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Abstract
We examine the task of locating a target region among those induced by intersections of n halfspaces
in Rd. This generic task connects to fundamental machine learning problems, such as training a
perceptron and learning a φ-separable dichotomy. We investigate the average teaching complexity
of the task, i.e., the minimal number of samples (halfspace queries) required by a teacher to help
a version-space learner in locating a randomly selected target. As our main result, we show that
the average-case teaching complexity is Θ(d), which is in sharp contrast to the worst-case teaching
complexity of Θ(n). If instead, we consider the average-case learning complexity, the bounds have
a dependency on n as Θ(n) for i.i.d. queries and Θ(d log(n)) for actively chosen queries by the
learner. Our proof techniques are based on novel insights from computational geometry, which
allow us to count the number of convex polytopes and faces in a Euclidean space depending on
the arrangement of halfspaces. Our insights allow us to establish a tight bound on the average-case
complexity for φ-separable dichotomies, which generalizes the known O(d) bound on the average
number of “extreme patterns” in the classical computational geometry literature (Cover, 1965).
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1. Introduction

We consider the problem of locating a target region among those induced by intersections of n
halfspaces in d-dimension (Fig. 1(a)). In the basic setting, the learner receives a sequence of
instructions, which we refer to as halfspace queries (same as membership queries in Angluin, 1987,
1988), each specifying a halfspace the target region is in. Based on the evidence it receives, the learner
then determines the location of the target region. This generic task connects to several fundamental
problems in machine learning. Consider learning a linear prediction function in Rd (aka perceptron,
see Fig. 1(b)) over n linearly separable data points. Here, every data point specifies a halfspace, and
the target hypothesis corresponds to a region in the hypothesis space. The learning task reduces
to identifying the convex polytope induced by the n halfspace constraints in the hypothesis spaces
Bishop (2006). Similarly, when the set of data points are not linearly separable, but are separable
by a φ-surface (aka φ-separable dichotomy, see Fig. 1(c)), the problem of finding the φ-separable
dichotomy could be viewed as training a perceptron in the φ-induced space (Cover, 1965).

© A. Kumar, A. Singla, Y. Yue & Y. Chen.

ar
X

iv
:2

00
6.

14
67

7v
2 

 [
cs

.L
G

] 
 2

5 
O

ct
 2

02
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/345075999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AVERAGE-CASE COMPLEXITY OF TEACHING CONVEX POLYTOPES VIA HALFSPACE QUERIES

While these fundamental problems have been extensively studied in the passive learning setting
(Vapnik and Chervonenkis, 1971; Natarajan, 1987; Blumer et al., 1989; Goldman et al., 1993),
the underlying i.i.d. sampling strategy often requires more data than necessary to learn the target
concept (when one is able to control the sampling strategy). Moreover, the majority of existing work
focuses on the worst-case complexity measures, which are often too pessimistic and do not reflect
the learning complexity in the real-world scenarios (Haussler et al., 1994; Wan, 2010; Nachum and
Yehudayoff, 2019). As shown in Table 1, the label complexity of passive learning for the above
generic task is Θ (n). Recently, there has been increasing interest in understanding the complexity
of interactive learning, which aims to learn under more optimistic, realistic scenarios, in which
“representative” examples are selected, and the number of examples needed for successful learning
may shrink significantly. For example, under the active learning setting, the learner only query data
points that are helpful for the learning task, which could lead to exponential savings in the sample
complexity as compared with the passive learning setting (Guillory and Bilmes, 2009; Jamieson and
Nowak, 2011; Hanneke and Yang, 2015; Kane et al., 2017).

Type Average-case Worst-case Condition on hyperplane arrangement

Passive learning Θ(n) Θ(n) -
Active learning Θ (d′ log n) Θ(n) d′-relaxed general position
Teaching Θ (d′) Θ(n) d′-relaxed general position

Table 1: Sample complexity for various types of data selection algorithms for learning intersection of
halfspaces halfspaces. We assume d′ ≤ d for the d′-relaxed general position arrangement.

An alternative interactive learning scenario is the setting where the learning happens in the
presence of a helpful teacher, which identifies useful examples for the learning task. This setting is
known as machine teaching (Zhu et al., 2018). Importantly, the label complexity of teaching provides
a lower bound on the number of samples needed by active learning (Zilles et al., 2011), and therefore
can provide useful insights for designing interactive learning algorithms (Brown and Niekum, 2019).
Machine teaching has been extensively studied in terms of the worst-case label complexity (Goldman
and Kearns, 1995; Anthony et al., 1995; Zilles et al., 2008; Doliwa et al., 2014; Chen et al., 2018;
Mansouri et al., 2019). However, to the best of our knowledge, the average complexity of machine
teaching, even for the fundamental tasks described above, remains significantly underexplored.

In this paper, we investigate the average teaching complexity, i.e., the minimal number of
examples required by a teacher to help a learner in locating a randomly selected target. We highlight
our key results below.

• We show that under the common assumption that the n hyperplanes are in general position in
Rd, the average-case complexity for teaching such a target is Θ (d). This is in sharp contrast
to the worst-case teaching complexity of Θ (n) (cf §4).

• We provide a natural extension of the general-position hyperplane arrangement condition, and
show that if the n hyperplanes in Rd are in “d′-relaxed general position arrangement” where
d′ ≤ d, then one can further obtain improved complexity results of Θ (d′) for average-case
teaching. Our proof techniques are based on novel insights from computational geometry,
which allow us to count the number of convex polytopes and faces in a Euclidean space
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(a) The generic task
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(c) φ-separable dichotomy

Figure 1: Different tasks as teaching convex polytopes via halfspace queries.

depending on the hyperplane arrangement. Our result improves upon the existing O (d) result
for arbitrary hyperplane arrangement (Fukuda et al., 1991) (cf §4).

• To draw a connection with the learning complexity, we show that without the presence of
a teacher, a learning algorithm requires Θ(n) for i.i.d. queries and Θ(d log(n)) for actively
chosen queries. Table 1 summarizes our main complexity results (cf §5).

• Based on our proof framework in §4, we provide complexity results for teaching φ-separable
dichotomies, which recovers and extends the known O(d) bound on the average number of
“extreme patterns” in the classical computational geometry literature (Cover, 1965) (cf §6).

2. Related Work

Average-case complexity of learning While the majority of complexity measures for concept
classes and data selection algorithms focus on the worst-case scenarios, there have been a few work
concerning the average-case complexity for various types of learning algorithms. Here we provide
a survey on related work concerning average-case complexity under the learning setting. Haussler
et al. (1994) studied how the sample complexity depends on properties of a prior distribution on the
concept class and over the sequence of examples the algorithm receives. Specifically, they studied the
probability of an incorrect prediction for an optimal learning algorithm using the Shannon information
gain. Wan (2010) considered the problem of learning DNF-formulas sampled from the uniform
distribution. Nachum and Yehudayoff (2019) considered the average information complexity of
learning (defined as the average mutual information between the input and the output of the learning
algorithm). They show that for a concept class of VC dimension d, there exists a proper learning
algorithm that reveals O(d) bits of information for most concepts. Intuitively, this result aligns with
our observation that average complexities of various data selection algorithms are significantly lower
than that in the worst-case scenario. Spielman and Teng (2004, 2009) introduce the paradigm of
smoothed analysis which differs from our average-case analysis as we don’t allow perturbations to
input spaces. Perhaps most similar to our approach, in terms of technical insights, is the work of
Jamieson and Nowak (2011), who studied the problem of active ranking via pairwise comparisons,
and have used the geometrical properties of hyperplanes in Rd to achieve an average complexity
of Θ (d log n) for active ranking over n points. In our work, we extend their results to the general
problem of active learning of halfspaces, and also consider the teaching variant of the ranking via
pairwise comparison problem.
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AVERAGE-CASE COMPLEXITY OF TEACHING CONVEX POLYTOPES VIA HALFSPACE QUERIES

Connection with the PAC learning framework Intersection of halfspaces have been studied in
PAC learning framework (Kwek and Pitt, 1996; Blum and Kannan, 1997; Klivans et al., 2004;
Klivans and Sherstov, 2006; Vempala, 2010; Khot and Saket, 2011; Gottlieb et al., 2018). Although
we focus on exact teaching of intersections of halfspaces induced by n hyperplanes, our results
could be readily extended to analyze the average sample complexity for teaching a PAC learner
under the realizable case. It is well known that a single halfspace can be PAC-learnt efficiently
by sampling a polynomial number of data points and finding a separating hyperplane via linear
programming (Blumer et al., 1989). Relating this to the worst-case sample complexity results in
Table 1, we know that the worst-case sample complexity for teaching a halfspace to a PAC learner is
also polynomial in the VC dimension, i.e., n = O(poly(d)) for halfspaces. One can then extend the
average-case complexity results in Table 1, based on an argument similar with pool-based active
learning (McCallumzy and Nigamy, 1998). The idea is for the teacher to draw n unlabeled examples
i.i.d. from the underlying data distribution in Rd. Instead of providing all labels, the teacher provides
labels to an optimal teaching set such that all unlabeled examples are implied by the given labels.
Thus the learner has obtained n labeled examples drawn i.i.d., and classical PAC bounds still apply.

Relevant work in algorithmic machine teaching As discussed above, teaching problem of var-
ious concept classes has been explored before. The classic definition of average teaching dimen-
sion (Goldman and Kearns, 1995) which is same as our definition in the uniform setting has been
studied in various settings: Anthony et al. (1995) showed the bound ofO

(
n2
)

for the class of linearly

separable Boolean functions; Kushilevitz et al. (1996) showed an improved upper bound ofO
(
|C| 12

)
for any concept class C; Kuhlmann (1999) proved that all classes of VC dimension 1 have an average
teaching dimension of less than 2; Lee et al. (2006) have shown an O (ns) bound on the class of
DNFs with at most s ≤ 2Θ(n) terms. In contrast, our work bypasses any dependence on the size of
the concept class, and achieves an average teaching complexity of Θ (d′) (where d′ ≤ d). Some more
powerful notions of teaching dimension in sequential setting: recursive and preference-based, have
been studied in Doliwa et al. (2014); Gao et al. (2017), which differ from our batched setting. There
is increasing interest in connecting the VC dimension to the teaching problem of concept classes
(stated in Simon and Zilles, 2015; Hu et al., 2017), we notice the VC dimension of n hyperplanes
in general position is min{n, d} (Edelsbrunner, 1987) which is closely related to our average-case
Θ (d′) result but away from the worst-case Θ (n) result.

3. Teaching Convex Polytopes via Halfspace Queries: A General Model

Convex polytopes induced by hyperplanes Let h =
{
z
∣∣ η · z = b, z ∈ Rd

}
be a hyperplane in

Rd, where η ∈ Rd and b ∈ R. We say a point z ∈ Rd satisfies or lies in h if z ∈ h. We define a
halfspace induced by a hyperplane h to be one of the two connected components of

(
Rd−h

)
i.e. sets

corresponding to sgn
(
η · z − b

)
. We define H ,

{
h(1), h(2), . . . , h(n)

}
as a set of n hyperplanes in

Rd. The arrangement of the hyperplanes inRd, denoted asA
(
H
)
, induces intersections of halfspaces

which create connected components. Any connected component ofRd−∪h∈Hh is defined as a region
or convex polytope in Rd. Equivalently, any region r can be exactly specified by the intersections of
halfspaces induced by hyperplanes in H. We call the smallest subset Br ⊆H that exactly specifies
r the bounding set of hyperplanes for r. We define connected components induced on hyperplanes
(e.g. h(i)−∪h∈H\h(i)h for any h(i) ∈H) byA

(
H
)

as faces. Thus, bounding set Br forms the faces
to the polytope r.
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Example 1 (Convex polytopes induced by hyperplanes) Fig. 1(a) provides an example of the ar-
rangement of 5 hyperplanes inR2, where arrows on the hyperplanes specify halfspaces. The bounding
set for the highlighted region r, namely {h(2), h(4), h(5)}, forms 3 faces to r.

We use R
(
A(H)

)
to denote the regions induced by the arrangement A

(
H
)

and the number of
regions r

(
A(H)

)
, |R

(
A(H)

)
|. We define a labeling function `r : H→ {−1,+1} for an arbitrary

region r ∈R
(
A(H)

)
. Note that r uniquely identifies its labeling function `r.

The teaching framework We study the problem of teaching target regions (convex polytopes)
induced by hyperplane arrangment A

(
H
)

in Rd. Our teaching model is formally stated below.
Consider the set of instances H, with label set Y = {1,−1} corresponding to two halfspaces
induced by a hyperplane. Our hypothesis class, denoted as R

(
A(H)

)
, is the set of regions induced

by A
(
H
)
. Consider a target region r∗ ∈ R

(
A(H)

)
. Let Q ⊆ H × {1,−1} be the ground set

of examples (i.e. labeled instances). We define a labeled subset Q ⊆ Q as halfspace queries. We
assume that for any halfspace queriesQwrt r∗, the labels are consistent, i.e., ∀(h, l) ∈ Q, `r∗(h) = l.
The version space induced by Q is the subset of regions VS(Q) ⊆ R

(
A(H)

)
that are consistent

with the labels of all the halfspace queries i.e.,

VS(Q) =
{
r ∈R

(
A(H)

)
| ∀(h, l) ∈ Q, `r(h) = l

}
,

or equivalently, set of convex polytopes which satisfy the halfspace queries Q. We define our
version space learner as one which upon seeing a set of halfspace queries, maintains a version space
containing all the regions that are consistent with all the observed queries. Corresponding to a
version space learner and a target region r∗, we define a teaching set T S(H, r∗) as a minimal set of
halfspace queries such that the resulting version space exactly contains {r∗}. Formally,

T S(H, r∗) ∈ arg min
Q⊆Q

|Q|, s.t. VS(Q) = {r∗}.

Consequently, we want to teach a target hypothesis (regions), say r∗ via specifying halfspace queries
in the teaching set T S(H, r∗) to a learner. Given a target region r∗, the teaching complexity
(Goldman and Kearns, 1995) is defined as the sample size of the teaching set i.e. |T S(H, r∗)|.
In section §4, we analyze the teaching complexity of convex polytopes both in the framework of
average-case and worst-case. We define average teaching complexity of convex polytopes via
halfspace queries as the expected size of the teaching set i.e. Er∼U [|T S(H, r)|], when the target
region r is sampled uniformly at random. We define worst-case teaching complexity as the worst-case
sample size of a teaching set corresponding to target regions from the set of hypotheses.

Hyperplanes in general position We adopt a common assumption in computational geometry
Feldman and Rojas (2013); Miller et al. (2007) that the hyperplane arrangement is in general position,
and further provide a relaxed notion of general position hyperplane arrangement, as defined below.

Definition 1 (General position of hyperplanes Miller et al. (2007)) For a set of n hyperplanes H
in Rd, the arrangement A(H) is in general position if any subset S ⊆H of k hyperplanes where
1 ≤ k ≤ d, intersects in a (d− k)-dimensional plane, otherwise has null intersection.

