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NONLINEAR STABILITY OF CHEMOTACTIC CLUSTERING WITH

DISCONTINUOUS ADVECTION

VINCENT CALVEZ AND FRANCA HOFFMANN

Abstract. We perform the nonlinear stability analysis of a chemotaxis model of bacterial
self-organization, assuming that bacteria respond sharply to chemical signals. The resulting
discontinuous advection speed represents the key challenge for the stability analysis. We follow
a perturbative approach, where the shape of the cellular profile is clearly separated from its
global motion, allowing us to circumvent the discontinuity issue. Further, the homogeneity of
the problem leads to two conservation laws, which express themselves in differently weighted
functional spaces. This discrepancy between the weights represents another key methodological
challenge. We derive an improved Poincaré inequality that allows to transfer the information
encoded in the conservation laws to the appropriately weighted spaces. As a result, we obtain
exponential relaxation to equilibrium with an explicit rate. A numerical investigation illustrates
our results.

1. Introduction

This work is devoted to the stability analysis of stationary clusters of bacterial cells under
the effect of chemotaxis, as reported in the biophysical literature, see e.g. [16]. Certain type of
bacteria such as Escherichia coli are sensible to chemical gradients and can communicate with
each other by means of chemoattractants. In the absence of nutrients, the long-time asymptotics
of the cell population at the macroscopic level depend on an intricate interplay between diffusive
forces and chemotactic aggregation. A classical model for bacterial motion is the Patlak–Keller–
Segel model and variants where the chemotactic fluxes are derived analytically from a mesoscopic
description of the dynamics at the individual level and possibly internal pathways [12, 9, 8]. Here,
we focus on a minimal model with discontinuous advection speed and, for the sake of simplicity,
in one dimension of space (see [20] and discussion below). The cell density is denoted by ρ(t, x),
and the chemoattractant concentration by S(t, x). Cluster formation of cells in quasi-equilibrium
can be modeled by a version of the classical Patlak-Keller-Segel model with linear diffusion and
a discontinuous drift term,

∂tρ(t, x) = ∂2
xρ(t, x)− χ∂x (ρ(t, x)sign(∂xS(t, x))) ,(1.1a)

− ∂2
xS(t, x) + αS(t, x) = ρ(t, x).(1.1b)

where χ > 0 is the chemoattractant sensitivity, and α ≥ 0 is the natural decay of the chemical.
The system (1.1) is equipped with an initial condition ρ(0, x) = ρ0(x), whose regularity and
decay at infinity will be discussed below.

This model differs from the standard Patlak-Keller-Segel model for which the advection speed
is essentially linear with respect to the chemical gradient, χ∂xS , see [2, 1, 18] for recent reviews.
The discontinuous nonlinearity χsign(∂xS) is the signature of strong amplification of signal
variations at the individual level. This is the extreme point of a family of chemotaxis models
with non-linear dependency upon the chemical gradient that can be applied to shallow and steep
gradients, see [19] for the original derivation and [10] for a biological validation. We also refer to
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2 VINCENT CALVEZ AND FRANCA HOFFMANN

[13] for a review on mathematical modeling of chemotaxis (see, in particular Model (M7)), and
[23] for a review dedicated to bacterial collective motion. The sign function was also used to
reproduce traveling bands of bacteria with good agreement in [20], which is the early motivation
for the present work.

This strong discrepancy – χsign(∂xS) versus χ∂xS – requires a specific approach to handle
the stability analysis of stationary states of (1.1). There exists a family of stationary states to
model (1.1) given by

(1.2) ρ∞(x) =
Mχ

2
e−χ|x−a| , (M,a) ∈ R

∗
+ × R .

The first paramater M is linked to the conservation property of (1.1a), and is fully determined
by the mass of the initial condition, M =

∫

ρ0(x) dx since the equation for the cell density is
conservative. The second parameter, a is linked to the invariance by translation, and is also
determined by the initial condition, though in a non-trivial way. It is interesting to notice that
the natural length scale L for the typical size of a cell cluster associated to the state (1.2) is
L = χ−1, independent of the total mass of cells M . This is in agreement with the observations
reported in [16], where the typical size of the cell cluster varies little with the number of bacteria.
This is in opposition with the standard Patlak-Keller-Segel model, for which the length scale is
L = (χM)−1 due to the homogeneity of the problem (twice the number of cells results in twice
the quantity of chemoattractant, and this in turn increases twofold the advection speed).

In the present work, we assume M = 2/χ without loss of generality (in order to cancel
the prefactor in (1.2)). Further, we assume α > 0 as the case α = 0 can be treated in a
more straighforward way with different methods, see Remark (5) following Theorem 1.3, or
Appendix B for more details.

We stress that we are not concerned here with existence, uniqueness and regularity issues for
solutions to (1.1). We assume that solutions are sufficiently regular for our calculations to hold,
that is, the cell density is continuous at all times t ≥ 0, ρ(t, ·) ∈ C0(R), while its derivative ∂xρ
develops jump discontinuities at points where ∂xS changes sign (see below for more details).

Our goal is to prove local stability for the nonlinear problem (1.1) around the family of
stationary states (1.2). The difficulty here arises from the discontinuity of the advection speed
χsign(∂xS). On the one hand, the choice of the sign function rules out a direct linearization of
the non-linear term. On the other hand, (1.1a) is a piecewise linear advection-diffusion equation,
up to the knowledge of those points where ∂xS changes sign. We base our strategy on the latter
observation. More precisely, we will crucially use the following preliminary result:

Proposition 1.1. If the initial density ρ0(x) is such that S0(x) has a unique critical point
(which is a global maximum), then so is S(t, x) at all times t ≥ 0.

We prove this key result in Section 2.1. In this paper, we shall assume throughout that the
condition of Proposition 1.1 is fulfilled.

Remark 1.2. One sufficient condition to ensure that S0(x) has a unique critical point is that
ρ0(x) itself has a unique critical point. However, this is not necessary.

The key to our approach is to separate the question of the shape of the cell density profile
from the movement of its center. Proposition 1.1 enables to define uniquely the point x(t) where
∂xS(t, x) changes sign:

(1.3)

{

sign(∂xS(t, x)) = 1 , x < x(t) ,

sign(∂xS(t, x)) = −1 , x > x(t) .
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The dynamics of x(t) inherit from the condition ∂xS(t,x(t)) = 0, that is

d

dt
[∂xS(t,x(t))] = ∂txS(t,x(t)) + ∂2

xS(t,x(t))ẋ(t) = 0 .

The formula above can be combined with the following representation of S = Kα ∗ ρ for α > 0,
in order to derive a suitable expression for ẋ. Here, Kα is the fundamental solution of (1.1b):

(1.4) S(t, x) =
1

2
√
α

∫ ∞

−∞
e−

√
α|x−z|ρ(t, z) dz .

This formulation enables to derive the following dynamics of ẋ in the moving frame, as a function
of the half derivatives of the cell density at the interface:

(1.5) ẋ(t) =
∂xρ(t,x(t)

+) + ∂xρ(t,x(t)
−)

2∂2
xS(t,x(t))

.

(see Lemma 2.2 for details).
It is then natural to reformulate (1.1) in the moving frame y = x− x(t), writing for ρ̃(t, y) =

ρ(t, x) and S̃(t, y) = S(t, x):

∂tρ̃(t, y) = ∂y (∂yρ̃(t, y) + (χsign(y) + ẋ(t))ρ̃(t, y)) , ẋ(t) =
∂y ρ̃(t, 0

+) + ∂y ρ̃(t, 0
−)

2∂2
yS(t, 0)

,(1.6a)

− ∂2
y S̃(t, y) + αS̃(t, y) = ρ̃(t, y).(1.6b)

In doing so, we focus on the stability analysis of the shape of cell density ρ̃, and separate this
question from the dynamics of the maximum point x of S.

The stationary state for (1.6) is then simply given by

(1.7) ρ̃∞(y) = e−χ|y| , ẋ = 0 .

