr o t e a s e s  ( U S P s ) .  
T h e  U H R F 1 - D N M T 1  c o m pl e x  h a s  b e e n r e po r t e d  t o  c o n-
t a i n U S P 7  t h a t  d e u b i q u i t i na t e s  a nd  s t a b i l i z e s  D N M T 1  [ 2 9 ,  
3 0 ] .  T h u s ,  U S P 7  m i gh t  i n a d d i t i o n m o d u l a t e  t h e  u b i q u i t i -
na t i o n s t a t u s  o f  h i s t o ne  H 3  a nd  t h e r e b y  r e gu l a t e  D N M T 1  
a s s o c i a t i o n w i t h  c h r o m a t i n.  A n a l t e r na t i v e  pa t h w a y  c o n-
t r o l l i ng D N M T 1  c h r o m a t i n a s s o c i a t i o n c o u l d  i nv o l v e  
t h e  r e c e nt l y  d e s c r i b e d  c h r o m a t i n a c e t y l a t i o n o f  H 3 K 1 8  
a nd  K 2 3  [ 5 3 ,  5 4 ] .  A c e t y l a t e d  H 3 K 1 8  i s  e nr i c h e d  a t  t h e  
t r a ns c r i pt i o na l  s t a r t  s i t e s  o f  a c t i v e  a nd  po i s e d  ge ne s  [ 5 5 ] .  
T h u s ,  H 3 K 1 8  a c e t y l a t i o n m i gh t  c o u nt e r a c t  u b i q u i t i na t i o n 
a nd  t h e r e b y  pr e v e nt  b i nd i ng a nd  s i l e nc i ng o f  a c t i v e  ge ne s  
b y  D N M T 1 .  T h e  d y na m i c  i nt e r pl a y  o f  u b i q u i t i na t i o n a nd  
a c e t y l a t i o n o f  H 3 K 1 8  l i k e l y  c o nt r o l s  D N M T 1  c h r o m a t i n 
b i nd i ng a nd  t h e r e b y  d i r e c t s  m e t h y l a t i o n a c t i v i t y .  S t u d i e s  
o f  U H R F 1  a nd  D N M T 1  c o m pl e x  c o m po s i t i o n i n d i f f e r -
e nt  c e l l  c y c l e  ph a s e s  a nd  c e l l  t y pe s  s h o u l d  pr o v i d e  f u r t h e r  
insights into the fine-tuning of DNMT1 activity in vivo.

G i v e n t h e  c o m pl e x  r o l e  o f  t h e  l a r ge  T S  d o m a i n o n t h e  
o ne  h a nd  a nd  t h e  s c a r c e  s t r u c t u r a l  a nd  m e c h a ni s t i c  d a t a  
o n t h e  o t h e r  h a nd ,  o u r  i d e nt i f i c a t i o n o f  a  w e l l  d e f i ne d  
U I M  pr o v i d e s  a  c o nc r e t e  b a s i s  f o r  f u nc t i o na l  i ns i gh t s .  
Ubiquitin binding proteins with defined UIMs have been 
d e s c r i b e d  i n v a r i o u s  c e l l u l a r  pr o c e s s e s  l i k e ,  e . g. ,  s o r t i ng 
o f  u b i q u i t i na t e d  m e m b r a ne  pr o t e i ns  f o r  l y s o s o m a l  d e g-
r a d a t i o n.  T h e  c r y s t a l  s t r u c t u r e  o f  t h e  s i gna l  t r a ns d u c i ng 
a d a pt o r  m o l e c u l e  1  ( S T A M 1 )  [ 5 6 ]  s u gge s t s  t h a t  t h r e e  
c e nt r a l  a m i no  a c i d s  i n t h e  U I M ,  L 1 7 6 ,  A 1 7 9  a nd  S 1 8 3  
f o r m  a  h y d r o ph o b i c  i nt e r f a c e  f o r  u b i q u i t i n b i nd i ng [ 5 7 ] .  
S i m i l a r  t o  t h e  U I M  i n S T A M 1 ,  t h e  U I M  i n D N M T 1  a l s o  
h a r b o r s  a  c o ns e r v e d  h y d r o ph o b i c  a m i no  a c i d  M 3 8 5  a nd  
S392 flanked by negatively charged amino acids (D381, 
E 3 8 2  a nd  D 3 9 5 ) ,  w h i c h  w e  f o u nd  t o  b e  e s s e nt i a l  i n our  
a na l y s e s  ( F i gu r e s  5 ,  6  a nd  7 ) .  D i f f e r e nt  f r o m  o t h e r  U I M s , 
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Figure 7 GFP-DNMT1 UIM mutants show a decreased association with PCNA-stained replication sites in late S phase com-
pared with the wt. (A) Maximum intensity projections of MEF cells transiently expressing GFP-DNMT1 wt or UIM mutants. 
Replicating DNA was stained with a specific anti-PCNA antibody and chromatin was counterstained with DAPI. Replication 
foci masks (red) match the enrichment of GFP-DNMT1 wt in late S phase, whereas the UIM mutants do not show a focal 
enrichment. Segmentations were generated in an automated fashion using a machine learning algorithm (WEKA). The nu-
clear mask outlined in blue was based on the DAPI staining, whereas the replication foci masks outlined in red were based 
on the PCNA staining. Both masks were superimposed on the GFP channels. The GFP-DNMT1 signal inside the red masks 
(chromocenters) relative to the remainder of the nucleus (nucleoplasm) was quantified. Scale bar, 5 µ m. (B) Quantification of 
chromocenter association of GFP-DNMT1 wt or UIM mutants in late S phase J1 Dnmt1−/− ESCs. The ratio of the mean GFP 
fluorescence intensity at chromocenters over the mean intensity in the nucleoplasm is shown in the box plot from 15 (wt), 16 
(∆356-404), 12 (D381A-E382A-S392A) or 18 (D381A-E382A-M385A-S392A-D395A) cells. The results were further analyzed 
in R using a Wilcoxon test and considered as statistical significant for P < 0.05 (*) and P < 0.01 (**) or highly significant for P 
< 0.001 (***). The following P values were calculated: ∆356-404: P = 0.049, D381A-E382A-S392A: P = 0.0016 and D381A-
E382A-M385A-S392A-D395A: P= 0.0056. (C) Quantification of chromocenter association of GFP-DNMT1 wt or UIM mutants 
in late S phase MEF cells as in (B). Eleven (wt), 12 (∆356-404, D381A-E382A-S392A) or 10 (D381A-E382A-M385A-S392A-
D395A) cells were analyzed. The following P values were calculated in R using a Wilcoxon test: ∆356-404: P = 0.00000148, 
D381A-E382A-S392A: P = 0.00000148 and D381A-E382A-M385A-S392A-D395A: P = 0.0012.
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Figure 8 Overview of interactions and modifications controlling DNMT1 activity. (A) UHRF1 is enriched at H3 tails as a result 
of the PHD-mediated binding to H3R2, the TTD-mediated binding to methylated H3K9 and recognition of hemimethylated 
CpG sites via the SRA domain. By interaction of the SRA domain with the TS domain, DNMT1 is directly recruited to its target 
sites. UHRF1 chromatin binding via its TTD, PHD and SRA domain is a prerequisite for subsequent H3 ubiquitination by the 
RING domain. The UIM of DNMT1 binds to H3 tails ubiquitinated at K18 by UHRF1 and is essential for DNMT1 targeting and 
DNA methylation in vivo. (B) The previously described direct interaction of DNMT1 with UHRF1 and PCNA is not sufficient for 
maintenance DNA methylation. Besides the UHRF1-dependent H3K18 ubiquitination recruiting DNMT1 via its UIM for main-
tenance DNA methylation (right half), we propose an alternative pathway that involves H2AK119 ubiquitination by RING1A/1B 
of PRC1 (left part). The identification of the DNMT1 UIM now opens the possibility that ubiquitination of histone tail residues 
by ubiquitin E3 ligases might constitute alternative pathways for DNA methylation by DNMT1 CD beyond classic mainte-
nance. Blue hexagons represent a ubiquitin moiety.
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t he  c e nt r a l  c ons e r ve d A  r e s i due  i s  not  pr e s e nt  i n D N M T 1 
( S u ppl e m e nt a r y i nf or m a t i on, F i gur e  S 6 A ) . B a s e d on s e -
que nc e  a l i gnm e nt s  a nd s t r uc t u r a l  i nf or m a t i on, U I M s  c a n 
b e  s u b d i v i d e d  i n s i ngl e - s i d e d  s i ngl e  U I M s ,  a s  i n S T A M 1 , 
a nd  i n s i ngl e - s i de d t a nde m  U I M s , a s  i n t he  pr o t e a s om e  
s ub uni t  S 5 a  [ 58]  ( F i gur e  5A ) . T he  t a nd e m  U I M s  i n S 5a  
pr o v i d e  a  m o d e l  f o r  t h e  r e c o gni t i o n o f  po l y u b i q u i t i n 
c h a i ns  [ 5 9 ] .  I n c o nt r a s t ,  a  d o u b l e - s i d e d  s i ngl e  U I M  i n 
t h e  h e pa t o c y t e  gr o w t h  f a c t o r - r e gu l a t e d  t y r o s i ne  k i na s e  
substrate (HRS) allows for efficient binding of multiple 
m o noubi qui t i na t e d r e c e pt or s  i n t he  pr oc e s s  of  e ndos om a l  
pr o t e i n s o r t i ng [ 5 8 ] .  C o m pa r i s o n w i t h  t h e s e  k no w n U I M s  
s ug ge s t s  t ha t  t he  m ot i f  i n D N M T 1 be l o ngs  t o t he  gr oup 
of  s i ngl e - s i de d s i ngl e  U I M s , w hi c h w oul d be  c om pa t i bl e  
w i t h t he  r e c ogni t i on of  s i ngl e  ubi qui t i na t e d hi s t on e  t a i l s .

I n s u m m a r y ,  t h e  f u nc t i o na l  a na l y s i s  o f  U H R F 1  d o -
mains and the identification of a UIM in DNMT1 chal-
l e nge  t r a di t i ona l  vi e w s  of  m a i nt e na nc e  D N A  m e t hyl a t i on 
a s  a  s i m pl e  c op yi ng m e c ha ni s m . I ns t e a d, D N A  m e t hyl -
a t i o n b y  D N M T 1  r e q u i r e s  r e a d i ng o f  H 3 R 2 ,  H 3 K 9 m e 3  
a nd  h e m i m e t h y l a t e d  D N A  b y  U H R F 1  a nd  s u b s e q u e nt  
u b i q u i t i na t i o n o f  H 3 K 1 8  b y  i t s  R I N G  d o m a i n t h e r e b y  
i nt e gr a t i ng s i gna l s  f r o m  d i f f e r e nt  e pi ge ne t i c  pa t h w a y s .  
T h e s e  m u l t i p l e  l a y e r s  c o n t r o l l i ng D N M T 1  a c t i v i t y  
s u gge s t  t h a t  o v e r a l l  m e t h y l a t i o n d e ns i t i e s  i n c h r o m a t i n 
domains are maintained rather than specific methylation 
pa t t e r ns  pr e c i s e l y  c o pi e d .  T h e  f u nc t i o na l  c h a r a c t e r i z a -
t i o n o f  t h e  U I M  f u r t h e r  r a i s e s  t h e  po s s i b i l i t y  t h a t  o t h e r  
u b i q u i t i n E 3  l i ga s e s  l i k e  R I N G 1 A / 1 B  o f  P R C 1  m i gh t  
di r e c t  D N M T 1 a c t i vi t y t o r e pr e s s i ve  c h r om a t i n dom a i ns  
be yond s i m pl e  m a i nt e na nc e .

Materials and Methods

Expression constructs and antibodies
F u s i o n c o ns t r u c t s  w e r e  ge ne r a t e d  u s i ng e nh a nc e d  G F P ,  m o -

no m e r i c  R F P  o r  m o no m e r i c  C h .  T h e  e x pr e s s i o n c o ns t r u c t s  f o r  
GFP, RFP-DNMT1, GFP-DNMT1 wt, GFP-DNMT1 ∆458-500, 
G F P - D N M T 1  3 0 9 - 6 2 8  ( G F P - T S )  a n d  U H R F 1 - H i s  h a v e  b e e n 
described previously [9, 29, 33, 60, 61]. GFP-TS ∆458-500, 
GFP-DNMT1 ∆356-404 and GFP-DNMT1 point mutant (D381A-
E 3 8 2 A - S 3 9 2 A  a nd  D 3 8 1 A - E 3 8 2 A - M 3 8 5 A - S 3 9 2 A - D 3 9 5 A )  e x -
pr e s s i o n c o ns t r u c t s  a s  w e l l  a s  U H R F 1 - G F P  H 3 4 6 G  a nd  H 7 3 0 A  
w e r e  d e r i v e d  f r o m  t h e  c o r r e s po nd i ng w t  c o ns t r u c t s  b y  o v e r l a p 
e x t e ns i o n P C R  [ 6 2 ] .  T h e  G F P - U H R F 1  s i ngl e - d o m a i n c o ns t r u c t  
f or  t he  ubi qui t i n- l i ke  dom a i n ( U bl )  w a s  ge ne r a t e d by P C R  us i ng 
t he  c or r e s pondi ng w t  f ul l - l e ngt h c o ns t r u c t . C h- U H R F 1 a nd G F P -
U H R F 1 e x pr e s s i on c ons t r uc t s  ha ve  be e n de s c r i be d pr e vi ous l y [ 22, 
63] .  E xpr e s s i on c ons t r uc t s  f or  G F P - H 3 R 2A , K 18A , K 23 A  a s  w e l l  
a s  K 1 8 A - K 2 3 A  w e r e  o b t a i ne d  b y  o v e r l a p e x t e ns i o n P C R  o n t h e  
c or r e s pondi ng w t  c ons t r uc t . T he  c ons t r uc t  f or  L a c I - G B P  ha s  be e n 
reported before [36, 64, 65]. All constructs were verified by DNA 
s e qu e nc i ng ( M W G  B i ot e c h) .

For immunofluorescence staining of heterochromatin, a mouse 
a nt i - H 3 K 9 m e 3  a nd  a n a nt i - H 4 K 2 0 m e 3  a nt i b o d y  w e r e  u s e d  ( A c t i v e  

M ot i f ) . E ndoge nous  D N M T 1 w a s  s t a i ne d w i t h t he  r a t  m onoc l ona l  
a nt i b o d y  5 A 1 0  [ 4 ]  a nd  P C N A  w i t h  t h e  r a t  m o no c l o na l  a nt i b o d y  
1 6 D 1 0  [ 6 6 ] .  A s  s e c o nd a r y  a nt i b o d i e s  a n a nt i - m o u s e  A l e x a  F l u o r  
5 9 4  a nd  a nt i - r a t  A l e x a  F l u o r  6 4 7  a nt i b o d y  w e r e  a ppl i e d ,  r e s pe c -
t i ve l y ( I nvi t r oge n) . 

