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Abstract

In bacteria, double-strand break (DSB) repair via homologous recombination is thought to

be initiated through the bi-directional degradation and resection of DNA ends by a helicase-

nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with

translocation speeds between 400–2000 bp/s on linear DNA suggesting that a large section

of DNA around a break site is processed for repair. However, the translocation rate and

activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive

DNA degradation around a break site is unclear. To examine the functions and mechanistic

regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-

based approach to assay DNA processing after a site-specific DSB was introduced on the

chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates

of DSB processing by AddAB and found that putative chi sites attenuate processing in a

RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive

loss of DNA around a break site, limiting the effects of DSB processing on transcription. In

sum, our results, taken together with prior studies, support a mechanism for regulating

AddAB that couples two key events of DSB repair–the attenuation of DNA-end processing

and the initiation of homology search by RecA–thereby helping to ensure that genomic

integrity is maintained during DSB repair.

Author summary

Double-strand breaks (DSBs) are a threat to genome integrity and are faithfully repaired

via homologous recombination. The initial processing of DSB ends that prepares them for

recombination has been well-studied in vitro, but is less well characterized in vivo. We

describe a deep sequencing-based assay for assessing the early steps of DSB processing

in bacterial cells by the helicase-nuclease complex AddAB. We find that a combination of

chi site recognition and RecA loading is required to attenuate AddAB activity. In the
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absence of RecA, the chromosome is excessively degraded with a concomitant loss in

transcription. Our results, along with prior studies, support a model for how chi recogni-

tion and RecA together regulate AddAB to maintain genome integrity and facilitate

recombination.

Introduction

Double-strand breaks (DSBs) are a potentially lethal form of DNA damage as incorrectly

repaired or unrepaired breaks can lead to the loss of genetic information, chromosomal rear-

rangements, mutations, or cell death. Cells have evolved the ability to faithfully repair DSBs via

homologous recombination using a sister chromatid or sister chromosome as a template [1–

3]. In all domains of life, homologous recombination requires the processing of DSB ends to

produce single-stranded DNA overhangs [3–5]. In bacteria this processing is carried out by a

helicase-nuclease complex, such as AddAB or RecBCD, whereas eukaryotes use multiple com-

plexes including the Rad50/Mre11 complex [3,4]. The single-stranded DNA overhangs pro-

duced by the helicase-nuclease complex become bound by a single-stranded DNA-binding

recombinase, usually RecA in bacteria, or the homologous Rad51 in eukaryotes. The RecA/

Rad51 filaments that form on ssDNA overhangs can initiate homology search and strand inva-

sion to drive recombination and subsequent repair of the damaged chromosome [1–3].

Precisely how DSB end processing occurs and how it is regulated to ensure the generation

of single-stranded DNA required for recombination without an excessive loss of genomic

information is not fully understood. Biochemical studies have led to two general models. In

one model, the nuclease-helicase complex initially degrades both strands of DNA until it

encounters a specific DNA element called chi (crossover hotspot instigator) that triggers a

switch to a state that drives resection of only one strand, thereby producing the necessary

ssDNA overhang needed to initiate homologous recombination [6–13]. This model has

emerged from biochemical studies on E. coli RecBCD, which has two independent helicase

domains and a nuclease domain, and B. subtilis AddAB, which contains a helicase and a nucle-

ase domain in AddA along with a nuclease domain in AddB (which also carries an inactive

helicase domain) [4,5,14]. Biochemical studies of AddAB from B. subtilis show that, like

RecBCD, recognition of chi sequences on the 3’-terminated strand during degradation con-

verts AddAB from a double-stranded nuclease to a single-stranded DNA nuclease and slows

its effective rate of translocation [15–18]. Structural studies have further suggested that this

could be due to a conformational change in the complex following chi recognition by AddB

[14,19]. The single-stranded DNA generated by either RecBCD or AddAB is thought to be

bound by the RecA filament. In the case of RecBCD, the loading mechanism for RecA has

been well-characterized, showing that RecA binding to single-stranded DNA is facilitated by

RecBCD in a chi-dependent manner, via a direct interaction with RecB [8,20,21]. How RecA

loading occurs in the context of AddAB remains to be determined. The alternative model

for production of single-stranded overhangs posits, at least in E. coli, that RecBCD initially

unwinds a DSB end but without any degradation [6]. Upon activation at a chi site RecBCD

then nicks one strand with subsequent helicase activity separating the two strands to create a

single-stranded overhang that can load RecA and initiate homologous recombination.

Which of these two models applies in vivo to AddAB is not fully resolved. As noted, the

molecular events underlying the initial processing of DSBs have been extensively studied in
vitro, both in bulk and in single-molecule experiments [14–17,19,22–24], but assessing these

events and measuring the rates of AddAB or RecBCD-dependent processing of a DSB on the
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chromosome in living cells remains a major challenge. Genetic assays used to assess RecBCD

[25,26], and to some extent AddAB [27–30] activity, in vivo have provided important insights,

but direct measurements of DNA processing by these helicase-nuclease complexes has been

limited. The assays used often involve measuring the retention of radioactively labeled nucleo-

tides in chromosomes subjected to UV damage [31], which produces a large number of lesions

and kills most cells, complicating the estimation of degradation rates by a helicase-nuclease

complex acting on a single chromosomal DSB. Techniques such as Southern blotting [32,33]

have also been used to probe helicase-nuclease activity in vivo, but cannot easily be used to

examine DNA processing on a global level. Advances in whole genome DNA sequencing in

combination with the development of systems for the controlled introduction of single DSBs

[32,34–36] in bacterial chromosomes now offer the ability to probe the in vivo activity of heli-

case-nuclease complexes like AddAB with higher resolution and more precision.

Caulobacter crescentus is a useful organism for probing the in vivo dynamics and mecha-

nisms underlying DSB repair. Unlike many bacteria, Caulobacter exhibits once-and-only-once

replication of its chromosome under all growth conditions, and large populations of cells are

easily synchronized, enabling the isolation and study of cells with a single chromosome. DSB

repair has been previously visualized at the single-cell level in Caulobacter [37]. Here, we exam-

ine the in vivo processing of site-specific DSBs introduced in the Caulobacter chromosome,

which is thought to require AddAB [37,38], using the endonuclease I-SceI [34,37]. Using a

deep sequencing-based assay we measure the extent of DNA processing by AddAB around a

break site and provide evidence that AddAB initially degrades both strands, but is then trig-

gered, by putative chi sites, to resecting a single strand. We show that putative chi sites in Cau-
lobacter attenuate the rate of AddAB-mediated DNA processing in vivo, but only with ~20%

efficiency, similar to in vitro estimates for B. subtilis AddAB [16]. We find that, in the absence

of RecA, AddAB translocation rates inferred in vivo are comparable to the previously mea-

sured in vitro rate of ~400 bp/s for B. subtilis AddAB [16,22,23,39]. Further, our results suggest

that, in the presence of RecA, AddAB translocation after chi recognition is reduced ~4-fold.

Successful attenuation of degradation requires the formation of a RecA filament, but not the

SOS response or recombination. Collectively, our results indicate that RecA likely downregu-

lates the translocation rate of AddAB after chi, possibly through a direct protein-protein inter-

action. This regulation of AddAB by RecA helps to limit DNA degradation around a break

site, thus constraining the impact on transcription to a more limited region of the genome.

Results

A deep sequencing-based assay for measuring DNA resection after a

double-strand break

To assess DNA processing around a DSB induced on the chromosome, we used the I-SceI

system previously developed in Caulobacter [37] (Fig 1A). Briefly, a single I-SceI site was intro-

duced +780 or +3042 kb from the origin of replication and the I-SceI enzyme, which recog-

nizes and cleaves the I-SceI site to generate a DSB, was placed under a vanillate-regulated

promoter on the chromosome [37,40]. This promoter is repressed by the protein VanR; addi-

tion of vanillate releases VanR from the Pvan promoter and induces gene expression [40].

