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Abstract

The rapid release of accurate sky localization for gravitational-wave candidates is crucial for multi-

messenger observations. During the third observing run of Advanced LIGO and Advanced Virgo,

automated gravitational-wave alerts were publicly released within minutes of detection. Subsequent

inspection and analysis resulted in the eventual retraction of a fraction of the candidates. Updates could

be delayed by up to several days, sometimes issued during or after exhaustive multi-messenger followup

campaigns. We introduce GWSkyNet, a real-time framework to distinguish between astrophysical events

and instrumental artefacts using only publicly available information from the LIGO-Virgo open public

alerts. This framework consists of a non-sequential convolutional neural network involving sky maps

and metadata. GWSkyNet achieves a prediction accuracy of 93.5% on a testing data set.
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1. INTRODUCTION

The LIGO Scientific and Virgo Collaborations have so

far reported fifteen confirmed gravitational-wave (GW)

signals from the mergers of compact objects (Abbott

et al. 2019a, 2020a,c,d,e). Depending on the nature of

the objects and the environment surrounding the bi-

nary, merging compact binaries can also emit electro-

magnetic radiation and neutrinos. In the second observ-

ing run (O2) of Advanced LIGO and Advanced Virgo,

low latency GW candidates were distributed to part-

ner astronomers for multi-messenger followup (Abbott

et al. 2019b). This partnership resulted in the combined

measurement of electromagnetic and GW emission from

GW170817 (Abbott et al. 2017a,b), which revolution-

ized our understanding of a wide range of physics related

to merging neutron stars.

Accurate sky localization and the rapid release of

GW candidates are crucial for multi-messenger obser-

vations of astrophysical events. The former is achieved

through a global network of GW observatories: the

two Advanced LIGO detectors in the United States

(Hanford and Livingston) together with the Advanced

Virgo detector in Italy have been able to pinpoint the
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sky location of nearby GW candidates to areas smaller

than 50 square degrees. The latter is achieved through

fast and efficient data analysis pipelines. During the

third observing run (O3) of Advanced LIGO and Ad-

vanced Virgo, low latency GW alerts were publicly avail-

able within minutes through the Gamma-ray Coordi-

nates Network (GCN)1 and on the GW candidate event

DataBase (GraceDB)2. For compact binaries, the in-

formation released in Open Public Alerts (OPA) in-

cluded3: the false-alarm-rate (FAR) estimated by the

search pipelines, the inferred sky position and distance
of the source (Singer & Price 2016; Singer et al. 2016a),

the probability of astrophysical origin with classifica-

tion according to different mass regions (Kapadia et al.

2020), and the probability of neutron star matter con-

tent (Chatterjee et al. 2020; Foucart et al. 2018). Rapid

and public information release enabled every astronomer

with access to telescopes or neutrino detectors to search

for counterparts to the GW candidates (Andreoni et al.

2019; Antier et al. 2020; Hussain et al. 2020; Vieira et al.

2020; Kasliwal et al. 2020; Graham et al. 2020; Coughlin

2020; Coughlin et al. 2020).

1 https://gcn.gsfc.nasa.gov/
2 https://gracedb.ligo.org/
3 https://emfollow.docs.ligo.org/userguide/index.html
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Preliminary OPAs in O3 were generated automati-

cally when low-latency GW search pipelines reported

an effective FAR below either 1 per 2 months for the

matched-filtering searches or 1 per year for the unmod-

eled burst searches (Abbott et al. 2020b). This FAR

threshold targets an overall astrophysical purity of 90%,

hence some candidates will likely originate from instru-

mental artefacts. GW candidates recognized as the re-

sult of an instrumental artefact after human inspection

were retracted by LIGO and Virgo. Retractions usually

appeared within an hour of the initial alert, although

in some occasions it could take significantly longer, up

to several days. Some surviving candidates were up-

dated when further analyses provided more accurate in-

formation, sometimes changing the binary classification.

