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When two black holes merge, a tremendous amount of energy is released in the form of gravitational
radiation in a short span of time, making such events among the most luminous phenomenon in the
Universe. Models that predict the peak luminosity of black hole mergers are of interest to the gravitational
wave community, with potential applications in tests of general relativity. We present a surrogate model for
the peak luminosity that is directly trained on numerical relativity simulations of precessing binary black
holes. Using Gaussian process regression, we interpolate the peak luminosity in the seven-dimensional
parameter space of precessing binaries with mass ratios q ≤ 4 and spin magnitudes χ1, χ2 ≤ 0.8. We
demonstrate that our errors in estimating the peak luminosity are lower than those of existing fitting
formulas by about an order of magnitude. In addition, we construct a model for the peak luminosity of
aligned-spin binaries with mass ratios q ≤ 8 and spin magnitudes jχ1zj; jχ2zj ≤ 0.8. We apply our
precessing model to infer the peak luminosity of the GW event GW190521 and find the results to be
consistent with previous predictions.

DOI: 10.1103/PhysRevD.102.104047

I. INTRODUCTION

As the gravitational wave (GW) detectors LIGO [1] and
Virgo [2] approach their design sensitivity, GW detections
are becoming routine [3–7]. Binary black hole (BBH)
mergers are the most abundant source for these detectors.
Such mergers provide a unique laboratory for studying
black hole (BH) astrophysics as well as for testing general
relativity. At the time of merger, the BHs are moving at
about half the speed of light, and the spacetime is highly
dynamical. As a result, for a brief moment, BBH mergers
are among the most luminous events in the Universe. For
example, the recently announced GWevent GW190521 [7]
radiated approximately 7.6 M⊙ of energy in GWs in a
fraction of a second, reaching a peak luminosity of
approximately 208 M⊙c2=s ¼ 3.7 × 1056 erg=s [8].
The above estimate is obtained by applying peak

luminosity models [9,10] based on numerical relativity
(NR) simulations to the measured masses and spins of the
component BHs. Apart from predicting the peak luminosity
of GW events, such models can be used to understand the
impact of supermassive BH mergers on circumbinary
accretion disks [11] and possible electromagnetic counter-
parts [12,13]. In addition, one can test general relativity by
independently estimating the peak luminosity through a

theory-independent signal reconstruction [14,15] and com-
paring with the prediction from NR. A similar test was
performed for the peak frequency in Ref. [16]. As detector
sensitivity improves, these applications will need accurate
models that capture the full physics of the NR simulations.
NR simulations are essential to model the BH merger

process and the resulting GW peak luminosity. However,
these are prohibitively expensive for most GW data
analysis applications. As a result, various phenomenologi-
cal fits have been developed for the peak luminosity
[9,10,17,18]; starting with an ansatz, these models calibrate
any free coefficients to NR simulations. However, all of
these models are restricted to aligned-spin systems, where
the BH spins are aligned to the orbital angular momentum
direction (L̂). For generic binaries, however, the spins can
be titled with respect to L̂. For these systems, the spins
interact with the orbit (and each other), leading to pre-
cession of the orbital plane and the spins [19]. Precession
causes modulations in the GW signal, and as a result, the
peak luminosity is affected.
In this paper, we present a Gaussian process regression

(GPR) based NR surrogate model for the peak luminosity
of generically precessing BBHs. NR surrogate models
directly interpolate between NR simulations rather than
assume an ansatz about the underlying phenomenology.
These methods have been successfully used to model the
GW signal [20–22] as well as the remnant BH properties
[20,23,24] of precessing BBHs. Through cross-validation
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studies, these models have been shown to approach the
accuracy level of the NR simulations themselves.
In particular, we present two models:
(1) NRSur7dq4Remnant: a seven-dimensional precessing

model trained against systems with mass ratios
q≤4,1 dimensionless spin magnitudes χ1, χ2≤0.8,
and generic spins directions.