DnaA, the replication initiator, was expressed from an IPTG inducible promoter to control

the replication state of cells. To isolate the initial step of DSB processing from later events of

homologous recombination, we conducted our experiments primarily in cells with a single

chromosome, the swarmer cells of a C. crescentus population. To isolate these swarmer cells

and to prevent subsequent rounds of replication, cells were grown without IPTG for 1.5 h to

deplete DnaA and arrest cells in a G1 state. These G1-arrested cells were then isolated using
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Fig 1. A deep sequencing-based assay for measuring DNA processing after a double-strand break. (A) Schematic of the assay used to

measure DNA processing around a DSB in Caulobacter swarmer cells. DSBs were induced by addition of 500 μM vanillate. (B-C) Representative

DSB processing profiles for DSBs induced at +780 (B) or +3042 (C) kb for 1 h (black) or 2 h (grey). Location of the DSB site is indicated with a

dashed line. (D) Representative profile showing that, in the absence of AddAB (red trace), DNA processing and degradation around a DSB site is

not observed. (E) Profiles for DSB at +780 kb in an asynchronously growing population of Caulobacter induced with 500 μM (red) vanillate for 1 h.
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Percoll density gradient centrifugation [41]; flow cytometry analysis verified that this proce-

dure produced a population of G1-phased swarmer cells (S1A Fig). I-SceI was then induced by

adding vanillate for 0.5, 1, 2, or 4 h and genomic DNA isolated and sequenced. As a control,

genomic DNA from swarmer cells to which vanillate was not added was also isolated and

sequenced. The fold difference in reads per kilobase per million (rpkpm) in the DSB-induced

sample relative to the control was plotted as a function of genomic position, hereafter referred

to as a DSB processing profile.

In cells with a single chromosome, induction of a DSB with 500 μM vanillate at +780 kb

from the origin resulted in bidirectional loss of DNA around the break site, with an ~30% and

~40% drop in reads at the DSB site after 0.5 h and 1 h respectively (Fig 1B, S1B and S1C Fig).

After 2 h, there was an ~60% drop in reads at the location of the DSB site. Similar decreases in

reads were also observed upon induction of a DSB +3042 kb from the origin (Fig 1C, S1D Fig).

In this case, 1 h of vanillate induction resulted in an ~60% drop in reads at the site of the DSB

with 2 h of induction resulting in an ~80% drop in reads. The DSB processing profiles were

highly reproducible, with independent repeats yielding r values of 0.94 (S1E Fig).

To confirm that the troughs observed in the profiles (Fig 1B and 1C) result from DSB pro-

cessing by AddAB, we repeated our assay in ΔaddAB cells. These cells did not show any signifi-

cant drop in reads near the DSB site, or elsewhere in the genome (Fig 1D), indicating that

AddAB is, in the growth conditions tested here, the only helicase-nuclease complex that pro-

cesses a DSB.

We also generated a DSB processing profile for an unsynchronized, actively replicating

population of cells. We first treated an asynchronous population of cells with 500 μM vanillate

(as with the synchronized G1/swarmer cells in Fig 1B) to drive maximal induction of I-SceI,

which is sufficient to drive cleavage of both chromosomes in nearly all cells with two chromo-

somes [37], thereby preventing homologous recombination-based repair. However, even with

maximal induction of I-SceI, a very small percentage of cells could experience only a single

DSB that can be repaired. Treatment with 500 μM vanillate produced a profile almost identical

to that observed with swarmer cells alone (Fig 1E). This effect was not because cells entered a

G1 arrest (S1G Fig), indicating that AddAB activity is not significantly influenced by the repli-

cation status of the cells. We also measured the DSB processing profile for cells in which I-SceI

was induced with 2 μM vanillate (Fig 1F). These cells likely experience only a single DSB and

thus can repair the damaged chromosome through homologous recombination-based repair,

as judged by the fact that cells treated with 2 μM vanillate showed no major change in their

flow cytometry profile (S1G Fig), did not lose viability, and were previously shown to engage

in homology-based repair [37]. The profile for these cells was similar in shape to that of

synchronized swarmer cells or asynchronous cells treated with 500 μM vanillate, but the

magnitude of differences was substantially reduced (Fig 1F), likely because some fewer cells

experience DSBs and because cells can repair a single cut chromosome.

The library preparation procedure used should, in principle, only result in the sequencing

of double-stranded DNA. However, DSB resection could, in principle, result in the production

of some single-stranded DNA. To ensure that we were not sequencing single-stranded DNA,

we treated genomic DNA extracted from a DSB-induced sample with Mung bean nuclease,

Profile for DSB induction in swarmer cells with 500 μM vanillate from Fig 1B is also shown in black. (F) Profiles for DSB at +780 kb in an

asynchronously growing population of Caulobacter induced with 2 μM (green) vanillate for 1 h. Profile for DSB induction in swarmer cells with

500 μM vanillate from Fig 1B is also shown in black. (G-H) qPCR was performed using the primer pairs at the genomic positions indicated in wild-

type cells. The location of putative chi sites on the top and bottom strands are indicated with red and blue, respectively, tick marks (also see Fig

2A). Samples were collected before (0 min) and 60 min after DSB induction. qPCR at a distal, unprocessed control site (rpoA: +1,444 kb) was also

performed. qPCR values at each locus normalized to rpoA are plotted for two independent repeats (a and b). DSB processing profile values for the

same loci are also shown. (I-J) Zoomed in regions of the 1 h profiles for a DSB induced at +780 (I) or +3042 kb (J).

https://doi.org/10.1371/journal.pgen.1006783.g001
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which degrades single-stranded DNA. The resulting degradation profile was indistinguishable

from that of a sample not treated with the nuclease (S1F Fig), indicating that our method only

produces reads for double-stranded DNA. Thus, our profiles likely represent total DNA loss

due to the degradation of one or both strands from the DSB. This interpretation would also fit

with prior biochemical studies indicating that AddAB can degrade double-stranded DNA and

resect a single strand. However, as noted before, an alternative model for E. coli RecBCD posits

that the helicase-nuclease complex initially unwinds the two strands and then, at chi sites will

nick and again unwind but not degrade the DNA. If the initially unwound DNA reannealed, it

would form double-stranded DNA that would be sequenced. But if that were occurring, we

would not have seen any loss of reads near the DSB site. Alternatively, the initially unwound

DNA may not anneal, remaining single-stranded, which is not captured in our sequencing.

Hence, to distinguish between these possibilities, we performed quantitative PCR (qPCR),

which can report on total DNA, including any single-stranded DNA that may be missed in our

sequencing assay. If AddAB were only unwinding the DNA flanking a DSB, then qPCR using

primer pairs at loci adjacent to a DSB should yield significantly more product than a primer

pair that spans the DSB site itself. However, the qPCR values for loci immediately adjacent to a

DSB site at +780 kb were comparable to the value for the DSB site itself, and to the values mea-

sured by our sequencing-based profiling, supporting the notion that AddAB initially degrades

both strands of DNA (Fig 1G and 1H). The qPCR values increased at sites further from the

DSB site, relative to the qPCR value at the DSB and relative to the values measured by our se-

quencing approach, likely reflecting the presence of some single-stranded DNA not detected

in our sequencing assay. Thus, taking together prior biochemical studies and our own se-

quencing and qPCR data, we favor a model in which AddAB initially degrades both strands

and then, in response to chi sites (see below), switches to resecting a single strand. There is also

a formal possibility that AddAB does initially just unwind the DSB end and that other nucle-

ases in the cell degrade each strand, but such a model is less parsimonious as it invokes addi-

tional components that are not necessary in vitro.

