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Abstract

Stabilizing the unknown dynamics of a control system and minimizing regret in control of
an unknown system are among the main goals in control theory and reinforcement learning. In
this work, we pursue both these goals for adaptive control of linear quadratic regulators (LQR).
Prior works accomplish either one of these goals at the cost of the other one. The algorithms
that are guaranteed to find a stabilizing controller suffer from high regret, whereas algorithms
that focus on achieving low regret assume the presence of a stabilizing controller at the early
stages of agent-environment interaction. In the absence of such stabilizing controller, at the
early stages, the lack of reasonable model estimates needed for (i) strategic exploration and
(ii) design of controllers that stabilize the system, results in regret that scales exponentially
in the problem dimensions. We propose a framework for adaptive control that exploits the
characteristics of linear dynamical systems and deploys additional exploration in the early stages
of agent-environment interaction to guarantee sooner design of stabilizing controllers. We show
that for the classes of controllable and stabilizable LQRs, where the latter is a generalization of
prior work, these methods achieve Õ(

√
T ) regret with a polynomial dependence in the problem

dimensions.

1 Introduction

Linear quadratic regulator (LQR): Linear dynamical systems are general and fundamental
continuous control systems that, due to their unique characteristics, have been vastly used in
real-world problems [Zarchan and Musoff, 2013]. Among linear dynamical systems, LQRs are the
canonical settings with quadratic regulatory costs to design desirable controllers. In LQRs, when
the model of dynamics is given to the decision-making agent, the problem of finding the optimal
control to minimize cumulative costs results in a stabilizing linear controller [Bertsekas, 1995].

The problem of unknown dynamics: The study of LQRs becomes more challenging when the
environment dynamics are unknown. The agent needs to learn the dynamics in order to (1) stabilize
the system and (2) find the optimal controller. This is one of the core challenges in reinforcement
learning and control theory termed as adaptive control. The agent interacts with the environment,
explores it, estimates the system dynamics, and strategically exploits these estimates for further
exploration-exploitation. Due to the agent’s possible sub-optimal decisions during exploration, the
agent’s cumulative cost may increase significantly. The agent needs to balance the exploration and
exploitation such that it reduces the cumulative cost in long term. The performance of the agent is
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evaluated based on the notion of regret, which quantifies the difference between the cumulative cost
encountered by the agent, and the expected cumulative cost of the optimal controller.

Optimism in the face of uncertainty principle (OFU): In order to minimize regret, the
principle of OFU [Lai and Robbins, 1985] is proposed as an effective strategy for exploration and
exploitation in the study of sequential decision making. OFU principle suggests to estimate model
parameters up to their confidence intervals, and then act according to the policy/controller prescribed
by a model in the confidence set with the lowest optimal cost, known as the optimistic model.

Prior work and motivation: For a couple of decades, the statistical aspect of regret minimiza-
tion problem has been investigated from the lens of asymptotic optimality [Lai et al., 1982, Lai and
Wei, 1987]. Recently, a set of novel techniques have been proposed to develop learning algorithms
with finite-time performance guarantees in linear models [Peña et al., 2009]. The seminal work by
Abbasi-Yadkori and Szepesvári [2011] uses OFU principle and proposes an algorithm, OFULQ, to
balance the exploration and exploitation in the presence of sub-Gaussian disturbances. After T time
steps of interaction, OFULQ achieves regret of

√
T in controllable LQRs, a subset to stabilizable

LQRs. However, in the early stage of interactions, when the agent’s model estimate may not be good
enough, optimism may not provide a sound and strategic exploration, causing a possible blow up in
the system state. This uncontrolled state explosion results in a regret upper bound with exponential
dependency in LQR dimensions [Abbasi-Yadkori and Szepesvári, 2011], which further highlights
the need for improved exploration in the early stages of interactions. In order to circumvent state
explosion and have graceful transition to exploitation, most of the prior works assume access to a
stabilizing controller during early stages, which may not be possible in many applications.

Controllability vs. stabilizability: The controllability assumption implies that the state
of the system can be brought to any desirable state in finite-time (Definition 2.2). However, this
condition can be too stringent for practical systems. A weaker notion is the stabilizability, which
states that there exists a controller that makes the system stable (Definition 2.1). This condition is
the necessary and sufficient condition for the optimal control problem to be well-defined [Bertsekas,
1995].

