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List of Abbreviations 
 
COX2 Cyclooxygenase2 

HB-GAM Heparin binding growth associated molecule 

hOBs human alveolar osteoblasts 

hPDFs Human periodontal ligament fibroblasts  

OPG Osteoprotegerin 

OTM Orthodontic tooth movement  

P2RX7 Purinergic Receptor P2X 7 

PGE2 Prostaglandin E2 

PLGA Polylactic-co-glycolic acid 

PLLA hydrophilically modified poly-L-lactide matrix 
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RUNX2 Runt-related transcription factor 2 

STARCARD STAndard Reporting requirements in CARies Diagnostic Studies  

TNFRSF11B  Tumor necrosis factor receptor superfamily member 11B 

TNFSF11 Tumor necrosis factor ligand superfamily member 11 

TNFα Tumour necrosis factor alpha 

WAB Weight approach based  
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INTRODUCTORY SUMMARY 
 

Name of the project: Use of weight approach based in vitro models 

to investigate inter- and intracellular communication during 

simulated orthodontic tooth movement 

 

The following project was done at the Department of Orthodontics and Dentofacial Orthopedics, 

University Hospital, Ludwig-Maximilians-Universität München, under the supervision of Dr. Uwe 

Baumert and Prof. Dr. Andrea Wichelhaus. It is considered as a main topic of the PhD thesis and 

contains two published studies used for fulfilling the requirements for Ph.D. program completement. 

 

Orthodontic tooth movement (OTM) is based on the initiation of bone remodelling upon 

orthodontic force application (Wichelhaus 2017). Histologically, the events in tooth 

supporting tissues and surrounding alveolar bone during OTM have been well described 

(Davidovitch 1991). However, knowledge about its molecular background remains 

fragmented (Davidovitch and Krishnan 2015). 

OTM represents a complicated process, guided by many molecular events, which are spatially 

and temporary coordinated by different cell types, signalling factors and networks 

(Wichelhaus 2017). The complex morphological structure of the clinical situation and 

corresponding in vivo models makes it impossible, to answer questions like: how individual 

cell types sense the force; how they convert mechanical stimuli into molecular signals, and 

how this signals further contribute to bone remodelling. As such, many in vitro models have 

been introduced to systematically breakdown and analyse individual processes involved in 

OTM by focusing on specific cell types and types of force (Baumert et al. 2004; Yang et al. 
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2015). One of these in vitro models is the so called “weight approach based” (WAB) in vitro 

loading model (Yang et al. 2015). This model is used to investigate molecular events on the 

compression side of the tooth during OTM applying the static unilateral compressive force on 

the cells, which is one of the dominant forces in the treatment with fixed mobile appliances 

(Kanzaki et al. 2002; Yang et al. 2015). 

Briefly, cells are precultured in cell culture dishes as 2D or 3D cultures and then subjected to 

static compressive force by placing a weight directly over them (Yang et al. 2015). This is 

mostly achieved, by placing a glass cylinder filled with lead granules on top of a glass disc 

directly onto the cells. The force level is adjusted with the lead granules within the glass 

cylinder. 

So far, numerous studies using WAB in vitro loading model have been published. They provide 

valuable information on the response of different cell types to static compressive force (Yang 

et al. 2015). 

 

PUBLICATION 1. IN VITRO WEIGHT-LOADED CELL MODELS FOR UNDERSTANDING 
MECHANO-DEPENDENT MOLECULAR PATHWAYS INVOLVED IN ORTHODONTIC 
TOOTH MOVEMENT: A SYSTEMATIC REVIEW 

In order to get a clear overview of the so far published knowledge and to identify existing 

gaps, primary aim of this study was, to identify all articles using WAB in vitro loading model in 

the field of orthodontics. Special attention was given on details of cell culture, force duration 

& magnitude and findings on molecular events related to OTM. Studies using 2D and 3D WAB 

setups were assessed separately. Out of 2,284 initially identified studies applying the 2D WAB 

setup, 56 studies were considered as relevant for the systematic review. The 3D setup was 
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identified in 1,042 studies, and 15 studies matched inclusion criteria for the systematic review 

(Janjic et al. 2018). 

2D WAB setup: Most of the studies using the 2D WAB setup used a force magnitude of 2 g/cm2 

(Janjic et al. 2018). This force magnitude is considered to induce a peak in the production of 

cytokines and expression of mRNAs coding for osteoclastogenic molecules (Kang et al. 2013; 

Kanzaki et al. 2002; Kim et al. 2013). Force was applied usually for up to 24 h (Janjic et al. 

2018). Independently of the cell type used, gene expression analysis showed an increased 

expression of proinflammatory mediators and osteoclastogenesis stimulating factors (Janjic 

et al. 2018), which is in line with in vivo findings (Vansant et al. 2018). Human periodontal 

ligament fibroblasts (hPDFs) were the cell type that was examined mostly (Janjic et al. 2018). 

Main attention was given to the following genes and metabolites: RANKL (TNFSF11), OPG 

(TNFRSF11B), COX2 (PTGS2) and PGE2. Additionally, force application never exceeded 72 h 

(Janjic et al. 2018). Clinically, the first week of OTM is the period, in which significant changes 

on histological level were described (Reitan 1960). Therefore, 72 h of force application might 

be too short to elucidate all important molecular events on the compression side of the tooth 

during OTM. Another observation of this review was, that not enough attention is dedicated 

to cell proliferation and cell viability monitoring, which can be considered as a bias introducing 

issue, especially in studies with longer duration of force application (Janjic et al. 2018). 

3D WAB setup: Among the studies with 3D WAB setup, the application of three different types 

of scaffolds have been described so far: collagen gel scaffolds, polylactic-co-glycolic acid 

(PLGA) scaffolds or those made from a hydrophilically modified poly-L-lactide (PLLA) matrix 

(Janjic et al. 2018). Hydrophilically modified PLLA scaffolds are especially suitable for long-

term force application, even up to 14 days (Liao et al. 2016). Otherwise, the duration of other 
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studies ranged between 0.5 to 72 h. The force magnitude ranged between 5 to 35 g/cm2 in 

studies using PGLA and hydrophilically modified PLLA scaffolds and between 0.5 to 9.5 g/cm2 

in ones using collagen scaffolds. Mostly investigated cell type were hPDFs. According to our 

results, studies using 3D WAB setup showed obvious differences in molecular findings. We 

attribute these contradictory results to high methodological differences between the studies. 

Even though promising, WAB studies applying a 3D setup are still not well established as those 

using a 2D setup. In order to make results of this studies reliable and comparable to in vivo 

situation, it is necessary to establish proper scaffolds for use in combination with WAB models 

and define suitable force magnitudes for each of them (Janjic et al. 2018). 

The second part of the review focused on 2D WAB studies with hPDFs and human alveolar 

osteoblasts (hOBs) and bone derived cells lines. Information collected from these studies was 

used to generate list of all so far examined genes, separately for each cell type. Based on this 

data, STRING analysis was performed (STRING database 10.5, URL: https://string-db.org/) 

(Szklarczyk et al. 2017), protein-protein interaction (PPI) networks were generated and genes 

with the highest number of interactions were identified. Additionally, STRING analysis of both 

sets of genes was used to identify KEGG pathways and select the ones relevant to OTM. 

Identified pathways in this review can be considered as a useful source for discovering the 

new genes important for OTM and should be considered in future conducted studies using 

WAB loading model (Janjic et al. 2018). 
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PUBLICATION 2. EFFECT OF THE STATIC COMPRESSIVE FORCE ON IN VITRO CULTURED 
PDL FIBROBLASTS: MONITORING OF THE VIABILITY AND GENE EXPRESSION OVER SIX 
DAYS 

In a previously described systematic review we identified all studies related to the field of 

orthodontics using the 2D WAB in vitro loading model to apply static compressive force on 

hPDFs (Janjic et al. 2018). This review identified the future need for: 

- longer lasting studies with WAB in vitro loading model, in order to broaden the 

understanding of molecular events on the compression side of tooth and hPDFs’ role in 

OTM. 

- additional attention to monitor cell proliferation and viability during force application. 

Therefore, the aim of second study in this project was to prolong the use of the WAB model 

to 6 days. Static force of 2 g/cm2 was used to compress the hPDFs and monitor its effect on 

inflammatory genes and mediators (COX2, IL6, TNFα, PGE2), genes involved in the bone 

remodelling (RUNX2, P2RX7) and mechanosensing genes (cFOS, HB-GAM) on a daily basis. To 

exclude possible negative influence of prolonged WAB loading model application on cells, on 

each day of the experiment cell proliferation and cell viability were assessed using the Alamar 

Blue® assay and the Live/Dead viability/cytotoxicity Kit, respectively (Janjic Rankovic et al. 

2019). 

Inflammation contributes significantly to bone resorption and osteoclastogenesis on the 

compressive side during OTM. In line with this, this study described increased gene expression 

of inflammatory genes COX2, IL6, TNFα. COX 2 and IL6 showed temporary upregulation, while 

TNFα remained upregulated until day six. In addition to increased COX2 gene expression, 

increased concentrations of PGE2 were measured in the cell culture supernatant. 
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Concentrations of secreted TNFα remained under the detection limit. RUNX2 and P2RX7 on 

the other hand showed temporarily downregulations at certain timepoints of experiment. 

This was consistent with previous reports, since these genes have been previously recognized 

as the contributors to osteogenesis (Vansant et al. 2018). The mechanosensing gene cFOS was 

upregulated during the whole experiment, while HB-GAM mostly remained unchanged (Janjic 

Rankovic et al. 2019). 

As far as we know, this is the only study that used WAB in vitro loading model for a period of 

6 days applying static compressive force on hPDFs. Published studies using the WAB loading 

model on hPDFs examined molecular events within the first 96h of static force application 

(Janjic et al. 2018; Schröder et al. 2018). Up to this period of time, our findings are mostly in 

line with the published literature (Kang et al. 2010; Kanzaki et al. 2002; Mayahara et al. 2007; 

Schröder et al. 2018). However, no comparable data from in vitro studies for longer periods 

of force application exist. The results of this study suggest, that the molecular events are still 

high after 6 days of the force application, introducing the need of further studies that will, not 

only confirm our results, but also broaden the knowledge on molecular events after longer 

terms of force application. 
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Cells from the mesenchymal lineage in the dental area, including but not limited to PDL fibroblasts, osteoblasts, and dental stem
cells, are exposed to mechanical stress in physiological (e.g., chewing) and nonphysiological/therapeutic (e.g., orthodontic tooth
movement) situations. Close and complex interaction of these different cell types results in the physiological and
nonphysiological adaptation of these tissues to mechanical stress. Currently, different in vitro loading models are used to
investigate the effect of different types of mechanical loading on the stress adaptation of these cell types. We performed a
systematic review according to the PRISMA guidelines to identify all studies in the field of dentistry with focus on
mechanobiology using in vitro loading models applying uniaxial static compressive force. Only studies reporting on cells from
the mesenchymal lineage were considered for inclusion. The results are summarized regarding gene expression in relation to
force duration and magnitude, and the most significant signaling pathways they take part in are identified using protein-protein
interaction networks.

1. Introduction

The aim of orthodontics is to move an abnormally positioned
tooth through the application of a continuous force on its
surface. This force stimulates bone remodelling in the sur-
rounding tissue, namely, the periodontal ligament (PDL)
and the alveolar bone, resulting in the bone removal in the
direction of the tooth movement and bone apposition in
the opposite direction (Figure 1). Thus, the underlying mech-
anism of orthodontic tooth movement (OTM) is the stimula-
tion of bone remodelling by the application of an orthodontic
force [1].

Histologically, the effects of orthodontic force on the
tooth and its surrounding tissues are now well understood

and the underlying stages in OTM are identified [2]. Human
periodontal ligament cells (hPDLCs) and human osteoblasts
(hOBs) are recognized as the cell types originating from the
mesenchymal lineage, which play the most dominant role
during OTM. Unlike hOBs, which represent well a character-
ized cell type, hPDLCs represent a mixed population of
mostly fibroblast-like cells [3]. Among them, mesenchymal
stem cells are of special importance as the source of progen-
itors responsible for the regeneration and remodulation of
not only PDL itself but also alveolar bone [4].

In order to better understand morphological changes
during OTM, it is important to elucidate molecular and cel-
lular signaling mechanisms between and within these cell
types. The complex in vivo structure of the tissues involved
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makes it impossible to investigate force sensing and cellular
communication of individual cells. Therefore, in vitromodels
using cells isolated from the PDL or from alveolar bone were
established and different types of forces mimicking those
found during OTM were applied [5]. These in vitro models
are used to answer open questions including but not limited
to how cells sense force, how they convert mechanical stress
into molecular signals, and how these molecular signals influ-
ence the specific response of these cells to that specific force.

On the basis of the most commonly used approaches to
apply mechanical stress on cells, present in vitro loadingmodels
can be classified into those using substrate deformation-based
approaches, hydrostatic pressure approach, centrifugation
approach, fluid flow approach, vibration approach, and
weight approach [6]. Also, there has been increasing interest
in moving from conventional monolayer, two-dimensional
(2D) in vitro loading models to three-dimensional (3D)
in vitro loading models.

Weight-based in vitro loading models have been success-
fully used over several years to investigate the effect of static,
compressive, unidirectional force on the cells. In models
using 2D cell cultures, cells are precultured in cell culture
dishes (e.g., 6-well plates). After reaching the desired con-
fluency, the cells are subjected to weight-based compression.
In most cases, a glass slide is laid on top of the cell monolayer.
Then, a weight is applied by positioning a glass cylinder filled
with lead granules on top of this slide. The glass slide is used to
secure even distribution of the force [7]. Increasing or reduc-
ing the number of granules in the glass cylinder adjusts the
level of compressive force (Figure 2(a)). The same type of
force is applied by slight modifications of this model: some
authors used a stack of glass slides of different heights (e.g.,
[8]) or glass discs of different thicknesses (e.g., [9]) replacing
the glass cylinder filled with lead granules. This in vitro load-
ing model can also be used to apply static compressive force
on 3D cell cultures. In this case, the same principle is used,

except that the cells are embedded in a 3D matrix that is then
compressed in the described manner (Figure 2(b)). Yang et al.
[6] coined the term “weight approach”-based (WAB) for this
in vitromodel. To refer to this specific setup, we will also use
WAB throughout this publication.