LIGO and Virgo released a total of 80 OPAs during

O3, of which 24 were subsequently retracted. Of the

remaining 56 candidates, 26 were reported with a non-

vanishing probability of being of terrestrial origin, and 4

have been confirmed so far as real astrophysical events

by the LIGO Scientific and Virgo Collaborations (Ab-

bott et al. 2020a,c,d,e).

Telescope time is competitive and astronomers have to

carefully select which candidates to pursue. Some of the

retracted events in O3 had very accurate sky localiza-

tion or very low FARs, qualities that make a candidate

promising for followup. For instance, the binary neutron

star candidate S190822c4 was reported with a FAR of 1

per 5x109 years. Within less than one hour, three dif-

ferent followups with various instruments were reported

(Cook et al. 2019; Lipunov et al. 2019; Raamis et al.

2019). The candidate was then retracted 1.5 hours af-

ter the preliminary alert. Depending on the time of the

event and the available instruments, telescopes can be

steered to point towards the sky location of GW can-

didates within minutes (though counterpart identifica-

tion, if achieved, can take a much longer time depend-

ing on the area of uncertainty of the event). How can

astronomers best decide which candidates to follow up

based on the information released in OPAs?

In this work we introduce GWSkyNet, a low latency

classifier to separate real astrophysical events from ter-

restrial artefacts, supplementing information provided

by the LIGO Scientific and Virgo Collaborations. Con-

trary to recent GW classifiers (Chatterjee et al. 2020;

Kim et al. 2020), which rely on access to LIGO-Virgo

data, GWSkyNet only requires publicly available data

products and hence can be used by any astronomer.

Built with state-of-the-art machine learning algorithms

4 https://gracedb.ligo.org/superevents/S190822c/view/

such as non-sequential convolutional neural networks

and multiple input machine learning models, GWSkyNet

achieves an accuracy of 93.5% on a testing data set.

This manuscript is organized as follows. In Sec. 2 we

describe the data set constructed to train and test the

machine learning algorithm. In Sec. 3 we describe the

data preparation and the features selected for training,

as well as the architecture chosen for the machine learn-

ing model. Section 4 presents the results obtained with

the fully trained model, including predictions for the O3

candidates in GraceDB. Finally, we summarize our find-

ings in Sec. 5.

2. THE DATA SET

A data set with a large, balanced number of labeled

examples is key to the success of supervised machine

learning. With GW astronomy still in its infancy, the

currently confirmed population of astrophysical GW

events is insufficient to construct a robust training set.

This section describes the methods used to simulate a

population of real candidates and identify a population

of noise candidates in real data.

2.1. Real events

A population of simulated real events is constructed

using gravitational waveform models for compact bina-

ries, available in the LALSuite (LIGO Scientific Collabo-

ration 2018) package. Masses are drawn from a uniform

distribution in the total mass of the binary, with compo-

nent masses in the range m ∈ [1.2, 2.2]M� for neutron

stars and m ∈ [3, 100]M� for black holes. For simplicity,

spins are restricted to be along the direction of orbital

angular momentum. Spin magnitudes are constrained

to χ ≤ 0.05 for neutron stars and χ ≤ 0.99 for black

holes. With these conditions, we generate three types of

binaries: binary neutron stars, neutron-star black-hole

binaries and binary black holes. Sources are distributed

uniformly in co-moving volume with a maximum dis-

tance of up to 1.5 Gpc, depending on the binary type

and the detectors sensitivities. Sky locations are ran-

domly distributed, and the inclination angle, ι, is dis-

tributed uniformly over arccos ι.

