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Abstract: We introduce the software blocks 3d for computing four-point conformal blocks

of operators with arbitrary Lorentz representations in 3d CFTs. It uses Zamolodchikov-like

recursion relations to numerically compute derivatives of blocks around a crossing-symmetric

configuration. It is implemented as a heavily optimized, multithreaded, C++ application. We

give performance benchmarks for correlators containing scalars, fermions, and stress ten-

sors. As an example application, we recompute bootstrap bounds on four-point functions

of fermions and study whether a previously observed sharp jump can be explained using the

“fake primary” effect. We conclude that the fake primary effect cannot fully explain the jump

and the possible existence of a “dead-end” CFT near the jump merits further study.
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1 Introduction

The conformal bootstrap has emerged as a powerful tool for the nonperturbative study of

conformal field theories (CFTs). In particular, numerical studies of bootstrap equations [1]

using semidefinite programming methods [2–4] have led to precise determinations of CFT

data in a variety of interesting theories, including the 3d Ising [5–9] and O(N) [8, 10–13]

models. For a review of recent developments, see [14].

Most studies pursued so far in d > 2 have focused on correlation functions of scalar oper-

ators, where the conformal blocks appearing in the bootstrap equations are relatively easy to

compute. In 4d CFTs, they are expressible in terms of hypergeometric functions [15], while in

3d CFTs, they can be straightforwardly computed using Zamolodchikov-like recursion rela-

tions developed in [7, 10, 16, 17]. These recursion relations have been implemented efficiently

in the software package scalar blocks [18].

A handful of studies have been carried out for correlation functions of spinning operators,

including four-point functions of fermions [19–21], stress-tensors [22], currents [23], and mixed

correlators containing scalars and currents [24]. Each of these studies faced a huge technical

hurdle of understanding how to compute the relevant conformal blocks for each combination of

three-point and four-point tensor structures contributing to the correlator and then carrying

out the computation in practice. These studies solved these problems on an ad hoc basis,

employing a variety of different methods that do not easily scale to larger problems.

Recently, a general recursive algorithm for computing 3d conformal blocks of arbitrary

spin was introduced in [25], building on the earlier recursion relations [16, 26]. The algorithm

uses the fact that the conformal blocks have an expansion in poles in the exchanged scaling

dimension:

gab∆,j,I(z, z) ∼
1

∆−∆j,i
(Lj,i)aa′(Rj,i)bb′ga

′b′

∆′j,i,j
′
j,i,I

(z, z), (1.1)

where ∆j,i describe a known infinite set of poles and the residues are themselves conformal

blocks up to some additional residue matrices Lj,i,Rj,i. In addition to the scaling dimension

∆ and spin j, each block is labeled by a pair of three-point structures ab and a four-point

structure I. General formulas for these matrices, as well as formulas for the ∆→∞ limit of

the blocks needed to implement the recursion relation, were computed explicitly in [25].

A variety of different bases have been employed to describe the three-and four-point

structures, including polynomial or differential bases in embedding-space structures [19, 27–

38], and a q-basis which is naturally defined using the conformal frame approach [39]. In [25]

an additional basis was introduced, called the SO(3) basis, where the matrices Lj,i,Rj,i take

on a particularly simple block-diagonal form. For three-point functions between operators of
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SO(3) spins j1, j2, j3, this basis can be labeled by the possible spins (j12, j123) appearing in

the decompositions j12 ∈ j1 ⊗ j2 and j123 ∈ j12 ⊗ j3.

In this work, we present the software package blocks 3d, which efficiently implements

the recursive algorithm of [25]. In particular, given external operators of spins j1, j2, j3, j4,

a four-point structure specified in the q-basis, and the spin combinations j12 and j43, the

software computes conformal block derivatives (using arbitrary-precision arithmetic) up to

a specified recursion order for all allowed SO(3)-basis structures. Derivatives of conformal

blocks around the crossing-symmetric configuration are returned up to a cutoff Λ, where

derivatives can be taken in several different coordinates. We give performance benchmarks

for the code, comparing our code first to scalar blocks. We then test it on several correlators

containing scalars, fermions, and stress tensors, demonstrating that blocks 3d is feasible to

use in large-scale numerical bootstrap calculations with spinning correlators.

We further explicitly demonstrate how to use the code in the context of the bootstrap for

four-point functions of 3d Majorana fermions 〈ψψψψ〉. We reproduce bounds on the leading

parity-even operator ε and parity-odd scalar σ appearing in the ψ × ψ operator product

expansion, previously obtained in [19]. The former shows a prominent kink, and the latter

shows a sharp jump at the same value of ∆ψ. This jump was previously conjectured to relate

to the “fake primary” effect described in [21], where a parity-odd spin-1 operator V at the

unitarity bound can mimic a scalar of dimension ∆σ = 3. We impose a small gap in the

spin-1 sector and observe that the jump and kink are stable, persisting up to ∆V ∼ 2.3. Our

tentative conclusion is that the feature is unlikely to be fully explained by the fake primary

effect and merits further study.

This paper is organized as follows. In section 2 we describe our conventions and the bases

of tensor structures that we use. We also give an exact formula for the conformal block cor-

responding to identity exchange in these conventions. In section 3 we describe the algorithm

used by blocks 3d, the structure of the output, and the details of the implementation. In

section 4 we give performance benchmarks, and in section 5 we describe in detail an example

of using the software for the 4-fermion bootstrap. We conclude in section 6 by describing

some possible future applications of blocks 3d. Appendices contain the link to blocks 3d

code as well as the conventions and details omitted in the main text.

2 Mathematical preliminaries

2.1 Definition of conformal blocks

In this section we give a precise definition of the conformal blocks that are computed by

blocks 3d. Since we will only be interested in conformal blocks in 3d CFTs, we will not be

any more general than required. We will work in Lorentzian signature since unitarity is the

most manifest there.

Consider the Hermitian local primary operators Oi (i = 1, · · · , 4) and O. Let their scaling

dimensions and spins be (∆i, ji) and (∆, j), respectively. The spins j, ji can be integer or half-

– 3 –



integer; we do not restrict to bosonic representations.1 We work with the following realization

of the spin-j representations: the operator O carries 2j spinor indices αk,

Oα1···α2j (x), (2.1)

and is completely symmetric in these indices. We choose our conventions (see details in

appendix C) so that the representation matrices of the Lorentz group Spin(2, 1) are real

when acting on αk, and thus we can indeed assume that O is Hermitian,

(Oα1···α2j (x))† = Oα1···α2j (x). (2.2)

The same comments apply to Oi. Furthermore, we assume that O is normalized so that its

time-ordered two-point function for space-like separated x1, x2 is given by

〈O(x1, s1)O(x2, s2)〉 = cO
i2j(sα1 γ

µ
αβs

β
2x12,µ)2j

x2∆+2j
12

, (2.3)

where x12 = x1 − x2, cO is a positive constant defined below, and we used the index-free

notation

O(x, s) = Oα1···α2j (x)sα1 · · · sα2j (2.4)

for an auxiliary spinor s. The constant cO is given by

cO = (4/a0)∆bj , (2.5)

where we leave the choice of a0, and the spin-dependent bj > 0, up to the user. Note that

unlike cO, the phase in (2.3) is fixed by unitarity, i.e. requiring that the two-point function

defines a positive-definite norm on the Hilbert space. The unitarity bounds on ∆ are
∆ = 0 or ∆ ≥ 1

2 , j = 0,

∆ ≥ 1, j = 1
2 ,

∆ ≥ j + 1, j > 1
2 .

(2.6)

When ∆ is in the interior of these bounds, i.e.
∆ > 1

2 , j = 0,

∆ > 1, j = 1
2 ,

∆ > j + 1, j > 1
2 ,

(2.7)

the conformal block is guaranteed to be finite.

1In particular, the ordering of operators in the definitions plays an important role due to possible signs

from permutations of fermions.
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We parametrize the values of the three-point functions of the operators Oi,O in the

following way,

〈O1(x1, s1)O2(x2, s2)O(x3, s3)〉 =
∑

a∈I12O

λ12O,(a)〈O1(x1, s1)O2(x2, s2)O(x3, s3)〉(a),

〈O4(x1, s1)O3(x2, s2)O(x3, s3)〉 =
∑

a∈I43O

λ43O,(a)〈O4(x1, s1)O3(x2, s2)O(x3, s3)〉(a), (2.8)

where our choice of standard conformally invariant three-point tensor structures

〈O1(x1, s1)O2(x2, s2)O(x3, s3)〉(a), 〈O4(x1, s1)O3(x2, s2)O(x3, s3)〉(a), (2.9)

which are labeled by indices in some sets I12O and I43O, is described in section 2.2. Similarly,

the four-point function is decomposed as

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)O4(x4, s4)〉

=
∑

I∈I1234

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)O4(x4, s4)〉(I)gI(z, z), (2.10)

where our choice of standard conformally invariant four-point tensor structures,

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)O4(x4, s4)〉(I), (2.11)

and the cross-ratios z, z, are defined in section 2.3, and the index I runs over some index set

I1234.

With this introduction, the conformal block gab∆,j,I(z, z) is defined by requiring that the

contribution of O and its descendants to the O1 × O2 (equivalently, O3 × O4) OPE in the

above four-point function is given by

gI(z, z) = · · ·+
∑

a∈I12O

∑
b∈I43O

λ12O,(a)λ43O,(b)g
ab
∆,j,I(z, z) + · · · , (2.12)

where · · · denote contributions from other primary operators and descendants. When we

use the notation gab∆,j,I(z, z) there is implicit dependence on the scaling dimensions and spins

∆i, ji.

This definition, as well as the choices of three- and four-point structure bases described

in sections 2.2 and 2.3, are the same as in [25].