Definition 2 (Relaxed general position of hyperplanes) For a set of n hyperplanes H in Rd and
d′ ∈ [d], the arrangement A(H) is in d′-relaxed general position if any subset S ⊆ H of k
hyperplanes where 1 ≤ k ≤ d′, intersects in a (d − k)-dimensional plane, otherwise has null
intersection.
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(a) general (b) 2-relaxed (c) 1-relaxed

Figure 2: relaxed general position

As illustrated in Fig. 2, Definition 2 ac-
counts for arrangements beyond general position
(Fig. 2(a)) e.g parallel hyperplanes in Fig. 2(c).
Definition 1 is a special case of Definition 2 which
we discuss in details in Appendix F.

4. Average-case Teaching Complexity

In this section, we study the generic problem of teaching convex polytopes via halfspace queries as
illustrated in Fig. 1(a). Before establishing our main result, we first introduce two important results
inherently connected to the average teaching complexity: the number of regions (which corresponds
to the target hypotheses) induced by the intersections of n halfspaces, and the number of faces (which
corresponds to the teaching sets) induced by the hyperplane arrangement. Our proofs are inspired by
ideas from combinatorial geometry and affine geometry, as detailed below.

4.1. Regions and Faces Induced by Intersections of Halfspaces

Consider a set of n hyperplanes H in Rd. Generally, it is non-trivial to count the number of regions
induced by an arbitrary hyperplane arrangement A

(
H
)
. When the hyperplane arrangement is in

general position (Definition 1, Fig. 2(a)), Miller et al. (2007) established an exact result for counting
the induced regions. However, it remains a challenging problem to identify the number of regions
for more general hyperplane arrangements. However, we show that under the relaxed condition of
Definition 2, which accounts for various non-trivial arrangements as shown in Fig. 2(a)-2(c), one can
exactly count the number of regions.

Theorem 3 (Regions induced by d′-relaxed general position arrangement) Consider a set H
of n hyperplanes in Rd. If the hyperplane arrangement A(H) is in d′-relaxed general position for
some d′ ∈ [d], then the following holds: r

(
A(H)

)
=
∑d′

i=0

(
n
i

)
.

In the following we sketch the proof of Theorem 3. The key insight for the proof is in reducing it
to the special case of general position in some d′ subspace where d′ ≤ d. We show the reduction
by constructing a subspace N defined as:

N , span
〈{
ηh
∣∣ h ∈H, h := ηh · z + bh = 0, z ∈ Rd

}〉
.

As a key observation, note that N is d′-dimensional. Let Ĥn,d′ be the induced set of hyperplanes in
the subspace N formed by the intersections of H with N. Therefore, the number of regions induced1

by the arrangement of Ĥn,d′ , denoted as r
(
A(Ĥn,d′)

)
, is exactly r

(
A(H)

)
. Thus, informatively, it

is sufficient to rely on A(Ĥn,d′) in N to understand the intersection of halfspaces induced by A(H)

in Rd. We observe that every region r̂ ∈ A(Ĥn,d′) is contained in exactly one region in A(H).
With this observation, we construct the following map B from the regions induced by the hyperplane
arrangement A(Ĥn,d′), to those induced by A(H):

B : R
(
A(Ĥn,d′)

)
−→R

(
A(H)

)
: r̂ 7−→ regionA(H)(r̂),

1. This idea is more formally studied in the hyperplane arrangement literature as essentialization (see Miller et al., 2007,
chap: An introduction to hyperplane arrangement). See Appendix C.3 for further discussion.
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where regionA(H)(r̂) := r for some r ∈ R
(
A(H)

)
such that r̂ ⊆ r. The following proposition

shows that B is bijective, thereby providing an alternate way to count R
(
A(H)

)
.

Proposition 4 The map B (as defined above) is a bijection. Thus, r
(
A(H)

)
= r
(
A(Ĥn,d′)

)
.

Note that, if we can resolve r
(
A(Ĥn,d′)

)
induced by the hyperplane arrangement A

(
Ĥn,d′

)
, then

r
(
A(H)

)
can be ascertained too. The following key lemma, proved in Appendix C.4, shows that

A(Ĥn,d′) is in d′-relaxed general position.

Lemma 5 The induced hyperplane arrangement A(Ĥn,d′) is in d′-relaxed general position.

This implies that A
(
Ĥn,d′

)
is structurally the same as d′-general position arrangement of n hyper-

planes (i.e. Definition 1) in Rd′ because any d′-dimensional subspace of Rd is isomorphic to Rd′ .
Thus, from the relaxed definition of general position, we reduce the problem of counting r

(
A(H)

)
to counting r

(
A
(
Ĥn,d′

))
which has the special arrangement of general position. By Miller et al.

(2007) we therefore conclude that r
(
A
(
H
))

can be ascertained in an exact form as in Theorem 3.
We defer the full proof of Theorem 3 to Appendix C.

Faces Induced by A(H) We denote by F
(
A(H)

)
the number of faces (i.e. regions induced on

the hyperplanes) induced by A(H) in Rd. Consider an arbitrary h∗ ∈ R
(
A(H)

)
. Note if A(H)

is in d′-relaxed general position for d′ > 1 then ∀h ∈ H \ {h∗}, intersection of h and h∗ forms a
(d− 2)-dimensional flat on h∗ by definition (see Appendix C.1 for formal definitions of the relevant
affine geometry concepts). To count the regions induced on h∗ is to analyze, wrt H \ {h∗}, the n− 1
flats of dimension (d− 2); thereby reducing the problem to the case of n− 1 hyperplanes in Rd−1.
We would show that these newly induced hyperplanes (i.e. flats) are in relaxed general position, and
thus one can invoke Theorem 3 to count the faces. Proposition 6, as proved in Appendix D, provides
the exact count of faces induced by A(H).

Proposition 6 (Faces induced by hyperplane arrangement) Consider a set H of n hyperplanes
in Rd. If the hyperplane arrangement A(H) is in d′-relaxed general position for some d′ ∈ [d], the
number of faces induced by the arrangement satisfies the recursion: F

(
A(H)

)
= n ·∑d′−1

i=0

(
n−1
i

)
.

4.2. Bound for Average Teaching Complexity: Θ (d′)

We are now ready to provide our main result on the average-case teaching complexity, when con-
sidering teaching convex polytopes induced by hyperplanes in d′-relaxed general position. We show
that using results in §4.1, we achieve an average-case teaching complexity of Θ(d′) by Algorithm 1.

Teaching algorithm Let r ∼ U be a region sampled uniformly at random from R
(
A(H)

)
. To

teach r, a teacher has to provide the halfspace queries in T S(H, r). Note that these labels is
sufficient to teach r since the version space VS(T S(H, r)) = {r}. In Algorithm 1, the teacher first
collects T S(H, r) via subroutine FindTS(·), and then provides labels to the learner. In particular,
the subroutine FindTS(·) identifies T S(H, r) via linear programming: It checks if each hyperplane
intersects the convex body defined by all the n − 1 constraints (one linear constraint for each
hyperplane); each iteration takes polynomial time as it requires solving a linear equation system. In
total, it takes n iterations to decide whether any hyperplane is in the teaching set. Thus, the overall
computational complexity of this algorithm is O(poly(d) · poly(n)) (assuming d is smaller than n).

7
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Algorithm 1 Teaching algorithm
1 Input: H; random target region r ∈R

(
A(H)

)
begin

// indentifies T S(H, r) via linear

programming

2 T S(H, r)← FindTS
(
r
)

3 for (h, l) ∈ T S(H, r) do
teacher provides halfspace queries (h, l)

end
end

Average-case analysis Recall that in section §3, we de-
fined Br∗ to be the bounding set of hyperplanes for the
polytope that contains r∗. To teach r∗, the teacher has to
identify the exact subset of hyperplanes in Br∗ (i.e. the
faces of the polytope), and provides the halfspace labels
corresponding to the hyperplanes in Br∗ . Thus, teaching a
target region corresponds to providing labels for the faces
of the bounding set. One can ask if there are patholog-
ical arrangements, where teacher has to provide all the
n labels? It turns out that, one can construct arrangements of the hyperplane set H in Rd where
the worst-case teaching complexity is Ω (n) as shown in Theorem 8. This calls for analyzing the
teaching problem under the average-case.

Intuitively, the average teaching complexity of convex polytopes reduces to the average number of
faces per region, i.e. the ratio of number of faces induced on H to number of regions induced in Rd
by A

(
H
)
. In arbitrary arrangement of hyperplanes, it is challenging to bound the ratio A.1, as one

needs to provide upper bound and lower bound for both terms, and it is unclear how F
(
A(H)

)
and

r
(
A(H)

)
are correlated. However, by imposing the d′-relaxed general position condition (for any

d′ ∈ [d] ) on the hyperplane arrangement, we can leverage our exact results on counting the regions
and faces using Theorem 3 and Proposition 6:

Er∼U [|T S(H, r)|] =
2 · F

(
A(H)

)
r
(
A(H)

) =
Proposition 6

Theorem 3︸ ︷︷ ︸
d′-relaxed general position

. (A.1)

Ideally, to bound A.1, F(·) and r(·) need to be appropriately bounded. We further show (in the
Appendix E) that for a relaxed general position of hyperplane arrangement, F

(
A(H)

)
can be

rewritten in terms of r(·) in lower dimensional space. Thus, to bound the ratio in A.1, it suffices to
bound r(·). Corollary 7, as proved in Appendix E, provides tight bounds on r(·).

Corollary 7 If A(H) is in d′-relaxed general position, then r
(
A(H)

)
satisfies the following for

n > 2d′:
(
n−1
d′

)
≤ r

(
A(H)

)
≤
(
n
d′

)
· n−d′+1
n−2d′+1

Let Mn denote the sample size of T S(H, r) from Algorithm 1 to teach r ∼ U , then EU [Mn] =
Er∼U [|T S(H, r)|]. Combining (A.1) and Corollary 7, we obtain our main result below.

Theorem 8 (Main theorem) Assume H is in d′-relaxed general position. Assume r ∼ U . Let the
random variable Mn denote the number of halfspace queries that are requested in the teaching
Algorithm 1, then, EU [Mn] = Θ (d′) , i.e. the average teaching complexity of convex polytopes is
Θ (d′). Furthermore, the worst-case teaching complexity of convex polytopes is Θ (n).

Arbitrary position arrangements of hyperplanes For general position arrangement, exact forms
have been established (Miller et al., 2007; Zaslavsky, 1975; Buck, 1943) for r

(
A(H)

)
. But it is men-

tioned in Fukuda et al. (1991) that for any arbitrary arrangement one cannot explicitly give a simple
formula for r

(
A(H)

)
since Vergnas (1980) and Zaslavsky (1975) showed that r

(
A(H)

)
depends

on the underlying matroid structure. Interestingly, via Theorem 3 we establish an exact form for a
non-trivial (d′-relaxed general position) setting. Apparently, Theorem 1.2 of Fukuda et al. (1991)
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establishes that for any hyperplane arrangement, average teaching complexity of convex polytopes is
O (d). In contrast, Theorem 8 provides a stronger bound of Θ (d′) in the d′-relaxed general position
setting since d′ ≤ d. In addition, as further discussed in the Appendix C.5 the geometrical insights in
the proof of Theorem 3 can be leveraged for extending to more general teaching complexity results.

5. Connections to Learning Complexity

In this section, we consider the problem of learning a convex polytope via halfspace queries, without
the presence of a helpful teacher. We consider both the passive learning setting where learner
makes i.i.d. queries and the active learning setting with actively chosen queries, and provide sample
complexity results accordingly.

Learning convex polytopes via halfspace queries Consider the hyperplane set H in Rd and a
target region r∗ ∈R

(
A(H)

)
. For any hyperplane h ∈H where h =

{
z
∣∣ ηh · z = bh, z ∈ Rd

}
, the

labeling function `r∗ , as defined in §3, specifies its label (halfspace) as `r∗(h) = sgn
(
ηh · r∗ − bh

)
.

The problem of learning a region r∗ therefore reduces to identifying the corresponding labeling
function `r∗ . The objective here is to learn the region by querying the reference of the form
qh := 1 {`r∗(h) = 1}, where h ∈ H and 1 {·} is the indicator function. Similar to the teaching
setting, we assume that the target r∗ is sampled uniformly at random. In the following, we establish
sample complexity results, i.e., on the minimal number of halfspace queries required to determine a
target region, under the settings of active and passive learning.

5.1. Active Learning of Convex Polytopes

In §4.2, we showed that worst-case teaching complexity for convex polytopes is Ω (n), this directly
implies the lower bound of Ω (n) on the worst-case for active learning. We now show that when the
underlying hyperplane arrangement is in d′-relaxed general position, the average-case complexity
of active learning has only a log n dependency on the number of hyperplanes. We achieve this
by actively selecting informative queries—a similar characterization of the ambiguous queries as
considered by Jamieson and Nowak (2011) for the pairwise ranking problem. Concretely, we consider
the following querying strategy: For an (unknown) target region r ∈ R

(
A(H)

)
and a uniformly

random ordering of hyperplanes H, the learner checks in each iteration if a query qh is ambiguous
for randomly selected h ∈ H (i.e. intersects the convex body defined by hyperplanes sampled
previously); then asks or imputes the labels depending on their ambiguity.

In any iteration k of the above query selection procedure2, denote the event of requesting the query
for a sampled hyperplane h(k) by Bk. That is, Bk = 1 {qh(k) is requested}. Note that each Bk is
a Bernoulli distribution with unknown parameter (?) to be ascertained. If we can bound (?) then
we bound the expected number of queries as well. We define by S ⊆ H of size k as the set of
hyperplanes sampled by the procedure. We notice that the (k+1)th sampled hyperplane is ambiguous
if it intersects the convex body defined by hyperplanes in S . Thus we want to bound the probability of
the event that the query qh(k+1) is ambiguous. Denote the probability of such an event as PA(k, d,U).
Notice PA(k, d,U) is our (?) here. In Lemma 9, we show that PA(k, d,U) is upper bounded by a
factor of 1/k for relatively small sample size k.

Lemma 9 (Probability of ambiguity) Assume r ∼ U . Let PA(k, d,U) denote the probability of
the event that the query qh(k+1) is ambiguous where h(k+1) is the (k + 1)th sampled hyperplane. If

2. Full algorithm is detailed in Appendix F.3.
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H is in d′-relaxed general position, then there exists a positive, real number constant a independent
of k such that for k > 2d′, PA(k, d,U) ≤ a · d′k .

Lemma 9 allows us to bound the expected value of
∑n

j=1 1{qh(j) is requested}. As detailed in
Appendix F, we show that for hyperplane arrangement in d′-relaxed general configuration, the
expected value for

∑n
j=1 1{qh(j) is requested} is Θ (d′ log n). This leads to the following complexity

results for active learning.

Theorem 10 Assume r ∼ U and that the underlying hyperplane arrangement of H is in d′-relaxed
general position. Let Mn denote a random variable for the number of queries that are requested
in the query selection procedure in §5.1, then EU [Mn] = Θ (d′ log n), i.e. the average-case query
complexity of convex polytopes is Θ (d′ log n). Moreover, the worst-case query complexity is Θ (n).

5.2. Passive learning of convex polytopes
In the case of passive learning of a target region, the average sample complexity is trivially lower
bounded by Ω (n) since the learner gets a label uniform at random. Since there are n hyperplanes n
samplings are sufficient to get all the labels which trivially give a O(n) solution. Thus, it is not very
difficult to see that in the case of passive learning the average sample complexity is Θ (n).