Stabilizable but not controllable system: Consider the following simple linear dynamical
system:

xt+1 =

−2 0 1.1
1.5 0.9 1.3
0 0 0.5

xt +

1 0
0 1
0 0

ut.
The state xt and the input ut are 3 and 2 dimensional vectors respectively. First two elements in the
state vector correspond to controllable modes of the system since any initial value can be brought
to any desired value via inputs. However, the input has no control over the third element, thus
the system is not controllable. The third element of the state vector evolves with the dynamics of
xt+1,3 = 0.5xt,3. Notice that it is stable, i.e. xt,3 decays over time. Thus, the system is stabilizable.
This example shows that the class of stabilizable systems includes a fairly larger number of systems,
including any practical system where the inner dynamics that user cannot directly control are stable.
Therefore, in this work we consider the general case of stabilizable systems. Based on these, in this
paper, we address the following questions:

1. Can we provide regret guarantees in stabilizable setting?

2. Can we avoid the exponential dimension dependence (at least in long term) in the regret bound
by utilizing unique characteristics of linear dynamical systems?
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Table 1: Comparison of current results with prior works.
? := No specified dimension dependency, † := ExpOpt without additional exploration

Work Regret Setting
Initial

Stabilizing Controller

[Abbasi-Yadkori and Szepesvári, 2011] dd
√
T Controllable Does not require

[Faradonbeh et al., 2017]
√
T ? Stabilizable Requires

[Dean et al., 2018] poly(d)T 2/3 Controllable Requires
[Faradonbeh et al., 2018]

√
T ? Stabilizable Requires

[Mania et al., 2019] poly(d)
√
T Controllable Requires

[Cohen et al., 2019] poly(d)
√
T Controllable Requires

[Simchowitz et al., 2020] poly(d)
√
T Stabilizable Requires

[Simchowitz and Foster, 2020] poly(d)
√
T Stabilizable Requires

Theorem 1† dd
√
T Stabilizable Does not require

Theorem 2 poly(d)
√
T Controllable Does not require

Theorem 3 poly(d)
√
T Stabilizable Does not require

Contributions: In this work, we give affirmative answers to these questions. First, we extend
the prior work on controllable settings to the more general case of stabilizable LQRs. We show that,
in stabilizable LQRs, when using optimism to balance exploration and exploitation, choosing proper
time steps to update model parameters and controller plays a crucial role in minimizing regret. We
propose an algorithm with a carefully designed choice for updating rule and show that it achieves
the regret of Õ(dd

√
T ) in stabilizable LQRs with sub-Gaussian disturbances. Here d is the problem

dimension of LQR and Õ(·) presents the order up to logarithmic terms.
In order to mitigate the exponential dependency in the regret upper bounds, we further investi-

gate the behavior of optimism-based agents, specifically, in the early stages of agent-environment
interactions. In these early stages, the agent has inaccurate model estimates. When the agent
strategizes upon its inaccurate estimates using optimism to directly minimize regret, the committed
actions may not provide sufficient exploration required to achieve stabilizing controllers. This
insufficiency results in regret with exponential dependence in the problem dimension.

To address this challenge, we suggest to further exploit the unique characteristics of linear
dynamical systems. In the early stages, any strategy may result in linear regret. Therefore, instead of
directly aiming to minimize regret in these stages, we propose to carefully adjust the early exploration
to also guarantee that stabilizing controllers are soon achieved. Achieving stabilizing controllers for
the unknown systems assures that the agent can bring the system states under control, avoid the
explosion of dynamics, and attain a better long term regret. We accompany the OFU-based controller
with an additional random exploration in the early, when the optimism alone may not provide any
better exploration strategy. We show that this additional exploration imposes slight additional
constant regret in the short stages of early interaction, but the resulting stabilizing controllers ensure
stable behavior, therefore much smaller regret in the long term. Using these principles, we propose
two algorithms, respectively, for controllable and stabilizable LQRs with sub-Gaussian disturbances,
both with regret upper bound of Õ(poly(d)

√
T ). The results in this work can be considered as a

generalization of the prior work. Table 1 provides the comparison of our results with prior works in
terms of rate, system characteristic, and the existence of a initial stabilizing controller.
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2 Preliminaries

