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The main problems of nonvacuum numerical relativity, compact binary mergers and stellar col-
lapse, involve hydromagnetic instabilities and turbulent flows, so that kinetic energy at small scales
have mean effects at large scale that drive the secular evolution. Notable among these effects is mo-
mentum transport. We investigate two models of this transport effect, a relativistic Navier-Stokes
system and a turbulent mean stress model, that are similar to all of the prescriptions that have been
attempted to date for treating subgrid effects on binary neutron star mergers and their aftermath.
Our investigation involves both stability analysis and numerical experimentation on star and disk
systems. We also begin the investigation of the effects of particle and heat transport on post-merger
simulations. We find that correct handling of turbulent heating can be important for avoiding un-
physical instabilities. Given such appropriate handling, the evolution of a differentially rotating star
and the accretion rate of a disk are reassuringly insensitive to the choice of prescription. However,
disk outflows can be sensitive to the choice of method, even for the same effective viscous strength.
We also consider the effects of eddy diffusion in the evolution of an accretion disk and show that it
can interestingly affect the composition of outflows.

I. INTRODUCTION

It is progress, of a sort, that the realism of numeri-
cal relativity simulations is now limited primarily by the
same physical and computational challenges as is that of
their Newtonian counterparts. Surely among the greatest
of these is the multiscale nature of turbulent fluid flow;
kinetic energy at the system size or unstable mode wave-
length cascades through an inertial range of smaller scales
until finally dissipated into internal energy at scales far
below what can be captured numerically. High Reynolds
numbers, and hence this turbulent cascade, are expected
in all of the main problems in nonvacuum numerical rel-
ativity: binary neutron star mergers, black hole-neutron
star mergers, core-collapse supernovae, and collapsars.

One solution would be to pursue much higher resolu-
tion simulations. The highest resolution binary neutron
star mergers now have grid spacings of order twenty me-
ters [1]. Meanwhile, several groups are designing compu-
tational infrastructure that will allow scaling up to hun-
dreds of thousands of threads (e.g. [2]). Another, com-
plementary strategy, is to model subgrid-scale transport
effects by adding effective stress, heat and particle con-
duction, and dynamo terms to the large-scale evolution
equations. Several such attempts have been made for rel-
ativistic hydrodynamics in the context of binary neutron
star post-merger remnants [3–7] and black hole accre-
tion (also often with post-merger applications) [8, 9] and
of course in Newtonian hydrodynamics turbulence mod-
eling is a vast endeavor. (For book-length treatments,
see [10, 11]. Of particular interest to relativistic astro-
physics is the incorporation of turbulence effects on core
collapse supernovae that might not be directly captured

due to resolution limits or dimensional reduction [12–
16].) They have the advantage that grids can remain
small and simulations cheap, so that parameter explo-
rations can readily be carried out. On the other hand,
to be believable, the added terms must be calibrated to
and validated by expensive high-resolution simulations.
Probably, both strategies will play a role in the successful
exploration of turbulent-fluid dynamical-spacetime sys-
tems.

An important distinction should be made among sub-
grid models. (On this distinction, see e.g. [17]). In what
we will call “large-eddy simulations”, it is assumed that
a significant portion of the inertial range is resolved, and
subgrid stress terms are computed as an extrapolation
of the character of resolved turbulence to subgrid scales
(e.g. [18–21]). An example of such methods is the gradi-
ent model which has recently been adapted to relativistic
magnetohydrodynamics by Carrasco, Viganò, and Palen-
zuela [22] (see also [23]). The subgrid dynamo term of
Giacomazzo et al [4] might also fit into this category,
because the field growth is stopped when the magnetic
energy density approaches an estimate of the subgrid tur-
bulent kinetic energy density. Alternatively, one may not
resolve the turbulence at all (or fail to model the physics
that inputs energy into the turbulent cascade). In this
case, subgrid stresses must be assigned as functions of the
resolved laminar flow, and one has a mean-field model.
(It is common also to introduce new evolution variables
in the large-scale evolution representing, for example, the
turbulent kinetic energy.) In this paper, we shall mostly
be concerned with mean-field models. The most famous
is the alpha-viscosity prescription of Shakura and Sun-
yaev [24], and a number of the above-mentioned numeri-
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cal relativity studies [3, 5, 6, 9] follow the alpha-viscosity
path of modeling unresolved turbulence as a viscosity via
the Navier-Stokes equations. It should be remembered
that momentum transport is only one of the large-scale
effects of turbulence. By analogy with the kinetic theory
of gases, one also expects turbulent heat conduction, tur-
bulent eddy diffusion of scalar quantities like composition
variables, and a turbulent effective pressure.

Subgrid transport has recently been introduced into
binary neutron star merger simulations by Radice [7].
As described in more detail below, Radice considers his
added stress terms to be the results of an averaging proce-
dure with an imposed closure which is similar to but not
the same (nor intended to be the same) as the relativis-
tic Navier-Stokes equations. Because his specification of
the mixing length does not rely on locally-measured tur-
bulence (most recently, it is calibrated to high-resolution
MHD merger simulations [25]), the resulting model is a
mean-field model (a calibrated one) by our definition (al-
though it could be extended into a large eddy model by
our definition by using local velocity gradients to esti-
mate the effective viscosity, as done by Smagorinsky and
subsequent large-eddy models [18]), and so it can be com-
pared to the Navier-Stokes simulations of the Illinois and
SACRA groups [3, 5].

In this paper, we investigate both Navier-Stokes and
Radice-style momentum transport models. Our formula-
tions differ from some others in the literature mentioned
above in that we retain the same evolution variables as
in ideal hydrodynamics, so that the recovery of primi-
tive variables is not complicated by any of our various
non-ideal transport modifications. We study the proper
formulation of both models and analyze their stability.
We perform numerical experiments on both of the main
configuration types that appear in numerical relativity: a
differentially rotating compact star and a neutrino-cooled
black hole accretion disk. Finally, we look at the effect of
other types of turbulent mixing on a representative accre-
tion disk system. In particular, we consider the effect of
turbulent effective heat flows on the mass of the outflow
and the effect of eddy diffusion on its composition. The
importance of the outflow mass is obvious, but the com-
position distribution of disk ejecta is also an output of
post-merger simulations of great importance for kilonova
predictions [26], where the relevant composition variable
in this case is the electron fraction Ye. The lack of tur-
bulent composition mixing in prior studies that model
transport by an effective viscosity is potentially one of the
major differences between these studies and proper (but
expensive) magnetohydrodynamic simulations which in-
corporate all effects of turbulence. (There are, of course,
other major differences, including the effects of a large-
scale B field, which no local transport model will be able
to capture.)