To avoid contaminating the training set of real events

with noise artefacts present in GW data, simulated sig-

nals are added into Gaussian noise coloured with the

power spectral densities (PSD) of Advanced LIGO and

Advanced Virgo. Three PSDs associated with three dif-

ferent GW events in the Gravitational-Wave Open Sci-

ence Center (GWOSC) (Abbott et al. 2019c) are chosen

to represent different sensitivities of the detectors. The

PSDs at the time of GW150914 and GW170104 repre-

sent the two Advanced LIGO detectors (Hanford and

https://gracedb.ligo.org/superevents/S190822c/view/
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Figure 1. Time-frequency representation of a blip glitch
included in the noise set. The red curve represents the GW
template that triggered the OGC-1 search. This template
corresponds to a binary black hole with masses m1 = 40M�
and m2 = 19M�. The network SNR reported by the search
at the time of this glitch is ρN = 11.3.

Livingston) in the first (O1) and second (O2) observing

runs, respectively. To incorporate the Advanced Virgo

detector, we additionally use the PSD at the time of

GW170729, when Virgo had joined the observing run

and the two LIGO detectors had significantly different

sensitivities with respect to the rest of O2 (Abbott et al.

2019a). Simulated signals are distributed equally among

these three different representative sensitivities.

To select only those signals that would be detectable

by GW search pipelines, we impose the following con-

ditions on the matched-filtering signal-to-noise ratio

(SNR) of the signal. First, the signal must be detected

in at least two observatories with SNR ρ ≥ 4.5. Second,

the network SNR, given by the quadrature sum of the

individual SNRs satisfying the first condition, must be

ρN ≥ 7. After applying these conditions, the final data

set of simulated real events consists of 2857 candidates.

While this population of real events can be easily in-

creased, it is important to keep a good balance in the

training set between real and noise candidates Johnson

& Khoshgoftaar (2019).

2.2. Noise events

Matched-filtering searches for GWs from compact bi-

naries select candidates by requiring a temporal coinci-

dence between detectors (Nitz et al. 2018; Messick et al.

2017; Adams et al. 2016; Chu 2017). The coincidence

window is set by the maximum light-travel time between

detectors plus the uncertainty in the inferred coalescence

time in each detector. Noise transients (glitches) are in-

dependent between detectors and will rarely happen si-

multaneously. However, random noise fluctuations can

have a sufficiently high SNR to trigger a coincidence in

the search pipelines at the time of a glitch. If the re-

sulting network SNR is greater than the pipeline’s pre-

determined threshold (and the FAR is sufficiently low),

the glitch can be identified as a GW candidate by the

low-latency searches and generate an automatic OPA.

Two main ingredients are required to identify a pop-

ulation of noise events: a collection of known glitches in

real detector data, and a collection of corresponding can-

didates (triggers) from the GW search pipelines. For the

former, we use the collection of blip glitches from Cabero

et al. (2019) and the O1 and O2 collections of glitches

from the Gravity Spy classifier (Zevin et al. 2017; Ba-

haadini et al. 2018; Coughlin et al. 2019). For the lat-

ter, we use the search triggers from the second Open

Gravitational-wave Catalog (2-OGC) (Nitz et al. 2019).

Each of these catalogs contain thousands of glitches and

triggers, but only a small fraction of glitches will be as-

sociated with a coincident trigger and satisfy the SNR

requirements imposed by the search pipelines.

While the temporal coincidence condition is consis-

tent among GW searches, different search pipelines use

different SNR requirements. Here, we apply the same

threshold as for the simulated signals of the real events

set: individual SNR ρ ≥ 4.5 in at least two detectors,

and network SNR ρN ≥ 7. When a glitch is within

±0.5s of a 2-OGC coincident search trigger in the same

detector, the candidate is selected for further evaluation.

All the selected glitches are then visually inspected to

ensure that the glitch and the waveform overlap. Figure

1 shows an example of a noise candidate, with the grav-

itational waveform of the coincident trigger overlaid on

top of the glitch. The final data set of noise events con-

sists of 1267 candidates, which makes 30% of the total
training set. In the future, with the release of the O3

data sets, additional glitches will become available for

the training set.