We denote the Euclidean norm of a vector x as ‖x‖2. For a given matrix A, ‖A‖2 denotes the spectral
norm, ‖A‖F denotes the Frobenius norm, while A> is the transpose, A† is the Moore-Penrose inverse
and for square matrices, Tr(A) gives the trace of matrix A and ρ(A) denotes the spectral radius of
A, i.e. largest absolute value of A’s eigenvalues. The j-th singular value of a rank-n matrix A is
denoted by σj(A), where σmax(A) := σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(A) := σn(A). I is the identity
matrix with relevant dimensions. Consider a discrete time linear time-invariant system characterized
as,

xt+1 = A∗xt +B∗ut + wt. (1)

where xt ∈ Rn is the state of the system, ut ∈ Rd is the control input, wt ∈ Rn is i.i.d. process noise
at time t. At each time step t, the system is at state xt where the agent observes the exact state
information. Then, the agent applies a control input ut and the system evolves to xt+1 at time t+ 1.
At each time step t, the agent pays a cost ct = x>t Qxt + u>t Rut, where Q ∈ Rn×n and R ∈ Rd×d
are positive definite matrices such that ‖Q‖, ‖R‖ < α and σmin(Q), σmin(R) > α. The problem is to
design control inputs based on past observations in order to minimize the average expected cost:

J? = lim
T→∞

min
u=[u1,...,uT ]

1

T
E
[∑T

t=1
x>t Qxt + u>t Rut

]
(2)

This problem is the canonical example for the control of linear dynamical systems and termed as
linear quadratic regulator (LQR). One can represent the underlying system (1) as

xt+1 = Θ>∗ zt + wt

where Θ>∗ = [A∗ B∗] and zt = [x>t u>t ]>. Knowing Θ∗, the solution of (2), the optimal control law,
is a linear feedback control ut = K(Θ∗)xt with

K(Θ∗) = −
(
R+B>∗ P (Θ∗)B∗

)−1
B>∗ P (Θ∗)A∗, (3)

where P (Θ∗) is the unique positive definite solution to the discrete-time algebraic Riccati equation:

P (Θ∗) = A>∗ P (Θ∗)A∗ +Q−A>∗ P (Θ∗)B∗

(
R+B>∗ P (Θ∗)B∗

)−1
B>∗ P (Θ∗)A∗. (4)

The optimal cost for Θ∗, J? = Tr(P (Θ∗)W ) where W = E[wtw
>
t |Ft−1] for a corresponding

filtration Ft. When the model parameters, A∗, and B∗, are unknown, the agent interacts with the
environment to learn these parameters and aims to minimize the cumulative cost

∑T
t=1 ct. Note

that the cost matrices Q and R are designer’s choice and given. After T time steps, we evaluate the
regret in agent’s performance, i.e.,

REGRET(T ) =
∑T

t=0
(ct − J∗),

which is the difference between the performance of the agent and the expected performance of the
optimal controller. We have the following definitions for the linear dynamical system governed by
A∗ and B∗.
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Definition 2.1 (Stabilizability). The linear dynamical system Θ∗ is stabilizable if there exists K
such that ρ(A∗ +B∗K) < 1.

Definition 2.2 (Controllability). The linear dynamical system Θ∗ is controllable if the controllability
matrix [B∗ A∗B∗ A

2
∗B∗ . . . A

n−1
∗ B∗] has full row rank.

Note that stabilizability is weaker than controllability, i.e., all controllable systems are stabilizable
but the converse is not true. Under both conditions, it is guaranteed to have a unique positive
definite solution to (4) [Kučera, 1972]. Similar to Cohen et al. [2019], we need quantitative version
of stabilizability for the finite-time analysis.

Definition 2.3 ((κ, γ)-Stabilizability). The linear dynamical system Θ∗ is (κ, γ)-stabilizable for
(κ ≥ 1 and 0 < γ ≤ 1) if ‖K(Θ∗)‖ ≤ κ and there exists L and H � 0 such that A∗ + B∗K(Θ∗) =
HLH−1, with ‖L‖ ≤ 1− γ and ‖H‖‖H−1‖ ≤ κ.

Note that this is just a quantification of stabilizability. In other words, any stabilizable sys-
tem is also (κ, γ)-stabilizable for some κ and γ and the conversely (κ, γ)-stabilizability implies
stabilizability (Appendix H). In this work, we provide an array of results for various settings of
LQR. We consider the problem setups with sub-Gaussian process noise wt and two different system
characteristics.