2.2 Three-point structure basis

In this section we define two bases of three-point structures, the q-basis (first introduced

in [39]) and the SO(3)-basis (first introduced in [25, 40]). We introduce two bases because

the physical properties of the three-point structures are easier to understand in the q-basis,

while blocks 3d, for performance reasons explained below, uses the SO(3)-basis.
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Let us explain in more detail what we mean by “defining a basis of structures.” Defining

a basis of three-point structures means to provide an algorithm which, given some quantum

numbers ∆i, ji, produces a finite set I123 of functions

f (a)(x1, s1;x2, s2;x3, s3) (2.13)

which are linearly-independent, invariant under conformal transformations, and form a com-

plete basis for functions of this form. Here, it is understood that conformal transformations

act on f (a) in the same way as on

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉, (2.14)

where primary operators Oi have scaling dimension and spin ∆i, ji. We have already used,

and will be using in what follows, a somewhat misleading notation for f (a),

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉(a) ≡ f (a)(x1, s1;x2, s2;x3, s3). (2.15)

The reason why this notation is misleading is that the left-hand side appears to depend on

the concrete primary operators Oi and suggests that their ordering is somehow related to

the ordering of operators in physical correlators. Instead, f (a) only depends on the quantum

numbers ∆i, ji. While the ordering of these quantum numbers is important, it has nothing

to do with the order of operators in correlation functions. Nevertheless, the above notation

allows us to quickly summarize the quantum numbers that the tensor structures correspond

to, and for this reason we prefer to use it. We hope this won’t cause too much confusion.

2.2.1 q-basis

In this subsection we summarize the definition and properties of the q-basis of three-point

structures. We don’t give any proofs, for which we instead refer the reader to [39].

The q-basis structures for quantum numbers (∆i, ji) are labeled by triples a = [q1, q2, q3],

where qi are (half-)integers which range over

qi ∈ {−ji,−ji + 1, · · · , ji}, (2.16)

and are subject to

q1 + q2 + q3 = 0. (2.17)

The tensor structures

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉[q1q2q3] (2.18)

are fixed uniquely by conformal invariance and the requirement that for

x1 = (0, 0, 0), (2.19)

x2 = (0, 0, 1), (2.20)

x3(L) = (0, 0, L), (2.21)
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the following identity holds

lim
L→+∞

L2∆3〈O1(x1, s1)O2(x2, s2)O3(x3(L), s3)〉[q1q2q3] =

3∏
i=1

((si)1)ji+qi((si)2)ji−qi . (2.22)

This definition is rather implicit. However, it makes it easy to convert between the q-basis

and more explicit structures such as those introduced in [19, 27]: we just have to evaluate

these explicit tensor structures in the same way as in the left hand side of (2.22), and express

the result as a linear combination of the monomials appearing in the right-hand side of (2.22).

Notice that this definition is not permutation-invariant: the representations (∆i, ji) that the

operators Oi symbolize are listed in a particular order, and the respective coordinates are

set to different values above. For example, it is the coordinate corresponding to the last

representation that is sent to infinity. We stress that the order is determined by the order in

which the representations (represented by Oi) are listed, and not by their indices 1, 2, 3. This

is important for understanding the meaning of permutation properties below.

Let us list some simple properties of these structures [39]:

• If we expand a three-point function of Hermitian operators in the q-basis, then the OPE

coefficients are real if all ji are integers and pure imaginary otherwise.

• Space parity acts on the q-basis structures as

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉[q1q2q3]

→ 〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉[−q1,−q2,−q3]. (2.23)

See appendix D for details on what is meant by “space parity”.

• q-basis structures have the following permutation properties under transpositions

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉[q1q2q3]

= (−1)j1+j2−j3〈O2(x2, s2)O1(x1, s1)O3(x3, s3)〉[−q2,−q1,−q3], (2.24)

= (−1)j1+j2+j3〈O3(x3, s3)O2(x2, s2)O1(x1, s1)〉[−q3,−q2,−q1], (2.25)

= (−1)−j1+j2+j3〈O1(x1, s1)O3(x3, s3)O2(x2, s2)〉[−q1,−q3,−q2]. (2.26)

Other permutations can be obtained by composing these basic transpositions. To un-

derstand the precise meaning of these equations, recall the discussion around (2.15).

For example, the first equation says that if we take the basis structure labeled by

[q1, q2, q3], constructed for representations (∆1, j1), (∆2, j2), (∆3, j3), and evaluate it at

(x1, s1), (x2, s2), (x3, s3), then it is equal to (−1)j1+j2−j3 times the basis structure la-

beled by [−q2,−q1,−q3], constructed for representations (∆2, j2), (∆1, j1), (∆3, j3), and

evaluated at (x2, s2), (x1, s1), (x3, s3).
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Because of the way permutations and parity act on these structures, we will often consider

the structures defined as

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉[q1q2q3]±

≡ 〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉[q1q2q3] ± 〈O1(x1, s1)O2(x2, s2)O3(x3, s3)〉[−q1,−q2,−q3].

(2.27)

The structures with (+) sign are parity-even and those with (−) sign are parity-odd. Fur-

thermore, transpositions simply permute the qi in the labels of these structures, but for the

(−) structures we get an extra factor of (−1) in the action of transpositions.

We illustrate how these structures can be used in practice in the example of the four-

fermion bootstrap in section 5.

2.2.2 SO(3)-basis

In this subsection we define the SO(3) basis of structures, first introduced in [25, 40].2 We

will only give the formal expressions for the structures and not explain the motivation behind

them, for which we refer the reader to [25].

First, we define the following monomials in si

|j1,m1; j2,m2; j3,m3〉 ≡ (−1)j1−j3+m2

3∏
i=1

(
2ji

ji +mi

)1/2

((si)1)ji+mi((si)2)ji−mi , (2.28)

where mi can take the same values as qi,

mi ∈ {−ji,−ji + 1, · · · , ji}, (2.29)

m1 +m2 +m3 = 0. (2.30)

Note that these monomials are proportional to the ones appearing in the right-hand side

of (2.22) with mi = qi. As the notation suggests, these monomials transform in the standard

way under some su(2) algebra. With this in mind, we define

|j12,−m3; j3,m3〉 ≡
∑
m1,m2

m1+m2=−m3

〈j1,m1; j2,m2|j12,−m3〉|j1,m1; j2,m2; j3,m3〉, (2.31)

|j12, j123〉 ≡
∑
m3

〈j12,−m3; j,m3|j123, 0〉|j12,−m3; j3,m3〉, (2.32)

where 〈j1,m1; j2,m2|j,m〉 are the Clebsch-Gordan coefficients. The inverse formulas are

|j12,−m3; j3,m3〉 =
∑
j123

〈j123, 0|j12,−m3; j,m3〉|j12, j123〉, (2.33)

|j1,m1; j2,m2; j3,m3〉 =
∑
j12

〈j12,−m3|j1,m1; j2,m2〉|j12,−m3; j3,m3〉. (2.34)

2In [25] this basis was called the SO(3)r basis, and the SO(3) basis was referred to as an intermediate basis.

Since in this paper, we simplify the construction of [25], we will, for simplicity, call the final basis the SO(3)

basis. We hope this won’t cause confusion.
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In all of the above formulas the summation is performed over the values of the variables

for which the Clebsch-Gordan coefficients are non-vanishing. We use conventions for the

Clebsch-Gordan coefficients such that they are real, so that

〈j1,m1; j2,m2|j,m〉 = 〈j,m|j1,m1; j2,m2〉. (2.35)

To completely specify the conventions, we give a formula for Clebsch-Gordan coefficients in

appendix E.

Note that according to the above definitions, |j12, j123〉 are simply polynomials in si. We

define SO(3)-basis structures analogously to (2.22),

lim
L→+∞

L2∆3〈O1(x1, s1)O2(x2, s2)O3(x3(L), s3)〉(j12,j123) = |j12, j123〉, (2.36)

where the values of xi are as in (2.19). That is, the SO(3) basis structures are labeled by

pairs (j12, j123) for which the polynomials |j12, j123〉 are non-zero, i.e.

j12 ∈ {|j1 − j2|, |j1 − j2|+ 1, · · · j1 + j2}, (2.37)

j123 ∈ {|j3 − j12|, |j3 − j12|+ 1, · · · j3 + j12}. (2.38)

By examining the definition of polynomials |j12, j123〉, we see that they are explicitly de-

fined as linear combinations of the monomials in the right-hand side of (2.22) with coefficients

given by products of Clebsch-Gordan coefficients. This definition implies that we can directly

write the SO(3)-basis structures as linear combinations of q-basis structures and vice versa.

Since these expressions are rather bulky yet straightforward combinations of (2.28), (2.31)

and (2.32), we omit them.

Since the Clebsch-Gordan coefficients are real, the reality properties of the OPE coeffi-

cients in SO(3) basis are the same as in q-basis. Most permutation properties are unfortu-

nately not manifest in SO(3) basis. The parity of SO(3) structures is, on the other hand,

manifest and is given by the sign of

(−1)j1−j2+j3−j123 . (2.39)

2.3 Four-point structure basis

In this section we define the q-basis for four-point tensor structures [39]. The same comments

as in section 2.2 apply to the meaning of the notation that we use for four-point tensor

structures,

〈O1(x1, s1)O2(x2, s2)O3(x3, s3)O4(x4, s4)〉(I). (2.40)

The q-basis structures are labeled by indices I = [q1, q2, q3, q4] subject to3

qi ∈ {−ji,−ji + 1, · · · , ji}. (2.41)

3Note that unlike in the case of three-point structures there is no condition on
∑4
i=1 qi.
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A q-basis four-point tensor structure is defined by conformal invariance and its value in a

standard configuration. Specifically, let

x1 = (0, 0, 0), (2.42)

x2 = ( z−z2 , z+z2 , 0), (2.43)

x3 = (0, 1, 0), (2.44)

x4(L) = (0, L, 0), (2.45)

then we require

lim
L→+∞

L2∆4〈O1(x1, s1)O2(x2, s2)O3(x3, s3)O4(x4(L), s4)〉[q1q2q3q4]

=
4∏
i=1

((si)1)ji+qi((si)2)ji−qi . (2.46)

In particular, the decomposition of a four-point function into these structures can be computed

by evaluating it in the configuration (2.42) and taking the limit as in the left-hand side

of (2.46). For the purposes of numerical bootstrap, it suffices to assume that 0 < z, z < 1,

and so all operators are spacelike-separated. That is, the precise definition of g[q1q2q3q4](z, z)

for 0 < z, z < 1 is

lim
L→+∞

L2∆4〈O1(x1, s1)O2(x2, s2)O3(x3, s3)O4(x4(L), s4)〉

=
∑
qi

g[q1q2q3q4](z, z)

4∏
i=1

((si)1)ji+qi((si)2)ji−qi . (2.47)

Let us list some simple properties of the q-basis four-point tensor structures [39]:

• If we expand a four-point function of Hermitian operators in q-basis, then the coefficient

functions are real if there are 0 or 4 fermions in the correlator, and imaginary if there

are 2 fermions.

