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The centriole is a ninefold symmetrical structure found at the core of centro-
somes and, as a basal body, at the base of cilia, whose conserved duplication
is regulated by Plk4 kinase. Plk4 phosphorylates a single serine residue
at the N-terminus of Ana2 to promote Ana2’s loading to the site of procen-
triole formation. Four conserved serines in Ana2’s STAN motif are then
phosphorylated by Plk4, enabling Sas6 recruitment. Crystallographic data
indicate that the coiled–coil domain of Ana2 forms a tetramer but the struc-
ture of full-length Ana2 has not been solved. Here, we have employed
hydrogen–deuterium exchange coupled with mass spectrometry (HDX-
MS) to uncover the conformational dynamics of Ana2, revealing the high
flexibility of this protein with one rigid region. To determine the elusive
nature of the interaction surfaces between Ana2 and Sas6, we have con-
firmed complex formation between the phosphomimetic form of Ana2
(Ana2-4D) and Sas6 in vitro and in vivo. Analysis of this complex by HDX-
MS identifies short critical regions required for this interaction, which lie
in the C-terminal parts of both proteins. Mutational studies confirmed the
relevance of these regions for the Ana2–Sas6 interaction. The Sas6 site
required for Ana2 binding is distinct from the site required for Sas6 to
bind Gorab and Sas6 is able to bind both these protein partners
simultaneously.

provided by Caltech Auth
1. Introduction
Centrioles are ninefold symmetrical structures at the core of centrosomes and in
the form of basal bodies, at the base of cilia, which when dysfunctional lead to a
wide range of inherited diseases including ciliopathies and microcephaly,
and which frequently show abnormalities in structure and number in cancer
[1]. Centriole duplication is regulated by the conserved protein kinase,
Polo-like kinase 4 (Plk4), whose levels and activity are critical to ensure cells
have a single centrosome, each comprising a parent centriole and extended
procentriole at each of their spindle poles during mitosis [2,3]. Depletion or inhi-
bition of Plk4 leads to the loss of centrioles [4,5], and its overexpression can result
in their de novo formation and overduplication [6–8]. Plk4 displays distinct
modes of recruitment to centrioles in different model systems. In Caenorhabditis
elegans, Zyg1 (the Plk4 homologue) is targeted to centrioles via its interaction
with Spd2. In Drosophila, it is recruited via an interaction with another centriolar
protein—Asterless (Asl). In mammalian systems, however, the concerted action
of both of these proteins’ homologues (Cep192 and Cep152, respectively) is
required for the correct centriolar targeting of Plk4 [9–13].

