CALT-2020-046
CERN-TH-2020-179

Learning to Unknot

Sergei Gukov!, James Halverson?3, Fabian Ruehle*®, Piotr Sutkowski®

! Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena, CA 91125, USA

2 Department of Physics, Northeastern University, Boston, MA 02115
3 The NSF Al Institute for Artificial Intelligence and Fundamental Interactions

4 CERN Theory Department, 1 Esplanade des Particules,
CH-1211 Geneva, Switzerland

° Rudolf Peierls Centre for Theoretical Physics, Department of Physics,
University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

6 Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland

Emails: [gukov@theory.caltech.edul, [j.halverson@northeastern.edu,
fabian.ruehle@cern.chl, |psulkows@fuw.edu.pl

Abstract

We introduce natural language processing into the study of knot theory, as made nat-
ural by the braid word representation of knots. We study the UNKNOT problem
of determining whether or not a given knot is the unknot. After describing an algo-
rithm to randomly generate N-crossing braids and their knot closures and discussing
the induced prior on the distribution of knots, we apply binary classification to the
UNKNOT decision problem. We find that the Reformer and shared-QK Transformer
network architectures outperform fully-connected networks, though all perform well.
Perhaps surprisingly, we find that accuracy increases with the length of the braid

word, and that the networks learn a direct correlation between the confidence of their

arXiv:2010.16263v1 [math.GT] 28 Oct 2020

predictions and the degree of the Jones polynomial. Finally, we utilize reinforcement
learning (RL) to find sequences of Markov moves and braid relations that simplify
knots and can identify unknots by explicitly giving the sequence of unknotting ac-
tions. Trust region policy optimization (TRPO) performs consistently well for a wide
range of crossing numbers and thoroughly outperformed other RL algorithms and ran-
dom walkers. Studying these actions, we find that braid relations are more useful in

simplifying to the unknot than one of the Markov moves.

mailto:gukov@theory.caltech.edu
mailto:j.halverson@northeastern.edu
mailto:fabian.ruehle@cern.ch
mailto:psulkows@fuw.edu.pl

Contents
1 Introduction

2 Knots and Natural Language
2.1 Embedding Layers for Semantics
2.2 Attention and Transformers L.
2.3 Reformer e
2.4 Knots as Language
2.5 The UNKNOT Problem

3 Generating Knots and Unknots

4 Unknot Decision Problem
4.1 Confident Predictions, Hard Knots, and the Jones Polynomial
4.2 Going Up to Go Down: Hard Knots in Dowker-Thistlethwaite Notation

5 Unknotting with Reinforcement Learning
5.1 The RL environment
5.2 The RL algorithm
53 Results.

5.4 Actions taken to unknot
6 Conclusion
A Algorithms

B Knot or not? A game for children.

130

39

1 Introduction

In work and in play, some of the most difficult or even unsolvable problems can be for-
mulated by using a fairly small set of rules. Indeed, even when the rules of the game are
simple, the state space of all possible configurations can be extremely large, way too large
for a human brain or a deterministic algorithm to identify a given configuration and tell
where in a big scheme of things it belongs. This is precisely the domain where machine
learning and artificial intelligence hold a consistent record of winning the game, growing
stronger each year and outperforming the best chess grand masters [I] and go players |2}, [3].

There are many such “games” in fundamental science too, with simple rules and a vast
landscape of possible outcomes.

The one considered in this paper involves three Reidemeister moves (or, equivalently,
Markov moves) as “rules of the game” and the rich state space is spanned by many different
knots or, more precisely, by different presentations of knots. Although these basic rules
can be counted on one hand and encode all possible equivalences, the richness of the state
space immediately gets in the way of identifying whether two different presentations are
equivalent or not. It is rather ironic that this is an obstacle to several fundamental prob-
lems in low-dimensional topology, including the smooth 4-dimensional Poincaré conjecture.
Other areas where finding the simplest representation of a knot will be beneficial are for
example the knots-quivers correspondence [4, [5] in physics, or protein folding in biology
[6].

In the field of string theory, it has been realized [7, [8 O, [10] within the last three
years that machine learning can also be applied to the large state space of string vacua
and compactification spaces; see [I1] for an introduction and overview. In particular,
in [12], a Reinforcement learning was applied to find solutions to a set of coupled quartic
Diophantine equations that describe consistent string vacua, of which there are many
more [13] [14] [15] 16] than configurations in Go.