Assumption 2.1 (General Sub-Gaussian Noise). There exists a filtration (Ft) such that zt, xt are
Ft-measurable and for all t ≥ 0, and j ∈ [0, . . . , n], wt,js are σ2

w-sub-Gaussian, i.e., for any γ ∈ R,

E [exp (γwt,j) |Ft−1] ≤ exp
(
γ2σ2

w/2
)

and E
[
wtw

>
t |Ft−1

]
= σ̄2

wI for some σ̄2
w > 0.

Note that the assumption of having isotropic wt is only used to provide cleaner analysis and the
analysis works without that assumption similar to Abbasi-Yadkori and Szepesvári [2011].

Assumption 2.2 (Controllable Linear Dynamical System). The unknown parameter Θ∗ is a member
of a set Sc such that

Sc ⊆
{

Θ′ = [A′, B′] ∈ Rn×(n+d)
∣∣ Θ′ is controllable, ‖A′ +B′K(Θ′)‖ ≤ Υ < 1, ‖Θ′‖F ≤ S

}
Following the controllability and the boundedness of Sc, we have finite numbers D and κ ≥ 1 s.t.,
sup{‖P (Θ′)‖ | Θ′ ∈ Sc} ≤ D and sup{‖K(Θ′)‖ | Θ′ ∈ Sc} ≤ κ.

Assumption 2.3 (Stabilizable Linear Dynamical System). The unknown parameter Θ∗ is a member
of a set Ss such that

Ss ⊆
{

Θ′ = [A′, B′] ∈ Rn×(n+d)
∣∣ Θ′ is (κ, γ)-stabilizable, ‖Θ′‖F ≤ S

}
From (κ, γ)-stabilizability and the boundedness of Ss, we have that ρ(A′ +B′K(Θ′)) ≤ 1− γ, and we
have finite numbers D and κ ≥ 1 s.t., sup{‖P (Θ′)‖ | Θ′ ∈ Sc} ≤ D and sup{‖K(Θ′)‖ | Θ′ ∈ Sc} ≤ κ.

In the following, under Assumption 2.1, we provide three different algorithms with regret
guarantees that are tailored for the systems that satisfy Assumption 2.2 or Assumption 2.3.
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Algorithm 1 ExpOpt

1: Input: Setting, Initial Exploration, H0 minimum duration for a controller
2: if Setting == Controllable then
3: Choose the controllability set, S = Sc, set exploration duration Tw = Tc, and H̄ = 0
4: elseif Setting == Stabilizable
5: Choose the stabilizability set, S = Ss, set exploration duration Tw = Ts, and H̄ = H0

6: Initialize the optimistic model Θ̃0 and controller K(Θ̃0)
7: for t = 0, . . . , T do
8: if Determinant of the design matrix is doubled since last controller update,
9: and More than H̄ steps is passed since last controller update then

10: Estimate the system using regularized least squares in (5)
11: Construct the confidence set and find the optimistic parameter Θ̃t

12: if Initial Exploration = True and (t < Tw) then
13: Deploy control input ut = K(Θ̃t−1)xt + νt Optimism + Exploration
14: else
15: Deploy control input ut = K(Θ̃t−1)xt Optimism

16: Observe xt+1 and update the design matrix

3 Algorithm

We propose ExpOpt, whose pseudocode is provided in Algorithm 1. The algorithm is applicable to
both controllable and stabilizable LQRs. If the system is controllable, then ExpOpt chooses the
controllability set S = Sc described in Assumption 2.2 and if the system is stabilizable, then the
stabilizability set S = Ss described in Assumption 2.3 is chosen for the search of optimal controller.