(2) NRSur3dq8Remnant: a three-dimensional aligned-spin
model trained against systems with mass ratios up to
q ≤ 8 and aligned spins jχ1zj, jχ2zj ≤ 0.8.

We use the same names, respectively, as the precessing
remnant model of Ref. [20] and the aligned-spin remnant
model of Ref. [23], as we make the models available in the
same interface through the publicly available PYTHON

module SURFINBH [25]. Even though peak luminosity is
not technically a property of the remnant BH, we expect
that using the same interface will make using the models
easier for our users.
The rest of the paper is as follows. We describe our

fitting procedure in Sec. II. In Sec. III, we compare the
models against NR simulations to assess their accuracy. In
Sec. IV, we apply our precessing model to predict the peak
luminosity of GW190521. We end with some concluding
remarks in Sec. V.

II. MODELING METHODS

The GW luminosity is defined as [18]

LðtÞ ¼ 1

16π

X
l;m

j lim
r→∞

ðr _hlmÞj2; ð1Þ

where the dot represents a time derivative, the k represents
the absolute value, and hlm represents the complex the
spin-2 weighted spherical harmonic mode with indices
ðl; mÞ. We use the time derivative of rhlm extrapolated to
future null infinity [26] in the place of limr→∞ ðr _hlmÞ. The
extrapolated strain data are obtained from NR simulations
performed with the Spectral Einstein Code (SPEC) [27]
code, available through the Simulating Extreme Spacetimes
(SXS) [28] Catalog [29,30]. The strain data are first
interpolated onto a uniform time array (with step size
0.1M, whereM is the total mass) using cubic splines. Then,
we use a fourth-order finite-difference derivative to get the
time derivative of the strain.
We determine the peak luminosity as

Lpeak ¼ max
t
LðtÞ; ð2Þ

where we determine the peak value by fitting a quadratic
function to five adjacent samples of LðtÞ, consisting of the
largest sample and two neighbors on either side. Before

applying our fitting method, we first take a logarithm of the
peak luminosity and model logðLpeakÞ. We find that this
leads to more accurate fits than directly modeling Lpeak.
When the model is evaluated, we can easily get the
predicted peak luminosity by taking the exponential of
the fit output.
For the aligned-spin model NRSur3dq8Remnant, we include

the l ≤ 4 and (5,5) modes but not the (4,1) or (4,0) modes
in Eq. (1). We include the m > 0 modes twice to account
for the m < 0 modes, which are given by hl;−m ¼
ð−1Þlh�

lm due to the symmetries of aligned-spin systems.
The included modes are the same as those used for the
surrogate model of Ref. [31]. The reason for excluding
the (4,1), (4,0), ðl ¼ 5; m < 5Þ, and l > 5 modes is
twofold:

(i) These modes have very small amplitudes and do not
contribute significantly to the sum in Eq. (1).

(ii) The small amplitude of some of these modes
[particularly (4,1) and (4,0)] can behave poorly when
extrapolated [26].

We expect that this will be resolved in the future with
Cauchy characteristic extraction [32,33].
For the precessing model NRSur7dq4Remnant, we use all

l ≤ 5 modes. Due to the orbital precession, even modes
like (4,1), (4,0), and ðl ¼ 5; m < 5Þ can have significant
amplitude due to mode mixing (see, e.g., Ref. [20]).
Therefore, these modes behave reasonably well when
extrapolated. Note that the m < 0 modes are directly
included when doing the sum in Eq. (1) as the aforemen-
tioned symmetry for m < 0 does not hold for precessing
systems.