6. Teaching φ-separable Dichotomy as Teaching Convex Polytopes
In §4, we discussed the generic problem of teaching convex polytopes induced by intersections of
halfspaces via halfspace queries. We now consider the problem of φ-separability of points (also see
Fig. 1(b)-1(c)) which could be viewed as a variant of teaching convex polytopes. We achieve similar
average-case teaching complexity results for the problem. In the seminal work Cover (1965), Cover
studied the problem of φ-separability of points in which the task is to classify points using various
types of classifiers (linear or non-linear).

We first provide useful definitions for the domain of discussion. We define a set of n points in Rd
as X ,

{
x(1), x(2), . . . , x(n)

}
(referred to as data space), and use x[d−1] to represent the first d− 1

coordinates of a point x ∈ Rd. A map φ : X → Rdφ , is called φ-map, and the subset φ(X ) ⊂ Rdφ
is called φ-induced space. A dichotomy (i.e., a disjoint partition of a set) {X+,X−} of X is
φ-separable if there exists a vector (aka separator of the dichotomy) w ∈ Rdφ such that: if x ∈ X+

then w · φ(x) > 0 and if x ∈ X− then w · φ(x) < 0.

Definition 11 (Relaxed general position of points) For a set of n data points in Rd, say X , is in
d′-general position3 for a fixed d′ ∈ [d] if every d′ subset of X is linearly independent.

Definition 12 (Relaxed φ-general position) Consider a set of n data points X in Rd. For a φ-map
in Rdφ , X is said to be in d′φ-relaxed φ-general position for a fixed d′φ ∈ [dφ] if every d′φ subset of
φ-induced points φ(X ) is linearly independent.

We consider the problem of teaching φ-separable dichotomy as providing labels to subset E ⊂ X
such that a separator wφ can be taught which separates the entire dichotomy. In the remaining of this
section, we show that the teaching problem of φ-separability of dichotomies (Fig. 1(b)-1(c)) can be
studied as a special case of teaching convex polytopes. We connect the two problems via duality.

3. See Cover (1965) for the definition of general position of points.
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Notice that showing the duality for homogeneous linear separability of dichotomies i.e φ = Id
(identity function) suffices for general φ-separability since it reduces to the homogeneous case.

Naturally, we define teaching set for a φ-separable dichotomy as the teaching set for the dual
convex polytopes of the φ-induced space. Following the standard practice, we call the hypothesis
space (where each hypothesis/region corresponds to a w) as the dual space, and data space as the
primal space. We discuss the construction and relevant properties of duality below.

WLOG we assume that x(n) = ed (standard basis vector in Rd with coordinate d being 1 and
others being 0). Denote the set of all homogeneously linear separable dichotomies of X by DX .
We observe that if w is a linear separator of {X+,X−}, then −w forms a linear separator for
{X−,X+}. Based on this observation, we define a relation v on elements of DX as follows:
u, v ∈ DX then u v v ⇐⇒ if w separates u, then w or − w separates v. Notice that v is
reflexive, symmetric, and transitive. Thus, v is an equivalence relation. Denote by E

(
X
)

the set of
equivalence classes i.e. the quotient set (see Rossen, 2003) DX / v. It is easy to see that # [v] = 2,
where [v] denotes an equivalence class for any v ∈DX . Before we construct the dual map, wlog, we
state a key assumption used in construction as follows:

Assumption 1 We represent each equivalence class by the dichotomy which labels x(n) as positive.

This implies that if w = (w1, · · · , wd) ∈ Rd is a homogeneous linear separator of the representative
dichotomy of a class then wd > 0 as w · x(n) > 0. Thus, dual map exploits this property of each
equivalence class i.e.

w · x = x · w =
(
x[d−1], xd

)
·
(
w[d−1]/wd, 1

)
≶ 0

⇒ x[d−1] ·
(
w[d−1]/wd

)
+ xd , h[d−1] · zw + xd ≶ 0 (1)

Hence, points x ∈ Rd maps to hyperplane hx , h[d−1] · z + xd = 0, z ∈ Rd−1 in Rd−1 in the dual
space and homogeneous linear hyperplane w ·x = 0 maps to point zw = w[d−1]/wd in Rd−1. Notice

that, x(n) maps to a hyperplane which exists in infinity i.e h(n)
[d−1] = 0d−1. Denote the set of dual

hyperplanes by Hn−1,d−1 (=: H̄)4. Formally, we define our dual map [Υdual, ϕdual] as follows:

Υdual : X → H̄ ϕdual : EX →R
(
A(H̄)

)
x 7→ hx [v] : w[v] 7→ rz[v] (D.M)

where z[v] ∈ rz[v] ∈R
(
A(H̄)

)
and z[v] is dual point of the separator w[v] to [v]. We state the main

result on dual map in Theorem 13 below with detailed proofs in Appendix G.

Theorem 13 (Dual map) Consider a set of n points X in Rd in d′-relaxed general position. The
hyperplane arrangement induced by Hn−1,d−1 = Υdual

(
X
)

is in (d′ − 1)-relaxed general position.
Moreover, ϕdual is a bijection.

Theorem 13 claims that Υdual

(
X
)

is in (d′ − 1)-relaxed general position. Combining the above
result with Theorem 8, and the observation that any φ-separability reduces to the homogeneous case,
we obtain the average teaching complexity of O(d′φ) for φ-separable dichotomy.

4. We use this notation to signify that x(n) exists in infinity.
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Corollary 14 (Teaching φ-separable dichotomies) Consider a φ-map in Rdφ . Assume that X
are in d′φ-relaxed φ-general position for a fixed d′φ ∈ [dφ]. If Eφ

X denotes the set of φ-separable

dichotomies of X , then the average teaching complexity of dichotomies from Eφ
X is O(d′φ) i.e.

Er[u]∼U [Mn] = O(d′φ), where Mn denotes the number of teaching labels for a class r[u] ∈ Eφ
X .

Remark: In §4.2, we discussed that for any hyperplane arrangement, Fukuda et al. (1991) established
O(d) result for the average teaching complexity of convex polytopes. We can obtain similar result for
any arrangement of points for separable dichotomies via duality. The average teaching complexity
of linear-separable dichotomies using duality can be established to O(d) (similarly O(dφ) for
φ-separable dichotomies).

Connection to the notion of extreme points of Cover (1965) We now establish the connection
between teaching set in the dual space and the extreme points in the primal space. This implies
that our result on the average teaching complexity in Corollary 14 recovers the O (dφ) result on the
average number of extreme points, which was proved via a different framework in Cover (1965).

Definition 15 (Extreme points) Consider an arbitrary φ-separable dichotomy {X+,X−} of a set
of points X in Rd. We say a subset E ⊂ X to be extremal points wrt {X+,X−} if it is minimal
and {X+,X−} is φ-separable by wφ iff {X+ ∩ E,X− ∩ E} is φ-separable by wφ.

According to Lemma 1 (Cover, 1965), a point y is in the minimal set E of extreme points for
a dichotomy {X+, X−} if it is ambiguous wrt the dichotomy i.e. both {X+ ∪ {y}, X−} and
{X+, X− ∪ {y}} are homogeneously linearly separable. We show that this characterization of
ambiguous points is equivalent to a characterization of hyerplanes in the dual space:

Definition 16 (Ambiguous hyperplanes in the dual space) Let H be a set of hyperplanes in Rd,
and let r∗ be a region induced by the hyperplane arrangement A

(
H
)
. Then, an arbitrary hyperplane

h′ is informative or ambiguous with respect to r∗ iff ∃ a point z in h′ such that a normed ball
B2

(
z, ε
)
⊂ r∗ for some ε > 0.

Note that only an ambiguous hyperplane can be contained in the teaching set for r∗. To achieve the
equivalence of the two characterizations provided in Definition 15 and Definition 16, our key insight
is in noting that Eq. (1) preserves signs of dot products in both the primal and dual spaces. Using
this, we realize that (i) every ambiguous data point to dichotomy {X+, X−} passes through the dual
region corresponding to it, and (ii) similarly, every ambiguous hyperplane can be shown to form a
data point which intersects a separator of {X+, X−}. Formally, we establish the connection via the
following theorem below with detailed discussions and proofs deferred to Appendix H.

Theorem 17 Consider a set of n points X in Rd and a φ-map where φ : X → Rdφ . Assume that
X are in dφ-relaxed φ-general position (Definition 12). Let {X+,X−} be a φ-separable dichotomy.
Now, for a subset E ⊆ X , E is a set of extremal points iff Υdual(E) with the appropriate labels
forms a teaching set for ϕdual

([
{X+,X−}

])
.

7. Discussion and Conclusion

We have studied the average-case complexity of teaching convex polytopes with halfspace queries,
and showed that if the hyperplane arrangement is in d′-relaxed general position, then the average
teaching complexity is Θ (d′). In contrast, the average-case sample complexity is Θ (d′ log n) for
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active learning and Θ (n) for passive learning. We showed that our insights could be applied to
teaching φ-separable dichotomies. Moreover, as discussed in details in the Appendix I, we further
show that our insights in §4 could be further generalized to the problem of teaching rankings over n
points {x1, . . . , xn} ⊆ Rd (encoded by their distances to an unknown reference point r ∈ Rd) via
pairwise comparisons (e.g., “is xi closer to r than xj”?). One interesting line of future work is to
understand whether our result could be extended to more general hyperplane arrangement settings.
We believe our results provide useful geometrical insights for analyzing the average-case complexity
for more complex hypothesis classes.
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Appendix A. List of Appendices

In the appendices, we first provide a table summarizing the notations defined in the main paper. We
then provide the proofs of our theoretical results in full detail in the subsequent sections.

The remainder of the appendices are summarized as follows:

• Appendix B provides a list of notations defined in the main paper

• Appendix C provides the proof of Theorem 3 (Number of Regions Induced by Intersections of
Halfspaces)

• Appendix D provides the proof of Proposition 6 (Number of Faces Induced by Intersections of
Halfspaces)

• Appendix E provides the proof of Theorem 8 (Teaching Complexity of Convex Polytopes)

• Appendix F provides the proof of Theorem 10 (Learning Complexity of Convex Polytopes)

• Appendix G provides the proof of Theorem 13 and Corollary 14 (Teaching Complexity of
φ-Separable Dichotomy)

• Appendix H provides the proof of Theorem 17 (Equivalence of Teaching Set and Extreme
Points)

• Appendix I provides an additional use-case of the problem of teaching convex polytopes via
halfspace queries. In particular, we introduce the problem of teaching linear rankings via
halfspaces queries, and establish a Θ (d) bound on the average teaching complexity.
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Appendix B. Table of Notations Defined in the Main Paper

For readers’ convenience, we summarize the notations used in the main paper in Table 2.

Table 2: Table of Notations

Notations Use

h, h(i) a hyperplane
x, x(i) a point
r, r∗ target/sampled region/hypothesis/concept
[u] , [v] dichotomies equivalence classes
η, ηh normal vectors of a hyperplane
b, bh bias of a hyperpane
X data points in Rd or data space
H n hyperplanes set in Rd or hypothesis space
A(H) hyperplanes arrangement of set H
R
(
A(H)

)
set of regions induced by hyperplane arrangement H

r
(
A(H)

)
#regions induced by hyperplane arrangement A(H)

DX set of dichotomies of X
E
(
X
)

the set of equivalence classes of homogeneously linear separable dichotomies
Eφ

X the set of equivalence classes of φ-separable dichotomies
r[u] random dichotomy (equivalence) class in Eφ

X
B, φ,Υdual, ϕdual maps
F
(
A(H)

)
number of faces

U uniform distribution
Θ set of embedded points
Λ a matrix
I[k] set of k indices of naturals
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Appendix C. Regions Induced by Intersections of Halfspaces: Proof of Theorem 3

In this section, we would provide the relevant results, with proofs to complete the claim of Theorem 3.
The struture of the appendix is: we first introduce basic affine geometry, then construct a subspace in
which the underlying hyperplane arrangement is structurally similar to the hyperplane arrangement of
discussion i.e. A

(
H
)
, and establish useful properties in relevant lemmas and proposition to complete

the proof of Theorem 3.

Before we proceed to the technical part of the appendix, we provide elementary discussion on affine
geometry (Roman, 2007) below.

C.1. Elementary Affine Geometry

Definition 18 (Flats Roman (2007)) Let S be a subspace of a vector space V . The coset

v + S = {v + s | s ∈ S }

is called a flat in V with base S and flat representative v. We also refer to v + S as a translate of S.
The set A(V ) of all flats in V is called the affine geometry of V . The dimension dim(A(V )) of A(V )
is defined to be dim(V ).

While a flat may have many flat representatives, it only has one base since x+ S = y + T implies
that x ∈ y + T and so x+ S = y + T = x+ T whence S = T .

Definition 19 (Dimension of flats) The dimension of a flat v + S is dim(S). A flat of dimension k
is called a k-flat. A 0-flat is a point, a 1-flat is a line, and a 2-flat is a plane. A flat of dimention
dim(A(V ))− 1 is called a hyperplane.

In the discussion ahead, we would interchangeably use the notation dim for a flat and a subspace.
With the discussion above, we realize every hyperplane in Rk has a dual representation as a flat, and
a set defined by a normal vector and a bias (see §3). We would use these representations to our
advantage in defining and constructing mathematical objects in the coming discussion.

C.2. Construction of N and Relevant Lemmas

For any hyperplane h ∈ H in Rd, it can be written as h , ηh · z + bh = 0 where ηh and bh are a
fixed non-zero normal vector and a scalar bias respectively. Consider the subspace N spanned by the
normal vectors of hyperplanes in H.

N = span
〈{
ηh

∣∣∣ h ∈H, h := ηh · z + bh = 0, z ∈ Rd
}〉

This construction is interesting pertaining to the arrangement of the hyperplanes which is d′-relaxed
general position. First, we would show some useful properties of the subspace N and the manner in
which H intersects N in Lemma 20 and Lemma 21.

Lemma 20 Consider a set H of n hyperplanes in Rd. If the hyperplane arrangement A
(
H
)

is in
d′-relaxed general position, then dim

(
N
)

= d′.
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Proof Let us define an ordered subset N[d′] ,
{
ηi1 , ηi2 , . . . , ηid′

}
of normal vectors of any d′

hyperplanes in H. Consider the subset H[d′] ⊂ H of hyperplanes corresponding to the normal
vectors in N[d′]. Ideally, if we can show that N[d′] is linearly independent then we have a lower bound
on the dimension of N i.e. dim

(
N
)
≥ d′.