We are now in a position to state our main result. Let H1
χ be the weighted space of relative

energy equipped with the following norm

(1.8) ‖f‖H1
χ
=

(

∫ ∞

−∞

∣

∣

∣

∣

f(y)

ρ̃∞(y)

∣

∣

∣

∣

2

e−χ|y| dy +
∫ ∞

−∞

∣

∣

∣

∣

∂y

(

f(y)

ρ̃∞(y)

)∣

∣

∣

∣

2

e−χ|y| dy

)1/2

.

Theorem 1.3. Let M = 2/χ and α > 0. The family of stationary states {e−χ|x−a|}a∈R to model
(1.1) is locally nonlinearly stable in the following sense: There exists ε0 > 0 depending on χ and
α such that, for all initial data satisfying

‖ρ̃0 − ρ̃∞‖H1
χ
≤ ε0 ,

there exists a constant C > 0, a rate γ > 0 and a limit x∞ ∈ R such that

(1.9) (∀t ≥ 0) ‖ρ̃(t, ·)− ρ̃∞‖H1
χ
≤ Ce−γt , lim

t→∞
x(t) = x∞ ,

where x(t) is as defined in (1.3), the constant C depends on ρ̃0, ε0, χ and α, and the rate γ can
be chosen arbitrarily below the following upper bound (at the expense of increasing the prefactor
C for larger choices of γ):

(1.10) γ < γ0 =
χ2

8

(

χ+
√
α

χ
2 +

√
α

)

.

We make the following observations:

(1) The limit x∞ exists but has no explicit value, up to our knowledge. Its precise depend-
ence on the initial configuration and parameters of the model is not known. Our analysis
is not meant to derive a rate of convergence of x(t) → x∞.
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(2) The smallness condition ‖ρ̃0 − ρ̃∞‖H1
χ
≤ ε0 does not control the initial value of ẋ(0)

which involves pointwise values ∂y ρ̃0(0
±). Therefore, it is possible that x(t) has large

variations, meaning that x(0) and x∞ are far apart. In fact, the convergence of x(t) is
obtained by means of the dissipative structure of the parabolic equation (1.6a).

(3) The upper bound of the convergence rate γ0 in (1.10) is between χ2

8 (α → ∞) and χ2

4
(α → 0). However, our estimates on the convergence rate are not optimal, as resulting
from successive inequalities. To obtain an optimal bound via functional inequalities, one
could combine the improved Poincaré inequality (3.1) with the interpolation inequality
(3.5) into a single inequality and seek optimizers. We do not follow this approach here
as the two separate inequalities contain meaningful structure.

(4) The limit α → ∞ is quite singular, as it is formally equivalent to the following problem
(after scaling of S 7→ S/α and the identification in the vanishing viscosity limit S = ρ):

∂tρ(t, x) = ∂2
xρ(t, x)− χ∂x (ρ(t, x)sign(∂xρ(t, x))) .

However, we have no insight about the above problem. Regarding (1.9), it should be
noted that γ can be chosen independently of α, but the prefactor C becomes singular as
α → ∞ in our methodology, due to the control of non-linear contributions.

(5) The case α = 0 (excluded in the statement of the theorem) corresponds to settings
where the degradation of the chemoattractant S can be ignored. In this case and for
more general and slightly smoother signal response functions, one can obtain global L1-
stability by reformulating model (1.1) as a scalar conservation law. This follows from an
adaptation of the results in [22, Chapter 7, Section 3], see Appendix B.

Method. We emphasize one key methodological contribution. The problem (1.6) is equipped
with two conservation laws, corresponding to the homogeneity of the problem (1.1a), and its
invariance by translation (see Section 2.3 for more details):

∫ ∞

−∞
ρ̃(t, y) dy =

χ

2
,(1.11a)

∫ ∞

−∞
∂yρ̃(t, y)e

−√
α|y| dy = 0 .(1.11b)

Notably, there is a discrepancy between the weights, here 1 and e−
√
α|y|, turning into e−χ|y|

and e−(χ+
√
α)|y| in relative energy, see (1.8). As a result, it is not obvious which is the correct

choice of functional space to work in. The less restrictive option e−(χ+
√
α)|y| might be considered.

However, this results in a deterioration of the lower bound on the convergence rate in (1.10). It

is not even clear that all values of α can be encompassed. The alternative choice e−χ|y| turns out
to be much more satisfactory. At the core of our method is an improved version of the standard
Poincaré inequality with exponential weight, that allows to transfer the information given by
the second conservation law to the appropriate weighted space, see Proposition 3.1.

Motivation and Perspectives. Our initial motivation comes from the mathematical modeling
and analysis of concentration waves of chemotactic bacteria. We refer to [23] for a comprehensive
review of modeling of bacteria colonies. The present work is rooted in [20] where the following
model was proposed for the propagation of density bands under the conjunct effect of two
chemotactic signals (a communication signal S secreted by the cells, and a nutrient signal N
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depleted by the cells).

∂tρ = Dρ∂
2
xρ− ∂x (χSρsign(∂xS) + χNρsign(∂xN)) ,

∂tS = DS∂
2
xS − αS + ρ ,(1.12)

∂tN = DN∂2
xN − γρN .

The connection to (1.1) is the following. Firstly, in the absence of a food source, the nutrient
signal N is omitted, resulting in a zero speed traveling band, i.e. a stationary cluster, as reported
in [16]. Secondly, the communication signal S is assumed to be in quasi-stationary equilibrium,
that is (1.1b). We also consider Dρ = DS = 1 without loss of generality (after appropriate
non-dimensionalization), and we denote χS = χ the chemosensitivity.

The agreement with experimental data was shown to be very satisfactory [20]. Moreover,
the model (1.12) was derived from a kinetic transport model suitable to describe the individual
run-and-tumble motion of bacteria. The kinetic model agreed very well with another set of
experimental data [21].

It is one of the key perspectives of this work to prove stability of the stationary cluster
solution of the kinetic-transport equation (whose existence is a particular case of [5]). Note that
exponential relaxation to equilibrium was established in [7] for the linear problem, where the
communication signal S is prescribed, using hypocoercive techniques. This was extended in [15]
to any dimension of space.

A second key perspective consists in proving non-linear stability of the traveling concentration
waves, solution of (1.12), see [20] and [5] for existence of such waves, resp. for the parabolic
problem and for the kinetic transport problem.

2. Separating movement from shape

From now on, we work in the frame centered at x(t): y = x−x(t). Also, we drop the symbol
∼ for notational convenience.

2.1. Uniqueness of chemoattractant peak. In this section, we will show that the unique
maximum property for the chemoattractant concentration S is preserved by the flow, and provide
a proof for the corresponding main result Proposition 1.1.

To show this, we ”decouple” the dynamics to the right of the maximum from the dynamics
to the left. This can be done since in the moving frame, ∂yS(t, y) solves the following equation
on the half-space:

(2.1)

{

−∂2
y (∂yS(t, y)) + α∂yS(t, y) = ∂yρ(t, y) , y > 0 ,

∂yS(t, 0) = 0 ,

where the source term ∂yρ(t, y) is given via the solution to the following PDE:

(2.2) ∂t (∂yρ(t, y)) = ∂2
y (∂yρ(t, y) + c(t)ρ(t, y)) , c(t) := χ+ ẋ(t) , y > 0 .

We denote by A the fundamental solution of (2.1), such that

(2.3) ∂yS(t, y) =

∫ ∞

0
A(y, z)∂zρ(t, z) dz .

Namely, we have (although the exact expression can be omitted)

A(y, z) :=

{

1√
α
sinh(

√
αy)e−

√
αz , y < z ,

1√
α
sinh(

√
αz)e−

√
αy , y > z .

The following reformulation is of key importance to control the sign of ∂yS on R+.
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Lemma 2.1. Let S be a solution to (2.1). Then ∂yS satisfies the following boundary value
problem:
(2.4)










∂t (∂yS(t, y)) = ∂3
yS(t, y)− χαe−

√
αyS(t, 0) +

∂2
yS(t, y)

∂2
yS(t, 0)

(

χαS(t, 0) − ∂3
yS(t, 0

+)
)

, y > 0 ,

∂yS(t, 0) = 0 .