• The space parity of the q-basis stuctures is equal to (−1)
∑
i ji−qi . See appendix D for

details on what is meant by “space parity”.

• Four-point q-basis tensor structures have simple properties under permutations for

which we refer the reader to [39]. The same comments about the meaning of per-

mutations apply as in section 2.2.

• The coefficient functions g[q1q2q3q4](z, z) transform in the following way under z ↔ z,

g[q1q2q3q4](z, z) = (−1)
∑4
i=1 jig[−q1,−q2,−q3,−q4](z, z). (2.48)

This identity also holds for individual conformal blocks.
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2.4 Conformal block for identity exchange

As a simple illustration of some of the above definitions, let us compute the expression for

the conformal block for identity exchange in a general 3d correlator.

The identity block appears in correlation functions of the form

〈O1O1O4O4〉, (2.49)

and its contribution is simply equal to

〈O1(x1, s1)O1(x2, s2)O4(x3, s3)O4(x4, s4)〉 3 〈O1(x1, s1)O1(x2, s2)〉〈O4(x3, s3)O4(x4, s4)〉.
(2.50)

To compute the decomposition of this block, we need to evaluate the above block in the

configuration (2.42) using (2.3). We find

〈O1(x1, s1)O1(x2, s2)〉〈O4(x3, s3)O4(x4, s4)〉

= cO1cO4

i2j1(sα1 γ
µ
αβs

β
2x12,µ)2j1

x2∆1+2j1
12

i2j4(sα3 γ
µ
αβs

β
4x34,µ)2j4

x2∆4+2j4
34

. (2.51)

We have

γµ,αβx12,µ =

(
z 0

0 −z

)αβ
,

γµ,αβx43,µ =

(
L− 1 0

0 1− L

)αβ
, (2.52)

which implies

〈O1(x1, s1)O1(x2, s2)〉〈O4(x3, s3)O4(x4, s4)〉

= cO1cO4

i2j1((s1)1(s2)1z − (s1)2(s2)2z)
2j1

(zz)∆1+j1
i2j4((s3)1(s4)1 − (s3)2(s4)2)2j4

=
∑
q1,q4

cO1cO4i
2q1+2q4

(
2j1

j1 + q1

)(
2j4

j4 + q4

)
(s1)j1+q1

1 (s2)j1+q1
1 (s1)j1−q12 (s2)j1−q12

× (s3)j4+q4
1 (s4)j4+q4

1 (s3)j4−q42 (s4)j4−q42 × z−∆1+q1z−∆1−q1 . (2.53)

We see that for the identity block, the only non-zero components are those with q1 = q2 and

q3 = q4. These functions are

g[q1q2q3q4](z, z) = cO1cO4i
2q1+2q4

(
2j1

j1 + q1

)(
2j4

j4 + q4

)
z−∆1+q1z−∆1−q1 . (2.54)

Note that the identity block is defined without a reference to the three-point bases, and

in fact, the above expressions do not need to be multiplied by OPE coefficients: they directly

give the contribution of the identity operator to the four-point function.
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3 Conformal block generator blocks 3d

3.1 The algorithm

Approximations to conformal blocks are computed in blocks 3d using residue recursion re-

lations [7, 10, 16], and specifically the general form of the 3-dimensional residue recursion

relations derived in [25]. In this section we briefly review these recursion relations and how

they are used in blocks 3d.

The statement of residue recursion relations in d = 3 is as follows. The conformal blocks

gab∆,j,I(z, z) are meromorphic functions of ∆ ∈ C with simple poles and known residues.4 For

each j there is an infinite set of poles ∆j,i, labeled by an index i in some index set i ∈ Pj .
The set of these poles is independent of a, b, I, with the exception that some residues may

vanish for special values of theses indices. The residues at these poles take the form

gab∆,j,I(z, z) ∼
1

∆−∆j,i
(Lj,i)aa′(Rj,i)bb′ga

′b′

∆′j,i,j
′
j,i,I

(z, z), (3.1)

where summation over repeated indices is understood. Here, the matrices Lj,i and Rj,i are

I-independent, and in general depend on ∆12 and ∆43. The quantum numbers ∆′j,i, j
′
j,i

appearing in the right-hand side have known expressions in terms of j and i. Importantly,

we have

∆′j,i = ∆j,i + nj,i, (3.2)

where nj,i are positive integers. The quantities ∆j,i, nj,i, j
′
j,i were computed in [16]. Some

examples of the matrices Lj,i, Rj,i were computed in [7, 10, 16, 23, 24, 41], and the general

closed-form expressions were derived for them in [25].

To make use of (3.1), the conformal blocks are separated into two factors,

gab∆,j,I(z, z) = (a0r)
∆hab∆,j,I(z, z), (3.3)

where

r =
√
ρρ, ρ =

z

(1 +
√

1− z)2
, ρ =

z

(1 +
√

1− z)2
, (3.4)

and a0 and bj are the constants appearing in the normalization of the two-point function 2.5.

The functions hab∆,j,I(z, z) defined in this way are useful because they are holomorphic at

∆ =∞,

hab∆,j,I(z, z) = hab∞,j,I(z, z) +O( 1
∆). (3.5)

The functions hab∞,j,I(z, z) can be determined by solving the Casimir differential equation to

leading order in ∆, and have been computed in a general closed form in [25], based on the

results of [26].

4The validity of this statement is dependent on the conventions for tensor structures. It is valid for the

choices discussed in this paper.
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The relation (3.1) implies the following expression for the residues of hab∆,j,I(z, z),

hab∆,j,I(z, z) ∼
(a0r)

nj,i

∆−∆j,i
(Lj,i)aa′(Rj,i)bb′ha

′b′

∆′j,i,j
′
j,i,I

(z, z). (3.6)

Combining this with (3.5), and with the knowledge that hab∆,j,I(z, z) is meromorphic in ∆, we

find the residue recursion relation

hab∆,j,I(z, z) = hab∞,j,I(z, z) +
∑
i∈Pj

(a0r)
nj,i

∆−∆j,i
(Lj,i)aa′(Rj,i)bb′ha

′b′

∆′j,i,j
′
j,i,I

(z, z). (3.7)

For the purposes of the numerical conformal bootstrap we need to compute an approx-

imation to hab∆,j,I(z, z) near z = z = 1
2 . It is well-known that hab∆,j,I(z, z) has an expansion

in positive integer powers of r which converges quickly near this point [42]. The residue

recursion relation (3.7) provides an efficient way of computing this power series. To see this,

consider the r0 term in this expansion. Since all nj,i > 0, we can completely neglect the sum

over i. Since hab∞,j,I(z, z) is a known function, we can easily extract the coefficient of the r0

term from its explicit expression.

To compute the r1 term, we cannot neglect the sum over i anymore, but due to nj,i > 0

we only need to know the r0 term of the ha
′b′

∆′j,i,j
′
j,i,I

(z, z) that appear in the sum, which we

have already computed. Repeating in this manner we can generate the r-series expansion

for hab∆,j,I(z, z) to very high orders. (In realistic applications the order can often go to r80 or

higher.)

The recursion relation (3.7) also gives a nice representation of the ∆-dependence of

hab∆,j,I(z, z). In particular, once the r-series of hab∆,j,I(z, z) has been computed to the order

rN , we can drop the terms with nj,i > N in the right-hand side of (3.7) and substitute the

derivatives at z = z = 1
2 of the computed series for the remaining terms. In this way, we

obtain an approximation of the form

∂mz ∂
n
z h

ab
∆,j,I(z, z)

∣∣∣
z=z= 1

2

≈ Da,b;m,n
0,j,I +

∑
i∈Pj ,nj,i≤N

Da,b;m,n
i,j,I

∆−∆j,i
, (3.8)

where Da,b;m,n
i,j,I ∈ R are numbers. This can be rewritten as

∂mz ∂
n
z h

ab
∆,j,I(z, z)

∣∣∣
z=z= 1

2

≈
P̃ a,b;m,nj,I (∆)∏

i∈Pj ,nj,i≤N (∆−∆j,i)
, (3.9)

where P a,b;m,nj,I (∆) is a polynomial in ∆ of degree equal to the number of i ∈ Pj with nj,i ≤ N .

For the conformal block itself we then get

∂mz ∂
n
z g

ab
∆,j,I(z, z)

∣∣∣
z=z= 1

2

≈
b−1
j (a0r)

∆P a,b;m,nj,I (∆)∏
i∈Pj ,nj,i≤N (∆−∆j,i)

(3.10)
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for some new polynomials P a,b;m,nj,I (∆) of degree degP a,b;m,nj,I (∆) = deg P̃ a,b;m,nj,I (∆) + m + n.

For future convenience, we also factored out the explicit dependence on bj . The output

of blocks 3d is essentially the polynomials P a,b;m,nj,I (∆), with some tweaks and optimizations

described below. The precise form of the output is specified in section 3.3.

In the rest of this section we briefly describe some more technical points about the

algorithm used in blocks 3d.

3.1.1 Block structure of residue matrices

When using the recursion relation (3.7), we need to multiply the known part of the power

series by matrices Lj,i and Rj,i. These matrices have size N3×N3, where N3 is the number of

three-point tensor structures for three-point functions 〈O1O2O〉 (for L) or 〈O4O3O〉 (for R),

and O has spin j. In more complicated blocks N3 can be relatively large. For example, for

four-point stress-tensor blocks we have N3 = 25,5 which is to be compared with scalar blocks

where N3 = 1. Taking into account that the algorithmic complexity of matrix multiplication

is O(N3
3 ), we find that just this multiplication step is 104 times slower than in the case of

scalar blocks.