We construct the matrix ΛN[d′] such that ΛN[d′] [k :] = ηik . Define b ,
(
bi1 , bi1 , . . . , bid′

)
. Consider

the matrix equation for variable z ∈ Rd:

ΛN[d′]z = −b> (2)

But we note that if z is a solution of Eq. (2) iff z exists in
(⋂

h∈H[d′]
h
)

. Notice that by the definition

of d′-relaxed general position,
(⋂

h∈H[d′]
h
)

is a (d − d′)-dimensional flat which also forms a

solution for Eq. (2). Consider a solution z0 ∈
(⋂

h∈H[d′]
h
)

such that ΛN[d′]z0 = −b>. Thus,

ΛN[d′]z = ΛN[d′]z0 =⇒ ΛN[d′] (z − z0) = 0

=⇒ dim
(

Ker
(
ΛN[d′]

))
= d− d′ (3)

But using Theorem 31 (rank-nullity, Appendix G), rank
(
ΛN[d′]

)
= d′. It implies N[d′] is a set of d′

linearly independent vectors. Thus, dim(N) ≥ d′.
Note, that dim (N) ≯ d′ otherwise ∃ an ordered subset N[d′+1] ,

{
ηi1 , ηi2 , . . . , ηid′+1

}
of d′ + 1

normal vectors corresponding to a subsetH[d′+1] ⊂H, which are linearly independent. Then, the

equation ΛN[d′+1]
z = −

(
bi1 , bi1 , . . . , bid′+1

)> has a solution because rank
(
ΛN[d′+1]

)
= d′+ 1. This

implies that
(⋂

h∈H[d′+1]
h
)
6= ∅, which contradicts the d′-relaxed general position arrangement of

H. Thus, dim (N) = d′.

Any hyperplane h ∈ H is a (d − 1)-dimensional flat which can be written equivalently as h ≡
hflat , vh + Sh for some vector vh ∈ Rd and (d− 1)-dimensional subspace Sh. Notice that N is a
d′-dimensional flat which can be written as (0 + N). Using Theorem 16.5 (see Roman, 2007, page
451), the intersection flat Xh =

(
hflat ∩

(
0 + N

))
can be written as Xh , yh + (Sh ∩ N) for some

yh ∈ (hflat ∩
(
0 + N)

)
. Now, we show a straightforward result that Xh has dimension d′ − 1 which

would be useful when we consider the regions induced by the arrangement of intersection flats in N.

Lemma 21 For the flat Xh constructed as above, dim (Xh) = d′ − 1.

Proof By Theorem 16.6 of Roman (2007), we know that the dimension of the intersection of two
subspaces is

dim (Sh ∩ N) = dim(Sh) + dim(N)− dim(Sh + N)

Since Sh is (d − 1)-dimensional and the orthogonal vector (i.e. the normal vector) of h (or hflat)
exists in N by definition, the dimension of (Sh + N) = d. This implies that

dim(Sh ∩ N) = (d− 1) + d′ − d = d′ − 1

Since dim(Xh) = dim(Sh ∩ N), thus the lemma follows.
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C.3. Construction of Map B and Proof of Proposition 4

Now, consider the induced set of hyperplanes in the d′-dimensional subspace N:

Ĥn,d′ = {Xh | h ∈H}

With the construction of the induced set of hyperplanes, we can talk about the regions R(A(Ĥn,d′))

induced by the arrangement of Ĥn,d′ in the d′ dimensional subspace N. We would show that every
region induced by the arrangement A(H) in Rd contains a point (vector) from a region induced
by A(Ĥn,d′) in the subspace N. Before we develop ideas, to show that, we provide the following
definition which characterizes points contained in different regions:

Definition 22 (Path-connectivity of points) Consider a set of hyperplanes H in Rd. For any two
points u, v ∈ Rd, we say u and v are path-connected wrt the regions induced by A

(
H
)

if the
following equivalent conditions hold:

• if the line segment λu+ (1− λ)v where λ ∈ (0, 1) is not intersected by any hyperplane inH

• u and v belong to the same region induced by A
(
H
)

Notations Denote the orthogonal projection of a point u ∈ Rd onto N by projN (u). Denote a
region (polytope) in R

(
A(H)

)
by r. Consider a point zr ∈ r \ N. Since r contains an open convex

polyhedron, for some ε > 0 ∃ a normed ball B2(zr, ε) not intersected by any hyperplane.

To prove our intuition developed earlier, we would show that zr (if it exists) and projN(zr) are
path-connected.

Lemma 23 Following the notations as above, zr and projN(zr) are path-connected and, thus
every region r ∈R

(
A(H)

)
has points contained in N.

Proof For the sake of contraposition, assume that zr and projN(zr) are not path-connected. Let
h , ηh · z + bh = 0 ∈H be the intersecting hyperplane. Assume that h intersects the line segment
λzr + (1 − λ) · projN(zr) at the point zh,∩ i.e. zh,∩ = λ′zr + (1 − λ′) · projN(zr) for some
λ′ ∈ (0, 1). By the property of zr, we realize zh,∩ /∈ B2(zr, ε). Since projN(·) is an orthogonal
projection, we have

ηh ⊥
(
projN(zr)− zr

)
=⇒ ηh · projN(zr) = ηh · zr (4)

Using Eq. (4) and noting that zh,∩ lies on h, we have:

ηh · zh,∩ + bh = 0 =⇒ ηh ·
(
λ′zr + (1− λ′) · projN(zr)

)
+ bh = 0 =⇒ ηh · zr + bh = 0

But this is a contradiction because B2(zr, ε), by definition, is not intersected by any hyperplane in
H. Thus, the lemma follows and this asserts that the subspace N has at least one point contained in
any region induced by A (H).

This gives us the insight that information theoretically, the regions induced on N by A(Ĥn,d′) has
similar structure to the regions induced on Rd by A(H). We would ascertain this promisingly by
showing a bijective map from R(A(Ĥn,d′)) to R

(
A(H)

)
. Before we construct the map, we have

certain inferences to make based on the previous discussion.
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We observe that every region r̂ ∈ R
(
A(Ĥn,d′)

)
is contained in exactly one region in A(H) i.e.

r̂ ⊆ r for some r ∈R
(
A(H)

)
. If it is not so then we have two points aindr , bindr ∈ r̂ which are not

path-connected (in Rd). Thus, there is some hyperplane h ∈H which cuts the line segment at some
point z. But then z ∈ N because ∀λ ∈ (0, 1) the combination λaindr + (1− λ)bindr ∈ N, implying
z ∈ Xh. Contradiction because aindr and bindr are path-connected in N.

Let us define the map B as follows:

B : R
(
A(Ĥn,d′)

)
−→R

(
A(H)

)
r̂ 7−→ regionA(H) (r̂)

where regionA(H) (r̂) is the region (polytope) ofA(H) in which the polytope r̂ is contained. Using
the observation above, the map is well-defined. Using the observation and Lemma 23, we claim in
Proposition 4 that B is a bijection, and thus r

(
A(H)

)
= r
(
A(Ĥn,d′)

)
.

Proof [Proof of Proposition 4] Denote by rindi and rindj two regions in R(A(Ĥn,d′)). First, we show
that the map B is an injection. For the sake of contraposition, assume it is not injective. Assume
that B(rindi ) = B(rindj ) = r (a region in Rd). Note that rindi and rindj are not path connected5 in the
subspace N. Thus, ∃ a flat Xh (intersection of flats h and 0 + N) which separates rindi and rindj in
N. Since, rindi , rindj ⊆ r, thus h separates rindi and rindj in r, which implies rindi and rindj are not
path-connected in Rd. Contradiction! Thus, B is an injection.

Using Lemma 23, we know any region r ∈R
(
A(H)

)
has points contained inN. The observation

above implies that ∃ a unique r̂ ∈R(A(Ĥn,d′)) such that r̂ ⊆ r. Thus, B is a surjection. We have
shown that B is both an injection and a surjection, implying it is a bijection. This also implies that:

r
(
A(H)

)
= r
(
A(Ĥn,d′)

)

Essentialization and Boolean lattices The technique to reduce the counting problem of regions to
the normal space, as used above, is studied more formally as essentialization as discussed in Miller
et al. (2007, chap: An introduction to hyperplane arrangement). One could potentially devise an
alternate proof for Proposition 4 using the technique but it would require introducing several other
development on characteristics polynomials, inclusion lattices, möbius functions, and inversions
among others. On the other hand, our proof technique uses simpler geometric ideas to prove the
result from the first principles. Similarly, we could also use boolean algebra as discussed in Cohen
et al. (2013); Miller et al. (2007, chap: An introduction to hyperplane arrangement) to show the
result. Inclusion lattice for a d′-relaxed general position hyperplane arrangement could be shown
to be isomorphic to a d′ truncated boolean algebra, and thus one could arrive at a result similar to
Proposition 4.

C.4. Proof of Lemma 5

Using Proposition 4 we have a constructively alternate way to ascertain r
(
A(H)

)
. The previous

discussion and results are useful in the sense that we can indeed find r
(
A(Ĥn,d′)

)
. As it turns

5. Notion of path-connectivity can be extended for two regions (subsets of points) where no two points in the open
convex polyhedrons of the regions are path-connected.
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out, A
(
Ĥn,d′

)
is in d′-relaxed general position arrangement. Since, counting the regions induced

by A
(
Ĥn,d′

)
on the d′-dimensional subspace N arranged in d′-relaxed general position is same as

counting the number of regions induced on Rd′ by a size n subset of d′-general position6 arranged
hyperplanes, thus we can directly count R

(
A(Ĥn,d′)

)
using Lemma 26 and subsequent Corollary 27.

We show in the key Lemma 5 that A
(
Ĥn,d′

)
is in d′-relaxed general position arrangement.

Proof [Proof of Key Lemma 5] Let 1 ≤ k ≤ d′. Consider an arbitrary size k subset Sindk ⊆ Ĥn,d′ of
hyperplanes (d′−1-dimensional flats inN). We denote the size k subset of corresponding hyperplanes
in Rd by Sk ⊆ H ((d − 1)-dimensional flats). Since A(H) is in d′-relaxed general position we
notice that dim

(⋂
h∈Sk h

)
= d− k. Define the orthogonal subspace (complement) of N

N⊥ =
{
z ∈ Rd | z · v = 0 ∀ v ∈ N

}
Using Theorem 16.5 (as shown in Roman, 2007) and noting that for any h′ ∈ Sindk we can write
h′ ≡ h⋂(0 + N

)
for some h ∈ Sk, we have:

( ⋂
h′∈Sindk

h′

)
=

 ⋂
h∈Sk

h

⋂(
0 + N

)
(5)

Using the representation of flats, we can write⋂
h∈Sk

h = ν +W∩ where ν ∈
⋂
h∈Sk

h and W∩ ,
⋂

z+W∈Sk

W (6)

WLOG we enumerate the hyperplanes in Sk as
{
h(1), h(2), . . . , h(k)

}
. Now, we construct the matrix

Λk using the normal vectors of the hyperplanes in Sk i.e. Λk[i :] = η(i) where h(i) , η(i)·z+b(i) = 0
∀ i ∈ [k] ; to solve the system of equations for the intersection of Sk as follows:

Λkz = −
(
b(1), b(2), . . . , b(k)

)> (7)

Since
⋂
h∈Sk h 6= ∅, ∃ z0 ∈ Rd such that Λkz0 = −

(
b(1), b(2), . . . , b(k)

)>. But then any solution of
Λkz = 0 implies z − z0 is a solution of Eq. (7). We can succinctly write this as follows:

Λkz = −
(
b(1), b(2), . . . , b(k)

)> ⇐⇒ Λkz = Λkz0 ⇐⇒ Λk(z − z0) = 0 (8)

This implies that solving Λkz = 0 sufficiently solves Eq. (7). We notice, by definition of N⊥ and
construction of Λk, Λk ⊥ N⊥. Thus, N⊥ is a solution of Λkz = 0. But then, using Eq. (8)

− z0 + N⊥ ⊆
⋂
h∈Sk

h (9)

At this point, we observe a small inclusion which would be helpful in claiming the dimension of
Sindk . We notice that

(
−z0 + N⊥

)
and

⋂
h∈Sk h are flats in Rd by definition and Eq. (6) respec-

tively. Now, combining Eq. (9) and Theorem 16.1 (as shown in Roman, 2007), we get thatN⊥ ⊆W∩.

6. We, interchangeably, use the term d′-general position or general position for d′-relaxed general position arrangement
in Rd

′
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Finally, we would argue on the dimension of
(⋂

h′∈Sindk
h′
)

as follows:

dim

( ⋂
h′∈Sindk

h′

)
= dim

 ⋂
h∈Sk

h

⋂ (0 + N)

 (10)

= dim

 ⋂
h∈Sk

h

+ dim
(
0 + N

)
− dim

(
W∩ + N

)
(11)

= (d− k) + d′ − d (12)

= d′ − k

Eq. (10) is the direct consequence of Eq. (5). Eq. (11) follows from Theorem 16.6 in Roman
(2007). Since N⊥ ⊆ W∩ and N⊥ is orthogonal to N, thus dim

(
W∩ + N

)
= d (dimension of the

space). Since, H is in d′-relaxed general position and k ≤ d′, dim
(⋂

h∈Sk h
)

= d − k. These

observations yield Eq. (12). Thus, for any arbitrary subset Sindk of size 1 ≤ k ≤ d′, we have shown

that dim
(⋂

h′∈Sindk
h′
)

= d′ − k.

Notice that if we select a subset of Ĥn,d′ of size more than d′, then they don’t intersect at any
point since the corresponding subset of hyperplanes in H has empty intersection.

Thus, following Definition 2, we show that Ĥn,d′ is in d′-relaxed general position. Hence, the lemma
follows.

C.5. Proof of Theorem 3

We note that a subspace of dimension k of Rd is isomorphic to Rk. Thus, d′-relaxed general position
hyperplane arrangement A(Ĥn,d′) in N can be uniquely mapped to a d′-relaxed general position
hyperplane arrangement of n hyperplanes in Rd′ . It implies that we can use Lemma 26 (discussed
and proved in Appendix F.1, provides an exact form for the number of regions induced in Rd when
the hyperplane arrangement is in general position) to ascertain r(A(Ĥn,d′)) since A(Ĥn,d′) satisfies
all the required premises i.e. d′-general position in d′ dimensional Euclidean space. Thus, we have

r(A(Ĥn,d′)) = Q(n, d′) =

d′∑
i=0

(
n

i

)
Using Proposition 4, we finally show that:

r
(
A(H)

)
= r
(
A(Ĥn,d′)

)
=

d′∑
i=0

(
n

i

)
This completes the proof of Theorem 3.
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Remark One can study the arrangement of hyperplanesA(H) using the characteristic polynomials
as discussed in (An introduction to hyperplane arrangments), Miller et al. (2007). Zaslavsky
(1975) connected the computation of the number of regions in an arrangment to the corresponding
characteristic polynomials. But it can be extremely tricky to find exact (simple) forms for those
polynomials even for rather straight-forward arragements. Fukuda et al. (1991) explicitly mentioned
via citing the work of Vergnas (1980) and Zaslavsky (1975) that computing the number of regions
for arbitrary hyperplane arrangement is non-trivial as it depends on the underlying matroid structure.
In our work, we are able to establish an exact form for a non-simple setting. The geometric ideas
to understand the subspaces spanned by the normals (aka essentialization) corresponding to the
hyperplanes can be further leveraged to establish exact forms or average teaching results for more
general arragements than relaxed general position. One possible study could be to understand the
induced regions in terms of faces for which intersection of hyperplanes on a given hyperplane could
be studied. Our idea of path-connectivity could be a potential direction to find out simple forms for
the characteristic polynomials corresponding to more relaxed arrangements.
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Appendix D. Faces Induced by Intersections of Halfspaces: Proof of Proposition 6

In this section, we provide the proof of Proposition 6 for the number of faces induced by the hyper-
plane arrangement A(H).