We find that, in mean-field momentum transport mod-
els, it is crucial to properly include turbulent heating to
the energy equation. Failure to do so results in unphysi-
cal behavior, most notably a nonaxisymmetric instability

in rotating stars which often appears only after the star
has come close to uniform rotation (so that the effect of
the transport is presumed to be nearly done). While sim-
ple mean field closure relations are not four-dimensionally
covariant, for the types of problems (and coordinate sys-
tems) common to numerical relativity, the difference from
a Navier-Stokes evolution is quite modest. The only ex-
ception, although a very important one, is in the outflow
mass, for which the differences can be quite significant.
In our test case, heat diffusion significantly increases the
mass of ejected matter, while eddy diffusion can affect
the peak and width of the Ye distribution.

The paper is organized as follows. In section II, we
derive the relativistic Navier-Stokes equations, put them
in a convenient form for numerical implementation, and
analyze their stability. In section III, we work from a
framework of averaging the effects of subgrid stresses,
looking particularly at the treatment of the energy equa-
tion. In section IV, we test our transport methods on a
differentially rotating star problem, first looking at the
early-time evolution of the rotation profile and entropy,
then at the long-term stability issues. In section V, we
present numerical experiments on a black hole accretion
system. We summarize our findings in section VI.

II. THE RELATIVISTIC NAVIER-STOKES
EQUATIONS

A. Metric and Fluid Variables

In the 3+1 formalism, spacetime is foliated into space-
like hypersurfaces Σ(t) parametrized by the timelike co-
ordinate t. The spacetime metric is gµν , which we de-
compose as

ds2 = −α2 + γij(dx
i + βi)(dxj + βj) (1)

where α is the lapse, βi the shift and γij the 3-metric.
The unit normal nµ to a slice Σ is then

nµ =
1

α
(tµ − βµ) = (1/α,−βi/α) (2)

The extrinsic curvature of a slice Σ is defined as

Kµν = −∇νnµ − nνγλµ∇λ(lnα) = −1

2
Lnγµν (3)

where Ln is the Lie derivative along the normal nµ.
For a perfect fluid, we defined the stress-energy tensor

of matter as

Tµν = ρ0hu
µuν + Pgµν (4)

where ρ0 is the baryon density, h = 1 + P/ρ0 + ε is the
specific enthalpy, P is the pressure and ε the specific
internal energy. The 4-velocity uµ can be decomposed
in 3+1 form

uµ = W (nµ + vµ) (5)
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where W is the Lorentz factor, and vµ the 3-velocity.
Note the we require vµnµ = 0 (vt = 0). In components,
we have

uµ = (W/α,W [vi − βi/α]) (6)

uµ = (W [−α+ βivi],Wvi). (7)

The conservative variables used for numerical evolutions
are

ρ∗ = ρ0W
√
γ (8)

τ =
√
γnµnνT

µν − ρ∗ (9)

Si = −√γnµγiνTµν . (10)

Although not an evolution variable, the purely spatial
projection of the stress tensor appears in source terms.

Sij ≡ α
√
γγαi γ

β
j Tαβ (11)

For a perfect fluid Eq 4, the stress tensor projections are

τ = ρ∗(hW − 1)− P√γ (12)

Si = ρ∗hui. (13)

The evolution equations are the conservation of baryon
number and the projections of the Bianchi identity
∇µTµν = 0:

∇µ(ρ0u
µ) = 0 (14)

∇µ(Tµνnν) = Tµν∇µnν (15)

∇µ(Tµνgνi) = 0 , (16)

which can be expanded as

∂tρ∗ + ∂i(ρ∗v
i
T ) = 0 (17)

∂tτ + ∂i(τv
i
T + P

√
γαvi) =

αPK
√
γ − Si∂iα+ SiSjKij

α

ρ∗Wh
(18)

∂tSj + ∂i(Sjv
i
T + αP

√
γδij) = Si∂jβ

i (19)

+
√
γP (∂jα+

α∂jγ

2γ
)− ρ∗Wh∂jα+

αSiSk∂jγik
2ρ∗Wh

where the source term for τ is −α√γTµν∇νnµ =

−Si∂iα + SijK
ij and the source term for Si is

α
√
γTµν∂igµν/2, while we defined the transport veloc-

ity

viT =
ui

ut
= αvi − βi. (20)

B. The Shear Tensor

A simple prescription for a viscous fluid is to include
a shear viscosity but no bulk viscosity. Then, the stress-
energy tensor becomes

Tµν = Tµνideal + τµν = Tµνideal − 2ησµν (21)

where

σµν = ∇(µuν) + uα
(
∇αu(µ

)
uν) −

1

3
∇αuαhµν (22)

is the shear tensor and

hµν = gµν + uµuν . (23)

The coefficient η sets the strength of the viscosity. For a
physical viscosity, kinetic theory would lead one to expect
η ≈ ρ0cs`, where cs is the sound speed and ` is the mean
free path of the constituent particle.

We can take advantage of the identity σµνuµ = 0 so
that

σjt = −σijviT (24)

σtt = σijv
i
T v

j
T (25)

σti = σij
vj

α
(26)

σij = σjk

(
γik − βivk

α

)
(27)

σtt = −σij
viT v

j

α
(28)

σtt =
σij
α2

vivj (29)

σti =

(
γik

α
− βivk

α2

)
σkjv

j (30)

σij = σlm

(
γilγjm +

βiβj

α2
vlvm

)
−σlm

(
βi

α
γjlvm +

βj

α
γilvm

)
, (31)

and we only need to compute σij to recover the full 4-
dimensional tensor. This 3D tensor can be simplified as

σij =
W

2α
(uj∂tui + ui∂tuj)−

hij
3α
√
γ
∂t(
√
γW )

+
1

2
(∂iuj + ∂jui)−

hij
3α
√
γ
∂k(W

√
γvkT )

−W (Kij + vkΓ
(3)k
ij )− W

2α
(ui∂jut + uj∂iut) (32)

+
WvkTui

2α
(∂kuj − ∂juk) +

WvkTuj
2α

(∂kui − ∂iuk)

This only requires time derivatives of ui and (
√
γW ).