ExpOpt uses regularized least squares estimates obtained using the past input-output(state)
pairs,

Θ̂t = arg min
Θ

∑t−1

s=0
Tr

((
xs+1 −Θ>zs

)(
xs+1 −Θ>zs

)>)
+ λ‖Θ‖2F . (5)

Using this, ExpOpt constructs a high probability confidence set Ct(δ) that contains the underlying
parameter Θ∗ with high probability. For δ ∈ (0, 1), at time step t, Ct(δ) is defined as,

Ct(δ)=

{
Θ:

√
Tr
{
(Θ−Θ̂t)>Vt(Θ−Θ̂t)

}
≤βt(δ)

}
for βt(δ)=σw

√
2n log

(
det (Vt)

1/2

δ det(λI)1/2

)
+
√
λS,

and Vt = λI +
∑t−1

i=0 ziz
>
i . The guarantee that Θ∗ ∈ Ct(δ) with probability at least 1− δ for all time

steps t is obtained in Abbasi-Yadkori and Szepesvári [2011]. The confidence set above provides a
self-normalized bound on the model parameter estimates via regularized design matrix Vt. At all
time steps of execution, ExpOpt deploys optimism in the face of uncertainty (OFU) principle in
order to design the controller. ExpOpt chooses an optimistic parameter Θ̃t from Ct ∩ S such that,

J(Θ̃t) ≤ inf
Θ∈Ct(δ)∩S

J(Θ) + 1/
√
t,

and constructs the optimal linear controller K(Θ̃t) for the chosen parameter Θ̃t. The key idea in
OFU principle is to choose the model whose average expected cost is smallest among the set of
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plausible models. This allows ExpOpt to obtain a good balance between exploration and exploitation.
As the confidence set shrinks, the performance of ExpOpt improves over time. For technical reasons
utilized in Appendix C, the algorithm uses the one step prior optimistic controller at each time step,
i.e. at time t, the optimal linear controller K(Θ̃t−1) for Θ̃t−1 is used.

ExpOpt avoids frequent updates in the system estimates and the controller. It uses the same
controller at least for a fixed time period of H0 if the system is stabilizable and also waits for
significant refinement in the estimates whether the system is controllable or stabilizable. The latter
is achieved by updating the controller if the determinant of the design matrix is doubled since the
last update.

For both systems, the algorithm has two options, applying additional random exploration in first
Tw steps or avoiding additional exploration. The additional exploration is dedicated to obtain better
estimates of the model at a faster rate in the expense of slightly larger regret in the early stages
of ExpOpt. To this end, an i.i.d. Gaussian vector, νt∼N (0, σ2

νI) where σ2
ν = 2κ2σ̄2

w, is injected
besides the control input, K(Θ̃t−1)xt, at each time step of the additional exploration period.

The additional noise excites the system uniformly which enables to find a stabilizing neighborhood
around the underlying parameter Θ∗ faster. If the enforced exploration is chosen, ExpOpt continues
injecting νt until the system parameter estimates are guaranteed to be close enough to the underlying
parameters which is determined by the enforced exploration duration of Tw. Define Tc and Ts as

Tc := poly(σw, σ
−1
ν , n+ d, (1−Υ)−1, κ), Ts := poly(σw, σ

−1
ν , n+ d, (1− γ/2)−1, κ, α, α). (6)

Tw is equal to Tc if the system is controllable and equal to Ts if the system is stabilizable. These
durations are chosen such that after Tw time steps, the agent has the guarantee that the linear
controller K(Θ̃t−1) produces stable dynamics when applied to the underlying system Θ∗. Thus, if
initial exploration is desired, then we have

ut = K(Θ̃t−1)xt + νt for t ≤ Tw, and ut = K(Θ̃t−1)xt for t > Tw.

Otherwise for all t, ExpOpt applies ut =K(Θ̃t−1)xt. Note that for controllable systems with no
additional exploration, ExpOpt yields OFULQ of Abbasi-Yadkori and Szepesvári [2011] where the
authors provide Õ((n+ d)n+d

√
T ) regret upper bound. In the following, we first generalize OFULQ

to stabilizable systems and then study ExpOpt with exploration in both controllable and stabilizable
setting. The precise description of ExpOpt is in Appendix B.

4 Analysis

4.1 Generalization to Stabilizable LQR

We first consider ExpOpt without additional exploration in stabilizable LQR. The setting is more
challenging compared to its controllable counterpart considered in Abbasi-Yadkori and Szepesvári
[2011]. Recall Assumption 2.3 that states the system is (κ, γ)-stabilizable, which yields ρ(A? +
B?K(Θ∗)) ≤ 1− γ for the optimal controller K(Θ∗) ≤ κ. Therefore, even if the optimal controller
of the underlying system is chosen from Ss, it may not produce contractive closed-loop system, i.e.,
we can have ρ(A? +B?K(Θ∗)) < 1 < ‖A? +B?K(Θ∗)‖ since for any matrix M , ρ(M) ≤ ‖M‖.