DNA degradation around a double-strand break is asymmetric due to

putative chi sites

In the 1 h DSB processing profile for swarmer cells with a DSB induced at +780 kb (Fig 1B) the

read counts were lowest at the site of cleavage and then increased progressively in both direc-

tions until they matched the read counts of the control profile. These profiles can, therefore, be

used to estimate an upper bound on the speed of AddAB-dependent processing. After 1 h, the

first point of separation between the DSB-induced and control profiles was ~450 kb to the left

of the DSB and ~1300 kb to the right. Thus, the rate of processing (degradation and resection)

in vivo can be, at most, ~100 bp/s to the left and ~200 bp/s to the right. However, because the

profiles are not step functions and instead feature a gradual decrease from +450 and +1300 kb

toward the DSB site, it implies that most cells degrade DNA more slowly than 100–200 bp/s or

initiate DSB processing at different times. To test this latter possibility, we measured cell viabil-

ity as a function of time after adding vanillate to induce I-SceI and a DSB. Because we induce

DSBs in swarmer cells containing a single chromosome, recombination-based repair cannot

occur and a DSB is lethal. Thus, if all cells experienced a DSB immediately after the addition of

vanillate, we would expect a precipitous drop in viability post-induction. Instead, we found a

gradual decrease in viability suggesting that cells likely experience a DSB at variable times

(S1H Fig). Heterogeneity in a population of cells may also arise if DNA degradation proceeds

at different rates in individual cells or if DSB processing is slowed or stopped at different fre-

quencies, possibilities explored further below.
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For DSBs at either +780 or +3042 kb, the global processing profile was clearly asymmetric

around the break site (Fig 1I and 1J). In each case, read loss extended further toward the termi-

nus than the origin. Prior studies have shown that DNA degradation by helicase-nuclease

complexes such as AddAB or RecBCD is negatively regulated by chi sequences that are highly

abundant in bacterial genomes, and often with a much higher frequency on the lagging-strand

template, with respect to DNA replication [2,42]. Because B. subtilis AddAB directionally rec-

ognizes chi sites [4], the distribution of these sequences may underlie the asymmetry seen in

our degradation profiles. The putative chi sequence in Caulobacter was previously predicted

computationally to be 5’-GCGGTGGT-3’ [43] (Fig 2A). To test whether this sequence element

is responsible for degradation asymmetry, we first overlaid on the DSB processing profile of

cells with a DSB induced at +780 kb the putative chi sequences on the leading (Figs 2B and

S2A) and lagging strands (Figs 2C and S2B) that may affect AddAB translocation and degrada-

tion in the 3’->5’ direction. Leading and lagging strands are defined with respect to DNA rep-

lication, which is presumed to proceed bidirectionally from the origin (0 kb) to the terminus

(~2000 kb); for the sake of simplicity, we use ’leading’ and ’lagging’ strands to refer to the lag-

ging- and leading-strand templates, respectively (Fig 2A). Additionally, we note that the chi
sequences shown in Fig 2 and throughout our study are those that match the computationally

predicted chi sequence and are in an orientation that would, in principle, allow them to affect

AddAB. The presence of putative chi sequences was inversely correlated with the extent of deg-

radation, with more degradation occurring on the side of the DSB where the density of puta-

tive chi sequences was substantially less. This pattern was also observed when a DSB was

induced +3042 kb from the origin (S2C and S2D Fig) suggesting that the asymmetry observed

in the DSB processing profiles results from an effect of chi site frequency on AddAB activity.

To more directly determine whether 5’-GCGGTGGT-3’ is the Caulobacter chi sequence

and whether the presence of this sequence explains the asymmetry of our profiles, we inserted

an array of 15 such sequences on the chromosome either +30 kb or +100 kb from the DSB

site at +780 kb. This chi array was inserted either in the correct orientation for recognition by

AddAB (chifor) or in the opposite orientation as a control (chirev). After inducing a DSB, the

chirev construct had no effect on degradation (Fig 2D and 2E, S2E and S2F Fig). In contrast,

the chifor construct significantly reduced degradation beyond the location it was inserted when

compared to the control or wild-type profiles (Figs 2D, 2E, S2E and S2F). Although degrada-

tion beyond the inserted array of chi sites was reduced, it was not completely eliminated.

Given prior studies suggesting that chi sites switch AddAB to a mode in which it degrades only

one strand to produce resected DNA [4,17], we infer that ssDNA degradation likely occurs

more slowly than the initial double stranded degradation. Alternatively, it is possible that the chi
recognition frequency is low. These data also support the conclusion that 5’-GCGGTGGT-3’ is

likely the chi sequence in Caulobacter, though we have not, of course, shown whether they are

sites where homologous recombination preferentially occurs. Importantly for our purposes

though, these sites clearly affect DSB processing and likely explain the asymmetric degradation

by AddAB from a DSB site.

Notably, the chifor construct produced a clear difference in the profile, relative to the wild

type and cells harboring the chirev construct. This difference was evident within ~2–5 kb of the

site of insertion (Fig 2F and 2G), demonstrating that our assay has a resolution of at least 5 kb

and likely better.

Effect of chi sites on AddAB is dependent on RecA

Collectively, the results presented thus far suggest that the recognition of chi sequences by

AddAB results in an attenuation of AddAB-mediated processing of DNA around a break site.

Global analysis of double-strand break processing in vivo
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Fig 2. DNA degradation around a double-strand break is asymmetric due to chi sites. (A) Plot showing

distribution of the putative chi sequence (5’-GCGGTGGT-3’) in Caulobacter. chi sites that are predicted to

have an effect on AddAB translocation on the leading strand are shown in red and on the lagging strand are

shown in blue. Each tick indicates the position of an individual chi sequence. (B-C) Positions of chi sequences

on the leading strand (B) or lagging strand (C) with respect to a DSB site at +780 kb (dashed line) are overlaid
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Next, we wondered whether the attenuation of DSB end processing after chi recognition may

result, in part, from the recruitment of RecA to the ssDNA formed after AddAB encounters a

chi site. To examine the effect of RecA on DSB processing, we measured the DSB processing

profile of cells lacking RecA (Fig 3A, S3C and S3D Fig). In sharp contrast to the wild type, the

profile for ΔrecA cells exhibited significantly more extensive degradation and/or processing in

both directions after a DSB (Fig 3A). Additionally, the asymmetry of the degradation profile

was no longer apparent in cells lacking RecA (Fig 3B and 3C). After 1 h, the first point of sepa-

ration between the DSB-induced and control profiles was approximately the same on both

sides of the DSB, yielding an upper bound of ~400 bp/s for the rate of DNA processing in both

directions in ΔrecA cells. Note that we also detected more total DNA via qPCR than in our

DSB processing profiles of ΔrecA cells, again with a progressively increasing ratio of qPCR to

degradation profile values away from the DSB site (S3A and S3B Fig). These results indicate

that RecA is important in limiting the extent of DSB end processing.

The effect of RecA on DSB resection could be indirect. RecA, when bound to single-

stranded DNA, can induce auto-cleavage of the transcriptional repressor LexA, resulting in

the expression of genes in the SOS regulon, many of which participate in DNA damage

response and repair [44,45]. To test whether the effect of RecA on AddAB-dependent degrada-

tion around a DSB is indirectly mediated via the SOS response, we introduced a non-cleavable

mutant of LexA [46] into our DSB system and measured the profile of cells after a DSB. The

profile for this non-cleavable LexA mutant strain was nearly indistinguishable from the wild-

type profile (Fig 3D). Thus, the effect of RecA on AddAB-dependent degradation is likely not

mediated through its effect on the SOS regulon. Further, the dispensability of the SOS response

for AddAB regulation suggests that basal levels of RecA are sufficient to prevent excessive

DNA processing at a DSB [45].