Proof. By differentiating (2.3), we obtain

∂t (∂yS(t, y)) =

∫ ∞

0
A(y, z)∂t (∂zρ(t, z)) dz =

∫ ∞

0
A(y, z)

(

∂3
zρ(t, z) + c(t)∂2

zρ(t, z)
)

dz .

By definition of A, the first contribution S3 :=
∫∞
0 A(y, z)∂3

zρ(t, z)dz is such that
{

−∂2
yS3(t, y) + αS3(t, y) = ∂3

yρ(t, y) , y > 0 ,

S3(t, 0) = 0 .

On the other hand, we have

−∂2
y

(

∂3
yS(t, y)

)

+ α∂3
yS(t, y) = ∂3

yρ(t, y) , y > 0 .

We deduce that R3 := S3 − ∂3
yS satisfies the following boundary value problem:
{

−∂2
yR3(t, y) + αR3(t, y) = 0 , y > 0 ,

R3(t, 0) = −∂3
yS(t, 0

+) .

Its solution is R3(t, y) = −∂3
yS(t, 0

+)e−
√
αy (the exponentially growing mode can be easily ruled

out in the energy space (1.8) by (2.1)), hence

S3(t, y) = ∂3
yS(t, y)− ∂3

yS(t, 0
+)e−

√
αy .

Similarly, we find that the second contribution S2 :=
∫∞
0 A(y, z)∂2

z ρ(t, z)dz is

S2(t, y) = ∂2
yS(t, y)− ∂2

yS(t, 0)e
−√

αy .

Thus,

∂t∂yS(t, y) = S3(t, y) + c(t)S2(t, y)

= ∂3
yS(t, y)− ∂3

yS(t, 0
+)e−

√
αy + c(t)

(

∂2
yS(t, y)− ∂2

yS(t, 0)e
−√

αy
)

.

The value of c(t) depends on the dynamics of ẋ, see (1.6a). We develop its expression explicitly,
focusing on the right hand side by using the continuity of the flux at the interface: ∂yρ(0

+) +
χρ(0) = ∂yρ(0

−)− χρ(0):

c(t) = χ+
∂yρ(0

+) + ∂yρ(0
−)

2∂2
yS(0)

= χ+
∂yρ(0

+) + χρ(0)

∂2
yS(0)

=
χ∂2

yS(0) − ∂3
yS(0

+) + α∂yS(0)− χ∂2
yS(0) + χαS(0)

∂2
yS(0)

=
χαS(0)− ∂3

yS(0
+)

∂2
yS(0)

,

where the second line follows from (1.6b) and (2.1). Substituting this expression into the one
above, we obtain the result. �
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Proof of Proposition 1.1. For ε > 0, define

Sε(t, y) := S(t, y)− εy , then ∂yS
ε(t, y) = ∂yS(t, y)− ε .

In particular, we have ∂yS
ε(t, 0) = −ε < 0 for all t > 0, by definition, and ∂yS

ε(0, y) ≤ −ε < 0
for all y > 0, by assumption. For any fixed ε > 0, we aim to prove that ∂yS

ε(t, y) < 0 for all
t, y > 0. Let us suppose by contradiction that there exists a smallest time t0 > 0 and closest
location y0 > 0 such that ∂yS

ε(t0, y0) = 0. It is necessarily an interior maximum value of ∂yS
ε

with respect to y, so that the following conditions are verified:

∂2
yS

ε(t0, y0) = 0 , ∂3
yS

ε(t0, y0) ≤ 0 ,

and, in addition, ∂t∂yS
ε(t0, y0) ≥ 0. We deduce from the PDE satisfied by ∂yS (2.4) that

S(t0, 0) ≤ 0, which is clearly a contradiction as S = Kα ∗ ρ > 0.
By letting ε → 0, we conclude that ∂yS(t, y) ≤ 0 for all t, y > 0. Then, we can use the PDE

(2.4) again to show that the latter inequality is strict: in fact, it is a drift-diffusion equation
on ∂yS(t, y) with negative source term and non-positive initial data. We just proved that the
solution remains non-positive. By application of the strong maximum principle, it cannot have
an interior maximum point, so ∂yS(t, y) is negative for t, y > 0.

A symmetric argument to the one presented above shows that ∂yS(t, y) > 0 for t > 0 and
y < 0, which concludes the proof of Proposition 1.1. �

2.2. Dynamics of the chemoattractant peak. The dynamics of the point x(t) are given by
the following lemma.

Lemma 2.2. We have

ẋ(t) =
∂yρ(t, 0

+) + ∂yρ(t, 0
−)

2∂2
yS(t, 0)

.(2.5)

Proof. The maximum point x(t) is defined implicitly as

0 = ∂yS(t, 0) =

∫ ∞

−∞
∂yKα(−y)ρ(t, y) dy

= −1

2

∫

R

sign(−y)e−
√
α|y|ρ(t, y) dz.(2.6)

This is actually equivalent to the second conservation law (1.11b) after integration by parts.
Differentiating with respect to time and substituting (1.6a), we obtain

0 =
1

2

∫ ∞

−∞
sign (y) e−

√
α|y|∂tρ(t, y) dy

=
1

2

∫ ∞

−∞
sign (y) e−

√
α|y|∂y (∂yρ(t, y) + (χsign(y) + ẋ(t))ρ(t, y)) dy

= j(t, 0) −
√
α

2

∫ ∞

−∞
e−

√
α|y|j(t, y) dy ,

where the flux

(2.7) j(t, y) := − (∂yρ(t, y) + (χsign(y) + ẋ(t))ρ(t, y))

is continuous at y = 0 (the jump in the first derivative compensates exactly the change of sign).
Simplifying the last term by integration by parts on the first component of j, we get

0 = j(t, 0) +
α

2

∫ ∞

−∞
sign(y)e−

√
α|y|ρ(t, y) dy +

√
α

2

∫ ∞

−∞
e−

√
α|y| (χsign(y) + ẋ(t))ρ(t, y)) dy .
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The two middle contributions vanish because of the conservation law (2.6). In addition, by
continuity we have

j(t, 0) =
1

2

(

j(t, 0+) + j(t, 0−)
)

= −1

2

(

∂yρ(t, 0
+) + ∂yρ(t, 0

−)
)

− ẋ(t)ρ(t, 0) .

Therefore, by the representation S = Kα ∗ ρ (1.4),

0 = ẋ(t)(−ρ(t, 0) + αS(t, 0)) − 1

2

(

∂yρ(t, 0
+) + ∂yρ(t, 0

−)
)

,

which is equivalent to (2.5) using (1.6b). �

2.3. Reformulation of the problem and conservation laws. In fact, using the continuity
of the flux j defined in (2.7) at y = 0, we can reformulate the dynamics of x(t) as follows,

ẋ(t) =
∂y
(

eχ|y|ρ
)

(t, 0)

∂2
yS(t, 0)

.(2.8)

Substituting this expression into (1.6), we find that the dynamics of the cell density ρ are
governed by

∂tρ(t, y) =∂y



e−χ|y|∂y
(

eχ|y|ρ(t, y)
)

+

(

∂y
(

eχ|y|ρ(t, y)
)

∂2
yS(t, y)

)∣

∣

∣

∣

∣

y=0

ρ(t, y)



 .(2.9)

This formulation strongly suggest to work with relative densities:

(2.10) u(t, y) :=
ρ(t, y)

ρ∞(y)
= eχ|y|ρ(t, y) .

Then, u satisfies the system

∂tu(t, y) = eχ|y|∂y

(

e−χ|y|
(

∂yu(t, y) +
∂yu(t, 0)

∂2
yS(t, 0)

u(t, y)

))

,(2.11a)

− ∂2
yS(t, 0) = u(t, 0)−

√
α

2

∫ ∞

−∞
u(t, y)e−(χ+

√
α)|y| dy .(2.11b)

Note that ∂yu is continuous at y = 0, since the C1 discontinuity of ρ has been exactly com-
pensated in (2.10).