A. Gaussian process regression

We construct fits in this work using GPR [34] as
implemented in SCIKIT-LEARN [35]. We closely follow
the procedure outlined in the supplement of Ref. [23],
which we describe briefly in the following.
We start with a training set of n observations, TS ¼

fΛi; fðΛiÞÞji ¼ 1;…; ng, where each Λi denotes an input
vector of dimension D and fðΛiÞ is the corresponding
scalar output. In our case, Λ is given by Eqs. (6) and (11),
respectively, for the precessing and aligned-spin models,
and fðΛÞ ¼ logðLpeakÞ. Our goal is to use TS to make
predictions for the underlying fðΛÞ at any point Λ� that is
not in TS.
A Gaussian process (GP) can be thought of as a prob-

ability distribution of functions. More formally, a GP is a
collection of random variables, any finite number of which
have a joint Gaussian distribution [34]. A GP is completely
specified by itsmean functionmðΛÞ and covariance function
kðΛ;Λ0Þ, i.e., fðΛÞ∼GPðmðΛÞ;kðΛ;Λ0ÞÞ. Consider a pre-
diction set of n� test inputs and their corresponding outputs
(which are unknown): PS ¼ fðΛi�; fðΛi�ÞÞji ¼ 1;…; n�g.
By the definition of a GP, outputs of TS and PS

1We use the convention q ¼ m1=m2 ≥ 1, where m1 (m2) is the
mass of the heavier (lighter) BH.
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[respectively, f ¼ ffðΛiÞg, f� ¼ ffðΛi�Þg] are related by a
joint Gaussian distribution,

�
f

f�

�
¼ N

�
0;

�
KΛΛ KΛΛ�

KΛ�Λ KΛ�Λ�

��
; ð3Þ

where KΛΛ� denotes the n × n� matrix of the covariance
kðΛ;Λ�Þ evaluated at all pairs of training and prediction
points, and similarly for the other K matrices.
Equation (3) provides the Bayesian prior distribution for

f�. The posterior distribution is obtained by restricting this
joint prior to contain only those functions which agree with
the observed data points [34], i.e.,

pðf�jTSÞ ¼ N ðKΛ�ΛK
−1
ΛΛf; KΛ�Λ� − KΛ�ΛK

−1
ΛΛKΛΛ� Þ: ð4Þ

The mean of this posterior provides an estimator for fðΛÞ at
Λ�, while its width is the prediction error.
Finally, one needs to specify the covariance (or kernel)

function kðΛ;Λ0Þ. Following Ref. [23], we implement the
following kernel,

kðΛ;Λ0Þ ¼ σ2k exp

�
−
XD
j¼1

�
Λj − Λ0jffiffiffi

2
p

σj

�
2
�
þ σ2nδΛΛ0 ; ð5Þ

where δΛΛ0 is the Kronecker delta. In words, we use a
product between a squared exponential kernel (parame-
trized by σj) and a constant kernel (parametrized by σ2k), to
which we add a white kernel (parametrized by σ2n) to
account for additional noise in the training data [34,35].
GPR fit construction involves determining the Dþ 2

hyperparameters (σk, σn, and σj) which maximize the
marginal likelihood of the training data under the GP prior
[34]. Local maxima are avoided by repeating the optimi-
zation with ten different initial guesses, obtained by
sampling uniformly in log in the hyperparameter space
described below.
Before constructing the GPR fit, we preprocess the

training data as follows. We first subtract a linear fit and
the mean of the resulting values. The data are then
normalized by dividing by the standard deviation of the
resulting values. The inverse of these transformations is
applied at the time of the fit evaluation. The reasoning
behind the preprocessing is twofold:
(1) The demeaning and normalization allows us to apply

the same ranges (described below) for the GPR
hyperparameters for a wide range of models. For
instance, we used the same settings to model the
remnant BH properties in Refs. [20,23].

(2) The data are simpler to model after removing the
linear component, leading to more accurate fits.

For each dimension of Λ, we define ΔΛj to be the range
of the values of Λj in TS and consider σj ∈ ½0.01 × ΔΛj;
10 × ΔΛj�. Larger length scales are unlikely to be relevant

and smaller length scales are unlikely to be resolvable. The
remaining hyperparameters are sampled in σ2k ∈ ½10−2; 102�
and σ2n ∈ ½10−7; 10−2�. These choices are meant to be
conservative and are based on prior exploration of the typical
magnitude and noise level in our training data.