To test whether RecA directly interacts with AddAB, we used a bacterial two-hybrid assay

to screen for physical interactions [47]. Each protein was fused to a subunit of adenylate

cyclase and then co-expressed in E. coli. Interaction between two fusion proteins will reconsti-

tute adenylate cyclase, leading to production of cAMP and the subsequent activation of a

reporter gene that turns colonies red on MacConkey agar. In this assay, we found that RecA

interacted with AddA but not with AddB (Figs 3E, S3E and S3F). We also confirmed an inter-

action between AddA and AddB, as expected, but not between AddA and a negative control,

FtsZ. RecA or AddA also did not display interaction with empty vector controls, T18 and T25

respectively. Further, our assay indicated that RecA likely interacts with the N-terminal por-

tion of AddA (Figs 3F, S3E and S3F), where the helicase domain of AddA resides. This is in

contrast to RecA’s interaction with RecB in E. coli, which occurs via the nuclease domain of

RecB [20].

RecA forms a filament on single-stranded DNA that is formed by AddAB after it interacts

with chi and begins degrading only one strand of the DNA [2,4,5]. To test whether this fila-

ment forming activity of RecA is necessary for it to interact with and regulate AddAB, we gen-

erated a mutant, RecA(K83A), predicted to abrogate filament formation based on studies of E.

coli RecA [48–50]. This mutant retained an interaction with AddA in the bacterial two-hybrid

system and was expressed in vivo at levels comparable to the wild type protein (S3G Fig).

on the DSB processing profile from Fig 1E. (D) A repeat of 15 chi sequences (chifor) was inserted +30 kb

from the DSB site at +780 kb and the profile is shown in green. As a control, the chi orientation was flipped at

the same location (chirev) and the profile is shown in orange. Profile of a DSB induced at +780 kb (without

insertion of chi) is also shown from Fig 1B (black). (E) Same as panel D, with chi sequences inserted +100 kb

from the DSB site. (F-G) Zoom in views of genomic regions where chi sequences were inserted, as in panels

D-E.

https://doi.org/10.1371/journal.pgen.1006783.g002

Global analysis of double-strand break processing in vivo

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006783 May 10, 2017 9 / 25

https://doi.org/10.1371/journal.pgen.1006783.g002
https://doi.org/10.1371/journal.pgen.1006783


Fig 3. Effect of chi sites on AddAB is dependent on RecA. (A) Representative DSB processing profile for a DSB induced at +780 kb from the origin 1 h

after I-SceI induction with (black) or without (red) RecA. Location of the DSB site is indicated with a dashed line. The wild-type profile is from Fig 1B. (B)

Zoomed in profile for a DSB induced at +780 kb 1h after I-SceI induction with (black) or without (red) RecA. (C) As (B) for a DSB induced at +3042 kb. (D)

Profile of a non-cleavable mutant of LexA (green) is shown. Profiles of wild type (black) and ΔrecA (red) are from Fig 3A. (E) Bacterial-two-hybrid assay

showing RecA interaction with AddA, but not AddB. Empty vector controls are also shown. (F) Bacterial-two-hybrid assay with fragments of AddA. Amino acid
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However, the K83A mutant was incapable of regulating AddAB-mediated DNA resection as

the degradation profile of the mutant looked similar to that of ΔrecA cells (Fig 3G). We con-

clude that RecA likely must form a filament to properly regulate AddAB and attenuate DNA

degradation and processing.

To test whether recombination is required for AddAB regulation, or if RecA filament for-

mation is sufficient to slow down AddAB after chi recognition, we constructed a strain produc-

ing RecA(N304D) [51], which is predicted to be recombination deficient but still capable of

binding ssDNA to form a filament. This mutant was also expressed in vivo (S3G Fig), but sen-

sitive to DSBs, comparable to ΔrecA cells (S3H Fig). In asynchronously growing, replicating

cells induced with maximal levels of I-SceI (500 μM vanillate), the profile of this mutant was

comparable to wild-type cells, including the same asymmetry around the DSB site (Fig 3H). In

cells treated with only 2 μM vanillate (a concentration that allows for repair via homologous

recombination in wild-type cells), an asymmetric global profile was still seen in the recombina-

tion-deficient mutant (Fig 3I). These results suggest that recombination is likely not required

for RecA-mediated regulation of AddAB.

AddAB-dependent DNA resection is attenuated after chi recognition

To further probe the effect of RecA on AddAB, we sought to assess the rates of AddAB-depen-

dent processing in vivo, both before and after chi recognition. These rates have been measured

previously in vitro for B. subtilis AddAB, although only in the absence of RecA [16,22,24,39];

the B. subtilis AddAB translocation rate before chi recognition was reported to be between

400 and 2000 bp/s, with a chi recognition probability of ~0.25, and a post-chi translocation

rate only ~15% slower than the pre-chi rate. To estimate the in vivo rates and chi recognition

probability, we ran a simulation of DNA degradation/processing with four parameters: (i) the

rate of DSB formation after adding inducer, which produces a distribution of times post-

induction when DSB processing begins, (ii) the degradation rate before chi recognition, (iii)

the probability of recognizing each chi site, and (iv) the DNA processing rate after chi recogni-

tion. Rates of DSB formation were estimated via simulations (S4A and S4B Fig) and confirmed

by performing qPCR on chromosomal DNA isolated from DSB-induced ΔaddAB cells (S4C

and S4D Fig). Based on previous studies [22,39], it was assumed that AddAB would recognize

only one chi sequence and, once bound to chi, the complex would not be affected by further

chi sequences encountered. With a rate of DSB formation of ~0.4 DSB / h, we first tested the

parameters measured in vitro and found that a pre-chi degradation rate of 400 bp/s, a chi rec-

ognition probability of ~0.23, and a post-chi degradation rate of 340 bp/s, produced a close fit

to the in vivo symmetric DSB processing profile of cells lacking recA (Fig 4A).

We next considered the case of wild-type cells in which RecA attenuates AddAB-dependent

degradation and combines with chi to produce an asymmetric degradation profile. A reason-

able fit to the wild-type profile at 1 and 2 h was produced by simulations with a pre-chi degra-

dation rate of 400 bp/s, a chi recognition probability of ~0.22, and a post-chi processing rate of

51 bp/s. However, these parameters did not fit the measured profile at 4 h (S5A Fig). At this

later time point, the model predicted more extensive degradation than was observed. In fact,

the profile at 4 h was not substantially different than that observed at 2 h. This could indicate

that cells are dead after 4 hours, although DNA degradation can likely still occur even when

positions for each fragment are indicated in parentheses. (G) DSB processing profile of a predicted RecA ATPase mutant, RecA(K83A) (green). The wild type

profile (black) is from Fig 1B. (H) Profile of a predicted RecA recombination deficient mutant, RecA(N304D) (green). The wild-type profile (black) is from Fig

1E. In both cases, asynchronously growing, replicating cells were induced with 500 μM vanillate for 1h. (I) Same as panel H but for asynchronously growing,

replicating cells induced with 2 μM vanillate for 1 h.

https://doi.org/10.1371/journal.pgen.1006783.g003
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Fig 4. AddAB-dependent DNA processing is attenuated after chi recognition. (A) Example simulation profiles obtained

by scanning for parameters that match the measuredΔrecA profile. The translocation rates for B. subtilis AddAB in vitro

[16,24,39] are in green (pre-chi AddAB degradation rate– 400 bp/s) and black (pre-chi AddAB degradation rate– 2000 bp/s).