From now on, we shall work with (2.11). This system admits the stationary state u∞(y) ≡ 1,
and two conservation laws:

• conservation of mass:

(∀t ≥ 0)

∫ ∞

−∞
u(t, y)e−χ|y| dy =

2

χ
,

(recall that the mass is fixed to M = 2/χ), and
• centering frame:

(∀t ≥ 0)

∫ ∞

−∞
u(t, y)sign(y)e−(χ+

√
α)|y| dy = 0

(linked to the invariance by translation in the original problem).

In other words, the two conservation laws are given by the following weight functions

ϕ1(y) = e−χ|y|, ϕ2(y) = sign(y)e−(χ+
√
α)|y| ,

such that
d

dt

∫

ϕi(y)u(t, y) dy = 0 , i = 1, 2 .
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Setting λ := χ+
√
α and using the notation 〈·〉r for the weighted average,

〈f〉r :=
r

2

∫

f(y)e−r|y| dy , f : R → R , r > 0 ,

the two conservation laws can be written equivalently as

〈u(t)〉χ = 1 , 〈∂yu(t)〉λ = 0 , for all t ≥ 0 .

3. Energy estimates

In this section, we derive H1 energy estimates to measure dissipation in (2.11). Interestingly,
we find that dissipation always occurs, as the non-local interaction contribution is overwhelmed
by heat dissipation. Our analysis relies on the following Poincaré-type inequality which is
designed to handle the discrepancy in the exponential rates of the pair of conservation laws
(resp. χ and λ = χ+

√
α).

3.1. Improved Poincaré inequality.

Proposition 3.1 (Poincaré inequality with unusual normalization). Assume λ ≥ χ, then for
any w ∈ L1

λ such that w′ ∈ L2
χ,

(3.1)

∫ ∞

−∞
|w(y) − 〈w〉λ|2e−χ|y| dy ≤ 4

χ2

∫ ∞

−∞
|w′(y)|2e−χ|y| dy .

Moreover, the constant 4
χ2 is optimal.

Inequality (3.1) is the standard Poincaré inequality with exponential weight when λ = χ. In
that case, the optimal constant 4

χ2 can be deduced from spectral analysis of the linear operator

−w′′+χ(signy)w′ in the Hilbert space L2
χ = L2(e−χ|y|) which admits a spectral gap (0, χ

2

4 ), with

an isolated value 0, and essential spectrum beyond χ2

4 .
Inequality (3.1) is an improvement of the standard Poincaré inequality (λ = χ), simply

because

(3.2)

∫ ∞

−∞
|w(y)− 〈w〉χ|2e−χ|y| dy = inf

m∈R

∫ ∞

−∞
|w(y) −m|2e−χ|y| dy .

It may appear surprising at first glance that the optimal constant does not depend on the
exponent λ ≥ χ. This is a consequence of the fact that the optimal constant is never reached in
(3.1) because the exponential weight has critical decay, and the putative optimal functions are
not in L2

χ. This yields some room for improving (3.2) as in (3.1).
We are not aware of the occurrence of (3.1) in the literature. There are some examples

of weighted Poincaré inequalities with non standard averaging, see for instance [4, Appendix
A.2]. We can also report the extremal case λ = +∞ which coincides with the following Hardy
inequality:

(3.3)

∫ ∞

−∞
|w(y) − w(0)|2e−χ|y| dy ≤ 4

χ2

∫ ∞

−∞
|w′(y)|2e−χ|y| dy .

The link between the latter and the classical Poincaré inequality with exponential weights is
pointed out in [14, Corollary 1.3], see also [3]. Inequality (3.1) can be viewed as a continuous
deformation connecting (3.2) and (3.3) with a constant optimal constant.
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Remark 3.2. We recall below the equivalence between (3.3) and the classical Hardy inequality.
We restrict to the half-line {y > 0} and to χ = 1 for the sake of clarity. We make the change
of variable x = key on both sides:

(3.4)

∫ ∞

k
|w̃(x)− w̃(k)|2 dx

x2
≤ 4

∫ ∞

k
|w̃′(x)|2 dx .

Letting k → 0 we recover the classical Hardy inequality on the half-line.

It is noticeable that the optimal constant in (3.1) does not depend on λ, provided it is strictly
greater than χ. For the proof of Proposition 3.1 we present two arguments: first some insights
based on spectral analysis (not complete enough to provide a rigorous proof), followed by a
complete (technical) proof of Proposition 3.1 based on the reformulation of (3.1) as a quadratic
form. Note that we can always restrict our arguments to χ = 1 without loss of generality by
rescaling y to χy.

We begin with an analysis of the spectrum for the operator associated to inequality (3.1).

Studying carefully the critical functions w of (3.1) (such that (i) 〈w〉λ = 0 and (ii) 1
2

∫

w2e−|y| dy =
1), we find that they must satisfy the following problem:

−w′′ + (signy)w′ − µw = νe(1−λ)|y| .

Here, the scalars µ and ν are Lagrange multipliers corresponding to the two constraints (i)
and (ii). Actually, this problem is equivalent to the next one after the change of unknown

w(y) = W (y)e|y|/2:

(3.5) −W ′′ − δ0W −
(

µ− 1

4

)

W = νe(1/2−λ)|y| .

This problem can be explicitly solved after tedious computations by means of the fundamental
solution (details not shown). On the one hand, the constant ν must be adjusted to ensure
‖w‖L2

1

= 1. On the other hand, the condition 〈w〉λ = 0 cannot be satisfied if µ < 1
4 . When µ = 1

4 ,

we have the following expression (general solution of the homogeneous problem augmented by
a particular solution):

(3.6) w = C

(

1

2
|y| − 1

)

e|y|/2 − ν
(

λ− 1
2

)2

(

(λ− 1)|y|e|y|/2 + e(1−λ)|y|
)

,

where the constant C can be adjusted to ensure 〈w〉λ = 0 when λ > 1.
However, one immediately notices that w /∈ L2

1, simply because 1
4 belongs to the essential

spectrum of −w′′ + (signy)w′. Nonetheless, considering the quotient

(3.7)

∫ R
−R |w′(y)|2e−|y| dy
∫ R
−R |w(y)|2e−|y| dy

for arbitrary large values of R, we see that the additional contribution of the particular solution
O
(

e(1−λ)|y|) becomes negligible, so that the quotient converges to the constant 1
4 as R → +∞,

independently of λ. This is the reason why the optimal constant in (3.1) does not depend on λ
in the case λ > 1.

Next, we provide a complete proof of Proposition 3.1 by direct computations. It relies on the
following technical lemma, whose proof is postponed to Appendix A.
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Lemma 3.3. For λ ≥ χ > 0, define Ωλ,χ : R× R → R by

(3.8) Ωλ,χ(x, y) =

{

(Mλ(x)−Mχ(x)) (Mλ(y)−Mχ(y)) + (1−Mχ(y))Mχ(x) if x ≤ y ,

(Mλ(x)−Mχ(x)) (Mλ(y)−Mχ(y)) + (1−Mχ(x))Mχ(y) if x > y ,

where Mλ denotes the cumulative density function,

Mλ(x) =

∫

z<x

λ

2
e−λ|z| dz .

Then Ωλ,χ is non-negative and symmetric,

Ωλ,χ ≥ 0 , Ωλ,χ(x, y) = Ωλ,χ(y, x) ,

and we can rewrite the left-hand side of the Poincaré inequality (3.1) as

1

2

∫ ∞

−∞
|w(y)− 〈w〉λ|2e−χ|y| dy =

∫∫

w′(x1)w
′(x2)Ωλ,χ(x1, x2) dx1 dx2 .

Proof of Proposition 3.1. We assume again χ = 1, denote Ωλ := Ωλ,1, and introduce the new

function W (x) = w′(x)e−|x|/2. It then follows from Lemma 3.3 that the Poincaré inequality
(3.1) is equivalent to

(3.9)

∫∫

W (x1)W (x2)Ωλ(x1, x2)e
|x1|/2e|x2|/2 dx1 dx2 ≤ 2

∫

|W (x)|2 dx .

