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1 ABSTRACT I

1 Abstract

The present thesis consists of three studies covering different methodological decisions
that have to be made when conducting exploratory factor analyses. Study 1 is a review
on the current practice in psychological research and new developments concerning these
methodological decisions, while both Study 2 and Study 3 focus on the issue of factor
retention which is the determination of the number of factors. In Study 2, a new method -
combining extensive data simulation with modern machine learning modelling - is proposed.
This new approach was able to outperform common factor retention criteria in a large-scale
simulation study where the number of factors, the number of manifest variables, the sample
size, the loading magnitudes of primary and cross-loadings, the inter-factor correlations and
the variables per factor were varied. As Study 2 focuses on the accuracy of different factor
retention criteria trying to approximate the data generating process, Study 3 rather deals
with the reproducibility of factor solutions. Bootstrapping is proposed as a way to assess
the robustness of factor solutions against sampling error which then can be used as a proxy
for replicability. Demonstrating this connection between robustness and replicability, Study
3 also shows that the new approach suggested in Study 2 has higher replication rates than
other criteria and therefore seems to perform well not only for simulated data, but also on
real data sets.

Since the current research practice often lacks informed decisions, especially with
regard to the factor retention process (Study 1), the new factor retention criterion (Study
2) needs to be refined (different models need to be created for different data conditions)
and then made available to a broad research community. Providing practitioners with
an easy-to-use, yet accurate retention criterion may improve the application of EFA. Until
then, bootstrapping or another way of evaluating the robustness of common factor retention
criteria can be used as a confidence measure (and as a proxy for replicability) to choose the
best retention criterion (and the best factor solution respectively) for a given context.
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2 Zusammenfassung

Die vorliegende Arbeit ist aus drei Manuskripten (im Folgenden Studie 1, Studie 2
und Studie 3 genannt) aufgebaut, die verschiedene Aspekte der Exploratorischen Fakto-
renanalyse (EFA) beleuchten. Bei der EFA handelt es sich um eine statistische Methode
zur Untersuchung latenter Variablen, die als ursächlich für die Zusammenhangsstrukturen
mehrerer manifester Variablen angenommen werden. In der den Manuskripten vorangestell-
ten Einleitung wird das (multidimensionale) tau-kongenerische Messmodell der klassischen
Testtheorie - im Kontext der EFA auch common factor model genannt - eingeführt und
die Herausforderungen und Fallstricke der EFA-Durchführung vorgestellt. Die zentralen
Aspekte bei der EFA sind dabei das Studiendesign (womit in erster Linie die Stichpro-
benumfangsplanung gemeint ist), die Wahl einer Schätzmethode (Extraction Method), die
Wahl einer Rotationsmethode (Rotation Method) und die Bestimmung der Faktorenanzahl
(Factor Retention).

In Studie 1 wird die aktuelle Anwendung der EFA im Rahmen eines umfangreichen
Reviews untersucht und die neuesten methodologischen Entwicklungen und Erkenntnisse
im Hinblick auf die vier genannten Hauptaspekte der EFA diskutiert. Die Mehrzahl (50.3%)
der untersuchten EFAs basierten auf Stichproben mit mehr als 400 Beobachtungen, was ge-
mäß verschiedener Simulationsstudien (z.B. MacCallum, Widaman, Zhang, & Hong, 1999;
Mundfrom, Shaw, & Ke, 2005) als Mindeststichprobe empfohlen werden kann (da man die
Höhe von Kommunalitäten und den Grad der Overdetermination, welcher der Anzahl der
Items, die jedem Faktor zugeordnet werden können, entspricht, nicht unbedingt vor der
Datenerhebung absehen kann). Dies könnte für eine verbesserte Praxis im Vergleich zu den
Befunden von Fabrigar, Wegener, MacCallum, und Strahan (1999) zwanzig Jahre zuvor
sprechen, als noch an Regeln zur Stichprobenplanung festgehalten wurde, die die benötigte
Größe der Stichprobe in Abhängigkeit von der Variablenanzahl abschätzen. Im Hinblick
auf die verwendeten Rotationsmethoden zeigt sich, dass vermehrt auf oblique Rotations-
methoden gesetzt wird, was bereits bei Fabrigar et al. (1999) empfohlen wurde, jedoch
dass beinahe nie unterschiedliche Rotationstechniken verglichen werden. Studie 1 diskutiert
deshalb, welche Rotationsmethoden welche Annahmen treffen und wann sie entsprechend
Anwendung finden sollten und fordert analog zu den Ausführungen von Browne (2001), dass
verschiedene Rotationstechniken (falls möglich auch auf Teildatensätzen) getestet werden
sollten. Außerdem werden sogenannte regularisierte Faktorenanalysen vorgestellt, welche
den zusätzlichen Rotationsschritt in der EFA überflüssig machen könnten.
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Hinsichtlich der Faktorenextraktion werden Simulationsstudien vorgestellt, die die verschie-
denen Schätzmethoden vergleichen (z.B. Barendse, Oort, & Timmerman, 2015; De Winter
& Dodou, 2012). Während die Hauptachsenanalyse (Principal Axis Factoring) am häufigs-
ten in der aktuellen Forschung angewendet wird, argumentiert Studie 1, dass Maximum-
Likelihood EFA für multivariat normalverteilte Daten und weighted-least-squares-Ansätze
für ordinale Daten (speziell wenn die Anzahl der Antwortkategorien kleiner als fünf ist)
- aufgrund der vorhandenen Fit-Indizes und der besseren Vergleichbarkeit mit konfirma-
torischen Faktorenanalysen zur Validierung der Faktorstruktur - der Hauptachsenanalyse
vorzuziehen sind. Bei der Bestimmung der Faktorenanzahl verlassen sich viele Anwender
der EFA immer noch auf Methoden, die sich in zahlreichen Untersuchungen als nicht relia-
bel herausgestellt haben (z.B. im Fall des Kaiser-Kriteriums, Zwick & Velicer, 1986), aber
in Statistikprogrammen wie SPSS (IBM Corp., 2019) die Standardeinstellung sind. Da die
Parallelanalyse (Horn, 1965), die unter anderem aufgrund der Robustheit gegenüber un-
terschiedlichen Verteilungen der Daten (Dinno, 2009) als bisheriger “Goldstandard” gilt,
in vielen Datenbedingungen keine akkurate Bestimmung der Faktorenanzahl erlaubt und
moderne Methoden nur in manchen dieser Bedingungen überlegen sind, empfiehlt Studie 1
mehrere Kriterien (wenn möglich auf Teildatensätzen) zu vergleichen.

Neben neuen Kriterien zur Bestimmung der Faktorenanzahl existieren auch Kombi-
nationsregeln, die vorgeben, wie Anwender der EFA auf Basis mehrerer dieser Methoden
zu einer finalen Einschätzung der Dimensionalität kommen sollen (z.B. Auerswald & Mos-
hagen, 2019). Da diese Kombinationsregeln und generell der Vergleich mehrer Methoden
aufwendig und für Anwender mit Unsicherheiten (z.B. Welcher Methode ist in der spezi-
fischen Situation eher zu trauen?) verbunden sind, wird in Studie 2 ein neuer Ansatz zur
Bestimmung der Faktorenanzahl - genannt Factor Forest - vorgestellt. Dieser Ansatz verbin-
det eine umfassende Datensimulation mit dem Training eines modernen Machine-Learning
(ML) Modells, das auf Basis von Eigenschaften der empirschen Daten die korrekte Fakto-
renanzahl vorhersagen soll.
Dafür wurden in Studie 2 zunächst 500000 Datensätze simuliert, wobei die Anzahl der la-
tenten Faktoren (k ∈ {1, 2, ..., 8}), die Anzahl der manifesten Variablen (p ∈ {4, ..., 80}),
die Stichprobengröße (N ∈ [200; 1000]), die Ladungshöhen (Haupt- und Nebenladungen)
und die Korrelationen zwischen den latenten Variablen variierten. Anschließend wurden
181 features - also Variablen, die zur Vorhersage der Faktorenanzahl verwendet werden soll-
ten - für jeden der Datensätze berechnet. Bei diesen Variablen handelte es sich überwiegend
um Größen, die die empirische Korrelationsmatrix beschreiben (Eigenwerte, Matrixnormen,
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etc.), da die Zerlegung der Korrelationsmatrix in eine systematische Komponente (der Teil
der Varianz der manifesten Variablen, die durch die latenten Variablen erklärt wird) und
eine unsystematische Komponente (unique variance) zentraler Bestandteil der EFA ist. Die
aus den simulierten Datensätzen extrahierten features bildeten die Basis (das Trainingsset)
für die Anwendung der ML-Algorithmen. Der neue Ansatz (die trainierten ML-Modelle)
wurde anschließend in einer großen Simulationsstudie mit vier herkömmlichen Methoden
(Parallelanalyse, Kaiser-Kriterium, Comparison Data und Empirical Kaiser Criterion) in
3204 Datenbedingungen hinsichtlich der Genauigkeit verglichen (pro Bedingung wurden
500 Replikationen durchgeführt). Dabei erzielte ein trainiertes xgboost-Modell (für den xg-
boost Algorithmus, siehe Chen & Guestrin, 2016) mit durchschnittlich 92.9% die höchste
Genauigkeit. In einem zweiten Schritt wurde das xgboost-Modell noch weiter verbessert,
indem sowohl sechs Hyperparameter des Algorithmus getuned (optimiert) und die Lösung
der Parallelanalyse, des Comparison Data Ansatzes und des Empirical Kaiser Criterion als
zusätliche features in das Modell aufgenommen wurden. Dadurch erzielt das finale xgboost-
Modell eine Genauigkeit (out-of-sample) von 99.3%. Da die Ergebnisse aus Studie 2 auf
multivariat-normalverteilten Daten basieren und psychologische Forschung (und damit vie-
le Faktorenanalysen) auf ordinalen Fragebogendaten fußt, wurde das Vorgehen aus Studie 2
auch für ordinale Daten mit vier bis sieben Antwortkategorien getestet. Der ordinale Factor
Forest erzielte eine Genauigkeit (out-of-sample) von durchschnittlich 98.5%, weshalb davon
auszugehen ist, dass der neue Ansatz bei entsprechendem Training auf passenden Daten
(die Trainingsdaten müssen das Anwendungsfeld möglichst umfassend abdecken) eine sehr
hohe Genauigkeit liefert und deshalb als eigenständige Methode zur Bestimmung der Fak-
torenanzahl herangezogen werden kann. Die Ergebnisse dieser zusätzlichen Analyse werden
im Kapitel “Additional Analyses: Ordinal Factor Forest” dieser Dissertation berichtet.

Der Factor Forest ermöglicht nicht nur eine genaue Vorhersage der Dimensionalität,
er liefert zusätzlich Schätzwerte für die Wahrscheinlichkeit verschiedener Faktoranzahlen.
Dies kann als Maß für die Sicherheit gesehen werden, dass die vorhergesagte Faktorenan-
zahl der wahren Dimensionalität entspricht. Herkömmliche Verfahren liefern in der Regel
nur Punktschätzer für die Anzahl der Faktoren, so dass der Anwender keinen Anhaltspunkt
für die Stabilität der Faktorlösung hat - bzw. dafür, ob Stichprobenbesonderheiten das Er-
gebnis verzerren (sampling error). Bei entsprechender Datenlage wird die Replikation der
Faktorenlösung unter Umständen zum Problem. Obwohl im Zuge der Replikationskrise viele
methodische Praktiken in der Psychologie auf dem Prüfstand stehen, wird die Bestimmung
der Faktorenanzahl selten vor dem Hintergrund der Replizierbarkeit gesehen (Osborne &
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Fitzpatrick, 2012). Für eine erfolgreiche Replikation, bzw. Kreuz-Validierung mittels konfir-
matorischer Faktorenanalyse, erscheint jedoch die korrekte Bestimmung der Faktorenanzahl
unabdingbar. Entsprechend untersucht Studie 3 den Zusammenhang zwischen der Robust-
heit der Methoden zur Bestimmung der Faktorenanzahl über Bootstrap-Stichproben hinweg
und ihrer erfolgreichen Replikation. Dafür wurde mit vier verschiedenen Methoden die Fak-
torenanzahl für 19 Datensätze mit Persönlichkeitsmaßen (das 10 Item Big Five Inventory
von Rammstedt, Kemper, Klein, Beierlein und Kovaleva (2017), welches für eine within-
person Replikation genutzt wurde und das Big Five Structure Inventory von Arendasy
(2009), das den between-person Replikationskontext abbildet) bestimmt und die Robustheit
dieser Lösung über 100 Bootstrap-Stichproben abgeschätzt. Es zeigte sich anschließend ein
positiver Zusammenhang zwischen der Robustheit der Faktorenlösung und ihrer Replizier-
barkeit. Während der Factor Forest und das Empirical Kaiser Criterion relativ robuste
Lösungen über die Bootstrap-Stichproben hinweg lieferten und folglich höhere Repliakti-
onsraten aufwiesen, zeigten die Parallelanalyse und Comparison Data geringere Robustheit
und schlechtere Replizierbarkeit.
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3 GENERAL INTRODUCTION 1

3 General Introduction

Exploratory factor analysis (EFA) is a statistical method commonly used in psycho-
logical research to evaluate the intercorrelations among a set of observed variables and to
discover underlying latent structures. The basic idea is that latent (unobservable) variables
- namely psychological constructs like intelligence or personality traits - are represented by
manifest variables which is known as the “common cause relation” (Reichenbach, 1956 as
cited in Haig, 2005). Conversely, this means that using EFA one can find latent variables
that can explain observations of a given set of manifest items. Spearman (1904) was the
first to formulate the basic concept of factor analyses, followed by several researchers mainly
from the field of intelligence research improving the methodology (Bartholomew, 1995). In
this process, the influence of Thurstone was particularly important as he coined the terms
“communality” and “uniqueness” (1940) and advocated the aim of simple structure solutions
(1947). It was also Thurstone (1947) who formulated the multidimensional factor model -
also known as the common factor model which reflects the (multidimensional) congeneric
measurement model that is known from classical test theory (Jöreskog, 1971).

Within the process of questionnaire development (or test construction), EFA plays a
very important role. Usually, conducting several EFAs is the starting point when indicators
for a specific psychological construct are evaluated and subfacets of these constructs are
explored. This procedure is often entangled with the development and the refinement of
theories. In personality psychology, the most prominent example for the impact of EFA on
construct definition and theory development is the history of the big five trait taxonomy
as described by John and Srivastava (1999). However, the relevance of EFA is not limited
to personality psychology as there are application context in all psychological disciplines -
i.e. intelligence research (e.g. Cohen, 1957), organizational psychology (e.g. Smith, Organ,
& Near, 1983), developmental psychology (e.g. Ronald, Happé, Hughes, & Plomin, 2005),
clinical psychology (e.g. Comrey, 1957) or social psychology (e.g. Marsh, Barnes, & Hocevar,
1985). Thus, EFA is arguably one of the most influential statistical methods in psychological
research. However, reviews considering the application of EFA (e.g. Fabrigar et al., 1999)
have shown that the actual research practice often lacks informed methodological decisions
- especially with regard to selecting an extraction method, a rotation method and a factor
retention criterion. As determining the number of factors is probably “the most important
decision a researcher will make” (Zwick & Velicer, 1986) when conducting an EFA, this
thesis pays particular attention to the factor retention process presenting new approaches
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that cover different of its aspects. The main focus of this work is on an innovative method
that promises to be accurate, user-friendly and replicable when estimating the number of
factors. As this new factor retention criterion is tailored to specific application contexts,
this thesis first reviews both the current use of EFA and methodological developments in
this field (with regard to all major methodological decisions in EFA).

3.1 Manuscripts of this Thesis

The following manuscripts contain the three studies this thesis is based upon:

1. Goretzko, D., Pham, T. T. H., & Bühner, M. (2019). Exploratory factor analysis:
Current use, methodological developments and recommendations for good practice.
Current Psychology. doi:10.1007/s12144-019-00300

2. Goretzko, D., & Bühner, M. (under review). One model to rule them all? Using
machine learning algorithms to determine the number of factors in exploratory factor
analysis.1

3. Goretzko, D., & Bühner, M. (under review). Two factors, or rather four? Robustness
of factor solutions in exploratory factor analysis.

Hereafter, Study 1 refers to the first manuscript, Study 2 to the second and Study 3
to the third respectively. Study 1 is a review on the current practice and methodological
developments within EFA research focusing on the major decisions a researcher has to make
- which extraction method to use, which rotation method to apply and how many factors to
retain. In Study 2, a new approach for determining the number of factors in EFA is proposed
and evaluated, whereas Study 3 focuses the relation of robustness and replicability in factor
retention.

All manuscripts were written by the author of this thesis. Markus Bühner acted as
the supervising author of all three papers, while Trang T. H. Pham collected data for the
review on the current use of the EFA in Study 1. The idea and conception of the studies,
especially the development of the new factor retention criterion in Study 2 was generated
solely by the author of this thesis. As all manuscripts were created in consultation with the

1The article was published with some minor changes after the submission of this thesis: Goretzko, D.,
& Bühner, M. (2020). One model to rule them all? Using machine learning algorithms to determine the
number of factors in exploratory factor analysis.Psychological Methods. doi:10.1037/met0000262

doi:10.1007/s12144-019-00300
doi:10.1037/met0000262
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co-authors, the pronoun we is used in the summary of Study 1, Study 2 and Study 3 (as it
has been done in the respective manuscripts).

After a short introduction to the common factor model and its implications for the
estimation of factor loadings and factor scores as well as an introduction to the issue of
factor retention, the three manuscripts are summarized and discussed.

3.2 The Common Factor Model

The common factor model assumes linear relations between each manifest variable
and the k underlying latent variables. When all p manifest variables (and the latent vari-
ables) are mean-centered, the common factor model for each manifest variable xi (with
i ∈ {1, ..., p}) can be written as:

xi = λi1ξ1 + λi2ξ2 + ... + λikξk + ϵi

where ξj is the j-th latent variable (or factor, where j ∈ {1, ..., k}) and ϵi
2 is an error

term consisting of measurement error and item-specific “uniqueness”. The common factor
model for all p manifest variables combined can be written as:

x = Λξ + ϵ

with x being a vector containing all p manifest variables, ξ containing the k latent
factors, ϵ containing the error terms and Λ being a p × k matrix containing the model
parameters λij called factor loadings. From this, one can derive that the covariance matrix
of the manifest variables Σ = E(xx⊤) can be written as:

E(xx⊤) = E((Λξ + ϵ)(Λξ + ϵ)⊤) = E(Λξξ⊤Λ⊤) + E(Λξϵ⊤) + E(ϵξ⊤Λ⊤) + E(ϵϵ⊤)

setting E(ξξ⊤) = Φ and E(ϵϵ⊤) = Ψ2, this expression becomes:

Σ = ΛΦΛ⊤ + Ψ2

2Note: ϵi is uncorrelated with ξj for all j and uncorrelated with ϵl for i ̸= l.
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since E(Λξϵ⊤) = E(ϵξ⊤Λ⊤) = 0 due to the independence of ξ and ϵ. Φ is a k × k

matrix containing the inter-factor correlations and Ψ2 is a p×p diagonal matrix3 containing
the unique variances of the manifest variables.

Figure 1 displays the common factor model for three latent variables and nine observed
ones. It shows that correlations among factors are allowed, whereas correlations among error
terms are not.

