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Appendix A: Three-State Game Pair

A1. Conditions

Let fz be the probability that the capital ever reaches
zero given a starting amount of z ∈ Z units. It is then
consequent of Markov chain theory [1, 2] that either fz =
1 ∀ z ≥ 0, reflecting that the game is fair or losing, or
that fz < 1 ∀ z > 0, in which case it is possible that the
capital will grow indefinitely and the game is winning.
The set {fz} is the minimal non-negative solution to the
recurrence equation

fMk = p′1fMk+1 + r′1fMk + q′1fMk−1, (A1a)
fMk+l = p′2fMk+l+1 + r′2fMk+l + q′2fMk+l−1, (A1b)

where k ≥ 1, l ∈ {1, ...,M − 1}, and boundary condi-
tion f0 = 1 applies. Solving Eq. (A1b) yields a general
solution fMk+l = a1φ

′l
2 + a2, where

a1 =
fMk − fM(k+1)

1− φ′M2
, (A2a)

a2 =
fM(k+1) − fMkφ

′M
2

1− φ′M2
. (A2b)

Substituting this solution into Eq. (A1a) and solving
yields fMk = a3(ϕk−1)+1 with ϕ ≡ φ′1φ′M−12 . If ϕ ≥ 1,
the minimal non-negative solution occurs when a3 = 0,
so fMk = 1∀ k ≥ 0; otherwise, the minimal non-negative
solution occurs when a3 = 1, thus fMk = ϕk < 1 ∀ k >
0. It is hence summarized that fMk = min{1, ϕk} for
stochastically mixed games. This leads to the result in
Eq. (1) of the main paper.

A2. Stationary Distribution

The eigenvalue equation ω = ωH produces the set of
equations

ω1 = ω1r
′
1 + ω2q

′
2 + ωMp

′
2, (A3a)

ω2 = ω1p
′
1 + ω2r

′
2 + ω3q

′
2, (A3b)

ωm = ωm−1p
′
2 + ωmr

′
2 + ωm+1q

′
2, (A3c)

ωM = ω1q
′
1 + ωM−1p

′
2 + ωMq

′
2, (A3d)

where m ∈ [3,M − 1]. Eq. (A3c) is first solved with
ω2 and ω3 as boundary conditions. Invoking Eqs. (A3a)
and (A3b) eliminates ω2 and ω3, and the normalization
constraint

∑M
m=1 ωm = 1 sets ω1. This yields the solution

given in Eq. (3) of the main paper.
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A3. Capital Distribution

Suppose that out of n rounds, n+ result in wins, n0
result in draws, and n− result in losses. At steady-state,
the average outcome probabilities are s̄ = ω1s

′
1 + (1 −

ω1)s′2 for s ∈ {p, q, r}, where ω1 is the stationary distri-
bution of capital state S1. The distribution Pn(k) repre-
senting the probability of having k ∈ Z ∩ [−n, n] capital
on round n can thus be written

Pn(k) =
∑ n!

n+!n0!n−!
p̄n+ r̄n0 q̄n− , (A4)

where the summation occurs over the solution set of si-
multaneous Diophantine equations n++n0+n− = n and
n+−n− = k. Such a solution set can be parametrized as
(n+, n0, n−) = (u+(|k|+k)/2, n−|k|−2u, u+(|k|−k)/2
where u ∈ Z and 0 ≤ u ≤ b(n− k)/2c). The summation
in Eq. (A4) is thus over u, enabling the closed-form cal-
culation of Pn(k).

The expected capital µ(n) can be computed from this
explicit capital distribution as

µ(n) =

n∑
k=−n

kPn(k) = (p̄− q̄)n, (A5)

which is identical to the result obtained in Eq. (5) of the
main paper.