The primary aim of this review was to identify all articles
related to the field of orthodontics using either a 2D or 3D
WAB in vitro loading model and provide an overview of
the details of their use: the most commonly used loading
durations, force magnitudes, and scaffolds and their findings
regarding gene expression and substance secretion in
relation to force application. The secondary objective was
to discover most commonly examined genes and to identify
important pathways in OTM that most of the identified
genes from these studies are involved in, focusing especially
on hPDLCs.

2. Materials and Methods

To conduct this review, the “Preferred Reporting Items for Sys-
tematic Review and Meta-Analysis Protocols” (PRISMA-P)
2015 statement was consulted [10].

2.1. Defining the Eligibility Criteria. Inclusion criteria were
as follows:

(i) Studies in the field of dentistry that examined the
effect of mechanical stress on tooth surrounding
tissues

(ii) Application of the 2D or 3D WAB in vitro loading
model…

(iii) …on hPDLCs, hOBs, or all bone-like cell types/lines
of human or animal origin

(a) (b)

Figure 1: Bone remodelling during orthodontic tooth movement. (a) Initial displacement of the tooth due to stretching of the fibres within
the PDL on the tension side and compression on the opposite with the application of the orthodontic force. (b) Bone apposition on the tension
side and resorption on the compression side as the result of the long-term force application.
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(iv) Only studies written in English language, identified
on the PubMed database until 01.12.2017, were
taken into consideration

2.2. Literature Search and Study Selection Process. Separate
search strategies were created for studies using either the
2D or the 3D in vitro setup for mechanical cell loading
(Supplement 1). Searches were performed in the PubMed
database following these predefined search strategies.

After identification of relevant studies in the PubMed
database, the downloaded records from each search were
imported into the bibliographic software EndNote X8
(Clarivate Analytics, Philadelphia, Pennsylvania, USA).
All records were examined by two reviewers independently
(MJ and UB), according to predefined inclusion and exclu-
sion criteria (see above): first by title, then by abstract. If
the abstract was not available, the full text of the report
was obtained. Records that were obviously irrelevant were
excluded, and the full texts of all remaining records were
acquired. After the full-text assessment, the final list of
included articles was generated. Any disagreements during
this process were dissolved through discussion with
another review author (DD) until reaching a consensus.
The articles that did not meet all inclusion criteria after
full-text assessment were excluded from further examina-
tion. Additional relevant studies were further identified
through forward and backward reference chaining and
hand-search of specific journals. Study quality assessment
of the included studies was not performed, since the goal
of this article was to provide an overview of all findings
in the field only.

2.3. Data Extraction. The following information was
extracted from each study obtained in full length: author,
journal, year of publication, and used cell type. Force magni-
tude and duration, examined genes or substances, gene
expression, or substance secretion details were recorded only
if their response was directly connected to mechanical force
stimulus. Gene symbols were used in the tables whenever
possible. In case the identity or variant of a gene was doubtful
or not clear primer sequences were examined using Primer-
BLAST (URL: https://www.ncbi.nlm.nih.gov/tools/primer-
blast/) [11]. IfWestern blot, ELISA, or inhibition experiments
were reported, we tried to verify the antibodies and/or

inhibitor specificity to determine the exact protein species
(variant). Additionally, the method used for evaluation of
the gene/substance expression was recorded. Data regarding
the used scaffolds were collected for studies applying 3D
WAB in vitro setups.

The following tables were prepared to summarize the
findings: (1) studies applying the 2D WAB in vitro loading
model on human primary cells from the orofacial region
(i.e., hPDLCs, hOBs, and human oral bone marrow cells),
(2) studies applying the 2D WAB in vitro loading model on
human and nonhuman cells and cell lines not included in
the first table, and (3) studies applying the 3D WAB
in vitro loading model on human and nonhuman cells and
cell lines.

2.4. STRING Analysis. The examined genes and metabolites
using the 2D approach were summarized in two separate
lists: one for hPDLFs and one for hOBs and other human
bone-derived cell lines. Protein-protein interaction (PPI)
networks were generated for both lists separately using the
STRING database (10.5, URL: https://string-db.org/) [12].
From within STRING, the KEGG database [13] was queried
to identify the main pathways involved. Only pathways with
a false discovery rate below 1.00E−05 were considered.

3. Results

3.1. Study Selection Process. Figure 3 summarises the results
of both 2D and 3D searches using a flow chart according to
PRISMA. Separate searches were conducted for the studies
applying either the 2D or 3D (Supplement 1) WAB in vitro
loading models.

The search formula applied to identify 2D WAB in vitro
loading studies is shown in Supplement 1. Altogether, 2284
abstracts were identified in the PubMed database (Figure 3).

Additionally, 7 articles were identified through forward
and backward reference chaining and hand-search of specific
journals. After reading the titles and abstracts of all identified
studies, we excluded 2184. The remaining 107 articles were
then checked by full-text reading. Fifty-six of them meet
our inclusion criteria and were included for further analysis.
The remaining did not meet the inclusion criteria. Reasons
for their exclusion are listed in Supplement 1.

(a) (b)

Figure 2: Schematic illustration of the static 2D (a) and 3D (b) in vitro loading model based on the weight approach applied in the literature
(details are found in the text).
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The search formula applied to identify 3D WAB in vitro
loading studies is shown in Supplement 1. We identified a
total of 1038 articles in PubMed (Figure 3). Additional 4
articles were discovered through forward and backward
reference chaining and hand-search of specific journals. After
initial screening, we excluded 992 articles and proceeded with
full-text reading of the 50 articles. Finally, 17 of them meet
our inclusion criteria. The remaining articles were excluded
from further analysis. Reasons for their exclusion are
summarized in Supplement 1.

All studies fulfilling the inclusion criteria were organised
into three different supplementary tables: Supplement 2
summarises 2D WAB in vitro loading studies using human
primary cells from the orofacial region. In Supplement 3,
the two-dimensional WAB in vitro loading studies using
human nonorofacial-derived cells and animal cells and cell
lines are found. Supplement 4 summarises the 3D WAB
in vitro loading studies.

3.2. Force Durations and Force Magnitudes Used in
the Studies

3.2.1. 2D WAB In Vitro Loading Model. In these studies,
compression forces ranging from 0.25 g/cm2 to 5 g/cm2 were
applied on cells in 2D culture. The most commonly used
compressive force was 2 g/cm2, irrespectively which cell type
was used in the study. In most of the studies, the force was
applied for 24 h (Supplements 2 and 3).

3.2.2. 3D WAB In Vitro Loading Model. Force duration and
magnitude depended on the scaffold used (Supplement 4).
In most of the studies, scaffolds made from collagen gel and
the polylactic-co-glycolic acid (PLGA) were applied. One of

the studies [14] used a hydrophilically modified poly-L-
lactide (PLLA) matrix. Collagen gel scaffolds were used with
force magnitudes varying between 0.5 g/cm2 and 9.5 g/cm2;
the most commonly used force was 6 g/cm2. Force was
applied for 0.5 to 72h. Most commonly used force applica-
tion periods were 12 and 24h. Force levels between 5 and
35 g/cm2 were applied to cells embedded in PLGA scaffolds.
The most commonly applied force was 25 g/cm2. The dura-
tion of force application was from 3 to 72 h. The study using
the hydrophilically modulated PLLA matrix [14] applied
force magnitudes from 5 to 35 g/cm2. The duration of force
application varied between one day and 14 days.

3.3. Cell Types Used in the Studies

3.3.1. 2DWAB In Vitro Loading Model. Forty of these studies
used human primary cells isolated from the tooth surround-
ing tissues (Supplement 2): hPDLCs, hOBs, and human oro-
facial bone marrow-derived cells (hOBMC). The remaining
studies used other cells and cell lines from human and animal
sources: MG63, RAW264.7, ST-2, Saos-2, OCCM-30,
MC3T3-E1, C2C12, U2OS, rat-derived PDLCs, or bone
marrow-derived osteoblasts and the cementoblast cell line
HCEM-SV40 (Supplement 3).

3.3.2. 3D WAB In Vitro Loading Model. hPDLCs and human
gingival fibroblasts were used in 13 studies (Supplement 4).
The remaining two studies used cell types and lines from
the nonoral region or nonhuman origin (Supplement 4):
the murine cell line MC3T3-E1 and murine osteoblasts.

Taken together, the most commonly used cells were
hPDLCs. They were used in total 51 studies (2D: 38; 3D:
13) (Supplements 2 and 4). According to the isolation

Records identified
through PubMed
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Figure 3: PRISMA flow diagram of the review process.
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method applied, we distinguished between the following
sources: “explant method” [15, 16] (2D: 18; 3D: 4), “enzyme
digestion method” [4] (2D: 9; 3D: 6), commercial sources
(2D: 3; 3D: 1), or “no detailed information of isolation avail-
able” (2D: 8; 3D: 2).

3.4. Genes and Substances Examined in the Studies. A com-
plete overview of genes and metabolites examined in 2D
and 3D WAB studies and details of their expression can be
found in Supplements 2 and 3 (2D) and Supplement 4 (3D).

In this review, special attention was paid to hPDLCs as
the most examined cell type among studies and their
prominent role in OTM. The most examined genes and
metabolites in relation to hPDLCs were TNF superfamily
member 11 (TNFSF11), TNF receptor superfamily member
11B (TNFRSF11B), prostaglandin-endoperoxide synthase 2
(PTGS2), and prostaglandin E2 (PGE2). In Table 1, details
regarding their expression/secretion, including the informa-
tion at which time points or force magnitudes the highest/
lowest value was reached, is summarized.

3.5. STRING Analysis and KEGG Pathways

3.5.1. Construction of Protein-Protein Interaction (PPI)
Network. In order to elucidate the molecular mechanisms
of OTM and the role of the hPDLCs and bone cells in this
process, we used STRING to construct PPI networks. Two
separate gene lists were compiled from those studies using
hPDLCs (“hPDLC list”; data from Supplement 3) and from
those using hOBs or human bone-cells and cell lines (“hOB
list”; data from Supplements 2 and 3). The hPDLC list con-
tained 48 different genes (Figure 4(a)) and the hOB list 51
different genes (Figure 4(b)).

Two separate PPI networks were obtained, based on the
interactions with a high level of confidence (>0.700)
(Figure 4). Nodes in the networks represent the proteins
produced by a single protein-coding gene locus; edges
represent protein-protein interaction. Based on the colour
of the edge, eight different interactions based on “gene
neighbourhood,” “gene fusion,” “cooccurrence,” “coexpres-
sion,” “experiments,” “databases,” and “text mining” can be
differentiated [12]. The top 10 nodes with the highest degree
of connections from each of the two gene lists are also
shown in Figure 4. PPI enrichment p values for each con-
structed network were calculated in STRING. These show
that both PPI networks had significantly more interactions
than expected and that the nodes are not random (PP
enrichment p value< 1.0E–16).

3.5.2. Identification of KEGG Pathways. According to our
STRING analysis, KEGG pathways relevant for OTM for
each set of genes are listed in Table 2.

4. Discussion

In vivo bone remodelling during OTM represents a complex
biological process, triggered by mechanical stimuli. OTM
involves numerous events, spatially and temporary orches-
trated and coordinated by different cell types, signaling fac-
tors, and networks [1]. Systematic breakdown and analysis

of individual components of this complex process is the key
for understanding its molecular background and a possible
way to accelerate and improve it. Therefore, a variety of
in vitro mechanical loading models have been established
[5, 6]. The in vitro loading model based on the weight
approach has been considered as the most appropriate load-
ing model for the stimulation of the orthodontic force on the
compressive site [6].

4.1. Characteristics of 2D and 3D WAB In Vitro
Loading Models

4.1.1. Conventional 2D WAB. In vitro loading model, initially
described by Kanai et al. [7], has been used for more than two
decades for studying the compression-induced osteoclasto-
genesis and is still considered as the gold standard. It repre-
sents a simple and effective method for application of static
compressive, unidirectional force to a cell monolayer.

The advantages of WAB in vitro loading model are the
following:

(i) It reduces the need for animal studies, which are
costly and time consuming.

(ii) It enables the analysis of specific cell types indepen-
dently or in cocultures with other cells of interest.

(iii) Human primary cells can be used for better approx-
imation to clinical situation.

From our point of view, the main disadvantage is its
missing impact of the natural surrounding environment.
There has been an increasing interest in the development of
the 3D cell culture WAB in vitro loading model during the
last years, in order to approximate the in vitro situation to
the in vivo situation.

4.1.2. 3D WAB In Vitro Loading Model. During the last years,
more studies have been using cells incorporated into biological
scaffolds instead of monolayer cultures. This is due to the
demand of mimicking an extracellular matrix, which is benefi-
cial for cell behaviour, instead of growing cells on artificial
plastic cell culture surface [46]. According to our data, three
types of scaffolds have been used so far in combination with
the 3D WAB in vitro loading model. The first identified
studies used collagen I scaffolds [26, 47, 48]. Although the col-
lagen gels are still widely used for this purpose, there is the
increasing interest in the development of scaffolds composed
of synthetic polymers. In 2011, Li et al. [33] introduced the
PLGA scaffolds that had a higher stiffness in comparison to
collagen gels and an elastic modulus very close to that of
human PDL. The only disadvantage was that cells growing
in PLGA displayed a disordered grow pattern that differs from
the one in natural PDL [33]. Liao et al. [14] went one step fur-
ther and introduced a hydrophilically modified PLLA matrix.
This matrix displayed several advantages: higher nutrient
and oxygen permeability and a better cell attachment, making
it more suitable for long-term force application [14].