𝜉" 𝜉# 𝜉$

𝑥" 𝑥# 𝑥$ 𝑥& 𝑥' 𝑥( 𝑥) 𝑥* 𝑥+

𝜖" 𝜖# 𝜖$ 𝜖& 𝜖' 𝜖( 𝜖) 𝜖* 𝜖+

𝜙","

𝜙",#
𝜙",$

𝜙#,$
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Figure 1. The common factor model with three factors and nine variables. The arrows
connecting the latent variables with the manifest variables represent the respective factor
loadings λij . ϕa,b indicates a possible correlation between the latent factors a and b.

Introducing the error term ϵi and the unique variance Ψ2 respectively, the common
factor model can be distinguished from principal component analysis (PCA) which is rather
a tool of dimensionality reduction than an EFA in a narrow sense. Without the underlying
measurement model, PCA does not account for measurement error and the resulting com-
ponents (no latent variables per se) are positively biased compared with common factors4,
yet principal component scores are determinate unlike factor scores in the common factor
model (Widaman, 2007). This so-called factor indeterminacy emerges from the fact that
the common factor model contains more latent than manifest variables, so independent of

3Ψ2 is a diagonal matrix since all ϵi are independent of each other in the common factor model (i.e. no
correlated errors are allowed in this measurement model).

4This bias decreases with higher communalities and smaller unique variances.



3.2 The Common Factor Model 5

the particular sample size, infinite possible solutions are plausible for the factor scores ξ

and the error terms (Steiger, 1979).

Not only determining the factor scores becomes problematic for the common factor
model, but also estimating both factor loadings (λij) and unique variances simultaneously
can be challenging. A variety of extraction methods have been developed to tackle this
problem with principal axis factoring (PAF, e.g. Holzinger, 1946) and Maximum-Likelihood
estimation (ML, e.g. Jöreskog, 1967) being the most popular (see study 1). The objective
or discrepancy functions (the functions that are minimized during the respective estimation
process) reveal the differences between these two extraction methods:

FP AF = 1
2

tr [(S−Σ)2] =
∑

i

∑
j

(sij − σij)2

FML = log|Σ|+ tr (SΣ−1)− log|S| − p ≈
∑

i

∑
j

[ (sij − σij)2

u2
i u2

j

]

with S being the empirical correlation matrix, Σ being the model-implied correlation
matrix and u2

i being the sample unique variance of the manifest variable i. Accordingly, for
the ML approach the residuals between the empirical and model-implied correlation matrix
is weighted by the sample unique variances. Hence, ML weighs down “weak” variables
with low communalities (high uniqueness) as described by De Winter and Dodou (2012) or
MacCallum, Browne, and Cai (2007).

Both objective functions are solved iteratively5, yet the proceedings for PAF and ML
are different. For PAF, initial communalities are estimated that replace the diagonal of the
correlation matrix S which becomes a reduced correlation matrix S∗ that can be decomposed
via S∗ = Λ̂Λ̂⊤ with Λ̂ containing the estimated factor loadings. Based on these loading
estimates, the communalities are re-estimated and the procedure continues with the next
iteration until the communality estimates stabilize (for further readings, see De Winter &
Dodou, 2012; Jöreskog, 2007). For the ML approach, however, no initial estimates of the
communalities are necessary - both the unique variances and factor loadings are estimated
directly in an iterative procedure. Jöreskog (1967) developed a computational feasible way
to estimate the factor loadings Λ given current estimates for Ψ2 and vice versa.

5Therefore, so called Heywood cases can occur, where estimates of unique variances can become negative.
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Since, both approaches are not useful for (very) small sample sizes and n < p scenar-
ios6, new extraction methods emerged (Hirose & Yamamoto, 2014; Jung & Takane, 2008)
that are based on regularized objective functions. These new methodological developments
are discussed amongst others (inter alia the differences of common rotation methods that
are used to obtain an interpretable pattern matrix) in the first study of this thesis.

3.3 Factor Retention

Before it is possible to estimate the model parameters (factor loadings and unique
variances), researchers conducting an EFA have to determine the number of factors that
should be retained. Often no theoretical assumptions can be made and the dimensionality
(number of underlying factors) has to be estimated based on the empirical data set. Hence,
several so-called factor retention criteria have been developed. Since Study 2 and Study 3
focus on the issue of factor retention, the following paragraph summarizes the most common
criteria (see Study 1 for their proportions in the current research) and relevant new methods.
The main element of the majority of these factor retention criteria are the eigenvalues of
the correlation matrix of the manifest variables.

3.3.1 Eigenvalues. The symmetric p × p correlation matrix S (or the reduced
correlation matrix based on the factor model S∗) is characterized by p eigenvalues denoted η

(the number of eigenvalues is equal to the rank of the respective matrix7) and p eigenvectors
denoted x via the following transformation:

Sx = ηx , x ̸= 0

which holds for all p pairs of x and η.

Accordingly, the information about the correlations among the p manifest variables is
transformed to p combinations of a scalar η and a vector x. The sum of the eigenvalues (of
the correlation matrix) equals the number of manifest variables (∑p

i ηi = p) and the ratio
ηi∑p

i
ηi

= ηi
p indicates the share of item variance that can be explained by the i-th linear

combination of the p manifest variables. Hence, the higher the first eigenvalues become
(and the higher this ratio gets) the less of these linear combinations (and therefore less
latent factors) are needed to explain the variation of the observed variables. This is the

6n < p scenarios are data conditions with less observations than manifest variables.
7Correlation matrices are always symmetric and positive semi-definite and therefore of full rank p.
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gist of most factor retention criteria - the empirical eigenvalue distribution (or eigenvalue
pattern) is used to determine the number of underlying factors.

3.3.2 Kaiser-Guttman Rule. The Kaiser-Guttman rule (KG; Kaiser, 1960) is
a heuristic rule that suggests to extract all factors with eigenvalues greater than one. The
idea is that an eigenvalue greater than one indicates that the respective factor explains more
variance than a single manifest variable does8 which is a reasonable argument on population
level, but is flawed for empirical data due to sampling error as described by Braeken and Van
Assen (2017). The weak performance (especially the tendency to retain too many factors
[overfactoring]) of KG on sample level has been reported in several studies (e.g. Fabrigar
et al., 1999; Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1986), yet it is still the most
frequently used criterion in empirical research (see Study 1) and the default in statistical
programs like SPSS (IBM Corp., 2019).

3.3.3 Scree Test. Another very popular method to determine the number of fac-
tors is the Scree test by Cattell (1966). This test is based on the visual inspection of a
graphical representation of the empirical eigenvalue sequence. The researcher has to detect
the “elbow” in a graph plotting the eigenvalues against the number of factors (see Figure
2 for an example of the so-called Scree plot). A heavy drop of the graph indicates that
the factor before the drop substantially contributes, while all following factors have little
further explanatory power. This idea seems to be reasonable and may be appealing to
practitioners as it has high face validity, yet the interpretation can be rather difficult (as
shown in Figure 2) and could lead to subjective decisions. Although there are some ideas to
objectify the procedure like the Cattell-Nelson-Gorsuch approach (e.g. Nasser, Benson, &
Wisenbaker, 2002) and other non-graphical methods (e.g. Raîche, Walls, Magis, Riopel, &
Blais, 2013), it is not advisable to rely on these methods as they are inferior to state-of-art
factor retention criteria as well (e.g. Ruscio & Roche, 2012).

3.3.4 Minimum Average Partial (MAP) Test. The MAP test by Velicer
(1976) is designed for PCA, yet often applied to EFA settings as well (see Study 1). It
is based on the following statistic describing the averaged squared partial correlation after
x components are partialled out:

8In cases were all manifest variables are uncorrelated, the correlation matrix becomes the identity matrix
and all eigenvalues would be equal to one.
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Figure 2. An exemplary Scree plot showing two cases - an unambiguous Scree plot (Scree1:
solid line) where obviously one factor has to be extracted and an ambiguous Scree plot
(Scree2: dashed line) where no “elbow” can be detected.

MAPx =
p∑

i=1

p∑
j=1
j ̸=i

r2
xij

p(p− 1)

where x is the number of components that is currently assessed and r2
xij is the squared

correlation among the i-th and j-th variable after x components are partialled out. The
summary statistic MAPx is calculated for x = 0, ..., p− 1 and minimized to determine the
number of components that are sufficient to explain the variation of all p variables. While
the MAP test performs quite well when determining the number of components in PCA
(e.g. Caron, 2019; Zwick & Velicer, 1986), it is not recommended for the common factor
model (see Study 1).

3.3.5 Parallel Analysis. Parallel analysis developed by Horn (1965) compares
the sequence of eigenvalues of the correlation matrix with a sequence of averaged eigenvalues
from K random data sets with the same sample size as the empirical data set. While in this
traditional approach the mean over K random data sets is used to compare each eigenvalue
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Table 1
Traditional Parallel Analysis: Ex-
ample for Simulated Data with Ten
Variables based on Two Factors

Eigenvalues PAmean PA95%

3.466 1.364 1.468
2.134 1.249 1.324
0.763 1.164 1.224
0.711 1.089 1.143
0.655 1.021 1.068
0.561 0.958 1.006
0.487 0.891 0.936
0.454 0.828 0.878
0.420 0.757 0.815
0.349 0.679 0.742

Note. 1000 random data sets
were simulated for comparison.
PAmean are the mean eigenvalues
based on random data and PA95%

are the 95 percentile eigenvalues
based on random data that are
used for comparison.

with, there are other implementations using the 95%-percentile instead. Both ideas are
illustrated in Table 1. The empirical first eigenvalue is compared with the average of all K

first eigenvalues of the simulated random data sets (here K = 1000) or the 95%-percentile
of the respective K first eigenvalues. This is done for all p eigenvalues and factors are
retained as long as the empirical eigenvalue is greater than the average or 95%-percentile
of the comparison eigenvalues.

Other implementations of PA are based on eigenvalues from the reduced correlation
matrix that takes the communalities into account and yet other implementations use per-
muted data instead of random data to preserve the skewness of the original data. These
numerous types of PA vary in their performance as simulation studies show (e.g. Auerswald
& Moshagen, 2019; Lim & Jahng, 2019), so practitioners should make educated decisions
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and report which implementation they use when selecting PA as their factor retention
criterion.

3.3.6 New Approaches. Although PA has become the standard criterion that
is often recommended due to its quite good performance across various conditions and its
robustness against distributional assumptions (e.g. Fabrigar et al., 1999 and Study 1),
there are several new approaches that are superior to PA in different conditions. The three
most promising are discussed in Study 1 - the hull method (Lorenzo-Seva, Timmerman, &
Kiers, 2011), the comparison data (CD) approach (Ruscio & Roche, 2012) and the empirical
Kaiser criterion (EKC; Braeken & Van Assen, 2017), while both CD and EKC are used for
comparison in Study 2 and Study 3.

4 Summary Study 1

In addition to planning the study design (sample size, degree of overdetermination
[which is the number of variables per expected factor] and the choice of indicators), three
major settings have to be chosen in EFA: the number of factors (or rather which factor
retention criterion to use to determine this number), the extraction method and the rotation
method. Study 1 combines a review on the current use of exploratory factor analysis
regarding these decisions with a discussion of new methodological developments. It can be
seen as a revision of the famous review by Fabrigar et al. (1999). For reviewing the current
use of EFA, two journals focusing on psychological assessment (Psychological Assessment
and European Journal of Psychological Assessment) were selected and every original article9

from 2007 to 2017 reporting an EFA as a main statistical analysis was included in the review
(304 reported EFAs).

4.1 Sample Size

More than half of the reported EFAs (50.3%) were conducted on samples with more
than 400 observations (compared to 33.2% in the review of Fabrigar et al., 1999), whereas
16.4% were based on samples smaller than 200 observations (compared to 44.2% in the
review of Fabrigar et al., 1999). This tendency for higher sample sizes can be seen as a sign
of improving study designs in psychological research based on EFA. Since several simulation
studies (e.g. Hogarty, Hines, Kromrey, Ferron, & Mumford, 2005; Mundfrom et al., 2005)

9993 studies in Psychological Assessment, issues 19(1)-29(4) and 336 studies in the European Journal of
Psychological Assessment, issues 23(1)-33(1) were examined.
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showed the necessity for greater samples when communalities and overdetermination are
low (which you cannot rule out entirely in advance), Study 1 advocates for samples with
at least 400 observations. Higher sample sizes are also desirable as model parameters and
factor scores are estimated with higher precision.

4.2 Extraction Methods

The majority of reviewed EFAs used PAF (51.3%) or ML estimation (16.4%), while
for 22.4% of the analyses the extraction method was not reported. As no extraction method
is always superior (e.g. see De Winter & Dodou, 2012 for a comparison of PAF and ML),
we recommended to use a weighted least squares (WLS) approach for ordinal data with
few categories (see Beauducel & Herzberg, 2006; Rhemtulla, Brosseau-Liard, & Savalei,
2012) and skewed data (Holgado–Tello, Chacón–Moscoso, Barbero–García, & Vila–Abad,
2010) and ML estimation when multivariate normality can be assumed. Both WLS and ML
are implemented for confirmatory factor analyses (CFA) as well, so using these extraction
methods and the respective fit indices allows for cross-validating results with CFA. PAF
should be rather used in case where ML estimation produces Heywood cases, as it is less
prone to such estimation problems (De Winter & Dodou, 2012). New estimation algorithms
especially designed for small sample sizes (and n < p scenarios) have emerged, since these
conditions can be unfeasible for both PAF and ML estimation. We discussed these new
approaches focusing on the proposed regularized exploratory factor analysis by Jung and
Takane (2008) and the penalized EFA by Hirose and Yamamoto (2014) which is designed
for wide data (many variables) and sparse loading patterns. For psychologists though, the
latter seems to be more appealing as a way to replace the additional rotation step in EFA
to get an interpretable solution. Using the penalized EFA instead of common EFA with
subsequent rotation as discussed in Study 1 has recently been tested empirically by Scharf
and Nestler (2019).

4.3 Rotation Methods

In addition to presenting the penalized EFA (Hirose & Yamamoto, 2014) as a new
way to think about rotation, we focused on the common two step approach (extracting
an initial factor solution and then rotating it to improve interpretability) and presented
different rotation methods within the framework of the Crawford-Ferguson family (CF;
Crawford & Ferguson, 1970). The general CF complexity function which is minimized with
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regard to constraints that are inherent to the respective rotation method covers several well-
known rotation methods. We briefly discussed how these different criteria focusing either
on row-complexity or column-complexity (see also Browne, 2001) provide simple structure
patterns or benefit cross-loadings. In this context, additional weighting approaches were
also introduced.
Besides reframing common rotation methods, we debated whether and when the rotation
to a predefined target (Myers, Jin, Ahn, Celimli, & Zopluoglu, 2015) is appropriate and
pointed out similarities of this approach to exploratory structure equation modelling (e.g.
Marsh, Morin, Parker, & Kaur, 2014). Although, our review shows that current research
practice has been improved as mainly oblique rotation methods were used (over 70% of
the analyzed EFAs relied to oblique rotation) compared to the review of Fabrigar et al.
(1999), where orthogonal Varimax rotation was applied in more than 50% of the cases, only
two studies used different methods and compared the resulting patterns which is highly
recommended by several authors (Browne, 2001; Fabrigar et al., 1999). Hence, in Study 1,
we strongly advocated for comparing rotation methods with regard to the stability of factor
patterns and the interpretability of the final solution.

4.4 Factor Retention Criteria

The most commonly used factor retention criterion was the Kaiser-Guttman rule
(55.6%), followed by the Scree test (46.4%) and parallel analysis (42.1%). While parallel
analysis (PA; Horn, 1965) has become a “gold-standard” for determining the number of
factors, both Kaiser-Guttman (KG; Kaiser, 1960) and the Scree test (Cattell, 1966) are
seen critical (e.g. Fabrigar et al., 1999). However, new promising alternatives have been
developed that are superior to PA. We discussed the advantages and disadvantages of both
the hull method (Lorenzo-Seva et al., 2011) and CD (Ruscio & Roche, 2012) in detail
and introduced the modern version of KG - the EKC (Braeken & Van Assen, 2017). We
recommended to compare the results of different retention criteria and to consider theoretical
perspectives with regard to content validity for test construction purposes.

5 Summary Study 2

Besides new stand-alone factor retention criteria like CD or EKC, combination rules
for several different criteria like the one proposed by Auerswald and Moshagen (2019) have
been developed over the last years. Even though these rules promise high accuracies when
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determining the number of factors, they seem to be rather complex and therefore not very
user-friendly. Furthermore, combining different criteria may reduce the confidence in the
final solution. Therefore, this thesis introduces a new criterion that achieves a high accuracy,
while it promises to be easily applicable for practitioners and provides probability estimates
for different factor solutions that can be understood as confidence measures.

5.1 General Idea: The Factor Forest

This new approach (working title: Factor Forest) is based on extensive data simula-
tion that reflects realistic data conditions of the application context and modern machine
learning models that are used to predict the number of factors. The basic idea of the Factor
Forest is that a (complex) statistical model can be found that describes the relationship
between the characteristics of the empirical data set and the true number of underlying
latent variables. The eigenvalues of the correlation matrix and the number of manifest
variables as well as the sample size are obvious choices for the predictors of such a model.
Further predictors (or features in the context of machine learning models) are developed
to describe the empirical correlation matrix as EFA is based on the decomposition of the
inter-item correlations.

Since modelling the relationship between these (observable) features and the (unob-
servable) number of factors is not feasible without knowing the true number of factors, a
data basis (consisting of numerous data sets) with known factorial structure is simulated in
a first step. This data basis is created varying the true number of factors (k), the sample
size (N), factor loading magnitudes (primary and cross-loadings; Λ), the number of vari-
ables per factor, the inter-factor correlations (Φ) and the number of manifest variables (p).
For each of the data sets for this data basis, several features are calculated (mostly features
that describe the correlation matrix, e.g. different eigenvalues and matrix norms) that are
later used as predictor variables in the statistical model. Afterwards, a machine learning
model - the xgboost algorithm (Chen & Guestrin, 2016; Chen, He, Benesty, Khotilovich, &
Tang, 2018) seems to be a good choice (see Study 2) - is trained on the simulated data (de-
pending on the algorithm several hyperparameters can be tuned to improve the predictive
performance). The trained model can be evaluated on new simulated test data. In Study
2, this new approach is presented in detail (see Figure 3) and its performance is compared
with common criteria.
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Figure 3. Visualization of the new factor retention approach (figure from Study 2).

5.2 Results

In Study 2, we first simulated 500000 data sets that served as the data basis for the
machine learning model and extracted 181 different features that were presumed to have
predictive power for the true number of factors. We then trained three different machine
learning algorithms (mainly with default parameter settings) on this data and evaluated
their performance compared to PA, EKC, CD and KG on new simulated data. For the
evaluation, 3204 data conditions10 were created varying the true number of factors (k), the
sample sizes (N), factor loading magnitudes (primary and cross-loadings; Λ), the number of
variables per factor, the inter-factor correlations (Φ) and the number of manifest variables
(p) as it was done for the simulation of the data basis.

The overall accuracy (out-of-sample) of the trained xgboost model was higher (92.9%)
than the accuracy of all common retention criteria. When tuning six of the hyperparameters
of the xgboost algorithm (and adding the other criteria as features) this performance could
be further increased in a second step (99.3% out-of-sample accuracy). While all common
criteria showed some kind of bias (either for one factor solutions or when the number
of factors were higher), the xgboost model yielded unbiased estimates for all true values

10Using 500 replications per condition, in total this yielded 1512000 simulated data sets for the evaluation
step.
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of k (we evaluated k ∈ {1, 2, 4, 6}). As the provided machine learning model is a black
box model, variable importance measures (e.g. standard permutation based importance
measure) and tools for interpreting the final model were introduced in Study 2 as well.
The first eigenvalues (not the primary eigenvalue though) were among the most important
variables in the xgboost model, but the two most important features were two inequality
measures that were applied to the empirical correlation matrices - the Gini coefficient (Gini,
1921) and the Kolm measure (Kolm, 1999). We also applied the so-called local interpretable
model-agnostic explanations (LIME; Ribeiro, Singh, & Guestrin, 2016) that can help to
understand how the tuned model comes up with a particular prediction, although it should
be carefully interpreted as it relies on local linear approximations of the far more complex
model (in our example: r2 = 0.235 for the explaining model).