From the definition of stabilizability in Definitions 2.1 and 2.3, we know that for any stabilizing
controller K ′, there exists a similarity transformation H ′ � 0 such that it makes the closed loop
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system contractive, i.e. A∗ + B∗K
′ = H ′LH ′−1, with ‖L‖ < 1. However, even if all the policies

that ExpOpt execute stabilize the underlying system, these different similarity transformations of
different policies can further cause an explosion of state during the policy changes. If policy changes
happen frequently, this may even lead to linear scaling of the state over time.

In order to remedy this situation, ExpOpt carefully designs the timing of policy updates and
applies all the policies long enough, so that the state stays well controlled. Therefore, ExpOpt applies
the same policy at least for H0 = O(γ−1 log(κ)) time steps. Using this, we show the boundedness of
the state during the execution of ExpOpt (see Appendix E.2 for the proof). Then decomposing
regret similarly with Abbasi-Yadkori and Szepesvári [2011], we provide the following generalization
of their result for stabilizable systems whose proof is provided in Appendix F-G.

Theorem 1 (Regret of ExpOpt in stabilizable system using only OFU). Suppose Assumptions 2.1
and 2.3 hold for the given LQR. Then, for δ ∈ (0, 1), with probability at least 1− δ, ExpOpt without
additional exploration achieves regret of Õ((n+ d)n+d

√
T log(1/δ)).

4.2 Regret Upper Bound with Early Exploration

Next we analyze the benefit of the early additional exploration of ExpOpt in controllable and
stabilizable LQRs. Define σ? > 0 where σ? is a problem and in particular σ̄w, σw, σν dependent
constant (please refer to Appendix C for precise definition). Adding the random exploration
νt ∼ N (0, σ2

ν) for σ2
ν = 2κ2σ̄2

w enables to guarantee the consistency of the parameter estimation and
provides the following bound.

Lemma 4.1 (Spectral norm of parameter estimation error). Suppose Assumption 2.1 holds. For
T ≥ poly(σ2

w, σ
2
ν , n, log(1/δ)) using additional exploration for the systems that satisfy Assumption

2.2 or Assumption 2.3, with probability at least 1− 4δ, we have

‖Θ̂T −Θ∗‖2 ≤
1

σ?
√
T

(
σw

√
2n log

(
det(VT )1/2

δ det(λI)1/2

)
+
√
λS

)
. (7)

The proof is given in Appendix C & D. We show that for both systems, additional exploration
provides the persistence of excitation of the inputs. In other words, for long enough additional
exploration we show that the smallest eigenvalue of the design matrix Vt scales linearly over time.
Using the confidence set construction of ExpOpt, we derive the advertised result in Lemma 4.1.

In Appendix A, we show that there exists a stabilizing neighborhood around Θ∗, i.e., ‖Θ′−Θ∗‖ ≤ ε,
such that K(Θ′) stabilizes Θ∗ for any Θ′ in this neighborhood. By the choice of Tc and Ts in (6),
ExpOpt guarantees to find this stabilizing neighborhood sooner via additional exploration of first
Tw = Tc steps in controllable systems and first Tw = Ts steps in stabilizable systems. For t ≥ Tw,
ExpOpt starts redressing the possible state explosion due to unstable controllers and the perturbation
in the early stages. Define Tr,c and Tr,s as,

Tr,c :=Tc+O

(
(n+ d) log(n+ d)

log(2/(1 + Υ))

)
, Tr,s :=Ts+O

(
(n+ d) log(n+ d)

γ
2 −

2
H0

log κ

)
. (8)

Recall that H0 is the minimum duration for a controller such that the state is well-controlled despite
the policy changes. In the following, we show that for T >Tr,c in controllable and for T >Tr,s in
stabilizable systems, the stabilizing controllers are applied long enough that the state stays bounded.
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Lemma 4.2 (Boundedness of state with additional exploration).
1) Under Assumptions 2.1 & 2.2, if ExpOpt runs with additional exploration for Tc time steps, with
probability at least 1− 2δ, for t ≤ Tr,c, ‖xt‖ = O((n+ d)n+d). On the other hand, for T ≥ t > Tr,c,
‖xt‖ ≤ Xc := poly(σw,

√
n, (1−Υ)−1, log(1/δ)) with probability at least 1− 3δ.