4.2. Force Magnitude Used in the Studies. According to
Schwarz [49], optimal orthodontic force (OOF) in clinical
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CSF1, CTNNB1, CTSB, CTSL, CXCL8, FGF2, GJA1,
GSK3B, HMGB1, HSP90AA1, HSPA4, HSPB1, IGF1,
IL17A, IL1B, IL6, JAG1, LGALS3BP, MMP13, MMP3,
PIEZO1, PLA2G4A, POSTN, PTGS1, PTGS2, PTK2,
RUNX2, SPP1, TGFB1, TGFB3, TNF, TNFRSF11B,
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GREM1, IBSP, IL11, IL11RA, IL1B, IL1R1, IL6,
IL6R, IL8, MKI67, MMP1, MMP13, MMP14, MMP2,
MMP3, NOG, PLAT, PLAU, PTGS2, RUNX2,
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(b)

Figure 4: Protein-protein interaction networks for the (a) “hPDLC list” and the (b) “hOB list”. The gene lists are shown in the lower left part
of each subfigure. Those genes with the highest number of interactions (“top 10”) are given in tables in the lower right part of each subfigure.

10 Stem Cells International



Table 2: KEGG pathways relevant for OTM with false discovery rates below 1.00E− 05 derived from STRING analysis using the set of
examined genes from human periodontal ligament cells (“hPDLC list”; top panel) and human bone and bone-related cells and cell lines
(“hOB list”; bottom panel). “X”, gene involved in that specific pathway.

(a)

KEGG ID 4060 4668 4510 4620 4370 4062 4380 4010 4064

KEGG
name

Cytokine-
cytokine
receptor

interaction

TNF
signaling
pathway

Focal
adhesion

Toll-like
receptor
signaling
pathway

VEGF
signaling
pathway

Chemokine
signaling
pathway

Osteoclast
differentiation

MAPK
signaling
pathway

NF-kappa B
signaling
pathway

False
discovery
rate

2.62E–15 2.06E–12 3.90E–11 2.04E–09 9.47E–08 1.33E–07 2.29E–07 1.42E–06 1.86E–05

ADRB2
AKT1 X X X X X X X
ALPL
BGLAP
CBS
CCL2 X X X
CCL3 X X X
CCL5 X X X X
CCND1 X
CCR5 X X
CDH11
COL1A1 X
COL3A1 X
COL5A1 X
CSF1 X X X
CTNNB1 X
CTSB
CTSL
CXCL8
(= IL8) X X X X

FGF2 X
GJA1
GSK3b X X
HMGB1
HSP90AA1
HSPA4
HSPB1 X X
IGF1 X
IL17A X
IL1B X X X X X X
IL6 X X X
JAG1 X
LGALS3BP
MMP13
MMP3 X
PIEZO1
PLA2G4A X X
POSTN
PTGS1
PTGS2 X X X
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Table 2: Continued.

KEGG ID 4060 4668 4510 4620 4370 4062 4380 4010 4064

KEGG
name

Cytokine-
cytokine
receptor

interaction

TNF
signaling
pathway

Focal
adhesion

Toll-like
receptor
signaling
pathway

VEGF
signaling
pathway

Chemokine
signaling
pathway

Osteoclast
differentiation

MAPK
signaling
pathway

NF-kappa B
signaling
pathway

False
discovery
rate

2.62E–15 2.06E–12 3.90E–11 2.04E–09 9.47E–08 1.33E–07 2.29E–07 1.42E–06 1.86E–05

PTK2 X X X
RUNX2
SPP1 X X
TGFB1 X X
TGFB3 X X X
TNF X X X X X X
TNFRSF11B X X
TNFSF11 X X X
VEGFA X X X

(b)

KEGG ID 4350 4060 4064 4390 4668 4210 4380 4620 4066

KEGG
name

TGF-beta
signaling
pathway

Cytokine-
cytokine
receptor

interaction

NF-kappa B
signaling
pathway

Hippo
signaling
pathway

TNF
signaling
pathway

Apoptosis Osteoclast
differentiation

Toll-like
receptor
signaling
pathway

HIF-1
signaling
pathway

False
discovery
rate

8.33E–23 2.37E–21 8.32E–11 5.07E–09 1.01E–08 6.26E–08 1.02E–05 6.79E–05 7.16E–05

ACVR1 X X
ACVR2A X X
ACVR2B X X
ALPL
BAX X
BCL2 X X X
BGLAP
BMP2 X X X
BMP4 X X
BMP6 X X
BMP7 X X X
BMPR1A X X X
BMPR1B X X X
BMPR2 X X X
Casp3 X X
CHRD X
CXCR1 X
FST X
GREM1
IBSP
IL11 X
IL11RA
IL1b X X X X X X
IL1r1 X X X X
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orthodontics should be equal to capillary blood vessel pres-
sure (≈25 g/cm2) [49]. On a tissue level, OOF should
enable the desired clinical outcome without causing the
unwanted side effects, for example, root resorption. On
the cellular level, it should evoke best biologic cellular
response without inhibiting the cell proliferation signifi-
cantly [27]. Optimal orthodontic force in vitro varies
between different models. Estimation of OOF for each
in vitro model is of crucial importance for their successful
application in OTM simulation [20, 33].

In 2D cell culture WAB in vitro loading models, applied
forces varied between 0.2 and 5.0 g/cm2. Our data suggest
that 2.0 g/cm2 was the most commonly used force magnitude
in the studies so far. According to Kanzaki et al. [20], this
force magnitude proved to induce the best cellular response.
Few studies reported a decrease in cell viability in a force-

dependent manner, especially with the application of 4 g/cm2

force [20, 37, 50, 51].
In studies applying the 3D WAB in vitro loading models,

the force magnitude used was chosen depending on the stiff-
ness of the scaffold. Studies using collagen gel scaffolds most
commonly applied 6 g/cm2 force onto their in vitro models.
According to Araujo et al. [47], this force was corresponding
to the therapeutic orthodontic force, giving the best cellular
response. For PLGA scaffolds, the force magnitude showing
the best performance was 25 g/cm2 (range: 5–35 g/cm2). The
same range of forces were applied in the study of Liao et al.
[14] using a hydrophilically modified PLLA scaffold matrix.
This range also corresponds to the one used in clinical set-
tings, which indicates that these scaffolds are closest to the
mechanical properties of in vivo PDL [14, 33]. This qualifies
them also as a suitable model for investigation of light and

Table 2: Continued.

KEGG ID 4350 4060 4064 4390 4668 4210 4380 4620 4066

KEGG
name

TGF-beta
signaling
pathway

Cytokine-
cytokine
receptor

interaction

NF-kappa B
signaling
pathway

Hippo
signaling
pathway

TNF
signaling
pathway

Apoptosis Osteoclast
differentiation

Toll-like
receptor
signaling
pathway

HIF-1
signaling
pathway

False
discovery
rate

8.33E–23 2.37E–21 8.32E–11 5.07E–09 1.01E–08 6.26E–08 1.02E–05 6.79E–05 7.16E–05

IL6 X X X X
IL6R X X
IL8 X X X X
MKI67
MMP1
MMP13
MMP14
MMP2
MMP3
NOG X
PLAT
PLAU X
PTGS2 X
RUNX2
SERPINE1 X X
SMAD1 X X
SP7
SPP1 X X
TIMP1 X
TIMP2
TIMP3
TIMP4
TNF X X X X X X X
TNFRSF11B X
TNFRSF1A X X X X
TNFSF11 X X
ZNF354C
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heavy forces, which are considered as a cause of orthodontic
treatment failure.

4.3. Duration of the Force Application. The length of the force
application in the studies rarely exceeded 72 h. In most of the
cases, force was applied up to 24 and 48h. Considering the
fact that the first 10 days are of crucial importance for
OTM ([52], p. 303), the duration of force application in
most of the conducted studies is insufficient to fully under-
stand the molecular background of OTM. Additionally, we
would like to point out that only a few studies observed cell
viability during the experiment. Most of them confirmed a
reduction of cell viability, not only due to the force level
but also depending on time [19, 50, 51]. We assume that
one of the limitations, especially in the 2D WAB in vitro
models, is compromised nutrient and oxygen supply in the
pressure area. To overcome especially the time limitation
of previous models, Liao et al. [14] introduced the hydrophi-
lically modified PLLA matrix as a new scaffold for 3D cul-
tures. They have shown that this scaffold can be used for
up to 14 days without affecting cell viability, claiming that
it provides good perfusion of the nutrients and oxygen over
longer periods of time [14]. Establishing an in vitro model
suitable for long-term force application (up to or more than
10 days) is beneficial for progress in this research field.

4.4. Role of PDL and hPDLCs in OTM. Due to lack of PDL,
ankylosed teeth and implants cannot undergo OTM, which
depict best PDL’s key role in transmitting the mechanical
stimulus and initiating the process of bone remodelling
[1, 53]. Beside its mechanotransduction properties, it also
contributes to tissue homoeostasis and repair, mostly due to
the presence of mesenchymal stem cells which are an impor-
tant part in the normal hPDLC population [4]. This portion
of hPDLCs is known to be present in a higher extent in
hPDLCs isolated with the “enzyme digestion method” [54],
commonly used among the studies in this review, especially
in the 3D group.

4.5. Most Examined Genes in the Studies That Used hPDLCs.
To explain the contribution of hPDLCs in OTM on the
molecular level, we summarised all data regarding the most
commonly examined genes and substances in this cell type
(Table 1). These were TNFSF11, PTGS2, and PGE2, known
as osteoclastogenesis inducers, and TNFRSF11B, known as
an osteoclastogenesis inhibitor.

TNFSF11 (also known as “RANKL”) [55] plays a crucial
role in bone resorption on the compression side during
OTM, inducing the osteoclast formation. TNFSF11 showed
an increased gene expression in all studies that used the 2D
WAB in vitro loading model (Table 1). In most of the studies
using this model, TNFSF11 gene expression, as well as pro-
tein secretion, was positively correlated with both force dura-
tion and magnitude reaching the maximum expression level
after 12–24 hours of force application. Studies using the 3D
WAB in vitro loading model also reported an increase in
the TNFSF11 secretion, most of them after 6 hours of force
application (Table 1). In cells grown in PLGA scaffolds, a
positive correlation between force magnitude and gene

expression but a negative correlation between force duration
and gene expression was noticed.

TNFRSF11B, also referred to as osteoprotegerin (OPG),
is TNFSF11’s antagonist that inhibits osteoclastogenesis
[55]. Most of the studies applying the 2D WAB in vitro
loading model reported no observed change in gene
expression (n = 8), with exception of two studies that
reported downregulation [40] or transitory downregulation
[8] (Table 1). Considering protein secretion, results were
contradictory. Most studies, however, reported a decrease
in protein secretion or did not report any change. Results
from studies using 3D WAB in vitro loading were also
contrary, depending on the scaffold used. In a study using
collagen gel scaffolds, an increase in TNFRSF11B gene
expression was observed [26]. In all studies applying PLGA
scaffolds, a decrease in TNFRSF11B secretion was positively
correlated with force magnitude and negatively correlated
with force duration [27, 28, 31, 33, 43]. With one exception
[28], a comparison of TNFSF11 and TNFRSF11B gene
expression in the aforementioned studies showed that a
rapid down/regulation of TNFRSF11B appears parallel to
a rapid upregulation of TNFSF11 in 3D WAB in vitro load-
ing. Since both genes represent antagonists in bone turnover
regulation, this was explained as a good representation of the
cyclic changes in the bone metabolism on the compression
side during OTM [31, 33]. It was also suggested that down-
regulation of TNFSF11 in later stages might have something
to do with other inducers for prolonged osteoclastogenesis
promotion [33].

Gene expression of PTGS2 was increased upon force
application in both 2D and 3D studies. In most of the 2D
WAB studies, PTGS2 showed a positive correlation between
the duration of the experiment and gene expression
(Table 1). In those studies, using the 3D WAB in vitro load-
ing model, PTGS2 seemed to be negatively correlated with
force duration and positively correlated with force magni-
tude. On the other hand, PTGS2 protein quantity was shown
to be in positive correlation with both duration and force
magnitude using Western blotting (Table 1). Since PTGS2
is involved in prostaglandin E2 metabolism, an upregulation
of PTGS2 gene expression (maximum at 24 to 48 h after force
application) is correlated with an upregulation of PGE2
secretion (maximum at 48 h after force application) in all
studies (Table 1).

Taken together, there seems to be some inconsistency
between studies using the 2D and the 3DWAB in vitro load-
ing model. The results within the 2D WAB group of studies
are quite similar and comparable. However, a noticeable
higher heterogeneity among those studies using the 3D
WAB in vitro loading model is recognizable. This heteroge-
neity can be related to the type of scaffolds used.

4.6. STRING PPI Analysis. We performed STRING PPI
analysis for two selected sets of genes (“hPDLC list” and
“hOB list”). PPI enrichment p values obtained from both
PPI networks (Figure 4) had significantly more interac-
tions than expected. This implicates that the genes exam-
ined in the studies were not chosen randomly. From our
point of view, this is not surprising, since most of the
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studies were selecting “the genes of interest” for their analy-
sis, all previously known or suspected to be involved in bone
metabolism. Just a few of the studies performed microarray
analysis in order to identify all genes responding to force
application [26, 32, 44, 48].

In addition, KEGG pathways relevant for OTM, identi-
fied for each set of genes in STRING analysis (Table 2),
can be useful source for discovering new genes that might
influence OTM.

5. Conclusions

In summary, the WAB in vitro loading model represents a
simple and very efficient way to investigate molecular events
during OTM. The purpose of this review was to provide an
overview of all used forms of theWAB in vitro loading model
(2D and 3D in combination with different scaffolds), present
all current findings, and point out at certain questions for
their further improvement.