3. MACHINE LEARNING CLASSIFIER

Convolutional Neural Networks (CNN) are state-of-

the-art deep learning algorithms commonly used for im-

age classification. We employ a non-sequential CNN

architecture to design GWSkyNet, a real/noise classifier

for real-time GW-candidate alerts. The main inputs to

the classifier are the 3D sky map images released in the

LIGO-Virgo OPAs. During O2, a method based on the

mutual information distance of 2D GW sky maps was

included in part of the LIGO-Virgo human vetting to

distinguish between signal and noise (Essick 2017; Es-

sick & Urban 2017). Here we introduce the first CNN
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Figure 2. Sky map obtained with BAYESTAR for the blip
glitch shown in Fig. 1. (Top) Image as it would appear in an
OPA on GraceDB. (Bottom) Same image after re-projection,
normalization and down-sampling onto a 90x180 grid. This
image is used for training the machine learning algorithm.

classifier for GW sky maps, with a more diverse set of in-

puts. We find that additional numerical and categorical

data, such as the distance to the source and the detec-

tor network, are important for sky map classification.

Therefore, we construct a multiple input CNN model

that accepts mixed data features. In this section, we

first explain the features chosen for training and then

describe the specifications of the network architecture.

3.1. Training features

We use BAYESTAR (Singer & Price 2016; Singer et al.

2016a,b) to reconstruct the 3D sky localization of the

source for each candidate in the training set. The

sky localization is stored as a Flexible Image Transport

System (FITS) file. BAYESTAR FITS files contain four

columns that represent four channels of a Hierarchical

Equal Area isoLatitude Pixelization (HEALPIx) all-sky

image. The first column (prob) represents the 2D prob-

ability sky map. The other three columns (distmu,

diststd and distnorm) are used to calculate the 3D

probability volume map. The BAYESTAR FITS header

provides additional metadata about the candidate. Of

particular interest for the purpose of this work are the

posterior mean distance of the source and the list of GW

instruments that triggered the candidate.

Input: volume image 
(N, 90, 180, 3)

Input: sky map image 
(N, 90, 180, 1)

SepConv 3x3, 16

MaxPool 2x2

GobAvgPool

Dense(32)

Concatenate

Output: Dense(1)

Input: detectors
(N, 3)

Input: distance
(N, 1)

Input: normalization 
factor (N, 1)

Dense(1) Dense(1)Flatten

(4x)SepConv 3x3, 16

SepConv 3x3, 32

Dense(4)

MaxPool 2x2

SepConv 3x3, 16

MaxPool 2x2

SepConv 3x3, 16

MaxPool 2x2

SepConv 3x3, 32

GobAvgPool

Dense(4)

Figure 3. Architecture of the multiple input model con-
structed to classify GW sky maps. The first two branches
are CNNs with residual connections for image data. The
shape of the input data is indicated in parenthesis, with N
the number of examples in the training set. The numbers in
the SeparableConv2D (SepConv) and MaxPool layers indi-
cate the kernel size in pixels and the number of filters (when
applicable). The number in the Dense layers indicates the
number of units.

For training, we transform each column in the FITS

file (the sky map images) to a rectangular projection

with 180 x 360 pixels. Pixels with invalid values in the

volume columns, as defined in Singer et al. (2016b), or

with NaN values originating from the re-projection, are

replaced with zero. Each image is then normalized in-

dependently dividing by its maximum value. To reduce

computations during training, images are down-sampled

to 90 x 180 pixels using the maximum pooling method.

Figure 2 shows an example of a sky map image after

re-projection, normalization and down-sampling. The

three volume images are stacked together to form a 3-

channel cuboid that will be used as input for the classi-

fier. The final set used as input for training the machine

learning algorithm consists of eight features:

• Sky map image, shape (90, 180, 1),

• Stacked volume images, shape (90, 180, 3),

• Posterior mean distance in Mpc, normalized divid-

ing by the maximum value in the training set,

• Detector network in 3-bit multi-hot encoding for-

mat, with one bit reserved for each detector (LIGO

Hanford, LIGO Livingston and Virgo),

• Four normalization factors (one for each image),

normalized dividing by the corresponding maxi-

mum value in the training set.