A4. Fundamental Matrix

We have Z = (I − H + Ω)−1, but to simplify calcu-
lations, the identity Z(I − H) = I − Ω is used. This
produces the set of equations

δi1−ω1 =Zi1(1−r′1)−Zi2q′2−ZiMp′2, (A6a)
δi2−ω2 =−Zi1p′1 +Zi2(1−r′2)−Zi3q′2, (A6b)
δij−ωj =−Zi(j−1)p′1 +Zij(1−r′2)−Zi(j+1)q

′
2, (A6c)

δiM −ωM =−Zi1q′1−Zi(M−1)p′2 +ZiM (1−r′2), (A6d)
where i ∈ [1,M ] and j ∈ [3,M − 1]. Eq. (A6c) is first
solved with Zi2 and Zi3 as boundary conditions. Invoking
Eqs. (A6a) and (A6b) eliminates Zi2 and Zi3, and the
normalization constraint

∑M
j=1 Zij = 1 sets Zi1. This

yields
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Zi1 = (p′2/ρ)
{

2q′M2 (p′2 − q′2)
2 {
q′2 [1− i− (p′2 − q′2)] + φ′−M2

[
Mp′2φ

′i
2 − q′2 [M + 1− i− (p′2 − q′2)]

] }
− 2αp′2φ

′−M
2

[
M2q′M2 (p′2 − q′2)

2 − p′2q′2
(
p′M2 − q′M2

) (
1− φ′M2

) ]
+Mβq′2 (p′2 − q′2)

{
q′M2

[
M (p′2 − q′2) + (p′2 + q′2)

]
+ p′M2 [(M − 1) p′2 − (M + 1) q′2]

}}
, (A7a)

Zi2 =
{
p′M2

[
p′2φ

i
2 (p′2 − q′2)− q′2φ′M2 (p′2 − q′2)

]
+ Zi1 (1− φ′2)

{
p′1p
′M
2 q′22 + p′2q

′M
2 [p′2q

′
1 − q′2 (p′1 + q′1)]

}
+ αp′2

[
Mp′M2 q′2 − p′2q′M2 − (M − 1) p′M+1

2

]
+ βq′2

{
q′M2 [M (p′2 − q′2) + q′2]− p′M2 q′2

}}/
q′22 (p′2 − q′2)

(
p′M2 − q′M2

)
, (A7b)

ρ = 2 (p′2 − q′2)
2 {
p′M2 q′2 {p′2 [(M − 1) p′1 + p′2 + q′1]− q′2 (Mp′1 + p′2)}

− p′2q′M2 {Mq′1 (p′2 − q′2) + q′2 [(p′2 − q′2)− (p′1 − q′1)]}
}
. (A7c)

We have Zij = Zi1 for j = 1, and for 2 ≤ j ≤M , the general solution is

Zij =
{
Zi1p

′
1 (p′2 − q′2)

(
1− φ′2−j2

)
− Zi2q′2 (p′2 − q′2)

(
1− φ′1−j2

)
+ α

{
p′2φ
′−1
2 + φ′−j2 [p′2 (j − 2)− q′2 (j − 1)]

}
− β

[
(j − 1) p′2 − (j − 2) q′2 − p′2φ

′2−j
2

]
+ (p′2 − q′2)

(
1− φ′−R(j−i)

2

)}/
(p′2 − q′2)

2
, (A8)

where R(x) is the unit ramp function.

Appendix B: Three-state M-branch game pair

B1. Conditions

Every M consecutive states is termed a tier. Winning
a tier necessitates winning across all M branches; fur-
thermore, an arbitrary number of losses li at each state
Si is allowed, so long as there is a corresponding number
of wins to compensate. The probability of winning and
losing a tier, respectively p̃ and q̃, is thus

s̃ =

M∏
i=1

s′i ·
∞∑

l1,...,lM=0

[
M∏
i=1

(
q′ip
′
i−1
)li]

, (B1)

where s′i = γs+(1−γ)si for s ∈ {p, r, q} and i ∈ [1,M ] are
the mixed transition probabilities. The game is winning,
fair, and losing when p̃ > q̃, p̃ = q̃, and p̃ < q̃ respectively.
Cancellation of terms yield the simplistic condition in Eq.
(8) of the main paper.