F or  de t e c t i on of  G F P  f us i on pr ot e i ns  by w e s t e r n bl ot , a  m ous e  
a nt i - G F P  ( R o c h e )  o r  a  r a t  a nt i - G F P  ( C h r o m o t e k )  a nt i b o d y  w a s  
us e d. R F P  or  C h f us i on pr ot e i ns  w e r e  de t e c t e d by t he  r a t  a nt i - r e d 
a nt i body 5F 8 [ 67] . U H R F 1 w a s  vi s ua l i z e d by a  r a bbi t  a nt i - U H R F 1 
a nt i body [ 24]  a nd H A - ubi qui t i n by t he  m ous e  m onoc l ona l  a nt i - H A  
a nt i body 1 2C A 5. E qua l  l oa di ng of  c e l l  l ys a t e s  w a s  a s s e s s e d by a  
mouse anti-β-Actin antibody (Sigma-Aldrich). The rabbit anti-H3 
a nt i b o d y  w a s  pu r c h a s e d  f r o m  A b c a m  a nd  t h e  a nt i - H 2 A K 1 1 9 u b  
f r om  N e w  E ngl a nd B i ol a bs . D e pe ndi ng on t he  e xpe c t e d i nt e ns i t y 
of  t he  s i gna l s , s e c onda r y a nt i bodi e s  e i t he r  c onj uga t e d t o  hor s e r a d -
i s h  pe r o x i d a s e  ( a nt i - r a b b i t  ( B i o r a d ) ,  a nt i - r a t  a nd  a nt i - m o u s e  ( D i -
anova)) or conjugated to fluorescent dyes (anti-mouse and anti-rat 
A l e xa  F l uor  647 a s  w e l l  a s  a nt i - r a t  A l e xa  F l uor  488 ( I nvi t r oge n) )  
w e r e  a ppl i e d .  F o r  d e t e c t i o n o f  H R P - c o nj u ga t e d  a nt i b o d i e s ,  a n E C L  
Plus reagent (GE Healthcare, Thermo Scientific) was used.

Cell culture, transfection and immunofluorescence staining
H E K  2 9 3 T  a nd  B H K  c e l l s  w e r e  c u l t u r e d  i n D M E M  s u ppl e -

m e nt e d  w i t h  1 0 %  f e t a l  c a l f  s e r u m  a n d  5 0  µ g / m l  ge nt a m y c i n e  
( P A A ) .  M E F  c e l l s  w e r e  c u l t u r e d  i n D M E M  s u ppl e m e nt e d  w i t h  
15% fetal calf serum, 0.1 mM β-mercaptoethanol (Invitrogen), 2 
m M  l - gl u t a m i ne ,  1 ×  M E M  no n- e s s e nt i a l  a m i no  a c i d s ,  1 0 0  U / m l  
pe ni c i l l i n a nd  1 0 0  g/ m l  s t r e pt o m y c i n ( P A A ) .  E S C s  i nc l u d i ng J 1  
w t ,  Dnmt1−/− ,  E 1 4  w t  a nd  Uhrf1−/− w e r e  c u l t u r e d  w i t h o u t  f e e d e r  
cells in gelatinized flasks as described [33]. Culture medium was 
s u ppl e m e nt e d  w i t h  1  0 0 0  U / m l  r e c o m b i na nt  l e u k e m i a  i nh i b i t o r y  
f a c t or  ( M i l l i por e ) . T he  Dnmt1−/− E S C s  us e d i n t hi s  s t ud y a r e  ho -
m oz ygous   f or  t he  c  a l l e l e  [ 68] . M ous e  E 14 w t  a nd Uhrf1−/− c e l l s  
ha ve  be e n r e por t e d be f or e  [ 61] . M ous e  E S C s  a nd M E F  c e l l s  w e r e  
t r a ns f e c t e d  w i t h  F u G E N E  H D  ( R o c h e ) ,  L i po f e c t a m i ne ®  2  0 0 0  
or  3 000 r e a ge nt  ( I nvi t r oge n)  a c c or di ng t o t he  m a nuf a c t ur e r ’ s  i n-
s t r uc t i ons . H E K  293T  c e l l s  a nd B H K  c e l l s  w e r e  t r a ns f e c t e d us i ng 
pol ye t hyl e ni m i ne  a s  t r a ns f e c t i on r e a ge nt  ( S i gm a )  a c c or di ng t o t he  
m a nu f a c t u r e r ’ s  i ns t r u c t i o ns .  C e l l  f i x a t i o n a nd  m i c r o s c o py  w e r e  
c a r r i e d out  a s  de s c r i be d [ 35] .

Generation of stable ESC lines and DNA methylation anal-
yses

F or t y- e i ght  hour s  a f t e r  e xpr e s s i on o f  G F P - t a gge d c ons t r uc t s  i n 
Dnmt1−/− or  Uhrf1−/− E S C s , G F P - pos i t i ve  m ous e  E S C s  w e r e  s e pa -
rated using a fluorescence-activated cell sorting (FACS) Aria II in-
s t r um e nt  ( B e c t on D i ki ns on) . S t a bl y e xpr e s s i ng c e l l s  w e r e  e xpa nd -
e d i n s e l e c t i on m e di um  c ont a i ni ng 10 µ g/ m l  bl a s t i c i di n ( G F P - D N -
MT1 wt and GFP-DNMT1 ∆458-500) or 500 ng/ml puromycin 
( U H R F 1 - G F P  w t ,  H 3 4 6 G  a nd  H 7 3 0 A )  a nd  G F P - po s i t i v e  c e l l s  
w e r e  F A C S  s or t e d a  s e c ond t i m e . F ur t he r m or e , t he  U H R F 1- G F P  
w t ,  H 3 4 6 G  a nd  H 7 3 0 A  c e l l  l i ne s  w e r e  s i ngl e - c e l l  s o r t e d .  S i ngl e  
clones of GFP-DNMT1 ∆458-500 and corresponding wt [29] were 
pi c k e d  m a nu a l l y .  F o r  a l l  c e l l  l i ne s ,  c l o ne s  w i t h  l o w  e x pr e s s i o n 
l e ve l s  w e r e  c hos e n f or  f ur t he r  a na l ys e s . T he  l e ve l  a nd t he  a c c ur a c y 
of  t he  e xpr e s s e d G F P  f us i on c ons t r uc t s  w e r e  c he c ke d by w e s t e r n 
bl ot  a na l ys e s  ( F i gur e  3A  a nd S uppl e m e nt a r y i nf or m a t i o n, F i gur e s  
S 1 B  a nd  S 3 D ) .  F o r  f u nc t i o na l  a na l y s e s  o f  G F P - D N M T 1  w t  a nd  
GFP-DNMT1 UIM mutants (∆356-404, D381A-E382A-S392A 
a nd  D 3 8 1 A - E 3 8 2 A - M 3 8 5 A - S 3 9 2 A - D 3 9 5 A )  a s  w e l l  a s  U H R F 1 -
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G F P  w t  o r  U H R F 1 - G F P  po i nt  m u t a nt s  ( H 3 4 6 G  a nd  H 7 3 0 A )  b y  
t r a ns i e nt  r e s c ue  a s s a ys , 48 h a f t e r  e xpr e s s i on of  t he s e  pr ot e i ns  i n 
Dnmt1−/− or  Uhrf1−/− E S C s , r e s pe c t i ve l y , G F P - pos i t i ve  c e l l s  w e r e  
collected with FACS. Genomic DNA isolation, bisulfite conver-
s i on a nd P C R  c ondi t i on s  w e r e  de s c r i be d be f or e  [ 6, 60, 69] . P r i m e r  
s e t s  u s e d  f o r  a m pl i f i c a t i o n o f  m i no r  s a t e l l i t e s ,  m a j o r  s a t e l l i t e s ,  
skeletal α-actin a nd t he  Dnmt1o pr om ot e r  a r e  l i s t e d i n S up pl e m e n-
t a r y  i nf o r m a t i o n,  T a b l e  S 1 .  A l l  P C R  pr o d u c t s  w e r e  a na l y z e d  b y  
pyr os e que nc i ng ( V a r i on os t i c ) , w hi c h r e s ul t s  i n a  qua nt i t a t i ve  da t a  
s e t  f or  i ndi vi dua l  C pG  s i t e s  [ 70] .

Co-immunoprecipitation and western blotting
F o r  c o - i m m u no pr e c i pi t a t i o n a s s a y s ,  t h e  G F P  a nd  R F P ,  C h  o r  

H i s  f u s i o n c o ns t r u c t s  w e r e  c o - e x pr e s s e d  i n H E K  2 9 3 T  c e l l s  a nd  
pr o t e i n e x t r a c t s  w e r e  no r m a l i z e d  t o  t h e  s a m e  G F P  o r  R F P  c o n-
c e nt r a t i on pr i or  t o c o- i m m unopr e c i pi t a t i on w i t h t he  G F P - T r a p or  
R F P - T r a p ( C h r o m o t e k ) .  B o u nd  f r a c t i o ns  w e r e  f i r s t  d e t e c t e d  b y  
fluorescence intensity measurements and second by western blot 
a na l ys e s .

Acid extraction and TCA precipitation of histones
H i s t one s  w e r e  i s ol a t e d by a c i d e xt r a c t i on a s  r e por t e d pr e vi ous -

l y [ 71] . I n br i e f , 1 0 7  m ous e  E S C s  or  H E K  293T  c e l l s  w e r e  t r e a t e d 
i n hypot oni c  buf f e r  ( 10 m M  T r i s - H C l  pH  8, 10 m M  K C l , 1.5 m M  
M gC l 2 , 1 m M  D T T  a nd 1×  P r ot e a s e  I nhi bi t or , 2 m M  P M S F )  f or  
30 m i n a nd c e nt r i f ug e d  a t  1 000×  g a t  4 ° C  t o ge t  t he  i nt a c t  nuc l e i . 
A f t e r  w a s h i ng s t e ps ,  nu c l e i  w e r e  r e s u s pe nd e d  i n 0 . 4  N  H 2 S O 4  
a nd i nc uba t e d on a  r ot a t or  a t  4 ° C  ove r ni ght . A f t e r  c e nt r i f uga t i on, 
hi s t one s  i n t he  s upe r na t a nt  w e r e  t r a ns f e r r e d i nt o a  f r e s h r e a c t i on 
t ube  a nd pr e c i pi t a t e d u s i ng 33%  t r i c hl or oa c e t i c  a c i d ( T C A ) . A f t e r  
w a s hi ng t w i c e  w i t h c ol d a c e t one , h i s t on e s  w e r e  di s s ol ve d  i n H 2 O . 
H i s t one  c onc e nt r a t i o ns  w e r e  m e a s ur e d us i ng t he  P i e r c e T M  660 nm  
protein assay kit (Thermo Scientific). 

Ubiquitinated histone binding experiment
F o r  u b i q u i t i na t e d  h i s t o ne  b i nd i ng e x pe r i m e nt ,  a c i d  e x t r a c t e d  

h i s t o ne s  f r o m  H E K  2 9 3 T  c e l l s  w e r e  u s e d .  G F P - D N M T 1  a nd  i t s  
m ut a nt s  w e r e  i m m obi l i z e d on t he  G F P - T r a p ( C hr om ot e k)  a nd i n-
c uba t e d w i t h e qua l  a m ount s  of  a c i d  e xt r a c t e d hi s t one s  f or  30 m i n 
a t  4 ° C . A f t e r  w a s hi ng s t e ps , t he  bo und f r a c t i ons  w e r e  a na l yz e d by 
w e s t e r n bl ot .

Due to unspecific binding of histones to the eppendorf tubes, 
w e  u s e d  e ppe nd o r f  t u b e s  w i t h  l o w  b i nd i ng a f f i ni t y  d u r i ng m a s s  
s pe c t r om e t r y s a m pl e  pr e pa r a t i on.

Immunoprecipitation of ubiquitinated GFP-H3
G F P - H 3  w t  a nd  R 2 A  m u t a nt  c o ns t r u c t s  w e r e  c o - e x pr e s s e d  i n 

H E K  2 9 3 T  c e l l s  w i t h  U H R F 1 - H i s  a nd  h a r v e s t e d  a f t e r  t r e a t m e nt  
w i t h 2 m M  N - e t h yl m a l e i m i de  ( N E M , A ppl i C he m )  f or  5 m i n. L y -
sates were prepared by firstly isolating nuclei in hypotonic buffer 
( 10 m M  H E P E S  pH  7.9, 10 m M  K C l , 0.1 m M  M gC l 2 , 10%  gl yc -
e r ol , 0.1 m M  E D T A , 0 .1 m M  D T T , 1×  pr ot e a s e  i nhi bi t or , 2 m M  
P M S F , 0.1%  N P - 40, 0. 625 m g/ m l  N E M )  a nd s e c ondl y by l ys i s  of  
t he  nuc l e i  i n hype r t oni c  buf f e r  ( 20 m M  H E P E S  pH  7.9, 1 50 m M  
K C l , 1.5 m M  M gC l 2 , 1 0%  gl yc e r ol , 0. 1 m M  E D T A , 1 m M  D T T , 
1×  pr ot e a s e  i nhi bi t o r , 2 m M  P M S F , 1 m g/ m l  D na s e I  ( A ppl i C he m ) , 
0.625 m g/ m l  N E M ) . P r i or  t o i m m u nopr e c i pi t a t i on, t he  G F P  c on -
c e nt r a t i o n w a s  e q u a l i z e d  u s i ng l y s a t e s  f r o m  U H R F 1 - H i s  t r a ns -
f e c t e d H E K  293T  c e l l s  f or  di l ut i on . A f t e r  i m m unopr e c i pi t a t i on of  
G F P - H 3  w i t h  t h e  G F P - T r a p ( C h r o m o t e k )  a nd  w a s h i ng ( 2 0  m M  

H E P E S  pH  7.9, 300 m M  K C l , 10%  gl yc e r ol , 0.1%  T r i t on X - 100) , 
t he  bound f r a c t i on w a s  a na l yz e d by w e s t e r n bl ot .