Proof [Proof of Proposition 6] To count the number of faces induced by the arrangement A
(
H
)

on
the hyperplanes, one way it can be ascertained is by counting the number of regions/faces induced on
any hyperplane. If we fix any hyperplane h∗ ∈H and look at the intersections of h∗ with H \ {h∗},
we can count the number of regions formed on h∗.

If d′ = 1, then F
(
A(H)

)
= n since all the hyperplanes are parallel to each other. Thus, we

assume that d′ > 1 for further discussion.
Since h∗ can be interpreted as a flat, we can write h∗ ≡ v∗ + W ∗ for some vector v∗ ∈ Rd

and (d − 1)-dimensional subspace W ∗ of Rd. By Definition 2,
(
h∗ ∩ h

)
is a (d − 2)-dimensional

flat ∀h ∈ H \ {h∗}. Thus, we define by H′
n−1,d−1 ,

{(
h∗ ∩ `

)
| ` ∈H \ {h∗}

}
the induced

set of n− 1 flats (intersections) on h∗ (which is a (d− 1)-dimensional flat). We note that for any
1 ≤ k ≤ d′ − 1, if Tk ⊂H′

n−1,d−1 then

dim

 ⋂
`∈Tk

`

 = (d− 1)− k

It holds because if dim
(⋂

`∈Tk
`
)
6= (d− 1)− k then dim

((⋂
`∈Tk

`
)⋂

h∗
)
6= d− (k+ 1) since(⋂

`∈Tk
`
)
⊂ h∗. This violates d′-relaxed general position arrangement of H. Thus, H′

n−1,d−1 is

in (d′ − 1)-relaxed general position arrangement. Since counting the number of regions induced on
h∗ by H′

n−1,d−1 is the same as ascertaining r
(
A(Hn−1,d−1)

)
i.e. (n− 1) hyperplanes in Rd−1 in

(d′ − 1)-relaxed general position, using Theorem 3 we get:

r
(
A(H′

n−1,d−1)
)

= r
(
A(Hn−1,d−1)

)
=

d′−1∑
i=0

(
n− 1

i

)
Since, there are n hyperplanes thus the proposition follows,

F
(
A(H)

)
= n ·

d′−1∑
i=0

(
n− 1

i

)
which completes the proof.
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Appendix E. Teaching Complexity of Convex Polytopes: Proof of Theorem 8

In this section, we provide the proof of the main Theorem 8. It is divided in three subsections: (i)
worst-case of teaching complexity of convex polytopes of Θ (n) as part of Theorem 8 in §E.1, (ii)
bounds on r

(
A(H)

)
via proof of Corollary 7 in §E.2 and (iii) proof of average-teaching complexity

of Main Theorem 8 in §E.3.

E.1. Worst-case Complexity for Teaching: Θ (n)

We would show the lower bound on the worst-case of Ω (n) and notice that upper bound is trivial.
Consider n-dimensional hypersphere S in Rd and Spos the restriction in the positive quadrant i.e. all
coordinates are positive.

To give an intuition of the worst-case scenario, we start with R2. Consider the unit circle x2 + y2 = 1
restricted in the positive quadrant. We randomly drop n points on the arc and draw tangents to
them. Notice that no three tangents can intersect at a point. Moreover, since all the tangents lie in a
single quadrant, they can’t be parallel. Thus, any two have a non-empty intersection. It implies the n
hyperplanes thus constructed are in 2-relaxed general position. Notice that the arc forms a convex
connected set with all the hyperplanes sharing a point. Thus, arrangement of the tangents induces a
region which has n many sides or faces.

We use the similar idea to construct n hyperplanes in Rd. Let us consider Spos the restriction
of unit hypersphere in Rd. Now, drop n points on the restriction in such a way that any d are
linearly independent. Denote the n points as

{
x(1), x(2), . . . , x(n)

}
. Now, consider the matrix Λ

defined by x(i) as row for each i ∈ [n]. Thus, for k ∈ [d], any k rows are linearly independent.
Consider the hyperplanes defined by the n points. Notice that the bias is same for all the hyperplanes.
Denote the hyperplanes by

{
h(1), h(2), . . . , h(n)

}
. It is easy to see that we can equivalently write

h(i) ≡ x(n) · y + 1 for variable y ∈ Rd ∀i ∈ [n]. Let us define for k ∈ [d] I[k] , {i1, i2, ..., ik} as k
indices for rows. Denote by ΛI[k] = Λ[I[k]×d] (rows of Λ corresponding to I[k]) If we consider the
linear system equation

ΛI[k] · y = 1k (13)

Notice that rank
(
ΛI[k]

)
= k because row rank is k. Thus, Eq. (13) has a solution, call it y0.

Using rank-nullity (Theorem 31), we realize that dim
({
y
∣∣∣ΛI[k] · (y − y0) = 0

})
is k. Define a

matrix Λh with each row as (x(i), 1)∀i ∈ [n]. Now, if rewrite Eq. (13) as :

ΛI[k] · y = 1k ⇔ (Λh)I[k] ·
(
y

1

)
= 0 (14)

Eq. (14) implies that dim
({
y
∣∣∣ΛI[k] · (y − y0) = 0

})
= dim

({
y
∣∣∣ (Λh)I[k] ·

(
y
1

)
= 0

})
= d − k.

But solving Eq. (14) is same as finding an intersection point of the hyperplane corresponding to
rows I[k] in Λh. Thus, we show that for any k ∈ [n] subset of hyperplanes in

{
h(1), h(2), . . . , h(n)

}
,

they intersect in a (d − k)-dimensional plane. Thus, these hyperplanes are in d-relaxed general
position. Since, Spos is contained in exactly one halfspace of every hyperplane touching it implies it
is contained in one region induced by the hyperplanes arrangement. Since all the hyperplanes share
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one point in that region, thus we show that there is one region with n faces for arbitrary d-dimensional
Euclidean space. This implies, the worst-case of teaching complexity of convex polytopes is Θ (n).

This completes the second part of Theorem 8.

E.2. Upper and Lower Bound on number of regions

In this subsection, we establish bounds on r
(
A(H)

)
as Corollary 7.

Proof [Proof of Corollary 7]
We’ll prove the corollary in two parts – by establishing the upper and lower bounds on r

(
A(H)

)
.

The proof for the upper bound is based on a geometric series argument and uses the definition of a
binomial term. First note that, using Theorem 3, we have:

r
(
A(H)

)
=

d′∑
i=0

(
n

i

)
Now, we observe the following computation:∑d′

i=0

(
n
i

)(
n
d′

) =

0∑
i=d′

(
n
i

)(
n
d′

)
= 1 +

d′

(n− d′ + 1)
+

d′(d′ − 1)

(n− d′ + 1)(n− d′ + 2)
+ · · ·+ d′!

(n− d′ + 1) · · · (n− d′ + d′)

≤ 1 +
d′

(n− d′ + 1)
+

(d′)2

(n− d′ + 1)2
+ · · ·+ (d′)d

′

(n− d′ + 1)d′

≤
∞∑
i=0

(
d′

(n− d′ + 1)

)i
=

1

1− d′

n−d′+1

=
n− d′ + 1

n− 2d′ + 1

The last inequality establishes the upper bound in the corollary.

For the lower bound we note that:

r
(
A(H)

)
=

d′∑
i=0

(
n

i

)
≥
(
n− 1

d′

)
Hence, the corollary is proven.

E.3. Proof of Theorem 8

In the subsection E.2, we proved the key corollary to show tight bounds on r
(
A(H)

)
. We use

Corollary 7 to show the stated bounds on A.1– upper bound in Lemma 24 and lower bound in
Lemma 25. We combine Lemma 24 and Lemma 25 to prove the Main Theorem 8.
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To simplify the notations, we use Q(n, d) (discussed in details in Appendix F.1) to denote the
number of regions induced by n hyperplanes in Rd arranged in general position (cf Definition 1).
We note that, in the case of d′-relaxed general position arrangement, r

(
A(H)

)
= Q(n, d′) and

F
(
A(H)

)
= n · Q(n − 1, d′ − 1). This follows from the recursion on Q(·, ·) i.e. Q(n, d) =

Q(n − 1, d) + Q(n − 1, d − 1) (for n > d), as discussed in Lemma 26 and the subsequent exact
form in Corollary 27 (in Appendix F.1). We rewrite r

(
A(H)

)
and F

(
A(H)

)
in terms of Q(·, ·)

so that any bound on Q(·, ·) would help us in bounding F
(
A(H)

)
/r
(
A(H)

)
. We leverage tight

bounds (upper and lower) on the ratio Q(n− 1, d′)/Q(n− 1, d′ − 1) to achieve the results in the
main theorem. We would formally state the two lemmas and provide their proofs before we complete
the proof of the main theorem of the section.

Lemma 24 (Upper bound) Assume H is in d′-relaxed general position. Assume r ∼ U . Let the
random variable Mn denote the number of halfspace queries that are requested in the teaching
Algorithm 1, then

EU [Mn] = O(d′)

i.e. the average teaching complexity of convex polytopes is upper bounded by O(d′).

Proof Since the target hypotheses are sampled uniformly at random, each hypothesis is enclosed by
F(A(H))

/
r(A(H) hyperplanes on average.

We first provide an upper bound on the average teaching complexity and using similar technique
show a lower bound.
Combining Theorem 3, Lemma 26, upper bound in Corollary 7, and Proposition 6, we prove the
lemma in two cases:

Case 1: n > 2d′ (n is sufficiently large)

F
(
A(H)

)
r
(
A(H)

) =
n ·Q(n− 1, d′ − 1)

Q(n, d′)
(15)

=
n ·Q(n− 1, d′ − 1)

Q(n− 1, d′) +Q(n− 1, d′ − 1)
(16)

= n ·
(

1

/(
Q(n− 1, d′)

Q(n− 1, d′ − 1)
+ 1

))

≤ n ·
(

1

/(
n− 1

2d′
+ 1

))
(17)

= 2d′ ·
(

1

/(
1 +

2d′ − 1

n

))
≤ 2d′. (18)

Eq. (15) follows using Theorem 3 and Proposition 6, Eq. (16) is based on the recursion men-
tioned in Lemma 26, Eq. (17) is bounded using Lemma 30 and in Eq. (18), we observe that 0 < 2d′−1

n .
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Case 2: n ≤ 2d′ =⇒ n = O
(
d′
)
. This trivially gives O(d′) as each target hypothesis is en-

closed by at the most n hyperplanes.
Thus, in the two cases we have shown that the average teaching complexity of the algoithm is

upper bounded by O(d′).

Lemma 25 (Lower bound) Assume H is in d′-relaxed general position, and r∼U . Let the random
variable Mn denote the number of halfspace queries that are requested in the teaching Algorithm 1,
then

EU [Mn] = Ω
(
d′
)

i.e. the average teaching complexity of convex polytopes is lower bounded by Ω (d′).

Proof Following similar steps as Lemma 24; for sufficiently large n > d we get:

F
(
A(H)

)
r
(
A(H)

) =
n ·Q(n− 1, d′ − 1)

Q(n, d′)
=

n ·Q(n− 1, d′ − 1)

Q(n− 1, d′) +Q(n− 1, d′ − 1)
(19)

= n ·
(

1

/(
Q(n− 1, d′)

Q(n− 1, d′ − 1)
+ 1

))

= n ·
(

1

/( (
n−1
d′

)
Q(n− 1, d′ − 1)

+ 2

))
(20)

≥ n ·
(

1

/(
n− 1

d′
+ 2

))
(21)

= d′ ·
(

1

/(
n− 1

n
+

2d′

n

))

≥ d′

1 + 2
(22)

Eq. (19) follows using Theorem 3, Lemma 26, and Proposition 6. Eq. (20) is a direct consequence
of Corollary 27. By carefully noting the lower bound in Corollary 7, we get the bound in Eq. (21).
We observe that n−1

n + 2d′

n < 1 + 2. Thus for sufficiently large n > d, we show that the average
teaching complexity of intersection of halfspaces is lower bounded by Ω (d′).

Proof [Proof of Theorem 8] Using Lemma 24 and Lemma 25, it is straightforward that EU [Mn] =
Θ (d′).
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Appendix F. Learning Complexity of Convex Polytopes: Proof of Theorem 10

In this section, we would discuss the problem of active learning of convex polytopes induced
by the hyperplanes arrangement in Rd. We would provide some relevant results on the counting
of the number of regions induced by the arrangement of n hyperplanes in Rd in general position
(Definition 1). We would provide a procedure (shown in Algorithm 2) which actively and sequentially
learns a uniformly randomly sampled region. We show that the average query(sample) complexity
for the algorithm is Θ (d′ log n). We would provide the proof of Theorem 10 when the hyperplane
arrangement is in general position (Definition 1) and then show the extension to the case of d′-relaxed
general position arrangement.

First we would start with some illustration of the Definition 1 and see how it is an special case
of Definition 2. To illustrate and understand the definition, we can take a look at euclidean spaces
R2 and R3. For R2, consider three lines denoted by l1, l2 and l3 (hyperplanes). Note, k can take
two values. For k = 1, the given line li intersects in a line which is vacuously true. For any two
lines, they need to intersect in a point. For the three lines, they have an empty intersection. For R3,
consider four planes denoted by P1, P2, P3 and P4. We can understand the definition from Table 3.

Table 3: General position of planes in R3

k Intersection

1 A plane, R2

2 A line, R
3 A point
4 Null

We notice that Definition 1 is a special case of Definition 2. If we fix, say k = 2 and assume
that for intersections of planes upto k follow Table 3 but if any subset of hyperplanes of size more
than k, they intersect only in null i.e. if we pick three planes then they don’t intersect in a common
point. This would rightly give an example of an arrangement in d′-relaxed general position for
d′ = 2. We illustrate this arrangement in Fig. 2(b). If k = 1, then that would give 1-relaxed general
position as illustrated in Fig. 2(c) which accounts for case when hyperplanes are parallel to each
other. In the case of k = 3, we get 3-relaxed general position (Fig. 2(a)) which is also the case
of general position (Definition 1) arrangement. Relaxed general position is a natural extension
to general position. It takes into account arrangements which can’t be structurally explained by
general position setting in higher dimension as discussed above. From a learning point of view,
data is usually embedded sparsely in spaces with much higher dimension than the information they
contain. There has been extended study on learning the sparse representation using component
analyses. Interestingly, relaxed notion of general position captures the essence of arrangements
where hyperplanes could be sparsely embedded in high dimensional space but are in general position
in a much smaller subspace. We interchangeably use d′-general position or general position when
d′ = d if the hyperplane arrangement is in d′-relaxed general position.