3.2. GWSkyNet architecture and training

We use TensorFlow (Abadi et al. 2015) and the func-

tional API in Keras to construct a multiple input model
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Figure 4. False Positive Rate (FPR) and False Nega-
tive Rate (FNR) as functions of the Real-Noise (RN) score
threshold (based on Figure 9 in Duev et al. (2019)). At a
score threshold RN≥ 0.5, GWSkyNet yields 7.6% FNR and
4.3% FPR. Lowering the threshold to RN≥ 0.1 reduces the
FNR to 5.5%, with small variation on the FPR (5.1%). The
intersection is at RN' 0.06, with FPR=FNR=5.1%.

with eight branches. The first two branches are CNNs

designed to operate over the image data (sky map and

3-channel volume images). To improve the performance

of the classifier, residual connections are added to each

CNN branch, with two residual blocks in the sky map

branch and one block in the volume branch. The other

six branches are simple multi-layer perceptrons for the

categorical and numerical data. All branches are con-

catenated together into the final multiple input model.

A complete description of the specifications of the net-

work can be seen in Fig. 3. Rectified Linear Units

(ReLU) activation functions are used for all hidden lay-

ers, and a sigmoid activation function is used for the

output layer.

The training set introduced in Sec. 2, with 4124 can-

didates, is split into 81% for training, 9% for validation

and 10% for testing. The algorithm is trained on GPUs

available through Google Colaboratory5, and hyper-

parameter optimization is performed with KerasTuner

(O’Malley et al. 2019). Training is enabled for 500

epochs, employing the binary cross-entropy loss func-

tion, the Adam optimizer with a learning rate of 0.002,

and batch size of 32. Our use of GlobalAveragePooling

ensured a small model (3687 free parameters in total),

helping us avoid overfitting.

4. PERFORMANCE AND PREDICTIONS

The accuracy, which measures the fraction of correct

predictions over the total number of classifications, is

5 https://colab.research.google.com/notebooks/intro.ipynb
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Figure 5. Confusion matrix, with normalized values in
parenthesis, for thresholds RN≥ 0.5 (top) and RN≥ 0.1 (bot-
tom) denoting a real source.

a performance metric commonly used for binary classi-

fiers. With a Real-Noise (RN) score threshold of RN≥
0.5 denoting a real source, the fully trained GWSkyNet

achieves an accuracy of 93.5% on a test set with 413

candidates, independent from the training set. We also

use precision and recall values as additional performance

measures. The precision, defined as the fraction of true

predicted positives over the total number of predicted

positives, measures how often the model is correct when

it predicts that a candidate is real. The recall or true-

positive rate, defined as the fraction of true predicted

positives over the total number of actual positives, mea-

sures how many real candidates are predicted correctly.

On the test set, the classifier achieves a precision of

97.7% and a recall of 92.4% for RN≥ 0.5. Figure 4

shows the False Positive Rate (FPR) and False Nega-

tive Rate (FNR) on the test set for different Real-Noise

(RN) score thresholds. The FPR varies very slowly with

the RN threshold, so one can lower the FNR by lowering

the threshold with only a small increase in the FPR. In

Fig. 5 we show the confusion matrices on the test set

https://colab.research.google.com/notebooks/intro.ipynb
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for two different RN thresholds of 0.1 and 0.5. Based on

one’s preference for higher recall or higher precision, the

threshold can be changed with the understanding that

improving recall (precision) involves lowering precision

(recall).