F o r  s e m i q u a nt i t a t i v e  a na l y s i s  o f  t h e  G F P - H 3  w t  o r  K 1 8 A ,  
K 23A , K 18A - K 23A  a nd R 2A  ubi qui t i na t i on, t he  G F P  f us i on c on -
s t r u c t s  w e r e  c o - e x pr e s s e d  w i t h  H A - u b i q u i t i n i n H E K  2 9 3 T  c e l l s  
a nd 2 da ys  a f t e r  t r a ns f e c t i on, t he  c e l l s  w e r e  ha r ve s t e d a s  de s c r i be d 
a bove  a nd f ur t he r  pr oc e s s e d a s  r e por t e d pr e vi ous l y [ 29] .

F3H assay and trapping assay
T he  F 3H  a s s a y w a s  pe r f or m e d a s  de s c r i be d pr e vi ous l y  [ 65] . I n 

t h e  t r a ppi ng a s s a y ,  m o u s e  E S C s  s t a b l y  e x pr e s s i ng G F P - D N M T 1  

wt or ∆458-500 were cultured in Ibidi chambers and incubated 
with 10 µM of the cytosine analogue 5-aza-2′-deoxycytidine (Sig-
m a ) . I m a ge s  w e r e  a c qui r e d w i t h a  U l t r a V I E W  V oX  s pi nni ng di s c  
m i c r os c ope  ( P e r ki nE l m e r )  a s s e m bl e d t o a n A xi o O bs e r ve r  D 1 i n-
ve r t e d s t a nd ( Z e i s s )  a nd us i ng a  63× / 1.4 N A  P l a n- A poc hr om a t  oi l  
i m m e r s i on obj e c t i ve .

In vitro peptide pull-down assay
T he  pe pt i d e  pul l - dow n a s s a y f r om  nuc l e a r  c e l l  e xt r a c t s  of  H E K  

2 9 3 T  c e l l s  e x pr e s s i ng U H R F 1 - G F P  f u s i o n c o ns t r u c t s  w a s  pe r -
formed as described [72] with the following modifications. C-ter-
m i na l l y  b i o t i ny l a t e d  h i s t o ne  pe pt i d e s  w e r e  pu r c h a s e d  f r o m  P S L  
a nd a r e  l i s t e d i n S uppl e m e nt a r y i nf or m a t i on, T a bl e  S 2. S t r e pt a c t i n 
be a ds  ( I ba )  w e r e  us e d f or  t he  i m m o bi l i z a t i on of  bi ot i nyl a t e d pe p-
t i de s  i n bi ndi ng buf f e r  ( 10 m M  T r i s - H C l , pH  7.5, 300 m M  N a C l , 
0 . 5  m M  E D T A ,  1  m M  D T T ) .  A f t e r  t h e  b i nd i ng r e a c t i o n,  b e a d s  
w e r e  w a s he d f our  t i m e s  w i t h w a s h buf f e r  ( 20 m M  H E P E S  pH  7.9, 
20%  gl yc e r ol , 0.2 m M  E D T A , 300 m M  K C l , 0.1%  T r i t on X - 100) . 
B o u nd  f r a c t i o ns  w e r e  e l u t e d  b y  b o i l i ng i n 2 ×  L a e m m l i  s a m pl e  
buf f e r  a nd a na l yz e d by w e s t e r n bl ot .

Mass spectrometry
T he  ge l  w a s  s t a i ne d w i t h C oom a s s i e  a nd H 3 ba nds  w e r e  m a nu -

a l l y e xc i s e d, pr op i onyl a t e d a nd di ge s t e d w i t h t r yps i n a s  de s c r i be d 
before [73] with minor modifications. For peptide extraction, gel 
s l i c e s  w e r e  i nc uba t e d t w i c e  w i t h 50 µ l  of  50%  a c e t oni t r i l e  0.25%  
T F A  a nd t w i c e  m or e  w i t h 50 µ l  of  a c e t oni t r i l e . T he  r e s ul t i ng l i qui d 
c o nt a i ni ng t h e  d i ge s t e d  pe pt i d e s  w a s  t o t a l l y  e v a po r a t e d ,  r e d i s -
solved with 15 µl of 0.1% formic acid and stored at −20 °C until 
f ur t he r  pr oc e s s i ng.

T r y pt i c  pe pt i d e s  w e r e  i nj e c t e d  ( 5  µ l )  i n a n U l t i m a t e  3  0 0 0  
H P L C  s ys t e m  ( L C  P a c ki ngs  D i one x) . S a m pl e s  w e r e  de s a l t e d on-
l i ne  i n a  C 18 m i c r oc ol um n ( 300 m  i .d. ×  5 m m , pa c ke d w i t h C 18 
P e pM a p™ , 5 µ m , 100 Å  by L C  P a c ki ngs ) , a nd pe pt i de s  w e r e  s e p-
a r a t e d w i t h a  gr a di e nt  f r om  5%  t o 6 0%  a c e t oni t r i l e  i n 0.1%  f or m i c  
a c i d  o v e r  4 0  m i n a t  3 0 0  nl / m i n o n a  C 1 8  a na l y t i c a l  c o l u m n ( 7 5  
µ m  i .d. ×  15 c m , pa c ke d w i t h C 18 P e pM a p™ , 3 µ m , 100 Å  by L C  
P a c ki ngs ) .

The effluent from the HPLC was directly electrosprayed into 
a  l i ne a r  t r a p qua dr upol e - O r bi t r a p X L  m a s s  s pe c t r om e t e r  ( T he r m o 
F i s h e r  S c i e nt i f i c ) .  T h e  M S  i ns t r u m e nt  w a s  o pe r a t e d  i n d a t a - d e -
pe nde nt  m ode . S ur ve y f ul l - s c a n M S  s pe c t r a  ( f r om  m/ z 300 –2 000)  
w e r e  a c q u i r e d  i n t h e  O r b i t r a p w i t h  r e s o l u t i o n R =  6 0  0 0 0  a t  m/ z 4 0 0  
( a f t e r  a c c um ul a t i o n t o a  “ t a r ge t  va l ue ”  of  500 000 i n t he  l i ne a r  i on 
t r a p) . T he  s i x m os t  i nt e ns e  pe pt i de  i ons  w i t h c ha r ge  s t a t e s  be t w e e n 
t w o a nd f our  w e r e  s e que nt i a l l y i s ol a t e d t o a  t a r ge t  va l ue  o f  10 000 
a nd f r a gm e nt e d by c ol l i s i on- i nduc e d di s s oc i a t i on a nd r e c or de d i n 
t he  l i ne a r  i on t r a p. F or  a l l  m e a s ur e m e nt s  w i t h t he  O r bi t r a p de t e c -
t o r ,  t h r e e  l o c k - m a s s  i o ns  w e r e  u s e d  f o r  i nt e r na l  c a l i b r a t i o n [ 7 4 ] .  
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T ypi c a l  M S  c ondi t i o ns  w e r e  s pr a y vol t a ge , 1.5 kV ;  no s he a t h a nd 
auxiliary gas flow; heated capillary temperature, 200 °C; normal-
i z e d  c o l l i s i o n- i nd u c e d  d i s s o c i a t i o n e ne r gy  3 5 % ;  a c t i v a t i o n q =  0 . 2 5 ;  
a nd a c t i va t i on t i m e  =  30 m s .

Mascot 2.3.02 was used for protein identification with the fol -
l o w i ng s e t t i ngs :  D a t a b a s e :  S w i s s pr o t  5 7 . 7 ;  T a x o no m y :  Homo sa-
piens ( hum a n) ;  M S  t ol e r a nc e :  10 ppm ;  M S / M S  t ol e r a nc e :  0.5 D a ;  
pe pt i de  F D R :  0.1;  pr ot e i n F D R :  0.01;  m i ni m um  pe pt i de  l e ngt h:  5;  
and variable modifications: propionyl (K, N-term), GlyGly (K).

Quantification of modified H3 18-26 peptides was based on the 
i nt e ns i t i e s  o f  t h e  M S 1  pe a k s .  T h e  s pe c t r a  d e pi c t e d  i n F i gu r e  4 A  
a nd 4B  w e r e  us e d t o de t e r m i ne  t he  e xa c t  m a s s e s  ( m/ z ±  10 ppm )  
and used as a reference for further quantification.

Quantitative analysis of DNMT1 subnuclear localization
D ur i ng l a t e  S  pha s e , D N M T 1 i s  e nr i c he d i n r e pl i c a t i on f oc i  a t  

c hr o m oc e nt e r s . I n or de r  t o qua nt i f y t he  s ubnuc l e a r  di s t r i but i on of  
GFP-DNMT1 wt and defined UIM mutants the following proce-
dur e  w a s  us e d:  c onf oc a l  z - s t a c ks  ( 0.21 µ m  i nt e r va l )  w e r e  a c qui r e d 
w i t h  i d e nt i c a l  s c a n s e t t i ngs  i n t h r e e  c o l o r  c h a nne l s  t o  v i s u a l i z e  
r e pl i c a t i on f oc i  ( a nt i - P C N A  s t a i ni ng, 594 nm  e xc i t a t i on) , D N M T 1 
l o c a l i z a t i o n ( G F P - D N M T 1  f u s i o ns  e nh a nc e d  w i t h  G F P - b o o s t e r  
( C h r o m o t e k ) ,  4 8 8  nm  e x c i t a t i o n)  a nd  D N A  c o u nt e r s t a i ni ng ( D A P I ,  
4 0 5  nm  e x c i t a t i o n) .  F o r  e a c h  c o l o r  c h a nne l ,  m a x i m u m  i nt e ns i t y  
pr o j e c t i o ns  w e r e  c a l c u l a t e d  a nd  o nl y  G F P - e x pr e s s i ng c e l l s  w e r e  
a na l y z e d .  S e gm e nt a t i o n o f  r e pl i c a t i o n f o c i  o r  w h o l e  nu c l e i  w a s  
pe r f o r m e d  w i t h  t h e  W e k a  s e gm e nt a t i o n pl u gi n [ 7 5 ]  i n F i j i  [ 7 6 ] .  
Training of the classifier was finalized until the result matched the 
vi s u a l  i m pr e s s i on ( F i gur e  7A ) . D ue  t o v a r i a t i ons  i n E S C  s a m pl e s , 
replication foci were segmented using different classifiers for wt 
o r  t h e  d i f f e r e nt  U I M  m u t a nt s .  I n c o nt r a s t ,  f o r  a l l  s o m a t i c  c e l l s ,  
o ne  c l a s s i f i e r  w a s  s u f f i c i e nt  t o  s e gm e nt  r e pl i c a t i o n f o c i .  W h o l e  
nuclei were segmented by a classifier based on the DAPI signal. 
After Weka segmentation, the resulting binary masks were filtered 
using the particle analyzer of Fiji with a circularity value ≥ 0.25. 
To select for cells in late S phase, only replication foci ≥ 150 pixel 
w he r e  f ur t he r  a na l yz e d i n t he  E S C  s a m pl e s . I n M E F  c e l l  s a m pl e s , 
o nl y  l a t e  S  ph a s e  c e l l s  w e r e  i m a ge d  a nd  a na l y z e d  w i t h o u t  a ppl y i ng 
s i z e  e x c l u s i o n f o r  r e pl i c a t i o n f o c i .  N u c l e a r  m a s k s  (size ≥ 3 000 pix-
e l )  w e r e  us e d t o qua nt i f y t he  t ot a l  a m ount  of  G F P  f us i on pr ot e i n i n 
a  s i ngl e  nuc l e us . N uc l e i  w e r e  f ur t he r  s ubs e gm e nt e d by r e pl i c a t i on 
f o c i  m a s k s .  F o r  e a c h  nu c l e u s ,  t h e  r a t i o  b e t w e e n t h e  m e a n G F P  
s i gna l s  i n r e pl i c a t i on f oc i  r e l a t i ve  t o t he  m e a n G F P  s i gna l  out s i de  
t he  f oc i  w a s  c a l c u l a t e d. R a w  da t a  w e r e  c or r e c t e d f or  ba c kgr ound 
s i gna l s  by s ubt r a c t i ng t he  m oda l  gr e y va l ue . R a t i os  f r om  a l l  nuc l e i  
e x pr e s s i ng G F P - D N M T 1  w t  o r  U I M  m u t a nt s  w e r e  v i s u a l i z e d  a s  
box pl ot s . N um e r i c a l  c a l c ul a t i ons  a nd s t a t i s t i c a l  a na l ys i s  w e r e  pe r -
f or m e d w i t h R  [ 77] .

Statistical analysis
R e s ul t s  w e r e  e xpr e s s e d a s  m e a n va l ue s  ±  S D  or  a s  m e a n va l ue s  

±  S E M  f r om  t he  nu m be r  of  bi ol og i c a l  r e pl i c a t e s  i ndi c a t e d i n t he  
corresponding figure legend. 

Acknowledgments

W e  t ha nk S t e f a n J e nt s c h ( M a x P l a nc k I ns t i t ut e  of  B i oc he m i s -
t r y , G e r m a ny)  f or  pr o vi di ng t he  H A - ubi qui t i n c ons t r uc t  a nd P e t e r  
B e c k e r  ( A d o l f  B u t e na nd t  I ns t i t u t e ,  G e r m a ny )  f o r  t h e  6 0 1  D N A  

c ons t r uc t . W e  a r e  gr a t e f ul  t o t he  f o l l ow i ng c ol l e a gue s  f or  pr ovi d -
i ng E S C s  a nd s om a t i c  c e l l s :  M a s a hi r o M ut o a nd H a r uhi ko K os e -
ki  f or  m ous e  E 14 w t  a nd Uhrf1−/− E S C s ;  E n L i  a nd T .  C he n f or  
m o u s e  J 1  w t  a nd  Dnmt1−/−;  T h o m a s  J e nu w e i n f o r  M E F  c e l l s ;  a nd  L .  
D a vi d S pe c t or  f or  pr ovi di ng B H K  c e l l s  c ont a i ni ng a  l a c  ope r a t or  
r e pe a t  a r r a y .  W e  t h a nk  E . M .  B a u r  ( L u d w i g M a x i m i l i a ns  U ni v e r -
s i t y ,  G e r m a ny )  f o r  t e c h ni c a l  h e l p w i t h  t h e  G F P - T S  U I M  po i nt  
m u t a nt  pl a s m i d  c o ns t r u c t s .  T h i s  w o r k  w a s  s u ppo r t e d  b y  gr a nt s  
f r om  t he  D e ut s c he  F or s c hungs ge m e i ns c ha f t  ( D F G , S F B 1064 A 17 
t o H L  a nd Z 03 t o A I ) , t he  N a nos ys t e m  I ni t i a t i ve  M uni c h ( N I M  t o 
H L )  a nd t he  E pi ge nom i c s  F l a gs hi p P r o j e c t  ( E P I G E N - C N R  - I T  t o 
I M B ) . K F  a nd G P  w e r e  s uppor t e d by t he  I nt e r na t i ona l  M a x P l a nc k 
R e s e a r c h  S c h o o l  f o r  M o l e c u l a r  a nd  C e l l u l a r  L i f e  S c i e nc e s  ( I M -
P R S - L S ) . P W , N L  a nd M S  a r e  f e l l ow s  of  t he  G r a dua t e  S c hool  L i f e  
S c i e nc e  M uni c h ( L S M ) . M S  i s  a  f e l l ow  of  t he  I nt e gr a t e d R e s e a r c h 
T r a i ni ng G r o u p ( I R T G )  o f  t h e  S F B 1 0 6 4 .  N L  a nd  W Q  w e r e  a l s o  
s uppor t e d by t he  C hi na  S c hol a r s hi p C ounc i l  ( C S C ) .