C. Evolution Equations

The inclusion of the viscous shear tensor induces modi-
fication to the evolution equation for τ and Si. The fluxes
are now

F iτ = τviT + Pα
√
γvi − 2ηα2√γσti (33)

F iSj
= Sjv

i
T + αP

√
γδij − 2ηα

√
γσij (34)
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and the source terms

Sτ = Sideal
τ − 2ηα

√
γ(σijK

ij − σti∂iα)

+ ∂t(2ηα
2√γσtt) (35)

SSj = Sideal
Sj
− ηα√γσµν∂jgµν

+ ∂t(2ηα
√
γσtj). (36)

D. Stability

We will consider stability on a flat background, for
perturbation around a homogeneous fluid configuration.
The perturbations will be planar waves proportional to
exp (Γt+ ikx). First order theories of the Navier-Stokes
equation, including the equations derived in the previ-
ous section, are acausal and have unstable modes with
extremely rapid growth rate [27]. One can however re-
cover a stable and covariant viscous formalism by going to
second-order methods (Israel-Stewart viscosity [27–29]),
which treat the viscous stress-tensor as an evolved vari-
able. Instead of setting the viscous stress tensor τij at
each event xµ equal to its instantaneous values

τ inst
ij = −2η(ρ0(xµ), T (xµ))σij(u

α(xµ), ∂βu
α(xµ)) ,

we then evolve the viscous stress according to

∂tτij = − 1

td

(
τij − τ inst

ij

)
(37)

or

L~t+ ~vT
τij = − 1

td

(
τij − τ inst

ij

)
(38)

The advection term in the second version is probably
preferable for systems with high velocities (at least, high
velocities not along a symmetry of the fluid configura-
tion). Alternatively, if td is small compared to physical
timescales, the driver can handle the advection itself. In
the applications in this paper, systems are mostly ax-
isymmetric and velocities mostly azimuthal, so we find
better performance with Eq. 37.

Consider the case of a perturbation propagating along
the direction of the fluid motion (uy = uz = 0, ux 6=
0). We perturb the energy and momentum equations
and close the system by specifying an equation of state
ε(ρ0, T ), P (ρ0, T ). Consider transverse modes (involving
δuA, δτxA), where capital roman letters will stand for
indices y, z. We have the constraint

δτ tµ =
ux
W
δτxµ. (39)

The perturbed momentum equation along y, z becomes

ρ0h(ΓW + ikux)δuA + (Γ
ux
W

+ ik)δτxA = 0

and the evolution equations for δτxA without advection
term is

(Γtd + 1)δτxA = −ηW (ikW + uxΓ)δuA. (40)

With the advection term, it would be

(Γtd + 1)δτxA = −ηW (ikW + uxΓ)δuA −
ux
W
tdikδτxA.

(41)
Concentrating for the moment on the system without

advection of τxA (Eq. 40), we thus have the system(
ρ0h(ΓW + ikux) 1

W (Γux + ikW )
ηW (ikW + uxΓ) 1 + Γtd

)(
δuA
δτxA

)
=

(
0
0

)
Taking the determinant of the matrix, we solve for Γ

and find

Γ =
−ρ0hW + i(· · · )±∆1/2

· · · , (42)

where we have neglected to expand factors not relevant
to the question of stability, which requires only <(Γ) < 0.
In the above,

∆ = (ρ0hW )2

− 2ikuxρ0h (ρ0hWtd + 2η)

− k2
(
(ρ0huxtd)

2 + 4ηWρ0htd
)
. (43)

For stability, we need <
(
∆1/2

)
≤ ρ0hW . Note that the

marginal stability case ∆1/2 = ∆
1/2
ms = ρ0hW is of the

form ∆ms = (ρ0hW ± ikB)2 = (ρ0hW )2 ± 2ikρ0hWB −
k2B2 for some B ∈ R. On the other hand, Eq. 43 has
the form ∆ = (ρ0hW )2−2ikρ0hWC−k2D for C,D ∈ R.
Thus, D = C2 is the condition for marginal stability,
while D > C2 is the condition for stability, which can be
written

(ρ0huxtd)
2 + 4ηWρ0htd >

u2
x

W 2
(ρ0hWtd + 2η)2 (44)

or

td >
W

ρ0h

(
η
W 2 − 1

W 2

)
, (45)

which shows that td > 0 is required whenever η 6= 0.
One can repeat the above analysis with the advection

term and arrive at exactly the same condition.

E. Implementation

The Israel-Stewart formulation of the Navier-Stokes
equations can be implemented in a numerical relativity
code in either of two ways. First, one can retain the gen-
eral definition of τ and Si in terms of the total stress
tensor, Eq. 9 and 10, which would then include viscous
terms. In this case, the algorithm for recovering primitive
variables must be altered. This is the method chosen by
Fujibayashi et al [6]. Second, one could retain the defini-
tion of τ and Si in terms of fluid variables, Eq. 12 and 13
in which case all terms from the divergence of the viscous
stress tensor are regarded as source or flux terms. In this
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case, primitive variable recovery is not affected by vis-
cosity, but the viscous source terms require knowing the
time derivatives ∂t(

√
γW ) and ∂tui. We choose this sec-

ond method. The needed time derivatives are estimated
by storing

√
γW and ui at the previous timestep and

then computing at each step k the backward-centered
time derivative ∂tX(tk) = [X(tk)−X(tk−1)]/(tk− tk−1).

Second-order theories of viscosity also require the
evolution of the stress tensor. We promote Aij ≡
−2ησijW

√
γ to be a new evolved variable with evolution

equation

∂tAij +Aij = −
Aij −Ainst

ij

tdu0
(46)

where Aij is an optional advective term LvAij .
We evolve Eq. 37 using implicit time steps. This can

be written clearly if we momentarily suppress indices and
use subscripts for timesteps, so that Ak is a component
of Aij at step k. Given Ak−1 and Ainst

k , we take a step
of size ∆t = tk − tk−1 by

Ak =
Ak−1 +Ainst

k ∆t/(u0td)−A(Ak−1)∆t

1 + ∆t/(u0td)
(47)

We have experimented with the choice of td, setting it to
some fraction of the dynamical timescale–a constant for
star runs, a fraction of the local Keplerian period for disk
runs. We find our results to be insensitive to its value so
long as td is small compared to the dynamical timescale
and the instability is not triggered (cf. Eq. 45).

We add an option to suppress viscosity at low densities
or very close to the black hole, anticipating the possibility
of excess artificial viscous heating in these regions. From
Eq. 45, the minimum td scales with η, so if we suppress
η by some function of density or distance from the black
hole, we reduce td by the same factor.

III. EFFECTIVE REYNOLDS STRESS FROM
SUBGRID-SCALE TURBULENCE

A. Filtered Variables and Evolution Equations

As was pointed out by Boussinesq and Prandtl over
a century ago, the mixing of momentum by turbulent
eddies is analogous to molecular transport in a gas, sug-
gesting that on scales much larger than the eddies, the
mean stress from turbulence might be like a viscosity.
Once again, we would expect ηT ≈ ρ0cs`, but now ` is
the mixing length associated with the turbulence.