The quadratic form on the left hand side can be reformulated as follows:
∫∫

W (x1)W (x2)Ωλ(x1, x2)e
|x1|/2e|x2|/2 dx1 dx2

=
1

2

∫∫

[W (x1)−W (x2)] [W (x2)−W (x1)] Ωλ(x1, x2)e
|x1|/2e|x2|/2 dx1 dx2

+

∫∫

|W (x)|2Ωλ(x, y)e
|x|/2e|y|/2 dxdy .

Therefore, in regard to (3.9) and thanks to non-negativity of Ωλ provided by Lemma 3.3, it is
sufficient to prove the pointwise inequality

(3.10) (∀x) e|x|/2
∫

Ωλ(x, y)e
|y|/2 dy ≤ 2 .

In fact, the left-hand-side above is independent of λ. To see this, note that Mλ(−y) = 1−Mλ(y),
and so for any R > 0,

∫ R

−R
Mλ(y)e

|y|/2 dy =

∫ R

0
(1−Mλ(y)) e

|y|/2 dy +
∫ R

0
Mλ(y)e

|y|/2

=

∫ R

0
e|y|/2 dy =

1

2

(

eR/2 − 1
)

.

Since this expression is independent of λ for all R > 0, we obtain
∫

(Mλ(y)−M1(y)) e
|y|/2 dy = 0 .

Hence, it is enough to check the inequality (3.10) for λ = 1, i.e.

(3.11) (∀x) e|x|/2
∫

(M1(min{x, y}) −M1(x)M1(y)) e
|y|/2 dy ≤ 2 .
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For x > 0, this corresponds to showing

(∀x) ex/2
(

(1−M1(x))

∫ x

−∞
M1(y)e

|y|/2 dy +M1(x)

∫ ∞

x
(1−M1(y)) e

y/2 dy

)

≤ 2 .(3.12)

Fix R > x > 0. Again using M1(−y) = 1−M1(y), we have
∫ x

−R
M1(y)e

|y|/2 dy =

∫ R

0
(1−M1(y))e

y/2 dy +

∫ x

0
M1(y)e

y/2 dy

=

∫ R

0
ey/2 dy −

∫ R

x
M1(y)e

y/2 dy .

Hence,

(1−M1(x))

∫ x

−R
M1(y)e

|y|/2 dy +M1(x)

∫ R

x
(1−M1(y)) e

y/2 dy

= (1−M1(x))

(
∫ R

0
ey/2 dy −

∫ R

x
M1(y)e

y/2 dy

)

+M1(x)

∫ R

x
ey/2 dy −M1(x)

∫ R

x
M1(y)e

y/2 dy

=

∫ R

0
ey/2 dy −

∫ R

x
M1(y)e

y/2 dy −M1(x)

∫ x

0
ey/2 dy

= −2 + 2ex/2 −
(

e−R/2 − e−x/2
)

−
(

1− 1

2
e−x

)

2
(

ex/2 − 1
)

= −e−R/2 + e−x/2
(

2− e−x/2
)

.

Taking R → ∞, and multiplying by ex/2 yields the desired bound (3.12). Note that equality is
achieved only in the limit x → ∞. Similarly, simplifying (3.11) for x < 0 and replacing x with
−x, one obtains again (3.12). This concludes the proof of the Poincaré inequality (3.1). �

3.2. Energy dissipation. To analyse the stability of solutions to (2.11), we define v as the
perturbation around the equilibrium,

u = u∞ + v = 1 + v ,

Denoting w(t, y) := ∂yv(t, y), the perturbation v satisfies

∂tv(t, y) = eχ|y|∂y
(

e−χ|y| (∂yv(t, y)− µ[v(t)](1 + v(t, y)))
)

,(3.13a)

µ[v(t)] :=
λw(t, 0)

χ+ λv(t, 0) −√
α〈v(t)〉λ

.(3.13b)

and the two conservation laws rewrite as

〈v(t)〉χ = 0 , 〈w(t)〉λ = 0 , ∀t ≥ 0 .

Next, we introduce the weigthed energy functionals

E(t) =
1

2

∫ ∞

−∞
|v(t, y)|2 e−χ|y| dy ,

F (t) =
1

2

∫ ∞

−∞
|w(t, y)|2e−χ|y| dy ,

G(t) =
1

2

∫ ∞

−∞
|∂yw(t, y)|2e−χ|y| dy .

In short, we denote E(t) = 1
2‖v(t)‖2L2

χ
, F (t) = 1

2‖w(t)‖2L2
χ
, and G(t) = 1

2‖∂yw(t)‖2L2
χ
, where ‖·‖L2

χ

denotes the weighted L2 norm.
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The weighted H2 norm G is introduced in order to control the pointwise term w(t, 0) in
(3.13b) that cannot be controlled in H1 regularity. Our main estimate is the following.

Proposition 3.4 (Entropy dissipation). The dissipation of F along solutions v(t, y) to equation
(3.13) is given by

(3.14)
d

dt
F (t) = −2G(t) + 2

√
αw(t, 0)2 + J(t) ,

where J is a higher-order (genuinely non-linear) contribution defined in (4.3).

Proof. Differentiating F (t) along solutions of (3.13), substituting the evolution of ∂tw, and
integrating by parts, we have

Ḟ =

∫ ∞

−∞
w∂twe

−χ|y| dy =

∫ ∞

−∞
w∂y

(

eχ|y|∂y
(

e−χ|y| (w − (1 + v)µ[v])
))

e−χ|y| dy

= −
∫ ∞

−∞
eχ|y|

∣

∣

∣
∂y

(

e−χ|y|w
)∣

∣

∣

2
dy + µ[v]

∫ ∞

−∞
eχ|y|∂y

(

we−χ|y|
)

∂y

(

e−χ|y|(1 + v)
)

dy

= I1 + I2 .

We evaluate the terms I1 and I2 separately. Expanding I1, we find

I1 = −
∫ ∞

−∞
e−χ|y| |∂yw − χ(signy)w|2 dy

= −
∫ ∞

−∞
e−χ|y| |∂yw|2 dy + 2χ

∫ ∞

−∞
e−χ|y|∂yw(signy)w dy − χ2

∫ ∞

−∞
e−χ|y|w2 dy

= −
∫ ∞

−∞
e−χ|y| |∂yw|2 dy − χ

∫ ∞

−∞
∂y

(

e−χ|y|(signy)
)

|w|2 dy − χ2

∫ ∞

−∞
e−χ|y||w|2 dy

= −
∫ ∞

−∞
e−χ|y| |∂yw|2 dy − 2χw(t, 0)2 .

Dealing with I2, we separate the quadratic terms from the higher order contributions,

I2 =
λ

χ
w(t, 0)

∫ ∞

−∞
eχ|y|∂y

(

we−χ|y|
)

∂y

(

e−χ|y|
)

dy

+
λ

χ
w(t, 0)

∫ ∞

−∞
eχ|y|∂y

(

we−χ|y|
)

∂y

(

e−χ|y|v
)

dy

+

(

µ[v]− λ

χ
w(t, 0)

)
∫ ∞

−∞
eχ|y|∂y

(

we−χ|y|
)

∂y

(

e−χ|y|(1 + v)
)

dy

= I ′2 + J1 + J2 .

We can rearrange the quadratic term I ′2 as follows

I ′2 = −λw(t, 0)

∫ ∞

−∞
∂y

(

we−χ|y|
)

(signy) dy

= 2λw(t, 0)2 .

This concludes the proof, with J(t) := J1(t) + J2(t). �

In order to turn the entropy dissipation result Proposition 3.4 into exponential relaxation to
equilibrium (see Section 4), we will make use of the improved Poincaré inequality (3.1) together
with the following lemma:
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Lemma 3.5 (Interpolation inequality). Fix a ≥ b > 0. For any function f ∈ L1
a(R) such that

f ′ ∈ L2
b(R), we have

(3.15) |f(0)− 〈f〉a|2 ≤
(

1

2a− b

)

1

2

∫

|f ′(y)|2e−b|y| dy .