We are interested in the notion of general position of hyperplanes for a variety of reasons. First, we
show an existing duality (see §6) between a problem instance of finding the number of φ-separable
dichotomies (primal space) (Cover, 1965) to a problem instance of teaching intersection of halfspaces
(dual space). This duality would be achieved when the points in primal space and hyperplanes in
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dual space are in general position of points (see Definition 1, Definition 2) and general position
of hyperplanes (see Definition 11, Definition 12) respectively. Second, Miller et al. (2007, chap:
An Introduction to Hyperplane Arrangements) mentions an exact form for the number of regions
induced by the general position arrangement of hyperplanes H. This key result would be used in our
significant contributions (see §4): Theorem 3 and Proposition 6, where we would try to reduce from
the case of d′-relaxed general position to a case of general position.

To prove Theorem 10, we would show some relevant results in the following subsection:

F.1. Bounds on Number of Regions Induced by General Position Arrangement

Consider a set of n hyperplanes in Rd, denoted by H, and the underlying arrangement A(H) is
in general position (Definition 1). Denote by Q(n, d) the number of regions induced by A(H).
Although Miller et al. (2007) provides an exact form for Q(n, d), we would provide a recursion
similar to Jamieson and Nowak (2011) with a proof for continuity and flow of ideas.

Lemma 26 (Regions induced by general-position hyperplane arrangement) LetQ(n, d) denote
the number of d-cells or regions induced by the general position hyperplane arrangement. Q(n, d)
satisfies the recursion:

Q(n, d) = Q(n− 1, d) +Q(n− 1, d− 1) (23)

where Q(1, d) = 2 and Q(n, 0) = 1.

Proof The proof is based on a recursive argument on how hyperplanes are added to the d-dimensional
space. Consider an arbitrary ordering on the hyperplanes. Denote the last hyperplane added by
h(n). We observe that the number of new regions induced by h(n) to A

(
H \ {h(n)}

)
is equal to

the number of regions/faces induced on h(n) by the intersections of
(
H \ {h(n)}

)
on it. Since,

the hyperplanes are in general position, thus all the other (n − 1) hyperplanes intersect h(n) on
(d− 2)-plane. Thus, we have (n− 1) of (d− 2)- dimensional hyperplanes7 arranged on a (d− 1)-
plane. Denote this induced set of hyperplanes by Ĥn−1,d−1, which can be defined as Ĥn−1,d−1 ,{(
h(n) ∩ `

) ∣∣ ` ∈ (H \ {h(n)}
)}

the induced set of n− 1 flats (intersections) on h(n). We note that
for any 1 ≤ k ≤ d− 1, if Tk ⊂ Ĥn−1,d−1 then

dim

 ⋂
`∈Tk

`

 = (d− 1)− k

It holds because if dim
(⋂

`∈Tk
`
)
6= (d − 1) − k then dim

((⋂
`∈Tk

`
)⋂

h(n)
)
6= d − (k + 1)

since
(⋂

`∈Tk
`
)
⊂ h(n). This violates the general position arrangement of H. Thus, Ĥn−1,d−1 is

in general position arrangement. But by definition, number of faces induced on h(n) by Ĥn−1,d−1 is
Q(n− 1, d− 1).

Hence, the total number of regions in the d-dimensional space is Q(n− 1, d) +Q(n− 1, d− 1).
Thus, the lemma follows.

Q(·) as defined above has the following exact form:

7. Proof follows similar steps as in Proposition 6.
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Corollary 27 (An introduction to hyperplane arrangement Miller et al. (2007)) The recusion
in Lemma 26 has the form:

Q(n, d) =
d∑
i=0

(
n

i

)
for n > d. If n ≤ d, then Q(n, d) = 2n.

We prove a simple corollary which claims an asymptotic bound on Q(·) that would be used in a
number of results:

Corollary 28 For sufficiently large n > d, there exist positive real number k1 such that:

k1
nd

d!
< Q(n, d)

Proof Using Corollary 27, we can write:

Q(n, d) =

d∑
i=0

(
n

i

)

=

d∑
i=0

Θ

(
ni

i!

)
(for sufficiently large n each term is bounded by above and below)

> k1
nd

d!
(by definition, ∃ k1 > 0, N0 such that ∀ n > N0 condition holds )

Specifically, we can show that for n ≥ d2, the condition holds. This is true because there exists a
constant c such that c.

∏d−1
i=0 (n− i) > nd.

F.2. Average-case Analysis of Active Learning Complexity

In subsection §4, we introduced the problem of teaching convex polytopes via halfspace queries
for a set of hyperplanes H in Rd arranged in d′-relaxed general position. In Theorem 8, we
showed that the teaching complexity for the arrangement is Θ (d′). Now, we would discuss the
problem of active learning of convex polytopes induced by A

(
H
)
, via halfspace queries. Using

motivations from Jamieson and Nowak (2011) in which they explore the problem of ranking,
we provide Algorithm 2 to actively learn the enclosing region for a randomly sampled target
region via adaptive and sequential selection of halfspaces queries for a hyperplane. We analyze
the problem in the framework of the average-case analysis as motivated in Traub (2003) and
section 1.1 of Jamieson and Nowak (2011). We achieve Θ (d′ · log n) average label complexity for
active learning through our Algorithm 2. The lower bound is straight forward using Corollary 28.
We need at least | log2

(
R
(
A(H)

))
| bits of information to specify (enumerate) all the possible

target concepts i.e. log2

(
Q(n, d′)

)
= Ω (d′ · log n) many for sufficiently large n. As discussed in

Jamieson and Nowak (2011), we note that the overall computational complexity of the algorithm is
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O(n poly(d) poly(log n)) because in total the number of queries requested are at max8 O(d log n)
and the complexity of each test is polynomial in the number of queries requested because each one is
a linear constraint. In fact, we could also show that our Algorithm 2 is attribute efficient (Klivans
and Servedio, 2006). As defined, we could think of finding the exact labelling function (cf. §3) as
learning the boolean function (Klivans and Servedio, 2006). If d = poly(n) (or d is small compared
to n) then algorithm runs in O(poly(n) · poly(log n)) = poly(n), and hence is attribute efficient.

Our key observation is that the sequential algorithm doesn’t ask for labels for non-trivial number
of hyperplanes since they are unambiguous or uninformative wrt to the target region. Our adaptive
algorithm filters out such queries irrespective of the ordering in which the hyperplanes are queried
for the enclosing region. In the following subsection, we formally provide the characterization of
ambiguous hyperplane queries which is based on our Definition 16.

F.3. Characterization of an Ambiguous Query of a Hyperplane

In Definition 16, we gave the characterization for an ambiguous hyerplane wrt to a subset S ⊂H.
Jamieson and Nowak (2011) gave similar characterization but for bisecting hyperplanes corresponding
to pairwise queries of embedded objects. With our characterization we are able to show similar
results which we use to give a bound on the query complexity.

Algorithm 2 Query Selection Algorithm
1 Input: n hyperplanes in Rd

begin
2 Initialize: hyperplanes H =

{
h(1), h(2), . . . , h(n)

}
in uniformly random order

for i ∈ [n] do
if h(i) is ambiguous then

3 request h(i)’s label from reference
end
else

4 impute h(i)’s label from previously labeled queries.
end

end
end

5 Output: target region(region)

As mentioned in Jamieson and Nowak (2011), we call the arrangement of the set of n hyperplanes
in Rd as an n-partition and a region induced by the arrangement as a d-cell. Now consider the basic
sequential procedure of Algorithm 2. WLOG, assume that the algorithm samples the k hyperplanes
in the order

{
h(1), · · · , h(k)

}
. It is not very difficult to see that the target region r is contained within

a d-cell, Ck (defined by the labels of the queried hyperplanes from h(1) through h(k). Assume that
h(k+1) is sampled in the next iteration. Querying h(k+1) for labels is informative (i.e., ambiguous) iff
it intersects this d-cell Ck. We realize that this observation is significant because if k is sufficiently
larger than d, then the probability that the next sampled hyperplane intersects Ck is very small; in
fact the probability is on the order of 1/k (proved in Lemma 9). In the next subsection, we provide

8. In the case of d′-relaxed general position, the number of queries requested is O(d′ logn).
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the proof of Lemma 9 which ascertains a bound on the proabability that a sampled hyperplane is
ambiguous for query.

F.4. Probability of Ambiguity: Proof of Lemma 9

In this subsection, we would show that on a random ordering of hyperplanes, it is highly likely that a
hyperplane query is unambiguous. This is the essential component of the query selection algorithm.
We would start by stating an important result which would allow us to argue the probability with
which a randomly sampled hyperplane is ambiguous. We denote a target hypothesis(region) by r.

Lemma 29 Assume r ∼ U . Consider the subset S ⊂H with |S| = k that is randomly selected from
H such that all

(
n
k

)
subsets are equally probable. If R

(
A(S)

)
denotes the set of regions induced by

the arrangement of S , then every r ∈R
(
A(S)

)
is equally probable (where Q(k, d) = |R

(
A(S)

)
|).

Proof This lemma follows immediately using Jamieson and Nowak (2011, Lemma 3). Any uniformly
random selection of k-tuple of hyperplanes induces k-partition of the d-dimensional space. Each
k-partition contains some d-cells of n-partition induced by the arrangement of all the hyperplanes.
Since the k-tuple has been uniform randomly selected and each d-cell of the n-partition is equally
probable, thus there are Q(n, d)/Q(k, d) d-cells of the n-partition in any d-cell of the k-partition.
As each d-cell of the n-partition is equally probable which implies, probability mass in each d-cell of
k-partition is Q(n, d)/Q(k, d)× 1/Q(n, d) = 1/Q(k, d). Hence, the lemma follows.

We would state an easy inequality that we would use in the subsequent lemmas.

Lemma 30 For k > 2d, the following inequality holds:

Q(k, d− 1)

Q(k, d)
≤ d

k/2

Proof First note that,

d+
(k − d+ 1)(k − 2d+ 3)

(k − d+ 2)
≥ k

2
(24)

Using the following simplification, Eq. (24) holds.

2d(k − d+ 2) + 2(k − d+ 1)(k − 2d+ 3)− k(k − d+ 2)

= (2d− k)(k − d+ 2) + 2(k − d+ 1)(k − 2d+ 3)

= (2d− k)(k − d+ 1) + (2d− k) + 2(k − d+ 1)(k − 2d+ 3)

= (k − d+ 1)
[
2(k − 2d+ 3) + (2d− k)

]
+ (2d− k)

= (k − d+ 1)(k − 2d+ 6)− (k − 2d) ≥ 0

Now, we would the result in the following computation:

Q(k, d− 1)

Q(k, d)
= 1

/(
1 +

(
k
d

)
Q(k, d− 1)

)
(25)

≤ 1

/(
1 +

(
k
d

)(
k
d−1

)
k−d+2
k−2d+3

)
(26)
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= 1

/(
1 +

(k − d+ 1)(k − 2d+ 3)

d(k − d+ 2)

)

= d

/(
d+

(k − d+ 1)(k − 2d+ 3)

(k − d+ 2)

)

≤ d

k/2
(27)

Using Lemma 26 and Corollary 27, we have Q(k, d) = Q(k, d − 1) +
(
k
d

)
, which gives Eq. (25).

Eq. (26) is the straight forward consequence of Corollary 7 i.e. Q(k, d− 1) ≤
(
k
d−1

)
k−d+2
k−2d+3 . Finally,

we use Eq. (24) to get Eq. (27).

Now, we would talk about the probability of ambiguity of any randomly selected hyperplane. If we
assume that k hyperplanes have been selected uniformly at random, they induce a k-partition. We can
ascertain the probability of the event of (k + 1)th sampled hyperplane to be ambiguous conditioned
on the labels queried/imputed of the first k hyperplanes. We state the result in the Lemma 9.

Proof [Proof of Lemma 9] The first k sampled hyperplanes induce a k-partition. The target region r
belongs to one of the d-cells, say Ck in the k-partition. According to the characterization, hyperplane
query for h(k+1) is ambiguous if it intersects Ck. Let P (k, d) denote the number of d-cells in the
k-partition that are intersected by the hyperplane h(k+1). Using Lemma 29, we know that each of the
d-cell in the k-partition is equally probable. Thus, probability of qh(k+1) being ambiguous is same as
the probability of each d-cell that h(k+1) intersects times the number of d-cells it intersects in the
k-partition. Thus we have:

PA(k, d,U) =
P (k, d)

Q(k, d)
=
Q(k, d− 1)

Q(k, d)

Lemma 30
≤ d

k/2

Thus, for a = 2, we have achieved a bound on the probability of the event of a hyperplane query
being ambiguous.

F.5. Proof of Theorem 10

We denote by Mn the number of queries asked for by the algorithm. But this is same as the
number of queries being requested by the Query Selection Algorithm. Thus, we have Mn =∑n

i=1 1{qh(i) is requested}.
We would provide the proof of the bound for the average-case complexity for active learning of
convex polytopes in the main theorem of the section Theorem 10.

Proof [Proof of Theorem 10] Let us denote the event of requesting the query for hyperplane h(k) for
each k by Bk. Note that each Bk = 1 {qh(k) is requested} is a bernoulli distribution with parameter
PA(k, d,U). Since, the bounds of PA(k, d,U) makes sense when k > 2d so we assume that for
k ≤ 2d, all the queries are ambiguous.

EU [Mn] =

n∑
i=1

EU [Bi]
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≤
2d∑
i=1

EU [Bi] +

n∑
i=2d+1

EU [Bi]

≤ 2d+
n∑

i=2d+1

2d

i

≤ 2d+ 2d log2

(
n

2d+ 1

)
= 2d log2

(
2n

2d+ 1

)
≤ 2d log2(n)

This completes the proof.

Thus, for a set of hyperplanes H arranged in general position, we provide an algorithm with
O(d · log n) average query complexity for active learning of an enclosing region for target region.

Generalization to d′-relaxed general position We note that with similar arguments we can
achieve the bound of O(d′ · log n) if the set of hyperplanes are arranged in d′-relaxed general
position. It is not very difficult to see that Theorem 3 and Proposition 6 would yield similar results as
Lemma 29 and Lemma 9 and then a result similar to Theorem 10 follows. We note that in the case of
d′-relaxed general position arrangement, the number of regions induced in Rd by n hyperplanes is
Q(n, d′). Similarly, the number of faces induced on a hyperplane turns out to be Q(n− 1, d′ − 1)
(intersection of n hyperplanes). Lemma 29 and Lemma 9 can be extended for the relaxed case by
straight-forward replacement of Q(·, d′) andQ(·, d′−1) for number of regions and faces accordingly.

Earlier we argued on the lower bound which turns out to be Ω (d′ log n) (see Appendix F.2).
With the upper bound of O(d′ · log n) on the label complexity, thus we achieve the strong bound of
Θ(d′ · log n) for active learning of convex polytopes as shown in Table 1.

For the worst-case complexity of active learning of convex polytopes, we notice that it has to
be Θ (n) since the lower bound holds because of the lower bound of Ω (n) for worst-case teaching
complexity as shown in Appendix E.1. It implies that there exists a worst-case construction of a
target regions such that no matter how the ordering of the hyperplanes are initialized, every sampled
hyperplane in any iteration of Algorithm 2 would be ambiguous requiring all the halfspace queries to
be made to determine the target region. Since n queries are sufficient thus the worst-case sample
complexity of active learning of convex polytopes is Θ (n).