To pursue the kinetic theory analogy, divide the veloc-
ity flow into large and small scales: vi = vi + δvi. The
two components are defined by an averaging / low-pass
filtering operator 〈· · · 〉, such that 〈vi〉 = vi, 〈δvi〉 = 0.
Then one applies the filter to the ideal energy and mo-
mentum equations to obtain evolution equations for τ
and Si.

The subleties that arise can be illustrated in the case
of Minkowski spacetime and incompressible small-scale
turbulence. Then the filtered equations can be written

∂tSi + ∂j(Sivj + δjiP ) = 0

∂tτ + ∂j [ρ0hWvj − ρvj ] = 0

where Si = ρhWvi. Note that Sivj 6= Siv
j and Wvi 6=

Wvi. Assuming δvi is not highly relativistic, we can
Taylor expand the Lorentz factor in δvi and get W =

W (vi), δW = W
3
vjδvj . Then

〈viW 〉 = Wvi +W
3
vj
〈
δvjδv

i
〉
,

Similarly, we define

〈Sivj〉 ≡ Sivj + τi
j , (48)

where we now redefine Si to be Si(vi) 6= 〈Si〉. This re-
definition is desirable because we don’t want to have to
alter the relationship between primitive and conservative
variables at the filtered level. One finds τi

j to be

τi
j = ρ0hW 〈δviδvj〉+O(|v|2 × 〈δvδv〉)

with the omitted terms coming from correlation between
δW and δv. To second order in vi, τij , we have

∂tSi + ∂j(Siv
j + τi

j) = 0 (49)

∂tτ + ∂j(S
j

+ vkτk
j) = 0 (50)

Note that the extra term in the energy equation, from the
difference between the redefined Si and 〈Si〉, is necessary
to correctly recover the Newtonian limit, and in particu-
lar to secure energy conservation in this limit. One could
handle this instead by adding the τ · v term to the defi-
nition of the conservative variable Si, i.e. by keeping the
definition Si = 〈Si〉, but we find it more straightforward
to retain the standard relations between primitive and
conservative variables.

Returning to the case of general metric and relativis-
tic mean velocities, the cleanest way to obtain the trans-
port terms proportional to the mean velocity is to impose
that τij be the spatial components of a 4D tensor that
obey the usual orthogonality conditions for a shear ten-
sor: τµνu

ν = 0. Then the added terms to the energy and
momentum flux are the same as in equations 34 and 33,
with ταβ = −2ησαβ and with σij and σti related to σij
as in Eq. 27 and 30.

To test the effect of the velocity-dependent terms, we
write these terms as

∂tτ = · · · − ∂j [(k1αγ
jk − k2β

jvk)vlτkl] (51)

+α
√
γγkiγljKklτij

∂tSi = · · · − ∂j [
√
γτim(αγmj − k2β

jvm)] (52)

+
1

2

√
γτjk(−2k2v

jvk∂iα+ 2k2v
k∂iβ

j − α∂iγjk) ,

where “· · · ” indicates the perfect fluid terms, and k1, k2

are constants. To enforce τµνu
ν = 0, these constants
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should be k1 = k2 = 1. k1 = 1, k2 = 0 has only the term
needed to recover the Newtonian limit. k1 = k2 = 0
would be to take equations 8 and 9 from [7] while not
accounting for the difference between Si(〈vi〉) and 〈Si〉
(which is the formalism used in [7, 30]).

One can carry out a stability analysis like that in Sec-
tion II D for the above mean-field turbulence theory. Be-
cause τ no longer appears under the time derivative in
the left-hand side of the momentum equation, the Γux/W
term in the upper right hand entry of the matrix is no
longer present. Anticipating that td > 0 will no longer be
required, we can set td = 0 and solve a linear equation for
Γ, finding the real part to be unconditionally negative.

B. The Closure Condition

Guided by the Smagorinsky closure [18] of Newtonian
turbulence modeling, Radice [7] proposes the following
relativistic closure

τij = −2νρ0hW
2

[
1

2
(∇ivj +∇jvi)−

1

3
∇kvkγij

]
, (53)

where ∇ is the 3D covariant derivative compatible with
γij .

In a large-eddy simulation (as defined above), ν would
be set by the local state of the turbulence as determined
by difference operators on the smallest resolved scales.
This requires the simulation to resolve some of the in-
ertial range of the turbulence. A mean field model is
needed if the turbulence is totally unresolved or if the
physics driving the turbulence is missing in the simula-
tion. For example, if turbulence is driven by the mag-
netorotational instability and one’s simulation does not
include magnetic fields, one would need a mean field clo-
sure condition even if the hypothetical MRI wavelength
is resolved. The natural choice is

ν = `cs (54)

with ` the mixing length.

The evolution equations with the above closure are
not–and are not meant to be–exactly equivalent to
the Navier-Stokes equations. Nevertheless, equation 53
clearly does closely resemble a viscous stress and behaves
in a similar way.

The model is completed by choosing the mixing length
`. This will depend on the system; the focus of Radice’s
work was binary neutron stars. In his original paper,
he used constant values of ` set to be similar to the
wavelength of the fastest growing MRI mode for B ∼
1014–1015G. More recently [30], he has used a density-
dependent `(ρ0), where the function `(ρ0) was fit to the
results of high-resolution MHD simulations of binary neu-
tron star mergers by Kiuchi et al [25].

C. The Issue of Covariance

Equation 53 is covariant with respect to spatial co-
ordinate transformations, but not with regard to gen-
eral spacetime coordinate transformations, a point made
by Radice himself. The filtering operator is itself
frame/slicing dependent, so we should not expect gen-
eral covariance in the final equations 1. However, “not
covariant” does not necessarily mean “not valid”. Simi-
lar points are made by Carrasco et al [22] with regard to
their relativistic subgrid code. Since theirs is a large-eddy
code, they also point out that discretization for finite dif-
ferencing itself violates covariance in the same way and
to a similar degree. Also, covariance is regained in their
case, but not in the mean field case, in the limit of infinite
resolution, albeit trivially so because the subgrid terms
then disappear.

However, a non-covariant choice of closure may leave
coordinate-independent artifacts. For example, one
physically expects that, when the radius of curvature
is larger than the mixing length, momentum transport
should operate only when there is a nonzero shear as
measured in a local Lorentz frame, and heating should
occur when, and only when, σαβσαβ 6= 0. This is guar-
anteed for the relativistic Navier-Stokes equations but
not for Eq. 53.