B. Precessing model, NRSur7dq4Remnant

For precessing systems the parameter space is seven
dimensional comprising the mass q and two spin 3-vectors
χ 1 and χ 2. Here, q ¼ m1=m2 is the mass ratio with
m1 ≥ m2, and χ 1 (χ 2) is the dimensionless spin vector of
the heavier (lighter) BH. The total mass (M ¼ m1 þm2)
scales out of the problem and does not constitute an
additional parameter for modeling. We use the 1528 NR
waveforms used for the surrogate models of Ref. [20],
which cover the parameter space q ≤ 4, χ1, χ2 ≤ 0.8, where
χ1 (χ2) is the magnitude of χ 1 (χ 2).
Following Refs. [20,23], we parametrize the precessing

fit using the coorbital frame spins χ coorb1;2 at t ¼ −100M
before the peak of the total waveform amplitude (as defined
in Eq. 5 of Ref. [20]). The coorbital frame is a time-
dependent noninertial frame in which the z axis is along the
instantaneous L̂ direction and x axis is along the instanta-
neous line of separation between the BHs, with the heavier
BH on the positive x axis.2 The NRSur7dq4Remnant fit is
parametrized as follows,

Λ ¼ ½logðqÞ; χcoorb1x ; χcoorb1y ; χ̂coorb; χcoorb2x ; χcoorb2y ; χcoorba �; ð6Þ

where χ̂coorb is the spin parameter entering the GW phase at
leading order [36–39] in the post-Newtonian (PN) expan-
sion

χ̂coorb ¼ χcoorbeff − 38ηðχcoorb1z þ χcoorb2z Þ=113
1 − 76η=113

; ð7Þ

χcoorbeff ¼ qχcoorb1z þ χcoorb2z

1þ q
; ð8Þ

η ¼ q
ð1þ qÞ2 ; ð9Þ

and χcoorba is the “antisymmetric spin,”

χcoorba ¼ 1

2
ðχcoorb1z − χcoorb2z Þ: ð10Þ

We empirically found this parametrization to perform more
accurately than the more intuitive choice Λ̃ ¼ ½q; χcoorb1x ;
χcoorb1y ; χcoorb1z ; χcoorb2x ; χcoorb2y ; χcoorb2z � used in Ref. [21].

2Here, the BH positions are defined using the waveform at
future null infinity and do not necessarily correspond to the
(gauge-dependent) coordinate BH positions in the NR simula-
tion. See Ref. [20] for more details.
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C. Aligned-spin model, NRSur3dq8Remnant

NRSur7dq4Remnant is restricted to q ≤ 4 due to a lack of
sufficient precessing simulations at higher mass ratios [29].
NR simulations become increasingly expensive as one
approaches higher mass ratios and/or spin magnitudes.
However, the SXS Catalog has good coverage for aligned-
spin BBHs up to q ≤ 8 [29,31]. We make use of the 104 NR
waveforms used for the surrogate model of Ref. [31], which
cover the parameter space q ≤ 8, jχ1zj, jχ2zj ≤ 0.8.
Note that the spins in aligned-spin BBHs are restricted to

the L̂ direction; this reduces the parameter space to three
dimensions. Following Refs. [23,31], we parametrize the
NRSur3dq8Remnant fit as follows,

Λ ¼ ½logðqÞ; χ̂coorb; χcoorba �; ð11Þ

where we use Eqs. (7) and (10) but keep in mind that spins
in the coorbital frame are the same as those in the inertial
frame for aligned-spin systems.