B2. Stationary Distribution

The eigenvector equation ω = ωH produces the set of
equations

ω1 = ω1r
′
1 + ω2q

′
2 + ωMp

′
M , (B2a)

ωm = ωm−1p
′
m−1 + ωmr

′
m + ωm+1q

′
m+1, (B2b)

ωM = ω1q
′
1 + ωM−1p

′
M−1 + ωMr

′
M , (B2c)

wherem ∈ [2,M−1]. But, as the recurrence in Eq. (B2b)
involves non-constant coefficients, the usual method of
solving the characteristic polynomial cannot be used. In-
stead, a tracking method can be used on the recursion
tree to arrive at

ωm = F [1]
m ω1 +G[1]

m ω2, (B3)
where F and G are counting functions as written in the
main paper. Invoking Eq. (B2a) to eliminate ω2 and the
normalization constraint

∑M
m=1 ωm = 1 to set ω1 then

yields the solution for ωm as presented in Eq. (10) of the
main paper.

B3. Fundamental Matrix

Again, the identity Z(I − H) = I − Ω is used. This
produces the set of equations

δi1−ω1=Zi1(1−r′1)−Zi2q′2−ZiMp′M , (B4a)
δij−ωj=−Zi(j−1)p′j−1+Zij(1−r′j)−Zi(j+1)q

′
j+1, (B4b)

δiM−ωM=−Zi1q′1−Zi(M−1)p′M−1+ZiM (1−r′M ), (B4c)
where i ∈ [1,M ] and j ∈ [2,M − 1]. As the recurrence in
Eq. (B4b) is non-constant, the method of characteristic
polynomials cannot be applied. The recurrence tree is
tracked to give

Zij = F
[1]
j Zi1 +G

[1]
j Zi2 + T

[3]
j −G

[i]
j /q

′
i+1, (B5)

where

T [l]
m =

∑
k∈K(n1,n2)

(n1,n2)∈ζl(m)

(
ωm−σ|k|(k)−1

q′m−σ|k|(k)

)
πm(k), (B6a)

ζd(m) =

m⋃
i=d

ξi(m). (B6b)

Invoking Eq. (B4a) to eliminate Zi2 and the normal-
ization constraint

∑M
j=1 Zij = 1 to set Zi1 then yields

the solution

Zij =
(
F

[1]
j + ΛG

[1]
j + δ1j

)
Z∗i − %iG

[1]
j + T

[3]
j −

G
[i]
j

q′i+1

,

Z∗i =
1 + 1

q′i+1

∑M
j=iG

[i]
j −

∑M
j=2 T

[3]
j + %i

∑M
j=2G

[1]
j

1 +
∑M
j=2 F

[1]
j + Λ

∑M
j=2G

[1]
j

,

%i =
pM

(
q′i+1T

[3]
M −G

[i]
M

)
− q′i+1ω1(

p′MG
[1]
M + q′2

)
q′i+1

. (B7)
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Appendix C: Numerical Simulations

Double-precision numerical Monte Carlo simulations of
the presented game structures were written in Java 11.
The stochastic mixing of games and selection of outcomes
at each game round were performed using native random-
number generators, provided by the SplittableRandom
class to facilitate parallelization. All statistical results
were averaged over at least 106 trials where applicable
to suppress noise; simulations were run on a 16-core ma-
chine. Visualization of the simulation data and compar-
ison against theory were performed in Mathematica 12.

Appendix D: Computational Complexity

A technical motivation for pursuing the analytical cap-
ital statistics solutions in the main paper is to bypass the
computational cost of Markov-chain calculations in mak-
ing predictions. We analyze this as follows. The basic
approach to compute capital statistics is to propagate
the initial capital distribution vector using the full tran-
sition matrix. For n game rounds, since the capital may

be changed by a unit amount each round, the capital
distribution vector will be O(n) long, and the transition
matrix will beO(n×n) large. Therefore arriving at the fi-
nal capital distribution will be O(n3) expensive, followed
by post-processing to compute statistics of interest. This
is unwieldy, as n can be large, say, ∼ O(106) in some
practical applications.

As was carried out in this paper, and is common in
literature, one may contract the matrix to M × M by
considering capital states modulo M , and accordingly
the time complexity to compute the final distribution
vector may be improved to O(nM2). It is possible to
reduce this further, but at least some matrix operations
are required, such as spectral decomposition, inverses,
and multiplication, so O(M3) is a lower bound. In this
work M is general, and can be arbitrarily large, so this
is not entirely satisfactory. Having explicit analytical, or
otherwise closed-form, solutions for capital statistics al-
lows the side-stepping of these calculations to give nearly
O(1) theoretical evaluations, a huge advancement.
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