Hereafter, we will refer to evolutions with the full
Navier-Stokes equations, stabilized by evolving the spa-
tial stress tensor with the driver equation 46, as “Navier-
Stokes” or “NS” evolutions. Mean-field turbulence evolu-
tions using the closure 53 will be called “turbulent mean
stress” or “TMS” evolutions.

D. Diffusion of scalar quantities

In addition to transporting momentum, turbulence
leads to other effects that can be understood qualitatively
as transport by “mixing”. These include eddy diffusion
of particle species and turbulent heat transport. 2

We consider only the first of these effects. We consider
a scalar quantity Y , say a species fraction that (up to
reaction source terms) advects with the fluid, so that
ρ∗Y obeys a continuity equation (possibly with reaction
source terms). Turbulent mixing will produce a flux of
ρ∗Y which we take to be FρY ≈ ρ0cs`D∇Y , where we
have given ourselves the freedom of using a different mean
free path for momentum transport and diffusion: `D ≡
λD` for some constant λD. Taking the divergence of this

1 Unless, of course, one were to explicitly add information about
the filtering frame to the equations. Any equations can be put
in generally covariant form given enough auxiliary variables.

2 In some compressible turbulence models, there is even a diffu-
sion of density added to the continuity equation, although this is
sometimes avoided by using Favre rather than Reynolds average
definition of the mean velocity field [31].
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flux (and ignoring the time derivative term), we get

∂t(ρ∗Y ) + ∂i(ρ∗Y v
i
T ) = ∂j(ρ∗cs`D∂

jY ) + · · · (55)

(· · · meaning the other source terms).
As with the TMS stress, this flux is not 4-dimensionally

covariant. A covariant treatment would be, for example,

∇µYµ = 0 (56)

Yµ = ρ0Y u
µ − ρ0cs`D(gµν + uµuν)∇νY (57)

as can easily be seen by going into a comoving local
Lorentz frame.

Heat transport might be modeled in a similar way.
Since eddies (except near the dissipation scale) evolve
adiabatically, specific entropy rather than temperature
would seem to be the more appropriate scalar quantity
to diffuse. This would be in keeping with the normal
practice in mixing length theory treatments of convective
stars (e.g. [32]), although here there is no presumption
that eddies are buoyancy driven. This could be captured
by a turbulent mean heat flux qi = ρ0Tcs`S∇is for some
`S ≡ λS`. The corresponding covariant 4-vector obeying
q · u = 0 is qµ = ρ0Tcs`S(∇µs+ uνuµ∇νs). In the spirit
of TMS, we eliminate time derivatives by assuming en-
tropy roughly advects uν∇νs ≈ 0 (as would be exactly
true if it were a perfect fluid in the absence of shocks and
radiation). Then

qα = ρ0Tcs`S(−viT∇is,∇is) (58)

Tµνheat = qµuν + qνuµ (59)

F iτ = · · ·+ αW
√
γ(qi + viT q

t) (60)

F iSj
= · · ·+ α

√
γ(qiujqju

i) (61)

Sτ = · · · − Siheat∂iα+ SijheatKij (62)

SSj
= · · ·+ 1

2
α
√
γTµνheat∂igµν (63)

Where Siheat and Sijheat are projections of Tµνheat as in Eq. 10
and 11, and indices of the heat flux and 4-velocity are
raised and lowered using the 4-metric.

Simulations of magnetorotational turbulence find that
the momentum transport is dominated by average
Maxwell rather than average Reynolds stress, with the
former around a few times larger than the latter (e.g. [33–
35]). This suggests that λD = λS = 1 probaby overes-
timates mixing effects. The choice of setting all mixing
lengths equal, used at times below, is a useful way of
checking what sort of influence turbulent particle diffu-
sion and heat flux might have.

IV. TEST ON A DIFFERENTIALLY ROTATING
STAR

A. Axisymmetric heating

From an astrophysicists’s point of view, turbulence is
important primarily for two reasons. First, it transports

0 0.25 0.5 0.75 1 1.25
r/Rinit,eq

0.1

0.2

0.3

0.4

Ω

t=0
t=30, NS
t=60, NS
t=30, TMS
t=60, TMS

FIG. 1. Equatorial angular velocity Ω at 3 times for NS and
TMS evolution.

angular momentum. Second, it transfers kinetic energy
to small enough scales for it to be dissipated away as
heat. Under the influence of a shear viscosity, a differen-
tially rotating star will approach uniform rotation on the
viscous timescale ∼ R2/ν. The fluid will acquire entropy
at a rate

nT
ds

dτ
= 2ησαβσ

αβ , (64)

where n, T , s, and τ are the number density, tempera-
ture, specific entropy, and proper time along the fluid el-
ement, respectively. For a Gamma-law equation of state
P = (Γ − 1)ρ0ε, P (T = 0) = κρΓ

0 ≡ Pcold this can be
written

nT
ds

dτ
=
Pcold

Γ− 1

d

dτ

(
P

Pcold

)
(65)

∂t(
√
γE∗) = −∂j(

√
γE∗v

j
T ) (66)

+
α
√
γ

Γ
(
E∗

W
)(1−Γ)(2ησαβσ

αβ)

Where E∗≡W (ρ0ε)
1/Γ = W ( P

Γ−1 )1/Γ [36].
As a first test of our momentum transport methods,

we evolve a differentially rotating relativistic star. The
initial equilibrium state is supplied by the code of Cook,
Shapiro, and Teukolsky [37]. We use a polytropic equa-
tion of state P = κρΓ

0 with κ = 1, Γ = 2. The differential
rotation law is

utuφ = R2
eqA

2(Ωc − Ω) (67)

where Req is the equatorial coordinate radius, Ω is
the angular velocity, Ωc is the angular velocity on the
axis, and the differential rotation parameter A is set
to 1. The star has baryonic mass 0.1756κ1/2c2G−3/2,
ADM mass 0.1627κ1/2c2G−3/2, and angular momen-
tum 0.01402c3κG−2. The polar to equatorial radius
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FIG. 2. Time derivative of the specific entropy of two repre-
sentative equatorial tracer particles (left and right hand sides
of equation 67) for NS evolution.
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t/Pc

0

0.0005

0.001

0.0015

LHS, r=0.5
RHS, r=0.5, full σ
RHS, r=0.5, σ(τ)

FIG. 3. Numerical time derivative of the specific entropy of
one representative equatorial tracer particle (left hand side
of equation 67) for TMS evolution. Also, estimates of the
expected heating rate (right hand sides of equation 67) using
the exact covariant shear tensor and using the TMS closure
τij (equation 53).

ratio is 0.75. The equatorial coordinate radius is
0.885κ1/2G−1/2.