In addition to its higher accuracy compared to common retention criteria, the xgboost
model can provide probability estimates for different factor solutions that can serve as
confidence measures for practitioners. Since such uncertainty measures are not available
with the common criteria - a new approach to assess the robustness of factor retention
solutions is presented in Study 3.

5.3 Additional Analyses: Ordinal Factor Forest

In Study 2, the new approach is built on multivariate normal data (which is an as-
sumption often made in the context of EFA, e.g. for ML estimation), yet psychological
research data are often collected via questionnaires and therefore of ordinal nature. Accord-
ingly, it was necessary to also create an ordinal implementation of the Factor Forest. The
procedure was equal to the multivariate normal case (as described in Study 2) - first data
was simulated (here: ordinal data11 based on Gaussian copulas and binomial marginal distri-
butions with varying numbers of item categories between four and seven and π ∈ [0.2; 0.8])
and then the tuned xgboost model was trained on the extracted features (using the same
184 features including the PA, CD and EKC solution as well as the number of categories
as a special feature for the ordinal data). The performance of the new approach was just
slightly worse for ordinal data (overall out-of-sample accuracy of 98.5%) than for normal
data as reported in Study 2. The accuracy for different values of k varied between 97.9%

11486563 data sets (initially 500000, but data sets with improper correlation matrices or errors in calcu-
lating features were excluded) were simulated and randomly assigned to the training or test set (70%/30%
of the data sets).
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(k = 3) and 99.3% (k = 1), so the Factor Forest showed promising results as a stand-alone
retention criterion for ordinal data as well.

6 Summary of Study 3

While the main aim of many factor retention criteria is to approximate the data
generating process as close as possible (i.e. finding the “true” number of factors), replicability
should not be ignored (Osborne & Fitzpatrick, 2012; Preacher, Zhang, Kim, & Mels, 2013).
In practice, when there is only one empirical data set (and splitting this data set is not an
option due to a small sample size), it is difficult to predict whether the assumed number
of factors (based on one or several retention criteria) is robust against sampling error and
reproducible later on. Study 3, therefore, evaluates an approach to assess the robustness of
factor retention solutions and its usefulness as a proxy for possible replicability.

6.1 Results

Since replicability has become an issue in psychological research, researchers con-
ducting an EFA should focus especially on the factor retention process as determining the
number of factors may be the most far-reaching decision with regard to a successful repli-
cation of the factorial structure. Common retention criteria only provide estimates of the
dimensionality, but no confidence measures (or measures of uncertainties like standard er-
rors). When samples are small (and they often are as Study 1 shows) the accuracy of the
criteria decreases (e.g. Study 2; Auerswald & Moshagen, 2019) as the retention process is
prone to sampling error12. This hampers replicability and practitioners cannot decide how
robust an estimate for the number of factors is.

Therefore, Study 3 investigated the robustness of different factor retention criteria on
empirical data via bootstrapping and examined whether the robustness across bootstrap
samples can be used as a proxy for reproducibility. The new xgboost model (the Factor
Forest, see Study 2), PA, CD and EKC were compared with regard to their robustness and
their reproducibility using 19 data sets consisting of personality measures (the 10 Item Big
Five Inventory by Rammstedt et al., 2017 and the Big Five Structure Inventory by Arendasy,

12This vulnerability to sampling error can be illustrated using KG: Given, for example, an eigenvalue of
1.05 on population level, values below one on sample level are very likely - especially when the sample size is
small. So the Kaiser-Guttman criterion will retain less than the true number of factors just by chance very
often.
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2009). These data sets contain either different measurements (four time points) of the same
participants or different cohorts within one study project. Accordingly, two different types
of replication contexts are covered - within-subject and between-subject replication studies.

The results indicate that the xgboost model and EKC are more robust against sam-
pling variations13 than PA and CD and tend to reproduce the number of factors more often
(an exact replication of the number of factors for two consecutive measurement periods)
and more accurately (mean absolute difference of the suggested number of factors for two
consecutive measurement periods). The xgboost model had the highest rate of replicability
(61.5%), while using PA only 7.7% of the cases were exactly replicated. Although, EKC
showed more robustness across the bootstrap samples than the xgboost model, its replica-
tion rate was only the second best (46.2%) and the mean absolute deviation of replication
attempts was higher compared with the xgboost model (0.615 to 0.385). However, a positive
relation between robustness across the bootstrap samples and reproducibility was found -
as both robustness measures were positively associated with number of exact replications
and negatively associated with the deviation from two consecutive dimensionality estimates.
The respective results of our GLM analyses - even though not interpretable from a signifi-
cance testing perspective - underline the relation between the robustness of factor solutions
and their replicability.

7 Discussion

This thesis contains three studies that cover different aspects of EFA, but predomi-
nantly focuses on the issue of factor retention. Study 1 shows that current research often
relies on factor retention criteria that are either not designed for the common factor model,
rather subjective or not accurate on sample level. The latter is the case for the Kaiser-
Guttman rule which is meaningful on population level14, but prone to sampling error and
therefore not useful as a (stand-alone) retention criterion for empirical data. Since all com-
mon (and new developed) factor retention criteria lack accuracy under some data conditions,
reviews like Study 1 and large-scale simulation studies (e.g. Auerswald & Moshagen, 2019)
urge practitioners to compare different criteria and to combine various estimates. This ap-

13The robustness was indicated by the standard deviation across 100 bootstrap samples and the percentage
of bootstrap samples for which the criterion suggested the same number of factors as it did on the whole
data set.

14Braeken and Van Assen (2017) describe why the eigenvalue > 1 rule, that is associated with a positive
Kuder-Richardson reliability, is a lower bound for the relevance of empirical eigenvalues.
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proach is not new as Fabrigar et al. (1999) already suggested to compare different methods
two decades ago. However, the results of Study 1 demonstrate that there is a discrepancy
between methodological knowledge (presented in tutorial papers and how-to guidelines) and
actual research practice. Although comparing criteria and using PA rather than, for exam-
ple, KG or the Scree test is recommended, various studies were based on inappropriate
methodological decisions considering the factor retention process. Hence, new approaches
to this issue have to be both accurate for a great range of data conditions and easy to use,
so that they will be applied by the majority of researchers conducting EFAs.

The new approach presented in Study 2 - the Factor Forest - promises to tackle
both of these requirements. The tuned xgboost model showed almost perfect accuracy for
multivariate normal data (Study 2) and is also applicable to ordinal data as the additional
analyses reported above demonstrated. So far, the new approach combining extensive data
simulation and the application of complex machine learning algorithms requires a lot of
computational resources and is not yet easy to use. The final trained model can be used
easily though and therefore seems to be a promising alternative for the actual research
practice. Providing such a model that reflects all necessary data conditions would help
practitioners with a highly accurate, objective and task-related method to determine the
correct number of factors for their analyses. Accordingly, the Factor Forest covering different
trained models for different types of data should be made accessible for EFA users in the
future.

As discussed in Study 2, the supervised15 learning approach (for a comparison of su-
pervised and unsupervised learning, see James, Witten, Hastie, & Tibshirani, 2013) requires
the simulation of a data basis that includes all important data conditions. So the trained
model based on data sets that are simulated for k ∈ {1, 2, ..., 8} (see Study 2) is able to
suggest only one- to eight-factor solutions by design. Accordingly, the Factor Forest is only
applicable to data sets that are somewhat similar to those it has been trained on. Study
2 shows that the new approach performs well in data conditions that are close to those in
the training set, but not included. Nevertheless, for completely new conditions (e.g. panel
data with considerably more manifest variables) new training data has to be simulated and

15Supervised learning - in contrast to unsupervised learning - requires a criterion for which true values
are known. Here, a simulated data basis with known factor structure (known true number of factors) is
necessary to create the machine learning (or statistical) model that can predict the number of factors based
on data set characteristics. EFA itself (or the related PCA) can be assigned to unsupervised learning like
clustering (e.g. Hansen & Larsen, 1996) where no target variable with known values is needed.
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a new model has to be trained.

In Study 2, machine learning algorithms had to be chosen for the Factor Forest imple-
mentation. The xgboost algorithm (Chen & Guestrin, 2016) - especially when tuning six of
its hyperparameters - showed the best results and nearly perfect accuracy, yet implement-
ing other algorithms in further versions would be possible as well. Using other tree-based
methods (e.g. random forest implementations like the ranger by Wright & Ziegler, 2017 as
evaluated in Study 2 or the cforest by Hothorn & Zeileis, 2015 which is an implementation of
a conditional random forest that promises unbiased partitioning) or kernel-based methods
like support vector machines (Cortes & Vapnik, 1995), while relying on the same features
as predictors will probably not be superior to the tuned xgboost model. However, selecting
other/further features could help to improve the accuracy as the addition of the common
retention criteria EKC, PA and CD as features in Study 2 demonstrated. The current im-
plementation of the Factor Forest could be extended by features specially designed for new
data conditions (like it was done for ordinal data where the number of categories served as
an additional feature).

Another idea would be to use the correlation matrix itself as the input instead of
creating features that describe the correlation matrix mathematically and use those features
as the input for the model. This could be done applying neural networks (e.g. Cheng &
Titterington, 1994) since they can handle large numbers of input variables (in this case a
correlation matrix of 80 variables has 802 = 6400 entries and consists of 80×79

2 = 3160 unique
bivariate correlations). The numerical value of each correlation could be directly used as
the input for one input node and no feature engineering would be necessary (contrary to
an implementation where a graphical representation of the correlation matrix is used as the
model input and the neural network is used for image processing, see e.g. Egmont-Petersen,
Ridder, & Handels, 2002). The ordering of the variables would be a severe problem for this
approach, though, since the structure of a correlation matrix is completely arbitrary and
the position of an item X is only determined by its position in the data set. To solve this
problem, the variables could be clustered in a first step to create a correlation matrix that
shows concentrations of high and low correlations or the assignment of bivariate correlations
to the input nodes could be randomized and repeated several times to cover the various
possible structures that can occur for the same data (this would lead to a much bigger
training set).
All features extracted for Study 2, on the contrary, are independent of the positioning of the
manifest variables. Therefore, this procedure seems to be meaningful and worth pursuing
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in this context. Nevertheless, further research could evaluate whether the use of neural
networks (using the same or an extended feature set) might be beneficial - especially with
regard to an integration of different data types (ordinal data, multivariate normal data,
count data, etc.) into one model.

As mentioned above, further features might improve the accuracy of the new approach
for the data conditions that were assessed in Study 2, for ordinal data and for other data
types that have not been evaluated yet. Although the features that describe the eigenvalue
patterns seem to be predictive for all types of data, additional features could be useful for
specific data conditions. In contexts where the variable distributions are highly skewed
and the assumption of multivariate normality has to be questioned, features describing
the joint item distribution or the marginals could be helpful. As EFA is often conducted
on questionnaire data and this kind of data is prone to missing values due to item non-
response (e.g. Shoemaker, Eichholz, & Skewes, 2002), missingness should also be considered
during the factor retention process (for more details on the impact of missing data on factor
retention, see, for example, Goretzko, Heumann, & Bühner, 2019). Thus, the proportion
of missing values for each variable or the type of missing data method used to handle
missingness (the default is often pairwise-deletion when calculating correlation matrices)
could provide valuable information for the prediction task.

Depending on the context it would also be possible to change the loss function16

(the performance measure) which is used for the training (and evaluation) of the machine
learning model. In Study 2, predicting the number of factors is framed as a classification
task for which several performance measures have been developed. Ferri, Hernández-Orallo,
and Modroiu (2009) compare the behavior of 18 measures for classification tasks and show
which measures provide similar results and which measures differ strongly. The authors also
discuss which measures are independent of prior class distributions (e.g. when the classes
are highly imbalanced in the training data a classifier predicting the majority class achieves
a high accuracy, yet poor values for recall or precision which correspond to sensitivity and
1−specificity in the psychological research context) which is not a problem in Study 2, but
could be of interest when data conditions are not evenly distributed in the training set. Since

16The loss function describes how well the model fits the data and is therefore minimized when training
the model. In the classical regression context, the quadratic loss function (see least-squares approach) or
the mean squared error (MSE) is typically used as the loss function, for example. The loss functions weigh
the different aspects of model misfit differently (e.g. outlier sensitivity of quadratic loss vs. absolute loss), so
changing the loss function can benefit another candidate model (or leads to different model parameters in
the context of model training).
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the Factor Forest is currently optimized with regard to the overall accuracy (that means
that the loss function weighs every false prediction equally - no matter if the prediction is
k̂ = 3 or k̂ = 5 when the actual number of factors is k = 2), it could be meaningful to adjust
the loss function to take the ordinality17 of the criterion into account. One possibility would
be to define the loss as a symmetric Toeplitz matrix (e.g. Gray, 2006) with a zero diagonal,
for example:

L =



0 1 2 3 4 5 6 7
1 0 1 2 3 4 5 6
2 1 0 1 2 3 4 5
3 2 1 0 1 2 3 4
4 3 2 1 0 1 2 3
5 4 3 2 1 0 1 2
6 5 4 3 2 1 0 1
7 6 5 4 3 2 1 0


which can be read like a confusion matrix with the rows indicating the true values

and the columns indicating the predictions while all elements of L quantify the respective
loss.
This loss matrix punishes higher deviations from the true number of factors more strongly
than the loss function behind the accuracy does, so further research should evaluate whether
the nearly perfect overall accuracy of the model can also be reached when considering the
ordinality of the criterion. This seems to be an important research question, because in
practice the general model accuracy is not relevant when the prediction for a particular
empirical data set heavily diverges from the true number of factors. In fact, the smaller
this difference is the more useful the respective research results are.

There are several authors (e.g. Fabrigar et al., 1999; Thurstone, 1947) that regard
17Predicting the number of factors was implemented as a classification task since the number of factors

has to be an integer. However, it would also be possible to implement it as a regression task instead. In
this case, the ordinality of the criterion would be considered by a quadratic loss function associated with the
MSE, for example. In doing so, estimates like 3.48 can occur, for which common rounding strategies yield
three suggested factors. As underfactoring is considered worse compared with overfactoring (e.g. Fabrigar
et al., 1999) this might be not the best strategy for this application. In addition, implementing the Factor
Forest as a regression task could result in implausible solutions like a negative number of factors (e.g. when
using regularized linear models as the statistical model, no problem for regression trees or our xgboost
implementation though), so relying on the classification framework seems to be more promising.
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overfactoring as less severe compared to underfactoring (as pseudo relations between factors
and manifest variables that would load on other factors that were not included in the model
distort the results). Accordingly, the loss function could be adjusted by increasing the
costs of underfactoring or decreasing the costs of overfactoring. This might help to avoid
underfactoring, but as Study 2 showed that the Factor Forest provided unbiased results for
all values of k, the new model with the adjusted loss function would probably suggest too
many factors in many cases.

While the possibility to change the loss function or the machine learning algorithm,
to tune more hyperparameters, to extract further features and to extend the data basis
makes the Factor Forest approach very flexible and versatile, the new method has another
advantage over common retention criteria - the model does not only provide point estimates
for the number of factors, but also probability estimates that can be used as an implicit
certainty measure. When for example, the trained model suggests two factors with an
probability estimate of 44% (while a three factor solution has a probability of 38%), the
user may double check the results calculating the EKC or conducting PA. However, when
the estimated probability of the two factor solution is 99.97%, the user can have more
confidence in that result.

Study 3 introduces bootstrapping to the factor retention process as an easy-to-use
tool to evaluate the robustness of the criteria used to determine the number of factors.
Furthermore, it illustrated the positive relation between robustness across bootstrap samples
and replicability as well as the comparably good performance of the Factor Forest in terms
of reproducible results. Thus, the new approach serves both goals of factor retention -
the accurate approximation of the data generating process and the replicability in different
samples (see, Preacher et al., 2013). The latter is particularly important considering debates
about the replication crisis in psychology (e.g. Shrout & Rodgers, 2018).

As described in Study 3, debates about the replication crisis mainly focus on hypoth-
esis testing, under-powered studies and phenomena like p-hacking (e.g. Simmons, Nelson,
& Simonsohn, 2011), but completely leave out EFA. Although EFA is a purely exploratory
analysis and results should always be confirmed by CFA (Fabrigar et al., 1999), results of
EFAs - especially results of the dimensionality assessment - strongly shape further research
(inter alia which candidate models are tested in CFA). This can be observed in the dis-
agreements about the factorial structure of different psychological constructs. While for
the most prominent example, the BIG-5 (see Study 3), the research community predomi-
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nantly18 agrees on five factors, there are several on-going debates in other research areas,
for example, debates about the dimensionality of the Rosenberg Self-Esteem Scale that was
intended as a unidimensional measure, yet appears to rather have a two-factor structure
(Huang & Dong, 2012; Marsh, Scalas, & Nagengast, 2010). In some cases, methodological
artifacts like factors created by special item wording (e.g. the Sense of Community Index,
Peterson, Speer, & Hughey, 2006) can explain these debates, but often the lack of repro-
ducibility (and robustness against sampling error) of the factor retention criteria might be
an explanation as Study 3 shows. Therefore, determining the number of factors should not
be done by solely focusing on finding the “true” number of factors, but also considering the
stability of solutions and their replicability.

With regard to replicability, the frequent use of PAF as extraction method (see Study
1) has to be seen critically since this extraction method does not allow for exact cross-
validation with CFA. As also discussed in Study 1, researchers should be more transparent
when reporting EFA results to facilitate replication attempts. Accordingly, the current re-
search practice in EFA can be improved in terms of replicability in several ways - there
should be guidelines for transparent and comprehensive reporting of decisions (extraction
method, rotation method, factor retention criterion, etc.) and results of EFAs like the ones
proposed by the Journal of the Society for Social Work and Research (Cabrera-Nguyen,
2010). For factor extraction, PAF should be avoided in favor of ML-EFA or WLS ap-
proaches, rotation methods should be compared and selected in consideration of theoretical
assumptions (see Study 1) and factor retention criteria should be supplemented by a pro-
cedure to assess their stability like bootstrapping (Study 3) or evaluated on subsamples
(Study 1). The new approach - the Factor Forest - seems to be a promising factor retention
criterion considering both its accuracy (Study 2) and its reproducibility (Study 3) and may
bridge the gap between methodological research and the actual practice due to its easy
application (when a trained model is provided).

7.1 Limitations

In Study 1, the current use of EFA is evaluated focusing on articles published in
two journals over a time span of approximately ten years. When discussing the current
practice both the journal selection and the time period have to be taken into account.
The selected journals focus on psychological assessment and questionnaire development,

18However, there are opposing findings and diverging opinions for the BIG-5 as well (e.g. Saggino, 2000;
Thalmayer, Saucier, & Eigenhuis, 2011).
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which arguably attracts rather methodological papers with probably more elaborate decision
making concerning EFA than journals from other (applied) research areas. Gaskin and
Happell (2014), for example, evaluated the use of EFA in nursing journals in the year 2012
and reported considerably higher rates of EFAs based on orthogonal Varimax rotation and
less usage of parallel analysis. As Study 1 considered a comparably broad time period,
it would also be interesting to take a closer look at the more recent practice analyzing
possible changes in response to the replication crisis (e.g. Shrout & Rodgers, 2018) that
raised awareness for the importance of profound research practices.