III. MODELING ERRORS

We evaluate the accuracy of our new surrogate models
by comparing against the NR simulations used in this work.
To avoid underestimating the errors, we perform a 20-fold
cross-validation study to compute “out-of-sample” errors as
follows. We first randomly divide the training simulations
into 20 groups of roughly the same size. For each group, we
build a trial surrogate using the remaining training simu-
lations and test against the simulations in that group, which
may include points on the boundary of the training set.
For comparison, we also compute the errors for existing

peak luminosity fitting formulas [9,10,17] against the NR
simulations. We refer to the fit of Ref. [9] as UIB,3 the fit of
Ref. [10] as HL,4 and the fit of Ref. [17] as FK.5 Note that
these fits are not trained on precessing simulations. As the
spins evolve for precessing systems, there is an ambiguity
about at what time these fits should be evaluated. We follow
the procedure outlined in Ref. [40] and used in LIGO/Virgo
analyses (e.g., Ref. [7]): NR spins are evolved from
relaxation to the Schwarzschild innermost stable circular
orbit (ISCO) using PN theory. The spins at ISCO, projected
along L̂, are used to evaluate the aligned-spin peak
luminosity fitting formulas.

A. Errors for the precessing model

We demonstrate the accuracy of the NRSur7dq4Remnant

model by comparing against the 1528 precessing NR
simulations described in Sec. II B. We perform a 20-fold
cross-validation study where we leave out approximately
75 simulations in each trial for testing. Figure 1 shows the

errors for NRSur7dq4Remnant when using the NR spins at
t ¼ −100M as the input. As the model was trained at this
time, these errors represent the errors in the GPR fitting
procedure. The 95th percentile fractional error in predicting
the peak luminosity is approximately 0.02. We also show
the errors for existing fitting formulas and the NR reso-
lution error, estimated by comparing the two highest
resolution simulations. Our errors are at the same level
as the estimated NR error and about an order of magnitude
smaller than that of existing fitting formulas.
In practice, one might want to specify the input spins at

arbitrary times. For example, in LIGO-Virgo analyses (e.g.,
Ref. [3]), the spins are measured at a fixed reference
frequency. Following Refs. [20,23], this is handled by
evolving the input spins from the reference frequency to
t ¼ −100M using a combination of PN in the early inspiral
and NRSur7dq4 [20] spin evolution in the late inspiral.
Figure 2 shows the errors in NRSur7dq4Remnant when
the spins are specified at a reference orbital frequency
fref ¼ 20 Hz. These errors are computed by comparing
against 23 long NR (3×104M to 105M in length) simu-
lations [20,41] with mass ratios q ≤ 4 and generically
oriented spins with magnitudes χ1, χ2 ∼ 0.5. Note that none
of these simulations were used to train the surrogates.
Comparing with Fig. 1, even with spin evolution, our
errors are about an order of magnitude lower than that of
existing fits.

B. Errors for the aligned-spin model

We demonstrate the accuracy of the NRSur3dq8Remnant

model by comparing against the 104 aligned-spin NR
simulations described in Sec. II C. We perform a 20-fold

FIG. 1. Fractional errors (out of sample) in predicting the peak
luminosity for the precessing model NRSur7dq4Remnant when
compared against precessing NR simulations. When evaluating
NRSur7dq4Remnant, we use the NR spins at t ¼ −100M, where the
model was trained. Also shown are the NR resolution errors and
errors for different existing fitting formulas. The square (triangle)
markers at the top indicate the median (95th percentile) values.
NRSur7dq4Remnant is more accurate than the existing formulas by
about an order of magnitude.