From the AI/ML point of view, the problem of identifying equivalence classes, i.e.
different presentations of the same knot, is very similar to the problem of completing the
sentence “I grew up in France...I speak fluent ...”. Roughly, the reason is that the latter
task requires identifying the meaning of the sentence and placing it next to other sentences
with a similar meaning in a large space of possibilities. This is a classical problem in Natural
Language Understanding (NLU) or Natural Language Processing (NLP). Therefore, the
question we wish to ask here is: How quickly and how well can a neural network learn to
speak the language of knots?

This question was asked before, however, not from the NLP perspective, which is one
novelty of this paper. For example in [I7], Hughes uses a simple feedforward neural network

to predict knot invariants such as quasi-positivity, the slice genus, and the Ozsvath-Szabd

7-invariant. In [I8] the authors also use a simple feedforward network to compute the
hyperbolic knot volume from the Jones polynomial.

The knot theory problem we are studying is the UNKNOT problem, i.e. recognition
of whether a given knot is the unknot. In addition to using NLP tools for the binary
classification task, we also employ reinforcement learning to explicitly find a sequence of
moves that allow to transform a (potentially complicated) representation of the unknot
to its simplest representative, a circle with no crossings. Since the algorithm finds the
necessary Reidemeister moves, rather than just predicting a probability for the knot being
the unknot, the results can serve to prove that a given knot is the unknot.

Another novelty is that, for the NLP itself, the example of the “knot language problem”
studied here presents new twists and opportunities. For example, the role of equivalence
classes so central to this example could be also useful in other problems, not only in
fundamental science.

This paper is organized as follows. In Section 2] we review the basics of NLP and knot
theory and introduce how the braid representation of knots yields an NLP description of
knots. In Section [3]we introduce an algorithm by which trivial and non-trivial knots may be
generated, represented by braids with a fixed number of crossings. In Section [4] we utilize
a variety of neural networks to apply binary classification to the UNKNOT problem, and
use the trained networks to study correlations with the Jones polynomial and notions of
hardness. In Section [we utilized reinforcement learning to find sequences of Reidmeister
moves, represented by braid relations and Markov moves on the braid, that simplify a
non-trivial representation of the unknot to the trivial one. In Section [6] we summarize the
main results of this work and discuss. In Appendix [A] we provide pseudo-code for some

algorithms used in this paper and in Appendix [B| we provide an unknotting game.

2 Knots and Natural Language
In this section we review NLP and introduce its application to knot theory.

2.1 Embedding Layers for Semantics

A language L is composed of words from a vocabulary V(L). In NLP it is useful to have

an embedding of a word into a vector space that ideally encodes its meaning:
E:V(L) - RY, (1)

where d is the embedding dimension.
Since the vocabulary is a discrete set of words, one embedding, known as the one-

hot encoding, maps the it word w; € V(L) as w; — e;, where ¢; is a unit vector and

d = |V(L)|. From the NLP perspective, this embedding has a number of issues. First, the
dimension of the target vector space is |V (L)|, which for any non-trivial language will be
quite large. Second, all but one of the entries is zero; the vector is sparse. Finally, the
embedding only contains the information of the index in the set V' (L), which is arbitrary
and can be permuted; no useful information is encoded in the embedding.

One would like a better technique for associating a vector to a word. The problem of
sparseness may be solved by choosing d < |V(L)|, typically d < |V(L)|. In some cases E is
fixed by using pre-trained word vectors for the embedding, while in others F has randomly
initialized parameters and a useful embedding is learned by training on some task. In the
process, semantics may be learned that encoded meaning into the vector representatives

of words. (e.g. [19]) A famous example is
E(king) — E(man) + E(woman) ~ F(queen), (2)

an approximate equivalence at the level of the vector relationships that encodes an actual
semantic relationship in the language. Other semantic relations have also been learned,

e.g. related to capitals
E(Paris) — E(France) + E(Poland) ~ E(Warsaw), (3)

and pluralization

E(cars) — E(car) + E(apple) ~ E(apples). (4)

Clearly, word embeddings that capture semantic features of a word or language could be
useful in a variety of machine learning tasks with respect to that language.

In what follows we will be discussing queries and keys, and it will be assumed that
each word in a sequence of length [has been mapped to d-vector via an embedding layer,

so that each embedded sequence has shape [/, d].