Although the new approach to factor retention proposed in Study 2 seems to be
promising, some limitations have to be mentioned. As discussed above, the Factor Forest
needs to be trained on simulated data that reflect all data conditions within the application
context. Even though Study 2 showed that minor deviations from the data conditions
included in the training set did not deteriorate its performance, the Factor Forest might
not be usable for new data that deviate strongly from the training data. Therefore, different
application contexts have to be covered by separate trained models. Since the simulation of
the respective training data and the model training (plus the tuning of the hyperparameters)
is computationally expensive, it is not practical that every researcher has to go through the
complete procedure all by him or herself when conducting an EFA. Therefore, trained
models should be provided clearly stating the data conditions they were trained on, so that
practitioners can select a model that suits their application context best. However, the
simulated data cannot cover all potential data conditions due to economical reasons. So
when working with rare data conditions that are not fully covered by the trained model,
it might be necessary to evaluate the performance of the model on exemplary simulated
data first. However, for most of the cases in which EFA is used, it should be possible to
create a standard model with the new approach that estimates the number of factors very
accurately.

As Study 3 demonstrates the link between the robustness of factor retention criteria
and their replicability, it has to be stated that replicability has no value in itself. Replicating
a wrong factor structure is obviously not desirable. Therefore, the robustness of the factorial
structure should not be used as a stand-alone criterion when choosing a method to determine
the number of factors. Nonetheless, in combination with Study 2 or other simulation studies
comparing different factor retention criteria with regard to their accuracy, the robustness
assessed for an empirical data set can provide valuable information on which criterion
might be more reliable in a specific context. Although the relation between robustness
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and replicability of factor retention criteria seems to be logical and the results of Study 3 in
fact gave evidence for this link, the number of observations (data sets that were investigated)
for the statistical modelling was quite small, so that statistical inference should be avoided
due to the lack of power. Thus, Study 3 has to be regarded as solely descriptive and further
replication studies should be used to increase the number of cases for the analyses to confirm
the positive relation between robustness and replicability in factor retention.

7.2 Conclusion

Even though the research practice concerning EFA seems to have improved since the
review of Fabrigar et al. (1999), Study 1 showed that some methodological decisions and
their reporting can still be enhanced. Especially, when it comes to determining the number
of factors - arguably the most important and far-reaching decision during EFA, many re-
searchers rely on outdated or even invalid methods. The new approach presented in Study
2 promises to be more accurate and robust (Study 3) than common criteria. Therefore, fur-
ther research should focus on improving the Factor Forest and to provide an implementation
for practitioners. Different data conditions call for different models (one for multivariate
normal data, one for ordinal data, one for panel data, etc.). However, Study 2 and the
additional implementation for ordinal data suggest that the new approach can be applied
in varying contexts. The replication crisis and on-going debates in several areas of psycho-
logical research demonstrate the importance of a robust and reproducible factor retention
process. Accordingly, Study 3 introduced the idea of bootstrapping to assess the robustness
of factor retention solutions and found a relation between the robustness (across bootstrap
samples) and actual replication. Thus, a robustness check like this should always be used
to decide whether an assumed factor solution is stable and will be replicable or whether it
is likely that sampling error has deteriorated the factor retention process.
The new factor retention criterion proposed in this thesis also demonstrates that modern
machine learning techniques can be used to improve classical statistical procedures. In
particular, when heuristic rules are used to select parameters of statistical methods (here:
the number of factors for EFA), because no analytic solutions are feasible (or corrupted by
sampling error), the idea of training complex machine learning models on simulated data
can lead to more accurate heuristics or decision rules. Consequently, this new approach
could potentially be adopted in other areas of classical statistics where heuristic rules are
used - for example in sample size planning, outlier detection or as a model test in structural
equation modeling.
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9 Study 1

The article entitled “Exploratory factor analysis: Current use, methodological devel-
opments and recommendations for good practice.” published in Current Psychology (Goret-
zko, Pham, & Bühner, 2019) is referred to as Study 1 throughout this thesis. It is presented
hereinafter.

9.1 Abstract

Psychological research often relies on exploratory factor analysis (EFA). As the out-
come of the analysis highly depends on the chosen settings, there is a strong need for
guidelines on the decisions a researcher faces when conducting an EFA. Therefore, we want
to examine the recent methodological developments as well as the current practice in psy-
chological research. We reviewed ten years of studies containing EFAs and contrasted them
with new methodological options. We focused on four major issues: an adequate sample size,
the extraction method, the rotation method and the factor retention criterion determining
the number of factors to extract. Finally, we present modified recommendations based on
these reviewed empirical studies and practical considerations.

9.2 Introduction

Exploratory factor analysis (EFA) is a frequently used statistical method in psychol-
ogy. There is hardly any other statistical method shaping the field of test construction as
strongly as the EFA, simultaneously causing as many controversial debates about its correct
application. Over the years, several publications dealt with recommendations on how to
use EFA, trying to familiarize researchers with the most important decisions they have to
make.

One of the most influential papers in this context, a meta-analytic review by Fabrigar,
Wegener, MacCallum and Strahan (1999), investigated the use of EFA in 217 papers pub-
lished from 1991 through 1995 in the Journal of Personality and Social Psychology (JPSP)
and the Journal of Applied Psychology (JAP). The authors made recommendations for the
practical application of EFA regarding an appropriate sample size, the number of items per
factor, the extraction method, the factor retention criterion as well as the rotation method
and the general applicability of the procedure. In the following, these recommendations will
be discussed briefly and afterwards compared with the current use of EFA in psychological
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research. This is done by reviewing publications in two highly relevant journals for psycho-
logical assessment published over the last decade. The latest developments and empirical
findings concerning methodological decisions during the EFA process are presented and
merged with those of (Fabrigar et al., 1999) to obtain enriched recommendations for EFA.
We focus on sample size considerations, the choices of rotation and extraction methods as
well as the best way to determine the number of factors.

9.2.1 Theory and Purpose of EFA. EFA is used to explore correlative relations
among manifest variables and to model these relations with one or more latent variables. In
the common factor model a causal link between latent variable(s) and manifest indicators
is assumed (“common cause relation”) – an assumption that is comprehensively discussed
with all its implications by Borsboom, Mellenbergh and Van Heerden (2003). Based on the
common factor model, the covariance matrix of the manifest variables can be decomposed
into a part of shared variance ΛΛ⊤ (impact of the latent variable(s) or the “common cause”)
and unique variance Ψ2:

Σ = ΛΛ⊤ + Ψ2

(Jöreskog, 1967).

When factor loadings and unique variances are estimated, one faces the problem of
rotation indeterminacy which means that the loading matrix can only be defined up to a
rotation, because more latent variables have to be estimated than manifest variables are ob-
served (that is why ML estimation, for example, uses an iterative estimation procedure, see
Jöreskog, 1967). Steiger (1979) discusses the related issue of factor indeterminacy in detail
including historical perspectives. Given a rotated solution, there are no unique solutions
for factor scores – a problem that should be considered when interpreting EFA results (see
also Steiger & Schönemann, 1978 for a simple numerical example). When EFA is used as a
tool for defining psychological constructs and developing associated questionnaires, rotation
indeterminacy might be the predominant issue, so we focus on the related methodological
decisions, yet inviting the readers to keep in mind the problem of factor indeterminacy
especially when considering the results (factor scores) for diagnostic purposes.

9.2.2 Recommendations of Fabrigar et al. (1999). Fabrigar et al. (1999)
established basic guidelines for the general study design, the extraction methods, the rota-
tion methods and the factor retention criteria. In the following, these recommendations are
presented briefly.
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9.2.2.1 Study design (number of items and sample size).

Besides others, there are two important issues the researcher has to consider when
designing a study – the number of variables representing a latent construct and the sample
size. Fabrigar et al. (1999) suggest that one should find at least four items with acceptable
reliabilities (> .70) for each expected factor. Contrary to former opinions (e.g. Ford,
MacCallum, & Tait, 1986; Gorsuch, 1983), the authors do not support the idea of a subjects-
per-variable ratio as a guiding value for the sample size. In fact, they recommend sample
sizes greater than 400 as desirable, as smaller samples might yield invalid results under
unfavorable conditions (e.g. low communalities, MacCallum, Widaman, Zhang, & Hong,
1999).

9.2.2.2 Extraction methods.

When comparing different extraction methods, Fabrigar et al. (1999) conclude that
Maximum Likelihood (ML) estimation might be the preferred approach due to the numerous
fit indices available for this method. The authors propose three alternatives, when the
assumption of multivariate normality is violated: transforming the data, correcting the fit
indices or using a different method like principal axis factoring (PAF).

9.2.2.3 Factor retention criteria.

To determine the number of factors, Fabrigar et al. (1999) recommend to use different
criteria and never just one method. They advise researchers to combine fit indices (when
using ML EFA) like RMSEA, as proposed by Browne and Cudeck (1992), with common
methods such as parallel analysis (PA, Horn, 1965). In the case of a sufficiently large
sample, they encourage researchers to split the data set and compare the results of the
factor retention criteria among the subsets.

9.2.2.4 Rotation methods.

When it comes to the various rotation methods provided by statistical software, Fab-
rigar et al. (1999) have a strong call for oblique procedures as these can lead to uncorre-
lated and correlated factors which usually occur in psychology, whereas orthogonal rotation
methods force an uncorrelated factor solution. However, they do not give any further rec-
ommendations which specific oblique rotation should be favored in which condition.

9.2.2.5 General recommendations.

The paper of Fabrigar et al. (1999) has two key learnings. First, it can be seen as



9.3 Review of the Current Use of EFA 37

a strong call for a more thoughtful application of EFA. The authors emphasized that EFA
and principal component analysis (PCA) are different methods, especially with regard to
unique variances, and should not be exchanged unintentionally. Second, the paper draws
attention to the fact that the presentation of the method and its results often does not
allow for assessing the quality of the analysis. Therefore, Fabrigar et al. (1999) emphasize
the importance of transparent and coherent presentations of the whole EFA procedure and
criticize the rare documentation of important EFA settings or characteristics of the data.
Especially, the lack of information on item communalities is noted by the authors.

9.3 Review of the Current Use of EFA

As 20 years have passed since the work of Fabrigar et al. (1999), we want to examine
what has changed in the meantime and whether the discussed recommendations have been
adopted by a broader community. Therefore, we sifted every original article in Psychological
Assessment and in the European Journal of Psychological Assessment (EJPA) from 2007 to
2017. These journals were selected due to their special focus on test construction and the
variety of studies using EFA. The database research yielded 993 studies in Psychological
Assessment, issues 19(1)-29(4) and 336 studies in EJPA, issues 23(1)-33(1). For our analysis,
we focused on articles reporting an EFA (e.g. studies on test construction) and excluded
articles which did not report an EFA as a main analysis (e.g. studies only referring to
EFA results in the footnotes). We analyzed a total of 304 EFAs, 44 from EJPA and 260
from Psychological Assessment (some papers with more than one EFA). To quantify the
current EFA practice, we classified the respective sample sizes, the extraction methods, the
rotation methods, the factor retention criteria, the number of variables per factor as well as
the average communalities in each EFA. Articles directly referring to Fabrigar et al. (1999)
were also considered separately, as we wanted to examine whether these articles showed a
higher compliance to the presented recommendations.

9.3.1 Study Design (Number of Items and Sample Size). Table 2 shows
the sample sizes reported for each of the 304 EFAs. About half of the analyses (50.3%)
were based on samples larger than 400, while only eight cases (2.6%) had samples smaller
than 100. In 1.6% of all cases the sample size was not presented at all.

The ratios of variables per factor are shown in Table 3, reporting the general ratio for
each EFA as well as the minimum number of items associated with a factor in each analysis.
In 10.5% of the EFAs the general ratio was not provided. In nearly one third of the analyses
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Table 2
Study 1: Sample Sizes in EFAs in Cur-
rent Psychological Research

Sample Size N % %F abrigar

< 100 8 2.6 17.5
100 - 200 42 13.8 26.7
200 - 300 44 14.5 15.7
300 - 400 52 17.1 6.9
> 400 153 50.3 33.2
Not Reported 5 1.6 0.0

(31.6%), the smallest number of items of a factor was not listed as well. On the other hand,
more than half of the considered EFAs (52.6%) had a general item to factor ratio of five
or higher with 22.0% reporting a ratio of 10 or greater. At least three variables associated
with the smallest factor were reported for 57.9% of the EFAs, with 11.5% having at least
six variables associated with each factor.

We were also interested in the means of communalities for each EFA as those can be
seen as indicators for the quality of the measurement (when developing scales and seeking
for unidimensional constructs that are represented by several manifest indicators) or rather
as measures for the soundness of the extracted factors (Table 4). The vast majority of
studies neither specified the communalities nor gave enough information to calculate them
(pattern matrix and correlation among factors). Thus, 87.5% of all EFAs were published
neglecting the communalities. When item communalities were reported, they mostly fell
between .40 and .70 (10.5% of all EFAs).
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Table 3
Study 1: Item to Factor Ra-
tio (A) and Minimum Variables
per Factor (B)

N %

A
< 3:1 10 3.3
3:1 - 5:1 102 33.6
5:1 - 7:1* 47 15.5
> 7:1 113 37.2
Not Reported 32 10.5

B
< 3 32 10.5
3 - 5 141 46.4
> 5 35 11.5

Not Reported 96 31.6

Note. *The item to factor ratio
of exactly five to one is included
here

Table 4
Study 1: Average Communalities in EFAs
in Current Psychological Research

Average Communalities h̄2 N %

< .40 4 1.3
.40 - .49 11 3.6
.50 - .59 12 3.9
.60 - .69 9 3.0
> .69 2 0.7
Not Reported 266 87.5

Note. Communalities are averaged over
each EFA, so the range of communalities
is ignored.
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9.3.2 Extraction Method. The present usage of extraction methods is shown
in Table 5. It should be noted that PCAs are excluded from this review. Therefore, only
EFAs in the narrow sense, those allowing for unique variances, are included. With 51.3%,
the majority of EFAs was based on PAF, followed by ML estimation (16.4%). Least-Squares
approaches made up less than ten percent of the used extraction methods. In more than
22% of the cases the extraction method was not reported at all.

9.3.3 Rotation Method. Table 6 shows the rotation methods used in the ana-
lyzed EFAs. As two of the EFAs were conducted using two different rotation methods for
comparison, a total 306 cases are reported. 71.4% of the reported EFAs were implemented
with oblique rotation methods, while 20.4% did not report the rotation method. Most re-
searchers chose Promax (32.2%) or Oblimin (14.5%) for oblique rotation. Varimax (8.9%)
was the only orthogonal rotation method found in our sample.

9.3.4 Factor Retention Criterion. More than half of the time researchers did
not rely solely on one factor retention criterion to determine the number of factors, but used
multiple criteria instead (note that because of the usage of multiple criteria the percentages
in Table 7 do not add up to one). The most common method was the Kaiser-Guttman
criterion (often referred to as Eigenvalue > 1 rule) used in 55.6% of the cases, followed
by the Scree test (46.4%), PA (42.1%) and theoretical considerations or interpretability
of the solution (35.5%). In some cases, only one of these four methods were used as a
single criterion. When reporting just one stand-alone criterion, Kaiser-Guttman was the

Table 5
Study 1: Extraction Methods in EFAs in
Current Psychological Research

Extraction Method N %

Principal Axis Factoring 156 51.3
Maximum Likelihood 50 16.4
Unweighted Least Squares 11 3.6
Weighted Least Squares* 16 5.3
MinRes 3 1.0
Not Reported 68 22.4

Note. *WLSMV: Weighted Least Squares
Means and Variance adjusted
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Table 6
Study 1: Rotation Methods in EFAs in Current
Psychological Research

Rotation Method N % %F abrigar

Varimax 27 8.9 53.0
Promax 98 32.2 1.8
Oblimin 44 14.5 0.0
Geomin 23 7.6 0.0
Equimax 5 1.6 0.0
GeoMax 2 0.7 0.0
Varimax (oblique) 11 3.6 0.0
Other oblique rotations 34 11.2 13.8
Not Reported 62 20.4 15.2

most common (10.5%), followed by Scree test (9.5%) and PA (8.2%). In total, we found 16
different methods applied as retention criterion in our review (Table 7).

9.3.5 Studies with References to Fabrigar et al. (1999). The analyses from
articles directly citing Fabrigar et al. (1999) produced quite different results. PAF was
prevalently used as the extraction method (88%) while ML estimation was used only once.
Every applied rotation method was oblique with Promax being reported the most frequently
(82%). 80% of the articles reported multiple criteria and PA was the predominant retention
criterion with 88%, while Kaiser-Guttman (82%), Scree test (74%) and MAP test (66%)
were used at least roughly two-thirds of the time as well. In general, these articles showed a
higher tendency to report our variables of interest. At least 40% of them provided both the
information about communalities as well as complete information about the other relevant
variables.
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Table 7
Study 1: Factor Retention Criteria in Current
Psychological Research

Factor Retention Criterion N %

Kaiser-Guttman* 169 55.6
Scree test* 141 46.4
Parallel Analysis* 128 42.1
Theory/Interpretability* 108 35.5
AIC 1 0.3
BIC 8 2.6
Chi-Square-Test 1 0.3
Comparison Data 1 0.3
Eigenvalue > .70 1 0.3
Variance accounted for 24 7.9
At least 3 Variables per factor 16 5.3
MAP test 59 19.4
RMSEA 3 1.0
SRMR 1 0.3
Standard Error Scree 16 5.3
Very Simple Structure 1 0.3
Not Reported 13 4.3

Note. Percentages do not add up to 1, because
multiple criteria were used among the major-
ity of EFAs. * Criteria, that were used stand-
alone to determine the number of factors in at
least one study.
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9.4 Methodological Developments

As there are several new methodological developments in the field of EFA, we want to
present an updated review of the methodological questions arising when conducting EFA.
The discussed recommendations of Fabrigar et al. (1999) serve as the basis of our overview,
which is why the following sections focus primarily on concepts and empiricism published
after the year 1999.

9.4.1 Study Design (Number of Items and Sample Size). When it comes
to EFA, an adequate sample size is a heavily discussed issue. As Fabrigar et al. (1999)
point out, recommendations concerning subject to item ratios (N

p ) are out of date. In fact,
MacCallum et al. (1999) showed in a simulation study that these ratios are not useful,
and furthermore, that the communalities of the analyzed variables and the number of items
per factor should be considered when searching for an appropriate sample size. Rouquette
and Falissard (2011) evaluated the requirements for sample sizes in EFA in the context of
psychiatric scales. They found that the subject to item ratio rules did not work appropriately
and concluded that it is not necessarily true that shorter scales need smaller samples than
larger scales or vice versa. Therefore, they recommended a rule of thumb of 300 subjects or
more when using EFA in this specific context.

Other studies followed the findings of MacCallum et al. (1999). Hogarty, Hines,
Kromrey, Ferron and Mumford (2005) reported a strong influence of item communalities on
the accuracy of EFA solutions. Especially when overdetermination was strong (e.g. three
factors represented by 20 variables) and communalities were high (h2 between .60 and .80),
sample factor loadings and population factor loadings corresponded vastly. Quite similar
results were obtained in simulations by Mundfrom, Shaw and Ke (2005): the higher the
item communalities were and the stronger overdetermination was, the smaller the sample
could have been to find accurate factor solutions. Thus, even samples smaller than 100
observations could be appropriate when communalities are sufficiently high and factors are
represented by a great number of items.