3DWAB in vitro loading models have shown to be prom-
ising for use in future research by bringing a more real envi-
ronment in in vitro setups. However, unlike well-established
2D models that provide comparable results, 3D models show
inconsistency in results. Obviously, there is a need for further
improvement in order to establish standardised in vitro
models that will provide comparable results. Also, there is a
need to elucidate molecular events during longer periods of
force application. Therefore, the future goal is to establish
both 2D and 3D loading models that will allow us to conduct
long-term investigations. The study of Liao et al. [14] is a
good example for this, and there should be more research
in that direction.
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Supplement 1 
 

Janjic et al., In Vitro Weight Loaded Cell Models for Understanding Mechano-dependent 
Molecular Pathways Involved in Orthodontic Tooth Movement: A Systematic Review 

 
Table 1. Search strategy designed for the studies applying the in vitro loading model based on 
a weight approach on cells in 2D cell culture. 

FIELD  FORCE  TSSUE/ CELLS 
orthodont* OR 
orthodontic tooth movement 
OR  
orthodontic forces 

AND mechanical stress OR  
compress* force OR  
continuous* compress* force 
OR  
compressive loading OR  
loading OR  
compress* OR  
mechanical force OR  
compressive loading OR  
static compressive loading OR  
mechanical stress 

AND bone OR  
periodontal ligament OR  
periodontal ligament cells OR  
periodontal ligament fibroblast 
OR  
PDL OR  
RAW OR  
hPDLCs OR 
osteoclast* OR  
osteoblast* OR   
Saos-2 OR  
bone remodelling OR  
PBMCs 

Final look of the prepared entry for the PubMed database: 
(orthodont* OR orthodontic tooth movement OR orthodontic forces) AND (mechanical stress OR compress* force OR 
continuous* compress* force OR compressive loading OR loading OR compress* OR mechanical force OR compressive 
loading OR static compressive loading OR mechanical stress) AND (bone OR periodontal ligament OR periodontal 
ligament cells OR periodontal ligament fibroblast OR PDL OR RAW OR hPDLCs OR osteoclast* OR osteoblast* OR 
Saos-2 OR bone remodelling OR PBMCs) 

 
Table 2. List of excluded studies after full text reading with reasons – 2D studies. 
 
Reason for exclusion (N) Study 

Another method of force application 

(31) 

Basdra et al. (1997) [1]; Chien et al. (2006) [2]; Chien et al. (2009) [3]; 

Diercke et al. (2012) [4]; Diercke et al. (2012) [5]; Grimm et al. (2015) [6]; 

Guo et al. (2015) [7]; Hou et al. (2014) [8]; Imamura et al. (1990) [9]; Ito et al. 

(2014) [10]; Jacobs et al. (2013) [11]; Konermann et al. (2016) [12]; Korb et 

al. (2016) [13]; Li et al. (2009) [14]; Li et al. (2013) [15]; Liu et al. (2017) [16]; 

Liu, et al. (2009) [17]; Maeda et al. (2007) [18]; Maeda et al. (2015) [19]; 

Morikawa et al. (2016) [20]; Nakao et al. (2007) [21]; Sen et al. (2015) [22]; 

Shu et al. (2017) [23]; Wang et al. (2015) [24]; Wolf et al. (2016) [25]; Wu et 

al. (2015) [26]; Xu et al. (2014) [27]; Xu et al. (2015) [28]; Yang et al. (2010) 

[29]; Zhang et al. (2013) [30]; Zhang et al. (2016) [31] 

Not in English (3) Huang et al. (2006) [32]; Jiang et al. (2006) [33]; Xu et al. (2008) [34] 

Review article (2) Takano-Yamamoto et al. (2017) [35]; Yamaguchi et al. (2005) [36] 

Other body part (1) Ichimiya et al. (2007) [37] 

Missing full text (1) Ikeda et al. (2016) [38] 

In vivo (7) Cobo et al. (2016) [39]; Gluhak-Heinrich et al. (2006) [40]; Hayashi et al. 

(2012) [41]; Madureira et al. (2012) [42]; Nakano et al. (2015) [43]; Wolf et al. 

(2013) [44]; Xu et al. (2017) [45] 

3D (6) de Araujo et al. (2007) [46]; de Araujo et al. (2014) [47]; Li et al. (2016a) [48]; 

Li et al. (2016b) [49]; Liao et al. (2016) [50]; Yi et al. (2016) [51] 

 
  



Table 3. Search strategy designed for studies applying the in vitro loading model based on a 
weight approach on 3D cell culture. 
FIELD   FORCE  TISSUE/CELLS  3D MODEL 
orthodontic force OR  
periodont* OR  
orthodontic tooth 
movement OR  
tooth movement OR  
OTM OR 
orthodont* OR 
orthodontic force 

AND mechanical stress OR 
mechan* stress OR  
compressive force OR 
static compressive force 
OR 
mechanical loading OR 
mechanical stress OR 
static compressive force 
OR  
static compress* OR 
static force OR  
loading OR  
compress* OR 
compressive loading OR 
pressure OR 
continuous compressive 
force OR 
continuous compress* OR 
Static Compress* OR 
mechanical force OR 
compressive stress 

AND periodontal ligament cells 
OR 
periodont* OR 
periodontal ligament OR  
PDL OR 
PDL cells OR 
periodontal ligament 
fibroblasts OR 
periodontal ligament cells 
OR 
osteoblast* OR 
osteoclast* OR 
alveolar bone OR 
bone resorption OR 
PDL tissue OR 
human gingival fibroblasts 
OR 
periodontal tissue 

 

AND three-dimensional culture 
system OR 
collagen OR 
collagen gel* OR 
three-dimensional model OR 
3D OR  
3D loading model OR 
3-D model OR 
in vitro model OR 
3-D in vitro model OR 
Gels OR 
3-D culturing OR 
3D culturing OR 
poly lactic-co-glycolic acid 
scaffolds OR 
PLGA scaffolds OR  
Scaffolds OR 
PLGA OR 
PDL tissue model OR 
Three-Dimensional Cultured 
OR 
three-dimensional gels OR 
periodontal ligament tissue 
model OR 
tissue model OR 
in vitro tissue model* OR 
porous poly scaffold OR 
periodontal ligament like tissue 
model 

Final look of the prepared entry for the PubMed database: 
(orthodontic force OR periodont* OR orthodontic tooth movement OR tooth movement OR OTM OR orthodont* OR orthodontic force) AND 
(mechanical stress OR mechan* stress OR compressive force OR static compressive force OR mechanical loading OR mechanical stress 
OR static compressive force OR static compress* OR static force OR loading OR compress* OR compressive loading OR pressure OR 
continuous compressive force OR continuous compress* OR Static Compress* OR mechanical force OR compressive stress) AND 
(periodontal ligament cells OR periodont* OR periodontal ligament OR PDL OR PDL cells OR periodontal ligament fibroblasts OR 
periodontal ligament cells OR osteoblast* OR osteoclast* OR alveolar bone OR bone resorption OR PDL tissue OR human gingival 
fibroblasts OR periodontal tissue) AND (three-dimensional culture system OR collagen OR collagen gel* OR three-dimensional model OR 
3D OR 3D loading model OR 3-D model OR in vitro model OR 3-D in vitro model OR Gels OR 3-D culturing OR 3D culturing OR poly 
lactic-co-glycolic acid scaffolds OR PLGA scaffolds OR Scaffolds OR PLGA OR PDL tissue model OR Three-Dimensional Cultured OR 
three-dimensional gels OR periodontal ligament tissue model OR tissue model OR in vitro tissue model* OR porous poly scaffold OR 
periodontal ligament like tissue model) 
 
  



Table 4. List of excluded studies after full text reading with reasons – 3D studies. 
 
Reason for exclusion (N) Study 
Another method of force application 

(17) 

Berendsen et al. (2009) [52]; Chang et al. (2008) [53]; Chang et al. (2015) [54]; 

Deschner et al. (2012) [55]; Diercke et al. (2011) [56]; Gharibi et al. (2013) [57]; 

Guo et al. (2015) [7]; Hou et al. (2014) [8]; Huang et al. (2009) [58]; Jacobs et al. 

(2013) [11]; Oortgiesen et al. (2012) [59]; Saminathan et al. (2013) [60]; 

Saminathan et al. (2015) [61]; Wolf et al. (2016) [25]; Wu et al. (2015) [26]; Xu et 

al. (2017) [62]; Yang et al. (2010) [29]; Zhang et al. (2013) [30]; Zhao et al. (2008) 

[63] 

Not in English (2) An et al. (2009) [64]; Huang et al. (2006) [32] 

Organ explant (1) Duncan et al. (1984) [65] 

Not related to OTM (1) Tabeian et al. (2017) [66] 

Infinite element method (1) Xin et al. (2002) [67] 

Review article (1) Wang et al. (2016) [68] 

In vivo (3) Gluhak-Heinrich et al. (2006) [40]; Moura et al. (2014) [69]; Zhao et al. (2008) [70] 

Missing full text (1) Zhang et al. (2016) [71] 

No force application (1) Cobo et al. (2016) [39] 

2D (5) Chen et al. (2015) [72]; Feng et al. (2017) [73]; Liu et al. (2017) [74]; 

Tripuwabhrut et al. (2013) [75]; Wolf et al. (2014) [76] 
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Supplement	2.	Studies	applying	the	2D	weight	approach	on	human	primary	cells	from	the	orofacial	region,	i.e.	human	periodontal	ligament	cells	
(hPDLC),	human	oral	bone	marrow	cells	(hOBMC),	and	human	alveolar	bone	osteoblasts	(hOB).	For	each	gene	or	metabolite	force	magnitude	and	force	
duration,	the	change	in	gene	expression	or	substance	secretion	(increase,	decrease,	no	change),	and	the	techniques	for	analysis	applied	are	given.	
 

Reference Cell typea Gene/ metabolite 
symbol 

Examined force applied Gene expression b, c 

(Increase/ decrease/ no 
change) 

Substance secretion c,d 
(Increase/ decrease/ no change) 

Magnitude [g/cm2] Duration [h] 

Asano et al. 2011 [1] hPDLC (exp) CXCL8 1.0; 2.0; 3.0; 4.0 0; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 

CCL2 1.0; 2.0; 3.0; 4.0 0; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 

Benjakul et al. in press [2] hPDLC (exp?) PGE2 1.5 48 n. a. Increase (ELISA) 

TNFSF11 1.5 48 Increase (qPCR: GAPDH) Increase (ELISA) 

TNFRSF11B 1.5 48 No change (qPCR: GAPDH) No change (ELISA) 

RUNX2 1.5 48 Decrease (qPCR: GAPDH) n. r. 

Cao et al. 2014 [3] hPDLC (dig) ADRB2 1.5 
0.5; 1.0; 1.5; 2.0 

0; 2; 4; 6; 8; 12 
6 

n. r Increase (WB) 

hOBMC ADRB2 1.5 
0.5; 1.0; 1.5; 2.0 

0; 2; 4; 6; 8; 12 
6 

n. r No change (WB) 

Chae et al. 2011 [4] hPDLC ($$) ROS 3.0 4 n. a. Increase (FLM) 

IL1B 3.0 24 Increase (qPCR: GAPDH) Increase (ELISA) 

CXCL8 3.0 24 Increase (qPCR: GAPDH) Increase (ELISA) 

IL6 3.0 24 Increase (qPCR: GAPDH) Increase (ELISA) 

TNF 3.0 24 Increase (qPCR: GAPDH) Increase (ELISA) 

Chen et al. 2015 [5] hPDLC (exp) COL1A1 2.0 24 Decrease (qPCR: ACTB) n. r. 

COL3A1 2.0 24 Decrease (qPCR: ACTB) n. r. 

COL5A1 2.0 24 No change (qPCR: ACTB) n. r. 

microRNAs 2.0 24 Increase (qPCR: U6snRNA) n. r. 

Feng et al. 2017 [6] hPDLC (dig) CDH11 0.5; 1.0; 1.5; 2.0 
1.0 

24 
4; 8; 12; 24 

Decrease (qPCR: GAPDH) Decrease (WB) 

COL1A1 0.5; 1.0; 1.5; 2.0 
1.0 

24 
4; 8; 12; 24 

Decrease (qPCR: GAPDH) Decrease (WB) 

CTNNB1 0.5; 1.0; 1.5; 2.0 
1.0 

24 
4; 8; 12; 24 

n. r. Decrease (WB) 

Feng et al. 2016 [7] hPDLC (dig) COL1A1 1.0 24 Decrease (qPCR: GAPDH) n. r. 

TGFB1 1.0 24 Decrease (qPCR: GAPDH) n. r. 

TGFB3 1.0 24 Decrease (qPCR: GAPDH) n. r. 



Reference Cell typea Gene/ metabolite 
symbol 

Examined force applied Gene expression b, c 

(Increase/ decrease/ no 
change) 

Substance secretion c,d 
(Increase/ decrease/ no change) 

Magnitude [g/cm2] Duration [h] 

TGF-β (*antibody 
specificity not identifiable) 

1.0 24 n. a. Decrease (WB) 

He et al. 2015 [8] hPDLC (dig) Effect on macro-
phages in co-culture 

1 24 n. r. n. r. 

Jin et al. 2015 [9] hPDLC (dig) PTGS2 2.0 0.5; 3; 6; 12 Increase (qPCR: GAPDH) n. r. 

NFKB (*antibody 
specificity not identifiable) 

2.0 3 n. r. Increased nuclear translocation 
(WB) 

TNFRSF11B 2.0 0.5; 3; 6; 12 No change (qPCR: GAPDH) n. r. 

PGE2 2.0 12 n. a. Increase (ELISA) 

PIEZO1 2.0 0.5; 3; 6; 12 
WB: 3 

Increase (qPCR: GAPDH) Increase (WB) 

TNFSF11 2.0 0.5; 3; 6; 12 Increase (qPCR: GAPDH) n. r. 