Proof. We first perform some singular integration by parts in order to relate f(0) and f ′(y).

1

2

∫

R

f ′(y)(signy)e−a|y| dy =
a

2

∫

R

fe−a|y| dy − f(0) = 〈f〉a − f(0) .

By Young’s inequality, we find

|f(0)− 〈f〉a| =
∣

∣

∣

∣

1

2

∫

R

sign(y)f ′(y)e−a|y| dy

∣

∣

∣

∣

≤ 1

2

∫

R

|f ′(y)|e−a|y| dy

≤ 1

2

(∫

R

|f ′(y)|2e−b|y| dy

)1/2 (∫

R

e−(2a−b)|y| dy

)1/2

≤ 1

2

(

2

2a− b

)1/2(∫

R

|f ′(y)|2e−b|y| dy

)1/2

.

Raising it to the square, we obtain the result. �

4. Exponential relaxation to equilibrium (perturbative analysis)

This section is devoted to the proof of Theorem 1.3, with the help of the previous energy
estimates. We proceed in two steps. Firstly, we prove that the shape converges to equilibrium
(meaning that u converges to a constant unit value). Secondly, we prove that the center x(t)
converges to a finite value (not determined).

Proof of Theorem 1.3 – Step 1: convergence of the shape. Applying Lemma 3.5 to w ∈ L1
λ with

w′ ∈ L2
χ, and noting that 〈w〉λ = 0 by the second conservation law, we have

(4.1) |w(t, 0)|2 ≤ 1

χ+ 2
√
α
G(t) .

Combining with Proposition 3.4, we find

(4.2)
d

dt
F (t) ≤ −

(

χ+
√
α

χ
2 +

√
α

)

G(t) + J(t) ,

where the higher-order contributions in J(t) reads as follows,

(4.3) J(t) =
λ

χ
w(t, 0)

∫ ∞

−∞
eχ|y|∂y

(

we−χ|y|
)

∂y

(

e−χ|y|v
)

dy

+
λ

χ

(

w(t, 0) (
√
α〈v(t)〉λ − λv(t, 0))

χ+ λv(t, 0) −√
α〈v(t)〉λ

)∫ ∞

−∞
eχ|y|∂y

(

we−χ|y|
)

∂y

(

e−χ|y|(1 + v)
)

dy .

The first integral involves ‖∂yw∂yv‖L1
χ
, ‖∂ywv‖L1

χ
, ‖w∂yv‖L1

χ
and ‖wv‖L1

χ
, which are all con-

trolled quadratically by E,F and G. In addition, the prefactor w(t, 0) is controlled by G1/2

following equation (4.1). Similarly, the second contribution in (4.3) follows the same pattern, as
both 〈v(t)〉λ and v(t, 0) are controlled by interpolation using Lemma 3.5:

|v(t, 0) − 〈v(t)〉λ|2 ≤
1

χ+ 2
√
α
F (t) , |v(t, 0) − 〈v(t)〉χ|2 ≤

1

χ
F (t) ,
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and the conservation law 〈v(t)〉χ = 0. It follows that

χ+ λv(t, 0) −
√
α〈v(t)〉λ ≥ χ−

(√
χ+

√

α

χ+ 2
√
α

)

F 1/2(t) ,

and so √
α〈v(t)〉λ − λv(t, 0)

χ+ λv(t, 0) −√
α〈v(t)〉λ

≤ C
F 1/2(t)

1− CF 1/2(t)
,

for some constant C > 0 depending on χ and α, provided that F is small enough. Therefore,

|J(t)| ≤ CG(t)1/2
(

G(t)1/2F (t)1/2 +G(t)1/2E(t)1/2 + F (t) + F (t)1/2E(t)1/2
)

(4.4)

+ CG(t)1/2

(

F (t)1/2

1− CF (t)1/2

)

×
(

G(t)1/2 + F (t)1/2 +G(t)1/2F (t)1/2 +G(t)1/2E(t)1/2 + F (t) + F (t)1/2E(t)1/2
)

for some constant C depending on χ and α, provided that F is small enough. Now, by the
improved Poincaré inequality Proposition 3.1 and the second conservation law, we obtain

F (t) ≤ 4

χ2
G(t) .

Moreover, the classical Poincaré inequality with exponential weight together with the first con-
servation law yield

E(t) ≤ 4

χ2
F (t) .

The important point is to isolate the terms with higher derivatives, that is, the terms that are
controlled by G(t). In fact, using the two inequalities above, the bound (4.4) can be simplified
to the following estimate:

(4.5) |J(t)| ≤ C

(

F (t)1/2 + F (t)

1−CF (t)1/2

)

G(t) .

As a consequence, we can control the relaxation of F (t) using the estimate (4.2): assuming that
F (0) is small enough, we get

(4.6)
d

dt
F (t) ≤ −

(

2γ0 − CF (t)1/2
)

F (t) , with γ0 =
χ2

8

(

χ+
√
α

χ
2 +

√
α

)

.

We conclude that F (t), hence E(t), relaxes exponentially fast to zero, provided that F (0) is
initially small enough. Moreover, the rate of convergence is asymptotically close to γ0 as given
in (1.10). To conclude the proof of the exponential decay (1.9), we simply note that

‖ρ̃(t, ·) − ρ̃∞‖2H1
χ
= 2E(t) + 2F (t) ≤

(

8

χ2
+ 2

)

F (t) .

�

Remark 4.1. It follows from (4.6) that the asymptotic rate of convergence γ can be chosen
arbitrarily close to the upper bound γ0, however at the expense of increasing the prefactor as
mentioned in Theorem 1.3. Additionally, it also means that in Theorem 1.3 we can choose any
ε0 that satisfies 0 < ε0 < 4γ20/C

2 where C > 0 as defined in (4.6). More precisely, if initially
‖ρ̃0 − ρ̃∞‖2H1

χ
is close to the upper bound, i.e. F (0) = 4

C2 (γ0 − δ)2 with δ > 0 arbitrarily small,
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then the above argument still provides decay to equilibrium, with a potentially very slow rate of
convergence 0 < γ′ ≤ δ. It follows that for any arbitrarily small 0 < ε < ε0, there exists a large
enough time Tε > 0 such that F (Tε) ≤ ε. From (4.6) we conclude

F (t) ≤
(

εe2γTε
)

e−2γt for all t > Tε ,

that is, the prefactor becomes large as Tε → ∞ together with γ → γ0.

Proof of Theorem 1.3 – Step 2: convergence of the center. We recall the dynamics (2.8)–(2.10)
of the center x(t):

ẋ(t) =
w(t, 0)

∂2
yS(t, 0)

.

On the one hand, we have (2.11b):

(4.7) −∂2
yS(t, 0) =

1

λ

(

χ+ λv(t, 0) −
√
α〈v(t)〉λ

)

.

By the same argument as above, −∂2
yS(t, 0) is bounded below uniformly for t > 0 provided that

F (0) is small enough, simply because the term λv(t, 0)−√
α〈v(t)〉λ is controlled by F (t) which

is exponentially decaying in that case.
On the other hand, the value w(t, 0) is estimated by the following basic inequality:

|w(t, 0)| ≤ C
(

G(t) + F (t)1/3 + F (t)1/2
)

.(4.8)

Indeed, we have by integration by parts,

−1

2

∫ ∞

−∞
∂y
(

w2
)

sign(y)e−χ|y| dy = w(0)2 − χ

2

∫ ∞

−∞
w2e−χ|y| dy = w(0)2 − χF (t) .

It follows that

|w(t, 0)|2 =

∣

∣

∣

∣

−1

2

∫ ∞

−∞
∂y
(

w2
)

sign(y)e−χ|y| dy + χF (t)

∣

∣

∣

∣

≤
(∫ ∞

−∞
|w|2 e−χ|y| dy

)1/2(∫ ∞

−∞
|∂yw|2 e−χ|y| dy

)1/2

+ χF (t)

≤ 2F (t)1/2G(t)1/2 + χF (t) .