This completes the proof of the main theorem of the section.
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Appendix G. Dual Map for φ-Separable Dichotomy: Proof of Theorem 13

In this appendix, we provide the proof of our main result for the construction of dual map i.e.
Theorem 13. Using the properties of the dual map and bounds on the average teaching complexity
for convex polytopes i.e. Theorem 8, we provide the proof of Corollary 14 which establishes similar
bound on the average teaching complexity of φ-separable dichotomies. We first state and prove the
necessary lemmas and results in order to prove Theorem 13. Before that, we mention a fundamental
result from linear algebra (also mentioned in Roman, 2007, Theorem 2.8) which would be used in a
number of lemmas across appendices.

Theorem 31 (Rank-Nullity Theorem) Let V and W be vector spaces over a field F , and let T :
V →W be a linear transformation. Assuming the dimension of V is finite, then

dim(V ) = dim(Ker(T )) + dim(Im(T )) (28)

where dim(Ker(T )) is nullity of T and dim(Im(T )) is the rank of T .

G.1. Relevant Lemmas for Proof of Theorem 13

First, we would prove a straight-forward result for homogeneous linear separability which forms the
basis for the equivalence relation we obtained in §6.

Lemma 32 If w is the normal vector for the homogeneous linear separator of
{
X+,X−

}
then,

−w is the normal vector for the homogeneous linear separator of
{
X−,X

}
.

Proof If w is the normal vector for a homogeneous linear separator of
{
X+,X−

}
, then,

w · x > 0⇔ (−w) · x < 0 if x ∈ X+

w · x < 0⇔ (−w) · x > 0 if x ∈ X+

Thus, −w is the the normal vector for a homogeneous linear separator of
{
X−,X+

}
To study the arrangement of dual hyperplanes, we define the matrices Λ[(n−1)×d] and [Λh][(n−1)×(d−1)]

such that ∀ i ∈ [n− 1] Λ [i, :] = x(i) and Λh [i, :] = x
(i)
[d−1] where x[d−1] is first d− 1 components

of x. Using the d′-relaxed general position arrangement of X and nullity of x(n) as a dimension, in
Lemma 33 we show that rank

(
Λh

)
= d′ − 1 and any (d′ − 1) rows of Λh are linearly independent .

Lemma 33 For the matrices constructed above, rank
(
Λh

)
= d′ − 1, and any (d′ − 1) rows of Λh

are linearly independent.

Proof First part of the lemma is straight-forward since, by definition any d′ vectors in X are linearly
independent which means d′ columns of Λ are linearly independent, implying (d′ − 1) columns of
Λh are linearly independent.

For the second part, for an indexed set I[d′−1] , {i1, i2, · · · , id′−1} consider the (d′ − 1) rows{
x

(i1)
[d−1], x

(i2)
[d−1], · · · , x

(id′−1)

[d−1]

}
of Λh which are linearly dependent. Thus, ∃ scalars αj’s (not all

zeros) such that:

d′−1∑
j=1

αj · x(ij)

[d−1] = 0 =⇒
d′−1∑
j=1

αj ·
(
x

(ij)

[d−1], x
(ij)
d

)
−

d′−1∑
j=1

αj · x(ij)
d

 · x(n) = 0 (29)
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=⇒
d′−1∑
j=1

αj · x(ij) −

d′−1∑
j=1

αj · x(ij)
d

 · x(n) = 0 (30)

In Eq. (29) we use that x(n) = ed. Eq. (30) implies that we have d′ vectors of X linearly dependent.
Contradiction! Thus, for any indexed set I[d′−1], the corresponding submatrix of dimension [d′ −
1× d′ − 1] of Λh, is full rank. Hence, the second part of the lemma is proven.

Now, we would give the proof of the key lemma of duality which shows that the mapped hyperplanes
follow the criterion of (d′ − 1)-relaxed general position. For the sake of clarity and flow, we would
restart with the construction of sets. Let us define I[k] , {i1, i2, ..., ik} as k indices for rows. Denote
by ΛI[k] = Λ[I[k]×d] (rows of Λ corresponding to I[k]) and by (Λh)I[k] = (Λh)[I[k]×d−1] (rows of Λh

corresponding to I[k]). As in §6, we redefine X ,
{
x(1), x(2), . . . , x(n)

}
.

Lemma 34 (Key lemma of duality) If Sk∩ =
{
x ∈ Rd−1

∣∣∣ΛI[k]
(
x
1

)
= 0k

}
for 1 ≤ k ≤ (d′ −

1), then dim(Sk∩) = (d − 1) − k. Moreover, no d′ rows of Λ intersects in dual space i.e.{
x ∈ Rd−1

∣∣∣ΛI[d′]
(
x
1

)
= 0d

′
}

= ∅.

Proof [Proof of Lemma 34 of Duality] Define by b ,
(
x

(i1)
d , x

(i2)
d , · · · , x(ik)

d

)
. Notice that,

ΛI[k]
(
x
1

)
= 0⇐⇒ (Λh)I[k]x = −b> (31)

If k = d′−1 then (Λh)I[d′−1]
is d′−1 rank invertible matrix implying Eq. (31) has a unique solution.

Note that using Lemma 33, (Λh)I[k] has rank k for k < d′. This implies that there is some x0 ∈ Rd−1

such that (Λh)I[k]x0 = −b>. Thus, we rewrite Eq. (31) as

ΛI[k]
(
x
1

)
= 0⇐⇒ (Λh)I[k]x = (Λh)I[k]x0 ⇐⇒ (Λh)I[k](x− x0) = 0

But using Theorem 31, Ker
(
(Λh)I[k]

)
= (d−1)−k. This implies that dim

({
x ∈ Rd−1

∣∣∣ (Λh)I[k](x− x0) = 0
})

= (d− 1)− k. Thus, dim(Sk∩) = (d− 1)− k.

Notice that if ΛI[d′]
(
x
1

)
= 0d

′
has a solution then we can define

(
x
1

)
as a homogeneous linear

separator and the points of X corresponding to ΛI[d′] lie on a (d− 1)-dimensional halfspace (sub-

space) defined by
(
x
1

)
. Note, x(n) doesn’t lie on that subspace. On the other hand, because of

d′-relaxed general position arrangement of X , rows of ΛI[d′] are linearly independent and lie on

the subspace. It implies rows(ΛI[d′]) ∪ {x(n)} are linearly independent. Contradiction. Thus,{
x ∈ Rd−1

∣∣∣ΛI[d′]
(
x
1

)
= 0d

′
}

= ∅. Hence, the lemma follows.

With Lemma 34 and Eq. (1), we can formally prove our main theorem of the section on the dual map
which says the dual set of hyperplanes are in (d′ − 1)-relaxed general position and each equivalence
class of dichotomies E

(
X
)

maps uniquely to all the concepts (hypotheses) in R
(
A(Hn−1,d−1)

)
.
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G.2. Proof of Theorem 13 and Corollary 14

In this subsection, we provide the proof of the results of interest. Following the notations in §6, we
use slightly different notations in the proofs for the sake of clarity. For a dichotomy class [v] ∈ E

(
X
)
,

we denote the dual point to a separator w[v] of the representative dichotomy by zw[v] and region
corresponding to zw[v] as9 rzw[v]

∈R
(
A(H̄)

)
such that zw[v] ∈ rzw[v]

i.e. rzw[v]
= ϕdual([v]).

Proof [Proof of Theorem 13] By the definition of D.M, we get Hn−1,d−1 = Υdual

(
X
)
. We

constructed the matrices Λ[n−1×d] and [Λh][n−1×d−1] to study the arrangement of dual hyperplanes.
In the Key Lemma 34 of Duality, we proved that ∀ 1 ≤ k ≤ d′ − 1, any size k subset of Hn−1,d−1

intersects in a flat of dimension (d− 1− k) and no d′ dual hyperplanes intersect at a point. Thus, we
show that Hn−1,d−1 is in (d′ − 1)-relaxed general position arrangement which proves the first part
of the theorem.

First, we notice that ϕdual is well-defined since Eq. (1) is a sign preserving construction. To prove
the bijection of ϕdual, we first show that it is an injection. We assume that #E

(
X
)
> 1 since the

other case can be handled trivially. Denote by [u] , [v] two different equivalence classes of E
(
X
)
. Let

w[u] and w[v] be two corresponding linear separators respectively. Since [u] 6= [v], ∃ at least one point
x′ 6= x(n) ∈ X which is classified/labeled differently. Consider the dual hyperplane hx′ = Υdual(x

′),
and the dual points zw[u] and zw[v] of w[u] and w[v] respectively using the construction shown in
Eq. (1). Since w[u] and w[v] classify x′ differently, zw[u] and zw[v] belongs to two different regions
of hx′ , implying rzw[u]

6≡ rzw[v]
where rzw[u]

= ϕdual([u]) and rzw[v]
= ϕdual([v]). Thus, ϕdual is an

injection. Consider a region r ∈R
(
A(H̄)

)
. Pick a point z0 ∈ r. Now, define wz , (z>0 , 1). Since

z0 ∈ r, wz is a homogeneous linear separator of a dichotomy in the primal space corresponding
to r where dichotomy is defined by signs using Eq. (1). Note that it is a valid dichotomy since
0 · z0 + 1 > 0 implying (z>0 , 1) labels x(n) positively. We represent the dichotomy using the class
[u]. Since, z0 is arbitrary, thus ϕ−1

dual(r) = [u] implying surjection of ϕdual. Hence, we show ϕdual is
a bijection.

The properties of the dual map is key in showing the bound on the teaching complexity of φ-separable
dichotomies. We note that the dual map retains the arrangement of the general position of points
(Definition 11) to relaxed general position of hyperplanes in the dual space (Definition 2). Thus, our
bound on the average teaching complexity of convex polytopes in Theorem 8 applies in the case of
average teaching complexity of φ-separable dichotomies which we show in Corollary 14. We present
the proof of the corollary here.

Proof [Proof of Corollary 14] For the set X , we consider the set of φ-induced points φ(X ) =
{φ(x(1)), φ(x(2)), . . . , φ(x(n))} in the φ induced primal space Rdφ . For the φ-separable dichotomies
of X , we denote the quotient set of equivalence classes of dichotomies as Eφ

X . Since X are in
d′φ-relaxed φ-general position for a fixed d′φ ∈ [dφ] , we can apply the dual map [Υdual, ϕdual]

on the pair [φ(X ),Eφ
X ]. We denote the set of d′φ − 1-relaxed general position dual hyperplanes

by Hn−1,d′φ−1 , Υdual(φ(X )), and the set of dual regions as R
(
A(Hn−1,d′φ−1)

)
, ϕdual(E

φ
X ).

Using the definition of the teaching set for φ-separable dichotomies and bijection of ϕdual(·) (using

9. In section §6, we denote the dual point of the separator w[v] to [v] as z[v] and region containing z[v] as rz[v] .
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Theorem 13), we can write:

Er[u]∼U [Mn] = Er∼U
[
|T S(Hn−1,d′φ−1, r)|

]
(32)

where r[u] is a random class in Eφ
X and r is a uniformly random region in R

(
A(Hn−1,d′φ−1)

)
. But,

using Theorem 8, we know that rhs in Eq. (32) is bounded byO(d′φ). Thus, we show that the average
teaching complexity of φ-separable dichotomies is O(d′φ). This proves the corollary.
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Appendix H. Equivalence of Teaching Set and Extreme Points: Proof of Theorem 17

In this section, we would talk about the connection of teaching set in the dual space and extreme
points in primal space as mentioned in Cover (1965). In order to complete the proof of the main
result Theorem 17 we would prove two lemmas: Lemma 36 and Lemma 37.

In §6, we discussed the characterization of ambiguous points in the primal space. Formally, we
state the lemma mentioned in Cover (1965) to characterize ambiguous points.

Lemma 35 (Lemma 1, Cover (1965)) Let X+ and X− be subsets of Rd, and let y be a point other
than the origin in Rd. Then the dichotomies {X+ ∪ {y}, X−} and {X+, X− ∪ {y}} are both
homogeneously linearly separable if and only if {X+, X−} is homogeneously linearly separable by
a (d− 1)-dimensional subspace containing y.

Using this lemma we can argue on the equivalence of the ambiguous points in the primal space
and ambiguous hyperplanes in the dual space. Let P+ and P− be subsets of X+ and X− respec-
tively, whose classes/labels are ascertained (known). Denote by H+ and H− (for P+ and P−) the
corresponding subsets of dual hyperplanes in the dual space. Assume that y is a new point in the
primal space. Due to the nature of the dual map which uses the information of the vector x(n), we
assume that the label for x(n) is known and x(n) ∈ P+. In the asymptotic analysis of our algorithms,
this much information can be trivially included. We state this as a key assumption as mentioned in
Assumption 1.

In section §6, we constructed a teaching set for a dichotomy via dual map. With the virtue of
the D.M, we show the equivalence of extreme points in the primal space and teaching set in the
dual space. In other words, extreme points are exactly the inverse of the teaching set in the dual
space under [Υdual, ϕdual]. In the next two lemmas we show that for the points P+ ∪ P− mapped
to Υdual

(
P+ ∪ P−

)
, y is ambiguous wrt P+ ∪ P− iff Υdual

(
y
)

is ambiguous wrt to the region
ϕdual

(
[{P+,P−}]

)
. The key insights in establishing the connection is in using Eq. (1) and noting

how Lemma 35 is essentially same as the characterization in Definition 16.

Lemma 36 If y is ambiguous with respect to the partial dichotomy {P+,P−}, then hy := Υdual

(
y
)

(dual hyperplane) is ambiguous with respect to ϕdual

(
[{P+,P−}]

)
i.e. the region induced by the

hyperplane arrangement ofHP+∪P− .

Proof Denote the region representing the partial dichotomy in the dual space by rpartial. To show
that, hy is ambiguous, we need to show that hy intersects rpartial. Using Lemma 35, we know
that y is ambiguous with respect to {P+, P−} iff there exists homogeneous linear separator wy
for {P+, P−} passing through y. Notice that wy has a dual image (as a point) since (wy)d > 0 as
wy · x(n) > 0. Say zwy is the dual point then using Eq. (1) zwy ∈ rpartial and since wy · y = 0, it
implies that hyperplane hy contains zwy . Hence, hy intersects rpartial. Thus, lemma follows.

Now, we would show that the pre-image (of dual map) of an ambiguous hyperplane with respect to a
region in a hyperplane arrangement is an extreme point for the corresponding dichotomy. Assume
that the dual hyperplane of the point y (in primal) is hy and it is ambiguous i.e. it intersects the region
corresponding to the partial dichotomy {P+, P−} in the dual space.

Lemma 37 If a hyperplane hy is ambiguous in the dual space, then y := Υ−1
dual

(
hy
)

is ambiguous
in the primal space, where inverse of Υdual is taken over the restriction H+ ∪H−.
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Proof To show that y is ambiguous, we need to show that there is a homogeneous linear separator,
say wy which separates the partial dichotomy {P+, P−} and passes through y. Similar to Lemma 36,
define the region representing the partial dichotomy in the dual space by rpartial. Since, hy intersects
rpartial, we know that there exists a point z0 ∈ rpartial which lies on the hyperplane hy. As shown in
the construction in Eq. (1), hy ≡ y[d−1] · z + yd = 0 for z ∈ Rd−1. Now, define wy , (z>0 , 1). Note
that, y[d−1] · z0 + yd = 0, thus implies wy · y = 0. Also, wy is a homogeneous linear separator of the
partial dichotomy in the primal space since z ∈ rpartial.. Hence, we have shown that there exists a
homogeneous linear hyperplane passing through y and separating the partial dichotomy. Thus, y is
ambiguous. Hence, the lemma follows.