2) Under Assumptions 2.1 & 2.3, if ExpOpt runs with additional exploration for Ts time steps,
with probability at least 1− 2δ, for t≤Tr,s, ‖xt‖=O((n+ d)n+d). On the other hand, for T ≥ t>Tr,s,
‖xt‖≤Xc := poly(σw,

√
n, κ, γ, log(1/δ)) with probability at least 1− 3δ.

In the proof of lemma in Appendix E, we use the fact that the policies seldom change via
determinant doubling condition on the design matrix or the lower bound of H0 on the duration
of each controller application. Thus, we show that exponential decay of the closed-loop system
due to stabilizing controller brings the state to an equilibrium. After showing the boundedness of
state for ExpOpt with additional exploration, we can finally present the regret results for these
settings. Using the general regret decomposition for adaptive control of LQR in Abbasi-Yadkori and
Szepesvári [2011], we show that the extra regret suffered from additional exploration is tolerable
in the upcoming stages via the guaranteed stabilizing controller, yielding polynomial dimension
dependency in regret.

Theorem 2 (Regret of ExpOpt with additional exploration in controllable systems). Under Assump-
tions 2.1 & 2.2, for δ∈(0, 1), with probability at least 1−δ, if ExpOpt uses additional exploration
for first Tc time-steps then it achieves regret of Õ(poly(n+d)

√
T log(1/δ)), for long enough T .

Theorem 3 (Regret of ExpOpt with additional exploration in stabilizable systems). Suppose
Assumptions 2.1 and 2.3 hold. For δ ∈ (0, 1), with probability at least 1−δ, if ExpOpt uses additional
exploration for first Ts time-steps then ExpOpt achieves regret of Õ

(
poly(n+ d)

√
T log(1/δ)

)
, for

long enough T .

The proofs and the exact expressions are presented in Appendix G. Roughly the exact regret
expressions have a constant regret term due to additional exploration for Tw time steps with
exponential dimension dependency and a term that scales with square root of the remaining time
with polynomial dimension dependency, i.e. (n + d)n+dTw + poly(n + d)

√
T − Tw. Note that Tc

and Ts are problem dependent expressions. Therefore, for large enough T , we derive the advertised
regret bounds.

4.3 Comparison of Theoretical Upper Bounds

To further observe the nature of the stated regret upper bounds, we plot the regret guarantee of
current result with respect to regret upper bound of OFULQ Abbasi-Yadkori and Szepesvári [2011]
in Figure 1. Figures 1(a), (b) and (c) show the theoretical regret upper bounds of both algorithms
in 3, 4 and 5-dimensional LQR settings respectively. Notice that the additional explorations in
the beginning of ExpOpt until guaranteeing the construction of stabilizing controller, increases the
regret upper bound by some small margin. Thus for short time period, OFULQ performs better than
ExpOpt. However, once it is guaranteed that all the optimistically chosen controllers stabilize the
underlying system, regret upper bound of ExpOpt starts scaling gracefully with the rate of

√
T − Tc

with polynomial dimension dependency whereas OFULQ continues with exponential dependency.
Therefore, eventually regret upper bound of ExpOpt becomes tighter than OFULQ. Notice that as
the problem dimension increase, the benefit of early additional exploration becomes more apparent.
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(a) 3-dimensional LQR (b) 4-dimensional LQR (c) 5-dimensional LQR

Figure 1: Regret Upper Bound Comparison of ExpOpt vs. OFULQ in Adaptive Control of LQR

5 Related Work

Asymptotic results in adaptive control: Over the last decade, a large body of literature
attempt to address the controlling and minimizing costs in unknown dynamical systems. Interactive
learning-based methods are proposed to explore and estimate the system dynamics and exploit the
estimates to design even better controllers. For such methods, a set of fundamental studies provide
in asymptotic convergence guarantees [Lai et al., 1982, Lai and Wei, 1987, Fiechter, 1997]. These
works show that as the number of interactions incrase, the gap between a proposed policy and the
optimal one closes.