References

1   B i r d  A .  D N A  m e t h y l a t i o n pa t t e r ns  a nd  e pi ge ne t i c  m e m o r y .  
Genes Dev 2 0 0 2 ;  16: 6 - 2 1 .

2   L e o nh a r d t  H ,  P a ge  A W ,  W e i e r  H U ,  B e s t o r  T H .  A  t a r ge t i ng 
s e q u e nc e  d i r e c t s  D N A  m e t h y l t r a ns f e r a s e  t o  s i t e s  o f  D N A  r e p-
l i c a t i o n i n m a m m a l i a n nu c l e i .  Cell 1 9 9 2 ;  71: 8 6 5 - 8 7 3 .

3   C h u a ng L S ,  I a n H I ,  K o h  T W ,  N g H H ,  X u  G ,  L i  B F .  H u m a n 
D N A - ( c y t o s i ne - 5 )  m e t h y l t r a ns f e r a s e - P C N A  c o m pl e x  a s  a  t a r -
ge t  f o r  p2 1 W A F 1 .  Science 1 9 9 7 ;  277: 1 9 9 6 - 2 0 0 0 .

4   S c h ne i d e r  K ,  F u c h s  C ,  D o b a y  A ,  et al. D i s s e c t i o n o f  c e l l  
c y c l e - d e pe nd e nt  d y na m i c s  o f  D nm t 1  b y  F R A P  a nd  d i f f u -
s i o n- c o u pl e d  m o d e l i ng.  Nucleic Acids Res  2 0 1 3 ;  41 : 4 8 6 0 -
4 8 7 6 .

5   E a s w a r a n H P ,  S c h e r m e l l e h  L ,  L e o nh a r d t  H ,  C a r d o s o  M C .  
R e pl i c a t i o n- i nd e pe nd e nt  c h r o m a t i n l o a d i ng o f  D nm t 1  d u r i ng 
G 2  a nd  M  ph a s e s .  EMBO Rep 2 0 0 4 ;  5: 1 1 8 1 - 1 1 8 6 .

6   S c h e r m e l l e h  L ,  H a e m m e r  A ,  S pa d a  F ,  et al.  D y na m i c s  o f  
D nm t 1  i nt e r a c t i o n w i t h  t h e  r e pl i c a t i o n m a c h i ne r y  a nd  i t s  r o l e  
i n po s t r e pl i c a t i v e  m a i nt e na nc e  o f  D N A  m e t h y l a t i o n.  Nucleic 
Acids Res 2 0 0 7 ;  35: 4 3 0 1 - 4 3 1 2 .

7   S pa d a  F ,  H a e m m e r  A ,  K u c h  D ,  et al. D N M T 1  b u t  no t  i t s  i n-
t e r a c t i o n w i t h  t h e  r e pl i c a t i o n m a c h i ne r y  i s  r e q u i r e d  f o r  m a i n-
t e na nc e  o f  D N A  m e t h y l a t i o n i n h u m a n c e l l s .  J Cell Biol 2 0 0 7 ;  
176: 5 6 5 - 5 7 1 .

8   M a r go t  J B ,  A gu i r r e - A r t e t a  A M ,  D i  G i a c c o  B V ,  et al. S t r u c -
t u r e  a nd  f u nc t i o n o f  t h e  m o u s e  D N A  m e t h y l t r a ns f e r a s e  ge ne :  
D nm t 1  s h o w s  a  t r i pa r t i t e  s t r u c t u r e .  J Mol Biol 2 0 0 0 ;  297: 2 9 3 -
3 0 0 .

9   F e l l i nge r  K ,  R o t h b a u e r  U ,  F e l l e  M ,  L a ngs t  G ,  L e o nh a r d t  H .  
D i m e r i z a t i o n o f  D N A  m e t h y l t r a ns f e r a s e  1  i s  m e d i a t e d  b y  i t s  
r e gu l a t o r y  d o m a i n.  J Cell Biochem 2 0 0 9 ;  106: 5 2 1 - 5 2 8 .

1 0   S y e d a  F ,  F a ga n R L ,  W e a n M ,  et al. T h e  r e pl i c a t i o n f o c u s  t a r -
ge t i ng s e q u e nc e  ( R F T S )  d o m a i n i s  a  D N A - c o m pe t i t i v e  i nh i b i -
t o r  o f  D nm t 1 .  J Biol Chem 2 0 1 1 ;  286: 1 5 3 4 4 - 1 5 3 5 1 .

1 1   T a k e s h i t a  K ,  S u e t a k e  I ,  Y a m a s h i t a  E ,  et al. S t r u c t u r a l  i ns i gh t  
i nt o  m a i nt e na nc e  m e t h y l a t i o n b y  m o u s e  D N A  m e t h y l t r a ns f e r -
a s e  1  ( D nm t 1 ) .  Proc Natl Acad Sci USA 2 0 1 1 ;  108: 9 0 5 5 - 9 0 5 9 .

1 2   A c h o u r  M ,  J a c q  X ,  R o nd e  P ,  et al. T h e  i nt e r a c t i o n o f  t h e  S R A  
d o m a i n o f  I C B P 9 0  w i t h  a  no v e l  d o m a i n o f  D N M T 1  i s  i n-
v o l v e d  i n t h e  r e gu l a t i o n o f  V E G F  ge ne  e x pr e s s i o n.  Oncogene 



9 2 8
D N A  met hy lat i on  req u i res D N M T 1  u b i q u i t i n  i n t eract i n g  mot i fnpg

Cell Research | V ol 2 5  N o 8  | A u g u st  2 0 1 5

2 0 0 8 ;  27: 2 1 8 7 - 2 1 9 7 .
1 3   F e l l e  M ,  J o ppi e n S ,  N e m e t h  A ,  et al. T h e  U S P 7 / D nm t 1  c o m -

pl e x  s t i m u l a t e s  t h e  D N A  m e t h y l a t i o n a c t i v i t y  o f  D nm t 1  a nd  
r e gu l a t e s  t h e  s t a b i l i t y  o f  U H R F 1 .  Nucleic Acids Res  2 0 1 1 ;  
39: 8 3 5 5 - 8 3 6 5 .

1 4   B e r k y u r e k  A C ,  S u e t a k e  I ,  A r i t a  K ,  et al. T h e  D N A  M e t h y l -
t r a ns f e r a s e  D nm t 1  d i r e c t l y  i nt e r a c t s  w i t h  t h e  S E T  a nd  R I N G  
f i nge r  a s s o c i a t e d  ( S R A )  d o m a i n o f  t h e  m u l t i f u nc t i o na l  pr o -
t e i n U h r f 1  t o  f a c i l i t a t e  a c c e s s i o n o f  t h e  c a t a l y t i c  c e nt e r  t o  
h e m i - m e t h y l a t e d  D N A .  J Biol Chem 2 0 1 3 ;  289: 3 7 9 - 3 8 6 .

1 5   Z h a ng J ,  G a o  Q ,  L i  P ,  et al.  S  ph a s e - d e pe nd e nt  i nt e r a c t i o n 
w i t h  D N M T 1  d i c t a t e s  t h e  r o l e  o f  U H R F 1  b u t  no t  U H R F 2  i n 
D N A  m e t h y l a t i o n m a i nt e na nc e .  Cell Res 2 0 1 1 ;  21: 1 7 2 3 - 1 7 3 9 .

1 6   B o s t i c k  M ,  K i m  J K ,  E s t e v e  P O ,  C l a r k  A ,  P r a d h a n S ,  J a c o b s e n 
S E .  U H R F 1  pl a y s  a  r o l e  i n m a i nt a i ni ng D N A  m e t h y l a t i o n i n 
m a m m a l i a n c e l l s .  Science 2 0 0 7 ;  317: 1 7 6 0 - 1 7 6 4 .

1 7   S h a r i f  J ,  M u t o  M ,  T a k e b a y a s h i  S ,  et al. T h e  S R A  pr o t e i n N p9 5  
m e d i a t e s  e pi ge ne t i c  i nh e r i t a nc e  b y  r e c r u i t i ng D nm t 1  t o  m e t h -
y l a t e d  D N A .  Nature 2 0 0 7 ;  450: 9 0 8 - 9 1 2 .

1 8   L i  E ,  B e s t o r  T H ,  J a e ni s c h  R .  T a r ge t e d  m u t a t i o n o f  t h e  D N A  
m e t h y l t r a ns f e r a s e  ge ne  r e s u l t s  i n e m b r y o ni c  l e t h a l i t y .  Cell 
1 9 9 2 ;  69: 9 1 5 - 9 2 6 .

1 9   A r i t a  K ,  A r i y o s h i  M ,  T o c h i o  H ,  N a k a m u r a  Y ,  S h i r a k a w a  M .  
R e c o gni t i o n o f  h e m i - m e t h y l a t e d  D N A  b y  t h e  S R A  pr o t e i n 
UHRF1 by a base-flipping mechanism. Nature 2 0 0 8 ;  455: 8 1 8 -
8 2 1 .

2 0   A v v a k u m o v  G V ,  W a l k e r  J R ,  X u e  S ,  et al. S t r u c t u r a l  b a s i s  f o r  
r e c o gni t i o n o f  h e m i - m e t h y l a t e d  D N A  b y  t h e  S R A  d o m a i n o f  
h u m a n U H R F 1 .  Nature 2 0 0 8 ;  455: 8 2 2 - 8 2 5 .

2 1   Q i a n C ,  L i  S ,  J a k o nc i c  J ,  Z e ng L ,  W a l s h  M J ,  Z h o u  M M .  S t r u c -
t u r e  a nd  h e m i m e t h y l a t e d  C pG  b i nd i ng o f  t h e  S R A  d o m a i n 
f r o m  h u m a n U H R F 1 .  J Biol Chem 2 0 0 8 ;  283: 3 4 4 9 0 - 3 4 4 9 4 .

2 2   R o t t a c h  A ,  F r a u e r  C ,  P i c h l e r  G ,  B o n a p a c e  I M ,  S p a d a  F ,  
L e o nh a r d t  H .  T h e  m u l t i - d o m a i n pr o t e i n N p9 5  c o nne c t s  D N A  
methylation and histone modification. Nucleic Acids Res 2 0 1 0 ;  
38: 1 7 9 6 - 1 8 0 4 .

2 3   C h e ng J ,  Y a ng Y ,  F a ng J ,  et al. S t r u c t u r a l  i ns i gh t  i nt o  c o -
o r d i na t e d  r e c o gni t i o n o f  t r i m e t h y l a t e d  h i s t o ne  H 3  l y s i ne  9  
( H 3 K 9 m e 3 )  b y  t h e  pl a nt  h o m e o d o m a i n ( P H D )  a nd  t a nd e m  
t u d o r  d o m a i n ( T T D )  o f  U H R F 1  ( u b i q u i t i n- l i k e ,  c o nt a i ni ng 
PHD and RING finger domains, 1) protein. J Biol Chem 2 0 1 3 ;  
288: 1 3 2 9 - 1 3 3 9 .

2 4   C i t t e r i o  E ,  P a pa i t  R ,  N i c a s s i o  F ,  et al. N p9 5  i s  a  h i s t o ne - b i nd -
i ng pr o t e i n e nd o w e d  w i t h  u b i q u i t i n l i ga s e  a c t i v i t y .  Mol Cell 
Biol 2 0 0 4 ;  24: 2 5 2 6 - 2 5 3 5 .

2 5   K a r a gi a nni  P ,  A m a z i t  L ,  Q i n J ,  W o ng J .  I C B P 9 0 ,  a  no v e l  
m e t h y l  K 9  H 3  b i nd i ng pr o t e i n l i nk i ng pr o t e i n u b i q u i t i na t i o n 
w i t h  h e t e r o c h r o m a t i n f o r m a t i o n.  Mol Cell Biol 2 0 0 8 ;  28: 7 0 5 -
7 1 7 .

2 6   X i e  S ,  J a k o nc i c  J ,  Q i a n C .  U H R F 1  d o u b l e  t u d o r  d o m a i n a nd  
the adjacent PHD finger act together to recognize K9me3-con-
t a i ni ng h i s t o ne  H 3  t a i l .  J Mol Biol 2 0 1 2 ;  415: 3 1 8 - 3 2 8 .

2 7   P a pa i t  R ,  P i s t o r e  C ,  G r a z i ni  U ,  et al. T h e  P H D  d o m a i n o f  
N p9 5  ( m U H R F 1 )  i s  i nv o l v e d  i n l a r ge - s c a l e  r e o r ga ni z a t i o n 
o f  p e r i c e n t r o m e r i c  h e t e r o c h r o m a t i n .  Mol Biol Cell  2 0 0 8 ;  
19: 3 5 5 4 - 3 5 6 3 .

2 8   J e nk i ns  Y ,  M a r k o v t s o v  V ,  L a ng W ,  et al.  C r i t i c a l  r o l e  o f  t h e  
u b i q u i t i n l i ga s e  a c t i v i t y  o f  U H R F 1 ,  a  nu c l e a r  R I N G  f i nge r  
pr o t e i n,  i n t u m o r  c e l l  gr o w t h .  Mol Biol Cell 2 0 0 5 ;  16 : 5 6 2 1 -
5 6 2 9 .

2 9   Q i n W ,  L e o nh a r d t  H ,  S pa d a  F .  U s p7  a nd  U h r f 1  c o nt r o l  u b i q -
u i t i na t i o n a nd  s t a b i l i t y  o f  t h e  m a i nt e na nc e  D N A  m e t h y l t r a ns -
f e r a s e  D nm t 1 .  J Cell Biochem 2 0 1 1 ;  112: 4 3 9 - 4 4 4 .

3 0   D u  Z ,  S o ng J ,  W a ng Y ,  et al. D N M T 1  s t a b i l i t y  i s  r e gu l a t e d  b y  
pr o t e i ns  c o o r d i na t i ng d e u b i q u i t i na t i o n a nd  a c e t y l a t i o n- d r i v e n 
u b i q u i t i na t i o n.  Sci Signal 2 0 1 0 ;  3: r a 8 0 .