2.2 Attention and Transformers

Recent years have seen great progress in NLP with the evolution of the attention mechanism
and its introduction into various architectures. It works as the name suggests: by training
the neural network to pay attention to the most important parts of sentences.

To explain the mechanism we will utilize the notion of queries, keys, and values [20].
This notion is used because the mechanism mimics the retrieval of a value v, for a query
q based on a key k; in a database, each of which has its own value v;. In normal database
retrieval, one finds the key k; that is identical to the query and returns the value. In
attention, we wish instead to have a similarity measure s(q, k;) between the query and key,

which is used as the weight to determine the attention paid to the different elements in a

weighted sum of values,

Attention(q, k,v) = vy = Z s(q, ki) v;. (5)
i

In this formulation, the case of normal database retrieval is the case where s(q, k;) = 1
if ¢ = k; and 0 otherwise. The different types of attention that exist in the literature
[211 22| 23] 20] correspond to different choices for similarity function s, which is chosen to
be differentiable (unlike usual database retrieval) to allow for backpropagation in a neural
network. The similarity is usually softmax applied to some score function, so that the

weights sum to one.
The attention mechanism is a crucial component of the so-called Transformer architec-

ture [20], where the version of attention used is known as scaled dot-product attention,

. QK"
Attention(Q, K, V) = softmax 14 (6)
Vdy,
where @ is a set of queries and the keys and values are packed into matrices K and V', and

dy, is the dimension of the keys. The softmax function of a vector x is defined as

softmax : R" — R"
evi (7)
Z?:l e’

T —r

which is applied to the dot product of the queries with the keys. The scaling in the softmax
in @ by a factor of 1/+/dj, improves stability of the gradients.

Multi-head attention [20] is a simple variant of attention that can lead to improved
training. In multi-head attention, h € N different linear projections of the d-dimensional
queries, keys, and values are learned, to dy, dj, and d,, dimensions, respectively. Attention
is then computed for each of the projected queries, keys, and values, which are then
concatenated and projected again. The result is known as multi-head attention, with h
heads.

The Transformer [20] is an encoder-decoder language translation architecture that uses
stacked multi-head attention layers. Since we will be utilizing a memory-efficient modifi-

cation of the Transformer, we refer the reader to the original literature for further details.

2.3 Reformer

The Reformer is a new architecture, an efficient transformer, that makes a number of
memory improvements with respect to the original Transformer and related follow-ups. In

this section we review the essential elements of the Reformer, as presented in [24].

Perhaps the key improvement in the Reformer is the use of locality sensitive hashing

(LSH) attention. The essential idea behind LSH attention is that, due to the exponential
dependence in the softmax in @, some keys contribute much stronger to attention (for fixed
query) than others. This means that the matrix softmax(QK7') is sparse and dominated
by a few entries, and we want to only compute these dominant ones. This will improve the
complexity from O(I?) to O(llog!), which becomes especially important for long sequences.
In more detail, the softmax of a key k; contributes a factor exp(q; - k;) to the attention of
a query ¢;. One now wishes to find the keys k; with maximal ¢; - k; = |g;| |k;| cos(0;5), i.e.
finding keys that are nearest neighbors to ¢; in a high-dimensional vector space.
Formulated abstractly, a hashing function (or scheme) h : V — {1,...,b} assigns a
vector x € V to one of b hash values. In cryptography, h is chosen such that the hash
values h(x) of nearby values x are as uncorrelated as possible in order to avoid revealing
whether a guessed secret x is close to the actual secret. Here, we want the inverse situation:
nearby values should be mapped to nearby hashes h(x). Such a hashing scheme is called

locality-sensitive. An example for an LSH scheme uses
h(z) = argmax([zR; —zR]), (8)

where [u;v] denotes the concatenation of two vectors w and v, R is a random matrix of
shape dim(x) x b/2, and argmax returns the index of the largest vector component [25].
The idea is that under the random projection, nearby vectors will map to nearby vectors
and thus receive the same hash with high probability.

Returning to computing the attention @, we can now only evaluate those scalar prod-

ucts in QK7 that contribute the most. The attention a; of a query g; is given by

a; = Z exp(qi - kj — z(1,Pi)) vj . 9)

JEP;
Here, P; := {j : ¢ > j} is the set that the query at position ¢ attends to, the exponential
structure comes from the softmax, z is a normalizing term for the softmax, and we have
omitted the factor 1/y/dj for clarity. Note that the structure of P; ensures that the "
position in the query may only attend to itself and the prior positions [20].