It is, therefore, desirable to reduce N3 as much as possible. In the case of conformal

blocks for 〈TTTT 〉, we know that in reality, the number of three-point structures 〈TTO〉 is

at most 2 [22]. The N3 = 25 above comes from ignoring the permutation symmetry, space

parity, and conservation properties of 〈TTO〉. It thus seems to be a good idea to specialize

the recursion relation (3.7) to structures which satisfy these properties. However, we do not

do this in blocks 3d for the following technical reasons.

First of all, these properties are very problem-specific and would significantly compli-

cate the input information required by blocks 3d. Furthermore, even if we wanted to im-

plement conservation constraints, we would have to use three-point structures that solve

these constraints. Such structures depend polynomially on ∆ and the corresponding func-

tion hab∆,j,I(z, z) is not holomorphic at ∆ = ∞. Instead, it has a high-degree pole there (for

〈TTTT 〉 it would grow as ∆12).6 This means that we would need to determine more functions

at ∆ =∞ than just hab∞,j,I(z, z), and general expressions for these functions are not currently

available.

Instead of relying on permutation and conservation properties of three-point structures,

we use the fact observed in [25] that the matrices Lj,i and Rj,i are block-diagonal in j12 and

j43. That is, working in the SO(3) basis defined in section 2.2, we have

(Lj,i)(j12,j120)
(j′12,j

′
120)
∝ δj12

j′12
, (Rj,i)(j43,j430)

(j′43,j
′
430)
∝ δj43

j′43
. (3.11)

5This is the number of three-point tensor-structures for 〈O1O2O〉, where O1 and O2 are distinct, non-

conserved spin-2 operators.
6It is possible to divide the three-point tensor structures by polynomials in ∆ to cancel this pole. However,

this would introduce extra poles for ∆ ∈ C,, and we would need to somehow compute the residues at these

poles.
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We additionally take into account the fact that these either preserve or flip (depending on i)

the space parity of the structure. These observations allow us to split the three-point tensor

structures into groups distinguished by the value of j12 (or j43) and space parity. In the

example of 〈TTTT 〉 blocks, we split the N3 = 25 generic structures into groups the largest of

which contains only 5 structures, which gives a significant improvement in performance over

the direct application of (3.1).

Since the recursion relations for different values of j12, j43 and I can be used completely

independently, a single run of blocks 3d only computes the conformal blocks

g
(j12,j120),(j43,j430)
∆,j,I (z, z),

with the values of j12, j43 and I provided by the user. This enables easy parallelization of

conformal block computations.

3.1.2 Pole-shifting

One drawback of using the representation (3.10) for the derivatives of the conformal blocks is

that for large r-series order N the polynomials P a,b;m,n(∆) become of high degree. These poly-

nomials are typically used as an input to the semidefinite solver SDPB [3, 4], which performs

slower with higher-degree polynomials. Unfortunately, taking N to be relatively large is often

necessary in order to get a reliable approximation for the high-order cross-ratio derivatives of

the conformal blocks.

In order to address this problem, we use the “pole-shifting” method first described in [10]

and also implemented in scalar blocks. This method introduces a new truncation parameter

κ and looks for approximations of the form

P a,b;m,nj,I (∆)∏
i∈Pj ,nj,i≤N (∆−∆j,i)

≈
P ′a,b;m,nj,I (∆)∏

i∈Pj ,nj,i≤κ(∆−∆j,i)
, (3.12)

where P ′a,b;m,nj,I (∆) are new, lower-degree polynomials. The polynomials P ′a,b;m,nj,I (∆) are

chosen to ensure that the difference between the two sides of (3.12) is at most O(∆−dM/2e−1)

near ∆ = ∞ and O((∆−∆0(j))bM/2c) near ∆ = ∆0(j), where ∆0(j) is the unitarity bound

for the given value of j, and M is the number of poles appearing on the right-hand side.

In practice we use large N and moderate κ, making sure that increasing κ does not affect

the output of the semidefinite solver.

3.1.3 Optimizing for spinning four-point structures

In scalar blocks, the residue recursion relations are used to compute the derivatives of

the blocks along z = z diagonal, and then the Casimir equation is used to compute the

off-diagonal derivatives [5]. This strategy is useful because the computation of off-diagonal

derivatives using the Casimir equation is much more efficient than running the recursion

relation multiple times.
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In blocks 3d this approach is not used, and the residue recursion relation is run multiple

times to compute the r-series for all off-diagonal derivatives. This is because, in the spinning

case, there are typically several four-point tensor structures I, and the Casimir recursion

relation mixes them all together. In cases such as 〈TTTT 〉 there are hundreds of four-point

tensor structures I. Using the Casimir recursion relation would require running the recursion

step for all of them, while in practice, only the blocks for a few values of I [22, 23, 43] are

needed. Computing the off-diagonal derivatives directly from the recursion relation allows us

to run the code only for these few values of I.

3.2 Coordinates for cross-ratios

There are several choices of coordinates in cross-ratio space available in blocks 3d:

• z, z coordinates are defined by the conformal frame (2.42) and are related to the standard

u, v coordinates by

u =
x2

12x
2
34

x2
13x

2
24

= zz, u =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z). (3.13)

The crossing-symmetric point is z = z = 1
2 and crossing acts by z → 1− z, z → 1− z.

• x, t coordinates are defined through z, z via

x =
z + z − 1

2
, t =

(
z − z

2

)2

. (3.14)

The crossing-symmetric point is x = t = 0 and crossing acts by x → −x. These

coordinates are useful because they make manifest the symmetry of various functions

with respect to z ↔ z.

• y, y coordinates [44] uniformize the cut z, z-plane

z =
(1 + y)2

2(1 + y2)
, z =

(1 + y)2

2(1 + y2)
. (3.15)

The crossing-symmetric point is y = y = 0 and crossing acts by y → −y, y → −y. The

conformal block expansion is convergent when |y|, |y| < 1 and it is expected that the

components of the extremal functional converge to finite values in these coordinates [44].

• w, s coordinates are the analogs of x, t for y, y,

w =
y + y

2
, s =

(
y − y

2

)2

. (3.16)

The crossing-symmetric point is w = s = 0 and crossing acts by w → −w.

It is furthermore possible to compute only the “radial derivatives”, i.e. the ∂nx∂
0
t or ∂nw∂

0
s

derivatives of the conformal blocks. This option is useful, for example, in cases when there

are one-dimensional degrees of freedom in the system of crossing equations [22, 23].
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3.3 The output

In this section we give the precise definition of the quantities output by blocks 3d. The

code computes conformal blocks as defined in section 2.1, in the SO(3) basis of three-point

structures as defined in section 2.2, and in the q-basis of four-point structures as defined in

section 2.3. The two-point functions of the exchanged operators are normalized as described

in section 2.1.

Let g
(j12,j120),(j43,j430)
∆,j,[q1q2q3q4] (z, z) denote such conformal blocks. These blocks do not have a

definite symmetry under z ↔ z. Therefore, we define

g
(j12,j120),(j43,j430)
∆,j,[q1q2q3q4],± (z, z) =

1

2

(
g

(j12,j120),(j43,j430)
∆,j,[q1q2q3q4] (z, z)± (−1)

∑4
i=1 jig

(j12,j120),(j43,j430)
∆,j,[−q1,−q2,−q3,−q4](z, z)

)
.

(3.17)

The functions g
(j12,j120),(j43,j430)
∆,j,[q1q2q3q4],± (z, z) are even under z ↔ z for (+) sign and odd for (−) sign.

Given a user-specified choice of the coordinates (c1, c2) ∈ {(z, z), (x, t), (y, y), (w, s)}, we

approximate the derivatives

∂mc1∂
n
c2

(
p±(c1, c2)g

(j12,j120),(j43,j430)
∆,j,[q1q2q3q4],± (z, z)

) ∣∣∣
crossing-symmetric point

, (3.18)

as discussed in section 3.1, in the form

≈ b−1
j (a0r0)∆

P
′(j12,j120),(j43,j430);m,n
j,[q1q2q3q4],± (∆)∏
i∈Pj ,nj,i≤κ(∆−∆j,i)

, (3.19)

where the factor p±(c1, c2) is introduced to ensure that we take derivatives of a smooth

function. Here we choose all p±(c1, c2) = 1 except p−(x, t) = 2
z−z and p−(w, s) = 2

y−y . In

addition, r0 = 3 − 2
√

2 ≈ 0.1716 is the value of r at the crossing-symmetric point and κ

is the user-selected truncation order for pole-shifting (section 3.1.2). These approximations

are expressed in terms of x = ∆ − ∆0(j), where ∆0(j) is the unitarity bound. The poles

xj,i = ∆j,i − ∆0(j) appearing in the above approximation as well as the polynomials P ′

(expressed in terms of x) are output.

Given the user-specified derivative order Λ, the values of m,n which are output are

determined by

m,n ≥ 0, mµ(c1) + nµ(c2) ≤ Λ±, (3.20)

where the weights µ(ci) are given by µ(t) = µ(s) = 2 and for other coordinates are equal to

1. The quantity Λ± is defined as Λ+ = Λ and Λ− = Λ− 1. For the coordinate choices z, z or

y, y only half the derivatives are output due to the symmetry property under z ↔ z.

The values of j12, j43, qi,± are fixed in a given run of blocks 3d. The values of j120, j430

are chosen to be compatible with the parity of the structures. For example, if the four-point

tensor structure is parity-even, only the combinations of j120 and j430 which correspond to
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two parity-even or two parity-odd three-point structures are output, since the blocks vanish

for other combinations.

If the exchanged operator is fermionic, i.e., j is a half-integer, the polynomials P ′ are pure

imaginary. In this case, their imaginary part is output. If j is an integer, the polynomials are

real and are output directly.