3 1   M u d b h a r y  R ,  H o s h i d a  Y ,  C h e r ny a v s k a y a  Y ,  et al.  U H R F 1  
o v e r e x pr e s s i o n d r i v e s  D N A  h y po m e t h y l a t i o n a nd  h e pa t o c e l l u -
l a r  c a r c i no m a .  Cancer Cell 2 0 1 4 ;  25: 1 9 6 - 2 0 9 .

3 2   N i s h i y a m a  A ,  Y a m a gu c h i  L ,  S h a r i f  J ,  et al. U h r f 1 - d e pe nd e nt  
H 3 K 2 3  u b i q u i t y l a t i o n c o u pl e s  m a i nt e na nc e  D N A  m e t h y l a t i o n 
a nd  r e pl i c a t i o n.  Nature 2 0 1 3 ;  502: 2 4 9 - 2 5 3 .

3 3   S c h e r m e l l e h  L ,  S pa d a  F ,  E a s w a r a n H P ,  et al. T r a ppe d  i n a c -
t i o n:  d i r e c t  v i s u a l i z a t i o n o f  D N A  m e t h y l t r a ns f e r a s e  a c t i v i t y  i n 
l i v i ng c e l l s .  Nat Methods 2 0 0 5 ;  2: 7 5 1 - 7 5 6 .

3 4   L i u  X ,  G a o  Q ,  L i  P ,  et al. U H R F 1  t a r ge t s  D N M T 1  f o r  D N A  
m e t h y l a t i o n t h r o u gh  c o o pe r a t i v e  b i nd i ng o f  h e m i - m e t h y l a t e d  
D N A  a nd  m e t h y l a t e d  H 3 K 9 .  Nat Commun 2 0 1 3 ;  4: 1 5 6 3 .

3 5   L D a m b a c h e r  S ,  D e ng W ,  H a h n M ,  et al. C E N P - C  f a c i l i t a t e s  
t h e  r e c r u i t m e nt  o f  M 1 8 B P 1  t o  c e nt r o m e r i c  c h r o m a t i n.  Nucleus 
2 0 1 2 ;  3: 1 0 1 - 1 1 0 .

3 6   Z o l gh a d r  K ,  M o r t u s e w i c z  O ,  R o t h b a u e r  U ,  et al. A fluorescent 
t w o - h y b r i d  a s s a y  f o r  d i r e c t  v i s u a l i z a t i o n o f  pr o t e i n i nt e r a c -
t i o ns  i n l i v i ng c e l l s .  Mol Cell Proteomics 2 0 0 8 ;  7: 2 2 7 9 - 2 2 8 7 .

3 7   H u  L ,  L i  Z ,  W a ng P ,  L i n Y ,  X u  Y .  C r y s t a l  s t r u c t u r e  o f  P H D  
domain of UHRF1 and insights into recognition of unmodified 
h i s t o ne  H 3  a r gi ni ne  r e s i d u e  2 .  Cell Res 2 0 1 1 ;  21: 1 3 7 4 - 1 3 7 8 .

3 8   R a j a k u m a r a  E ,  W a ng Z ,  M a  H ,  et al. PHD finger recognition 
of unmodified histone H3R2 links UHRF1 to regulation of eu-
c h r o m a t i c  ge ne  e x pr e s s i o n.  Mol Cell 2 0 1 1 ;  43: 2 7 5 - 2 8 4 .

3 9   W a ng C ,  S h e n J ,  Y a ng Z  et al. Structural basis for site-specific 
reading of unmodified R2 of histone H3 tail by UHRF1 PHD 
finger. Cell Res 2 0 1 1 ;  21: 1 3 7 9 - 1 3 8 2 .

4 0   F r a u e r  C ,  L e o nh a r d t  H .  A  v e r s a t i l e  no n- r a d i o a c t i v e  a s s a y  f o r  
D N A  m e t h y l t r a ns f e r a s e  a c t i v i t y  a nd  D N A  b i nd i ng.  Nucleic 
Acids Res 2 0 0 9 ;  37: e 2 2 .

4 1   B e s t o r  T H ,  I ngr a m  V M .  T w o  D N A  m e t h y l t r a ns f e r a s e s  f r o m  
m u r i ne  e r y t h r o l e u k e m i a  c e l l s :  pu r i f i c a t i o n,  s e q u e nc e  s pe c i -
ficity, and mode of interaction with DNA. Proc Natl Acad Sci 
USA 1 9 8 3 ;  80: 5 5 5 9 - 5 5 6 3 .

4 2   Y o d e r  J A ,  S o m a n N S ,  V e r d i ne  G L ,  B e s t o r  T H .  D N A  ( c y t o -
s i ne - 5 ) - m e t h y l t r a ns f e r a s e s  i n m o u s e  c e l l s  a nd  t i s s u e s .  S t u d i e s  
w i t h  a  m e c h a ni s m - b a s e d  pr o b e .  J Mol Biol  1 9 9 7 ;  270 : 3 8 5 -
3 9 5 .

43  Jeltsch A. On the enzymatic properties of Dnmt1: specificity, 
pr o c e s s i v i t y ,  m e c h a ni s m  o f  l i ne a r  d i f f u s i o n a nd  a l l o s t e r i c  r e g-
u l a t i o n o f  t h e  e nz y m e .  Epigenetics 2 0 0 6 ;  1: 6 3 - 6 6 .

4 4   B a s h t r y k o v  P ,  J a n k e v i c i u s  G ,  J u r k o w s k a  R Z ,  R a g o z i n S ,  
J e l t s c h  A .  T h e  U H R F 1  pr o t e i n s t i m u l a t e s  t h e  a c t i v i t y  a nd  s pe c -
ificity of the maintenance DNA methyltransferase DNMT1 by 
a n a l l o s t e r i c  m e c h a ni s m .  J Biol Chem 2 0 1 4 ;  289: 4 1 0 6 - 4 1 1 5 .

4 5   R o t h b a r t  S B ,  D i c k s o n B M ,  O ng M S ,  et al. M u l t i v a l e nt  h i s t o ne  
e nga ge m e nt  b y  t h e  l i nk e d  t a nd e m  T u d o r  a nd  P H D  d o m a i ns  
o f  U H R F 1  i s  r e q u i r e d  f o r  t h e  e pi ge ne t i c  i nh e r i t a nc e  o f  D N A  
m e t h y l a t i o n.  Genes Dev 2 0 1 3 ;  27: 1 2 8 8 - 1 2 9 8 .

4 6   R o t h b a r t  S B ,  K r a j e w s k i  K ,  N a d y  N ,  et al. A s s o c i a t i o n o f  
U H R F 1  w i t h  m e t h y l a t e d  H 3 K 9  d i r e c t s  t h e  m a i nt e na nc e  o f  
D N A  m e t h y l a t i o n.  Nat Struct Mol Biol 2 0 1 2 ;  19: 1 1 5 5 - 1 1 6 0 .

4 7   S o ng J ,  R e c h k o b l i t  O ,  B e s t o r  T H ,  P a t e l  D J .  S t r u c t u r e  o f  D N -
M T 1 - D N A  c o m pl e x  r e v e a l s  a  r o l e  f o r  a u t o i nh i b i t i o n i n m a i n-



W ei hu a Q i n  et al.
9 2 9

npg

www.cell-research.com | Cell Research

t e na nc e  D N A  m e t h y l a t i o n.  Science 2 0 1 1 ;  331: 1 0 3 6 - 1 0 4 0 .
4 8   K a l b  R ,  L a t w i e l  S ,  B a y m a z  H I ,  et al. H i s t o ne  H 2 A  m o no u b i q -

u i t i na t i o n pr o m o t e s  h i s t o ne  H 3  m e t h y l a t i o n i n P o l y c o m b  r e -
pr e s s i o n.  Nat Struct Mol Biol 2 0 1 4 ;  21: 5 6 9 - 5 7 1 .

4 9   L e e b  M ,  W u t z  A .  R I N G 1 B  i s  c r u c i a l  f o r  t h e  r e gu l a t i o n o f  d e -
v e l o pm e nt a l  c o nt r o l  ge ne s  a nd  P R C 1  pr o t e i ns  b u t  no t  X  i na c -
t i v a t i o n i n e m b r y o ni c  c e l l s .  J Cell Biol 2 0 0 7 ;  178: 2 1 9 - 2 2 9 .

5 0   B l a c k l e d ge  N P ,  F a r c a s  A M ,  K o nd o  T ,  et al. V a r i a nt  P R C 1  
c o m pl e x - d e pe nd e nt  H 2 A  u b i q u i t y l a t i o n d r i v e s  P R C 2  r e c r u i t -
m e nt  a nd  po l y c o m b  d o m a i n f o r m a t i o n.  Cell 2 0 1 4 ;  157: 1 4 4 5 -
1 4 5 9 .

5 1   V i r e  E ,  B r e nne r  C ,  D e pl u s  R ,  et al. T h e  P o l y c o m b  gr o u p pr o -
t e i n E Z H 2  d i r e c t l y  c o nt r o l s  D N A  m e t h y l a t i o n.  Nature  2 0 0 6 ;  
439: 8 7 1 - 8 7 4 .

5 2   C o o pe r  S ,  D i e ns t b i e r  M ,  H a s s a n R ,  et al. T a r ge t i ng po l y c o m b  
t o  pe r i c e nt r i c  h e t e r o c h r o m a t i n i n e m b r y o ni c  s t e m  c e l l s  r e v e a l s  
a  r o l e  f o r  H 2 A K 1 1 9 u 1  i n P R C 2  r e c r u i t m e nt .  Cell reports 
2 0 1 4 ;  7: 1 4 5 6 - 1 4 7 0 .

5 3   K u r d i s t a ni  S K ,  T a v a z o i e  S ,  G r u ns t e i n M .  M a ppi ng gl o b a l  
h i s t o ne  a c e t y l a t i o n pa t t e r ns  t o  ge ne  e x pr e s s i o n.  Cell  2 0 0 4 ;  
117 : 7 2 1 - 7 3 3 .

5 4   T s a i  W W ,  W a ng Z ,  Y i u  T T ,  et al. T R I M 2 4  l i nk s  a  no n- c a no n-
i c a l  h i s t o ne  s i gna t u r e  t o  b r e a s t  c a nc e r .  Nature 2 0 1 0 ;  468: 9 2 7 -
9 3 2 .

5 5   W a ng Z ,  Z a ng C ,  R o s e nf e l d  J A ,  et al. C o m b i na t o r i a l  pa t t e r ns  
o f  h i s t o ne  a c e t y l a t i o ns  a nd  m e t h y l a t i o ns  i n t h e  h u m a n ge no m e .  
Nat Genet 2 0 0 8 ;  40: 8 9 7 - 9 0 3 .

5 6   R a i b o r g C ,  S t e nm a r k  H .  T h e  E S C R T  m a c h i ne r y  i n e nd o s o m a l  
s o r t i ng o f  u b i q u i t y l a t e d  m e m b r a ne  pr o t e i ns .  Nature 2 0 0 9 ;  
458: 4 4 5 - 4 5 2 .

5 7   L i m  J ,  S o n W S ,  P a r k  J K ,  K i m  E E ,  L e e  B J ,  A h n H C .  S o l u t i o n 
s t r u c t u r e  o f  U I M  a nd  i nt e r a c t i o n o f  t a nd e m  u b i q u i t i n b i nd i ng 
d o m a i ns  i n S T A M 1  w i t h  u b i q u i t i n.  Biochem Biophys Res 
Commun 2 0 1 1 ;  405: 2 4 - 3 0 .

5 8   H i r a no  S ,  K a w a s a k i  M ,  U r a  H ,  et al. D o u b l e - s i d e d  u b i q u i t i n 
b i nd i ng o f  H r s - U I M  i n e nd o s o m a l  pr o t e i n s o r t i ng.  Nat Struct 
Mol Biol 2 0 0 6 ;  13: 2 7 2 - 2 7 7 .

5 9   W a ng Q ,  Y o u ng P ,  W a l t e r s  K J .  S t r u c t u r e  o f  S 5 a  b o u nd  t o  
m o no u b i q u i t i n pr o v i d e s  a  m o d e l  f o r  po l y u b i q u i t i n r e c o gni t i o n.  
J Mol Biol 2 0 0 5 ;  348: 7 2 7 - 7 3 9 .

6 0   F r a u e r  C ,  R o t t a c h  A ,  M e i l i nge r  D ,  et al. D i f f e r e nt  b i nd i ng 
pr o pe r t i e s  a n d  f u n c t i o n o f  C X X C  z i n c  f i nge r  d o m a i n s  i n 
D nm t 1  a nd  T e t 1 .  PLoS One 2 0 1 1 ;  6: e 1 6 6 2 7 .

6 1   M e i l i nge r  D ,  F e l l i nge r  K ,  B u l t m a nn S ,  et al. N p9 5  i nt e r a c t s  
w i t h  d e  no v o  D N A  m e t h y l t r a ns f e r a s e s ,  D nm t 3 a  a nd  D nm t 3 b ,  
a nd  m e d i a t e s  e pi ge ne t i c  s i l e nc i ng o f  t h e  v i r a l  C M V  pr o m o t e r  
i n e m b r y o ni c  s t e m  c e l l s .  EMBO Rep 2 0 0 9 ;  10: 1 2 5 9 - 1 2 6 4 .

6 2   H o  S N ,  H u nt  H D ,  H o r t o n R M ,  P u l l e n J K ,  P e a s e  L R .  S i t e - d i -
r e c t e d  m u t a ge ne s i s  b y  o v e r l a p e x t e ns i o n u s i ng t h e  po l y m e r a s e  
c h a i n r e a c t i o n.  Gene 1 9 8 9 ;  77: 5 1 - 5 9 .

6 3   P i c h l e r  G ,  W o l f  P ,  S c h m i d t  C S ,  et al. C o o pe r a t i v e  D N A  a nd  
h i s t o ne  b i nd i ng b y  U h r f 2  l i nk s  t h e  t w o  m a j o r  r e pr e s s i v e  e pi -
ge ne t i c  pa t h w a y s .  J Cell Biochem 2 0 1 1 ;  112: 2 5 8 5 - 2 5 9 3 .

6 4   R o t h b a u e r  U ,  Z o l gh a d r  K ,  T i l l i b  S ,  et al. T a r ge t i ng a nd  t r a c i ng 

antigens in live cells with fluorescent nanobodies. Nat Meth-
ods 2 0 0 6 ;  3: 8 8 7 - 8 8 9 .