Plk4 is initially recruited by Asl to multiple sites in a ring-like formation at
the periphery of the centriole mirroring the ring-like distribution of Asl itself.
Plk4 first phosphorylates a single serine residue, in a conserved region of Ana2
(Drosophila)/STIL(human) at its N-terminal part, which promotes Ana2
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Figure 1. Ana2 is highly flexible, behaving as an intrinsically disordered
protein. (a) Pattern of HDX in Ana2-wt peptides following a 10 s incubation
with deuterium oxide (heavy water). Blue bars on Woods plots represent pro-
teolytic peptides identified by mass spectrometry (MS) and positioned at the
x-axis in relation to the Ana2 amino acid sequence, while their corresponding
values of the fraction of deuteration (mean of two experiments) are shown at
the y-axis. Error bars show both values measured. (b) C–C prediction gener-
ated by COILS software [43]. The y-axis shows the score of C–C probability;
the x-axis shows the amino acid sequence. The C–C region aa195–229
matches the structured region identified by HDX. (c) Upper panel: prediction
of intrinsically unstructured protein generated by IUPred2A software [44]. The
y-axis shows the probability score of disorder; the x-axis shows the amino
acid sequence. The program predicts the disordered character of Ana2 with
high probability. Lower panel: representation of Ana2 showing known
domains: yellow box, structured region identified by HDX-MS covering C–C
motif; grey box, STAN motif.
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recruitment to the site of procentriole formation. InDrosophila,
this phosphorylation takes place in telophase, before Plk4
finally becomes restricted to a single site. In a second step,
Plk4 phosphorylates four conserved residues in the STAN
motif in the C-terminal part of Ana2 leading to the recruitment
of Sas6 byAna2 [14–17]. Dimers of Sas6 assemble into ninefold
symmetrical structures that form the basis for the cartwheel
structure at the core of the procentriole [18,19]. Sas6 then inter-
acts with Cep135/Bld10 and with Sas4 (Drosophila)/CPAP
(human) providing a link to the centriolar microtubule wall
[20–26]. We recently found that the C-terminal part of Sas6
binds Gorab, a trans-Golgi-associated protein, whose human
counterpart is mutated in the wrinkled skin disease, geroder-
mia osteodysplastica [27–30]. Ana2 possesses a Sas4-binding
site at its N-terminus, a coiled-coil (C–C) domain in the central
part, and a STAN motif at its C-terminus. Ana2 forms a tetra-
mer through its C–C region and interacts with Sas6 via the
STAN motif [31–37]. Although a crystal structure of Ana2’s
C–C domain has been determined, the crystal structure of
the full-length Ana2 has not been resolved. As both Ana2
andGorab interact with the C-terminal part of Sas6, it becomes
important to understand the relationship of these binding sites
with each other. To gain more understanding about the struc-
ture of Ana2 and its interaction with Sas6, we have employed
hydrogen–deuterium exchange monitored by mass spec-
trometry (HDX-MS) to obtain structural information of
exposed regions of these molecules alone and in the
complex. HDX enables monitoring of the exchange of main
chain amide protons to deuterium in solution. In an
HDX-MS experiment, the protein sample is incubated in the
deuterium buffer for a given time. Main chain amide protons
exchange with deuterium from the buffer at different rates
depending, among other factors, on the dynamics of the
hydrogen bonds in which they are involved. Regions of
highly dynamic structure undergo rapid exchange, whereas
rigid regions, with amides engaged in stable hydrogen bond-
ing, exchange slowly. The level of exchange reveals the
extent of dynamic structural elements within a protein. More-
over, protein–protein interactions can also affect exchange in
nearby regions, close to interaction surfaces and allosteric
changes can also be observed [38–42]. Here, we have recon-
structed the Ana2–Sas6 complex in vitro and purified it using
size exclusion chromatography. We have then used a combi-
nation of HDX-MS together with in vitro and in vivo binding
assays and mutational studies to map the interacting surfaces
within the Ana2–Sas6 complex. This confirms the interaction
of Ana2’s STAN motif with Sas6 and defines the region
within Sas6’s C–C responsible for that interaction. It also
reveals that Sas6 can accommodate the binding of both Ana2
and Gorab through interactions at different sites.
2. Results and discussion
Knowledge of the organization of the Ana2 protein will be
central to understanding its role in initiating the formation of
the ninefold symmetrical cartwheel of the procentriole. As
no crystal structure of the full-length Ana2 protein has been
determined, we turned to HDX-MS as a tool to study its con-
formational dynamics. HDX can assess the flexibility of
protein regions by measuring the exchange of amide protons
in the polypeptide chain with deuterium atoms after incu-
bation with heavy water for predetermined times [40,41].
HDX-MS of Ana2 revealed that the protein is highly flexible.
Even after a short time of incubation with D2O buffer (10 s),
deuterium exchange was complete along almost the full
length of the protein (figure 1a). Only a short region, amino
acids (aa) 186–220, remained protected from exchange. This
overlapped with a known C–C motif (aa195–229) [36] and
was detected using an in silico C–C prediction algorithm
(figure 1a,b). The high flexibility of Ana2 protein strongly
suggests it is unstructured and belongs to the class of intrinsi-
cally disordered proteins (IDP) in accordance with an in silico
IDP prediction algorithm (figure 1c).