3.4 Implementation details

blocks 3d is implemented in C++14 and uses the GMP [45], Boost [46], FMT [47] and Eigen

[48] libraries. We repeatedly profiled the execution to detect what parts were taking a long

time and aggressively optimized those parts. In a small number of cases, we had to rewrite

code in an ugly fashion to reduce temporaries and memory pressure.

However, the most significant improvements came from using multiple, thread-local

caches to speed up computations. For example, Clebsch-Gordan coefficients must be com-

puted many times with identical inputs. These caches reduce execution time by more than

an order of magnitude, but, unfortunately, they significantly increase memory use.

We also parallelized blocks 3d by splitting the computation across a user-specified num-

ber of threads. The work proceeds in two stages:

1. Compute the derivatives (3.19) with respect to (r, λ), where r is defined in (3.4) and

λ = 1
2 log(ρ/ρ).

2. Convert the derivatives from (r, λ) into the output coordinates (section 3.2).

Stage 1 must finish before stage 2 can start. Each of those stages are independently

parallelized across multiple threads.

In Stage 1, for a given derivative ∂nλ , we use the recursion relation (3.7) to compute

the power series in r, and, from it, the r-derivatives ∂mr up to m + n = Λ. So all of the

calculations for a given ∂nλ can be computed independently. Symmetry under z ↔ z mean

that we only have to compute even or odd λ-derivatives, so there are Λ/2 different independent

computations.

We arrange these different computations in a queue, with threads taking work from the

queue when they are ready. So very high Λ calculations can benefit from larger machines.

For Stage 2, it is the different values of the spin of the internal operator (j-internal)

that are processed with a queue. So the degree of parallelization is limited by the number of

elements in j-internal.

For the tests we have done, the limiting factor is usually Λ/2. The proportion of time

taken by each stage varies from 30% to 70%, depending on the details of the problem and the

hardware. As long as the calculation is large enough, we see very high utilization of all cores.

This is a fairly simple way of multithreading the computation, so we did not encounter

many problems with subtle multithreading bugs. In addition, we ran blocks 3d under the

Helgrind thread error detector [49, 50] and found no issues. We did find multithreaded
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performance problems with the Boost multiprecision library, but that has been rectified in

the latest release of Boost (1.74).

3.5 Correctness

We have verified the correctness of blocks 3d in several ways.

We have a separate implementation in Mathematica that, while very, very slow, allowed us

to validate all of the individual components as well as directly compare a complete calculation

for smaller test cases.

We have verified that our implementation of hab∞,j,I(z, z) leads to the correct leading terms

of the r-series and that the r-series generated by blocks 3d satisfies the quadratic conformal

Casimir equation [51] in a number of correlation functions. Since the Casimir equation has

a unique solution for a given leading term of the r-series expansion, this is a robust check of

the code.

We have compared the output of blocks 3d to that of scalar blocks in the case of

scalar blocks, and to the blocks computed in [22] in the case of 〈TTTT 〉 blocks. We found a

perfect match in both cases.

Finally, we have implemented the 3d four-fermion bootstrap (as described in section 5)

and found agreement with the previous results [19].

4 Performance

In this section we present the results of some simple performance benchmarks. In section 4.1

we compare the performance of blocks 3d to that of scalar blocks [18] (for the problem of

computing scalar blocks). In section 4.2 we describe current performance numbers for various

examples of spinning blocks.

Benchmarks in this section were run on the Helios cluster at the Institute for Advanced

Study, where each node has dual 14-core (28 cores total) 64-bit Intel Xeon Broadwell proces-

sors7 and 128GB RAM.

4.1 Comparison to scalar blocks

In this section we compare the performance of blocks 3d with scalar blocks [18] when

computing scalar conformal blocks. While both programs use the same recursion relations

and pole-shifting procedures, they differ in more technical aspects, such as those discussed in

section 3.1.3 and how parallelization is carried out.

Table 1 shows the memory usage and runtime for two sets of parameters. The parameters

for Set 1 are of medium complexity, while the parameters for Set 2 are characteristic of the

hardest numerical bootstrap problems analyzed in the literature [8, 12]. blocks 3d is slower

than scalar blocks by a factor 2-3 and uses 10 times the memory. This is to be expected

since blocks 3d has been optimized for a more general use case.

7Intel Xeon CPU E5-2680 v4 2.40GHz
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program Memory (GB) Time (hr)

Set 1 scalar blocks 0.4 0.005

blocks 3d 4 0.014

Set 2 scalar blocks 1.7 0.061

blocks 3d 18 0.11

parameter Set 1 Set 2

Λ 25 43

j-internal 0-50 0-88

coordinates xt xt

order 80 90

kept-pole-order 30 40

precision 655 1024

num-threads 28 28

Table 1: Memory usage and total runtime for two sets of parameters for scalar blocks and

blocks 3d, averaged over 10 runs each.

This makes blocks 3d less efficient for computing scalar blocks, but not impractically

so. For example, blocks 3d runs will still fit comfortably on modern cluster nodes, which

typically have at least 128 GB of RAM. If a project needs to compute spinning blocks, which

take much, much longer than 3d scalar blocks, it may simplify the workflow to only use

blocks 3d.

4.2 Spinning examples

When considering the performance of block-generating code, it is important to distinguish

between two cases. The first case corresponds to conformal blocks appearing in correlation

functions such as 〈φφφφ〉, 〈φφTT 〉, 〈TJTJ〉, etc., where φ is some generic scalar operator and

T, J are the stress-tensor and a spin-1 conserved current, respectively.8 The common trait of

these correlation functions is that the differences ∆12 = ∆1 −∆2,∆43 = ∆4 −∆3 are fixed.

This could be because some operators are identical and their scaling dimensions cancel in

these differences, or because some scaling dimensions are protected, such as those of T and

J . Since ∆12 and ∆43 are fixed, once the set of intermediate spins, the derivative order Λ,

and approximation-quality related parameters are selected, such blocks need to be computed

only once. For this reason, this case will be called “static.”

The second case is when ∆12 and ∆43 can vary. In this situation the blocks will need to be

recomputed many times in a typical bootstrap computation, which is why we will call this case

“dynamic.” For example, in mixed-correlator bootstrap studies of the 3d Ising CFT involving

8Here we write the operators in the order 〈O1O2O3O4〉 and it is understood that the OPE is taken between

O1 and O2 (equivalently, O3 and O4).
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external σ, ε-operators, the blocks for 〈σεσε〉 and 〈σεεσ〉 [7] are required. Searches over the

parameter space ∆σ, ∆ε typically require on the order of ≥ 102 points. More complicated

setups, such as the O(2) model [12] which used 3 external primary operators, require more

blocks per point, and the total number of scalar blocks that need to be computed in these

problems can reach 103 − 104.

Since we are reviewing the performance of blocks 3d, we will put it in the context of the

simplest setups with spinning operators that have not yet been studied with the numerical

conformal bootstrap. Since quite a few single-correlator setups have already been imple-

mented [1, 19, 20, 22, 23], we focus on problems which involve a pair of external primaries.9

We will consider systems involving correlators of {φ, T}, {ψ, T}, as examples of relatively

complicated systems,10 and {φ, ψ} as an example of a relatively simple system. Here φ is a

generic neutral or Z2-odd scalar, and ψ is a generic Majorana fermion. For simplicity, we do

not consider non-trivial global symmetries: they tend not to greatly increase the number of

conformal blocks that we need to compute, and instead simply add a layer of flavor blocks.

Similarly, in counting structures, we will assume that systems preserve space parity. Ignoring

parity symmetry will introduce only a constant factor change in the estimates. The systems

we consider, together with their correlators and numbers of four-point tensor structures are

given in table 2.

To compute blocks for a given four-point function we in general need to call blocks 3d

several times. A separate call is required for each ordering of the operators (modulo Z2 × Z2

kinematic permutations which preserve the cross-ratios [39]), four-point tensor structure, and

for every possible choice of j12 and j43. The latter choice is the main determining factor for

the performance of blocks 3d since the blocks computed in any given run are two matrices

of sizes L1(j12)× L1(j43) and L2(j12)× L2(j43),11 where for integer j

L1(j) ≡ j + 1, L2(j) ≡ j (4.1)

and for half-integer j

L1(j) ≡ L2(j) ≡ j +
1

2
. (4.2)

Theoretically, the algorithmic complexity of the recursion step depends on these sizes as∑
i=1,2

Li(j12)Li(j43)(Li(j12) + Li(j43)). (4.3)

9Of these, only the mixed system involving a scalar with a spin-1 conserved current has been studied in

the published literature [24].
10We do not consider, for example, {ψ, J} since it has smaller blocks than {ψ, T}. For another example, we

do not consider the {J, T} system because it only has static blocks, and the worst-case static 〈TTTT 〉 block

is covered in, e.g., the {φ, T} system.
11This is true for the correlators and structures we considered in our benchmarks. Depending on how space

parities align, these could instead be L1(j12)× L2(j43) and L2(j12)× L1(j43).
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system correlator N4

{φ, T} 〈φφφφ〉 1

〈Tφφφ〉 2× 2

〈TTφφ〉 3

〈TφTφ〉 2× 2

〈TTTφ〉 2× 4

〈TTTT 〉 5

{ψ, T} 〈ψψψψ〉 1

〈TTψψ〉 6

〈TψTψ〉 2× 6

〈TTTT 〉 5

system correlator N4

{φ, ψ} 〈φφφφ〉 1

〈ψψφφ〉 2

〈φψφψ〉 2× 2

〈ψψψψ〉 4

Table 2: The systems of correlators that we consider in our performance comparison, along

with the number of four-point structures N4 needed for each case. The notation a× b for N4

means that there are a different orderings of the operators (e.g. the orderings 〈TφTφ〉 and

〈TφφT 〉), modulo Z2 × Z2 permutations, for the fixed OPE channel, and each ordering has

b four-point tensor structures. Such orderings have the same computational complexity. We

are ignoring the 1- and 0-dimensional degrees of freedom in four-point structures of conserved

operators [22, 23], since those have a much smaller computational complexity than the 2-

dimensional degrees of freedom.