3After the research group.
4For the authors Healyþ Lousto.
5For the lead authors Fortezaþ Keitel.
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cross-validation study where we leave out approximately 5
simulations in each trial for testing. These errors are shown
in Fig. 3. The 95th percentile fractional error in predicting
the peak luminosity is approximately 0.002. Figure 3 also
shows the errors for the existing fitting formulas and the
estimated NR errors. NRSur3dq8Remnant is comparable to NR
and more accurate than existing fits by at least an order of
magnitude.
We note that the estimated NR errors for aligned-spin

BBHs (Fig. 3) are significantly smaller than that for

precessing BBHs (Fig. 1). The reason for this is not clear,
but this places a limit on how accurate the surrogate
models can be. This is reflected in the higher errors for
NRSur7dq4Remnant compared to NRSur3dq8Remnant. More accu-
rate precessing NR simulations may be necessary to further
improve the precessing model.

IV. PEAK LUMINOSITY OF GW190521

As a first application of our models, we compute the
peak luminosity of GW190521 [7] using NRSur7dq4Remnant.
We apply the NRSur7dq4Remnant model to the posteriors
samples for the component masses and spins, obtained
using the preferred NRSur7dq4 model in Ref. [8] and made
publicly available [42] by the LIGO-Virgo Collaboration.
This peak luminosity posterior is shown in Fig. 4. We
compare this with the peak luminosity posterior obtained in
Ref. [8] using the average of the UIB [9] and HL [10] fitting
formulas applied to the same NRSur7dq4 posterior samples.
While the two posteriors are consistent with each other,
NRSur7dq4Remnant shows support for slightly higher values of
peak luminosity. This level of agreement is expected, as
GW190521 had a relatively weak signal-to-noise ratio of
approximately 14.7 [7]. As GW detectors become more
sensitive in the coming years, we can expect to see stronger
signals for which systematic biases in peak luminosity
models will become important.

V. CONCLUSION

We present GPR based NR surrogate models for
peak luminosity of BBH mergers. The first model,
NRSur7dq4Remnant, is trained on 1528 precessing systems
with mass ratios q ≤ 4 and spin magnitudes χ1, χ2 ≤ 0.8.

FIG. 2. Fractional errors for NRSur7dq4Remnant in predicting the
peak luminosity when spins are specified at a reference frequency
of fref ¼ 20 Hz. For four different total masses, we compute the
errors against 23 long NR simulations that were not used to train
the model. For each mass, the errors are shown as a smoothed
vertical histogram (or a violin). The histograms are normalized so
that all violins have equal width.

FIG. 3. Fractional errors (out of sample) in predicting the
peak luminosity for the aligned-spin model NRSur3dq8Remnant
when compared against aligned-spin NR simulations. Also
shown are the NR resolution errors and errors for different
existing fitting formulas. The square (triangle) markers at the top
indicate the median (95th percentile) values. NRSur3dq8Remnant is
more accurate than the existing formulas by at least an order of
magnitude.

FIG. 4. Posterior distribution for the peak luminosity of
GW190521, obtained using the NRSur7dq4Remnant model as well
as the average of the UIB [9] and HL [10] fitting formulas. While
the two posteriors are consistent with each other, NRSur7dq4Remn-
ant suggests a slightly higher value for the peak luminosity.
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The second model, NRSur3dq8Remnant, is trained on 104
aligned-spin systems with mass ratios q ≤ 8 and spins jχ1zj,
jχ2zj ≤ 0.8. Both models are comparable to the NR sim-
ulations in accuracy and outperform existing fitting for-
mulate by an order of magnitude or more. The models are
made publicly available through the PYTHON module
SURFINBH [25] and can be used to estimate the peak
luminosity of GW signals. We use NRSur7dq4Remnant to
infer the peak luminosity of the GW event GW190521 and
find the results to be consistent with previous predictions.
As our GW detectors improve, we will need models that

capture the full physics of BBH mergers. NRSur7dq4Remnant

is the first peak luminosity model trained on precessing NR
simulations. Models such as this will become necessary to
accurately infer the peak luminosity as we approach the era
of high-precision GW astronomy.

This research made use of data, software and/or web
tools obtained from the Gravitational Wave Open Science
Center [42], a service of the LIGO Laboratory, the LIGO
Scientific Collaboration, and the Virgo Collaboration.
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