Recruitment of Sas6 to the procentriole is dependent
upon the phosphorylation of four conserved serine residues
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Figure 2. Ana2-4D interacts with Sas6 forming a stable complex in vitro. (a) SDS–PAGE of the binding assay in which Ana2-wt or Ana2-4D is the bait and Sas6 is
the prey. Phosphomimetic version of Ana2 (Ana2-4D) binds Sas6 in vitro. (b) SEC of Ana2-4D, Sas6 and the Ana2-4D-Sas6 complex. Yellow, absorbance at 280 nm of
MBP-Ana2-4D; blue, absorbance 280 nm of MBP-Sas6; green, absorbance 280 nm of MBP-Ana2-4D-MBP-Sas6 complex. Shift in retention time between single
proteins and protein mixture indicates complex formation.
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Figure 3. Structural comparison of Ana2-wt and Ana2-4D. (a) HDX pattern of Ana2-
wt following a 10 s incubation with heavy water. Blue bars onWoods plots represent
proteolytic peptides identified by mass spectrometry (MS) and positioned at the x-
axis in relation to the Ana2 amino acid sequence, while their corresponding fraction of
deuteration is shown at the y-axis (data taken from figure 1). (b) HDX pattern of
Ana2-4D following a 10 s incubation with heavy water (mean of two experiments).
Both HDX patterns (Ana2-wt and Ana2-4D) are consistently showing high flexibility
along almost the full length of the protein, except for C–C region.
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in Ana2’s STANmotif [14]. To be able to investigate this inter-
action by HDX, we set about reconstructing complex
formation between Sas6 and a phosphomimetic variant of
Ana2 (Ana2-4D) in vitro. To this end, we conducted an in
vitro pull-down assay (binding assay) using baits of either
wild-type (wt) GST-tagged Ana2 or GST-tagged Ana2 in
which the STANmotif serines 318, 365, 370 and 373 were sub-
stituted by aspartic acid (Ana2-4D). Since Ana2-wt appeared
to be less stable and degrades to a greater extent than Ana2-
4D, we adjusted the amounts of full-length protein baits for
the assay and both were used in comparable amounts.
The experiment revealed that Ana2-4D could directly interact
with Sas6, whereas Ana2-wt could not (figure 2a). We found
that the complex formed between Ana2-4D and Sas6
was stable and could be fractionated by size exclusion
chromatography (SEC) (figure 2b).

To determine whether the phosphomimetic form of Ana2
displayed any differences in structural stability from the
wild-type form, we compared patterns of exchange in Ana2-
wt with Ana2-4D by HDX-MS. This revealed that the HDX
profiles of the two Ana2 variants after a 10 s incubation time
with heavy water were almost identical (figure 3a,b). These
experiments indicated similarly positioned short structured
elements in both variants and similarly high flexibility of the
remaining parts, even though their ability to bind Sas6 differs.

We next aimed to identify the region of Sas6 that is respon-
sible for binding Ana2-4D. We therefore carried out HDX-MS
to compare the deuterium exchange profile of Sas6 alone to
Sas6 in complex with Ana2-4D. A comparison of the HDX
profiles revealed reduced deuteration of Sas6 in the region
aa 385–410, strongly suggesting the interaction surface encom-
passes this area (figure 4a,b). Amultiple sequence alignment of
this region comparing Sas6 homologues among several species
revealed several highly conserved residues (figure 4c). To con-
firm the importance of this region of Sas6 for bindingAna2-4D,
we designed a set of Sas6 deletions and pointmutations in con-
served amino acids for testing in an in vitro binding assay. This
revealed that deletions aa385–410, aa385–398 and polyalanine
mutant (V397A, Q400A, Q401A, E402A, K403A) abolish the
interaction with Ana2-4D whereas deletion aa398–410 still
binds Ana2-4D but weakly (figure 4d ). Mutation of the two
conserved residues L387A and I391A did not affect the ability
of Sas6 to bind Ana2-4D (figure 4d ). To validate these findings
in a more physiological context, we co-transfected D.Mel-2
cells with FLAG-Ana2 (either the non-phosphorylatable 4A
mutant or the 4D) and Sas6-Myc (either wt or Δ385–410).
After FLAG-pulldowns, we confirmed that Sas6-wt could
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Figure 4. Sas6 interacts with Ana2-4D through its C-terminal region. (a) HDX pattern of Sas6 in complex with Ana2-4D, following a 5 min incubation with
D2O. Shown are Sas6 peptides alone (blue bars) and when in complex with Ana2-4D (red bars). x-axis, position of peptides in amino acid sequence; y-axis, fraction
of deuteration. The mean of two experiments is shown. Error bars show both values measured. (b) Upper panel: differences between deuteration of Sas6 peptides
alone and in complex with Ana2-4D, derived by subtraction of deuteration levels shown in (a). Brown bars indicate peptides for which the differences measured in
repeated experiments satisfied the Welsh t-test with p < 0.05. Pink highlighted box, peptides protected from exchange to the greatest extent when Sas6 is in
complex with Ana2-4D (aa385–410). Lower panel: representation of Sas6 showing known domains: Head Domain, C–C motif, regions essential for the interaction
with Ana2 and Gorab that were identified by HDX-MS. (c) Multiple sequence alignment (MSA) of Sas6 between amino acids 385 and 410. Residues in red, highest
level of conservation between species and well conserved within an amino acid group. Residues in orange, high similarity and in the same aa group. MSA was
performed using T-Coffee Expresso [45–49]. (d ) SDS–PAGE of the binding assay in which Ana2-4D is the bait bound to Sas6 wild-type or its deletions and point
mutants as prey. The binding assay shows the importance of Sas6 aa 385–410 for the interaction with Ana2-4D. (e) Schematic showing ability of Sas6 deletion and
point mutants to bind Ana2 in vitro. Red box, the shortest region of Sas6 essential for Ana2 binding (aa385–398).
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only interact with Ana2-4D but not with Ana2-4A (figure 5a).
This verifies our previous findings thatAna2 and Sas6 can only
associate following phosphorylation (in this case simulated by
using the phosphomimetic version Ana2-4D) of Ana2’s STAN
motif by Plk4. Using this ‘activated’ Ana2-4D mutant protein,
we then confirmed that it was only able to bind to Sas6-wt, but
not to Sas6-Δ385–410 (figure 5b). Together, these results
suggest that the entire region aa385–410 of Sas6 serves as an
interaction surface for Ana2-4D.