We first evolve the star on a 2D grid assuming ax-
isymmetry using the techniques described in our recent
paper [38]. We use a 2D Cartesian grid, with vertical
and radial cylindrical polar coordinates z and $. We use
G = c = κ = 1 units. The grid has 360 points covering
−2 ≤ z ≤ 2 and 260 points covering 0 < $ ≤ 2.6.

We set the viscous coefficient to η = 0.1P . For this
test, we are uninterested in low density behaviors (e.g.
winds), so we add an exponential suppression factor when

ρ0 is below ρcut = 0.1ρ0max: η → ηe−(ρ0max/ρ0)4 . The
driving timescale td for σij is set to 0.12, much shorter
than the initial central rotation period of 15.

In Figure 1, we plot the angular velocity profiles. For
both the NS evolution and the TMS evolution, the rota-
tion profile flattens inside the star, as expected. We do
see that for the TMS evolution, the profile settles with a
slight nonzero level in the high-density region. We had
pointed out above that this would be a possibility, so its
occurance is not too surprising.

In Figures 2 and 3, we plot the heating rate of a repre-
sentative tracer particle, plotting the left and right-hand
sides of equation 67. One could also plot the integrals of
each side over the entire star, but then numerical error
would be dominated by the thin numerically heated layer
at the surface of the star. This heating is present even
in the absence of TMS or NS transport and is mainly
due to numerical viscosity, and thus is not expected to
be directly related to the chosen subgrid viscosity model.

For the TMS evolution, we calculate σαβ appearing in
the heating rate (Eq. 67) in two ways. We compute the
full covariant σαβ that would appear in the Navier-Stokes
equations (Eq. 32). We also compute σαβ from the clo-
sure τij extended to 4-dimensions using uασαβ = 0. For
the NS evolution, the agreement between local viscous
heating rate and observed entropy increase is quite good,
as it should be. The approach of the right-hand side to
zero is particularly notable, since the shear scalar is an
invariant measure of shear, and hence its disappearance
of the approach to uniform rotation.

For the TMS evolution, we again see clearly that the
effects of τ turn off while the covariant σ is still nonzero.
However, the results again qualitatively match expec-
tations. Fluid elements heat as angular momentum is
transported outward.

B. Late-time three-dimensional evolution

We next evolve the star on a 3D grid to equilibrium
to determine non-axisymmetric stability. In addition to
the TMS and NS evolutions, we evolve the TMS with
k1 = k2 = 0 for equations 51 and 52. We let η = 0.05P ,
and run the evolution to the viscous timescale to reach an
equilibrium of constant angular momentum and heating.

Heating is measured by entropy generated, with en-
tropy defined as

S = ρ∗ log

(
P

ρ2

)
H
(
ρ− 2× 10−6κ−1c2

)
(68)

with H being the Heaviside function, to cutoff unphysical
entropy growth in the low density atmosphere.

In figure 4, we can see similar behavior in the angular
velocity as the axisymmetric evolution, with the TMS
evolutions settling to a non-zero gradient. The k1 = k2 =
1 TMS does show additional expansion of low density
material, which is visible in the density comparison in
figure 6.
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FIG. 4. Azimuthally averaged angular velocity along equito-
rial radius at equilibrium, T = 100
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FIG. 5. Azimuthally averaged entropy along equatorial radius
at equilibrium, T = 100

The entropy in figure 5 shows a very similar behavior
between the k1 = k2 = 1 TMS and NS evolutions, as
expected. In contrast, there is large difference in location
and magnitude, of heating between the k1 = k2 = 0
TMS and k1 = k2 = 1 TMS evolutions, with additional
localized heating closer to the core for the k1 = k2 = 0
TMS evolution. The entropy peak of the k1 = k2 = 0
does drift slowly outward as the simulation progesses.

When we implement the k1 = k2 = 0 TMS method in
SpEC, we observe a L = 4 mode instability that results
in unphysically strong winds and outflows of low density
material. When the matter reaches the boundary, we are
forced to terminate the simulation. With a domain size of
3.6Req, we did convergence testing with 59, 74, 115, and
144 grid points. Increasing domain resolution does result
in a delayed instability appearance time, but the growth

timescale remains relatively constant for all resolutions,
and is always slightly longer than the timescale needed to
reach an equilibrium angular velocity profile in the star.

V. TESTS ON A BLACK HOLE ACCRETION
TORUS SYSTEM

The astrophysical system most commonly modeled us-
ing a phenomenological viscosity is, of course, disk accre-
tion onto a star or compact object. Without some means
of transporting angular momentum outward, accretion
cannot occur at all. It is, thus, important to study the
behavior of different momentum transport treatments in
an accretion disk system and note any major differences.

We evolve a Fishbone-Moncrief torus [39], for which
utuφ (roughly, the specific angular momentum) is con-
stant, in our case set to 4.1M , where M is the mass of
the black hole. At the center is a black hole with dimen-
sionless spin 0.9. The disk mass is assumed to be much
smaller than that of the black hole, so the spacetime is
set to the Kerr solution in Kerr-Schild coordinates and
not evolved. The disk inner and outer initial radii are
4.5M and 36M , respectively. The initial density max-
imum is at a ring of radius 10M . The gas of the disk
is modeled with Γ = 4/3 equation of state. The disk is
initially isentropic and obeys a Γ = 4/3 polytropic law.
(Once evolution begins, the gas will heat.) All disk mass
output below is scaled to the disk’s initial baryonic mass,
which can therefore be taken to be one. This particular
system is not designed to closely model any particular as-
trophysical scenario, although a high compaction of the
disk (as measured by radius of maximum density divided
by black hole mass) is chosen to be similar to tori en-
countered in binary post-merger simulations.

We evolve this system using both TMS (with k1 =
k2 = 1) and NS momentum transport using an alpha
viscosity with αvisc = 0.03. For TMS simulations, this
corresponds to a mixing length

` = αvisccs/ΩK , (69)

with ΩK the Keplerian angular velocity. Viscosity is sup-
pressed by an exponential factor for density less than
10−4 of the initial maximum, and for gas at radii less
than 3M . We evolve on a 2D polar grid with 300 radial
points and 256 angular points, uniformly spaced in the
standard accretion grid variables

r =
√
x2 + z2 = ex1 , (70)

θ = πx2 +
1

2
(1− h) sin(2πx2) , (71)

where for these simulations we use h = 0.5. The grid
covers the range 1.32M ≤ r ≤ 2000M , 0 < θ < π. A
lower-resolution of 200× 168 gives similar results.