Kang et al. 2013 [10] hPDLC (dig) IL1B 2.0 2; 48 No change (qPCR: GAPDH) n. r. 

TNF 2.0 2; 48 No change (qPCR: GAPDH) n. r. 

TNFSF11 2.0 2; 48 Increase (qPCR: GAPDH) n. r. 

MMP3 2.0 2; 48 Decrease (qPCR: GAPDH) n. r. 

MMP13 2.0 2; 48 Increase (qPCR: GAPDH) n. r. 

Kang et al. 2010 [11] hPDLC (?) PTGS2 2.0 0.5; 2; 6; 24; 48 Increase (qPCR: GAPDH) n. r. 

PTK2 2.0 0.5; 2; 6; 24; 48 n. r. p-FAK: Increase (WB) 
overall FAK: no change (WB) 

PGE2 2.0 0.5; 2; 6; 24; 48 n. a. Increase (ELISA) 

Kanjanamekanant et al. 2013 [12] hPDLC (?) IL1B 1.0; 1.5; 2.0; 2.5 1, 3, 5 Increase (sqPCR: GAPDH) Increase (ELISA) 

Kanjanamekanant et al. 2014 [13] hPDLC (?) IL1B 0; 0.5; 1.0; 1.5; 2.0; 2.5 3 n. r. ELISA 

ATP 2.0 3 n. a. ELISA 

Kanzaki et al. 2002 [14] hPDLC (exp) PTGS1 0.5; 1.0; 2.0; 3.0; 4.0+  0.5; 1.5; 6; 24; 48  No change (sqPCR: ACTNB) n. r. 

PTGS2 0.5; 1.0; 2.0; 3.0; 4.0+  0.5; 1.5; 6; 24; 48  Increase (sqPCR: ACTNB) n. r. 

TNFRSF11B 0.5; 1.0; 2.0; 3.0; 4.0+  0.5; 1.5; 6; 24; 48  No change (sqPCR: ACTNB) n. r. 

PGE2 2.0 0.5; 1.5; 6; 24; 48,60  n. a. Increase (ELISA) 

TNFSF11 0.5; 1.0; 2.0; 3.0; 4.0 
WB: 2.0 

0.5; 1.5; 6; 24; 48 
WB: 48, 96 

Increase (sqPCR: ACTNB) Increase (WB): 40-kDa +  
55-kDa 

Kikuta et al. 2015 [15] hPDLC (exp) IL6 4.0 1; 3; 6; 9; 12; 24 
ELISA: 1; 3; 6; 9; 12; 
24; 48 

Increase (qPCR: GAPDH) Increase (ELISA) 

JAG1 4.0 1; 3; 6; 9; 12; 24 ( Increase (qPCR: GAPDH) Increase (ELISA) 



Reference Cell typea Gene/ metabolite 
symbol 

Examined force applied Gene expression b, c 

(Increase/ decrease/ no 
change) 

Substance secretion c,d 
(Increase/ decrease/ no change) 

Magnitude [g/cm2] Duration [h] 

TNFSF11 4.0 1; 3; 6; 9; 12; 24 
ELISA: 1; 3; 6; 9; 12; 
24; 48 

Increase (qPCR: GAPDH) Increase (ELISA) 

Kim et al. 2013 [16] hPDLC (dig) PTK2 2.0 0.5; 2; 6; 24; 48 n. r. p-FAK/FAK-ratio: Increase 
(WB) 

CSF1 2.0 0.5; 2; 6; 24; 48 Increase (qPCR: GAPDH) Increase (ELISA) 

TNFRSF11B 2.0 0.5; 2; 6; 24; 48 Transitory downregulated. 
(qPCR: GAPDH) 

Transitory downregulation 
(ELISA) 

TNFSF11 2.0 0.5; 2; 6; 24; 48 Increase (qPCR: GAPDH) Increase (ELISA) 

TNF 2.0 0.5; 2; 6; 24; 48 Increase (qPCR: GAPDH) Increase (ELISA) 

Kirschneck et al. 2015 [17] hPDLC (exp) PTGS2 2.0 24 Increase (qPCR: POL2RA) n. r. 

IL6 2.0 24 Increase (qPCR: POL2RA) Not explicitly stated (ELISA) 

TNFRSF11B 2.0 24 No change (qPCR: POL2RA) n. r. 

PGE2 2.0 24 n. a. Not explicitly stated (ELISA) 

TNFSF11 2.0 24 Increase (qPCR: POL2RA) n. r. 

Kunii et al. 2013 [18] hPDLC (exp) IL6 1.0; 2.0; 3.0; 4.0 3; 6; 9; 12; 24 
ELISA: 3; 6; 9; 12; 24; 
48; 72  

Increase (qPCR: GAPDH) Increase (ELISA) 

Lee et al. 2015 [19] hPDLC (?) CCL3 2.5 2; 4; 8; 24; 48 
WB: 24; 48; 72; 96 

Increase (qPCR: ACTNB) Increase (WB) 

CCL5 2.5 2; 4; 8; 24; 48 
WB:  24; 48; 72; 96 

Increase (qPCR: ACTNB) Increase (WB) 

CCR5 2.5 2; 4; 8; 24; 48 
WB: 24; 48; 72; 96 

Increase (qPCR: ACTNB) Increase (WB) 

ALPL 2.5 24 Increase (qPCR: ACTNB) n. r. 

RUNX2 2.5 24 No change (qPCR: ACTNB) n. r. 

BGLAP 2.5 24 No change (qPCR: ACTNB) n. r. 

TNFSF11 2.5 24 Increase (qPCR: ACTNB) n. r. 

TNFRSF11B 2.5 24 No change (qPCR: ACTNB) n. r. 

POSTN 2.5 24 Increase (qPCR: ACTNB) n. r. 

IL12 (*forward and 
reverse primers are 
identical. Primer Blast- no 
results) 

2.5 24 No change (qPCR: ACTNB) n. r. 

COL1A1 2.5 2; 4; 8; 24; 48 Increase (qPCR: ACTNB) n. r. 

Liu et al. 2017 [20] hPDLC (dig) CBS 0.5; 1.0; 1.5 6; 12; 24 n. r. Increase (WB) 

H2S 0.5; 1.0; 1.5 6; 12; 24 n. a. Increase 



Reference Cell typea Gene/ metabolite 
symbol 

Examined force applied Gene expression b, c 

(Increase/ decrease/ no 
change) 

Substance secretion c,d 
(Increase/ decrease/ no change) 

Magnitude [g/cm2] Duration [h] 

CCL2 0.5; 1.0; 1.5 6; 12; 24 n. r. Increase (WB) 

TNFSF11 0.5; 1.0; 1.5 6; 12; 24 n. r. Increase (WB) 

TNFRSF11B 0.5; 1.0; 1.5 6; 12; 24 n. r. Decrease (WB) 

Liu et al. 2006 [21] hPDLC (?) PTGS2 2.0 48 Increase (sqPCR: ACTNB) n. r. 

IL1B 2.0 48 n. r. No change (ELISA) 

PGE2 2.0 48 n. a. Increase (ELISA) 

TNFSF11 2.0 48 Increase (sqPCR: ACTNB) n. r. 

NO 2.0 48 n. a. Increase (HPLC-Griess) 

Luckprom et al. 2011 [22] hPDLC (?) TNFRSF11B 2.5 2; 4 No change (sqPCR: GAPDH) n. r. 

TNFSF11 2.5 2; 4 Increase (sqPCR: GAPDH) Increase (WB) 

ATP 2.5 2; 4 n. a. Increase (WB) 

GJA1 2.5 2; 4 n. r. (sqPCR: GAPDH) n. r. 

Mayahara et al. 2007 [23] hPDLC (exp) PTGS2 2 3; 6; 12; 24; 48 Increase (qPCR: GAPDH) n. r. 

PGE2 2 3; 6; 12; 24; 48 n. a. Increase (ELISA) 

Mayahara et al. 2010 [24] hPDLC (exp) PTGS2 2.0 3; 6; 12; 24; 48 Increase (qPCR: GAPDH) n. r. 

PLA2G4A 2.0 3; 6; 12; 24; 48 Increase (qPCR: GAPDH) n. r. 

Mitsuhashi et al. 2011 [25] hPDLC (exp) HSPB1 4.0 1; 3; 6; 9; 12; 24 No change (qPCR: ACTNB) n. r. 

HSPA4 1.0; 2.0; 4.0 1; 3; 6; 9; 12; 24 Increase (qPCR: ACTNB) Increase (ELISA; WB) 

HSP90AA1 4.0 1; 3; 6; 9; 12; 24 Increase (qPCR: ACTNB) n. r. 

TNFRSF11B 4.0 1; 3; 6; 9; 12; 24 No change (qPCR: ACTNB) n. r. 

TNFSF11 4.0 1; 3; 6; 9; 12; 24 Temporary increase (qPCR: 
ACTNB) 

n. r. 

TNF 4.0 1; 3; 6; 9; 12; 24 Temporary increase (qPCR: 
ACTNB) 

n. r. 

Nakajima et al. 2008 [26] hPDLC (exp) FGF2 0.5; 1.0; 2.0; 3.0; 4.0 1; 3; 6; 9; 12; 24 Increase (sqPCR: ACTNA) Increase (ELISA) 

TNFRSF11B 0.5; 1.0; 2.0; 3.0; 4.0 1; 3; 6; 9; 12; 24 n. r. Increase (ELISA) 

TNFSF11 0.5; 1.0; 2.0; 3.0; 4.0 1; 3; 6; 9; 12; 24 n. r. Increase (ELISA) 

Nishijima et al. 2006 [27] hPDLC (exp) TNFSF11 0.5; 1.0; 2.0; 3.0 48 n. r. Increase (ELISA) 

TNFRSF11B 0.5; 1.0; 2.0; 3.0 48 n. r. Decrease (ELISA) 

Premaraj et al. 2011 [28] hPDLC ($$) AKT1 0.2; 2.2; 5.0 6 n. r. WB: Increase p-Akt  

GSK3b 0.2; 2.2; 5.0 6 n. r. WB: Increase in p-GSK-3β 



Reference Cell typea Gene/ metabolite 
symbol 

Examined force applied Gene expression b, c 

(Increase/ decrease/ no 
change) 

Substance secretion c,d 
(Increase/ decrease/ no change) 

Magnitude [g/cm2] Duration [h] 

CTNNB1 0.2; 2.2; 5.0 6 n. r. WB: Increase in nuclear dephos-
β-catenin 

Premaraj et al. 2013 [29] hPDLC ($$) AKT1 5.0 6 n. r. Increase in dephos-Akt (WB) 

PTGS2 0.2; 2.2; 5.0 6 n. r. Increase (WB) 

CCND1 0.2; 2.2; 5.0 6 n. r. Increase (WB) 

PTK2 0.2; 2.2; 5.0 0.5; 1; 3; 6 n. r. Increase in p-FAK (WB) 

PGE2 5.0 0.5; 1; 3; 6 n. a. Increase (ELISA) 

CTNNB1 5.0 6 n. r. Increase in dephos-β-catenin 

NO 5.0 0.2; 0.5; 1; 2 n. a. Increase (Griess Reagent 
System) 

Proff et al. 2014 [30] hPDLC (exp) PTGS2 2 24 Increase (qPCR: POLR2A) Increase (WB) 

IGF1 2 24 Increase (qPCR: POLR2A) n. r. 

IL6 2 24 No change (qPCR: POLR2A) n. r. 

CXCL8 2 24 Increase (qPCR: POLR2A) Decrease (WB, ELISA) 

MMP13 2 24 Increase (qPCR: POLR2A) n. r. 

VEGFA 2 24 No change (qPCR: POLR2A) n. r. 

PGE2 2 24 n. a. Increase (ELISA) 

Römer et al. 2013 [31] hPDLC (exp) PTGS2 2 24 Increase (qPCR: POLR2A) n. r. 

TNFRSF11B 2 24 No change (qPCR: POLR2A) n. r. 

PGE2 2 24 n. a. Increase (ELISA) 

TNFSF11 2 24 Increase (qPCR: POLR2A) n. r. 

Tripuwabhrut et al. 2013 [32] hOB COL1 2.0; 4.0 24 
ELISA: 24; 72; 7d 

Increase (qPCR: GAPDH) Increase (ELISA) 

TNFSF11 2.0; 4.0 24; IF: +72 Increase (qPCR: GAPDH) IF; not detectable with ELISA 

TNFRSF11B 2.0; 4.0 24; 
ELISA: 24;72 

Decrease (qPCR: GAPDH) Decrease (ELISA) 

PGE2 2.0; 4.0 24 n. a. Increase (ELISA) 

SPP1 2.0; 4.0 24 No change (qPCR: GAPDH) n. r. 

BGLAP 2.0; 4.0 24 No change (qPCR: GAPDH) n. r. 

RUNX2 2.0; 4.0 24 Decrease (qPCR: GAPDH) n. r. 

ALPL 2.0; 4.0 24;  
Activity: 24; 72; 7d 

Increase (qPCR: GAPDH) Activity: Increase extracellular 
Activity: decrease intracellular 

Tripuwabhrut et al. 2012 [33] hOB MKI67 2.0; 4.0 24 Decrease (qPCR: GAPDH) n. r. 



Reference Cell typea Gene/ metabolite 
symbol 

Examined force applied Gene expression b, c 

(Increase/ decrease/ no 
change) 

Substance secretion c,d 
(Increase/ decrease/ no change) 

Magnitude [g/cm2] Duration [h] 

BAX 2.0; 4.0 24 No change (qPCR: GAPDH) n. r. 

BCL2 2.0; 4.0 24 No change (qPCR: GAPDH) n. r. 