In the reciprocal analysis, we attempted to identify the
region of the Ana2-4D HDX profile sensing the presence of
Sas6 upon complex formation (figure 6). Upon 10 s incubation
with D2O,we could observemild, yet significant differences in
deuterium uptake in two regions of Ana2-4D (aa325–336 and
aa380–389) in a comparison of Ana2 alone or in complex with
Sas6. To verify the importance of these two regions for Sas6
binding, we designed deletions within or flanking them
based upon sequence conservation evident from multiple
sequence alignment (figure 6c). Sas6 binding was strongly
diminished by the aa325–331 deletion of Ana2-4D but less
so by the aa375–383 deletion (figure 6d,e). A combination of
these two deletions had a similar effect upon interaction
with Sas6 as the single deletion aa325–331. Together, this indi-
cates the importance of the 325–331 aa region but suggests
additional sequences can mediate weak interactions.

Since the phosphorylated STANmotif alone is able to bind
Sas6, we carried out analogous experiments to followHDX in a
69 aa Ana2-4D STAN motif fragment incubated alone or with
Sas6 inD2O for 10 s or 1 min (figure 7). In accordwith theHDX
data obtained for full-length Ana2-4D with Sas6, this revealed
slightly higher protection in the regions aa329–336 and aa374–
384 when the Ana2-4D STAN motif was in complex with Sas6
(figure 7a–e). Thus, the mild stabilization of these two regions
upon complex formation is reproducible not only with Ana2-
4D-FL, but also with the Ana2-STAN-4D motif alone, wherein
these two stabilized regions reside. Interestingly, these regions
(aa325–336 and aa380–389) seem to be the most highly con-
served portions of the STAN motif with each lying adjacent
to a stretch of serine residues (S318 and S365;S370;S373,
respectively), which are phosphorylated by Plk4 to trigger
Ana2’s interaction with Sas6. Taken together, this leads us to
hypothesize that even though the entire STAN motif, and the
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Figure 7. Ana2-4D STAN motif interacts with Sas6. (a) HDX pattern of Ana2-4D STAN motif in complex with Sas6 following a 10 s incubation with D2O. Ana2-4D
STAN peptides alone (blue bars) and when in complex with Sas6 (red bars) are shown. x-axis, position of peptides in amino acid sequence; y-axis, fraction of
deuteration. The mean of three experiments is shown. Error bars represent standard deviations. (b) Differences between deuteration of Ana2-4D STAN peptides
alone and in complex with Sas6, derived by subtraction of deuteration levels shown in (a). Brown bars indicate peptides for which the differences measured
in repeated experiments satisfied the Welsh t-test with p < 0.05. Pink highlighted box, peptides protected from exchange to the greatest extent when Ana2-
4D STAN motif is in complex with Sas6 (aa329–336). (c) HDX pattern of Ana2-4D STAN alone (blue bars) and in complex with Sas6 (red bars), following
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in red, the highest level of conservation between species and well conserved within an aa group. Residues in orange, high similarity and in the same aa group MSA
was performed using T-Coffee Expresso [45–49].
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phosphorylation of four conserved serines within it, seems to
be important for the Ana2–Sas6 interaction, the two regions
identified by HDX have a more direct involvement in the
physical interaction between Ana2 and Sas6.