We evolve for 100,000M . This is long enough for the
baryonic mass on the grid to drop to 20% of its initial
value for the NS run, 10% for the TMS run. We terminate
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FIG. 6. Demonstration of L = 4 mode instability when we implement the TMS method with k1 = k2 = 0 for equations 51
and 52.

at this time because by this time the outer boundary is
no longer sufficiently far. (This can be seen from the out-
flow. At earlier times, flow through the outer boundary
is entirely unbound. Late in the evolution, the outgoing
mass flux has unbound and weakly bound components,
and by t ≈ 105M , the latter has become comparable to
the former.)

The baryonic mass flow rate into the black hole and
out of the outer boundaries are plotted in figures 7 and 8.
The flow rate into the black hole is seen to be fairly in-
sensitive to the momentum transport method used. Over
the evolved time, 50% of the baryonic mass accretes into
the black hole in the TMS simulation, 60% in the NS
simulation. While the difference is not negligible, few
would expect any simple phenomenological model of sub-
grid turbulent momentum transport to be more accurate
than a few tens of percent. At late times, the accretion
rate falls off roughly like a power law Ṁ ∝ t−n where
1.7 ≤ n ≤ 2.

The outflow rates show rather larger differences,
mostly because of a single large burst of unbound ejecta
in the TMS simulation that is much smaller in the NS
evolution. Over the evolved time, 17.6% of the origi-
nal baryonic mass is ejected from the outer boundary
in the NS evolution: 15.8% unbound and 1.8% bound.
For the TMS evolution, 41.1% of the original baryonic
mass leaves the outer boundary: 39.4% unbound and
1.7% bound. In fact, the slightly higher accretion rate
into the black hole in the NS case might be mostly due
to the larger mass remaining in the disk that did not
suffer this one-time ejection.

Of the two methods TMS involves fewer operations to
take a timestep, but the NS runs are found to be about
a factor of two faster because of the adaptive timestep-
ping used by the SpEC code, which finds it must take
smaller timesteps for TMS runs to acheive the same time
differencing accuracy.

Figures 7 and 9 show the effect of heat fluxes from
entropy diffusion, using λS = 1. The disk is initially
isentropic, but viscous heating leads to higher entropy in
the interior of the disk. Heat fluxes therefore supplement
vertical convection and transport energy toward the top
and bottom of the disk. The main effect of this is to in-
crease the outflow through the outer boundary to 30.3%
of the initial baryonic mass (28.7% of the initial disk mass
in unbound outflow). The outflow is slightly delayed and
is more concentrated in a first burst, coincidentally like
the TMS run without heat fluxes.

Finally, we perform a demonstration of the possible ef-
fect of particle diffusion on the outflow composition. We
introduce a composition variable Y which is advected by
the flow. Because it does not enter into the equation of
state, it does not affect the evolution (except at the level
of truncation error in the time discretization, if the evolu-
tion of ρY is allowed to occasionally control the adaptive
timestep). Ejecta composition is of great interest in post-
merger simulations because of its connection to kilono-
vae and r-process nucleosynthesis. Since our simulation
lacks neutrino interactions, it should be considered only
a demonstration of another possibly significant influence.

We initialize Y as

Y =

{
0.5− 6ρ0,init/ρ0,init,max, if ρ0,init/ρ0,init,max <

1
15

0.1, otherwise

(72)
The idea of using a simple analytic form with higher Y
at low densities and Y = 0.1 at high densities was taken
from [9], which in term is a rough fit to the electron frac-
tion in binary neutron star post-merger accretion disks.
We evolve without particle diffusion (λD = 0) and with
it (λD =1). Both simulations use NS transport and com-
pute the mean free path from αvisc as in Eq. 69. We inte-
grate the mass flux passing through the surface r = 800M
in Y bins to get the total mass outflow as a function of
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FIG. 7. The accretion rate, defined as the fraction of the
total baryonic mass of the disk accreted into the black hole
per interval M of time, for TMS, NS, and NS with turbulent
heat flux.

Y , which is plotted in Fig. 10. In this example, the effect
of particle diffusion is to shift the distribution peak to
higher Y and to make it narrower. The effect of smooth-
ing the Y distribution is that it does not vary as much in
the density layers that provide the ejecta. Of course, the
effect may be different for different composition distribu-
tions or in the presence of composition source terms (e.g.
neutrino interactions). Interestingly, a detailed compar-
ison of disks evolved with α-viscosity vs magnetohydro-
dynamics found an opposite effect, that the MHD run
had wider composition distribution at a lower peak [40].
The diffusive effects of magnetorotational turbulence is
certainly one effect present in MHD simulations but not
viscous simulations without particle diffusion, although
in this case outflows driven by large-scale magnetic fields
may have been the more important difference.

VI. CONCLUSION

Even for a given choice of the effective viscosity η there
is some freedom in how one adds momentum transport
to the relativistic Euler equations. In this manuscript,
we perform detailed comparison of two models currently
in use in numerical relativity simulations: Shibata el al’s
NS model, and Radice’s TMS model. We also propose an
improvement to the TMS model: the addition of phys-
ically motivated terms that guarantee that the stress-
energy tensor remains a spatial tensor in the fluid rest
frame, and prevents slowly-growing instability to appear
in some test problems. The main objective of these mod-
els in merger simulations has been to provide a source of
angular momentum transport in post-merger remnant.
We find that the NS, original TMS, and modified TMS
model fortunately act very similarly in that respect, at
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.

TMS, all
TMS, unbound
NS, all
NS, unbound

FIG. 8. The outflow rate, defined as the fraction of the total
baryonic mass of the disk leaving the outer boundary per
interval M of time, for TMS and NS runs. We plot separately
the total outflow of mass and the outflow of unbound mass.
Unbound matter is here defined as ut < −1; defining it as
hut < −1 has an insignificant effect on the unbound outgoing
flux.
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FIG. 9. Outflow (total and unbound-only) for NS runs with
and without turbulent heat conduction.

least within the expected uncertainties of a mean field
turbulence model. However, we find significant differ-
ences in viscous heating between the original TMS and
the other two models, while all models provide different
results for the momentum transport-driven ejecta mass
in disk simulations. It is already known that disk outflow
masses depend on αvisc. To this, we add that even if a
“correct” αvisc were known, outflows would still depend
on the transport formalism.