Given that we have established the equivalence of ambiguous points in the primal space and ambigu-
ous hyperplanes in the dual space, we can show the equivalence of extreme points and teaching set.
We provide the proof of Theorem 17 here.

Proof [Proof of Theorem 17] WLOG we assume that x(n) ∈ X+ as stated in Assumption 1. We
denote the φ-separable dichotomy class

[
{X+,X−}

]
by [u]. First, we show (⇒) i.e. if condition.

Consider the mapped concept (dual region) rz[u] = ϕ
(
[u]
)
. Using Eq. (1) it is easy to see, if Ts

is the teaching set for rz[u] , then using Lemma 37, Υ−1
dual

(
Ts
)

is ambiguous wrt [u] following the
characterization mentioned in Lemma 35. This implies that Υ−1

dual

(
Ts
)
⊆ E. Now, using Lemma 36,

since E is ambiguous wrt [u] in the primal space, ϕdual

(
E
)

is ambiguous wrt rz[v] in the dual space.
This implies Υdual

(
E
)
⊆ Ts. Using the two sides of the containment, we have Υdual

(
E
)
≡ Ts.

This implies that Υdual

(
E
)

is the teaching set for ϕdual

([
{X+,X−}

])
.

Now, we show (⇐) i.e. only if condition. Since Υdual

(
E
)

is the teaching set forϕdual

([
{X+,X−}

])
,

this implies E is ambiguous in the primal space using Lemma 37, implying a subset of extremal
points. We need to ascertain that E is sufficiently a set of extremal points. Now, if y′ /∈ E is
ambiguous in the primal space, then Υdual

(
y′
)

is ambiguous in the dual space using Lemma 36.
Thus, Υdual

(
y′
)
∈ Υdual

(
E
)

using the characterization of teaching set as stated in Definition 16.
Hence, E is sufficient. Thus, E is a minimal set of extremal points.

Thus, we have proven the theorem. We show that the teaching set in the dual space is optimally
recoverable as extreme points in the primal space.
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Appendix I. Additional Use-case: Teaching Linear Ranking via Pairwise
Comparisons

In this section, we would talk about the problem of teaching a randomly selected ranking of n objects
embedded in a d-dimensional space. Consider a set Θ of n objects embedded in Rd (in general
position). We define a ranking on the objects as an ordering σ : [n]→ [n] of the form:

σ
(
Θ
)

:= θσ(1) ≺ θσ(2) · · · ≺ θσ(n−1) ≺ θσ(n)

where θi ≺ θj implies θi precedes θj in ranking. The problem of interest is to construct a random
ranking using pairwise comparisons of the form:

qi,j := {θi ≺ θj}

The response or label of qi,j is binary and denoted as yi,j := 1 {qi,j} where 1 is the indicator
function; ties are not allowed. This is a well-studied problem in the literature and in the general
setting it requires Θ(n log n) bits of information to specify a ranking. But by imposing certain
constraints on the embedding of the objects into the d-dimensional Euclidean space, Jamieson and
Nowak (2011) shows we can get rid of the n factor in the active query complexity.
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Figure 3: Teaching ranking via pairwise comparisons.

We assume that for any ranking σ, there is a reference point rσ such that if σ ranks θi ≺ θj , then
||θi − rσ|| < ||θj − rσ||. We refer to such assumption as E1—This leads to an interpretation of a
query “is θi closer to rσ than θj”, as identifying which side of the bisecting hyperplane (as shown in
Definition 38) of θi and θj does rσ lies in (as shown in Fig. 3). Before we discuss our teaching results
and connections to the prior work of Jamieson and Nowak (2011), we mention our key assumption
(also mentioned in Jamieson and Nowak, 2011) over the space of rankings as follows:

Assumption 2 (E1 embedding) The set of n objects are embedded in Rd (in general position) and
we will also use θ1, θ2, · · · , θn to refer to their (known) locations in Rd. Every ranking σ can be
specified by a reference point rσ ∈ Rd, as follows. The Euclidean distances between the reference
and objects are consistent with the ranking in the following sense: if the σ ranks θi ≺ θj , then
||θi − rσ|| < ||θj − rσ||. Let Σn,d denote the set of all possible rankings of the n objects that satisfy
this embedding condition.
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We assume that every pairwise comparison is consistent with the ranking to be learned. That is, if
the reference ranks θi ≺ θj , then θi must precede θj in the (full) ranking. We define the notion of
bisecting hyperplane corresponding to objects θi and θj as follows:

Definition 38 (Bisecting hyperplane) A hyperplane hi,j in Rd is a bisecting hyperplane to objects
θi and θj if both are equidistant from hi,j and hi,j · (θi − θj) = 0.

Thus, n objects lead to
(
n
2

)
hyperplanes (one query for each pair of objects) in Rd:

n embedded objects in Rd︸ ︷︷ ︸
Rankings of Θ

E1
 

(
n

2

)
hyperplanes in Rd︸ ︷︷ ︸

Convex polytopes : reference points

Each convex polytope corresponds to a reference point, thereby to a ranking of objects.

Geometric interpretation of E1 We summarize the geometric interpretation of the key assumption
which follows similar motivations as given in Jamieson and Nowak (2011, section 3). If we consider
two objects θi and θj in Rd, querying for yi,j corresponding to qi,j is equivalent to ascertaining
to which halfspace of the orthogonal bisecting hyperplane of θi and θj , rσ belongs to. The set
of all possible pairwise comparison queries can be represented as

(
n
2

)
distinct halfspaces in Rd.

The intersections of these halfspaces partition Rd into a number of cells termed as d-cells, and
each one corresponds to a unique ranking of Θ. Arbitrary rankings are not possible due to the
embedding assumption E1. Similar to Jamieson and Nowak (2011), we represent the set of rank-
ings possible under E1 by Σn,d. The cardinality of Σn,d is equal to the number of cells in the partition.

Now, we formulate the teaching problem of linear rankings under the mentioned assumptions
here.

Teaching rankings as teaching convex polytopes Denote the
(
n
2

)
hyperplanes induced by pairwise-

comparison of n embedded objects by H(n),d. Following our teaching framework in §3, we know
that R

(
A(H(n),d)

)
induced by A(H(n),d) forms the underlying hypothesis class; with instances

H(n),d and corresponding labeling set {1,−1}. Thus, teaching a ranking rσ corresponds to providing
the teaching set T S(H(n),d, rσ) to a learner.

Interestingly, we note that the hyperplanes induced by pairwise comparison of objects are no
longer in general position. For example, in Fig. 3, the three bisecting hyperplanes induced by any
three points (in R2) intersect at an 1-d subspace. When the embedded objects follow the assumption
E1(embedding) (Jamieson and Nowak, 2011)10 show that the average query complexity for active
ranking is O(d log n). In contrast, we would show that the average teaching complexity of ranking
via pairwise comparisons is O(d) via our Algorithm 3.

I.1. Algorithm for Teaching Rankings

We present our basic algorithm for teaching a ranking via pairwise comparisons. We assume we
are given a set of n objects Θ embedded in Rd in general position and a uniformly random ranking
rσ ∈ Σn,d over it.

Note that to teach the ranking rσ teacher has to provide the labels in T S(H(n),d, rσ). Since,
T S(H(n),d, rσ) corresponds to the labels of the query hyperplanes which form the bounding set for

10. We work in noise-free setting thus consistency is assumed similar to Jamieson and Nowak (2011)
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Algorithm 3 Teaching Ranking via Pairwise Comparisons
1 Input: n objects in Rd, random ranking rσ ∈ Σn,d

begin
2 T S(H(n),d, rσ) ← FindLabels

(
rσ
)

/* indentifies T S(H(n),d, rσ) via linear

programming */

3 for (h, l) ∈ T S(H(n),d, rσ) do
teacher provides halfspace queries (h, l)

end
end

rσ, thus the entire ranking can be inferred. Algorithm 3 is straight forward in which for the set of
objects Θ and a random ranking rσ teacher identifies the pair of comparisons using the subroutine
FindLabels(·) and iteratively provides the labels (or halfspace queries) wrt the reference rσ. As
discussed for Algorithm 1, the subroutine FindLabels(·) can obtain the enclosing region in O(n4)
iteration by solving linear equations system corresponding to O(n2) constraints.

I.2. Average Complexity of Teaching Linear Ranking Functions

Before we delve into the relevant results of the subsection, we would motivate the notations.

Notations Consider the set of n objects Θ =
(
θ1, θ2, · · · , θn

)
embedded in Rd in general position.

We denote by hi,j the bijecting hyperplane for the pairwise comparison qi,j for objects θi and θj . We
use C(n, d) to denote the number of regions or equivalently d-cells induced by query hyperplanes
corresponding to pairwise comparisons of the embedded objects. F (n, d) denotes the number of
faces induced on all the query hyperplanes by their intersections.

The ideas behind the bound share similar motivations as for Theorem 8. Since the rankings are
selected uniform at random, if we ascertain the number of faces for any region on average we get the
bound. Thus, first we mention a recursion on C(n, d) stated in Jamieson and Nowak (2011). Then,
we provide the result for the total number of faces induced on all the bisecting hyperplanes.

Lemma 39 (Lemma 1, Jamieson and Nowak (2011)) Assume E1. LetC(n, d) denote the number
of d-cells (regions) defined by the hyperplane arrangement of pairwise comparisons between these
objects (i.e. C(n, d) = |Σn,d|). C(n, d) satisfies the recursion:

C(n, d) = C(n− 1, d) + (n− 1)C(n− 1, d− 1)

Lemma 40 Assume E1. Let F (n, d) denote the number of faces induced by the hyperplane arrange-
ment of pairwise comparisons between these objects. F (n, d) satisfies the recursion:

F (n, d) =

(
n

2

)
· C(n− 1, d− 1)

Proof If we consider any object say θk, then the pairwise comparison induced hyperplane hk,i for a
fixed i 6= k is uniquely intersected by query hyperplanes induced by pairwise comparison of other
objects since they are in general position. Thus, on the (d− 1)-dimensional hyperplane hk,i there
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are
(
n−1

2

)
intersections (flats of dimension d− 2). Following the discussion for Lemma 1, Jamieson

and Nowak (2011) we note that the number of regions or (d − 1)-cells induced on the bisecting
hyperplane hk,i for a query is exactly C(n− 1, d− 1). Since there are

(
n
2

)
hyperplanes for all the

pairwise queries, thus the lemma follows.

Corollary 41 (Corollary 1, Jamieson and Nowak (2011)) There exist positive real numbers k1

and k2 such that

k1
n2d

2dd!
< C(n, d) < k2

n2d

2dd!

for n > d+ 1. If n ≤ d+ 1, then C(n, d) = n!.

The following result shows that even under this special arrangement of hyperplanes, the average
complexity for teaching such a ranking is Θ (d).

Theorem 42 Assume E1 and rσ ∼ U . There exists a teaching algorithm which requests Θ (d)
pairwise comparisons on average for ranking i.e. EU [Mn] = Θ (d) where Mn denotes a random
variable for the number of pairwise comparisons requested by an algorithm. In other words, the
average teaching complexity of ranking via pairwise comparisons is Θ (d).

I.3. Proof of Theorem 42

We would prove the main result in two parts: (i) Lemma 44 claims the upper bound on the average
teaching complexity and (ii) Lemma 43 claims the average teaching complexity. Thus, we show the
proof of the main result by combining (i) and (ii). Similar to §4.2, we analyze the following ratio to
achieve the bounds:

Erσ∼U
[
|T S(H(n),d, rσ)|

]
=

2 · F
(
A(H(n),d)

)
r
(
A(H(n),d)

) =
Lemma 40
Lemma 39︸ ︷︷ ︸

Average teaching complexity of ranking

(A.7)

Key idea of the proofs is to control the rate in A.7. Let us denote by Mn a random variable for the
number of labels provided by the teacher for a uniformly random sampled ranking rσ ∈ Σn,d. We
say σ ∼ U for ease of notation. We would show that Algorithm 3, runs for at most O(d) in the
following lemma 11.

Lemma 43 Assume E1 and σ ∼ U . Let the random variable Mn denote the number of pairwise
comparisons that are requested in the teaching Algorithm 3, then

EU [Mn] ≤ c · d

for some positive constant c.

11. Note that Fukuda et al. (1991) established an O (d) average complexity for teaching convex polytopes under any
hyperplane arrangement. Therefore one can apply Fukuda et al. (1991) to achieve the upper bound in Theorem 42.
Here, we provide an alternative proof of the upper bound, which could be of separate interest.
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Proof For teaching, the labels of enclosing query hyperplanes of the reference point rσ induced by
the objects, should be specified. Since the rankings are sampled uniformly at random, each ranking
is enclosed by F (n, d)

/
C(n, d) hyperplanes on average. We prove the theorem in two cases using

the Corollary 41 and Lemma 40.

Case 1: n > d+ 1 (n is sufficiently large)

F (n, d)

C(n, d)
=

(
n
2

)
· C(n− 1, d− 1)

C(n, d)
≤
(
n

2

)
·
(
k2

(n− 1)2(d−1)

2d−1(d− 1)!

)
· 1

k1
n2d

2dd!

=

(
1− 1

n

)2d−1
k2

k1
d ≤ c · d

The second inequality follows from Corollary 41.
Case 2: n ≤ d+ 1

F (n, d)

C(n, d)
=

(
n
2

)
· (n− 1)!

n!
=
n− 1

2
≤ d

2

Thus, in the two cases we have shown that F (n,d)
C(n,d) = O(d). This proves the lemma.

We would show that Algorithm 3, runs for at least Ω (d) in the following lemma for sufficiently
large n.

Lemma 44 Assume E1 and σ ∼ U . Let the random variable Mn denote the number of pairwise
comparisons that are requested in the teaching Algorithm 3, then for sufficiently large n > d:

EU [Mn] ≥ c · d

for some positive constant c.

Proof Following similar steps in upper bound provided in Lemma 43, but instead using opposite
side of bounds in Corollary 41, we get:

For n > d+ 1 (n is sufficiently large)

F (n, d)

C(n, d)
=

(
n
2

)
· C(n− 1, d− 1)

C(n, d)
≥
(
n

2

)
·
(
k1

(n− 1)2(d−1)

2d−1(d− 1)!

)
· 1

k2
n2d

2dd!

=

(
1− 1

n

)2d−1
k1

k2
d ≥ c · d

The second inequality follows from Corollary 41. In the last inequality we note that
(
1− 1

n

)2d−1 is
bounded since limn→∞

(
1− 1

n

)n
= 1

e and is increasing for large enough n.
Thus, we have shown that F (n,d)

C(n,d) = Ω (d). This proves the lemma.

Proof [Proof of Theorem 42] In Lemma 43 and Lemma 44, we showed the required bounds of O(d)
and Ω (d), and thus EU [Mn] = Θ (d), which completes the proof.
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