The Sas6 dimer forms a single unit in the ninefold radially
symmetric structure that constitutes the procentriole’s cart-
wheel. The two N-terminal globular parts of the dimer
interact with adjacent subunits in the hub of this structure
with the interacting C–C forming the spokes. Our current
findings identify the segment on this spoke to which Ana2
binds and which is required to initiate procentriole formation.
We recently discovered that the protein Gorab, itself essential
for centriole duplication, also interacts with the Sas6 C–C
region [27]. This led us to ask whether Sas6 is able to interact
with both proteins at the same time or whether they show
competition for binding. To address this, we performed a
binding assay by immobilizing either Ana2-wt or Ana2-4D
and determining whether Sas6 alone or Sas6–Gorab complex
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could be captured. This experiment revealed that Sas6 is able
to bind both proteins at the same time indicating that Ana2
andGorab do not compete for Sas6 binding (figure 8a). Finally,
we tested if Ana2 could bind Gorab. A binding assay using
either Ana2-wt or Ana2-4D as bait and Gorab as prey and
vice versa showed that Ana2 could not directly interact with
Gorab (figure 8b). Our finding that Sas6 can bind both Ana2
and Gorab simultaneously is in line with our recent mapping
of the interface between Sas6 and Gorab within 20 residues
(amino acids 440–460) towards the C-terminus of Sas6.
3. Material and methods
3.1. Plasmids
All expression vectors were generated using the Gateway
system (Invitrogen). For MBP and GST tagging, we used
pKM596 (Addgene) and pDEST15 (Invitrogen), respectively,
as destination vectors. Flag and Myc tagging of Ana2 and
Sas6 proteins for the co-immunoprecipitation experiments
was achieved using the pAFW, and pAWMdestination vectors
from the Drosophila Gateway Vector Collection (https://emb.
carnegiescience.edu/labs/murphy/Gateway%20vectors.
html). The QuickChange Mutagenesis Kit (Agilent) was used
to introduce all deletions and amino acid substitution
mutations. The constructs were verified by DNA sequencing.
3.2. Protein expression and purification
Recombinant proteins were expressed in Escherichia coli strain
Rosetta(DE3) (Thermo Fisher) following standard procedures.
Briefly, bacteria were transformed with recombinant plasmids
encoding the desired proteins and cultured at 37°C to A600 of
approximately 0.5–0.7 in Terrific Broth supplemented with
appropriate antibiotics. Protein expression was induced with
0.5 mM isopropyl-b-D-1-thiogalactopyrano-side (IPTG) at
20°C overnight. Bacterial cells were harvested, resuspended in
buffer A (20 mM Tris–HCl pH 7.5, 150 mM NaCl, 5% (v/v)
glycerol, 1 mM dithiothreitol (DTT)) supplemented with
EDTA-free protease inhibitor cocktail (Roche) and incubated
on ice for 30 min. Cells were lysed by sonication and clarified
by centrifugation at 15 000g for 15 min at 4°C. The cleared
lysateswere incubatedwith amylose resin (NEB) or glutathione
supharose 4B resin (GE healthcare), for MBP- or GST-tagged
proteins respectively, for 2 h at 4°C. Beads with bound
proteins were washed three times for 10 min with 30 resin
volumes of buffer A. Bound proteins were eluted with buffer
A supplemented with 20 mM maltose or 10 mM glutathione.

3.3. In vitro complex formation
Proteins were expressed in E. coli, and purified as described
in the ‘Protein expression and purification’ section. MBP-
Ana2-4D was then mixed with MBP-Sas6, incubated for at
least 1 h on ice and then loaded on a Superdex 200 10/300
(GE Healthcare) column. SEC was run and fractions were
collected and analysed by SDS–PAGE and PageBlue protein
staining (Thermo Fisher).