IL6 2.0; 4.0 24 Increase (qPCR: GAPDH) Decrease (ELISA) 

CXCL8 2.0; 4.0 24 Increase (qPCR: GAPDH) Decrease (ELISA) 

Wolf et al. 2014 [34] hPDLC (?) HMGB1 4.0 8 n. r. Increase (ELISA) 

Wolf et al. 2013 [35] hPDLC (?) HMGB1 4.0 24 n. r. Translocation to cytoplasm (IF) 
Increase (ELISA) 

Wongkhantee et al. 2007 [36] hPDLC (exp) PTGS2 1.25; 2.5 24 Increase (sqPCR: GAPDH) n. r. 

SPP1 0.5; 0.75; 1.0; 1.25;2.5 1; 4; 8; 24; 48 Increase (sqPCR: GAPDH) Increase (WB) 

TNFSF11 1.25; 2.5 24 Increase (sqPCR: GAPDH) Increase (WB) 

Yamada et al. 2013 [37] hPDLC (exp) IL6 4.0 12 Increase (qPCR: GAPDH) Increase (ELISA) 

IL17A 4.0 12 n. r. No change (ELISA) 

TNFRSF11B 4.0 12 Decrease (qPCR: GAPDH) Decrease (ELISA) 

TNFSF11 4.0 12 Increase (qPCR: GAPDH) Increase (ELISA) 

Yamaguchi et al. 2004 [38] hPDLC (exp) CTSB 0.5; 1.0; 2.0; 3.0 3; 6; 9; 12; 24 Increase (sqPCR: GAPDH) Increase (ELISA) 

CTSL 0.5; 1.0; 2.0; 3.0 3; 6; 9; 12; 24 Increase (sqPCR: GAPDH) Increase (ELISA) 

Yamaguchi et al. 2006 [39] hPDLC (exp) TNFRSF11B 0.5; 1.0; 2.0; 3.0 3; 6; 9; 12; 24; 48 n. r. Decrease (ELISA) 

TNFSF11 0.5; 1.0; 2.0; 3.0 3; 6; 9; 12; 24; 48 n. r. Increase (ELISA): sRANKL 
Increase (WB) 

Zhang et al. 2017 [40] hPDLC (dig) LGALS3BP 0.5; 1.0; 1.5; 2.0;  24 n. r. Increase (ELISA): 
a hPDLC (exp) – hPDLC isolated with explant method; hPDLC (dig) – hPDLC isolated with digestion method, hPDLC (?) – hPDLC, isolation method not given; hPDLC ($$) – hPDLC from 
commercial sources; hOB – human osteoblasts; hOBMC – human oral bone marrow cells 
b qPCR – quantitative PCR (e.g. real time PCR); sqPCR – semi-quantitative PCR; followed by reference gene used 
c n. r. – not reported; n. a. – not applicable 
d ELISA – Enzyme linked immune absorbent assay; WB – western blot; IF – immunofluorescence; FLM, fluorescence microscopy; HPLC-Griess – High Pressure Liquid Chromatography, Griess 
detection method; p-FAK/FAK – phosphorylated and non-phosphorylated focal adhesion kinase (FAK); kDa – kilo Dalton; pAkt – phosphorylated protein kinase B; p-GSK-3b – phosphorylated 
glycogen synthase kinase-3-beta; dephos-b-catenin – dephosphorylated b-catenin; sRANKL – soluble RANKL 
 



References 
 
1. M. Asano, M. Yamaguchi, R. Nakajima et al., "IL-8 and MCP-1 

induced by excessive orthodontic force mediates odontoclastogenesis in 
periodontal tissues," Oral Diseases, vol. 17, no. 5, pp. 489-98, 2011. 

2. S. Benjakul, S. Jitpukdeebodintra and C. Leethanakul, "Effects of low 
magnitude high frequency mechanical vibration combined with 
compressive force on human periodontal ligament cells in vitro," 
European Journal of Orthodontics, in press. 

3. H. Cao, X. Kou, R. Yang et al., "Force-induced Adrb2 in periodontal 
ligament cells promotes tooth movement," Journal of Dental Research, 
vol. 93, no. 11, pp. 1163-9, 2014. 

4. H. S. Chae, H. J. Park, H. R. Hwang et al., "The effect of antioxidants 
on the production of pro-inflammatory cytokines and orthodontic tooth 
movement," Molecules and Cells, vol. 32, no. 2, pp. 189-96, 2011. 

5. Y. Chen, A. Mohammed, M. Oubaidin et al., "Cyclic stretch and 
compression forces alter microRNA-29 expression of human 
periodontal ligament cells," Gene, vol. 566, no. 1, pp. 13-7, 2015. 

6. L. Feng, Y. Zhang, X. Kou et al., "Cadherin-11 modulates cell 
morphology and collagen synthesis in periodontal ligament cells under 
mechanical stress," Angle Orthodontist, vol. 87, no. 2, pp. 193-199, 
2017. 

7. L. Feng, R. Yang, D. Liu et al., "PDL progenitor-mediated PDL 
recovery contributes to orthodontic relapse," Journal of Dental 
Research, vol. 95, no. 9, pp. 1049-56, 2016. 

8. D. He, X. Kou, R. Yang et al., "M1-like macrophage polarization 
promotes orthodontic tooth movement," Journal of Dental Research, 
vol. 94, no. 9, pp. 1286-94, 2015. 

9. Y. Jin, J. Li, Y. Wang et al., "Functional role of mechanosensitive ion 
channel Piezo1 in human periodontal ligament cells," Angle 
Orthodontist, vol. 85, no. 1, pp. 87-94, 2015. 

10. K. L. Kang, S. W. Lee, Y. S. Ahn et al., "Bioinformatic analysis of 
responsive genes in two-dimension and three-dimension cultured 
human periodontal ligament cells subjected to compressive stress," 
Journal of Periodontal Research, vol. 48, no. 1, pp. 87-97, 2013. 

11. Y. G. Kang, J. H. Nam, K. H. Kim et al., "FAK pathway regulates 
PGE2 production in compressed periodontal ligament cells," Journal of 
Dental Research, vol. 89, no. 12, pp. 1444-9, 2010. 

12. K. Kanjanamekanant, P. Luckprom and P. Pavasant, "Mechanical 
stress-induced interleukin-1beta expression through adenosine 
triphosphate/P2X7 receptor activation in human periodontal ligament 
cells," Journal of Periodontal Research, vol. 48, no. 2, pp. 169-76, 
2013. 

13. K. Kanjanamekanant, P. Luckprom and P. Pavasant, "P2X7 receptor-
Pannexin1 interaction mediates stress-induced interleukin-1 beta 
expression in human periodontal ligament cells," Journal of 
Periodontal Research, vol. 49, no. 5, pp. 595-602, 2014. 

14. H. Kanzaki, M. Chiba, Y. Shimizu et al., "Periodontal ligament cells 
under mechanical stress induce osteoclastogenesis by receptor activator 
of nuclear factor kappaB ligand up-regulation via prostaglandin E2 
synthesis," Journal of Bone and Mineral Research, vol. 17, no. 2, pp. 
210-20, 2002. 

15. J. Kikuta, M. Yamaguchi, M. Shimizu et al., "Notch signaling induces 
root resorption via RANKL and IL-6 from hPDL cells," Journal of 
Dental Research, vol. 94, no. 1, pp. 140-7, 2015. 

16. S. J. Kim, K. H. Park, Y. G. Park et al., "Compressive stress induced 
the up-regulation of M-CSF, RANKL, TNF-a expression and the down-
regulation of OPG expression in PDL cells via the integrin-FAK 
pathway," Archives of Oral Biology, vol. 58, no. 6, pp. 707-16, 2013. 

17. C. Kirschneck, P. Proff, M. Maurer et al., "Orthodontic forces add to 
nicotine-induced loss of periodontal bone : An in vivo and in vitro 
study," Journal of Orofacial Orthopedics, vol. 76, no. 3, pp. 195-212, 
2015. 

18. R. Kunii, M. Yamaguchi, Y. Tanimoto et al., "Role of interleukin-6 in 
orthodontically induced inflammatory root resorption in humans," 
Korean Journal of Orthodontics, vol. 43, no. 6, pp. 294-301, 2013. 

19. S. Y. Lee, H. I. Yoo and S. H. Kim, "CCR5-CCL axis in PDL during 
orthodontic biophysical force application," Journal of Dental Research, 
vol. 94, no. 12, pp. 1715-23, 2015. 



20. F. Liu, F. Wen, D. He et al., "Force-induced H2S by PDLSCs modifies 
osteoclastic activity during tooth movement," Journal of Dental 
Research, vol. 96, no. 6, pp. 694-702, 2017. 

21. L. Liu, K. Igarashi, H. Kanzaki et al., "Clodronate inhibits PGE2 
production in compressed periodontal ligament cells," Journal of 
Dental Research, vol. 85, no. 8, pp. 757-60, 2006. 

22. P. Luckprom, K. Kanjanamekanant and P. Pavasant, "Role of 
connexin43 hemichannels in mechanical stress-induced ATP release in 
human periodontal ligament cells," Journal of Periodontal Research, 
vol. 46, no. 5, pp. 607-15, 2011. 

23. K. Mayahara, Y. Kobayashi, K. Takimoto et al., "Aging stimulates 
cyclooxygenase-2 expression and prostaglandin E2 production in human 
periodontal ligament cells after the application of compressive force," 
Journal of Periodontal Research, vol. 42, no. 1, pp. 8-14, 2007. 

24. K. Mayahara, A. Yamaguchi, M. Sakaguchi et al., "Effect of Ga-Al-As 
laser irradiation on COX-2 and cPLA2-a expression in compressed 
human periodontal ligament cells," Lasers in Surgery and Medicine, 
vol. 42, no. 6, pp. 489-93, 2010. 

25. M. Mitsuhashi, M. Yamaguchi, T. Kojima et al., "Effects of HSP70 on 
the compression force-induced TNF-a and RANKL expression in 
human periodontal ligament cells," Inflammation Research, vol. 60, no. 
2, pp. 187-94, 2011. 

26. R. Nakajima, M. Yamaguchi, T. Kojima et al., "Effects of compression 
force on fibroblast growth factor-2 and receptor activator of nuclear 
factor kappa B ligand production by periodontal ligament cells in 
vitro," Journal of Periodontal Research, vol. 43, no. 2, pp. 168-73, 
2008. 

27. Y. Nishijima, M. Yamaguchi, T. Kojima et al., "Levels of RANKL and 
OPG in gingival crevicular fluid during orthodontic tooth movement 
and effect of compression force on releases from periodontal ligament 
cells in vitro," Orthodontics and Craniofacial Research, vol. 9, no. 2, 
pp. 63-70, 2006. 

28. S. Premaraj, I. Souza and T. Premaraj, "Mechanical loading activates b-
catenin signaling in periodontal ligament cells," Angle Orthodontist, 
vol. 81, no. 4, pp. 592-9, 2011. 

29. S. Premaraj, I. Souza and T. Premaraj, "Focal adhesion kinase mediates 
β-catenin signaling in periodontal ligament cells," Biochemical and 
Biophysical Research Communications, vol. 439, no. 4, pp. 487-92, 
2013. 

30. P. Proff, C. Reicheneder, A. Faltermeier et al., "Effects of mechanical 
and bacterial stressors on cytokine and growth-factor expression in 
periodontal ligament cells," Journal of Orofacial Orthopedics, vol. 75, 
no. 3, pp. 191-202, 2014. 

31. P. Römer, J. Köstler, V. Koretsi et al., "Endotoxins potentiate COX-2 
and RANKL expression in compressed PDL cells," Clinical Oral 
Investigations, vol. 17, no. 9, pp. 2041-8, 2013. 

32. P. Tripuwabhrut, M. Mustafa, C. G. Gjerde et al., "Effect of 
compressive force on human osteoblast-like cells and bone 
remodelling: an in vitro study," Archives of Oral Biology, vol. 58, no. 7, 
pp. 826-36, 2013. 

33. P. Tripuwabhrut, K. Mustafa, P. Brudvik et al., "Initial responses of 
osteoblasts derived from human alveolar bone to various compressive 
forces," European Journal of Oral Sciences, vol. 120, no. 4, pp. 311-8, 
2012. 

34. M. Wolf, S. Lossdörfer, K. Küpper et al., "Regulation of high mobility 
group box protein 1 expression following mechanical loading by 
orthodontic forces in vitro and in vivo," European Journal of 
Orthodontics, vol. 36, no. 6, pp. 624-31, 2014. 

35. M. Wolf, S. Lossdörfer, R. Craveiro et al., "Regulation of macrophage 
migration and activity by high-mobility group box 1 protein released 
from periodontal ligament cells during orthodontically induced 
periodontal repair: an in vitro and in vivo experimental study," Journal 
of Orofacial Orthopedics, vol. 74, no. 5, pp. 420-34, 2013. 

36. S. Wongkhantee, T. Yongchaitrakul and P. Pavasant, "Mechanical 
stress induces osteopontin expression in human periodontal ligament 
cells through rho kinase," Journal of Periodontology, vol. 78, no. 6, pp. 
1113-9, 2007. 

37. K. Yamada, M. Yamaguchi, M. Asano et al., "Th17-cells in atopic 
dermatitis stimulate orthodontic root resorption," Oral Diseases, vol. 
19, no. 7, pp. 683-93, 2013. 



38. M. Yamaguchi, Y. Ozawa, A. Nogimura et al., "Cathepsins B and L 
increased during response of periodontal ligament cells to mechanical 
stress in vitro," Connective Tissue Research, vol. 45, no. 3, pp. 181-9, 
2004. 

39. M. Yamaguchi, N. Aihara, T. Kojima et al., "RANKL increase in 
compressed periodontal ligament cells from root resorption," Journal of 
Dental Research, vol. 85, no. 8, pp. 751-6, 2006. 

40. Y. Zhang, X. Kou, N. Jiang et al., "Effect of intraoral mechanical stress 
application on the expression of a force-responsive prognostic marker 
associated with system disease progression," Journal of Dentistry, vol. 
57, pp. 57-65, 2017. 