This scaling describes the data in table 4 reasonably well, accounting for most of the variation

in the runtimes.12

To get some sense of the performance for a given correlator, we can run blocks 3d with

the maximal values of j12 and j43 for one choice of four-point tensor structure. When using

the parameters in table 3, the required memory resource, and runtimes for various correlation

functions are shown in table 4.

To estimate the total time needed to compute all conformal blocks for a given correlator,

we can then multiply these runtimes by the number of four-point tensor structures, as well

as sum over all possible values of j12 and j43 assuming the scaling in (4.3). Specifically, if t

is the time it takes to run blocks 3d for the maximal allowed values j12,max, j43,max, then we

estimate the total time ttot required to compute conformal blocks for the given correlator as

ttot = t×N4 ×
j12,max∑

j12=j12,min

j43,max∑
j43=j43,min

∑
i=1,2 Li(j12)Li(j43)(Li(j12) + Li(j43))∑

i=1,2 Li(j12,max)Li(j43,max)(Li(j12,max) + Li(j43,max))
.

(4.4)

12To be more precise, after dividing the total user time of these runs by (4.3), we obtain a factor of 4

difference between the highest and lowest fractions, compared to a factor of 300 difference without dividing

by (4.3).
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parameter value

Λ 25

j-internal 0-50

coordinates xt

order 80

kept-pole-order 30

precision 655

num-threads 13

Table 3: Parameters used in our performance comparison. We use 13 threads because the

parallelism is limited by dΛ/2e in the current implementation. For the scaling dimension-

dependent parameters delta-12, delta-43 and delta-1-plus-2 we use the values appro-

priate for the correlator, assigning some generic scaling dimensions to φ and ψ.

block j12 j43 Memory (GB) Time (hr)

〈φφφφ〉 0 0 4 0.014

〈φψφψ〉 1
2

1
2 7 0.025

〈Tφφφ〉 2 0 11 0.045

〈ψψψψ〉 1 1 15 0.068

〈TφTφ〉 2 2 36 0.20

〈TψTψ〉 5
2

5
2 48 0.62

〈TTTφ〉 4 2 62 0.94

〈TTTT 〉 4 4 106 6.9

Table 4: Computing resources required for one call to blocks 3d for each kind of block,

using the maximal values of j12, j43 and for a single choice of four-point structure, given the

parameters in table 3.

where j12,min and j43,min equal 0 or 1
2 , and the sums proceed in integer steps. Taking into

account the number of cores reserved for the computation, we can then get the approximate

estimates shown in table 5 for the total CPU time required to compute the dynamic conformal

blocks in the setups mentioned above (for one fixed choice of external dimensions), and the

estimates in table 6 for computing some of the static blocks in these systems. Note that the

〈TTTT 〉 correlator gives the worst-case scenario for static blocks involving scalars, fermions,

and T .

These numbers show that it is practical to use blocks 3d for the numerical conformal

bootstrap of the systems considered in this section. Specifically, the time to compute 〈TTTT 〉
block dominates the static block computation time in all setups, and we estimate it to be on

the order of 2700 CPU hours. Furthermore, assuming that the number of points in scaling
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system correlator CPU hours

{φ, ψ} 〈φψφψ〉 1.3

{φ, T} 〈Tφφφ〉 3.9

〈TφTφ〉 29

〈TTTφ〉 390

{ψ, T} 〈TψTψ〉 300

Table 5: Estimates of CPU hours needed for the computation of dynamic blocks in each

system of correlators (for one fixed choice of external dimensions). The notation for the

correlators is the same as in table 2.

system correlator CPU hours

{φ, · · · } 〈φφφφ〉 0.18

{ψ, · · · } 〈ψψψψ〉 6.2

{T, · · · } 〈TTTT 〉 2700

Table 6: Estimates of CPU hours needed for the computation of select static blocks in various

systems of correlators.

dimension space for which the dynamic blocks need to be computed is on the order of 102−103,

we see that in all cases, the dynamic blocks dominate the conformal block computation time,

and is estimated in total to be around 103 − 105 CPU hours depending on the problem.

While this is significant, this is still below the typical computational time required to run

semidefinite programming for problems of this size, which can be 106 CPU hours or higher.

5 A worked example: 3d four-fermion bootstrap

5.1 Physical setup

In this section we apply blocks 3d to an example problem of the 3d four-fermion bootstrap.

That is, we impose the crossing symmetry constraints on the four-point function

〈ψψψψ〉 (5.1)

of a single Majorana fermion ψ in a parity-preserving 3d CFT. The numerical bootstrap

applied to this correlator was studied in great detail in [19]. The goal here is mostly to

demonstrate how blocks 3d can be applied to an interesting physical problem. To have a

concrete physical goal, we will revisit some of the features of the exclusion plots of [19] in the

context of the recently described “fake primary” effect [21].
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The first step is to identify the three-point structures of the operators that appear in the

ψ × ψ OPE. Consider the three-point function

〈ψψO〉, (5.2)

where the operator O has spin j. Assume first that j ≥ 1. According to the discussion in

section 2.2, the following q-basis three-point tensors structures are possible for this three-point

function,13

[1
2 ,

1
2 ,−1]±, [1

2 ,−
1
2 , 0]±, (5.3)

where we have defined

[q1q2q3]± ≡ [q1q2q3]± [−q1,−q2,−q3]. (5.4)

We need to additionally impose the requirements of permutation symmetry between the first

two operators as well as the parity constraints. These structures transform under the (12)

permutation (see section 2.2) as

[1
2 ,

1
2 ,−1]± → ±(−1)j−1[1

2 ,
1
2 ,−1]±, [1

2 ,−
1
2 , 0]± → (−1)j−1[1

2 ,−
1
2 , 0]±. (5.5)

Note that since ψ is a fermion we need anti-symmetric structures. We then find the following

allowed structures for various types of operators that appear in ψ × ψ OPE:

• Parity-even, even j:

[1
2 ,−

1
2 , 0]+, [1

2 ,
1
2 ,−1]+. (5.6)

• Parity-even odd-j operators are forbidden.

• Parity-odd, even j:

[1
2 ,−

1
2 , 0]−. (5.7)

• Parity-odd, odd j:

[1
2 ,

1
2 ,−1]−. (5.8)

For j = 0 the only difference is that we have to remove the second structure for the parity-even

even-j operators. The OPE coefficients corresponding to these structures are pure imaginary.

We now need to determine the four-point tensor structures and the corresponding crossing

equations. In principle there are 24 = 16 four-point tensor structures, corresponding, in the

q-basis, to all possible choices of the four qi ∈ {−1
2 ,

1
2}. Of these structures, 8 are parity-even.

13In this section we use a shorthand notation where we denote the structure 〈O1O2O3〉[q1q2q3] simply by its

label [q1q2q3].
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After symmetrizing under the Z2 × Z2 kinematic permutations (i.e., those permutations of

the four operators which do not change the cross-ratios) [39], there are 5 allowed structures,

which take the form

〈+ + ++〉 = [1
2 ,

1
2 ,

1
2 ,

1
2 ], (5.9)

〈− − −−〉 = [−1
2 ,−

1
2 ,−

1
2 ,−

1
2 ], (5.10)

〈+ +−−〉 = [1
2 ,

1
2 ,−

1
2 ,−

1
2 ] + z

z [−1
2 ,−

1
2 ,

1
2 ,

1
2 ], (5.11)

〈+−+−〉 = [1
2 ,−

1
2 ,

1
2 ,−

1
2 ] + [−1

2 ,
1
2 ,−

1
2 ,

1
2 ], (5.12)

〈−+ +−〉 = [−1
2 ,

1
2 ,

1
2 ,−

1
2 ] + 1−z

1−z [1
2 ,−

1
2 ,−

1
2 ,

1
2 ], (5.13)

where we use the notation 〈· · ·〉 to denote the symmetrized structures. The four-point function

can be expanded as

〈ψψψψ〉 =〈+ + ++〉g[ 1
2
, 1
2
, 1
2
, 1
2

](z, z) + 〈− − −−〉g[− 1
2
,− 1

2
,− 1

2
,− 1

2
](z, z)+

〈+ +−−〉g[ 1
2
, 1
2
,− 1

2
,− 1

2
](z, z) + 〈+−+−〉g[ 1

2
,− 1

2
, 1
2
,− 1

2
](z, z)+

〈−+ +−〉g[− 1
2
, 1
2
, 1
2
,− 1

2
](z, z). (5.14)

The crossing equations in terms of these structures can then be written as [39]

g[ 1
2
, 1
2
, 1
2
, 1
2

](z, z) = g[ 1
2
, 1
2
, 1
2
, 1
2

](1− z, 1− z), (5.15)

g[− 1
2
,− 1

2
,− 1

2
,− 1

2
](z, z) = g[− 1

2
,− 1

2
, 1
2
, 1
2

](1− z, 1− z), (5.16)

g[ 1
2
, 1
2
,− 1

2
,− 1

2
](z, z) = g[− 1

2
, 1
2
, 1
2
,− 1

2
](1− z, 1− z), (5.17)

g[− 1
2
, 1
2
,− 1

2
, 1
2

](z, z) = g[− 1
2
, 1
2
,− 1

2
, 1
2

](1− z, 1− z). (5.18)

We now take the derivatives of these structures near z = z = 1
2 to obtain the basis of

crossing equations for the numerical bootstrap. In fact, there is a small subtlety related to

the degeneration of the four-point q-basis on the line z = z, and some derivatives need to

be omitted. We refer the reader to appendix A of [39] for a detailed discussion, where the

present example is worked out.

The functions g[q1,q2,q2,q4](z, z) have the conformal block expansions14

g[q1,q2,q2,q4](z, z) =
∑
O
λψψO,aλψψO,b g

ab
∆O,jO,[q1,q2,q2,q4](z, z), (5.19)

where the three-point indices a, b label the three-point structures described above. Plugging

these equations into the above crossing equations, we obtain the sum rules which can be

analyzed using standard numerical bootstrap techniques.