We now change this attention scheme by only paying attention to elements within the

same hash bucket, i.e. we set
P = {5+ hla;) = h(kj)}- (10)

As discussed above, the computational and memory gains arise because |[PFH| < |P;].
Sometimes (but rarely), similar vectors will fall in different hash buckets. The chance that
this happens can be reduced by performing multi-round LSH attention, i.e. the Reformer

USes Mhashes distinct hashing functions, defined by distinct, random matrices R.

OCH D F

Figure 1: Examples of knots. From left to right: unknot (01), trefoil (3;), figure-eight (41),
51, and 52.

T DO I <TG

(a) Type I: Twist (b) Type II: Poke

\/

(¢) Type III: Slide

Figure 2: Reidemeister moves.

Additional details of LSH attention in the Reformer include causal masking that ensures
positions may only attend to prior positions, and also a chunking scheme that allows for
efficient batch processing. In practice, the input with batch-size N is a tensor of shape
[N, 1, d] which the Transformer then turns into @, K, and V' via three different linear layers.
However, for LSH attention in the Reformer to make sense we need () = K. Similarly, a
shared-QK Transformer is a Transformer that has @ = K, and it turns out [24] that this
has little effect on performance. Further improvements are achieved by using reversible
layers.

In summary, the Reformer is a modern NLP architecture where improvements relative
to the Transformer allow sophisticated sequence data to be trained effectively on a single
GPU, bypassing the need for extensive computational resources and therefore allowing easy
exploration of new domains with NLP techniques. The most important hyperparameters
introduced by the Reformer are the number of hashes b in LSH attention, and also the

choice of LSH attention or full attention, for the sake of comparison.

2.4 Knots as Language

Knots have various data presentation as words in appropriate sets of letters, which makes it
natural to think of them as languageE] In this section we develop the idea in the context of
natural language processing. We start by briefly summarizing some basics of knot theory,
and then introduce the braid representation of a knot, which we use in most of our analysis
and which can be interpreted as language.

A knot is an embedding of S* in 3-dimensional space, without self-intersections and up

to ambient isotopy. The main goal of knot theory is to classify all knots, and to develop

!An NLP that deals with letters and words would be to predict the next letter to be typed based on
the letters that have already been input.

tools that enable to determine whether two different embeddings of S* are topologically
equivalent, i.e. whether they represent the same knot — in other words, whether one can be
transformed onto the other without cutting. An important specialization of this problem
that we address in this paper is to determine whether a given knot is topologically equiva-
lent to the unknot, i.e. an unknotted loop, also referred to as the trivial knot. A collection
of several possibly entangled knots is called a link.

One useful approach to analyze knots is to consider their projections on a plane, see
Figure Two knots are topologically equivalent if and only if their projections can be
related to each other by a sequence of Reidemeister moves. These are three special moves

that involve one, two, or three strands, see Figure [2}

o A twist (Figure takes a strand and twists it, changing the crossing number by 1,
e A poke (Figure[2b)) pulls one strand over another, changing the crossing number by 2,

e A slide (Figure slides a strand over (or under) a crossing of two strands, not

changing the crossing number.

Furthermore, the most basic characteristic of a knot is the minimal number of crossings
that one gets upon its projection onto an (appropriately chosen) plane. The simplest
knots are the unknot, trefoil and figure-eight knot, denoted respectively 01, 3; and 4,
whose (minimal) numbers of crossings are given by the main number in this notation (i.e.
0, 3 and 4), while the subscript labels inequivalent knots with the same number of crossings.
The unknot, trefoil and figure-eight are the only knots with less than 5 crossings. For a
fixed, larger number of crossings there are many topologically inequivalent knots, e.g. there
are 2 knots with 5 crossings (denoted 5; and 52). In addition to these unique prime knots,
new “composite” knots can be formed as the sum of two or more prime knots. This can
be thought of as taking two or more prime knots, cutting them open at one position, and
tieing the open ends of each knot together, c.f. Figure

The number of inequivalent knots (and indeed already the number of inequivalent prime
knots) with a given number of crossings grows rapidly, so more elaborate characteristics
must be employed to encode their structure and to distinguish them. For example, there
are 165 prime knots with 10 crossings, 1,388,705 prime knots with 16 crossings, etc.