Therefore,

|w(t, 0)| ≤
(

2F (t)1/2G(t)1/2 + χF (t)
)1/2

≤
√
2F (t)1/4G(t)1/4 +

√
χF (t)1/2

≤ C
(

G(t) + F (t)1/3 + F (t)1/2
)

,

where the last estimate follows from Young’s inequality. This concludes the proof of the bound
(4.8).

We deduce immediately that ẋ is integrable, since F is exponentially decaying, whereas G is
part of the dissipation of Ḟ by (4.2) and (4.5). �
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Figure 1. Convergence to equilibrium in system (1.1a)-(1.1b): (a) Convergence of
the density ρ towards the equilibrium state (1.2). Despite having two peaks initially, it
converges towards the stationary profile (1.2). (b) Time evolution of the gradient ∂xS.
The initial configuration S0(x) has multiple critical points, violating the assumption
in Proposition 1.1. However, the convergence still holds, as confirmed by (c), with an
actual convergence rate better than the theoretical upper bound O(e−γ0t). (d) Location
of the critical points of S (change of sign of ∂xS) as a function of time: there are three
critical points initially, soon merging into a single x(t) as assumed in Proposition 1.1.
Parameters are: χ = α = 1. Discretization parameters are: ∆η = ∆t = 10−2.

5. Numerics

We performed a numerical investigation of system (1.1a)-(1.1b). We used a Lagrangian for-
mulation, based on the inverse of the cumulative distribution function of ρ, that is, we define Π
and its inverse X such that:

Π(t, x) =

∫ x

−∞
ρ(t, y) dy,

Π(t,X(t,η)) = η, X(t,Π(t, x)) = x.

By using the formulation of S as a convolution with the fundamental solution of the elliptic
problem (1.1b), we obtain the following closed equation on X(t, η):

∂tX(t, η) = −∂η

(

1

∂ηX(t, η)

)

− χsign

(

1

2

∫ 1

0
sign (X(t, η) −X(t, η̃)) e−

√
α|X(t,η)−X(t,η̃)| dη̃

)

.
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This formulation is well suited for the numerical simulation of interacting particles in one di-
mension of space, see e.g. [11, 6]. We discretize the cumulative mass ηi = i∆η, for some step
mass ∆η > 0. The discretization in mass rather than space provides more accuracy in regions
of higher density.

We use an implicit Euler scheme for the diffusion part, and an explicit scheme for the inter-
action part of the equation. Being given the solution Xt(i) at time t and at cumulative mass
η = i∆η, we compute Xt+∆t(i) by solving

0 = Xt+∆t(i)−Xt(i) +
∆t

∆η

(

∆η

(Xt+∆t(i+ 1)−Xt+∆t(i))
− ∆η

(Xt+∆t(i)−Xt+∆t(i− 1))

)

+ χ∆t sign





1

2

∑

j

sign (Xt(i) −Xt(j)) e
−√

α|Xt(i)−Xt(j)|





using the ©Octave function fsolve. Then the associated discretized density ρ is recovered from
X by doing the reverse transformation using ρ(t,Xt(i)) = 2∆η/ (Xt(i+ 1)−Xt(i− 1)).

Typical results are shown in Figure 1 for an asymmetrical initial density ρ0 which is a relatively
large perturbation of the equilibrium profile, associated with a initial signal S0 that does not
satisfy the condition of having a unique critical point (as in Proposition 1.1), see Figure 1(d).
However, after some transient period, it does admit a unique critical point. This suggests that
the convergence holds beyond a perturbative regime as analyzed in the present work. We can also
see from the numerical results that the theoretical rate of convergence is slightly underestimated.

We can draw a couple of perspectives from this numerical study. (i) It would be interesting
to prove that no more than a critical point of S can persist in the long time asymptotics, so
that any initial configuration falls into the scope of Proposition 1.1 after some time, as in Figure
1. (ii) The rate of convergence (1.10) can certainly be improved with a more cautious analysis,
and the identification of a suitable functional inequality.
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Appendix A. Reformulation of the improved Poincaré inequality

Lemma A.1. For λ ≥ χ > 0, define Ωλ,χ : R× R → R by

(A.1) Ωλ,χ(x, y) =

{

(Mλ(x)−Mχ(x)) (Mλ(y)−Mχ(y)) + (1−Mχ(y))Mχ(x) if x ≤ y ,

(Mλ(x)−Mχ(x)) (Mλ(y)−Mχ(y)) + (1−Mχ(x))Mχ(y) if x > y ,

where Mλ denotes the cumulative density function,

Mλ(x) =

∫

z<x

λ

2
e−λ|z| dz .

Then Ωλ,χ is non-negative and symmetric,

Ωλ,χ ≥ 0 , Ωλ,χ(x, y) = Ωλ,χ(y, x) ,



20 VINCENT CALVEZ AND FRANCA HOFFMANN

and we can rewrite the left-hand side of the Poincaré inequality (3.1) as

1

2

∫ ∞

−∞
|w(y)− 〈w〉λ|2e−χ|y| dy =

∫∫

w′(x1)w
′(x2)Ωλ,χ(x1, x2) dx1 dx2 .

Proof. We assume χ = 1 without loss of generality and denote Ωλ = Ωλ,1. We can reformulate
the left-hand-side of (3.1) as follows:

∫ ∞

−∞
|w(y) − 〈w〉λ|2e−|y| dy =

∫ ∞

−∞

(
∫ ∞

−∞
(w(y)− w(z))

λ

2
e−λ|z| dz

)2

e−|y| dy

=

∫ ∞

−∞

(
∫ ∞

−∞

(
∫ y

z
w′(x) dx

)

λ

2
e−λ|z| dz

)2

e−|y| dy

=

∫ ∞

−∞

(∫

x<y
w′(x)

(∫

z<x

λ

2
e−λ|z| dz

)

dx

−
∫

x>y
w′(x)

(∫

z>x

λ

2
e−λ|z| dz

)

dx

)2

e−|y| dy ,

where we changed the order of integration to obtain the last line. Denoting

Nλ(x) := 1−Mλ(x) =

∫

z>x

λ

2
e−λ|z| dz

and expanding the last square, we find
∫ ∞

−∞
|w(y)− 〈w〉λ|2e−|y| dy =

∫ ∞

−∞

(∫

x<y
w′(x)Mλ(x) dx−

∫

x>y
w′(x)Nλ(x) dx

)2

e−|y| dy

=

∫ ∞

−∞

(
∫∫

w′(x1)w
′(x2)Ω̃λ(y, x1, x2) dx1 dx2

)

e−|y| dy ,

where

Ω̃λ(y, x1, x2) = Mλ(x1)Mλ(x2)1x1<y1x2<y −Mλ(x1)Nλ(x2)1x1<y1x2>y

−Nλ(x1)Mλ(x2)1x1>y1x2<y +Nλ(x1)Nλ(x2)1x1>y1x2>y .

Let us consider the case x1 < x2 (the argument for x1 > x2 is similar), and using the identity
Nλ = 1−Mλ, we can simplify the expression above:

Ω̃λ(y, x1, x2) = Mλ(x1)Mλ(x2)1x2<y −Mλ(x1)(1−Mλ(x2))1x1<y<x2

+ (1−Mλ(x1))(1 −Mλ(x2))1x1>y .

By exchanging the order of integration, we find
∫ ∞

−∞
|w(y)− 〈w〉λ|2e−|y| dy = 2

∫∫

w′(x1)w
′(x2)Ωλ(x1, x2) dx1 dx2 ,

where

Ωλ(x1, x2) =
1

2

∫

Ω̃λ(y, x1, x2)e
−|y| dy

= Mλ(x1)Mλ(x2)(1 −M1(x2))−Mλ(x1)(1−Mλ(x2))(M1(x2)−M1(x1))

+ (1−Mλ(x1))(1 −Mλ(x2))M1(x1)

= Mλ(x1)Mλ(x2)−Mλ(x1)M1(x2) + (1−Mλ(x2))M1(x1)

if x1 < x2, and Ωλ(x1, x2) := Ωλ(x2, x1) if x1 > x2. The symmetric expression (A.1) for Ωλ

immediately follows.
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Next, we show Ωλ ≥ 0. It is enough to show non-negativity for x < y by symmetry. By direct
calculation,

d

dλ
Mλ(x) =

x

2
e−λ|x| .