3.4. Size exclusion chromatography
For SEC, we used Superose6 10/300 (GEHealthcare) or Super-
dex 200 10/300 (GE Healthcare) columns pre-equilibrated
with buffer (20 mM Tris–HCl pH 7.5, 150 mM NaCl, 1 mM
dithiothreitol (DTT)). Affinity-purified protein samples were
loaded onto the columns and SEC was run at a 0.5 ml min−1

flow rate at 4°C. The elution of proteins was monitored at
280 nm. Fractions were collected and analysed by SDS–PAGE
and PageBlue protein staining (Thermo Fisher). For HDX-MS
studies, the principal fractions having the highest protein
concentration were used.

3.5. Hydrogen–deuterium exchange mass spectrometry
Peptide lists were established by diluting 5 µl of each analysed
protein 10-fold into a non-deuterated buffer (20 mM Tris–HCl
pH 7.5, 150 mM NaCl, 1 mM DTT). The sample (50 µl) was

https://emb.carnegiescience.edu/labs/murphy/Gateway%20vectors.html
https://emb.carnegiescience.edu/labs/murphy/Gateway%20vectors.html
https://emb.carnegiescience.edu/labs/murphy/Gateway%20vectors.html
https://emb.carnegiescience.edu/labs/murphy/Gateway%20vectors.html
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acidified by mixing with 10 µl of ‘Stop’ buffer (2 M glycine pH
2.5, 1.5 MUrea, 250 mMTCEP or 2 M glycine pH 2.5 for Ana2-
4D STAN) and digested offline in the ThermoMixer (Eppen-
dorf) for 30 s at 1°C with 2 µl of protease (Aspergillus saitoi,
type XIII (Sigma)) and then injected into a nanoACQUITY
UPLC system (Waters) equipped with an HDX Manager
system (Waters) with the column outlet coupled directly with
a SYNAPT G2 HDMS mass spectrometer, followed by online
digestion using an immobilized pepsin column (Porozyme,
ABI) with 0.07% formic acid in water as the mobile phase
(flow rate 200 µl min−1). Digested peptides were trapped on
a C18 column (UPLC BEH C18 Van-Guard Pre-column
1.7 µm, 2.1 × 5 mm, Waters) and then directed into a reverse
phase column (UPLC BEH C18 column 1.7 µm 2.1 × 100 mm,
Waters) with a 10–35% gradient of acetonitrile in 0.1% formic
acid at 90 µl min−1 using nanoACQUITY Binary Solvent
Manager. The total time for a single run was 12 min. All capil-
laries, valves and columns were maintained at 0.5°C inside an
HDX cooling chamber, while the pepsin column was kept at
20°C inside the temperature controlled digestion compart-
ment. Leucine–enkephalin solution (Sigma) was used as a
Lock mass. For protein identification, mass spectra were
acquired in MSE mode over the m/z range of 50–1950. The
spectrometer parameters were as follows: ESI positive mode,
capillary voltage 3 kV, sampling cone voltage 35 V, extraction
cone voltage 3 V, source temperature 80°C, desolvation temp-
erature 175°C and desolvation gas flow 800 l/ h. Peptides
were identified using Protein Lynx Global Server (PLGS) soft-
ware (Waters). The list of identified peptides containing
peptide m/z, charge and retention time was further processed
with the Dynamx v. 3.0 program (Waters).