A given knot clearly has many representations; for example projections on various
planes typically look different, and in particular may yield different numbers of crossings.
Therefore, one issue we have to deal with is how to represent the structure of a given
projection. The second issue one needs to deal with is how to determine whether different
representations represent topologically the same type of knot. Let us briefly discuss these
two points.

In order to determine a type of a knot, so-called knot invariants are constructed. Knot

invariants are various mathematical objects (numbers, polynomials, groups, homologies,

8

Dy (D @n

Figure 3: Obtaining new knots as the sum of prime knots. This knot is the sum of the the
knot 55 (left) and the trefoil 3; (right).

etc.) which depend only on the topological type of a knot, and have the same form
irrespective of the representative used to compute it. To prove that a given quantity is a
knot invariant, it is sufficient to show that it is invariant under each of the Reidemeister
moves. Note that if an invariant computed for two knots yields two different values,
it means that these knots are inequivalent. On the other hand, if two knots yield the
same invariant, they may be either equivalent or inequivalent. More powerful invariants
distinguish more knots from each other, and a knot theorist’s dream is to find a simple
and practically computable invariant that would distinguish all knots.

For various purposes, in particular in order to compute various invariants, one needs
to encode topological structure of a knot succinctly. The most common strategy to this
end is to capture the pattern of crossings in a projection of a knot on a plane; it is clear
that such a pattern determines a type of knot under consideration. Note that there are
two types of crossings: once we traverse a knot, we may pass under or over each crossing
that we come across. Keeping track of this information while we travel along the knot
enables us to reconstruct its structure, and one way to capture this information is to use

the Dowker-Thistlethwaite notation.

Dowker-Thistlethwaite

To encode the structure of a knot in this notation, we traverse the knot and label each of
the n crossings from 1 to 2n, since each crossing is visited twice. We subject this labelling
to the additional rule that the even label gets a minus sign when the strand followed crosses
over at the crossing. At the end of this process, each crossing is labeled by one even and
one odd number (and the even numbers are either positive or negative). Order these two-
tuples in order of increasing odd numbers. The Dowker-Thistlethwaite notation is defined
to be the sequence of the signed, even numbers in these ordered tuples.

While the Dowker-Thistlethwaite notation can be easily determined for a given dia-
gram, it also has certain disadvantages; for example, it is difficult to implement Reide-
meister moves in terms of this notation, and in order to analyze links some additional
information must be provided. For these reasons, in most of this work we represent the

structure of knot projections in another way, namely representing knots as braids and using

e @/\3

Figure 4: A braid o105 0102 (left) and its closure (right).

o0 Toc e
r
//J L

) Relation 1: 10201 = 020102

(b) Relation 2: 010302 = 030102

Figure 5: Braid relations

braid notation.

Braids

Let us therefore summarize what braids are and how to use them to encode the structure of

knots. Recall that the (Artin) braid group Br,, is a non-Abelian, infinite, finitely generated

group acting on n strands with generators o1,...,0,-1 and their inverses o} L ,arﬁl,
which satisfy the relations
Braid relation 1: 0i0i410; = 034100541 (11a)
Braid relation 2: 00 = 0;0; for |1 — 5] > 2, (11b)

and similarly for the inverses.

For a set of n parallel strands, the generator o; can be thought of as moving the ‘"
strand over the (i + 1)*, and its inverse o; ' as moving the (i + 1) strand over the ith
strand. A group element o7 Uilail -+ can be represented as a pattern of interlacing
strands and is referred to as a braid, see Figure |4 (left). A braid can be turned into a
knot diagram by connecting beginnings and endpoints of all strands by a set of n parallel
arcs, as in Figure [4] (right). This operation is also referred to as closure. Furthermore, a
theorem by Alexander states that each knot can be represented as a braid, and there is
an effective algorithm that turns a knot into a braid. Note that a braid that we obtain
upon such an operation may be regarded as a different knot projection, which of course

represents the same knot type.