In all cases, the chi recognition probability was ~0.23 and post-chi AddAB speed was reduced by 15%. The average profile

from simulations of 10,000 independent cells treated for 1 h is shown. The ΔrecA profile (red) is from Fig 3A. (B) Schematic
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cells are no longer viable as judged by plating assays. Thus, the similarity between the 2 and 4 h

profiles could suggest that AddAB dissociates from the DNA at long time points. We therefore

added a fifth parameter to the model, the rate of AddAB dissociation and considered two pos-

sible models: Model 1 where we (i) fixed the post-chi processing rate to be 15% less than the

pre-chi rate, as measured in vitro in the absence of RecA [16,24], and (ii) varied the rate of

AddAB dissociation after chi recognition; Model 2 where we varied both the post-chi process-

ing rate and the dissociation rate for AddAB (Fig 4B). For each model we identified parameters

that produced good fits to the degradation profiles at each time point measured (Fig 4C and

4D, S5B and S5D Fig). In each case the rate of degradation pre-chi recognition was 400 bp/s

and the probability of chi recognition was ~0.23. In Model 1 where the post-chi processing rate

was 340 bp/s, the dissociation rate for AddAB was 0.102 / min. In Model 2, the post-chi pro-

cessing rate was 96 bp/s with a dissociation rate for AddAB of 0.021 / min.

To distinguish between these models, we sought to directly measure the post-chi processing

rate, which differs more than 3-fold between the two models, by examining the time it takes

AddAB to degrade two loci positioned at specific distances from a DSB site on the arm where

chi site density is highest. For these experiments we used a strain with a DSB site located +30

kb from the origin, which enabled us to label the endogenous parS locus ~38 kb from the DSB

site by expressing a fusion of the protein MipZ and YFP. MipZ binds ParB, which forms a

large nucleoprotein complex at parS; thus, MipZ-YFP forms a fluorescent focus in vivo that

marks the cellular position of parS [52]. We also inserted an orthogonal parS site from the plas-

mid pMT1 either 130 or 230 kb from the break site; expressing the cognate ParBpMT1 fused to

CFP enables the in vivo tracking of this locus [53]. Using time-lapse microscopy we then mea-

sured the timing of disappearance of the MipZ-YFP and ParBpMT1-CFP foci after inducing a

DSB. We infer that the disappearance of each focus reflects the degradation of either one or

both strands that correspond to a given locus, as occurs during DSB processing. Mere translo-

cation of a protein, such as AddAB, past a locus would not lead to the permanent losses in fluo-

rescent foci seen here; for instance, MipZ foci are well known to be maintained after the

passage of the replisome [52].

The model with a post-chi degradation rate of 340 bp/s (Model 1 in Fig 4B) predicted an

interval between loss of the two fluorescent foci of ~4 or 9 min, respectively, whereas the

model with a post-chi degradation rate of 96 bp/s (Model 2 in Fig 4B) predicted an interval of

~15 or 30 min, respectively (Fig 4E–4J). Our measurements, using fluorescence time-lapse

microscopy, revealed mean intervals of ~12 and 29 min (Fig 4E–4H), respectively, depending

on whether the second locus was 130 or 230 kb from the break site. As predicted from the

above results, we also found that the frequency of loss of a marker -130 kb from the break site

was higher than a marker -230 kb away (Fig 4J). Thus, we favor a model in which AddAB ini-

tially drives DSB ends processing at a rate of ~400 bp/s, with an ~23% chance of recognizing

each chi site during translocation, and that chi recognition in combination with RecA loading

summarizing the possible models and parameters for describing the in vivo profiles of wild-type cells. (C-D) Simulation

profiles obtained for Model 1 (red) and 2 (blue) that best fit the in vivo DNA degradation profiles for a DSB induced at +780 kb

for 1 h and 2 h samples respectively. Experimental profiles from Fig 1 are overlaid in black and grey. (E) Histograms showing

the predicted degradation rates from simulations of Model 1 and 2, and the experimentally obtained degradation rates

between fluorescent loci at -38 kb and -130 kb for a DSB induced +30 kb from the origin. Each grey dot represents the value

determined from an individual cell. The mean is reported above each bar. (F) Montage of representative cells showing the

loss of fluorescent foci at -38 kb (MipZ, red) and -130 kb (ParBpMT1, green) after a DSB was induced +30 kb from the origin.

Time is indicated in the frames. Schematic of DSB site (yellow) along with the location of the -38 kb and -130 kb markers are

shown and number of chi sites between the DSB site and these positions is indicated. (G-H) Same as panels E-F, but for

fluorescent loci at -38 kb and -230 kb for a DSB induced +30 kb from the origin. (I) Percentage of cells with the loss of a MipZ

focus (-38 kb from the DSB site) 1 or 2 h after break induction. (J) Percentage of cells with loss of a ParBpMT1 marker -130 kb

or -230 kb from the DSB site in those cells where the MipZ focus has been lost.

https://doi.org/10.1371/journal.pgen.1006783.g004

Global analysis of double-strand break processing in vivo

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006783 May 10, 2017 13 / 25

https://doi.org/10.1371/journal.pgen.1006783.g004
https://doi.org/10.1371/journal.pgen.1006783


on the single-stranded DNA produced by AddAB slows subsequent processing or transloca-

tion ~4-fold, with an additional, modest rate of AddAB dissociation.

DSB processing and degradation affects transcription of genes near a

break site

Taken together, our results indicate that DSB ends are often subject to extensive degradation

and processing, as the AddAB complex may not slowdown at the first chi site encountered or

may slowdown but continue degrading one strand of the DNA. Thus, AddAB-dependent pro-

cessing of DSB ends could affect the transcription of genes flanking a break site, as shown re-

cently in yeast [54]. To test this possibility in Caulobacter, we performed RNA-seq on swarmer

cells subjected to a single DSB. We compared the expression levels of individual genes to

untreated swarmer cells. A set of genes associated with the DNA damage response in Caulo-
bacter that are found throughout the chromosome increased significantly following a DSB. In

addition, we observed a clear decrease in the RNA levels of genes nearest the DSB site (Fig 5A

and 5B). These transcriptional profiles correlated well with the DNA processing profiles seen

after inducing a DSB. The asymmetry observed in the DNA profiles was also observed in the

transcriptional profiles, with larger decreases in transcription on the arm with fewer chi
sequences. The loss of transcription near a DSB was dependent on AddAB (Fig 5C and 5D).

Because RecA associates with DNA around the break site we also conducted RNA-seq

experiments in cells lacking RecA to test the effect of RecA on global and local transcriptional

changes. In contrast to the wild type, the decrease in transcription around the break site in

ΔrecA cells was no longer asymmetric and was more extensive compared to recA+ cells (Fig

5E–5F). This result suggests that by slowing AddAB-dependent processing of DSB ends, RecA

may help prevent excessive and potentially deleterious losses in transcription.

Discussion

Homologous recombination in bacteria has been extensively studied in vitro and deep mecha-

nistic insights into the function of various protein complexes that participate in the process

have been gained using ensemble biochemistry experiments as well as single molecule and

structural studies [4,6,8,14,15,17,55]. Recent advances in imaging and sequencing now provide

a way to also probe and dissect these mechanisms in the context of living cells and in the con-

text of individual DSBs. Homologous recombination is likely to be profoundly influenced in
vivo by the structure and organization of the chromosome, and by other concomitant cellular

processes such as DNA replication and transcription.