Contrary to EFA, there are some methods to determine sample size for CFA which go
beyond common rules of thumb (Schmitt, 2011). One of them is a method based on Monte
Carlo simulations evaluating the minimum sample size for a particular model and a desired
power for the Likelihood ratio test (Muthen & Muthen, 2002). This process determining
the sample size analogously to sample size planning for other analyses (e.g. ANOVA) seems
to be a practicable solution for CFA, but will not fit in the context of EFA as necessary
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assumptions about the factor structure and the size of loadings cannot be made in advance
(otherwise CFA would be the preferred analysis method).

As there is often little or no evidence in advance about the concrete size of the item
communalities, one has to come back to rough rules of thumb. We therefore recommend to
(highly) overdetermine the expected factors and stick with an item to factor ratio of at least
4, better 5, so that samples of approximately 400 subjects will promise trustworthy results
(see, Mundfrom et al., 2005). Hogarty et al. (2005) likewise recommended overdetermina-
tion to limit the need of excessive sample sizes due to potentially low item communalities.
Increasing the item to factor ratio can be harmful though, when the content validity is not
considered. Artificial duplication of items can lead to violations of local independence. The
item to factor ratio should therefore be increased carefully.

The number of observations which allows for stable estimations of correlations (as
EFA is based on the correlative relations among variables) might be another reference value
for a desirable sample size. Schönbrodt and Perugini (2013) demonstrate at which sample
sizes Pearson correlations stabilize depending on different levels of confidence and definitions
of stability. As secondary loadings in EFA are often based on rather small correlations more
than 300 observations seem to be necessary to achieve reasonably stable correlations in this
context. Therefore, this rough assessment is an additional indicator that the rule of thumb
of Rouquette and Falissard (2011) with sample sizes greater than 300 might be a good
lower bound when planning the sample for an EFA. We agree with Fabrigar et al. (1999)
that samples containing at least 400 observations should be aimed for to avoid estimation
problems. Even though there are some methods especially designed for small samples (e.g.
Jung & Takane, 2008; see Extraction Methods), using those should be exceptional and
reserved for cases in which strong ethical or resource-related objections can be made. In
general, researchers should collect greater samples so that factor loadings and factor scores
are estimated more precisely – especially when tests are designed for clinical diagnostics.

9.4.1.1 Current practice.

Against this background, it is encouraging to see that sample sizes in our review tend
to be higher than in the study of Fabrigar et al. (1999) twenty years ago. This might be
an effect of the differing journals we used for our review, but it could also indicate real im-
provements in current practice. As the sample size can be judged only when communalities
and item-to-factor ratios are known, one has to be cautious with results of studies based on
extremely small samples when these measures are not reported. Thus, we recommend to
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provide this information within every article. Sample sizes of more than 400 observations
are essential when conducting EFAs and should not be smaller to improve estimation pre-
cision and to prevent estimation problems such as Heywood cases. The tendency of studies
directly referring to Fabrigar et al. (1999) showing higher sample sizes than the average
of the considered studies, can be seen as a confirmation that methodological education can
help to improve psychological research.

9.4.2 Extraction Method. Another central decision when performing EFA is
the choice of an appropriate extraction method. It has been stated repeatedly that PCA
is not the same as EFA and therefore PCA is not an equivalent alternative when dealing
with latent variables measured by manifest items (Costello & Osborne, 2005; Fabrigar et al.,
1999; Gorsuch, 1990, 1997). A short introduction on the differences between EFA and PCA
is presented by Suhr (2005). When item communalities are close to one both methods yield
similar results while results can differ heavily when communalities decrease. The decision
between EFA and PCA should be linked directly to the purposes of the analysis – when
exploring latent constructs that are measured (measurement error!) via manifest indicators
common EFA should be preferred.

Even when excluding PCA from the set of possible extraction methods, researchers are
confronted with various different options: ML estimation, Minres introduced by Harman and
Jones (1966), different least squares approaches, Minimum Rank Factor Analysis (MRFA)
and PAF, just to name the most common ones. Jöreskog, Olsson and Yang-Wallentin (2013)
point out that ML estimation can be described as an iteratively reweighted least squares
approach (for more detail, see Browne, 1974). So, the framework of the weighted least
squares family (WLS) covers ML, unweighted least squares (ULS) as well as generalized
least squares (GLS) as special cases.

Despite these methodological similarities among them, the choice of an extraction
method can have a severe impact on the concrete EFA solution and the literature lacks
advice which exact extraction method should be used under which conditions (Costello
& Osborne, 2005; Fabrigar et al., 1999). Numerous researchers (e.g. Conway & Huffcutt,
2003; Costello & Osborne, 2005) follow Fabrigar et al. (1999) preferring ML estimation when
multivariate normality is given. Again, the main reason for this preference is the variety of
fit indices one can use for model evaluation and comparison. In addition, ML estimation is
implemented in all major statistical programs (e.g. SPSS, FACTOR, R, MPLUS).

However, using Likert type items multivariate normality might be questionable. When
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multivariate normality is violated, Costello and Osborne (2005) recommend PAF, while
Yong and Pearce (2013) suggest to conduct PCA at first to reduce the dimensionality of the
data and subsequently perform a “real” factor extraction using one of the methods above.

Accordingly, PAF is often used as an alternative extraction method. De Winter and
Dodou (2012) compared PAF and ML estimation via simulations and showed that ML
estimation was more likely to produce Heywood cases throughout all conditions, but out-
performed PAF when loadings were unequal and underextraction was given. PAF, on the
other hand, performed better when the factor structure was orthogonal and when overex-
traction was present. So, neither PAF nor ML estimation can be seen as preferable in
general.

Barendse, Oort and Timmerman (2015) compared ML with WLS and robust WLS
for different response scales (continuous, dichotomous and polytomous) and found robust
WLS with polychoric correlations to yield better results when discrete data was evaluated –
findings comparable to those that have been made in the field of confirmatory factor analysis
(CFA). Beauducel and Herzberg (2006), for example, compared ML estimation to weighted
least squares means and variance adjusted (WLSMV) estimation for CFA by simulating data
sets based on variables with different response scale formats. They found that WLSMV
performed better for variables with two or three categories which are situations where
normality assumptions might be questionable anyway. Comparable results were reported
by Rhemtulla, Brosseau-Liard and Savalei (2012), who showed that ML estimation can
be used when variables have five or more categories yielding results of equal quality as
WLSMV. Both simulation studies revealed a slight greediness of WLSMV estimation for
greater sample sizes. These findings might not be applicable directly to EFA, but they can
give some evidence which conditions might be suitable for either ML estimation or WLS
approaches.

All of these estimation algorithms require a minimum sample size (another reason for
rather big samples, see section Sample Size) and do not provide reliable results with small
samples. Therefore, a regularized EFA for small sample sizes has been proposed (Jung &
Takane, 2008). Contrary to common estimation methods (e.g. ML), it does not estimate
the unique variances for each item and the factor loadings iteratively, but rather estimates
a single regularization parameter19 λ to avoid improper solutions. The regularization pa-

19Regularization means that an additional term is added to an objective function to solve an otherwise
not solvable problem. Here, instead of estimating several unique variances which can be infeasible when the
sample size is too small, a so-called regularization parameter is selected that adjusts the initial estimates of
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rameter λ shrinks the initial estimates of the unique variances, while the factor loadings
are estimated as usual with common ML, ULS or GLS estimations. Initially, the unique
variances are either assumed to be constant across all variables, proportional to the anti-
image20 covariance (see, e.g. Kaiser, 1976) or proportional to the Ihara-Kano estimates (see,
Ihara & Kano, 1986). Jung and Lee (2011) showed in a simulation study that this procedure
(with ML estimation and anti-image assumption) works better for small samples (less than
50 observations) than common ML estimation or PCA. Nevertheless, the assumptions for
the unique variances are hardly ever met in psychological studies, so this procedure should
be reserved for situations where common extraction procedures are not feasible for a given
sample size.

9.4.2.1 Current practice.

In the majority of studies PAF was used - a tendency that was even stronger for
those referring to Fabrigar et al. (1999). Yet, there are several advantages of ML and the
Least-Squares approaches as mentioned above. EFA results should be cross-validated with
CFA, so we recommend to use ML or LS approaches instead of PAF as these estimation
methods are available for CFA as well and therefore provide comparable outcomes among
the analyses. For normally distributed data, one should rely rather on ML estimation,
whereas WLS estimation should be preferred for non-normal and ordinal data (especially
when Likert type items with less than five categories are used). Extracting via PAF should
rather be restricted to cases where the other extraction methods suffer from non-convergence
or improper solutions. Depending on the particular data, more than one method can be
tried, though and results can be examined for matching patterns as suggested by Widaman
(2012).

9.4.3 Factor Retention Criterion. Determining the number of factors is a very
decisive issue in the EFA process because of its influential power within the exploratory
analysis. While in many articles authors write about the true number of factors and the
problem to find this exact number, Preacher, Zhang, Kim and Mels (2013) argue that there
is no true factor model and researchers rather have to approximate the data generating

the unique variances.
20The anti-image can be depicted as the negative of the image of a matrix. The image covariance matrix

contains the variation of each variable that can be explained by the other variables (partial covariance
coefficients), the respective anti-image consists of the negatives which can be described as the unique variance
components. For more details, have a look at Kaiser (1976) or EFA textbooks since the anti-image correlation
matrix is a commonly used tool to evaluate whether an EFA is applicable to the data (see also Measuring
Sampling Adequacy (MSA) as described in Kaiser, 1970).
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process. The authors describe an error framework which covers two different directions in
the factor retention issue.

Preacher et al. (2013) explain that one has to choose the aim of the EFA - approximat-
ing the “true” factor structure (approximation goal) or finding the most replicable solution
(replicability goal) which is a decision analogue to the bias-variance trade-off. They conclude
that different factor retention criteria are best for these different goals. In simulation stud-
ies the authors focused on fit indices based on ML estimation and found the RMSEA (to be
more precise: its confidence interval’s lower bound) to perform best for the approximation
goal while AIC and BIC were far less accurate especially in scenarios with great sample
sizes. Contrary, for the replicability goal and in cases of small samples BIC performed best.

Often the approximation goal has priority in EFA research. There is a broad range of
evidence that in this case, PA produces the best results when comparing the most common
criteria (see, Fabrigar et al., 1999; Peres-Neto, Jackson, & Somers, 2005; Zwick & Velicer,
1986). The generally good performance of PA might be based on its robustness against
varying distributional assumptions (Dinno, 2009). Timmerman and Lorenzo-Seva (2011)
evaluated different extraction methods within the PA and recommended to use MRFA
instead of PCA or PAF for ordered polytomous items which are usually used in psychological
questionnaires.

PA has become some kind of gold standard for factor retention criteria, but promising
alternatives have been proposed recently. Lorenzo-Seva, Timmerman and Kiers (2011)
developed the so-called hull method. This method is based on four major steps. First
the researcher chooses a range of possible numbers of factors, then an arbitrary fit index
is evaluated for each number of factors (CFI performed best in simulations). Afterwards
the degrees of freedom of this set of factor solutions is assessed and finally the values of
the chosen fit index are plotted against the respective degrees of freedom. The higher
boundary21 of the convex hull of the plotted data points shows an elbow which defines
the number of factors to retain. The authors showed a superiority of their method to PA
and the minimum average partial test (MAP) in simulations and for a real data set. This
reported superiority of the hull method was based on cases with an extremely high item to
factor ratio ( p

k = 20). In cases of smaller ratios PA yielded equivalent or even better results.

Another method is the comparison data (CD) approach (Ruscio & Roche, 2012). CD
can be framed as an extended PA which reproduces the observed correlation matrix instead

21Sometimes (in the context of two dimensional convex hulls) also referred to as the upper hull.
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of using random data. The researcher specifies the upper bound for the possible number of
factors. Then data for populations with one, two, etc. factors (up to this predefined upper
bound) are simulated each reproducing the given empirical covariance structure as closely
as possible. Samples (the authors suggest 500) of the same size as the empirical data are
drawn from each population and the respective eigenvalues of the item correlation matrix
are compared to the observed eigenvalues via the Root-Mean-Square-Error (RMSE)22. One
gets as many RMSE values as samples drawn from each population. These values of each
factor solution are then compared to those of the next factor solution by a nonparametric
Mann-Whitney U test (the one factor solution against the two factor solution, the two factor
solution against the three factor solution and so on). The iterative procedure stops when
no significant improvement is indicated (Ruscio & Roche, 2012).

In simulation studies the authors showed that an α-level of .30 may be adequate (note
that an α-error means possible overextraction, while a β-error means underextraction) and
that CD outperformed PA and other minor retention criteria under several conditions23.

As this method (and similar approaches using simulated data) can be computation-
ally demanding, Braeken and Van Assen (2017) proposed the Empirical Kaiser Criterion
(EKC) which makes use of the statistical properties of eigenvalues and does not require any
simulations24. It is based on the so-called Marčenko-Pastur distribution, which asymptoti-
cally describes the distribution of sample eigenvalues under the null model (no underlying
factor structure) and is therefore closely related to the results of PA, and the idea of the
Kaiser criterion that only eigenvalues greater than one should be taken into account. The
theoretically expected eigenvalues (that are used for the comparison) are corrected for the
magnitude of all previous eigenvalues - so when, for example, the first empirical eigenvalue
already accounts for 60% of the item variance, the expectations for the following eigenvalues
are adjusted downwards. The authors were able to show superiority over PA for oblique

22The RMSE is defined as the root of the MSE which is the averaged squared distance between parameters
and its estimates. In this case, the differences between the given eigenvalues and the eigenvalues obtained

of the simulated data sets of the specific k-factor population are computed: RMSEt =

√∑p

i=1
(η∗

t,i
−ηi)2

p

where the empirical eigenvalues are denoted η and the comparison eigenvalues of t-th comparison data set
(t = 1, ..., T where the default for T is 500) are denoted η∗

t and p is the number of eigenvalues (variables in
the empirical data set).

23They varied the number of factors (one to five), the number of response categories (two to 20), used
correlated and uncorrelated solutions and sample sizes between 200 and 1000.

24It only requires the number of items and the sample size, so it can be applied without knowing much
about the structure of the data – for example when evaluating published results.
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structures and found comparable results to CD and other simulation based approaches.
However, this evaluation was based on simple structure assumptions, so little is known so
far about the performance of EKC when cross-loadings are present.

9.4.3.1 Current practice.

In current research, more than 50% of the EFAs are based on multiple factor retention
criteria, whereas Fabrigar et al. (1999) reported just about 20% of studies to do so. In
articles referring to their article, the percentage rises to 80%. That speaks in favor of
the current research practice, although the frequent use of invalid methods such as Kaiser-
Guttman rule or Scree test (also as a single criterion) has to be criticized. There are even
tutorial papers for EFA recommending these methods Maroof (2012) or completely ignoring
more appropriate tools (Beavers et al., 2013). In addition to avoid these criteria, it should
become scientific standard not to rely on the MAP-test as a (stand-alone) factor retention
criterion in common factor analysis as it is created for PCA and therefore associated with
different assumptions.

As there is enough evidence demonstrating problems with some of the commonly used
criteria, we want to encourage researchers to use the whole spectrum of methods determining
the number of factors and whenever feasible to split the sample and evaluate the subsamples
separately. A practical solution could be using PA and CD in combination with a descriptive
measure like the explained variance or theoretical considerations. Nevertheless, this decision
still remains the most difficult to make within EFA. Thus, it is inevitable to be aware of its
consequences and to report every consideration concerning this issue.

9.4.4 Rotation Method. After the primary extraction, researchers almost al-
ways decide to rotate the factor solution to obtain results that are easier to interpret. It
has become common understanding in literature on EFA methods that oblique rotation is
preferable (e.g. Baglin, 2014; Conway & Huffcutt, 2003; Costello & Osborne, 2005; Fabrigar
et al., 1999), but it is also stated that it is not clear which oblique rotation has to be used.
Browne (2001) gives a detailed overview of the different rotation methods and highly rec-
ommends a multi-method approach. He argues that using various complexity functions25

might be an appropriate way to handle a situation in which no solution is undoubtedly
superior. One could use a method from the Crawford-Ferguson (CF) family, plus Infomax

25The so-called complexity function is the objective function which is minimized with regard to specific
constraints to achieve a particular rotation of the initial loading matrix. We recommend the article of
Browne (2001) explaining the link between constraints and rotation criteria in greater detail.
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rotation and Geomin rotation, for example. The CF family (Crawford & Ferguson, 1970)
covers several well-known rotation methods by formulating the complexity function as a
function of row complexity (items) and column complexity (factors):

f(Λ) = (1− κ)
p∑

i=1

k∑
j=1

k∑
l ̸=j

λ2
ijλ2

il + κ
k∑

j=1
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i=1

p∑
m̸=i

λ2
ijλ2

mj

with p indicating the number of variables, k indicating the number of factors and
κ being an arbitrary constant weighting the row-wise (first part of the sum) or column-
wise complexity. Some values of κ lead to commonly known criteria. κ = 0, for example,
corresponds to the Quartimin-criterion and κ = 1

p to the Varimax rotation (Browne, 2001).
Browne (2001) explains that in cases of almost perfect cluster patterns most complexity
functions work perfectly fine, but when complexity in the factor patterns increases, one has
to weigh up the stability of the solution against its accuracy.

When complex structures are expected (higher amount and amplitude of cross-
loadings), rotation methods like CF-Equamax or CF-Facparsim should be used. When fewer
or smaller cross-loadings are expected, common techniques like Geomin or CF-Quartimin
might be more appropriate (Sass & Schmitt, 2010; Schmitt & Sass, 2011).

Browne (2001) states that a standardization like the Cureton-Mulaik (CM) weighting
(for more details, see Cureton & Mulaik, 1975) can improve the solution. Nonetheless, if
there are only a few complex variables among many perfectly discriminative ones (only
loadings on one factor), weighting procedures might focus too much on these variables. The
advantages of CM weighting were empirically shown by Lorenzo-Seva (2000) comparing
weighted Oblimin with Direct Oblimin, Promaj, Promin and weighted Promax.

Another interesting, yet different rotation method is the rotation to target procedure,
where the factor matrix is rotated in a way that a partially specified target matrix (some
coefficients of the factor pattern matrix are defined in advance) is replicated as closely as
possible (Myers, Jin, Ahn, Celimli, & Zopluoglu, 2015). It seems to be an appropriate
rotation method when additional information is available as it has some similarities to
exploratory structure equation modelling (ESEM; for further readings, see Marsh, Morin,
Parker, & Kaur, 2014). Therefore, it might be the right rotation method when theoretical or
empirical information is given and when many factor cross loadings tend to be zero, because
this seems to be the most reasonable specification a researcher can make in advance. Browne
(2001) suggests to apply this procedure iteratively, updating the target matrix in every step.
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As the choice of the best rotation method appears to be arbitrary to some degree,
we want to present a totally different approach: the penalized factor analysis (Hirose &
Yamamoto, 2014). Instead of conducting EFA in the classical two steps – extracting k
factors and afterwards rotating the solution to increase interpretability – this new method
obtains sparsity in the pattern matrix through penalizing the likelihood. The penalty26

is analogue to the complexity function discussed before, but it is now integrated into the
estimation process, so that cross-loadings get shrunk towards zero in the first place.