As mentioned above, two different projections of the same knot can be related by a

10

p el ap an
b;\f/;/\\ v X

) Move 1 (conj.): o105 0102 oy 0102 (b) Move 2 (stabilization): 10201 <> 61020103

Figure 6: Markov moves.

series of Reidemeister moves. There is an analogous statement on the level of braids, which
is formalized in Markov’s theorem. This theorem states that two braids that represent the
same knot can be transformed into each other by a series of Markov moves. There are two

types of Markov moves, shown in Figure [6}
e conjugation and
e stabilization/destabilization.

Conjugation sends a braid word ww’ to w'w. This can be achieved by repeating the
following two-step procedure for every generator o, in w = 04,04, - - - 0;: First, we multiply

ww' by o L on the left and 0;, on the right, giving
Lo = a7 g o o g = o o o
O WW O4y = 0; 04,04y O W T4y = Ty - 03 W Ty (12)

In the last step, we removed the consecutive inverses o, U,l Repeating this for oy, j =
2,3,...,1 will result in sending ww’ to w'w. Note that the conjugation move corresponds,
on the level of the knot or the braid closure, to inserting consecutive pairs of inverse
generators, i.e. it acts trivially on the braid closure. Conjugation can be thought of as
turning a knot into a braid by “cutting it open at a different position”. Of course, one can
in general conjugate a braid word w = oy, 0y, - - - 0;, with any generator o;, , not just with
0;,, then o;,, etc., sending it to Ui;lwaik (or aikwai;l). On the level of the braid closure
or the knot, this inserts the identity o, laik.

Stabilization and destabilization are given by
Stabilization: w — wo,, , Destabilization: wo,, — w (13)

for w € Bry,. This changes the braid (in fact, it even changes the underlying braid group
from Br,_; to Br,, or the other way around), but not the knot. Note that if we did not
change the braid group from Br,, to Br,,_1 in a destabilization move, we would be left with
one strand (the n'") which would not be acted on by any of the braid generators. As a
consequence, we would have a two-component link: the first component would be a braid
that describes a knot equivalent to the one we started with, and the second component

would be the unknot, corresponding to the closure of the n'® strand. Since this is not

11

desired, we take destabilization to remove the generator ¢, and change the braid group.
Note that there is a close connection between the Reidemeister moves and the Markov

moves together with the braid relations:
e Reidemeister move 1 (twist) corresponds to Markov move 2, i.e. (de-)stabilization.

e Reidemeister move 2 (poke) corresponds to adding a trivial element o;0; L at some

position in a braid word.

e Reidemeister move 3 (slide) corresponds to the action (11al) of first braid relation on
the closure of the braid.

At this stage, we can finally relate braid representations of knots to language. We

+1_+1 _+1
i o'i2 Ui3

simply interpret generators Uiil of Br,, as letters, and braids of the form o
(which represent knots after the closure) as words. In practice and in what follows, we
represent a braid generator afﬁ simply by =+, so that a word is represented by a string of
integer numbers i € [—(n — 1), n — 1] that represents the braid.

There are several crucial points from the language perspective that should be stressed.
First, we wish to identify, and treat as equivalent, different words (braids) that represent
the same knot. This means that the Al needs to learn to identify such equivalent words.
To conduct such a learning process we also need to generate equivalent words. To this end,
we can take advantage of Markov moves. In particular, in the unknot problem, we can
generate various representations of the unknot by applying a series of Markov moves to the
empty braid. Furthermore, the topological character of knottedness makes the problem
global rather than local: even a single change of a word in the sentence may change the
type of knot under consideration; there is no notion of a “small” error, which makes the

learning process hard; but this is also true for applictions to NLP.

2.5 The UNKNOT Problem

In this section we introduce the main problem that we study: the UNKNOT problem.

2.5.1 Why unknotting?

While the problem of distinguishing knots is interesting in its own right, much of our
motivation comes from the smooth 4-dimensional Poincaré conjecture (or, SPC4, as it is
often called). Indeed, many problems in topology of 4-manifolds, including SPC4, can be
described (and, sometimes, completely reduced) to the language of knots in S3.

At the most basic level, the reason is that every closed smooth 4-manifold My can be
represented by a Kirby diagram, which basically consists of knots drawn on a 3-sphere S3.
More precisely, to build an My one starts with a 0-handle, i.e. a 4-ball B*, then attaches
1-handles, then 2-handles, 3-handles, and finally a 4-handle, which is also a 4-ball. In fact,

12

since this last step involves no ambiguity, we don’t need to attach the 4-handle. Either
way, the relation to knots in S* comes after all k-handles with k < 3 are attached]

There are many candidate counterexamples to SPC4, i.e. “exotic” spheres My homeo-
morphic to S* which are not known to be diffeomorphic to S*. One way to show that such
an My is the standard 4-sphere is to use equivalence relations (Kirby moves) to reduce its
Kirby diagram to that of S*, which has no k-handles with k& = 1,2,3. This problem is
basically the unknotting problem, or a close variant of it.