Prior efforts to examine the activities of RecBCD [25,26,31,32,56,57] and AddAB [27–29] in
vivo have often relied on UV irradiation to create DSBs, but UV light can introduce a range of

different types of lesions in the DNA and likely creates a large number of lesions simulta-

neously. Even in the case of limited UV doses that create only 1–2 lesions per chromosome,

the location and timing of the lesions cannot be precisely determined. While the development

of I-SceI-based cleavage offers an ability to precisely control the number and timing of DSBs

in vivo [32,34,37], previous assays for monitoring DNA processing have relied on techniques

such as radiolabeled nucleotide incorporation, which has limited resolution, or Southern blot-

ting, which cannot query DNA processing on a global level [31]. Here, we developed a novel in
vivo assay for monitoring DSB processing by the helicase-nuclease AddAB with relatively high

resolution and at a genomic level.

Using this assay, we found that AddAB bidirectionally processes a DSB in an asymmetric

manner, with one arm of the chromosome undergoing more degradation than the other arm.

This asymmetry correlated with the asymmetric distribution of putative chi sequences on the
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Fig 5. DSB processing and degradation affects transcription of genes near a break site. (A) RNA-seq profile of cells when a DSB is induced +780

kb from the origin for 1 h. Fold difference between DSB induced cells and control (swarmer cells with no DSB induction) is plotted. Each grey dot

represents individual transcript levels. Dashed line indicates location of the DSB site. In all cases, average of two independent repeats is plotted. (B) As

(A) for a DSB induced at +3042 kb from the origin. (C) RNA-seq profile of cells lacking AddAB when a DSB is induced at +780 kb from the origin. Fold

difference between DSB induced cells and control (swarmer cells with no DSB induction) is plotted. Each grey dot represents individual transcript levels.

Dashed line indicated location of the DSB site. (D) As in (C) with the DSB processing profile overlaid in red. (E) As in (A) for cells lacking RecA. (F) As in

(B) for cells lacking RecA.

https://doi.org/10.1371/journal.pgen.1006783.g005
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leading and lagging strands, and ectopically inserting these putative chi sites was sufficient to

significantly slow AddAB-dependent processing (Fig 2). Notably, the difference between the

degradation profiles for cells with and without the chi sites inserted was detected within ~2–5

kb of the site of insertion (Fig 2F and 2G), demonstrating that our assay has nearly kb resolu-

tion and is thus a powerful method for probing DSB processing and repair processes.

Our mathematical modeling suggested that chi sites are recognized by and trigger a slowing

of AddAB with a probability of 0.23. However, the insertion of an array of 15 sites did not

completely stop DNA processing beyond the site of insertion, possibly because clustered chi
sites are not recognized independently, as noted previously for chi recognition by RecBCD in

E. coli [36]. Regardless, our results demonstrate that the putative chi site used in these arrays

has a demonstrable effect on AddAB-dependent processing of DSBs in Caulobacter. Whether

these putative chi sites are also the sites of increased recombination events as with chi sites in

E. coli remains to be determined.

The asymmetry of AddAB-dependent degradation likely leads to an asymmetry in RecA

loading, as seen in recent E. coli RecA ChIP-Seq studies [36]. The loading of RecA onto single-

stranded regions of processed DNA ends triggers a significant decrease in AddAB resection

or degradation rates as cells lacking recA showed more extensive DNA degradation and pro-

cessing with no obvious asymmetry (Fig 3). These results are consistent with previous work

showing that RecA is required to prevent excessive, or ’reckless’, DNA degradation by RecBCD

in E. coli [25,26,31,56,58,59], suggesting a conserved mechanism for the regulation of DSB

resection in bacteria. Our bacterial two-hybrid results suggest that RecA may regulate AddA

through a direct interaction, with AddA probably recruiting RecA to a DSB, as RecBCD does

in E. coli [20,21]. The regulation of AddAB activity likely depends on formation of a RecA fila-

ment on ssDNA produced by AddAB, but does not require the SOS response and an increase

in RecA levels, nor does it appear to require RecA recombinase activity (Fig 3).

Collectively, our results favor a model in which AddAB activity is effectively self-limiting.

In this model, AddAB generates ssDNA upon chi recognition, on which RecA can form a fila-

ment. AddA may recruit RecA to these regions of ssDNA or somehow promote RecA filament

formation, and the subsequent RecA-triggered slowdown in AddAB translocation or nuclease

activity [60] limits further resection. This model couples two key events of homologous recom-

bination. The production of RecA-bound DNA, which is competent for homology search,

slows or limits additional DSB end processing, enabling homologous recombination to pro-

ceed, without any additional impact on the chromosome. The pattern of our wild-type degra-

dation profile (Fig 2B and 2C) suggests that there is active degradation of DNA around a DSB

even before chi recognition. Our experiments further support the idea that ssDNA is generated

after chi recognition as the amount of ssDNA we detect via qPCR increased further from the

DSB site and as more putative chi sites were encountered by AddAB (S3 Fig).

The notion that RecA may directly or indirectly regulate DNA resection by RecBCD in

E. coli has also been suggested previously [25,26,56,58], but precisely how this occurs has been

unclear. There are two general models, both of which would lead to "reckless" DNA degrada-

tion in the absence of RecA. In one model, as suggested for RecBCD in E. coli [61–66], RecA

loaded onto the ssDNA initially produced by AddAB prevents the reloading of any AddAB or

any other exonuclease. In an alternative model, RecA filaments or bundles [48,67] physically

limit or slow translocation or DNA resection by AddAB after it recognizes a chi site. These

models are not mutually exclusive and it is possible that a combination of both occur in the

cell. Using a mathematical model to fit our experimentally determined degradation profiles we

found two sets of parameters that fit the degradation profiles of wild-type cells. In one, AddAB

slowed down only slightly after chi recognition, favoring a model in which RecA primarily

blocks reassociation of AddAB that has dissociated from the DNA. In the other model, AddAB
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slowed down more significantly after chi recognition, favoring a model in which RecA primar-

ily attenuates AddAB-dependent DNA processing. Direct assessments of the degradation rates

in vivo using single-cell fluorescence microscopy (Fig 4E–4H) support the latter model in

which degradation slows ~4-fold after chi recognition, leading us to favor a model in which

RecA primarily regulates AddAB translocation. While AddAB may also be influenced by later

steps of homologous recombination and repair that were not captured in our experimental

set-up, our data indicated that recombination per se is not essential for an asymmetric degrada-

tion profile in the presence of RecA (Fig 3H and 3I). Whatever the case, limiting AddAB medi-

ated DNA resection is likely important to prevent the excessive loss of DNA if the later steps of

homologous recombination are delayed.

As already noted, we also estimated degradation rates in individual cells by tracking the

interval of time between loss of fluorescent markers at two different loci near a DSB (Fig 4E–

4H). These measurements supported a model in which chi recognition by AddAB and the sub-

sequent loading of RecA onto ssDNA slows AddAB-dependent degradation to ~100 bp/s on

average. Notably however, the degradation rates measured in individual cells showed much

greater variability than was captured in our model (Fig 4). This variability could reflect noise

in our measurements of degradation in single cells. Alternatively, it could reflect inherent sto-

chasticity in the degradation rate, or another step of DSB processing, such as the recognition

of chi sites. Such variability may also partly explain why the degradation profiles show a grad-

ual rather than step-like increase outward from the site of a DSB, although this effect may also

arise from variability in when a DSB occurs in individual cells expressing I-SceI.

In sum, our study helps to reveal how AddAB, chi sites, and RecA combine to facilitate

homologous recombination and maintain genome integrity. In particular, our results highlight

an important additional role for RecA. In addition to promoting the pairing of homologous

chromosomes, RecA helps to limit DNA resection by AddAB, which, in turn, limits the loss of

genetic material and potentially deleterious decreases in gene expression (Fig 5). Given the

highly conserved nature of homologous recombination, we speculate that RecA homologs,

Rad51 proteins, in eukaryotes may play a similar role.