14Note that λψψO are pure imaginary.
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5.2 Translating to blocks 3d conventions

Since each individual conformal block contributing to 〈ψψψψ〉 should be decomposable into

the structures (5.9)-(5.13), we find that, for example,

gab
∆,j,[−1

2 ,−
1
2 ,

1
2 ,

1
2 ]

(z, z) = (z/z)gab
∆,j,[

1
2 ,

1
2 ,−

1
2 ,−

1
2 ]

(z, z). (5.20)

This implies that

gab
∆,j,[−1

2 ,−
1
2 ,

1
2 ,

1
2 ],+

(z, z) =
z + z

2z
gab

∆,j,[−1
2 ,−

1
2 ,

1
2 ,

1
2 ]

(z, z), (5.21)

so computing

gab
∆,j,[−1

2 ,−
1
2 ,

1
2 ,

1
2 ]

(z, z) (5.22)

is equivalent to computing15

gab
∆,j,[−1

2 ,−
1
2 ,

1
2 ,

1
2 ],+

(z, z). (5.23)

Therefore, in order to compute the required conformal blocks, we run blocks 3d for the

following choices of q-basis four-point structures and sign ± (see section 3.3),

{[1
2 ,

1
2 ,

1
2 ,

1
2 ],+}, (5.24)

{[1
2 ,

1
2 ,

1
2 ,

1
2 ],−}, (5.25)

{[1
2 ,

1
2 ,−

1
2 ,−

1
2 ],+}, (5.26)

{[1
2 ,−

1
2 ,

1
2 ,−

1
2 ],+}, (5.27)

{[−1
2 ,

1
2 ,

1
2 ,−

1
2 ],+}. (5.28)

It remains to express the blocks gab∆,j,[q1q2q3q4],±(z, z) with a, b labeling the q-basis struc-

tures defined in the previous section in terms of the blocks g
(j12,j120),(j43,j430)
∆,j,[q1q2q3q4],± (z, z) which are

computed by blocks 3d. For this we need to express the q-basis tensor structures in terms

of the SO(3) basis structures. Suppose the coefficients are related by matrices Ma
j,(j12,j120),

then we have

gab∆,j,[q1q2q3q4],±(z, z)

=
∑

j12=0,1
j43=0,1

j+j12∑
j120=|j−j12|

j+j43∑
j430=|j−j43|

Ma
j,(j12,j120)M

b
j,(j43,j430)g

(j12,j120),(j43,j430)
∆,j,[q1q2q3q4],± (z, z). (5.29)

Note that there are 4 pairs of j12, j43 entering the above sums. This means that we need to

make 4 calls to blocks 3d for each choice of all other parameters.

15Equivalently, we can use gab
∆,j,[− 1

2
,− 1

2
,
1
2
,
1
2

],−
(z, z) instead.
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It remains to determine the matrices Ma
j,(j12,j120), i.e. to express the q-basis structures

in terms of the SO(3)-basis structures. To keep the exposition short, we do this for a single

q-basis structure [1
2 ,

1
2 ,−1]+. We have

[1
2 ,

1
2 ,−1]+ = [1

2 ,
1
2 ,−1] + [−1

2 ,−
1
2 , 1]. (5.30)

For [1
2 ,

1
2 ,−1] we can write, interpreting it as the value of the q-basis structure in the config-

uration (2.22), and according to definition (2.28)

[1
2 ,

1
2 ,−1] = (−1)1−j

(
2j

j − 1

)− 1
2

|12 ,
1
2 ; 1

2 ,
1
2 ; j,−1〉. (5.31)

Using (2.34) we have

|12 ,
1
2 ; 1

2 ,
1
2 ; j,−1〉 = 〈0, 1|12 ,

1
2 ,

1
2 ; 1

2 ,
1
2〉|0, 1; j,−1〉+ 〈1, 1|12 ,

1
2 ,

1
2 ; 1

2 ,
1
2〉|1, 1; j,−1〉

= |1, 1; j,−1〉, (5.32)

where we plugged in the values of the Clebsch-Gordan coefficients. According to (2.33) we

have

|1, 1; j,−1〉 = 〈j − 1, 0|1, 1; j,−1〉|1, j − 1〉+ 〈j, 0|1, 1; j,−1〉|1, j〉
+〈j + 1, 0|1, 1; j,−1〉|1, j + 1〉

=
1

2

√
j + 1

j + 1
2

|1, j − 1〉+
1√
2
|1, j〉+

1

2

√
j

j + 1
2

|1, j + 1〉, (5.33)

and so altogether we find

[1
2 ,

1
2 ,−1] = (−1)1−j

(
2j

j − 1

)− 1
2

(
1

2

√
j + 1

j + 1
2

|1, j − 1〉+
1√
2
|1, j〉+

1

2

√
j

j + 1
2

|1, j + 1〉

)
(5.34)

Analogously, for [−1
2 ,−

1
2 , 1] we find

[−1
2 ,−

1
2 , 1] = (−1)1−j

(
2j

j − 1

)− 1
2

(
−1

2

√
j + 1

j + 1
2

|1, j − 1〉+
1√
2
|1, j〉 − 1

2

√
j

j + 1
2

|1, j + 1〉

)
.

(5.35)

Therefore,

[1
2 ,

1
2 ,−1]+ = (−1)1−j√2

(
2j

j − 1

)− 1
2

|1, j〉. (5.36)

Recall that the left-hand side was interpreted above as the value of q-basis structure in

configuration (2.22), and that SO(3) basis is defined by (2.36) in the same configuration.

This means that we can directly read this equation as the relation between SO(3) and q-

basis three-point tensor structures. The relations for other q-basis structures can be obtained

analogously.

This completes the reduction of conformal blocks that are needed for our analysis to the

blocks computed by blocks 3d.
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Figure 1: Left: the bound on the gap ∆ε in the parity-even scalar sector. Right: the bound

on the gap ∆σ in the parity-odd scalar sector. Both plots were computed at Λ = 27.

5.3 Results

We first reproduce the two simple bounds originally computed in [19]. These are the bounds

on the gaps in scalar parity-even (∆ε) and parity-odd sectors (∆σ), as functions of the scaling

dimension of the fermion ∆ψ. The results are shown in figure 1. These plots, as well as all

other plots in this section, were computed at Λ = 27.16 These results are consistent with

those of [19] (they do not exactly coincide since we used a slightly higher Λ) and show two

prominent features.

The bound on ∆ε has a pronounced kink somewhere in the interval

∆ψ ∈ [1.284, 1.288], (5.37)

while the bound on ∆σ has a sharp jump somewhere in the interval17

∆ψ ∈ [1.2855250, 1.2855275]. (5.38)

Note that these ranges are valid for the given Λ = 27, and may shift at higher derivative

truncation orders. Nevertheless, these ranges clearly overlap, and it was conjectured in [19]

that these features correspond to an actual CFT.

In [19], these features, and in particular the jump in ∆σ, were compared to similar features

in the bootstrap of the 3d Ising CFT [7]. Furthermore, since the analysis of [19], jumps similar

to that in ∆σ have been observed in the 3d fermion bootstrap with global symmetries [20]

and in the 4d fermion bootstrap [21]. A common trait of all these jumps is that the jump

happens when the bound approaches the number of spacetime dimensions from below. For

example, in the present case, ∆σ is somewhat close to 3 just to the left of the jump in figure 1.

16Λ is the upper cutoff on the total order of derivatives of the crossing equations. The other relevant

numerical parameters are given in appendix B.
17We determined the location of the jump more precisely than that of the kink only because we study the

structure of the jump in more detail below.
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Figure 2: Zoom-in of the bound on ∆σ near the jump at Λ = 27. The red short vertical

lines show the positions of sample points in ∆ψ and are not error-bars.

In [21], the jumps in the 4d fermion bootstrap and 3d Ising bootstrap [7] were shown

to be due to the “fake primary” effect.18 We refer the reader to [21] for a detailed general

explanation of this effect. In the setup of this paper, the statement is that the exchanges of

parity-odd spin-1 operators V very close to the spin-1 unitarity bound ∆V = 2 give exactly

the same contribution to the four-point function 〈ψψψψ〉 as exchanges of parity-odd scalars

with dimension ∆σ = 3. Thus, unless we impose a gap on ∆V above ∆V = 2, we are effectively

allowing an isolated parity-odd scalar contribution at ∆σ = 3, the “fake primary.” This has

no effect on numerics while the gap in ∆σ is below 3, since then this isolated contribution is

a part of the continuum of other allowed contributions, but it becomes important as soon as

the gap in ∆σ crosses 3. In effect, in such a situation, we are bounding the gap to the second

parity-odd scalar, assuming that the first parity-odd scalar is at ∆σ = 3. This contributes to

a discontinuity in the bound on ∆σ.

This section aims to analyze the jump in ∆σ observed in figure 1 in the context of the

fake primary effect. While it is clear that in our setup this jump is at least partly due to the

fake primary effect (because the bound on ∆σ goes from below 3 to above 3), we would like

to know whether there is some underlying CFT, as in the case of the 3d Ising bootstrap.

There are several indications, some seen already in the results of [19], which suggest that

the fake primary effect is not the primary cause of the jump. First and foremost, there is

a kink observed in the bound on ∆ε at the same value of ∆ψ. When the bound on ∆ε is

computed, no assumptions are made about the parity-odd scalar sector, and the fake primary

is hidden in the continuum of allowed contributions. Therefore, it does not immediately affect

the bound on ∆ε. The fact that the bound on ∆ε displays a kink distinguishes the current

setup from the setups in [20, 21], where the jumps seem to be only due to the fake primary

effect. Instead, it appears more similar to the situation with the 3d Ising bounds, where there

is a physical theory under the jump.

18Importantly, however, this does not invalidate any of the 3d Ising bootstrap results [7]. Moreover, there

is an even sharper physical jump that remains even after the fake primary effect is removed.
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Figure 3: The bound on the gap ∆σ in the parity-odd scalar sector at Λ = 27 for various

values of the gap ∆V ∈ [2, 3]. The gaps are listed on the right in the same order as the curves

appear in the plot, top to bottom. The jump disappears between ∆V = 2.25 and ∆V = 2.30.