Since, as mentioned earlier, adding a 4-handle is a fairly unambiguous operation, one
often works with close relatives of SPC4 that involve B* with S® boundary in place of
S%. For example, the corresponding version of SPC4 is known as the smooth relative 4-
dimensional Poincaré conjecture. If true, it implies the original SPC4. As in the case
of SPC4 itself, there are many candidate exoticﬂ 4-balls, i.e. M, homeomorphic to B*
which are not known to be diffeomorphic to it. For example, every knot K C S3 which
is fibered and ribbon gives such a candidate My since, according to Casson and Gordon
[26], it bounds a fibered disk D C My in some M, which is homeomorphic to a 4-ball B*
but is not known to be diffeomorphic to it. Therefore, if a fibered ribbon knot K does not
bound any fibered disk in B*, then the smooth relative 4-dimensional Poincaré conjecture
is false.

Conceptually, this is the same reason why knots in S? can tell us about smooth struc-
tures in one dimension higher that we already mentioned earlier. A knot K = 0¥ appears
as a boundary of a surface ¥ C My, and the question is whether ¥ can be a disk in B4 or
only in homotopy-B*. Whether K C S% = 9B* bounds a disk in B* is controlled by the
4-ball genus (a.k.a. slice genus), g4(K), which is defined to be the minimal value of g(X),
such that ¥ C B* is bounded by K. A knot K with g4(K) = 0 is called slice.

Then, the strategy [27] to disprove (relative) SPC4 could be to take a knot K C S°
that is slice (i.e. bounds a disk) in a homotopy 4-ball My, with My # B*, and show that K
is not slice in B*. For this, one needs obstructions to sliceness, i.e. lower bounds on g4 (K).
One such bound comes from deformations and spectral sequences in Khovanov homology,

namely the Rasmussen’s s-invariant [28]. It bounds the 4-ball genus

|s(K)|
2

< gu(K) (14)

More generally, one may hope to find exotic 4-balls by looking for knots that exhibit
different genus bounds in B* and in My ~ B*. In [27], this strategy was applied to co-
cores of 2-handles, which are disks in My ~ B* bounding knots and links in S>. All those

M, were soon shown to be standard [29].

2Recall, that a four-dimensional k-handle is B* x B*" which attaches onto the boundary of lower-index
handles along dB* x B*~F,
3 An exotic 4-ball has no smooth radius function with 3-sphere levels.

13

One can also consider knots with the trivial Alexander polynomial, Ax(x) = 1. In the
early 1980’s Freedman showed that all such knots are topologically slice [30]. Therefore,
demonstrating that any such knot has g4(K) > 0 would immediately imply the existence
of an exotic 4-ball. A similar conclusion follows if any fibered ribbon knot, as discussed
above, has g4(K) > 0.

2.5.2 Complexity

After describing some motivation for unknotting, let us see how hard it can be.

More than 20 years ago, Hass-Lagarias-Pippenger [31] proved that the unknotting prob-
lem, i.e. the decision problem whether a given knot K is actually an unknot, is in complex-
ity class NP (“Nondeterministic Polynomial-time” Turing machine). This is the complexity
class that, famously, contains P (class of problemsﬂ for which “Polynomial-time” algorithms
are possible) but is not known to (and, in fact, widely not believed to) be equal to it. Prob-
lems in class NP are like Sudoku puzzles; they may not have a simple algorithm to solve,
but a proposed solution can be verified in polynomial time. In other words, while problems
in class P are the ones for which an answer can be found in polynomial time, problems
in class NP are the ones for which checking the answer can be done in polynomial time,
provided that the answer is yes. The result of [3I] means that the unknotting problem
joins the class of problems like protein folding, SAT (satisfying truth assignment), or the
traveling salesman problem, which are also in class NP.