Materials and methods

Strains and plasmids used are listed in S1 Table and strain construction details are provided in

the supporting information document (S1 Text). Cultures of Caulobacter were grown at 30˚C

in PYE and supplemented with antibiotics, as necessary, at appropriate concentrations. For

induction of Plac-dnaA, IPTG was added to a final concentration of 0.5 mM. For induction of a

DSB, cells were supplemented with 500 μM vanillate unless otherwise indicated. For DSB

induction in non-replicating Caulobacter, cells were depleted of DnaA for 1.5 h before Percoll

density gradient centrifugation to isolate the G1 arrested cells. Swarmer cells were then shifted

to conditions (without IPTG) where DnaA is not expressed, and DSBs were induced for indi-

cated times by the addition of 500 μM vanillate. Note that the I-SceI construct used harbors an

ssrA tag at the C-terminus which likely renders it unstable [68]; this allows the assessment of

CFUs at various time points after induction (see S1H Fig) by preventing the accumulation of

I-SceI if cells are washed and plated on non-inducing conditions. The wild-type ssrA tag is rec-

ognized by the ClpXP protease, which then degrades the I-SceI enzyme.

Bacterial two-hybrid system

Bacterial two hybrid experiments were performed as described in [69]. Briefly, genes of interest

were fused to the 5’ or 3’ end of the T18 or T25 fragments in the pUT or pKT vectors [47]. The

fusion plasmids were co-transformed into E. coli BTH101. Co-transformants were grown until
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saturation in M63 media with maltose, IPTG and appropriate antibiotics and 5 μL of culture

was spotted on MacConkey agar (40 g/L) plates with maltose, IPTG and appropriate antibiot-

ics. Plates were incubated at 30˚C for 2–3 days.

Western blotting

Cells were pelleted and then resuspended in 1xSDS sample buffer and heated to 95˚C for 5

min. Equal amounts of total protein were run on 10% Tris-HCl gels (Bio-Rad) at 150V for sep-

aration. Resolved proteins were transferred to polyvinylidene fluoride membranes and probed

with 1:5000 dilution of primary antibodies against RecA (Sigma) and secondary horseradish-

peroxidase-conjugated antibody (1:5000). Blots were visualized using a FluorChem M imager

(ProteinSimple).

Genomic DNA isolation

Caulobacter cells were depleted of DnaA for 1.5 h and G1-arrested cells were then isolated by

Percoll density gradient centrifugation. Swarmer cells were then released into DnaA depleting

conditions (without IPTG) and DSBs were induced for 1 h by the addition of 500 μM vanillate.

Cells were pelleted and genomic DNA was isolated using the DNeasy Blood and Tissue kit from

Qiagen. For Mung bean treatment, isolated genomic DNA was incubated at 30˚C for 15 min

with Mung bean nuclease [70] (NEB) and the DNA was purified with a phenol-chloroform

extraction. DNA was sent for whole-genome Illumina sequencing (BioMicroCenter, MIT).

RNA isolation

Caulobacter cells were depleted of DnaA for 1.5 h and G1-arrested cells were then isolated by

Percoll density gradient centrifugation. Swarmer cells were then released into DnaA depleting

conditions (without IPTG) and DSBs were induced for 1 h by the addition of 500 μM vanillate.

Cells were pelleted and frozen in liquid nitrogen for RNA extraction. Cells (in pellets) were

lysed by treatment with 400 μL of 65˚C-preheated Trizol (Thermoscientific) for 10 min on a

thermomixer at 200 rpm. They were frozen at -80˚C for 30 min and then centrifuged at 4˚C at

maximum speed for 5 min. Supernatant was aspirated and added directly to 400 μL of 100%

ethanol. The mixture was applied to an RNA-extraction spin column (Zymo Research). The

column was then spun at 10000 rpm for 30 s and the spin column was washed with 400 μL of

RNA Prewash solution twice and finally with 700 μL of RNA Wash buffer. Residual RNA

Wash buffer was removed by an additional centrifugation step. RNA was eluted out with 90 μL

of DEPC-treated water. DNase I treatment was carried out to remove any genomic DNA and

the RNA was purified using acidic phenol-chloroform extraction. The integrity of the RNA

was checked via agarose gel and submitted for Illumina sequencing (BioMicroCenter, MIT).

DNA sequencing analysis

For analysis of DNA sequencing data, Hiseq 2500 Illumina short reads (40 bp) were mapped

to the Caulobacter NA1000 reference genome (4.01 Mbp) (NCBI Reference Sequence: NC-
011916.1) using Bowtie 1 [71] using the following command:

bowtie -m 1 -n 1 –best –strata -p 4 –chunkmbs 512 NA1000-2014-bowtie –sam �.fastq

The Caulobacter NA1000 genome was divided into 4000 bins and mapped Illumina reads

were allocated to their corresponding bins to quantify the number of reads in each genomic

bin. For samples where the DSB was introduced at 780 kb, datasets were normalized so that

the experimental and the control dataset have the same number of Illumina reads between

genomic position 2800 kb and 3400 kb. This genomic region was chosen since it is far from
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the DSB and was not affected by AddAB-induced DNA degradation. For samples where DSB

was introduced at 3042 kb, datasets were normalized to have the same number of Illumina

reads between genomic position 600 kb and 1200 kb instead. The enrichment between experi-

mental datasets (DSBs were induced) and control dataset (no DSBs) is represented as the ratio

of read counts in each bin between the experiment and the control, smoothed using the Lowess

function in R with the smoothing bandwidth set to 0.01, and plotted against the genomic

positions.

RNA-seq

For analysis of RNA-seq data, Hiseq 2500 Illumina short reads (40 bp) were mapped back to

the Caulobacter NA1000 reference genome (NCBI Reference Sequence: NC-011916.1) using

Bowtie 1 using the following command:

bowtie -m 1 -n 1 –best –strata -p 4 –chunkmbs 512 NA1000-2014-bowtie –sam �.fastq

The sequencing coverage was computed using BEDTools [72]. The general feature format

(gff) file for Caulobacter NA1000 was downloaded from NCBI (ftp://ftp.ncbi.nih.gov/

genomes/archive/old_genbank/Bacteria/Caulobacter_crescentus_NA1000_uid32027/). The

normalized value of reads per kb per million mapped reads (RPKPM) was calculated for each

gene by a custom R script to enable comparison of gene expression within and between RNA-

seq datasets. The enrichment between experimental datasets (DSBs were induced) and control

dataset (no DSBs) is represented as the ratio of RPKPM of each gene between the experiment

and the control and plotted against the genomic positions.

qPCR to estimate rates for DSB formation and total DNA around DSB

sites

To estimate rates of DSB formation, qPCR was performed using one set of probes across the

DSB site on chromosomal DNA isolated from swarmer or asynchronous ΔaddAB cells treated

with 2 or 500 μM vanillate to induce a DSB +780 kb from the origin. This was normalized

to qPCR using probes across a control region (rpoA: +1,444 kb) where no DSB is induced.

As a control, qPCR across the DSB site was performed on chromosomal DNA isolated from

swarmer or asynchronous cells with no DSB induction. Samples were taken 0, 5, 10, 15, 30, 60,

120 and 240 min after DSB induction. The rate of DSB induction was estimated by calculating

the slope of the curve (excluding the 240 min time point). To measure total DNA at a DSB and

at flanking loci, we performed qPCR using primer pairs as indicated in Fig 1G. The qPCR

value measured for each locus following DSB induction was normalized to the distal, control

locus, rpoA. These normalized values were then divided by similarly normalized values, but

from cells in which a DSB was not induced. The resulting ratios (+DSB / -DSB) for each locus

were are reported in Fig 1G. The calculations of all qPCR values was done by first generating a

standard curve for each oligo pair, with 3-fold dilutions of genomic DNA (and three technical

repeats). The average of the 3 technical repeats was then used to calculate the slope and inter-

cept of the curve. The oligo pair was then used for the qPCR measurement described above,

using genomic DNA extracted from the following experimental samples: -DSB, +DSB (wild

type) and +DSB (ΔrecA) (3 technical repeats for each, with results averaged). The Ct values

were converted to amounts using the following formula: 2^((average ct value for sample -

intercept)/slope).