The O3 retracted candidates and confirmed astrophys-

ical signals are a further test of the classifier perfor-

mance. For each candidate, we use the BAYESTAR multi-

order FITS files from GraceDB, since the training set

was built using this pipeline. Of the 4 confirmed GW

signals (Abbott et al. 2020a,c,d,e), the classifier recog-

nizes all of them as true astrophysical signals. Of the

22 retracted candidates identified by matched-filtering

searches, 10 are correctly identified as instrumental arte-

facts and 12 are misclassified as astrophysical. Among

the correct classifications is, for instance, the candidate

S190822c mentioned in Sec. 1, which was retracted 1.5

hours after the preliminary alert. In future observing

runs, GWSkyNet could provide immediate warning about

the plausibility of a candidate, in some occasions spar-

ing followup time invested on non-astrophysical candi-

dates. The misclassifications on noise candidates can be

explained from the data set used for training. On one

hand, most of the retracted candidates were identified

by the GstLal and MBTAOnline search pipelines (as re-

ported in GraceDB), while all the noise candidates in

the training set originated from PyCBC search triggers.

On the other hand, almost 70% of the retracted candi-

dates included the Virgo detector, for which we could

not include many noise events in the training set due

to the small amount of available Virgo data. Incorpo-

ration of additional glitches in the training set, both by

including results from different search pipelines as well

as glitches from O3 data (when available), should lead

to improved results. In addition, visualization of layers

of the trained network can provide an insight into the

decisions reached. This is a nascent field and we will

be exploring related methodology for building in more

interpretability and explainability.

4.1. O3 GraceDB predictions

We report predictions for the 51 unpublished candi-

dates identified by at least one matched-filtering search

for compact binaries. Using the initial BAYESTAR

multi-order FITS files released in the preliminary alert,

GWSkyNet predicts that 41 candidates are of astrophys-

ical origin, and 10 candidates are due to terrestrial

artefacts: S190510g, S190718y, S190901ap, S190910d,

S190910h, S190930t, S191105e, S191205ah, S200213t

and S200302c. All these 10 candidates have a non-

zero probability of terrestrial origin, as estimated by

LIGO and Virgo methods (Kapadia et al. 2020). How-

ever, two of these candidates are single-detector triggers

(S190910h and S190930t). Since there are no examples

in the training set of GW candidates observed by only

one detector, predictions on single-detector candidates

should be taken with caution. The release of the O3

catalog by the LIGO Scientific and Virgo Collaborations

will determine the accuracy of these predictions.

5. CONCLUSION

In this work we have introduced GWSkyNet, a new ma-

chine learning binary classifier for low-latency GW can-

didates that complements the information released by

the LIGO Scientific and Virgo Collaborations. This clas-

sifier, based solely on publicly available data products,

can be used by the broader astronomy community for

fast decision making on candidate followup. In future

observing runs, real time predictions from GWSkyNet on

preliminary automated alerts could identify noise candi-

dates without the delay of human-based retractions or

analysis updates. More importantly, astronomers will

receive additional information on the astrophysical prob-

ability of non-retracted candidates.

The classifier has been trained using LIGO and Virgo

detector glitches as noise candidates and simulated sig-

nals of compact binary mergers as real candidates. With

a threshold RN ≥ 0.5 denoting a real source., the accu-

racy achieved on a test data set, which is independent of

the training set, is 93.5%. Additionally, we reported pre-

dictions from GWSkyNet on O3 GraceDB candidates. Of

the 51 unpublished non-retracted candidates, the clas-

sifier identified 10 as not astrophysical, with the caveat

that two of those are single-detector candidates.

Increasing the size of the training set will be crucial

to improve the classifier performance. In future work,

we will incorporate additional candidates from differ-

ent search pipelines, as well as from the O3 data set.

With a larger training set in hand, we will construct a

multi-class classifier capable of distinguishing between

different classes of binary mergers.

We make available the final GWSkyNet model along

with the pre-processing steps necessary to make predic-

tions on GraceDB events and reproduce our results at

https://github.com/micamu/GWSkyNet.

https://github.com/micamu/GWSkyNet
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