A close cousin of the class NP — which, though not too likely, may be equal to it —
is the class coNP. It consists of decision problems whose negative answers can be checked
in polynomial time, i.e. if the answer is no. If NP = coNP, then NP # P (but the other
direction is not known). The unknot recognition problem turns out to be not only in class
NP but also in the complexity class coNP. This was first shown by Kuperberg [32] assuming
the generalized Riemann hypothesis (GRH). This assumption was later relaxed in [33],
where it was also pointed out that, in the unlikely event that either the unknotting problem

or its negation (called knottedness) is NP-complete, then NP = coNP. To summarize,
unknot recognition € NP N coNP (15)

This result is particularly interesting because many decision problems that originally
started in this intersection — e.g. deciding whether an integer number is prime or com-
posite — were later found to be in class P [34]. Therefore, there is a chance that the
unknotting problem we are trying to tackle here actually admits a polynomial time algo-
rithm. Approaching this problem via AT/ML can hopefully help us find such an algorithm,

if it exists.

4Tt includes problems like multiplication and sorting.

14

In fact, it has been a long standing problem whether the unknot recognition is truly
more difficult than a similar problem for braids, the braid word problem. The latter is
known to be in class P according to the Garside-Thurston theorem, which says that one can
identify the trivial braid in polynomial time, O(|word length|? nlogn) for the Artin braid
group Br,,. This can be improved to O(|word length|? n) with the BKL algorithm [35] E|

At the same time, perhaps one should not be overly optimistic. For example, it was
shown recently that imposing an upper bound on the number of Reidemeister moves im-
mediately makes the unknot recognition problem NP-hard [36]. This paper also helps to
understand how the unknotting problem compares to deciding whether two vertices of a
given finite graph are connected or not, which is in class P. Indeed, if we think about knot
diagrams as vertices of an abstract graph, with edges representing Reidemeister moves,
then the unknotting problem is equivalent to deciding whether a vertex belongs to the
same component of the graph as the “origin” (the vertex associated with a trivial diagram
of the unknot). If this abstract graph was finite and explicitly presented, then the unknot-
ting problem would be in class P, but [36] can be viewed as an indication that these two
problems are qualitatively different.

Finally, since earlier we talked about computation of delicate knot invariants, it should
be noted that many closely related problems were recently shown to be parsimoniously
#P-complete [37]. This is one of the more esoteric complexity classes, based on #P which
is larger than NP but is contained in PSPACE (“Polynomial-space”). And, “parsimoniously
complete” refers to a more specific version of the completeness relation, such that for every
solution of problem A there is a unique solution of problem B. Note, the class PSPACE
also contains NP and coNP that we discussed earlier, as well as the probabilistic version of
the polynomial time solver (BPP). Interestingly, both [32] and [37] use the representation
variety 71(S%\ K) — G in a crucial way. When G = SL(2,C), this is the familiar A-

polynomial that plays an important role in Chern-Simons theory [3§].

3 Generating Knots and Unknots

In this Section we describe the algorithm that we use to generate representatives of non-
trivial knots and unknots, or alternatively the prior from which they are drawn. Details
of all of the algorithms and subroutines are presented in Appendix [A]

In describing the prior we attempt to find a balance between being explicit about our
subroutines and explaining how they are sewn together to form our databases consisting

of non-trivial knots and unknots. Crucial subroutines include:

5Note that the closure of a trivial braid group element is the unknot, but there can be non-trivial braid
elements, whose closure is still the unknot. This is why the BKL algorithm does not solve the unknot
problem in polynomial time.

15

e RANDOMMARKOVMOVE, Algorithm (I} performs a random Markov move drawn from

a uniform distribution, changing the braid but not the topology of its closure.
e BRAIDRELATIONI, Algorithm [2, applies the first braid relation in ([11al).

e SMARTCOLLAPSE, Algorithm 3] iteratively removes consecutive inverses, free strands,
twists (i.e. performs a destabilization move), and non-consecutive inverses (associated

with inverses on opposite ends of the braid) until the braid no longer changes.

e KNOTIFY, Algorithm , performs a sum over link components (as illustrated in Fig-
ure |3) by iteratively interweaving link components associated with a braid closure

until only one component is left, i.e. the braid closure is a knot.
These play a role in the algorithms used to draw random non-trivial knots and unknots:

e RANDOMUNKNOT, Algorithm [B] Starts with the empty braid and iteratively applies
RANDOMMARKOVMOVE and BRAIDRELATION1 a total of M ti