Microscopy assay to estimate rates of degradation between two loci

Fluorescence microscopy was performed on the Zeiss observer Z1 microscope with the LED--

Collibri illumination system, 100x oil-immersion objective, Zeiss Temp module to maintain
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temperature at 30˚C and a definite focus system for automatic maintenance of focus. Images

were acquired via the metamorph imaging system and data analyzed on ImageJ. Swarmer cells

were isolated as described above and then grown on PYE + 1.5% low-melting agarose pads

with xylose and vanillate and imaged in a glass-bottomed petri dish. Images were acquired

every 4 min for ML2402 and every 8 min for ML2401. Rate of degradation was calculated as

the number of frames it took to go from the loss of the MipZ marker until the loss of the

ParBpMT1 marker. Scale bars in figure = 1 μm.

Data availability

Sequencing data are available in GEO, GSE86913.

Supporting information

S1 Fig. A deep sequencing-based assay for measuring DNA processing after a double-

strand break. (A) Flow cytometry profiles of swarmer cells before and after treatment with

500 μM vanillate for 1 h. (B) Representative DSB processing profiles for DSBs induced at

+780 kb for 0.5 h (grey) or 1 h (black). 1 h profile is overlaid from Fig 1B. (C) Representative

profile for a DSB induced at +780 kb for 1 h. Normalized data is shown in grey, with a Lowess

smoothed curve overlaid in black. Location of the DSB site is indicated with a dashed line. (D)

As in (C) for a DSB induced at +3042 kb. (E) Comparison of biological replicates when a DSB

is induced at +780 kb or +3042 kb. ±300 kb around the break site is compared. (F) Representa-

tive processing profile for DSB induced at +780 kb when genomic DNA is treated with Mung

Bean nuclease prior to deep sequencing (red). As a control, the profile resulting from genomic

DNA not treated with the nuclease prior to sequencing is shown in black (from Fig 1B). (G)

Flow cytometry profiles of replicating cells before and after treatment with 2 μM or 500 μM

vanillate for 1 h. (H) Fold change in Colony Forming Units (CFU) upon DSB induction at

+780 kb in swarmer cells. Samples were plated prior to DSB induction (0) and 10, 20, 40, 60

and 120 min after the addition of vanillate. Error bars represent standard deviation between

two independent repeats.

(TIF)

S2 Fig. DNA degradation around a double-strand break is asymmetric due to chi sites.

(A-B) Genome-wide profiles from Fig 2B and 2C are shown. Positions of chi sequences on the

leading strand (A) or lagging strand (B) with respect to a DSB site at +780 kb are overlaid on the

profile. (C-D) Positions of chi sequences on the leading strand (C) or lagging strand (D) with

respect to a DSB site at +3042 kb are overlaid on the DSB processing profile. (E-F) Genome-

wide profiles from Fig 2E and 2F are shown. A repeat of 15 chi sequences (chifor) was inserted

+30 kb (E) or +100 kb (F) from the DSB site at +780 kb and the profile is shown in green. As a

control, the chi orientation is flipped (chirev) at the same location and the profile is shown in

orange. Degradation profile of a DSB induced at +780 kb is shown from Fig 1B (black).

(TIF)

S3 Fig. Effect of chi sites on AddAB is dependent on RecA. (A-B) qPCR was performed

using the primer pairs at the genomic positions indicated in ΔrecA cells. The location of puta-

tive chi sites on the top and bottom strands are indicated with red and blue, respectively, tick

marks (also see Fig 2A). Samples were collected before (0 min) and 60 min after DSB induc-

tion. qPCR at a distal, unprocessed control site (rpoA: +1,444 kb) was also performed. qPCR

values at each locus normalized to rpoA are plotted for two independent repeats (a and b).

DSB processing profile values for the same loci are also shown. (C) Representative DSB pro-

cessing profile of ΔrecA swarmer cells when a DSB is induced at +780 kb for 1 h. Normalized
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data are shown in pink, with a Lowess smoothed curve overlaid in red. Location of the DSB

site is indicated with a dashed line. Profile of wild type swarmer cells from S1A Fig is also

shown. (D) As in panel A, but for a DSB induced at +3042 kb. (E, F) Bacterial-two-hybrid

assay on a single plate, showing all interactions along with controls. (G) Bacterial-two-hybrid

assay and Western blot showing that RecA(K83A) used in Fig 3D is not deficient in interaction

with AddA or expression inside the cell. Western blot for RecA(N304D) is also shown. (H)

RecA(N304D) is sensitive to low levels of DSB induction (2 μM vanillate), comparable to

ΔrecA cells. Each spot is a 10-fold dilution.

(TIF)

S4 Fig. Estimation of rates of DSB formation. (A) Histogram showing distribution of num-

ber of DSB events per cell in 100 s intervals expected over time (from experimental results)

from the time of I-SceI induction to DSB onset. Dashed line indicates the value 1 h after DSB

induction (B) Graph showing fraction of cells expected to have DSB over time from the time

of I-SceI induction to DSB onset. Dashed line indicates the value 1 h after DSB induction. See

supporting information for details. (C) Rates of DSB formation were estimated with qPCR

using probes across the DSB site in synchronous (swarmer) and asynchronous populations of

cells treated with 2 and 500 μM vanillate. Samples were collected before (0 min) and 5, 10, 15,

30, 60, 120 and 240 min after DSB induction. Results were normalized to qPCR across a con-

trol site (rpoA). Error bars represent SD between two biological replicates. (D) Rates of DSB

formation were calculated from panel C.

(TIF)

S5 Fig. AddAB-dependent DNA resection is attenuated after chi recognition. (A) Simula-

tion profiles obtained for a model where post-chi AddAB degradation rates are estimated. Pre-

chi AddAB degradation rate is 400 bp/s and chi recognition probability is found to be ~0.22.

DSB is induced at +3042 kb for 1, 2 or 4 h. Experimental profiles are overlaid in black, grey

and brown respectively. Simulation profiles are in green (B-C) Simulation profiles obtained

for Model 1 (red) and 2 (blue) that best fit the in vivo DNA processing profiles for a DSB

induced at +3042 kb for 1 h and 2 h samples respectively. Experimental profiles from Fig 1 are

overlaid in black and grey. (D) Profile for a DSB induced at +3042 kb for 4 h is shown in

brown. Simulation profiles (for the 4h time point) predicted for Model 1 (red) and Model 2

(blue) are overlaid.

(TIF)

S6 Fig. Root-mean-squared deviation (RMSD) fits for simulated models. (A) Graph show-

ing RMS deviation for chi recognition probability (pchi) for models considered to best fit the in
vivo wild-type DSB processing profiles. In all cases, dashed red lines represent the best fits and

95% confidence intervals. (B) Graph showing RMS deviation as a function of post-chi AddAB

degradation rate (kslow) for Model 2. Post-chi AddAB degradation rate (kslow) for Model 1 is

fixed at 340 bp/s. (C-D) Graphs showing RMS deviations as a function of post-chi AddAB dis-

sociation rate (koff) for Models 1 and 2.

(TIF)

S1 Table. Strains, plasmids and primers used in this study.

(PDF)

S2 Table. qPCR data and locations of chi sites near DSB site introduced at +780 kb.

(XLSX)

S1 Text. Supporting methods and results.

(DOCX)
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