 
 



Supplement 3. Studies applying the 2D weight approach on human and non-human cells and cell lines not included in Table 1. For each gene or metabolite force 
magnitude and force duration, the change in gene expression or substance secretion (increase, decrease, no change), and the techniques for analysis applied are 
given. 
 
Reference Cell type (species) a Gene symbol or 

metabolite 
Examined force applied Gene expression c,d 

(Increase/ decrease/ no change) 
Substance secretion d,e 
(Increase/ decrease/ no 
change) Magnitude [g/cm2]b Duration [h] 

Goga et al. 2006 [1] MG63 (H. s.) CASP3 2.0; 4.0 N/cm2 12; 24 n. r. Increase 
Hayakawa et al. 2015 [2] RAW264.7 (M. m.) Nfatc1 0.114; 0.215; 0.301; 0.387; 

0.53++ 
1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Tnfsf11 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Tnfrsf11a 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Ctsk 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Clcn7 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Mmp9 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Tcirg1 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Dcstamp 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Ocstamp 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Itgav 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Itgb3 0.114; 0.215; 0.301; 0.387; 
0.53++ 

1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 

Hoshina et al. 2004 [3] Bone marrow 
derived osteoblasts 
(R. n.) 

Spp1 0.9 12; 24; 72 No change (qPCR: GAPDH) n. r. 
Bglap 0.9 12; 24; 72 Decrease (qPCR: GAPDH) n. r. 
Alpl 0.9 12; 24; 72 n. r. No change (activity) 

Inubushi et al. 2014 [4] ST-2 (M. m.) Tnf 0.5 2; 24 Decrease (qPCR: 18S) n. r. 
Ptgs2 0.5 2; 24 Increase (qPCR: 18S) n. r. 
Tnfsf11 0.5 2; 24 Increase (qPCR: 18S) n. r. 
Tnfrsf11b 0.5 2; 24 Decrease (qPCR: 18S) n. r. 

Koyama et al. 2008 [5] Saos-2 (H. s.) IL1B 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  
ELISA: 24 

Increase (qPCR: GAPDH) Increase (ELISA) 

IL6 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  
ELISA: 24 

Increase (qPCR: GAPDH) Increase (ELISA) 



Reference Cell type (species) a Gene symbol or 
metabolite 

Examined force applied Gene expression c,d 
(Increase/ decrease/ no change) 

Substance secretion d,e 
(Increase/ decrease/ no 
change) Magnitude [g/cm2]b Duration [h] 

IL8 (CXCL8) 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  
ELISA: 24 

No change (qPCR: GAPDH) No change (ELISA) 

IL11 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  
ELISA: 24 

Increase (qPCR: GAPDH) Increase (ELISA) 

TNF 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  
ELISA: 24 

Increase (qPCR: GAPDH) Increase (ELISA) 

IL1R1 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  Increase (qPCR: GAPDH) n. r. 
IL6R 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  Increase (qPCR: GAPDH) n. r. 
CXCR1 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  Increase (qPCR: GAPDH) n. r. 
IL11RA 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  No change (qPCR: GAPDH) n. r. 
TNFRSF1A 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24;  No change (qPCR: GAPDH) n. r. 

Matsunaga et al. 2016 [6] Cementoblast cell 
line (HCEM-SV40) 
(H.s.) 

RUNX2 0.25 gf/cm2 12 Decrease+ (qPCR: GAPDH) n. r. 
ALPL 0.25 gf/cm2 12 Decrease+ (qPCR: GAPDH) n. r. 
WNT5A 0.25 gf/cm2 12 Decrease+ (qPCR: GAPDH) n. r. 
SPON1 0.25 gf/cm2 12 Decrease+ (qPCR: GAPDH) n. r. 

Mitsui et al. 2005 [7] Saos-2 (H.s.) PTGS2 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
IBSP 0.5, 1.0, 2.0; 3.0 

WB: 1.0 
1; 3; 6; 9; 12; 24 Increase  (qPCR: GAPDH) Increase (WB) 

SPP1 1.0 1; 3; 6; 9; 12; 24 Increase followed by decrease 
(qPCR: GAPDH) 

Increase (WB) 

PGE2 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24 n. a. Increase (ELISA) 
Mitsui et al. 2006 [8] Saos-2 (H.s.) MMP1 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 

MMP2 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
MMP3 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
MMP13 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
MMP14 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
TIMP1 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
TIMP2 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
TIMP3 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
TIMP4 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
PLAT 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
PLAU 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 
SERPINE1 0.5, 1.0, 2.0; 3.0; ELISA: 1.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) Increase (ELISA) 

Mitsui et al. 2006 [9] Saos-2 (H.s.) BMP2 0.5, 1.0, 2.0; 3.0 1; 3; 6; 9; 12; 24; WB: 2 Increase (qPCR: GAPDH) Increase (WB) 
BMP4 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) Increase (WB) 
BMP6 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) Increase (WB) 
BMP7 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) Increase (WB) 



Reference Cell type (species) a Gene symbol or 
metabolite 

Examined force applied Gene expression c,d 
(Increase/ decrease/ no change) 

Substance secretion d,e 
(Increase/ decrease/ no 
change) Magnitude [g/cm2]b Duration [h] 

BMPR1A 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
BMPR1B 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
ACVR1 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
BMPR2 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
ACVR2A 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
ACVR2B 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
CHRD 0.5, 1.0, 2.0, or 3.0 9 Decrease followed by increase 

(qPCR: GAPDH) 
n. r. 

GREM1 0.5, 1.0, 2.0, or 3.0 9 Decrease followed by increase 
(qPCR: GAPDH) 

Decrease followed by increase 
(WB) 

FST 0.5, 1.0, 2.0, or 3.0 9 Decrease followed by no change 
(qPCR: GAPDH)  

Decrease followed by no 
change (WB) 

NOG 0.5, 1.0, 2.0, or 3.0 9 Decrease followed by increase 
(qPCR: GAPDH) 

Decrease followed by increase 
(WB) 

RUNX2 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
SP7 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
ZNF354C 0.5, 1.0, 2.0, or 3.0 9 Increase (qPCR: GAPDH) n. r. 
SMAD1 1.0 9 n. d. Increase p-Smad1 (WB) 

Rego et al. 2011 [10] OCCM-30 (M.m.) Bmp2 0.2 kPa  12 Increase (qPCR: GAPDH) n. r. 
Bglap2 0.2 kPa  12 Increase (qPCR: GAPDH) n. r. 
Ptgs2 0.2 kPa  1; 3; 6; 12; 24 Increase (qPCR: GAPDH) n. r. 
Tnfsf11 0.2 kPa  12; 24 Increase (qPCR: GAPDH) n. r. 
Tnfrsf11b 0.2 kPa  12; 24 No change (qPCR: GAPDH) n. r. 
PGE2 0.2 kPa  6; 12;24 n. a. Increase 
Ptger1 0.2 kPa  1 No change (qPCR: GAPDH) n. r. 
Ptger2 0.2 kPa  1 No change (qPCR: GAPDH) n. r. 
Ptger3 0.2 kPa  1 No change (qPCR: GAPDH) n. r. 
Ptger4 0.2 kPa  1 No change (qPCR: GAPDH) n. r. 

Sanuki et al. 2010 [11] MC3T3-E1 (M.m.) Ptgs2 1.0; 3.0  1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 

Csf1 1.0; 3.0  1; 3; 6; 9; 12; 24; ELISA: 24 Increase (qPCR: GAPDH) Increase (ELISA) 
Tnfsf11 1.0; 3.0  1; 3; 6; 9; 12; 24; ELISA: 24 Increase (qPCR: GAPDH) Increase (ELISA) 
Tnfrsf11b 1.0; 3.0  1; 3; 6; 9; 12; 24; ELISA: 24 Decrease (qPCR: GAPDH) Decrease (ELISA) 
PGE2 1.0; 3.0  24 n. a. Increase (ELISA) 

Takahashi et al. 2003 [12] PDLC (R. n.) Mmp8 0.1; 0.2; 0.3 kPa 72 Decrease (sqPCR: GAPDH) n. r. 
Mmp13 0.1; 0.2; 0.3 kPa 72 Decrease (sqPCR: GAPDH) n. r. 



Reference Cell type (species) a Gene symbol or 
metabolite 

Examined force applied Gene expression c,d 
(Increase/ decrease/ no change) 

Substance secretion d,e 
(Increase/ decrease/ no 
change) Magnitude [g/cm2]b Duration [h] 

Yanagisawa et al. 2007 
[13] 

C2C12 (M.m.) Runx2 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Msx2 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Dlx5 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Sp7 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Zfp354c 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Sox5 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Sox9 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Myod1 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
Pparg 0.25; 0.5, 1.0, 2.0 1; 3; 6; 9; 12; 24 (WB: 24) Increase (qPCR: GAPDH) Increase (WB) 
p38-MAPK 
(*Antibody specificity 
not specified) 

0.5 WB/ELISA: 5, 10, 20, 30, 60 
min 

n. r. Increased p-P38 MAPK (WB) 
Increased p-P38 MAPK 
(ELISA) 

Zhang et al. 2010 [14] MC3T3-E1 (M.m.) Il17a 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 

Il17b 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17d 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17c 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il25 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17f 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17ra 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17rb 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17rd 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17rc 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il17re 1.0; 2.0 1; 3; 6; 9; 12; 24 Increase (qPCR: GAPDH) n. r. 
Il1a 1.0; 2.0 2 n. r. Increase (ELISA) 
Il6 1.0; 2.0 2 n. r. Increase (ELISA) 

Zhang et al. 2017 [15] OCCM-30 (M.m.) Piezo1 2.0 0; 3; 6; 9; 12; 24; Decrease (qPCR: GAPDH) Decrease (WB) 
Tnfrsf11b 2.0 0; 3; 6; 9; 12; 24; Decrease (qPCR: GAPDH) n. r. 
Spp1 2.0 0; 3; 6; 9; 12; 24; Decrease (qPCR: GAPDH) n. r. 
Bglap 2.0 0; 3; 6; 9; 12; 24; Decrease (qPCR: GAPDH) n. r. 
Hacd1 2.0 0; 3; 6; 9; 12; 24; Decrease (qPCR: GAPDH) n. r. 

Zhou et al. 2013 [16] U2OS (H.s.) RUNX2 1.0 1; 4; 8; 12; 24 Decrease (qPCR: GAPDH) n. r. 

BGLAP 1.0 1; 4; 8; 12; 24 Decrease (qPCR: GAPDH) n. r. 
ALPL 1.0 1; 4; 8; 12; 24 Decrease (qPCR: GAPDH) n. r. 



Reference Cell type (species) a Gene symbol or 
metabolite 

Examined force applied Gene expression c,d 
(Increase/ decrease/ no change) 

Substance secretion d,e 
(Increase/ decrease/ no 
change) Magnitude [g/cm2]b Duration [h] 

IBSP 1.0 1; 4; 8; 12; 24 Increase (qPCR: GAPDH) n. r. 

IL1B 1.0 1; 4; 8; 12; 24 Increase (qPCR: GAPDH) n. r. 
IL6 1.0 1; 4; 8; 12; 24 Increase (qPCR: GAPDH) n. r. 

PTGS2 1.0 1; 4; 8; 12; 24 Increase (qPCR: GAPDH) n. r. 
a Origin of cells: H. s. – H. sapiens; M. m. – M. musculus; R. n. – Rattus norvegicus 
b +Analysis was done 7, 14 or 21 days after WAB;  ++ Calculated according to information given in the respective study 
c qPCR – quantitative PCR (e.g. real time PCR); sqPCR – semi-quantitative PCR; followed by reference gene used 
d n. r. – not reported; n. a. – not applicable 
e ELISA – Enzyme linked immune absorbent assay; WB – western blot; IF – immunofluorescence; p-Smad1 – phosphorylated Smad1 (“similar to mothers against 
decapentaplegic 1”);  p-P38 MAPK – phosphorylated P38 mitogen-activated protein kinases 
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Supplement	4.	Studies	applying	the	3D	weight	approach	on	human	and	non-human	cells	and	cell	lines.	For	each	gene	or	metabolite	force	magnitude	and	
force	duration	are	given,	the	change	in	gene	expression	or	substance	secretion	(increase,	decrease,	no	change),	and	the	techniques	for	analysis	applied	
are	given.	

 
Reference Cell type a Gene symbol 

or metabolite 
Scaffold b Examined force applied Gene expression d,e 

(Increase/ decrease/ no 
change) 

Substance secretion e,f 
(Increase/ decrease/ no change) Magnitude [g/cm2]c Duration [h] 

Santos de Araujo et al. 2014 
[1] 

hPDLC (exp) F-actin (Triton X-
100 insoluble 
fraction) 

Collagen gel 6.0 (IF/WB: 3.0) 48 n. r. Decrease (WB) 
Reversible inhibition of stress 
fibre formation (IF) 

RND3 Collagen gel 6.0 (IF/WB: 3.0) 12; 24 n. r. Increase (WB) 
RHOA Collagen gel 6.0 (IF/WB: 3.0) 12; 24 n. r. No change (WB) 
RGS2 Collagen gel 6.0 (IF/WB: 3.0) 12; 24 n. r. Increase (WB) 

Santos de Araujo et al. 2007 
[2] 

hPLDF (?) RGS2 Collagen gel 6.0 qPCR: 6; 12; 24 
sqPCR: 6 
WB: 12; 24; 48 

Increase (sqPCR & qPCR: 
GAPDH) 

Increase (WB) 

cAMPi Collagen gel 6.0 1; 3; 6; 12 n. r. Increase (EIA) 
de Araujo et al. 2007 [3] hPDLC (exp) PGE2 Collagen gel 6.0 3; 12; 24; 48; 72 n. r. Increase (EIA) 

PTGS2 Collagen gel 3.6; 6.0; 7.1; 9.5  1; 3; 6; 12; 24; 48; 72 Increase (sqPCR: GAPDH) n. r. 
HSPA5 Collagen gel 6.0 6; 12; 24 Increase (qPCR: GAPDH) n. r. 
IL6 Collagen gel 6.0 6; 12; 24 Increase (qPCR: GAPDH) n. r. 
RND3 Collagen gel 6.0 6; 12; 24 Increase (qPCR: GAPDH) n. r. 
IL1B Collagen gel 6.0 6; 12; 24 Increase (qPCR: GAPDH) n. r. 
RCAN1 Collagen gel 6.0 6; 12; 24 Increase (qPCR: GAPDH) n. r. 
INP4A Collagen gel 6.0 6; 12; 24 Decrease (qPCR: GAPDH) n. r. 