Furthermore, the jump in the ∆σ bound appears to start below ∆σ = 3, which is another

distinguishing feature of the jumps in 3d Ising bounds [7]. To verify this, we computed the

bound on ∆σ over a fine grid of ∆ψ values near the jump, with the results shown in figure 2.

These plots strongly suggest that the discontinuity starts at ∆σ = 2.924(1). (Again, this

number is for Λ = 27.) Since we are only computing the bound at a discrete set of values

∆ψ, we cannot logically exclude the possibility that the true discontinuity starts at ∆σ = 3

and is entirely due to the fake primary effect. However, in that case, there must still exist an

extremely pronounced continuous feature in the plot leading up to ∆σ = 3 just to the left of

the discontinuity. This should be contrasted with the jumps observed in [21] and [20], where

the bound is perfectly smooth up to exactly the fake primary threshold, at which point it

jumps.

The work in [21] found that the fake primary contribution to the jump can be removed in

the 3d Ising model by imposing a gap above the unitarity bound in the Z2-odd vector sector,

the role of which in our setup is played by the parity-odd vectors V . In figure 3, we show

how the bound on ∆σ is affected by the gaps ∆V imposed on such operators. We see that the

jump persists up to at least ∆V = 2.25. The way the plot near the jump changes with ∆V is

somewhat different from what was observed in [21] for the 4d fermion bootstrap, where the

jumps were concluded to be likely entirely due to the fake primary effect. But it is hard to

draw sharp conclusions from this comparison.

It is, however, instructive to compare figure 3 to figure 4, where the bound on ∆ε is plotted

for various choices of ∆V . From figure 4 we see that the bound is essentially independent of
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Figure 4: The bound on the gap ∆ε in the parity-even scalar sector at Λ = 27 for various

values of the gap ∆V ∈ [2, 3]. The gaps are listed on the right in the same order as the curves

appear in the plot, top to bottom.

∆V for ∆V ∈ [2.0, 2.2], and starts to change roughly at the same time as the jump disappears.

We have additionally checked that if we sit near the kink at {∆ψ,∆ε} = {1.286, 4.974}, then

the maximal parity-odd spin-1 dimension is ∆V < 2.29 and the parity-even spin-2 gap must

be smaller than ∆T < 3.004. It thus seems to be a consistent scenario that the jump in ∆σ

and the kink in ∆ε are both due to a local CFT which contains a parity-odd vector operator

of dimension ∆V ≈ 2.3 as well as a stress-energy tensor with ∆T = 3.

The evidence discussed in this section appears to be inconsistent with the features in

figure 1 being solely explained by the fake primary effect, but is so far consistent with the

existence of a local CFT with ∆ψ ≈ 1.3, ∆ε ≈ 5, 3 . ∆σ . 7, and a parity-odd vector

operator of dimension ∆V ≈ 2.3. It would be interesting to further explore and constrain this

hypothetical CFT.

6 Conclusions

Introducing a general software tool for computing spinning 3d conformal blocks should mark

the beginning of a new era for the numerical conformal bootstrap. In particular, blocks 3d

will enable the study of large systems of bootstrap equations involving external spinning

operators, including fermions, global symmetry currents, and the stress tensor. In turn, this

should allow for the computation of new bootstrap bounds and islands, leading to rigorous

determinations of observables in physically-interesting CFTs.

An immediate future direction is to apply blocks 3d to perform bootstrap computations

in systems of mixed correlators containing fermions and scalars, building on the bounds

obtained in [19, 20]. We expect that such a system will lead to additional constraints on the
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CFT data of the Gross-Neveu-Yukawa models. It may also help us explore the nature of the

hypothetical “dead-end” CFT which may underlie the kink/jump appearing in [19, 20], in

the bounds from fermion four-point functions.

It will also be interesting to perform new bootstrap computations using systems of correla-

tors containing the stress tensor, building on the general bounds from stress-tensor four-point

functions obtained in [22]. In addition to allowing access to CFT observables connected to the

stress tensor (e.g., three-point coefficients 〈TTO〉), such systems should also help to produce

a more refined map of the general space of 3d CFTs.

Another direction is to study mixed correlators containing non-Abelian currents (building

on [23, 24] and the supersymmetric generalizations [52–54]), together with operators charged

under their global symmetries. Such systems will allow for the study of whether information

about current three-point coefficients can be used to help isolate 3d CFTs. They can also

serve as a prototype for studying whether inputting information about ’t Hooft anomalies can

help isolate interesting non-supersymmetric 4d CFTs such as the conformal window of QCD.

Additionally, they can be used to explore whether such correlators can be effectively used to

forbid the global symmetry enhancements that affect the structure of numerous bootstrap

bounds [2, 55–58].

Overall, we are optimistic about the future of the numerical bootstrap. With the re-

cent development of SDPB 2 [4], and now the introduction of blocks 3d, a plethora of new

bootstrap problems involving external spinning operators should now become tractable. We

expect that there is still much low-hanging fruit to be picked from these systems and that

the conformal bootstrap will reveal new surprises for many years to come.
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A Code Availability

The software blocks 3d is freely available from Gitlab at

https://gitlab.com/bootstrapcollaboration/blocks_3d

The work presented here was computed by the latest current version, which has the Git

commit hash

e37e972f5f19befa1158754ee9570c7b6a1c5913

B Details on numerics

The computations described in section 5 of this paper used the parameters given in table 7

for SDPB [3, 4] and blocks 3d.

parameter value

Λ 27

spins 0-50

kept-pole-order 20

order 60

precision 768

dualityGapThreshold 10−30

primalErrorThreshold 10−200

dualErrorThreshold 10−200

findPrimalFeasible false

findDualFeasible false

detectPrimalFeasibleJump true

detectDualFeasibleJump true

initialMatrixScalePrimal 1050

initialMatrixScaleDual 1050

feasibleCenteringParameter 0.1

infeasibleCenteringParameter 0.3

stepLengthReduction 0.7

maxComplementarity 10130

Table 7: Parameters used for the numerical computations in this paper.

C Conventions

The Lorentz group in d = 3 is Spin(2, 1) ' SL(2,R). The anti-Hermitian generators of the

Lorentz group satisfy the commutation relations

[Mµν ,Mρσ] = ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ , (C.1)

– 34 –

https://gitlab.com/bootstrapcollaboration/blocks_3d


where the Lorentzian metric signature is chosen to be ηµν = ηµν = diag(−1, 1, 1). The

spinor representations are constructed using the gamma-matrices γµ, which satisfy the usual

relations

γµγν + γνγµ = 2ηµν . (C.2)

Explicitly, we choose

(γ0)αβ =

(
0 1

−1 0

)
, (γ1)αβ =

(
0 1

1 0

)
, (γ2)αβ =

(
1 0

0 −1

)
. (C.3)

The Lorentz generators are then represented by the matrices

(Mµν)α β =
1

4
([γµ, γν ])α β . (C.4)

Note that the representation matrices M are real since the γ-matrices are. These matrices

satisfy the same commutation relations as (C.1) and preserve the symplectic form

Ωαβ = Ωαβ =

(
0 1

−1 0

)
. (C.5)

The elements of the spinor irrep are real two-dimensional vectors with upper indices sα. We

raise and lower indices by using the symplectic form Ω

sα = Ωαβs
β, sα = sβΩβα. (C.6)

A general finite-dimensional irrep of SL(2,R) is labeled by a non-negative (half-)integer spin

j. The elements of these representation are symmetric tensors of the form

Tα1···α2j . (C.7)

All these irreps are real since the spinor irrep is real.

A local operator of spin j is a tensor

Oα1···α2j (x), (C.8)

symmetric in indices αi. Its transformation properties under the Lorentz group are specified

by the commutation relation

[Mµν ,Oα1···α2j (x)] = (xν∂µ − xµ∂ν)Oα1···α2j (x)−
2j∑
k=1

(Mµν)αkβOα1···αk−1βαk+1···α2j (x).

(C.9)

In the main text we often use the index-free notation

O(s) = sα1 · · · sα2jOα1...α2j , (C.10)

where s is a real spinor variable, whose components we often denote by

sα ≡

(
ξ

ξ

)
. (C.11)

For a more detailed discussion of our conventions, refer to appendix A of [25].
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D Parity for the three-point and four-point structures

In this section we clarify the meaning of parity for the tensor structures. We define the parity

κ of a local operator by

RµO(x, s)R−1
µ = κO(Rµx, γµs), (D.1)

where Rµ is the unitary operator representing reflection in a spatial direction µ (xµ → −xµ),

µ = 1, 2, and Rµx is the appropriately reflected x. For κ = 1 we say that the operator

is parity-even, and for κ = −1 we say that the operator is parity-odd. This definition is

consistent with the usual definition of parity for tensor (integer j) operators.

Motivated by this definition, for a tensor structure represented by a function f(xi, si) of

several coordinates xi and polarizations si we define

(Rµf)(xi, si) ≡ f(Rµxi, γµsi). (D.2)

It follows that R2
µf = f and thus all structures can be split into parity-even (Rµf = f) and

parity-odd (Rµf = −f).

For operators of definite parity κ, correlation functions are expanded in terms of parity-

even structures if the product of operator parities is even, and in terms of parity-odd structures

if the product of operator parities is odd.

E Clebsch-Gordan coefficients

In our conventions the Clebsch-Gordan coefficients are given by the formula

〈j1,m1; j2,m2|j,m〉 =

√
(2j + 1)(j + j1 − j2)!(j − j1 + j2)!(j1 + j2 − j)!

(j1 + j2 + j + 1)!

×
√

(j +m)!(j −m)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

×
∑
k

(−1)k

k!(j1 + j2 − j − k)!(j1 −m1 − k)!(j2 +m2 − k)!(j − j2 +m1 + k)!(j − j1 −m2 + k)!
,

(E.1)

where the sum runs over values of k for which the arguments of the factorials in the denomi-

nator are non-negative.
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