As the TMS formalism is not 4-dimensionally covari-
ant, its results might not apply for arbitrary foliations
of the spacetime. We doubt, however, that the slicing
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choices usually used by numerical relativists would lead
to dramatically different foliations, or that the gauge-
dependence of TMS would impact numerical results more
than the approximations inherent to any mean field
model. Additionally, as the TMS model is simpler to im-
plement and computationally less expensive than the NS
model (at least on a per timestep basis), it certainly re-
mains very useful to numerical simulations. The improve-
ments to the TMS model proposed in this manuscript
add new terms to the evolution equations, but without
increasing the complexity of the evolution algorithm it-
self, or meaningfully impacting the cost of simulations.
They should thus be reasonably simple to implement in
any TMS-based code.

Mean-field models of subgrid transport effects provide
an economical way to explore deep into the post-merger
regime, although of course they cannot replace a more
limited number of expensive high-resolution simulations.
These models could easily be improved beyond what we
have attempted here. An adequate model of subgrid ef-
fects would have to include heat transport, and it should
also account for the effective pressure from turbulent
stresses which has proved to be potentially quite impor-

tant in the supernova core collapse problem [13]. It would
also be interesting to add the evolution of the large-scale
magnetic field–even if the magnetorotational instability
is subgrid scale– in order to incorporate large-scale mag-
netohydrodynamic effects such as magnetic braking and
jet collimation. In the presence of subgrid turbulence,
the induction equation for the mean magnetic field would
itself need to be suitably augmented to include subgrid
electromotive force terms, as is done in dynamo model-
ing [41] and even in a few relativistic simulations [4, 8].
If the mean field grows large enough to resolve the mag-
netorotational instability, then one would more correctly
be in a regime for large eddy rather than mean field mod-
eling.

One might question the point of improving models
which at best capture their effects to no better than or-
der of magnitude anyway. It is useful for at a couple of
reasons. First, one is able to establish the sensitivity of
particular outputs to various transport effects, as we have
done with disk outflow composition, so that it is known
what effects are most important for high-resolution sim-
ulations to capture. Second, these simplified models play
an important role in interpreting high resolution results,
guiding the inevitable tradeoff between exactness and hu-
man intelligibility.
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F. Hébert, J. Lippuner, J. Miller, C. D. Ott, M. A.
Scheel, and T. Vincent, J. Comput. Phys. 335, 84 (2017),
arXiv:1609.00098 [astro-ph.HE].

[3] M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens,
Phys. Rev. D 69, 104030 (2004), astro-ph/0402502.

[4] B. Giacomazzo, J. Zrake, P. Duffell, A. I. Mac-
Fadyen, and R. Perna, Astrophys. J. 809, 39 (2015),
arXiv:1410.0013 [astro-ph.HE].

[5] M. Shibata and K. Kiuchi, Phys. Rev. D95, 123003
(2017), arXiv:1705.06142 [astro-ph.HE].

[6] S. Fujibayashi, K. Kiuchi, N. Nishimura, Y. Sekiguchi,
and M. Shibata, Astrophys. J. 860, 64 (2018),
arXiv:1711.02093 [astro-ph.HE].

[7] D. Radice, Astrophys. J. Lett. 838, L2 (2017),
arXiv:1703.02046 [astro-ph.HE].

http://dx.doi.org/10.1103/PhysRevD.92.124034
http://arxiv.org/abs/1509.09205
http://dx.doi.org/10.1016/j.jcp.2016.12.059
http://arxiv.org/abs/1609.00098
http://dx.doi.org/10.1103/PhysRevD.69.104030
http://arxiv.org/abs/astro-ph/0402502
http://dx.doi.org/ 10.1088/0004-637X/809/1/39
http://arxiv.org/abs/1410.0013
http://dx.doi.org/10.1103/PhysRevD.95.123003
http://dx.doi.org/10.1103/PhysRevD.95.123003
http://arxiv.org/abs/1705.06142
http://dx.doi.org/ 10.3847/1538-4357/aabafd
http://arxiv.org/abs/1711.02093
http://dx.doi.org/10.3847/2041-8213/aa6483
http://arxiv.org/abs/1703.02046


13

[8] A. Sadowski, R. Narayan, A. Tchekhovskoy, D. Abarca,
Y. Zhu, and J. C. McKinney, Mon. Not. Roy. Astron.
Soc. 447, 49 (2015), arXiv:1407.4421 [astro-ph.HE].

[9] S. Fujibayashi, M. Shibata, S. Wanajo, K. Kiuchi,
K. Kyutoku, and Y. Sekiguchi, Phys. Rev. D 101, 083029
(2020), arXiv:2001.04467 [astro-ph.HE].

[10] D. C. Wilcox, Turbulence modeling for CFD, 3rd Edition
(DCW industries La Canada, CA, 2006).

[11] S. B. Pope, Turbulent Flows, 1st Edition (Cambridge
University Press, 2000).

[12] J. W. Murphy and C. Meakin, Astrophys. J. 742, 74
(2011), arXiv:1106.5496 [astro-ph.SR].

[13] S. M. Couch and C. D. Ott, Astrophys. J. 799, 5 (2015),
arXiv:1408.1399 [astro-ph.HE].

[14] D. Radice, S. M. Couch, and C. D. Ott, Comp. Astrophy.
Cosmol. 2, 7 (2015), arXiv:1501.03169 [astro-ph.HE].

[15] Q. A. Mabanta and J. W. Murphy, Astrophys. J. 856,
22 (2018), arXiv:1706.00072 [astro-ph.HE].

[16] S. M. Couch, M. L. Warren, and E. P. O’Connor, As-
trophys. J. 890, 127 (2020), arXiv:1902.01340 [astro-
ph.HE].

[17] J. C. Wyngaard, Journal of the Atmospheric Sci-
ences 61, 1816 (2004), https://doi.org/10.1175/1520-
0469(2004)061¡1816:TNMITT¿2.0.CO;2.

[18] J. Smagorinsky, Monthly weather review 91, 99 (1963).
[19] J. Bardina, J. Ferziger, and W. Reynolds, in 13th fluid

and plasmadynamics conference (1980) p. 1357.
[20] P. Grete, D. G. Vlaykov, W. Schmidt, D. R. Schleicher,

and C. Federrath, New Journal of Physics 17, 023070
(2015).

[21] P. Grete, D. G. Vlaykov, W. Schmidt, and
D. R. G. Schleicher, Phys. Rev. E95, 033206 (2017),
arXiv:1703.00858 [physics.flu-dyn].

[22] F. Carrasco, D. Vigan, and C. Palenzuela, Phys. Rev.
D101, 063003 (2020), arXiv:1908.01419 [astro-ph.HE].
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