First simulations revealed some promising results for wide data with many variables
and sparse loading matrices (Hirose & Yamamoto, 2015) as well as for a real data set
(Hirose & Yamamoto, 2014). The latter was analyzed with both the new approach with a
MC+ penalty and the common ML estimation with Promax rotation. The penalized factor
analysis produced quite similar yet sparser and well interpretable results. Nevertheless, the
penalized factor analysis still has to be evaluated under a broader range of conditions to
investigate whether it will be an appropriate tool for psychological research questions.

In general, it is appropriate to use different rotation methods and to choose the one
with the most reasonable solution as all rotated solutions are mathematically equal27 (in
case of the two-step process28, not the penalized ML estimation). For replication purposes,
it is necessary to report the chosen rotation procedure.

9.4.4.1 Current practice.

For one out five cases in our review, the rotation method was not reported, so the
current research practice clearly lacks transparency here. Only two studies used different
rotation methods and compared different solutions – a procedure highly recommended by
Browne (2001). However, a positive aspect is that more than 70% of all EFAs used oblique
rotation methods. A number that increased to 98% for studies referring to Fabrigar et
al. (1999), where 53% of the examined studies had used the orthogonal Varimax rotation.

26In common ML estimation an objective function (that is derived from the log-likelihood) is minimized.
Here a so-called penalty term is added to this function. It penalizes a high number of parameters (in this
case loadings, especially cross-loadings). The more parameters are estimated to be non-zero, the higher this
term gets and it “becomes harder” to achieve a minimum, so in turn adding this penalty yielding more small
(or even zero-) loadings (depending on the type of penalty). You can read about penalizing the likelihood
in the EFA estimation process in more detail in Jin, Moustaki and Yang-Wallentin (2018).

27That is the known as the problem of rotation indeterminacy (see introduction section)
28The optimization process is done with respect to different constraints, but apart from that it is equiv-

alent for all rotation methods. Therefore, theoretical considerations must be taken into account to make a
reasonable decision (are cross-loadings consistent with theoretical assumptions, etc.).
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Accordingly, psychological research seems to be on the right track regarding this issue.

When using different rotation methods on the same sample or on subsamples as
suggested by Browne (2001), Fabrigar et al. (1999) or Preacher et al. (2013), it might
be helpful to evaluate the similarity of different solutions. Lorenzo and Ferrando (1996,
1998), for example, developed the FACOM/NFACOM library which allows for comparison
of different factor solutions based on different methodological decisions. A decision for a
rotation can be made by weighing up the mathematical interpretability and the theoretical
plausibility of the respective solution.

9.4.5 Further Recommendations. EFA is often applied to questionnaire items
which are not normally distributed but rather skewed. Investigating this problem, Holgado–
Tello, Chacón–Moscoso, Barbero–García and Vila–Abad (2010) found EFA based on poly-
choric correlations to reproduce the true factor model more accurately than EFA based
on Pearson correlations. Baglin (2014) nicely illustrated this issue and also recommended
polychoric correlations for these cases. Hence, item skewness should be evaluated before
conducting EFA and in case of severely skewed variables polychoric correlations should be
chosen when using ML estimation. When extracting via WLS approaches, polychoric or
tetrachoric correlations are used instead of Pearson correlation anyway, so the type of cor-
relation does not have to be selected in these cases. Other approaches worth considering
for ordinal data are those that are based on response patterns (IRT models) instead of ap-
proximating the correlation matrix assuming underlying normal distributed latent variables
(e.g. Jöreskog & Moustaki, 2001). As full-information item factor analysis (full information
maximum likelihood, FIML) can be computationally challenging (IRT approach as well as
when assuming an underlying continuous variable) and problematic with small samples in
particular, Katsikatsou, Moustaki, Yang-Wallentin and Jöreskog (2012) proposed a pairwise
likelihood (PML) estimation approach that closely matched the results of FIML and can
be seen as a practical alternative.

When conducting EFA, researchers should specify their research goals precisely and
select the best suited methods. We want to clarify that the presented methods and related
recommendations are designed for the researcher’s goal to approximate the data generating
process as precisely as possible. Often interpretability and theoretical considerations can
be equally important. For test construction purposes, in particular, content validity should
be the top priority. Researchers therefore should report transparently which objectives they
have, which methodological decisions they take and all outcomes they collect. This ensures
that the quality of a solution can be evaluated and implications of particular studies can
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be weighted. The Journal of the Society for Social Work and Research has taken a leading
role in demanding certain reporting guidelines for EFA (see Cabrera-Nguyen, 2010). Other
journals should follow this example and call for transparency in reporting EFAs. Especially
in the light of the current discussion about the replication crisis in psychology (e.g. Shrout
& Rodgers, 2018), transparency with regard to data, research material and methodological
decisions is essential (for further readings: OSF Guidelines for Transparency, Klein et al.,
2018). Furthermore, we encourage researchers to consider various procedures in this context,
instead of performing a standard practice based on default settings or personal routines.

9.5 Summary

As pointed out, EFA is a very complex analysis and it is therefore not easy to make
general recommendations on how to conduct it properly. Each case should be evaluated
individually, so this paper tries to sensitize researchers for careful decisions and transparent
reporting. Nevertheless, we want to formulate some “default” settings which can be seen as
a basis for further considerations. Samples for EFA should be greater than 400 participants
to get reliable factor patterns and precisely estimated factor scores. One should use ML or
WLS estimation as extraction method depending on the respective item distributions and
the response format, because these methods allow for evaluations of model fit and cross-
validation with CFAs. To determine the number of factors, we recommend combining PA
and CD (or EKC) with a descriptive measure (e.g. explained variance) and theoretical con-
siderations. Latter should be included for test construction purposes, but should be ignored
when the data generating process of the specific data is approximated. In any case, multiple
retention criteria should be applied and reported later on to provide the full picture. As
different rotation methods yield mathematically indeterminate factor solutions, researchers
should compare factor patterns between different methods and choose the solution that fits
theoretical considerations best. Again, it is necessary to report the chosen method to enable
other researchers to replicate the respective solution.
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10 Study 2

The article entitled “One model to rule them all? Using machine learning algorithms
to determine the number of factors in exploratory factor analysis” submitted for publication
is referred to as Study 2 throughout this thesis. It is presented hereinafter.

10.1 Abstract

Determining the number of factors is one of the most crucial decisions a researcher
has to face when conducting an exploratory factor analysis. As no common factor retention
criterion can be seen as generally superior, a new approach is proposed - combining extensive
data simulation with state-of-the-art machine learning algorithms. First, data was simulated
under a broad range of realistic conditions and three algorithms were trained using specially
designed features based on the correlation matrices of the simulated data sets. Subsequently,
the new approach was compared to four common factor retention criteria with regard to its
accuracy in determining the correct number of factors in a large-scale simulation experiment.
Sample size, variables per factor, correlations between factors, primary and cross-loadings
as well as the correct number of factors were varied to gain comprehensive knowledge of the
efficiency of our new method. A gradient boosting model outperformed all other criteria,
so in a second step, we improved this model by tuning several hyperparameters of the
algorithm and using common retention criteria as additional features. This model reached
an out-of-sample accuracy of 99.3%. A great advantage of this approach is the possibility
to continuously extend the data basis (e.g. using ordinal data) as well as the set of features
to improve the predictive performance and to increase generalizability.

10.2 Introduction

Exploratory factor analysis (EFA) is a commonly used statistical method to explore
latent psychological concepts. Its exploratory nature allows researchers to carve out the
structure of new constructs, but also reflects a threat to the validity of its results as several
methodological decisions have to be taken by the researchers - decisions that can strongly
shape the outcome and future research in the respective field (Fabrigar, Wegener, MacCal-
lum, & Strahan, 1999; Goretzko, Pham, & Bühner, 2019). The most crucial decision might
be determining the number of factors that should be extracted. Extracting too few factors
(underfactoring) or too many (overfactoring) can have adverse effects on the estimated fac-
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tor scores (Fava & Velicer, 1996) and leads to estimation problems such as Heywood cases
(De Winter & Dodou, 2012). Overfactoring is generally regarded as less critical since the
actual relations between the manifest variables and the latent variables can be estimated
more accurately than in cases of underfactoring (Fabrigar et al., 1999).

There are numerous ways to determine the number of factors. In some cases, the-
oretical considerations set the number of factors, but often such implications are missing
and the number has to be estimated based on the empirical data. The majority of the
various methods that have been developed for this issue evaluate the eigenvalue-structure
of the item correlations. There are traditional approaches like the Scree test (Cattell, 1966),
the Kaiser-Guttman rule (Kaiser, 1960) and the parallel analysis (Horn, 1965) as well as
modern approaches like the comparison data (CD) approach (Ruscio & Roche, 2012) or
the empirical Kaiser criterion (EKC, Braeken & Van Assen, 2017). Parallel analysis (PA)
became some kind of gold-standard (e.g. Fabrigar et al., 1999; Goretzko et al., 2019) due
to its robustness against varying distributional assumptions (Dinno, 2009) and its compa-
rably good performance under various conditions such as sample sizes between 30 and 360
and number of variables between 9 and 72 (Peres-Neto, Jackson, & Somers, 2005; Zwick &
Velicer, 1986). Nonetheless, new methods like CD (Ruscio & Roche, 2012), the hull method
proposed by Lorenzo-Seva, Timmerman and Kiers (2011) and EKC (Braeken & Van Assen,
2017) showed superiority for specific data conditions29. A broad simulation study by Auer-
swald and Moshagen (2019) evaluated these (and other) criteria under various conditions
(number of items: 4− 60, sample sizes: 100− 1000, number of factors: 1− 5, variables per
factor: 4− 12, varying loading magnitudes and inter-factor correlations) and recommended
combining different methods. They found combinations of PA (based on principal compo-
nent analysis), EKC, the hull method and CD (when sample sizes were sufficiently large)
to provide the best results.

10.2.1 Aim of the Study. Combining various methods is also recommended by
several other authors (Fabrigar et al., 1999; Goretzko et al., 2019), yet this suggestion can
be unsettling and frustrating for practitioners. For this reason, a new approach is tested in
this study - combining extensive data simulation with machine learning algorithms to find
a model that is predictive (can determine the number of factors correctly) under a broad
range of conditions. We focus on two major approaches: random forests (Breiman, 2001)

29CD was superior to PA especially in conditions with few factors (k < 5), while the EKC was superior
for conditions with oblique factor structures and the Hull method outperformed PA when overdetermination
was high.
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and extreme gradient boosting (Chen, He, Benesty, Khotilovich, & Tang, 2018) as well as an
automatic gradient boosting approach (Thomas, Coors, & Bischl, 2018) since both random
forests and gradient boosting are able to reflect non-linearities and complex interactions.

10.2.2 Random Forest. Random forests are based on ntree bootstrap samples
drawn from the empirical data. A regression or classification tree is grown on each bootstrap
sample by recursive binary splitting. This growth-process stops when a predetermined
number of observations is reached in each terminal node. The algorithm randomly uses
mtry variables at each node, of which one variable is selected that allows for the best split
(Breiman, 2001). The resulting trees are not pruned like single decision trees, because
overfitting is prevented by averaging over the ntree trees. These trees can vary a lot as only
mtry of all features are used for each possible split and the bootstrapped samples do not
consist of all original observations. The process of building a random forest by averaging
the mtry trees provides reliable results (see James, Witten, Hastie, & Tibshirani, 2013 for a
more detailed introduction). Common values for mtry are p

3 or √p (with p being the number
of variables or features). p

3 is preferred for regression task while √p might be favorable for
classification purposes (Breiman, 1999).

10.2.3 Extreme Gradient Boosting and Automatic Gradient Boosting.
The principal idea of boosting is to sequentially perform a prediction task (regression or
classification) with comparably simple (or “weak”) methods like decision trees (Friedman,
Hastie, & Tibshirani, 2000). Contrary to random forests or bagging approaches, no boot-
strap samples are drawn. In fact, a number of decision trees (ntree) is grown sequentially
using the residuals of the complete model containing all previous trees. A shrinkage param-
eter (e.g. λ) also known as learning rate regulates the updating speed:

f̂(x)← f̂(x) + λf̂new(x)

where f̂(x) is the iteratively updated model, which yields f̂(x) =
∑ntree

n=1 λf̂n(x) for the
complete boosted model. λ is usually chosen as λ = 0.01 or λ = 0.001 (James et al., 2013).

For gradient boosting this rate is not fixed for each new tree, but rather computed by
minimizing the residuals in the respective step given a predefined loss-function (Friedman,
2001). As the xgboost algorithm (Chen & Guestrin, 2016; Chen et al., 2018) used for this
study contains several hyperparameters (e.g. a learning rate that shrinks the step weights, a
L1-regularization and a L2-regularization as well as tree-specific parameters like the minimal
node size), tuning the xgboost model might be promising. Thomas et al. (2018) provided
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Figure 4. Study 2: Visualization of the new factor retention approach.

an automatized version - the automatic gradient boosting or autoxgboost which applies
model-based optimization (Bayesian optimization) to find the best set of hyperparameters.

10.3 Methods

The idea of this study was to find a machine learning model that is predictive for the
true number of factors (the number of latent dimensions underlying the data generating
process) in the context of EFA. We therefore simulated several data sets with given factor
structures that reflect realistic conditions in psychological research. Afterwards, three ma-
chine learning models (random forest, gradient boosting and automatic gradient boosting)
were trained on this data (see Figure 4 for a flowchart demonstrating the approach). The
performance of the resulting three trained models were compared to the performance of
parallel analysis, the comparison data approach and the empirical Kaiser criterion as well
as the common Kaiser criterion. This was done using new simulated data that also covered
a broad range of conditions usually found in psychological literature.

10.3.1 Creating a Machine Learning Model as Factor Retention Criterion.
The underlying data basis was simulated assuming multivariate normality. Sample sizes
were between 200 and 1000, the true number of factors (k) ranged from 1 to 8 factors,
variables per factor (vpf) varied between 3 and 10, factor correlations were set to values
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between 0 and 0.4, primary loadings ranged from 0.35 to 0.80 and cross-loadings from 0.00
and 0.2030.

A population correlation matrix was created for each data set based on the following
decomposition:

Σ = ΛΦΛ⊤ + Ψ2

with Λ being the true loading matrix, Φ being the factor correlation matrix and Ψ2

being a diagonal matrix containing the unique variance of each variable. The true loading
matrix contained all primary and cross-loadings drawn from different uniform distributions
(e.g. when primary loadings should be high a uniform distribution between 0.65 and 0.80
was used). For Φ a matrix that consists of the value one on the diagonal and equal values
for the inter-factor correlations on the off-diagonal (0,0.1,0.2,0.3 or 0.4) was chosen, while
Ψ2 was calculated from Σ = ΛΦΛ⊤ + 11p×p − diag(ΛΦΛ⊤).

Data simulation and analysis were conducted with R (R Development Core Team,
2008) while the manuscript was written with the papaja package (Aust & Barth, 2018) and
graphics were created with the ggplot2 package (Wickham, 2016). We used the mvtnorm
package (Genz et al., 2018) to simulate multivariate normal data with the respective corre-
lation matrix Σ (consequently, all manifest variables had unit variance) and N observations
(N was drawn from a uniform distribution between 200 and 1000).

10.3.2 Feature Engineering. 181 features were computed for each simulated
data set to create the respective training data for the machine learning algorithms. The
following features were used for training: the sample size N , the number of variables p,
the number of eigenvalues that are greater than one, the relative proportion of the first
eigenvalue, the relative proportion of the first two eigenvalues, the relative proportion of
the first three eigenvalues, the number of eigenvalues that are greater than 0.7, the stan-
dard deviation of all eigenvalues, the number of eigenvalues that account for 50% of the
variance, the number of eigenvalues that account for 75% of the variance, the L1-norm of
the correlation matrix, the Frobenius-norm of the correlation matrix, the maximum-norm
of the correlation matrix, the spectral-norm of the correlation matrix, the average of the
off-diagonal correlations, the number of correlations smaller or equal to 0.1, the average of

30Primary loadings were either small (λij ∈ [0.35; 0.50]), medium (λij ∈ [0.50; 0.65]) or high (λij ∈
[0.65; 0.80]) and cross-loadings were either non-existing, small (λij ∈ [0.00; 0.10]) or medium sized (λij ∈
[0.10; 0.20]) representing different levels of communalities.
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the initial communality estimates, the determinant of the correlation matrix, the measure
of sampling adequacy (MSA after Kaiser, 1970), the Gini-coefficient (Gini, 1921) of the
correlation matrix, the Kolm measure of inequality (Kolm, 1999) of the correlation matrix,
all p eigenvalues as well as all p eigenvalues of the factor model31.

We simulated 500000 data sets varying the sample size, primary and cross-loadings,
the number of factors, the variables per factor and the factor correlations. For some of
the random combinations, the resulting Σ-matrix was not positive semi-definite or the
calculation of all features was not feasible, so our effective training sample consisted of
498971 simulated data sets with 181 features.

10.3.3 Model Training. Based on the simulated data, we used the machine learn-
ing framework mlr (Bischl et al., 2016) to train a random forest (ranger, Wright & Ziegler,
2017), the extreme gradient boosting model (xgboost, Chen et al., 2018) and the automatic
gradient boosting model (autoxgboost, Thomas et al., 2018). Determining the true number of
factors k was implemented as a classification task (multiclass) with no specific cost-matrix -
the algorithms were trained to maximize the accuracy of the suggested factor solution which
means that no differentiations were made among falsely classified cases (e.g. suggesting four
factors when k = 2 had the same costs as suggesting five factors).

The ranger was applied with default settings (ntree = 500, which seems to be a good
trade-off between performance and the need for computational resources, see Genuer, Poggi,
& Tuleau, 2008 and mtry = floor(√p) which is the rounded down square root of the number
of features as recommended by Breiman, 1999 - in our case mtry = floor(

√
181) = 13). We

also used the default settings of the xgboost32, but set the number of iterations (the trees
that are sequentially build on the residuals) to 500 for better comparison with the ranger.
The autoxgboost was used with default settings as well. We only increased the time budget33

of the algorithm from one hour to two hours.

We saved the three trained models to evaluate them on new data. The ranger model
reached an in-sample accuracy of 97.2% while the xgboost model had an in-sample accuracy

31For both common eigenvalues and eigenvalues based on the factor model, the maximum number was 80
as p = k ∗ vpf could have been p = 8 ∗ 10 in maximum. Missing values (for each simulated data set with
p < 80) were coded with −1000.

32The default settings were used as we wanted to know whether the xgboost algorithm is useful at all. As
there are many possible tuning parameters for this algorithm, the autoxgboost implementation was tested as
well.

33The time budget is the maximum time that will be used for tuning the parameters of the underlying
boosting algorithm via Bayesian optimization.
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of 99.0% and the autoxgboost model an in-sample accuracy of 95.8%.34

10.3.4 Evaluation of the Machine Learning Models and four common Fac-
tor Retention Criteria. To evaluate the performance of the three models in more detail
and on new data, we created several experimental conditions and simulated multivariate
normal data. We varied the following conditions: sample size was N = 250, 500 or 1000,
variables per factor were either vpf = 4,5 or 7, the true number of factors was k = 1,2,4 or 6,
between factor correlations35 were ρ = 0, 0.1, 0.2, 0.3 or 0.5 and loadings varied between 0.35
and 0.80 for primary loadings (different conditions with small (λij ∈ [0.35; 0.50]), medium
(λij ∈ [0.50; 0.65]) and high (λij ∈ [0.65; 0.80]) primary loadings) and 0.00 and 0.20 for
cross-loadings (different conditions with no, small (λij ∈ [0.00; 0.10]) and medium sized
(λij ∈ [0.10; 0.20]) cross-loadings). This gave us 3204 conditions in total as we excluded
combinations that could yield improper solutions for Σ. Each condition was replicated 500
times, so 1512000 data sets were evaluated. Data simulation was conducted analogously to
the simulation of the data basis for the training set.