Suppose on the one hand that y > 0, then Ωλ(x, y) ≥ Mλ(x)(Mλ(y) − M1(y)) ≥ 0, because
λ 7→ Mλ(y) is increasing for y > 0. Suppose on the other hand that y < 0, hence x < 0 as well
(recall x < y by assumption). Therefore,

Ωλ(x, y) ≥ Mλ(x)Mλ(y)−Mλ(x)M1(y) + (M1(y)−Mλ(y))M1(x)

= (Mλ(x)−M1(x)) (Mλ(y)−M1(y)) ,

which is non-negative because λ 7→ Mλ(x) is decreasing for x < 0. This concludes the proof. �

Appendix B. L1-stability in the case α = 0

In the case α = 0 dynamical arguments together with known stability results for shock waves
[22] provide global L1 stability of solutions. We sketch the argument here for a more general
signal response function φ : R → R with the biologically reasonable assumptions that φ is odd,
bounded, non-increasing and regular enough. For u[∂xS] denoting the chemotactic flux, we
consider the slightly more general bacterial chemotaxis model

∂tρ(t, x) = ∂2
xρ(t, x) + ∂x (ρ(t, x)u[∂xS]) ,(B.1a)

− ∂2
xS(t, x) = ρ(t, x) .(B.1b)

Given a symmetric velocity set V ⊂ R, the macroscopic flux u can be related to the microscopic
behavior of individual cells via the signal response function,

u[∂xS](t, x) =
1

|V |

∫

v∈V
vφ(v∂xS(t, x))dv ,

an expression that was derived rigorously from a mesoscopic model in [20] by means of parabolic
scaling techniques. Choosing the stiff response function φ(x) = −sign(x) yields model (1.1)
considered in this work (with χ :=

∫

v∈V |v|dv/|V |).
What allows us to handle the case α = 0 with an alternative method is a reformulation of

system (B.1) as a viscous scalar conservation law (SCL). Substituting ρ = −∂2
xS into (B.1a),

denoting

z(t, x) := ∂xS(t, x) , f(r) := − 1

|V |

∫

v∈V
Φ(vr) dv

with Φ the antiderivative of the signal response function φ, and integrating (B.1a) once w.r.t.
x, we obtain the viscous SCL

(B.2) ∂tz + ∂xf(z) = ∂2
xz .

The fundamental solution of (B.1b) is given by K0(x) = −|x|/2, and since we fixed the cell mass
at
∫

ρdx = 2/χ, we obtain the far-field conditions for any t > 0,

(B.3) z± := lim
x→±∞

z(t, x) = lim
x→±∞

−1

2

∫

R

sign(x− y)ρ(t, y) dy = ∓ 1

χ
.

Any stationary state Z∞ = Z∞(x) to (B.2)-(B.3) satisfies (after another integration in x),

(B.4) Z ′
∞ = f(Z∞)− f(1/χ) , lim

x→±∞
Z∞ = ∓1/χ .

where the integration constant is determined by the far-field condition and using the fact that
Φ is even. Whilst no explicit stationary state can be found, existence follows from an implicit
argument.
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Proposition B.1 (Existence). Let V ⊂ R be the velocity set (which is a symmetric open
interval), and let φ : R → R be odd, non-increasing and in C−1(R). Then system (B.1) admits
at least one stationary state (ρ∞, S∞).

Proof. Fix x ∈ R. Applying the mean value theorem to the continuous function g : V̄ → R

defined as g(v) := Φ(vZ∞(x)) − Φ(v/χ), there exists a velocity v∗ ∈ V such that (B.4) can be
reformulated as

Z ′
∞ = F (Z∞) := Φ(v∗/χ)− Φ(v∗Z∞) .

W.l.o.g. set Φ(0) = 0, and so Φ ≤ 0 and v∗ 6= 0. F is a convex function of Z∞ (since φ is
assumed non-increasing) with the two zeros z+ and z−, and it follows that the above system has
two equilibria, z+ = −1/χ being an attractor, and z− = 1/χ a repeller. For −1/χ < Z∞ < 1/χ,
the derivative Z ′

∞ is negative and so has the desired behavior ensuring that the far-field condition
is satisfied. As the two stationary points lie on the same trajectory in phase space, a qualitative
analysis of the phase portrait provides existence of a solution Z∞ satisfying (B.4). �

Using the reformulation as a viscous SCL above, we can show asymptotic stability with respect
to the L1-distance.

Theorem B.2 (L1 stability). Let φ ∈ C1(R). Given a stationary state Z∞ ∈ L1(R) satisfying
(B.4), consider an initial datum z0 ∈ L∞(R) ∩

(

L1(R) + Z∞
)

satisfying z+ ≤ z0(x) ≤ z− for
a.e. x ∈ R. Then the solution z(t, x) to (B.2)-(B.3) satisfies

‖z(t, ·) − Z∞(· − h)‖1 → 0 as t → ∞

for the shift

h :=
χ

2

∫

(z0 − Z∞) dx .

This result yields more than just stability in the sense that a solution z(t, x) initially close to
the stationary state Z∞ remains close for all times. In fact, Theorem B.2 holds for any initial
perturbation, providing global L1-stability.

The proof of Theorem B.2 makes use of the linear C0-semigroup Tt : L∞(R) → L∞(R)
corresponding to the Cauchy problem for (B.2), sending an initial datum z0 ∈ L∞(R) to its
corresponding solution z(t, x) with z(0, x) = z0(x). If f in (B.2) is at least C2, the semigroup
(Tt)t≥0 enjoys the four Co-Properties: comparison (a ≤ b a.e. implies Tta ≤ Ttb a.e), contraction
(‖Tta − Ttb‖1 ≤ ‖a − b‖1), conservation (

∫

Ttadx =
∫

adx) and constants (if a is constant,
then Tta = a). These properties follow from the fact that the flux term ∂xf(z) in (B.2) may
be interpreated as a lower order perturbation of the heat equation ∂tz = ∂2

xz, see [22]. The
contraction property immediately yields the decay

d

dt
‖Ttz0 − Z∞(· − h)‖1 ≤ 0

and it remains to show that the limit is indeed zero as claimed.

Proof. The key approach is to first focus on the case where the initial datum lies between two
shifts of the profile Z∞ as this case can be treated by means of dynamical systems theory
using compactness of trajectories, ω-limits and Lasalle’s invariance principle (Theorem 3 in
[22, Chapter 7, Section 3.2], which relies on Lemma 4 in the same section). The general idea
for this result is due to Osher and Ralston, see [17]. It then remains to show that the set
of initial conditions considered in Theorem B.2 is included in the L1-closure of the set of L∞

functions sandwiched between two arbitrary shifts of Z∞. Indeed, for z0 ∈ L1 + Z∞ such that
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z+ ≤ z0 ≤ z−, the integral
∫∞
y |z0(x) − Z∞(x)|dx vanishes as y → ∞, and similarly for the

distance towards −∞. So for any ε > 0 there exist s, t ∈ R such that
∫ +∞

s
|z0(x)− Z∞(x)|dx <

ε

3
,

∫ t

−∞
|z0(x)− Z∞(x)|dx <

ε

3
.

For η > 0 small enough such that η < ε/(3χ|s − t|−1), we define z̃(x) equal to (1− χη)z0(x) on
(t, s) and equal to Z∞ elsewhere. Then

∫

|z̃(x)− z0|dx =

(∫ +∞

s
+

∫ t

−∞

)

|z0(x)− Z∞(x)|dx+ χη

∫ s

t
dx < ε .

And for big enough k ∈ R and small enough j ∈ R, we have

Z∞(x− j) ≤ z̃(x) ≤ Z∞(x− k) for a.e. x ∈ R .

This concludes the proof. See also Corollary 1 in [22, Chapter 7, Section 3.2]. �
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