Kaku et al. 2016 [4] hPDLC (dig) TNFRSF11B Collagen gel 0.5; 1.0; 2.0 12;24 Increase (qPCR: GAPDH) n. r. 
COL1A2 Collagen gel 0.5; 1.0; 2.0 12;24 No change (qPCR: GAPDH) n. r. 
LOX Collagen gel 0.5; 1.0; 2.0 12;24 Increase (qPCR: GAPDH) n. r. 
PLOD1 Collagen gel 0.5; 1.0; 2.0 12;24 No change (qPCR: GAPDH) n. r. 
PLOD2 Collagen gel 0.5; 1.0; 2.0 12;24 Increase (qPCR: GAPDH) n. r. 
PLOD3 Collagen gel 0.5; 1.0; 2.0 12;24 No change (qPCR: GAPDH) n. r. 

Kaneuji et al. 2011 [5] MC3T3-E1 
(M. m.) 

TNFRSF11B Collagen gel 7.5; ELISA: 2.5; 7.5 24; ELISA: 48 Increase (sqPCR: β-Actin) Increase (ELISA) 

Kang et al. 2013 [6] hPDLC (dig) IL1B Collagen gel 2.0 2;48 Increase (qPCR: GAPDH) n. r. 
TNF Collagen gel 2.0 2;48 Increase (qPCR: GAPDH) n. r. 
TNFSF11 Collagen gel 2.0 2;48 Increase (qPCR: GAPDH) n. r. 
MMP3 Collagen gel 2.0 2;48 Increase (qPCR: GAPDH) n. r. 



Reference Cell type a Gene symbol 
or metabolite 

Scaffold b Examined force applied Gene expression d,e 
(Increase/ decrease/ no 
change) 

Substance secretion e,f 
(Increase/ decrease/ no change) Magnitude [g/cm2]c Duration [h] 

MMP13 Collagen gel 2.0 2;48 Increase (qPCR: GAPDH) n. r. 
Lee et al. 2007 [7] hPDLC (?) ALPP Collagen gel 1.76 2; 12 

ELISA: 72 
Increase (qPCR: GAPDH) Increase (ELISA) 

IL6 Collagen gel 1.76 2; 12 
ELISA: 72 

Increase (qPCR: GAPDH) Decrease (ELISA) 

CXCL8 Collagen gel 1.76 2; 12 
ELISA: 72 

Increase (qPCR: GAPDH) No change (ELISA) 

Li et al. 2016 [8] hPDLC (dig) TNFSF11 PLGA 25.0 6;24;72 Increase (qPCR: GAPDH) n. r. 
TNFRSF11B PLGA 25.0 6;24;72 Decrease (6h) followed by 

Increase (24,72h) (qPCR: 
GAPDH) 

n. r. 

PTGS2 PLGA 25.0 6;24;72 Increase (qPCR: GAPDH) n. r. 
IL1B PLGA 25.0 6;24;72 Increase (qPCR: GAPDH) n. r. 
HIF1A PLGA 25.0 6;24;72 No change (qPCR: GAPDH) n. r. 
VEGFA PLGA 25.0 6;24;72 Increase (qPCR: GAPDH) n. r. 

Li et al. 2013 [9] hPDLC (dig) CCL20 PLGA 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
STC1 PLGA 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
IL1RN PLGA 25.0 6; 24; 72 Increase (6; 24h) followed by 

decrease(72h) (qPCR: 
GAPDH) 

n. r. 

NOG PLGA 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
FGF7 PLGA 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
FOS PLGA 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
MAP3K8 PLGA 25.0 6; 24; 72 Decrease (6h) followed by 

increase (24; 72h) (qPCR: 
GAPDH) 

n. r. 

JUN PLGA 25.0 6; 24; 72 Decrease (6h) followed by 
increase (24; 72h) (qPCR: 
GAPDH) 

n. r. 

CDK1 PLGA 25.0 6; 24; 72 Decrease (qPCR: GAPDH) n. r. 
CCNA2 PLGA 25.0 6; 24; 72 Decrease (qPCR: GAPDH) n. r. 
KIF11 PLGA 25.0 6; 24; 72 Decrease (qPCR: GAPDH) n. r. 
KIF23 PLGA 25.0 6; 24; 72 Decrease (qPCR: GAPDH) n. r. 
CYR61 PLGA 25.0 6; 24; 72 Decrease (6h) followed by 

increase (24; 72h) (qPCR: 
GAPDH) 

n. r. 

COX1 PLGA 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
PTGS2 PLGA 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 

Li et al. 2016 [10] hPDLC (dig) TNFSF11 PLGA 5.0; 15.0; 25.0 6; 24; 72 Increase (qPCR: GAPDH) Decrease (ELISA)  



Reference Cell type a Gene symbol 
or metabolite 

Scaffold b Examined force applied Gene expression d,e 
(Increase/ decrease/ no 
change) 

Substance secretion e,f 
(Increase/ decrease/ no change) Magnitude [g/cm2]c Duration [h] 

PTGS2 PLGA 5.0; 15.0; 25.0 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
PTHLH PLGA 5.0; 15.0; 25.0 6; 24; 72 Increase (qPCR: GAPDH) Increase (ELISA) 
IL11 PLGA 5.0; 15.0; 25.0 6; 24; 72 Increase (qPCR: GAPDH) Increase (ELISA) 
TNFRSF11B PLGA 5.0; 15.0; 25.0 6; 24; 72 Increase (qPCR: GAPDH) Decrease followed by Increase 

(ELISA) 
PGE2 PLGA 5.0; 15.0; 25.0 6; 24; 72 n. a. Increase (ELISA) 

Li et al. 2011 [11] hPDLC (exp) TNFSF11 PLGA 5; 15; 25; 35 6; 24; 72 Increase (6; 24h) followed by 
decrease (72h) (qPCR: 
GAPDH) 

n. r. 

PTGS2 PLGA 5; 15; 25; 35 6 Increase (qPCR: GAPDH) n. r. 
TNFRSF11B PLGA 25 6; 24; 72 Decrease (6h) followed by 

increase (24; 72h) (qPCR: 
GAPDH) 

n. r. 

IL1B PLGA 25 6; 24; 72 No change (qPCR: GAPDH) n. r. 
CXCL8 PLGA 25 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
IL11 PLGA 25 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
FGF2 PLGA 25 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
PTHLH PLGA 25 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
RUNX2 PLGA 25 6; 24; 72 No change (qPCR: GAPDH) n. r. 
BMP2 PLGA 25 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
POSTN PLGA 25 6; 24; 72 Decrease (qPCR: GAPDH) n. r. 

hGF (exp) CXCL8 PLGA 25 6; 24; 72 Increase (qPCR: GAPDH) n. r. 
TNFSF11 PLGA 25 6; 24; 72 No change (qPCR: GAPDH) n. r. 
TNFRSF11B PLGA 25 6; 24; 72 No change (qPCR: GAPDH) n. r. 
PTHLH PLGA 25 6; 24; 72 No change (qPCR: GAPDH) n. r. 
IL11 PLGA 25 6; 24; 72 No change (qPCR: GAPDH) n. r. 
FGF2 PLGA 25 6; 24; 72 No change (qPCR: GAPDH) n. r. 

Liao et al. 2016 [12] hPDLC ($$) TNFSF11 PLLA modif. 5.0; 15.0; 25.0; 35.0 1d; 3d; 7d; 14d Increase (qPCR: GAPDH) n. r. 
BMP2 PLLA modif. 5.0; 15.0; 25.0; 35.0 1d; 3d; 7d; 14d Increase (qPCR: GAPDH) n. r. 
ASPN PLLA modif. 5.0; 15.0; 25.0; 35.0 1d; 3d; 7d; 14d Increase (qPCR: GAPDH) n. r. 
ALPP PLLA modif. 5.0; 15.0; 25.0; 35.0 1d; 3d; 7d; 14d Increase (qPCR: GAPDH) n. r. 
TNFRSF11B PLLA modif. 5.0; 15.0; 25.0; 35.0 1d; 3d; 7d; 14d No change (qPCR: GAPDH) n. r. 
COL1A1 PLLA modif. 5.0; 15.0; 25.0; 35.0 1d; 3d; 7d; 14d Decrease (qPCR: GAPDH) n. r. 
FGF2 PLLA modif. 5.0; 15.0; 25.0; 35.0 1d; 3d; 7d; 14d No change (qPCR: GAPDH) n. r. 

Shen et al. 2017 [13] MC3T3-E1/SC14 Runx2 Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) Increase (WB) 



Reference Cell type a Gene symbol 
or metabolite 

Scaffold b Examined force applied Gene expression d,e 
(Increase/ decrease/ no 
change) 

Substance secretion e,f 
(Increase/ decrease/ no change) Magnitude [g/cm2]c Duration [h] 

Alp Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) Increase (WB);  
Increase (Activity) 

Ocn Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) Increase (WB) 
Rankl Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) Not detectable (ELISA) 
Opg Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) Increase (ELISA) 

mOB Runx2 Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) n. r. 
Alp Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) Increase (Activity) 
Ocn Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) n. r. 
Rankl Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) n. r. 
Opg Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) n. r. 
Ocn Collagen gel 0; 1; 2; 3; 4; 5 24 Increase (qPCR: Bactn) n. r. 

Jianru et al. 2015 [14] hPDLC (dig) TNFSF11 PLGA 25.0 3; 6; 12 (WB: 12) Increase (qPCR: GAPDH) Increase (WB) 
TNFRSF11B PLGA 25.0 3; 6; 12 (WB: 12) Decrease (3h) followed by 

increase (6,12h) (qPCR: 
GAPDH) 

Increase (WB) 

NFATC2 PLGA 25.0 3; 6; 12 Increase (qPCR: GAPDH) n. r. 

Yi et al. 2016 [15] hPDLC (exp) TNFSF11 PLGA 25.0 24 Increase (qPCR: GAPDH) Increase (WB) 

TNFRSF11B PLGA 25.0 24 Decrease (qPCR: GAPDH) No change (WB) 

PTHLH PLGA 25.0 24 Increase (qPCR: GAPDH) n. r. 

PTGS2 PLGA 25.0 24 Increase (qPCR: GAPDH) Increase (WB) 

CXCL8 PLGA 25.0 24 Increase (qPCR: GAPDH) n. r. 

IL11 PLGA 25.0 24 Increase (qPCR: GAPDH) n. r. 

PGE2 PLGA 25.0 24 n. a. Increase (ELISA) 
a hPDLC (exp) – hPDLC, isolated with explant method; hPDLC (dig) – hPDLC, isolated with digestion method, hPDLC (?) – hPDLC, isolation method not given; hPDLC ($$) – 
hPDLC from commercial sources; hOB – human osteoblasts; hOBMC – human oral bone marrow cells; hGF – human gingival fibroblasts 
Origin of non-human cells: M. m. – M. musculus 
b PLGA – Poly lactic-co-glycolic acid; PLLA modif. – Hydrophilically modified poly-L-lactide acid matrix 
c IF – immunofluorescence; WB – western blot; ELISA - Enzyme linked immune absorbent assay;  
d qPCR – quantitative polymerase chain reaction (e.g. real time PCR); sqPCR – semi-quantitative polymerase chain reaction; followed by reference gene used 
e n. r. – not reported; n. a. – not applicable 
f ELISA – Enzyme linked immune absorbent assay; WB – western blot; IF – immunofluorescence 
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ADDITIONAL CONTRIBUTIONS 
 

Name of the project: Systematic exploration/analysis of the caries 

diagnostic studies 

 

This project consists of four studies. The development of the studies is still in progress. 

Therefore, they are considered as unpublished work, included as “additional contributions” 

in the cumulative dissertation. The project is coordinated by Prof. Dr. Jan Kühnisch from the 

Department of Operative Dentistry and Periodontology, University Hospital, Ludwig-

Maximilians-Universität München. 

Two systematic reviews with meta-analyses on caries diagnostic studies were conducted to 

identify and summarize so far published knowledge in this field. Reviews were done 

separately for studies performed on proximal and occlusal tooth surfaces. Analysing all 

identified studies in detail, it became obvious that the methodology of many caries diagnostic 

studies is heterogeneous and therefore, the comparability of their findings is limited. Aiming 

to eliminate these problems, a scientific network compiled of experts in the field and young 

scientist was formed with the aim to establish and recommend standards for future studies 

in a form of checklist adapted for specific needs in caries diagnostic trials: STAndard Reporting 

requirements in CARies Diagnostic Studies (STARD checklist). Also, a tool to assess internal 

validity of caries diagnostic studies was developed (tailor-made risk of bias (RoB) -analysis), 

and has been additionally applied in 2 meta-analyses. 

From October 2017 – March 2019, three 2-day workshops were conducted to discuss, 

evaluate, agree and publish the findings from the literature in a form of two systematic 

reviews and to develop consensus recommendations.  
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Mila Janjić Ranković will be the first author in Systematic review with meta-analyses on caries 

diagnostic studies performed on proximal surfaces. Further, as the co-author in systematic 

review with meta-analyses on caries diagnostic studies performed on occlusal surfaces, she 

contributed by performing in parallel all steps concerning the literature search, identification 

of the studies, data extraction and RoB evaluation. As the result of the overall work two 

consensus papers on the methodology of caries detection and diagnostic studies are planned. 

The work group aim at finishing the work on the project papers until the end of the 2019. 
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