We calculated all necessary features and saved the predictions of the three models for
each data set. We also collected the suggested number of factors for four common factor
retention criteria (Kaiser criterion, PA, CD, EKC) for comparison. Accuracies, ratios of
under- or overfactoring as well as minima and maxima of the suggested number of factors
per conditions were then calculated. For the sake of clarity, we used only four common
criteria for the comparison that can be used as a baseline36 for our new approach (e.g. fore-
going the hull method which is superior to PA only in rather special conditions with high
overdetermination and the minimum average partial test [MAP; Velicer, 1976] which is de-
signed for principal component analyses rather than EFA in a narrow sense and which is
not able to outperform PA [Zwick & Velicer, 1986]). For the same reason, we also focused
on one implementation of the parallel analysis (using the 95% quantile of the eigenvalue
distribution of random data for comparison as implemented in the psych package by Rev-

34The apparently lower accuracy (in-sample) of the autoxgboost compared with the xgboost indicates that
the time budget was too short to find optimal settings for the hyperparameters of the gradient boosting
algorithm.

35We evaluated oblique structures with (nearly) simple structure rather than the related orthogonal struc-
tures with higher cross-loadings as researchers almost always search for simple structure and many common
rotation methods were designed to provide solutions with simple structure (Browne, 2001; Fabrigar et al.,
1999; Goretzko et al., 2019).

36We focused on common factor retention criteria that are applied by practitioners and seemed to be
promising for our data conditions. Including methods for this baseline made sense for those criteria that
were shown to be superior to PA for some of these data conditions.
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Table 8
Study 2: Accuracy of Retention Criteria averaged over All
Conditions and for Different Factor Solutions separately

Method Acc Acc1 Acc2 Acc4 Acc6

xgboost 0.92886 0.99663 0.95883 0.90646 0.85002
ranger 0.91508 0.99625 0.94913 0.90314 0.80701
axgboost 0.85600 0.99583 0.93834 0.79607 0.68620
pa 0.82506 0.76951 0.90248 0.85971 0.76590
cd 0.81304 0.85624 0.90297 0.79599 0.69157
ekc 0.88432 0.99916 0.95634 0.82596 0.74983
kaiser 0.74644 0.96389 0.85003 0.64023 0.52161

Note. Acc is the overall accuracy of each method, whereas
Acc1 is the accuracy for single factor conditions, Acc2 for con-
ditions with two factors and so on.

elle, 2018), so all results concerning PA are related to a specific implementation and cannot
be generalized to other types of parallel analyses. The simulation studies of Auerswald
and Moshagen (2019) and Lim and Jahng (2019) provide further insights on these different
types of parallel analysis.

10.4 Results

Averaged over all 3204 conditions, both trained models ranger and xgboost had a
higher accuracy than the common factor retention criteria. When considering conditions
with k = 1, 2, 4 and 6 separately, the xgboost model had the highest accuracy on average for
two-factor, four-factor and six-factor solutions and fell short closely behind the EKC when
one-factor solutions were evaluated (99.7% to 99.9%). While all retention criteria general
had lower accuracies when k was higher, the xgboost model exclusively reached accuracies
higher than 85% on average. Table 8 shows the accuracies of all methods averaged over all
conditions as well as the accuracies for all different values of k separately.

Besides having the highest overall accuracy, the xgboost model showed no signs of
biased estimation of the number of factors (estimated bias smaller than 0.01). The ranger
showed no clear signs of bias in the estimation as well, yet it tended to overfactor when
k = 6 (10.9% of the cases). In contrast, PA and CD tended to underfactor suggesting
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less than k factors for all values of k - a tendency that increased with higher values of k

(e.g. when k = 6 PA underestimated k in 22.6% of the cases while CD did so in 23.3% of
the cases). The Kaiser-Guttman-rule rather tended to overfactor (20.3% of the cases with
k = 4 and 25.9% of the cases with k = 6), while EKC was nearly unbiased for k = 1 and
k = 2 and suggested less than k factors when four or six factors (22.0% of the cases) were
in the data generating model. In Table 9 the averaged suggested numbers of factors are
presented for each criterion and the four different values of k, while Table 10 displays the
respective proportions of under- and overfactoring.
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Table 11
Study 2: Accuracy of Retention Criteria
for Different Sample Sizes

Method Acc250 Acc500 Acc1000

xgboost 0.88754 0.93549 0.96355
ranger 0.88408 0.92132 0.93985
axgboost 0.81523 0.86006 0.89271
pa 0.75991 0.83494 0.88032
cd 0.74920 0.82486 0.86505
ekc 0.87652 0.88499 0.89145
kaiser 0.65478 0.75597 0.82856

Note. Acc250 is the mean accuracy for con-
ditions with N = 250, Acc500 for condi-
tions with N=500 and Acc1000 for condi-
tions with N=1000.

All factor retention criteria improved their performance with increasing sample size.
Especially the simulation based approaches PA and CD as well as the Kaiser criterion
strongly benefited from greater samples. EKC, on the contrary, showed almost the same
performance for all three values of N (mean accuracies: 87.7%, 88.5%, 89.1%). Table 11
displays the averaged accuracies for all sample sizes separately.

The accuracy of factor retention varied for different levels of variables per factor (the
item-to-factor ratio) as well as for different combinations of primary and cross-loadings.
Figures 5-8 show the performance of all methods for conditions with k = 1 (Figure 5),
k = 2 (Figure 6), k = 4 (Figure 7) and k = 6 (Figure 8) and all combinations of these three
variables (vpf, primary loadings and cross-loadings).

When k = 1 and primary loadings were high, all methods except CD achieved almost
perfect accuracy, while PA failed to retain the correct number of factors more often than
all other methods when primary loadings were small. Especially when vpf = 4 or 5, PA
yielded an averaged accuracy below 30%. The three ML models, EKC and the Kaiser
criterion achieved very high accuracies throughout all respective conditions.

When k = 2 and primary loadings were small, the Kaiser criterion and PA performed
worse than the other retention criteria. While, in general, a higher number of variables
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Figure 5. Study 2: Accuracy of retention criteria for conditions with one factor averaged
over N.
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per factor yielded better results, the Kaiser criterion and EKC showed opposing tendencies
(when primary loadings were small) with worse results the more variables per factor were
present. When cross-loadings were medium and primary loadings were small, all methods
had averaged accuracies below 90% with EKC being the only exception when vpf = 7. In
conditions with high primary loadings, all criteria performed reasonably well, yet CD failed
to retain the true number of factors more often than the other methods (Figure 6).

Figure 7 and Figure 8, show the averaged accuracy for conditions with four and six
true factors respectively. When k = 4 and primary loadings were small the Kaiser criterion
performed quite poorly, while the empirical Kaiser criterion yielded high accuracies. The
xgboost model was often superior to the other retention criteria, especially when cross-
loadings got higher. When primary loadings were high all criteria performed better, yet the
EKC showed some problems with relatively high cross-loadings and only four variables per
factor. When k = 6 all methods lacked accuracy for conditions with small primary loadings
and comparably high cross-loadings. Only the xgboost model reached an accuracy higher
than 50% on average in these conditions. When k = 6, vpf = 7 and primary loadings were
small (no cross-loadings), the Kaiser criterion was not able to retain the correct number of
factors in a single data set. It rather suggested more than six factors for each case.
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Figure 6. Study 2: Accuracy of retention criteria for conditions with two factors averaged
over N and ρ.
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Figure 7 . Study 2: Accuracy of retention criteria for conditions with four factors averaged
over N and ρ.
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Figure 8. Study 2: Accuracy of retention criteria for conditions with six factors averaged
over N and ρ.
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10.4.1 Additional Conditions. As the data sets used for this evaluation were
based on loading matrices containing solely positive loadings, we added 16 data conditions
with both negative and positive loadings to find out whether our new approach (focusing
on the xgboost model as it outperformed both the ranger and the autoxgboost) can handle
respective data. We also evaluated the performance of the xgboost model compared to the
four common retention criteria under a condition based on a random intercept model with
ten variables loading equally on the first factor and unequally on a second factor. This
random intercept condition can provide first insights on how the xgboost model behaves in
conditions fundamentally different to conditions based on a (near) simple structure. Table
12 shows that the xgboost model performed quite well under these additional conditions
being able to retain the correct number of factors almost in every case, while the EKC
struggled with the random intercept model (1% accuracy).
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Table 12
Study 2: Accuracy of Factor Retention Criteria for Conditions with Negative and Positve
Loadings (A) and a Data Condition based on a Random Intercept Model (B)

N vpf k ρ primary load. cross-load. Accxgb Accekc Acccd Accpa Acckc

A
500 5 2 0.0 high medium 1.00 1.00 0.89 1.00 1.00
500 5 2 0.0 high none 1.00 1.00 0.94 1.00 1.00
500 5 2 0.0 low medium 1.00 0.98 0.98 0.87 0.88
500 5 2 0.0 low none 1.00 1.00 0.96 0.81 0.70
500 5 2 0.3 high medium 1.00 1.00 0.85 1.00 1.00
500 5 2 0.3 high none 1.00 1.00 0.93 1.00 1.00
500 5 2 0.3 low medium 1.00 0.95 0.99 0.94 0.80
500 5 2 0.3 low none 1.00 1.00 0.98 0.90 0.77
500 5 4 0.0 high medium 1.00 1.00 0.95 1.00 1.00
500 5 4 0.0 high none 1.00 1.00 0.86 1.00 1.00
500 5 4 0.0 low medium 1.00 0.91 0.99 0.99 0.60
500 5 4 0.0 low none 1.00 1.00 1.00 0.89 0.01
500 5 4 0.3 high medium 1.00 1.00 0.93 1.00 1.00
500 5 4 0.3 high none 1.00 1.00 0.97 1.00 1.00
500 5 4 0.3 low medium 0.95 0.64 0.97 0.97 0.38
500 5 4 0.3 low none 0.98 0.65 0.95 0.90 0.00

B
500 NA 2 0.0 equal unequal 1.00 0.01 0.96 1.00 0.88

Note. vpf = Variables per factor, k = number of factors. A: Data conditions with both
negative and positive loadings. B: Data condition based on random intercept model with
all variables loading equally on the first factor and unequally on the second factor.

10.4.2 Feature Importance. While common retention criteria are derived from
statistical theory (e.g. EKC) or are grounded on it, the machine learning models only use
components of these criteria (e.g. eigenvalues) as features and provide a prediction for the
dimensionality k based on rather complex interaction patterns. Despite their black box
character, it is possible to calculate measures of feature importance indicating the influence
of features on the prediction. In case of the best performing machine learning model, the
xgboost model, both “inequality”-measures - Kolm measure and Gini coefficient - had the
highest importance followed by several corrected eigenvalues of the factor model and the
averaged value of the bivariate correlations (Table 13).
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Table 13
Study 2: Feature Importance: 15 Most Important Fea-
tures of the Xgboost Model

Feature Type Importance

Kolm inequality measure 0.248
Gini inequality measure 0.103
fa_eigval2 eigenvalue factor model 0.085
fa_eigval3 eigenvalue factor model 0.082
fa_eigval8 eigenvalue factor model 0.081
fa_eigval4 eigenvalue factor model 0.079
fa_eigval6 eigenvalue factor model 0.072
fa_eigval7 eigenvalue factor model 0.071
fa_eigval5 eigenvalue factor model 0.045
eigval2 eigenvalue 0.041
eigval3 eigenvalue 0.011
avgcor correlation size 0.010
N sample 0.008
fa_eigval9 eigenvalue factor model 0.006
eigval5 eigenvalue 0.005

Note. fa_eigval2 means the second eigenvalue of the
factor model, while eigval2 is the second eigenvalue of
the correlation matrix. avgcor is the averaged inter-
item correlation.

10.5 Tuning the Best Model

Using default settings in this study, the xgboost model outperformed both the random
forest and all common retention criteria. Although, the in-sample accuracy (the accuracy
based on the training data) had already been quite high, tuning hyperparameters of the
algorithm might raise the predictive power of the model, so we decided to improve the final
model in a second step. In addition to hyperparameter-tuning, the results of PA, CD and
EKC were added as features for training the machine learning model in this second step as
well.
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Table 14
Study 2: Hyperparameter Space for Tuning

Name lower upper log2_scale

eta 0.01 0.20 FALSE
gamma -7.00 6.00 TRUE
max_depth 3.00 20.00 FALSE
colsample_bytree 0.50 1.00 FALSE
lambda -10.00 10.00 TRUE
subsample 0.50 1.00 FALSE

Note. log2_scale means that values are trans-
formed according to the binary logarithm. Param-
eter names are identical to names in xgboost im-
plementation in R.

10.5.1 Hyperparameter Tuning. Data were simulated as described before. In
total, we used 24635537 simulated data sets to reduce computational costs. 70% of these
data sets served as training data. As the xgboost implementation allows for tuning several
hyperparameters, we used six out of eight parameters that were defined as the simple space
for the autoxgboost algorithm (Thomas et al., 2018). Table 14 shows these six parameters
with the lower and upper bounds chosen for tuning the model.

Again, we applied the mlr framework (Bischl et al., 2016) to train the model and to
tune the six parameters. 80% of the data from the training set (137959 data sets) were
used as the actual training set while 20% served as an internal test set (34489 data sets) for
an early stopping rule as implemented in the autoxgboost algorithm (Thomas et al., 2018).
We set the early_stopping_rounds argument of this implementation to five38 and used the
fast histogram optimized algorithm (https://github.com/dmlc/xgboost/issues/1950) as the
tree construction algorithm to save computation time.

For tuning purposes, we decided not to rely on a predefined grid, but use the itera-
tive racing procedure (irace) by López-Ibáñez, Dubois-Lacoste, Pérez Cáceres, Stützle and
Birattari (2016). It allows for automatic parameter configuration as it samples possible pa-

37250000 data sets were simulated originally, but in 3645 cases either population correlation matrices were
not semi-positive definite or internal simulations of comparison data (CD approach) were causing errors.

38This means that when no improvement in the performance measure is indicated for five iterations the
algorithm stops.
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rameter configurations from iteratively updated distributions in the parameter space. With
regard to the sample size of the training set and the idea that the training data were sim-
ulated as “representative” for real-world scenarios, we used a holdout set (1

3 of the actual
training set which equaled 45986 data sets) for the tuning procedure.

After six iterations with 2483 so-called experiments (configurations tested), the
following hyperparameter set was selected η = 0.158, γ = 0.015, max_depth = 4,
colsample_bytree = 0.789, λ = 0.005 and subsample = 0.812. The tuned xgboost model
reached an out-of-sample accuracy of 99.3% on the test set (30% of the 246355 data sets
= 73907 data sets)39.

10.6 Discussion

In this study, we present a new approach to determine the number of factors in EFA.
We combined different machine learning algorithms with a large data simulation to build
a model that can predict the true number of factors based on features of the empirical
correlation matrix. The used xgboost model was able to constantly outperform the common
retention criteria, even under conditions that were outside the range that the model was
trained on (e.g. ρ = 0.5 and the random intercept model). Since the simulation study had
to focus on some general data conditions in order to ensure an adequate scope, we were
not able to evaluate the performance of the xgboost model under all potential conditions.
Therefore, some condition variations, such as different numbers of variables for each factor,
were not considered. However, many conditions not covered by the evaluation study were
still included in the test set for the tuned xgboost model. Thus, the new approach should
be able to deal with this kind of data. Hence, our study can be seen as a proof of concept.
While all common factor retention criteria showed some tendencies of bias (i.e. over- or
underfactoring) the xgboost model estimated the number of factors without bias (for all k).
This is a great advantage of the trained model as all common retention criteria perform
poorly under some circumstances which is why several authors recommend combinations of
different criteria (Auerswald & Moshagen, 2019; Fabrigar et al., 1999; Goretzko et al., 2019).
The machine learning models, are not theoretically founded like the EKC, for example.
Nevertheless, they are able to reflect the complex relations between the number of factors

39We applied a slightly different importance measure to look at the feature importance of the tuned xgboost
model. All three added factor retention criteria were among the 20 most important features and helped to
improve the prediction performance.
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and the data characteristics (in this case described by 181/184 features) almost perfectly
as demonstrated by the tuned xgboost model with its out-of-sample accuracy of 99.3%.

The dependency on the simulated data basis can be seen as a weakness of the new
approach. When empirical data is fundamentally different to this data basis, model pre-
dictions are probably invalid and not trustworthy. However, this study showed that the
performance of the xgboost model was quite good in conditions not completely covered in
the data basis it was trained on. In fact, when the data basis is sufficiently large and all
possible data conditions are included, the machine learning models (the xgboost model in
particular) are able to outperform all common criteria. So providing a wide-ranging training
set allows us to rely on a single model rather than combining several criteria. One specific
advantage of this approach is that the data basis can be extended easily and the model can
be improved if necessary when specific conditions have to be considered that have been left
out previously. Further research should also focus on the evaluation of the model under
other data conditions (for example extending our additional analyses: conditions with dif-
ferent numbers of variables for each factor, more complex factor structures like the random
intercept model or more conditions with negative loadings).

It might also be possible to further improve the model by adding new features (as we
did in the tuned version adding the solutions of PA, CD and EKC as features) and extending
the data basis for specific applications (e.g. panel data with far more factors and variables).
So far, the data basis is solely based on data following a multivariate normal distribution,
yet data in psychological research is often of ordinal nature, so in a next step a model trained
on ordinal data has to be developed as well. The procedure can easily be applied to both
ordinal data and other somehow exceptionally distributed data (for example count data
from observational studies). Accordingly, the new approach provides a framework that is
less dependent on distributional assumptions than other criteria (e.g. EKC and CD relying
on normally distributed items).

Another advantage of this approach is the possibility to get not just an estimate for k

but also a probability estimate for several values of k. With this option, the xgboost model
provides an implicit uncertainty measure that enables the user (researcher) to assess how
convincing a particular solution is. Common retention criteria, on the contrary, only return
an estimate for k or in case of the Scree test an ambiguous plot that has to interpreted40,
but usually no information reflecting the estimation uncertainty (due to sampling error) is

40Note that there are ways to objectify this procedure, like the Cattell-Nelson-Gorsuch approach (e.g.
Nasser, Benson, & Wisenbaker, 2002).
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given. Our study showed that the accuracy of all factor retention criteria is influenced by
such sampling error as reflected by the comparably poor performance of PA, CD and the
Kaiser criterion when N = 250 - a sample size that is not necessarily reached in current
research (Goretzko et al., 2019).

10.6.1 Understanding the Black Box. Practitioners might be bothered by the
black box character of the model which hampers its interpretability. Hence, one can use tools
like the local interpretable model-agnostic explanations (LIME; Ribeiro, Singh, & Guestrin,
2016) for each new empirical data set that is evaluated with the xgboost model. We present
a short example on how this could work. For this purpose, we chose a data set containing
1369 observations of 50 items of a BIG5-inventory constructed by Goldberg (1990) that
can be retrieved from https://openpsychometrics.org/_rawdata/ (version of 11/8/2018).
Applying the tuned xgboost model to this data yielded six factors (estimated probability
for k = 6 was 97.3%) while CD suggested five, EKC six, PA eight and the Kaiser-Guttman
rule nine factors. Approximating the complex xgboost model locally with (generalized)
linear models, LIME provides the best features to explain this six factor solution41. Nine
out of the ten most important features explaining the six factor solution were different
eigenvalues with the sixth eigenvalue of the factor model being greater than 0.5115 having
the highest explanatory power and p = 50 > 35 being third (Table 15). There were also
several features having negative explanatory power which means that these features and
its values would speak against the final prediction of the complex model based on the
simple approximation (e.g. the second eigenvalue being greater than 2.4). Approximating
the complex model locally using (generalized) linear models provides insights on how the
complex model estimates the number of factors k. Even though LIME might improve
the interpretability of the black box model, researchers have to be cautious as the (local)
approximation with simple models might not fully reflect the complex interactions among
some features that indicate a specific k-factor solution (here: rather weak r2 = 0.235 of the
explaining model).