6 5   H e r c e  H D ,  D e ng W ,  H e l m a  J ,  L e o nh a r d t  H ,  C a r d o s o  M C .  
V i s u a l i z a t i o n a nd  t a r ge t e d  d i s r u pt i o n o f  pr o t e i n i nt e r a c t i o ns  i n 
l i v i ng c e l l s .  Nat Commun 2 0 1 3 ;  4: 2 6 6 0 .

6 6   R o t t a c h  A ,  K r e m m e r  E ,  N o w a k  D ,  et al. G e ne r a t i o n a nd  c h a r -
acterization of a rat monoclonal antibody specific for PCNA. 
Hybridoma (Larchmt) 2 0 0 8 ;  27: 9 1 - 9 8 .

6 7   R o t t a c h  A ,  K r e m m e r  E ,  N o w a k  D ,  L e o nh a r d t  H ,  C a r d o s o  M C .  
G e ne r a t i o n a nd  c h a r a c t e r i z a t i o n o f  a  r a t  m o no c l o na l  a nt i b o d y  
s pe c i f i c  f o r  m u l t i pl e  r e d  f l u o r e s c e nt  pr o t e i ns .  Hybridoma 
(Larchmt) 2 0 0 8 ;  27: 3 3 7 - 3 4 3 .

6 8   L e i  H ,  O h  S P ,  O k a no  M ,  et al. D e  no v o  D N A  c y t o s i ne  m e t h y l -
t r a ns f e r a s e  a c t i v i t i e s  i n m o u s e  e m b r y o ni c  s t e m  c e l l s .  Develop-
ment 1 9 9 6 ;  122: 3 1 9 5 - 3 2 0 5 .

6 9   T u c k e r  K L ,  B e a r d  C ,  D a u s m a nn J ,  et al. G e r m - l i ne  pa s s a ge  i s  
r e q u i r e d  f o r  e s t a b l i s h m e nt  o f  m e t h y l a t i o n a nd  e x pr e s s i o n pa t -
t e r ns  o f  i m pr i nt e d  b u t  no t  o f  no ni m pr i nt e d  ge ne s .  Genes Dev 
1 9 9 6 ;  10: 1 0 0 8 - 1 0 2 0 .

7 0   T o s t  J ,  G u t  I G .  D N A  m e t h y l a t i o n a na l y s i s  b y  py r o s e q u e nc i ng.  
Nat Protoc 2 0 0 7 ;  2: 2 2 6 5 - 2 2 7 5 .

7 1   S h e c h t e r  D ,  D o r m a nn H L ,  A l l i s  C D ,  H a k e  S B .  E x t r a c t i o n,  
purification and analysis of histones. Nat Protoc 2 0 0 7 ;  2: 1 4 4 5 -
1 4 5 7 .

7 2   W y s o c k a  J .  I d e nt i f y i ng no v e l  pr o t e i ns  r e c o gni z i ng h i s t o ne  
modifications using peptide pull-down assay. Methods  2 0 0 6 ;  
40: 3 3 9 - 3 4 3 .

73  Villar-Garea A, Israel L, Imhof A. Analysis of histone modifi-
c a t i o ns  b y  m a s s  s pe c t r o m e t r y .  Curr Protoc Protein Sci 2 0 0 8 ;  
C h a pt e r  1 4 : U ni t  1 4 . 1 0 .

7 4   O l s e n J V ,  d e  G o d o y  L M ,  L i  G ,  et al. P a r t s  pe r  m i l l i o n m a s s  
a c c u r a c y  o n a n O r b i t r a p m a s s  s pe c t r o m e t e r  v i a  l o c k  m a s s  i n-
j e c t i o n i nt o  a  C - t r a p.  Mol Cell Proteomics 2 0 0 5 ;  4: 2 0 1 0 - 2 0 2 1 .

7 5   M a r k  H a l l  E F ,  G e o f f r e y  H o l m e s ,  B e r nh a r d  P f a h r i nge r ,  P e t e r  
R e u t e m a nn,  I a n H .  W i t t e n.  T h e  W E K A  d a t a  m i ni ng s o f t w a r e :  
a n u pd a t e .  ACM SIGKDD Explorations Newsletter  2 0 0 9 ;  
11: 1 0 - 1 8 .

7 6   S c h i nd e l i n J ,  A r ga nd a - C a r r e r a s  I ,  F r i s e  E ,  et al. F i j i :  a n o pe n-
s o u r c e  pl a t f o r m  f o r  b i o l o gi c a l - i m a ge  a na l y s i s .  Nat Methods 
2 0 1 2 ;  9: 6 7 6 - 6 8 2 .

7 7   R  C o r e  T e a m  ( 2 0 1 4 ) .  R :  a  l a ngu a ge  a nd  e nv i r o nm e nt  f o r  s t a -
t i s t i c a l  c o m pu t i ng.  R  F o u nd a t i o n f o r  S t a t i s t i c a l  C o m pu t i ng,  
V i e nna ,  A u s t r i a .  U R L  h t t p: / / w w w . R - pr o j e c t . o r g/ .

7 8   R o b e r t  X ,  G o u e t  P .  D e c i ph e r i ng k e y  f e a t u r e s  i n pr o t e i n s t r u c -
t u r e s  w i t h  t h e  ne w  E N D s c r i pt  s e r v e r .  Nucleic Acids Res 2 0 1 4 ;  
42: W 3 2 0 - W 3 2 4 .

( Supplementary information i s  l i nke d t o t he  onl i ne  ve r s i on of
t he  pa pe r  on t he  Cell Research w e bs i t e .)

This work is licensed under the Creative Commons 
Attribution-NonCommercial-No Derivative Works 3.0 
Unported License. To view a copy of this license, 

visit http://creativecommons.org/licenses/by-nc-nd/3.0



2.5. DNA METHYLATION REQUIRES A DNMT1 UIM 225

2.5.2 Supplementary information



 

Supplementary information, Data S1 

Materials and methods  

Antibodies 

For detection of (GFP-)DNMT1 by western blot, a mouse anti-DNMT1 antibody (pATH52 [1, 2]) was used. 

Equal loading was confirmed by immunoblotting with a specific anti-Lamin B1 (Abcam) or anti-β-Actin (Sigma) 

antibody. The rabbit anti-H2A antibody was purchased from Millipore. 

In vitro DNA methylation assay 

For analyses of in vitro DNA methylation activity, GFP-DNMT1 was purified by immunoprecipitation from 

HEK 293T extracts. The concentration of GFP-DNMT1 in the bound fractions was measured by fluorescent read 

out. In order to get enough unmodified DNA templates, the 601 DNA sequences were amplified with the primers: 

TGCATGTATTGAACAG (forward) and TGCACAGGATGTATATATC (reverse). 3 μg of GFP-DNMT1 were 

incubated with 88 ng of DNA template in methylation buffer containing 160 μM SAM and 100 ng/μl BSA at 

37°C for 3 hours. After inactivation of the reaction at 65°C for 30 min, the DNA was isolated with a Nucleospin 

PCR cleaning kit (Macherey-Nagel) and bisulfite treated with EZ DNA Methylation-Gold Kit (Zymo research). 

Primer sequences for the 601 DNA were TGTATGTATTGAATAG (forward primer) and 

TACACAAAATATATATATC (reverse primer). For amplification we used Qiagen Hot Start Polymerase in 1x 

Qiagen Hot Start Polymerase buffer supplemented with 0.2 mM dNTPs, 0.2 µM forward primer, 0.2 µM reverse 

primer, 1.3 mM Betaine (Sigma) and 60 mM Tetramethylammonium-chloride (TMAC, Sigma). Pyrosequencing 

reactions were carried out by Varionostic GmbH (Ulm). 

Preparation of hemimethylated DNA substrates 

To prepare the hemimethylated DNA, an efficient method for long heteroduplex DNA was used as described 

[3]. One pair of modified PCR primers were synthesized, which are labeled with phosphate at 5’-end, 5’-

phosphorylated-TGCATGTATTGAACAG-3’ and 5’-phosphorylated-TGCACAGGATGTATATATC-3’. To get 

single and upper strand DNA, the DNA was amplified with the reverse primer labeled with phosphate at the 5’-

end, following a lambda-nuclease digestion (NEB). The same procedure is required for making lower strand 

DNA. To prepare the methylated lower strand DNA, one more step, in vitro methylation by bacterial 

methyltransferase M.SssI (NEB), is required before treatment with the lambda-nuclease. In the end, equal 

amounts of upper and lower strand DNA were mixed and incubated at 95°C for 5 min, followed by annealing. 

To get rid of contamination from double strand DNA after lambda-nuclease treatment, the hydroxyapatite 

chromatography was carried out. Hydroxyapatite column (Sigma) was packed according to the manufacturer’s 

instructions and the single stranded DNA was eluted by elution buffer containing 150 mM sodium phosphate. 

In vitro DNA binding assays 

In vitro DNA binding assays were performed as described previously [4]. Briefly, two double stranded DNA 

oligonucleotides labeled with different ATTO fluorophores were used as substrates in direct competition. DNA 

oligonucleotide substrates with identical sequence contained an unmodified or hemimethylated cytosine at a 

single, central CpG site (UMB: unmethylated binding substrate, ATTO550; HMB: hemimethylated binding 

substrates, ATTO647N; Supplementary Table S3). GFP fusion proteins were expressed in HEK 293T cells and 

immunoprecipitated using the GFP-Trap (Chromotek). Immobilized UHRF1-GFP wt and mutants were washed 

three times before incubation with DNA substrates at a final concentration of 160 nM each. After removal of 

unbound substrates, protein amounts (GFP fluorescence) and bound DNA were measured with an Infinite 

M1000 plate reader (Tecan). 



In vivo autoubiquitination assay 

The in vivo autoubiquitination assay of UHRF1-GFP was performed as described before [5]. The resulting 

ubiquitination levels were detected with a specific mouse monoclonal anti-HA antibody (12CA5) and quantified 

using Image J and a statistical Student’s t-test analysis. Equal amounts of (UHRF1-)GFP in the bound fraction 

were verified by immunoblotting with a specific anti-GFP antibody (Chromotek). 

Slot blot analysis 

To quantify global DNA methylation levels, the Bio-Rad slot blot system was used according to the 

manufacturer’s instruction. Prior to loading on a Nitrocellulose membrane (Amersham), genomic DNA was 

denatured in 6x SSC buffer for 10 min at 95°C and incubated for 10 min on ice. The membrane was crosslinked, 

blocked with 5% milk and immunostained with specific rabbit anti-ssDNA (Eurogentec) and mouse anti-5mC 

(IBL) antibodies. Quantification was performed using the ImageJ gel analysis tool. 

In vitro histone tail peptide binding assay 

The in vitro histone tail peptide binding assay was performed as described before [6] with the following 

modification. GFP fusion proteins were equalized to a GFP concentration of 130 nM prior to 

immunoprecipitation with the GFP-Trap. The TAMRA-labeled H3 peptides used in this assay are listed in 

Supplementary Table S2. 

Ubiquitinated histone H3 binding experiment 

For ubiquitinated H3 binding experiment, HEK 293T cells were incubated with 2 mM N-Ethylmaleimide 

(NEM, AppliChem) for 10 min before harvesting and were treated in hypotonic buffer (10 mM Tris-HCl pH 8, 

10 mM KCl, 1.5 mM MgCl2, 1 mM DTT and 1x Protease Inhibitor, 2 mM PMSF) for 10 min on ice to isolate 

the intact nuclei. Nuclei resuspended in MNase digestion buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM 

CaCl2, 0.1% NP-40, 1x Protease Inhibitor (Serva), 2 mM PMSF) were digested with 40 U/ml MNase at 37°C for 

5 min to get mononucleosomes. 

GFP-DNMT1 and its mutants were immobilized on the GFP-Trap and incubated with equal amount of 

mononucleosomes for 2 hours. After washing steps, the bound fractions were analyzed by western blot. 
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Chapter 3

Discussion

Applied methodological work in biological studies, such as microscopy and image
analysis, necessarily takes a second place after the new findings that are discovered.
Nevertheless, it is my hope to have helped my co-authors arrive at conclusions that
they would not have reached so easily otherwise. I worked on the development
of new methods as well, providing tools to drive scientific investigation in the
years to come. On the following pages, I will provide a quick discussion of the
studies included in this thesis and my contributions to each of them and end with
some general thoughts on the current and future role of computational tools in
microscopy-based science.

3.1 Localization of the contributions in the overall experi-

mental workflow

The work pursued during the work on this thesis spans a wide range in the gen-
eralized experimental workflow shown in the introduction (figure 1.1), both in the
stage of the experiment at which I contributed, but also on the experimentation-
computation range (figure 3.1). It can be grouped into two categories, the studies
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Figure 3.1: Location of the work presented in this thesis in the overall workflow of imaging-based

experiments.

in which I contributed to the discovery of novel epigenetic and cell biological in-
sights via microscopy and image analysis [147, 148], helping colleagues to study
complex phenomena in nuclear cell biology, and those in which I contributed to
methods development [21, 82, 89], benchmarking new labelling strategies and writ-
ing tools for quick screening of therapeutic antibodies for cancer treatment and
reusable tools for the processing of terabyte-sized image datasets. On the following
pages, I will discuss biological studies and methodological developments separately,
with a dedicated section for the central work presented in this thesis, BigStitcher
[89]
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3.2 Novel insights into epigenetics and cell biology

Two of the studies presented in this thesis produced novel biological findings, specif-
ically concerning the regulation of the DNA methyltransferase 1 (DNMT1) as well
as spatial distribution of DNA damage response upon exposure to radiation, two
areas that have been of central interest in the work of the Leonhardt lab and the
collaborating Cardoso lab for a long time. Going into great depth here would
overstate my contributions that, while forming an essential part of the whole, con-
stitute single steps towards the final result. Therefore, the overall conclusions will
be summarized briefly, while elaborating upon those results derived directly from
imaging experiments with direct contribution from me.

3.2.1 DNMT1

The canonical role of DNMT1 is that of a maintenance DNA methyltransferase,
transferring a methyl residue to cytosines at hemi-methylated cytosine-guanine din-
ucleotide (CpG) sites directly after replication. There are a variety of regulatory
mechanisms controlling the activity of DNMT1 in vivo, through its N-terminal reg-
ulatory part, like association with the replication machinery through a proliferating
cell nuclear antigen (PCNA)-binding domain or binding via a target sequence (TS)
to ubiquitin-like containing PHD and RING finger domains 1 (UHRF1), which it-
self harbors complex regulatory (binding to a variety of chromatin features, like
e.g. hemi-methylated CpG) and enzymatic (e.g. Ubiquitin-ligase) activity. In the
study presented above [148], we could add another piece to the regulatory puzzle
by discovering and characterizing an Ubiquitin interacting motif (UIM) within the
TS that allows DNMT1 to bind to H3 tails ubiquitinated by UHRF1.