For HDX experiments, protein samples were diluted in the
Reaction buffer containing 99.8% D2O (Cambridge Isotope
Laboratories). Five microlitres of protein stock solution was
mixedwith 45 μl D2OReaction buffer and an exchange reaction
was carried out for a specific time period (either 10 s, 1 or
5 min) on ice. The exchange was quenched by reducing the
pH to 2.5 by adding the reaction mixture into an Eppendorf
tube containing ice-cold Stop buffer (2 M glycine pH 2.5,
1.5 M Urea, 250 mM TCEP or 2 M glycine pH 2.5 for Ana2-
4D STAN). Immediately after quenching, samples were
snap-frozen in liquid nitrogen and stored at −80°C until ana-
lysed. Quenched samples were rapidly thawed, digested
offline as described above and manually injected into the
nanoACQUITY UPLC system. Further digestion, LC and MS
analysis were carried out exactly as described for the non-
deuterated sample. For the out-exchange control experiment,
measuring the maximum exchange for a given peptide, the
5 µl protein stock was mixed with 45 µl of D2O Reaction
buffer, incubated for 24 h at RT, mixed with Stop buffer and
analysed as described above. The deuteration level in the
out-exchange control experiment was calculated and denoted
as 100% exchange (Mex100). HDX experiments were repeated
at least three times. Experiments were repeated using either
different overexpression batches (biological replicates) or the
same batch (technical replicates).

3.6. HDX-MS data analysis
A peptide list was created for each protein using the DynamX
3.0 software based on PLGS peptide identifications, with
following acceptance criteria: minimum intensity threshold,
1000–3000; minimum fragmentation products per amino
acids for precursor, 0.3 or 0.25; maximum mass difference
between measured and theoretical value for parent ions,
10 ppm. Analysis of the isotopic envelopes in DynamX 3.0
software was carried out using the following parameters:
retention time deviation ± 18 s; m/z deviation ± 15 ppm; drift
time deviation ±2 time bins. Centroids of the mass envelopes
were obtained. The values reflecting the experimental mass of
each peptide in all possible states, replicates, time points and
charge states were exported from the DynamX 3.0 and
further data analysis was carried out using in house scripts
written in R (http://www.R-project.org). The deuterated
fraction (D) was calculated with the following formula:
D = (Mex –Mex0) ÷ (Mex100 –Mex0), where Mex0 indicates the
average peptides mass with 0% exchange and Mex100 indi-
cates the average peptide mass measured in out-exchange
control, respectively. Error bars for fraction exchanged rep-
resent standard deviations calculated from independent
replicates. The difference in the fraction exchanged (Δ deuter-
ated fraction) was calculated by subtracting the fraction-
exchanged values for peptides in the selected state from the
values for the same peptides in the control state. The error
bars were calculated as the square root of the sum of the var-
iances from compared states. Student’s t-test for independent
measurements with unequal variances and unequal sample
sizes (also known as Welsh t-test) was carried out to evaluate
differences in fraction exchanged between the same peptides
in two different states.

3.7. In vitro pull-down assay (binding assay)
In vitro pull-down assays were carried out by incubating the
lysate containing bait protein on Glutathione-Sepharose 4B
(GE Healthcare) resin. After mixing by rotation for 1 h at
4°C, the beads were washed three times for 10 min with
buffer B containing 20 mM Tris–HCl pH 7.5, 250 mM NaCl,
5% (v/v) glycerol, 1 mM dithiothreitol (DTT), 0.5% (v/v)
Triton. Next, the lysate with prey MBP-tagged protein was
added and incubated for 1 h at 4°C, followed by 3 × 10 min
washes with buffer B. The proteins were eluted by boiling
in Laemmli sample buffer and analysed by SDS–PAGE
with PageBlue protein staining (Thermo Fisher).

3.8. Co-immunoprecipitation
Co-immunoprecipitation was performed as previously
described [14]. In brief, D.Mel-2 cells were co-transfected
with constitutively driven constructs encoding 3xFLAG-Ana2
(4A or 4D) and Sas6-6xMyc (wt or Δ385-410) for 24 h. Cells
were treated with 25 µM MG132 (Sigma) for 5 h, collected
and lysed in 1 ml ice-cold buffer containing 50 Na-HEPES
pH 7.5, 150 mM NaCl, 2 mM MgCl2,0.5 mM Na-EGTA pH
8.0, 1 mM DTT, 0.1% NP-40, 5% glycerol, 1 mM PMSF and
EDTA-free complete protease inhibitor cocktail (Roche) by pas-
sing 6× through a prechilled G25 needle. The lysates were
clarified by centrifugation (2°C, 12 000g, 10 min) and the super-
natants were mixed with anti-FLAGM2 magnetic beads
(Sigma) for 2–4 h at 4°C. After washing four times, the proteins
were eluted from the beads by Laemmli sample buffer and
subjected to SDS–PAGE followed by immunoblotting.
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