41Note that the estimated r2 of the model used for the approximation was 0.235 in this case.
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Table 15
Study 2: Explaining the Xgboost Model for Exemplary Data

Feature Weight Feature Value Explanation

fa_eigval6 0.193 0.66 fa_eigval6 > 0.51
eigval6 0.076 1.52 eigval6 > 1.26
p 0.058 50.00 p > 35
fa_eigval5 0.042 1.98 fa_eigval5 > 0.81
fa_eigval4 0.036 2.44 fa_eigval4 > 1.07
eigva22 0.025 0.63 eigva22 > 0.51
eigva15 0.022 0.80 eigva15 > 0.67
eigva29 0.019 0.55 eigva29 > 0.33
frobnorm 0.014 11.70 frobnorm > 11.01
N 0.014 1,369.00 N > 799

Note. fa_eigval6 means the sixth eigenvalue of the factor
model, frobnorm represents the Frobenius norm of the cor-
relation matrix

10.6.2 Conclusion. This study shows that the new approach combining exten-
sive data simulation and machine learning techniques to determine the number of factors
provides very good results, outperforming common criteria. Based on data that cover a
wide range of conditions, the new approach promises to tackle the ambiguous decision of
how many factors to extract in EFA. Extending the data basis as well as the features might
improve the method even further. Further research could also evaluate other ML algorithms,
even though the performance of the tuned xgboost model seems to be tough to beat. Adap-
tation to ordinal data will follow, so that Likert-type data will be specifically accounted
for.
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11 Study 3

The article entitled “Two factors, or rather four? Robustness of factor solutions in
exploratory factor analysis” submitted for publication is referred to as Study 3 throughout
this thesis. It is presented hereinafter.

11.1 Abstract

Replicability has become a highly discussed topic in psychological research. The
debates focus mainly on significance testing and confirmatory analyses, whereas exploratory
analyses such as exploratory factor analysis are more or less ignored, although hardly any
analysis has a comparable impact on entire research areas. Determining the correct number
of factors for this analysis is probably the most crucial, yet ambiguous decision - especially
since factor structures have often been not replicable. Hence, a new approach is proposed
to evaluate the robustness of factor retention criteria against sampling error and to predict
whether a particular factor solution may be replicable. We used three samples of the Big
Five Structure Inventory and four samples of the 10 Item Big Five Inventory to illustrate the
relationship between stable factor solutions across bootstrap samples and their replicability.
In addition, we compared four factor retention criteria in terms of their stability on the
one hand and their replicability on the other. Based on this study, we want to encourage
researchers to make use of bootstrapping to assess the stability of the factor retention criteria
they use and to compare these criteria with regard to this stability as a proxy for possible
replicability.

11.2 Introduction

In recent years, the so-called replication crisis has shaken the social sciences in general
and psychology in particular (e.g. Shrout & Rodgers, 2018). Several replication projects
(e.g. Aarts et al., 2015; Camerer et al., 2018) showed that many published effects cannot
be replicated and urged a reform of research practices. Replicability is not only a problem
within the (confirmatory) framework of hypothesis testing, which is mainly affected by
p-hacking, publication bias and underpowered studies (Asendorpf et al., 2013), but also
crucial for exploratory analyses that shape entire research areas. One prominent example
for such an analysis is exploratory factor analysis (EFA), which is widely used to assess
the dimensionality and structure of psychological constructs (Goretzko, Pham, & Bühner,
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2019). Determining the number of factors that should be retained in EFA is “likely to
be the most important decision a researcher will make” (Zwick & Velicer, 1986), because
its implications are extremely far-reaching. The most prominent example in psychological
research might be the dimensionality of personality. Although it has been widely agreed
to describe personality with the five-factor model (“BIG5”, e.g. Costa & McCrae, 1992),
several studies reported difficulties in replicating this structure (e.g. Thalmayer, Saucier, &
Eigenhuis, 2011).

Therefore, when conducting an EFA and determining the number of factors that
should be retained, the goal of replicability should be considered alongside the goal of ap-
proximating the data generating process (Preacher, Zhang, Kim, & Mels, 2013). Common
factor retention criteria such as the Scree test (Cattell, 1966), the Kaiser-Guttman rule
(Kaiser, 1960) and parallel analysis (PA; Horn, 1965) as well as modern approaches like the
comparison data (CD) approach (Ruscio & Roche, 2012) or the empirical Kaiser criterion
(EKC; Braeken & Van Assen, 2017) have been developed to primarily serve the approx-
imation goal and focus less on the replication goal. While PA has become some kind of
gold-standard for factor retention (Fabrigar, Wegener, MacCallum, & Strahan, 1999; Goret-
zko et al., 2019), both CD and EKC showed higher accuracies in simulation studies for some
data conditions (e.g. Auerswald & Moshagen, 2019). The literature clearly lacks a focus
on replicability, though, as called for by Preacher et al. (2013) or Osborne and Fitzpatrick
(2012). For this reason, we want to evaluate the relationship between replicability in the
context of factor retention and the robustness of common criteria against sampling error.
Hence, a practical way to assess the robustness of a retention criterion’s solution is proposed
- bootstrapping.

Bootstrapping is a resampling strategy that was developed to assess the uncertainty
of estimates when analytical solutions are not available (Efron & Tibshirani, 1994). Trans-
ferred to the issue of replicability or robustness of factor retention criteria, this means that
bootstrapping allows us to assess the influence of (small) changes in the empirical data
on the outcome of these criteria. Conversely, we expect that small and/or few changes
in the suggested factor solutions for different bootstrap samples will be an indicator for
(closer) replicability. In addition, when comparing criteria, it may be preferable to use
those that have minor differences between the bootstrap samples and thus promise more
robust solutions.
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11.3 Methods

To illustrate how to use bootstrapping for the evaluation of the robustness of factor
retention criteria, we used three different samples of the Big Five Structure Inventory (BFSI,
Arendasy, 2009) that were provided by Stachl et al. (2018) and collected within the Phon-
estudy project (first data set: Schoedel et al., 2018; second data set: Schuwerk, Kaltefleiter,
Au, Hoesl, & Stachl, 2019; third data set: Stachl et al., 2017) and four samples of the 10
Item Big Five Inventory (BFI-10; Rammstedt, Kemper, Klein, Beierlein, & Kovaleva, 2017)
that were collected within the GESIS panel (GESIS, 2018). The BFSI consists of 300 items
that measure the typical five factors (openness, emotional stability/ neuroticism, extraver-
sion, conscientiousness and agreeableness), which can be described by six facets each. We
evaluated the 60 items assigned to each factor separately focusing on the dimensionality
of the respective trait (e.g. determining how many facets can be found for extraversion).
Contrary, the BFI-10 consists of 10 items also measuring these five factors without further
facets. Accordingly, we evaluated the dimensionality of the questionnaire as a whole and
applied the retention criteria to all ten items.

The first sample of the BFSI contains N = 312 observations, the second sample of the
BFSI counts N = 256 observations and the third sample has N = 120 observations. In case
of the BFI-10, we have one set of participants, that were asked to fill out the questionnaire
four times (waves bd,cd,dd,ed of the panel), so our four samples predominantly consists of
the same persons (sample sizes are N1 = 4888, N2 = 4249,N3 = 3797,N4 = 3448 using only
complete cases of the BFI-10 items in each wave).

11.3.1 Data Analysis. For all 19 data sets (four BFI-10 samples and three BFSI
samples with five factors each) we assessed the dimensionality with PA (default settings in
the psych package in R [Revelle, 2018] using the 95% quantile of the random eigenvalue
distribution and the Minres algorithm as extraction method), CD (with default settings:
α = 0.30 for the internal Mann-Whitney-U tests and 500 simulated data sets for the “com-
parison” approach) and EKC as well as a new machine learning approach - a tuned xgboost
model (for the tuned XGB model, see Goretzko & Bühner, 2019; for the general xgboost im-
plementation, see Chen & Guestrin, 2016; Chen, He, Benesty, Khotilovich, & Tang, 2018).
Afterwards 100 bootstrap samples were drawn (using the boot package, Canty & Ripley,
2019) for each data set and all four factor retention criteria were applied to each of these
bootstrap samples. We compared the range of proposed solutions between data sets and
between retention criteria, and evaluated whether robust solutions (less fluctuation in boot-
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strap samples) were promising with regard to the replication purpose. We used each wave
of the panel data as a replication data set for the previous one. In the case of the BFSI,
the second data set (N = 256) was used as the replication data set for the first (N = 312)
and the third data set (N = 120) was used as the replication data set for the second.

We used R (Version 3.5.1; R Core Team, 2018) and the R-packages automatic (Lang
et al., 2014), data.table (Version 1.11.8; Dowle & Srinivasan, 2018), ggplot2 (Version 3.1.0;
Wickham, 2016), mlr (Version 2.13; Bischl et al., 2016, 2017), mlrmbo (Bischl et al., 2017),
multilabel (Probst, Au, Casalicchio, Stachl, & Bischl, 2017), openml (Casalicchio et al.,
2017), papaja (Version 0.1.0.9842; Aust & Barth, 2018), and ParamHelpers (Version 1.11;
Bischl et al., 2018) for all our analyses and the preparation of the manuscript.

11.4 Results

11.4.1 BFI-10. The application of the four retention criteria (XGB, PA, CD and
EKC) to the four BFI-10 data sets mostly yielded one-factor solutions. XGB, CD and
EKC suggested one factor in all four cases, while PA proposed three factors for the second
BFI-10 data set and two factors for the fourth empirical data set. Moreover, EKC and
XGB provided one factor solutions for all 100 bootstrap samples of all four original data
sets (4∗100 data sets), whereas CD did so in 94%, 98%, 96% and 95% of the cases. PA had
the highest volatility among the bootstrapped samples and contradicted its solution when
comparing the original data set with the bootstrapped samples (e.g. for just 13% of the
bootstrap samples of the second data set, PA suggested a one-factor solution, as it did for
the original data set, but suggested three factors 48 times). Table 16 shows the solutions of
the four retention criteria for the four initial BFI-10 data sets as well as summary statistics
for the respective bootstrap samples.
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11.4.2 BFSI. Since the three BFSI data sets consisted of far fewer observations
(312; 256; 120), yet more variables (p = 60 compared to p = 10 in case of the BFI-10), the
factor retention results were considerably more volatile than the results for the BFSI-10
data. Mostly six facets per factor were suggested, but the results varied according to the
retention criterion, the data set and the big 5 factor. EKC and XGB tended to show fewer
differences between the bootstrapped solutions, whereas PA or CD yielded the highest vari-
ance (or standard deviation) between the bootstrap samples for all combinations of data
sets and factors.
Table 17 illustrates the relationship between this dispersion and the likelihood of replicabil-
ity, as CD and PA tended to suggest different factor solutions across the three data sets
more often than XGB and EKC.
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11.4.3 Robustness and Reproducibility. We used a generalized linear model
(GLM; Nelder & Wedderburn, 1972) with binomial family and logit link to model the
probability of replicating the number of factors when comparing the results of the first
BFI-10 data set with the results of the second, the results of the second with those of the
third, the results of the third with those of the fourth, and the same for the three BFSI
data sets. The standard deviation of the suggested number of factors of the respective
100 bootstrap samples as well as the percentage of bootstrap solutions being equal to the
outcome of the initial data set (referred to as the rate of consistency) served as independent
variables in our model. Both the standard deviation and this rate of consistency can be
seen as indicators of the robustness of the proposed factor solution and also as a measure
of confidence for the EFA user. The absolute difference in the suggested number of factors
between two consecutive data sets served as a second measure of the “replicability” of the
proposed factor solutions. A second GLM with Poisson family and log link was used for
this dependent variable analogous to the first model with the standard deviation and the
rate of consistency as independent variables.

The results of the GLM analyses support the descriptive observations that retention
criteria, that were more stable across bootstrap samples, were more likely to yield replicable
results. With respect to exact replication (first GLM), higher standard deviations for the
suggested number of factors across the bootstrap samples were associated with a lower
probability of replication (b = −0.82, 95% CI [−3.39, 1.24], z = −0.72, p = .471), whereas
the percentage of bootstrap samples with the same solution as the initial data set was
positively linked to this probability (b = 0.04, 95% CI [0.01, 0.08], z = 2.44, p = .015)42.
We modeled the difference of the suggested number of factors between two consecutive data
sets (e.g. BFI-10 of the first and the second wave of the panel) with the second GLM. Again,
the higher the standard deviations for the proposed number of factors across the bootstrap
samples were, the less accurate the replication was - illustrated here by a positive association
with the dependent variable (b = 0.79, 95% CI [0.22, 1.33], z = 2.82, p = .005). With an
increasing rate of consistency, a smaller deviation of the proposed number of factors from
two consecutive data sets was associated (b = −0.02, 95% CI [−0.03, 0.00], z = −2.11,
p = .035).

42Significance testing of parameters within the GLM are of little meaning in this case, as the number
of observations and thus the statistical power is quite low. We therefore consider these analyses as rather
descriptive.



11.5 Discussion 99

Table 18
Study 3: Means and Medians of Standard Deviations and Rates of Consistency over
all Data Sets for the Four Retention Criteria as well as the Means of both Replicability
Measures (Dependent Variables of the GLM Analyses)

Retention Criterion MSD MdSD M% Md% %Replicable Mabs.Difference

XGB 0.721 0.929 51.31 43 61.54 0.385
PA 0.949 0.909 16.15 8 7.69 1.308
CD 1.360 1.482 39.31 24 30.77 1.462
EKC 0.482 0.577 51.31 63 46.15 0.615

11.4.4 Comparing the Criteria. Although it is not the focus of this article,
both the standard deviation of the bootstrap results and the rate of consistency can be
used to compare the retention criteria with regard to their robustness against sampling
errors. While in the case of the BFI-10 data, EKC and XGB had a rate of consistency of
100% and thus no variance in the bootstrap results, all criteria were much more volatile for
the BFSI data sets, which can be explained by the far smaller sample sizes and the higher
number of items (p = 60 vs. p = 10).

EKC provided the most robust results (smallest mean and median standard devia-
tion as well as highest mean and median rates of consistency). In terms of replicability,
however, XGB yielded better results on average (highest replicability rate with 61.54% and
the smallest mean absolute difference between the number of factors for consecutive data
sets: 0.38). PA had the lowest mean and median rate of consistency, which is reflected in
the worst replicability rate of 7.69%. CD yielded the most volatile results (highest mean
and median standard deviation across the bootstrap samples), which can be linked to the
highest mean absolute difference of the proposed number of factors between consecutive
data sets (especially caused by the facet conscientiousness of the BFSI data sets, see table
16). Table 18 provides an overview of these robustness and replicability measures for the
four retention criteria.

11.5 Discussion

The present study examines the relationship between the robustness of factor reten-
tion criteria and the replicability of their solutions. Bootstrapping of the initial empirical
data sets is proposed as an easy-to-use method to evaluate the robustness of the factor
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retention process and to provide a proxy for replicability. The study results show some
promising patterns, since criteria in specific cases with high robustness tended to show
higher replicability rates and provided more consistent results across the data sets that
were used for replication.

Higher robustness and replicability rates were recorded for the BFI-10 panel data,
which can be explained by the much larger sample sizes compared to the BFI data. Several
authors discussed this relationship between robustness and sample sizes for EFA in general
(e.g. Osborne & Fitzpatrick, 2012) and various simulation studies showed the need for larger
samples to achieve a higher accuracy/precision in EFA (see Goretzko et al., 2019 for an
overview; and MacCallum, Widaman, Zhang, & Hong, 1999 for a comprehensive simulation
study). Several studies (e.g. Auerswald & Moshagen, 2019) found that retention criteria
consistently perform better at higher sample sizes and although these studies predominantly
focus on the approximation goal and not on the replication goal, it seems reasonable to
assume that higher sample sizes also benefit the replicability of factor retention criteria
since the impact of of sampling error decreases with increasing sample sizes.

Comparing the retention criteria, EKC and XGB provided more robust and replicable
results on average than PA and CD. These advantages with regard to the replicability goal
are in line with the higher overall accuracy by both XGB and EKC in a simulation study of
Goretzko and Bühner (2019)43. Although we do not know the true dimensionality, since this
study is based on empirical data, the result patterns strengthen confidence in the suggested
number of factors provided by XGB and EKC44 rather than in the solutions PA and CD
produced.

The study should be considered purely descriptive, as the number of observations
for the GLM analyses is rather small (N = 52). As mentioned in the footnote above,
this small number leads to an insufficient statistical power45 and does not allow cross-
validation. Nonetheless, from a descriptive point of view, a positive relationship can be
assumed between the robustness and the replicability of factor retention criteria. Both
the face validity (regarding the result patterns in table 16 and table 17) and the signs of
GLM parameter estimates that met our expectations are indicators that robustness and

43The referenced manuscript is Study 2 of this thesis.
44The results of XGB seem to be more in line with the theoretical assumptions of the BFSI - namely six

facets per factor - than the results of the EKC.
45With an α of five percent, three out of four coefficients of interest would be classified as significant

anyway. However, this does not mean that the true effects are necessarily large enough, so that our power
was sufficiently high. We therefore refrain from interpreting the hypothesis tests for the GLM coefficients.
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replicability are positively related.

The empirical data sets had quite different characteristics (BFI-10 data with great N

and small p and BFSI data with small N and rather large p), which differed particularly in
the type of replication context. The panel data (BFI-10 data) consists of the same partici-
pants, making it a within-person replication scenario, while in the BFSI data sets different
people were collected, making these evaluations a between-person replication. Therefore,
one can presume that the established relation between robustness and replicability of factor
retention criteria can be found in various data conditions.

11.6 Conclusion

The present study demonstrates a positive relation between the robustness of factor
retention criteria and the replicability of their solutions. Using bootstrap samples of the
empirical data set, it is possible to evaluate the robustness of a given solution, either by
looking at the standard deviation of the bootstrap solutions or by computing the rate of
consistency (as described above). We want to encourage researchers to include bootstrap-
ping in their analyses, as individual point estimates of the number of factors based on one
empirical data set do not reflect the uncertainty of this estimate and the possible vulnera-
bility to sampling error. This idea aims in the same direction as splitting the empirical data
set and evaluating the factor retention criteria on both subsets in order to gain confidence
in the stability of the proposed factor solution (Fabrigar et al., 1999; Goretzko et al., 2019).
Relying on bootstrapped samples instead of splitting the empirical data can be beneficial
for small samples (as demonstrated for the BFSI data in this study). When evaluating the
robustness of the criteria, a comparison among them is imperative, because the stability
measures cannot be interpreted absolutely (unless all bootstrap samples provide the same
solution, then the standard deviation would be 0 and the rate of consistency would be 100%).
Both Fabrigar et al. (1999) and Goretzko et al. (2019) recommend comparing methods and
also considering combinations of criteria as suggested by Auerswald and Moshagen (2019).
Ultimately, the users of EFA should not only focus on the goal of approximation, but also
consider the goal of replication, where bootstrapping and the evaluation of the robustness
of factor solutions might be a good starting point.
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