My contribution to the study consisted in quantifying the subnuclear localization
of DNMT1 mutants, especially their association with late replication sites. To this
end, confocal stacks of S-phase nuclei of fixed cells, both mouse embryonal fibrob-
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lasts (MEFs) and J1 embryonal stem cells (ESCs), transiently expressing DNMT1
mutants as GFP-fusions were acquired by one of the main authors of the study,
Dr. Patricia Wolf. The whole nuclei were labelled with DAPI and replication
sites via immunolabelling with an anti-PCNA antibody. For the segmentation
of nuclei as well as replication sites, we turned to machine learning-based meth-
ods, specifically the user-friendly Trainable Weka Segmentation (TWS) plug-in
in ImageJ/Fiji [139]. This constituted a large step forward in the sophistication
of segmentation techniques used in the lab, which was previously carried out by
simple thresholding, sometimes with manual threshold selection. A workflow was
set up in which the main author would interactively generate segmentation models
in TWS, followed by simple morphological operations to remove small objects and
identify connected components and automated intensity measurements from the
masked areas. Used in this way, ML can be seen as a mere automation aid, prop-
agating expert knowledge from a few labelled examples to the rest of the dataset.
However, this is not necessarily a bad thing: for one, almost every state-of-the-art
specialized AI approach shares this property, except the expert contribution is
hidden in large datasets and usually not exposed in production ML applications
outside of science. Furthermore, the direct observation of segmentation results
provided by interactive tools such as TWS almost certainly entails manual quality
control by the researcher doing the training, a step that might easily be missed in
fully automated pipelines relying, for example, on simple automated thresholding
that just spit out a collection of numbers at the end, never showing intermediate
segmentations to the user. The (in my opinion) great importance of interactivity
will be discussed further below. From the nuclear and replication masks generated
with our semi-automatic pipeline, we could determine average fluorescence inten-
sity in the spots, corrected for nuclear background and show significant differences
between mutants in a downstream statistical analysis.
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Using this relatively simple analysis pipeline in both J1 mouse embryonal stem
cells and MEFs, we could in both cell types show significantly reduced association
with late replicating heterochromatin of a Dnmt1-UIM deletion mutant as well
as point mutants of conserved amino acids within the UIM, complementing other
lines of evidence produced by colleagues in the study.

3.2.2 DNA damage response

The goal of the study presented in [147] was a comprehensive and quantitative
description of the dynamics and spatial distribution of DNA damage response
after double strand breaks (DSBs) introduced via X-ray irradiation or enzymatic
activity. An early cellular response to DSBs is the accumulation of H2A histone
family member X phosphorylated on serine 139 (γH2AX) at damage sites. In our
study, we systematically quantified the spatial distribution of γH2AX sites and
their interaction with other chromatin features by super-resolution fluorescence
microscopy and biochemical assays.

One contribution to the project consisted of verifying that the structures visible in
SIM micrographs indeed correspond to single repair sites and not just aggregates
with non-resolvable substructures. To this end, we applied the higher-resolution
microscopy technique of STED. Based on STED images acquired by me and com-
paring them to SIM images acquired by co-authors, we measured the size of γH2AX
foci in HeLa cells. We could show that the sizes do not change significantly in unir-
radiated cells and that they are significantly smaller during DNA damage response,
though only by a small factor less than the expected resolution gain of STED versus
SIM, indicating that we have indeed imaged elementary units of DNA replication
(apart from potential nanoscale fine structures).

The second contribution made to the study was in the form of confocal and STED
imaging of heterochromatin after the introduction of DSBs by a clustered reg-
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ular interspaced short palindromic repeats (CRISPR)/Cas9 system, followed by
image analysis similar to the pipeline in [148]. In short, Cas9 was used in con-
cert with a major satellite gRNA to introduce DSB in heterochromatic regions
of murine myoblast C2C12 cells. Cells were fixed at set times after transfection
and imaged using confocal or STED microscopy. The goal was twofold: first, to
measure γH2AX accumulation at heterochromatic sites and second, to quantify
a de-condensation, visible as fraying of heterochromatic chromocenters. Using a
joint nucleus-chromocenter segmentation based on ML-based pixel classification
(similar to the approach used in [148], with the same included manual quality con-
trol), we could indeed show γH2AX accumulation at heterochromatic sites (im-
munolabelled for the mark H2K9me3) in confocal images and a de-condensation of
chromocenters, measured through the proxy of circularity (4π area

perimeter2
) in STED

images.

In the study presented above, we could show, among others, that γH2AX forms
nano-domain of distinct sizes that are flanked by CTCF and form clusters around
single DSBs and a temporal trend of DNA damage response from euchromatin
to heterochromatin. Interestingly, while heterochromatin undergoing repair seems
to undergo de-condensation, it retains repressive features, such as the heterochro-
matin mark histone 3 trimethylated on lysine 9 (H3K9me3), which constitutes a
de-coupling of the three-dimensional chromatin organization and linear identifying
features along the chromosomes. Our findings rely on two types of super-resolution
microscopy, state-of-the-art image analysis and biochemical assays, and the syn-
thesis of multiple approaches allowed us to arrive at our conclusions.

3.3 Methods development

The other studies presented above [21, 82, 89], while not concerned with new
discoveries themselves, consisted of the development of new methods that can serve
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as a stepping stone for novel discoveries to come. In two of them, my contribution
can again be seen as one small contribution to others’ ideas. Like above, I will
summarize these projects briefly before elaborating upon my own contributions in
more detail.

3.3.1 Super-Resolution multiplexing by DNA exchange

Acquiring a complete image of a biological system can often entail measuring the
spatial distribution of a large number of distinct biomolecules in one sample. How-
ever, simultaneous labeling with different fluorophores quickly approaches a limit,
as it becomes harder and harder to distinguish the channels due to spectral overlap.
Methods that promise the ability to perform unlimited multiplexing thus typically
rely on sequential imaging of different targets in a sample with a small set of de-
tection labels, e.g. fluorophores. Strategies for sequential labelling and imaging
include antibody labeling in many rounds, with dissociation or bleaching of the
fluorophores introduced in the previous round [149], or Exchange-PAINT [92], in
which transiently binding, fluorophore-labelled DNA oligomers are introduced into
the buffer and exchanged to sequentially image targets labelled with complimen-
tary oligomers. The approach presented in our paper [21] is based on a similar
strategy of reversible DNA hybridization, though with separate labeling, imaging
and label removal (washing) phases using longer oligomers that are removed by
denaturing agents and not stochastic dissociation. This sequential labeling via
relatively stable DNA hybridization provides for an easy exchange of fluorophores,
but also circumvents the background signal present in approaches based on tran-
sient binding. The applicability of the strategy for SIM, STED and (d)STORM
super-resolution imaging was demonstrated in the study.

As part of the study, I was responsible for testing the suitability of the method
for STED microscopy, imaging both DNA origami and cells in which up to four
proteins were labelled with docking strand-conjugated antibodies, working closely
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with the first author, Florian Schüder. We could demonstrate that the method,
having previously been demonstrated with STORM imaging, could indeed be
used with STED imaging as well, requiring minimal modifications (essentially
just slightly different imaging buffers and imager strands labelled with the STED-
compatible dye ATTO647N).

While the work contributed to DNA Exchange-based multiplexing can be seen as
just a simple proof-of-principle on yet another microscope, it is also of special in-
terest to STED imaging, as it opens up a way around several of the key limitations
of STED microscopy. Due to the high intensity depletion light used, STED suffers
from high bleaching rates and thus only a relatively small set of fluorescent dyes
can be employed effectively with the technique. This severely limits the compati-
bility with three-dimensional imaging of large samples (as fluorophores in deeper
sections will often be bleached prematurely by the imaging of preceding sections)
and of many targets in parallel (due to the limited selection of fluorophores, with
many of the most stable ones in the same red part of the spectrum).

Our strategy circumvents the limitation of STED to a few performant dyes via
the core functionality of spectral multiplexing, but it can also be used to image
large samples even if bleaching occurs. While our protocol exchanges the labelling
buffer for an imager strand-free imaging buffer and thus does not supply a re-
plenishable label pool during imaging, it could easily be adapted to incorporate
multiple rounds of exchange with the same imager strand, each time replacing
bleached fluorophores. Care needs to be taken to not cause mechanical movement
of the sample during buffer exchange, e.g. by touching the chamber with pipettes,
a problem that can be remedied with mechanized microfluidics systems [150] or
computational alignment of the images (see section 1.3.4).
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3.3.2 Therapeutic antibody characterization

Drug development often entails high-content analysis to screen a multitude of po-
tential therapeutic agents, which is usually carried out using automated screening
instruments such as flow cytometers or automated microscopes. The study pre-
sented above [82] was focused on the development of a robust assay to quantify
the antiproliferative potential of therapeutics based on monoclonal antibodies that
were site-specifically modified with a cytotoxic agent. For antiproliferative agents,
simple flow cytometry, with its highly reduced readout, is often unable to distin-
guish between apoptotic, mitotically arrested and proliferating cells, which is why
we turned to an image-based assay based on high-content microscopy.

Working with pre-segmented nuclei from a Perkin-Elmer Operetta high content
screening (HCS) platform, we developed two models that could be fit to those al-
ready very derivative measurements. The first consisted of a statistical model for
cell cycle distribution that was fit to the DAPI intensities in the segmented nuclei
using global optimization via simulated annealing. From the probability distribu-
tion fitted to measurements from wells with varying antibody concentration, we
could easily derive a trend towards G2-phase depletion after exposure to higher
antibody concentrations. The second line of evidence in our assay consists of the
fit of sigmoid inhibition curves to the (drug concentration, normalized cell count)-
pairs. By basing the cell count on just a DNA stain, we would again run into
problems differentiating proliferating, arrested and apoptotic cells, a problem we
remedied by supplementing the medium with EdU, a base analog that gets incor-
porated into the chromatin during replication and which can be labelled by a click
reaction after fixation, and basing our cell count on EdU-positive (i.e. replicating)
cells.

While we benchmarked the performance of our assay using the established an-
tiproliferative antibody Trastuzumab, the rationale behind the development was
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to create a flexible tool to characterize newly developed antibody-drug conju-
gates (ADCs) developed by the biotechnology startup Tubulis, a spinoff of the
Leonhardt lab. Indeed, the tool already saw application in the R&D of Tubulis
[151], being used to evaluate the antiproliferative potency of ADCs generated from
Trastuzumab and Brentuximab via novel conjugation strategies developed by the
company.

3.4 BigStitcher

The rest of the discussion will focus on a first-author study of mine, dealing with
the development of the image alignment tool BigStitcher [89]. A large portion
of my time over the last four years went into the development of BigStitcher, a
well-received [81, 152, 153], user-friendly tool for alignment, pre-processing and
management of very large, multidimensional image datasets, as are produced by
LSFM, for example. It has already seen widespread adaptation in a handful of
studies and newly developed methods, taking an important place between raw
data acquisition and downstream analysis.

3.4.1 Unique challenges of large LSFM data met by BigStitcher

While modern microscopy modalities such as light-sheet microscopy allow for the
easy acquisition of very large many-dimensional datasets, these data are often not
immediately amenable to analysis due to their large size and dimensional complex-
ity. Dedicated tools for data management and preprocessing are therefore essential
to make data tractable for scientists wanting to perform downstream computa-
tional analyses on them. In the BigStitcher software, a tool for the management,
alignment and visualization of such datasets, implemented as an open source Im-
ageJ/Fiji [154] plug-in, my co-authors and I tried to provide a user-friendly way
of handling these datasets.
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A first major issue that a tool for a task as general as image alignment has to
deal with if it is to gain widespread adoption is the fact that users with a variety
of different microscopes will try to use it. Unfortunately, even though attempts
at standardization exist [155], many microscopes produce images in proprietary,
vendor-specific formats. In the open ImageJ ecosystem, handling of the various
data formats is unified in the BioFormats library [155], but the resulting parts of
datasets might still differ greatly in their dimensionality, from individual planes to
whole multi-image datasets stored in one big array. A first service that BigStitcher
provides is the (partially automated, figure 3.2) combination of a set of input files
into a common representation of three dimensional stacks indexed by properties
such as time, spectral channel, acquisition angle, acquisition position or illumina-
tion direction, using BioFormats to avoid having to needlessly re-save data to an
intermediate format. To achieve performant processing of the data, we turn to al-
gorithms that work on downsampled versions of the images again and again. A lot
of time is lost just loading the data before downsampling, however. It is for that
reason that we offer (and advertise) the option to calculate multi-resolution pyra-
mids of the images once and save all levels to open, general-purpose hierarchical
data formats such as HDF5 [131] and N5 [156]. That way, if a downsampled ver-
sion of an image is required later in the pipeline, we can just open the precomputed
layer from the pyramid, avoiding serious input-output (IO) bottlenecks.

After a dataset has been properly defined, the main functionality of BigStitcher
lies in image alignment. While this is a common and largely solved problem in
computer vision, the large size of the datasets and their three-dimensional struc-
ture place specific demands on the alignment tools, which we met by a variety
of optimizations in BigStitcher. Two main problems arising from the large image
sizes are increased computation times, but also the inability to fit all required raw
images and intermediate results, such as FFTs or filter responses, into the main
memory (RAM) of the computer used (a problem that is compounded when multi-
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A) B)

C)

Figure 3.2: Interactivity and examples of manual data curation in BigStitcher. (A) After

calculating pairwise transformations, they can be previewed on-the-fly in BigDataViewer and

erroneous results can be filtered based on a set of criteria like a minimum correlation coefficient

or removed manually. (B) When loading a dataset consisting of multiple files into BigStitcher,

the software tries to assign attributes to the images automatically if metadata are given or

requires only minimal guidance from the user, e.g. by assigning automatically detected patterns

in the filenames to image attributes. (C) As a first step in the alignment of a dataset, images

can be moved to a regular grid to produce a rough pre-alignment. Like in many other steps of

BigStitcher, an interactive preview of the process is shown.
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ple transformations are estimated in parallel to reduce compute time). We tackled
both problems by employing a multi-resolution data representation throughout
BigStitcher and working with the lowest possible resolution whenever possible, in
a semi-hierarchical way. While this might lead to a decrease in registration qual-
ity at first sight, we could show that by clever utilization of subpixel-accuracy
algorithms, such as subpixel localization of the shift peak in Fourier-based align-
ment or subpixel interest point detection in interest point-based alignment, we
can achieve comparable quality to full-resolution methods while retaining up to
several hundredfold speedups. BigStitcher is also a superset of the already existing
Multiview Reconstruction tool [115], allowing for the alignment of images acquired
from multiple angles or time series via interest-point based alignment using special
descriptors developed for three dimensional problems. Stitching of tiled acquisi-
tions and MVR are done in one common transformation framework (as both are
just special cases of image alignment), a generic evolution of previous tools that
focus on just some special cases.

Very large samples might entail regions of low image quality that are difficult to
align with fully automated procedures. We therefore took great care to ensure
global consistency of the alignment throughout the stitching process: by employ-
ing not only a single transformation mapping each individual image to the final
volume, but a list of incremental transformations for each image, we can base the
alignment on preexisting information, e.g. microscope stage metadata. During the
global optimization of pairwise transformations, inconsistencies are detected and
removed automatically, one pairwise link at a time, to keep as much information as
possible compared to a minimal spanning tree approach that discards most of the
pairwise links from the outset [127]. Furthermore, by using a two-step optimization
process, we can find an optimal alignment of all images for which pairwise trans-
formations are known while keeping as-close-as-possible to preexisting information
like metadata. Via this strategy, BigStitcher can generate a consistent alignment
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even when the sample only consists of ”islands” of meaningful structures, or re-
fine parts of the transformations with higher-resolution calculations while keeping
rough estimates from a previous round of fast registration using a high downsam-
pling factor. This is a very generic approach to a regularized global optimization
of transformations that works with arbitrary locations of the individual images
and does not require images to be acquired in a regular grid [157].

While simple aberrations such as chromatic aberrations or spherical aberrations
can be accounted for by registration with an affine model, another problem we
address are optical aberrations due to inhomogeneous refractive index throughout
large samples. These sample dependent distortions call for more general regis-
tration models, so-called non-rigid alignment. A simple way to achieve a finer
grained local alignment is to virtually split all images into smaller parts and align
them piecewise using an affine model. A further option is to calculate a separate
transformation at each point by using a locally weighted average of interest point
correspondences in the neighborhood, e.g. using the moving least squares approach.
We implemented both strategies to achieve non-rigid alignment in BigStitcher and
could show that they indeed improve registration results using manually curated
landmarks in a real dataset of LSFM images of a murine brain slice.

While the precise alignment of many-image datasets is the core functionality of our
tool, we added several further functions to improve the final images. As mentioned
above, uneven illumination is one of the simplest optical phenomena that can be
corrected with computational means. In terabyte-sized datasets, this might entail
saving a corrected copy of equal size, further increasing the storage requirements
of the data. We therefore implemented virtual flatfield-correction that performs
the correction on-the-fly as images are loaded, and in full compatibility with the
multiresolution data structures used throughout the tool. On a similar note, light-
sheet microscopy of large sample often benefits from parallel illumination from
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two sides. If images with each illumination direction are acquired separately, the
quality of the image pairs shows a reciprocal relation as one moves laterally along
the common illumination axis. An easy way of improving the final image quality
is to pick the higher quality image at each location and only use that for the
further steps. Quantifying the quality of an image is essential in many tasks, such
as autofocusing and adaptive optics, but also for quality control of experimental
results, and a variety of metrics to measure image quality exist. In BigStitcher,
we support fast selection of the better illumination direction by comparison of the
mean intensities of the two images or the mean gradient magnitudes, but also via
a more powerful quality criterion derived from Fourier Ring Correlation (FRC).
We also allow for the use of FRC to generate a quality image, to give the user
immediate feedback on potential artifacts or low SNR regions in their images.
Besides normal FRC, we developed an optimized relative FRC (rFRC) that is
less sensitive to fixed-pattern noise that is common in (s)CMOS cameras. Finally,
a very general way of improving image quality is deconvolution: estimating the
physical structures in an image without the contribution of the microscopes PSF.
To this end, we support multi-view deconvolution using the iterative Richardson-
Lucy algorithm in BigStitcher [158]. All calculations are done in a virtualized
fashion, making this memory and computation-intensive process usable for very
large datasets.

3.5 The importance of interactivity

It might seem slightly confusing to the reader that, after showcasing methods of
state-of-the-art imaging and automatization of the analysis of images produced
by them, I should dedicate space to emphasize the importance of manual steps
in image analysis. Yet, I still believe that for progress to be made, the end re-
sult of scientific experiments should be novel insights understandable to (human)
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researchers, either directly or, in the case of highly complex systemic results, in
eventual follow-up studies.

The importance of human expert knowledge becomes more obvious when one con-
siders that many state-of-the art methods for a variety of tasks rely on machine
learning, especially deep learning. It is easy to forget that the high performance
of these ”automatic” methods stems not only from the very flexible models used,
but from their pairing with vast amounts of ground-truth data curated by human
experts. Deep learning has seen its most successful applications in tasks for which
large, standardized data sets are available, like, for example, the ImageNet dataset
[159] for photographic image classification [160, 161], COCO [162] for object de-
tection [163] or multilingual parliamentary records, as they are kept by the EU or
Canada [164], that are used in the training of machine translation systems.

The cases in which machine learning has been used to derive novel insights, even
though they can be constructed as thought experiments [165], is surprisingly small
and narrow ML is mostly employed to replace manual steps in any kind of data
processing pipeline. Until true general artificial intelligences are developed, a task
that has eluded AI researchers for decades, deep learning can be seen as a frame-
work of automatically extracting correlations from data and generating black-box
representations, achieving a similar goal as rule-based AI approaches such as ex-
pert systems, though by different means. That is not to say that ML enables no
methodological advances at all, as ingenious schemes for ground-truth data gener-
ation can be used and transferred to contexts in which the data are not available
in comprehensive form at all [146, 166]. This is especially true in biological re-
search, where available datasets are small and clever ways of expanding them to
meet the requirements of deep learning has and will surely prove fruitful. Exam-
ples for this approach include the generation of (input, target)-pairs from separate
experiments, virtual expansion of datasets via data augmentation, a task that it-
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self can be tackled with deep generative models, or dedicated few-shot learning
techniques.

As there are no avenues towards the advent of general AI yet and even shallow
AI models that provide understandable feedback on their inner workings, though
seeing tremendous research interest, are in their infancy, human expert intervention
is still state-of-the-art for most applications. The challenge is to find a middle
ground between fully automated pipelines that might produce sub-par results and
mostly manual analyses that provide little time savings, which I tried to do in my
work, e.g. by incorporating a manual inspection step into the segmentation parts
of the otherwise automated image analysis pipelines used in [147, 148].

Along the same lines, interactivity can be seen as one of the main advantages of
BigStitcher in comparison to alternative tools for image alignment [127, 157]. By
closely integrating BigStitcher with the multidimensional image visualization pro-
vided by BigDataViewer, we can show a step-by-step progression of the alignment
pipeline to the user (figure 3.2), allowing them to preview in real time e.g. pairwise
shifts, detected interest points, selection of the best illumination direction, flatfield
correction or rFRC quality throughout the dataset. Performing an alignment of
terabyte sized datasets can take hours, even with the numerous optimizations
we introduced and even with the regularizations we perform to make the process
as-robust-as-possible, errors in individual steps are still possible, e.g. erroneous
pairwise shifts throwing off global alignment or artifacts interfering with inter-
est point-based alignment. If the whole procedure were implemented as a black
box, the user would just be presented with an unsatisfactory result after hours
of compute time. By providing visual feedback throughout the process, most er-
rors become obvious immediately and the user has the ability to manually correct
them at once, e.g. by re-doing single steps with different parameters. Especially
in experiments on large cleared samples, such as entire organs, which often take



246 CHAPTER 3. DISCUSSION

weeks to prepare and require costly reagents, discarding the whole experiment
would constitute a major setback and the possibility for manual curation is vital.
On the other hand, we did not sacrifice power for usability - BigStitcher can be
automated with macros and run in batch mode for routine experiments for which
effective parameters are known.

3.6 Outlook & other projects pursued during PhD

As a tool for the preprocessing of large LSFM datasets, BigStitcher is already
seeing wide adaptation, as it allows for hassle-free manual inspection and prepro-
cessing of the data. Nonetheless, an important next step is the development of
actual automatic or semi-automatic analysis tools for such large datasets. A step
in that direction is the development of large data annotation tools such as MaMuT
[167]. What should follow is the development of actual analysis tools capable of
handling these large datasets, which will likely rely heavily on parallel processing of
subsets of the data, most likely not on single machines, but on dedicated compute
clusters. Yet, to allow analysis of big datasets without (too) specialized infras-
tructure, the development of multi-resolution analysis workflows (similar to the
routines we employ during image alignment and preprocessing) seems an avenue
worth pursuing.

The finished publications presented in the thesis are (unfortunately) not a com-
plete overview of all the work I did during my PhD. For example, a significant
amount of time went into the development of frameworks for smart microscopy
on two different commercially available systems, the Abberior Instruments Expert
Line STED as well as the Nikon Ti platform. Using our STED setup and the
possibility to automate measurements via a Python interface, I, with the help of
students [168], implemented a two-step scanning scheme consisting of fast confocal
overview imaging followed by the detection of structures of interest that are then
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imaged at STED super-resolution in a second step. The framework was written
in a very generic way, offering the possibility to quickly implement more com-
plex acquisition pipelines. We have employed the system to capture population
statistics of chromatin conformation in single cells by combining pairwise distance
measurements in a high-throughput fashion with novel oligomer-pool-based FISH
protocols developed by collaborators 1. At the time of writing, the automation
pipeline, FISH protocol and results collected by their use form the basis of multi-
ple manuscripts with varying degree of finalization.

A similar smart microscopy platform was implemented for colleagues in the group
of Nicolas Gompel to allow high-throughput, high-resolution imaging of Drosophila
wings, under the working title WingScanner. Again, the bulk of automation code
consists of high-level Python routines, working in concert with the commercial
microscope control software (NIS Elements) by wrapping selected parts of its macro
interface in a Pythonic way. As wings are a complex object to detect, we eventually
moved towards deep learning-based object detection, employing a client-server
architecture to perform expensive computations on a GPU-equipped server while
not interfering with the microscope control workstation. As high-resolution wing
images often span more than one FOV, BigStitcher was also included into the
framework to perform alignment and fusion of the tiled images automatically. More
than one manuscript based on results acquired on the WingScanner system are
currently in preparation in the Gompel lab 2

Finally, I supervised students in developing new deep learning model architectures
for the task of image augmentation to facilitate limited ground-truth ML-based
analyses [169, 170], employing generative adversarial networks (GANs) [171, 172]
to generate a potentially infinite amount of synthetic images from a few real ex-
amples. While the early benchmarks of this line of investigation (e.g. perfor-

1Tobias Ragoczy, PhD, personal communication
2Prof. Dr. Nicolas Gompel, personal communication
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mance of a downstream segmentation model) show only mediocre improvements,
we nonetheless believe that strategies of incorporating ML into the low-data sit-
uations encountered in science are of great interest and will continue our efforts
in this direction. It is my opinion that pure ML research tends to focus too nar-
rowly on a few standard applications (and standard datasets) [173] and there is
enormous potential in finding clever ways of integration of these techniques into
applied scientific workflows, that inevitably entail novel, non-standard results and
data structure.

On that note, I am convinced that method developers should not aim to replace
researchers with ever smarter instrumentation and software, but complement and
aid them in discovering new humanly tractable insights into the molecular basis
of life. It is my hope that I have contributed a little to this goal with the work
presented in this thesis and I am looking forward to doing so in the future.
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Appendix B

Abbreviations

1D 1-dimensional

2D 2-dimensional

2PM 2 photon microscopy

3D 3-dimensional

ADC antibody-drug conjugate

AI artificial intelligence

ANN artificial neural network

BFP back focal plane

BSX brain-specific homeobox

ChIP chromatin immunoprecipitation

CLSM confocal laser scanning microscopy

(s)CMOS (scientific) complementary metal-oxide-semiconductor

CNN convolutional neural network

COCO Common Objects in Context

CpG cytosine-guanine dinucleotide

CRISPR clustered regular interspaced short palindromic repeats

DAPI 4’,6-diamidino-2-phenylindole

DIC differential interference contrast

DNA deoxyribonucleic acid
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DNMT1 DNA methyltransferase 1

DoG difference of Gaussians

DSB double strand break

EdU 5-ethynyl-2’-deoxyuridine

EM electron microscopy

ESC embryonal stem cell

ETL electrically tuneable lens

EU European Union

ExM expansion microscopy

FFT fast Fourier transform

Fiji Fiji Is Just ImageJ

FISH fluorescence in-situ hybridization

FOV field-of-view

fPALM fluorescence photoactivation localization microscopy

FRC Fourier ring correlation

FRET Förster resonance energy transfer

FWHM full width at half maximum

GAN generative adversarial network

GFP green fluorescent protein

γH2AX H2A histone family member X phosphorylated on serine 139

GPU graphics processing unit

H3 histone 3

H3K9me3 histone 3 trimethylated on lysine 9

HCS high content screening

HDF5 Hierarchical Data Format 5

H&E Hematoxylin & Eosin

HeLa Henrietta Lacks cervical cancer cell line

IO input-output
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ISM image scanning microscopy

LASER light amplification by stimulated emission of radiation

LED light emitting diode

LoG Laplacian of Gaussian

LSFM light-sheet fluorescence microscopy

MaMuT Massive Multiview Tracker

MEF mouse embryonal fibroblast

ML machine learning

MVR multi-view reconstruction

N5 Not HDF5

NA numerical aperture

nD n-dimensional

OTF object transfer function

PAINT point accumulation in nanoscale topology

PALM photoactivated localization microscopy

PCA principal component analysis

PCM phase correlation matrix

PCNA proliferating cell nuclear antigen

PSF point spread function

RAM random access memory

RANSAC random sample consensus

RI refractive index

RNA ribonucleic acid

R&D research and development

Seq eequencing

SIM structured illumination microscopy

SLM spatial light modulator

SMLM single molecule localization microscopy
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SNR signal-to-noise ratio
SPIM selective plane illumination microscopy
SSD sum of squared differences
SSIM saturated SIM
STED Stimulated Emission Depletion
STORM stochastic optical reconstruction microscopy
SVM support vector machine
TIRF total internal reflection fluorescence
TS target sequence
t-SNE t-distributed stochastic neighbour embedding
TWS Trainable WEKA Segmentation
UHRF1 ubiquitin-like containing PHD and RING finger domains 1
UIM ubiquitin interacting motif
WYSIWYG what-you-see-is-what-you-get
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