Finite time regret guarantees: The finite-time study of LQR in adaptive setting is one of
the most popular research directions recently. Some of the works analyze the suboptimality gap
in adaptive control of LQR using certainty equivalence controller [Mania et al., 2019, Faradonbeh
et al., 2018] where they show sublinear regret, when the estimates are close enough. In Dean et al.
[2018], it is shown that ε-greedy exploration with a robust controller achieves Õ(poly(d)T 2/3) regret.
In Abeille and Lazaric [2018] and Ouyang et al. [2017], authors use Thompson sampling to show√
T frequentist regret for scalar systems and

√
T bayesian regret respectively. Cohen et al. [2019]

proposes a new SDP formulation for OFU principle and with an initial stabilizing controller shows√
T regret can be obtained. More recently, Cassel et al. [2020] provides logarithmic regret if only A

or B are unknown in LQR and Simchowitz and Foster [2020] provides a regret lower bound and
shows the optimal polynomial dependency when a stabilizing controller is given initially.

OFU based works: For control problems, OFU principle was first used by Campi and Kumar
[1998]. Besides adaptive control of LQR, OFU principle is widely used in a variety of decision
making paradigm, such as multi-arm bandit [Auer, 2002], linear bandit [Abbasi-Yadkori et al., 2011],
Markov Decision Processes [Jaksch et al., 2010, Azizzadenesheli et al., 2016], and adaptive control of
partially observable linear quadratic control systems [Lale et al., 2020b,c].

Generalized settings: Besides the classical setting of adaptive control of LQR considered
in this paper, there are various works that consider more general settings. One line of research
considers the partially observable counterpart of LQR termed as LQG. It is the setting where instead
of exact state vector, a noisy linear combination of the state vector is observed. In this setting
Mania et al. [2019], Simchowitz et al. [2020], Lale et al. [2020c] achieve

√
T regret and Lale et al.

[2020a] introduces the algorithm that achieves first polylogarithmic regret in this setting. Another
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line of research considers adaptive control under adversarial noise disturbances [Hazan et al., 2019,
Simchowitz et al., 2020]. All these works either consider the existence of a stabilizing controller
or open-loop stable system dynamics. We believe extending the idea of first finding a stabilizing
controller without these assumptions is an important future direction.

6 Conclusion

In this paper, we propose an algorithm framework, ExpOpt, that follows OFU principle to balance
between exploration and exploitation in interaction with LQRs. We show that if an additional
random exploration is enforced in the early stages of the agent’s interaction with the environment,
ExpOpt has the guarantee to design a stabilizing controller sooner. We then show that while the
agent enjoys the benefit of stable dynamics in further stages, the additional exploration does not
alter the early performance of the agent considerably. Finally, we prove that the regret upper bound
of ExpOpt is Õ(

√
T ) with polynomial dependence in the problem dimensions of the LQRs in both

controllable and stabilizable systems. The benefit of additional exploration in finding the stabilizing
neighborhood earlier and significantly reducing the regret in adaptive control of LQRs suggests to
study this phenomenon in other adaptive control problems such as adaptive control in partially
observable setting.
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Appendix

A Stabilizing Neighborhood Around The System Parameters

In this section, we first show that the given systems (both controllable and stabilizable) Discrete
Algebraic Riccati Equation has unique positive definite solution. Then, we show that combining
two prior results, there exists a stabilizing neighborhood round the system parameters that any
controller designed using parameters in that neighborhood stabilizes the system.

Theorem 4 (Unique Positive Definite Solution to DARE, [Bertsekas, 1995]). For Θ∗ = (A∗, B∗), If
(A∗, B∗) is stabilizable and (C,A∗) is observable for Q = C>C, or Q is positive definite, then there
exists a unique, bounded solution, P (Θ∗), to the DARE:

P (Θ∗) = A>∗ P (Θ∗)A∗ +Q−A>∗ P (Θ∗)B∗

(
R+B>∗ P (Θ∗)B∗

)−1
B>∗ P (Θ∗)A∗. (9)

The controller K(Θ∗) = −
(
R+B>∗ P (Θ∗)B∗

)−1
B>∗ P (Θ∗)A∗ produces stable closed-loop system,

ρ(A∗ +B∗K(Θ∗)) < 1.

This result shows that, for we get unique positive definite solution to DARE for both controllable
and stabilizable systems.

Let J? ≤ J . The following lemma is introduced in Mania et al. [2019] and shows that if the
estimation error on the system parameters is small enough, then the performance of the optimal
controller synthesized by these model parameter estimates scales quadratically with the estimation
error.

Lemma A.1 ([Mania et al., 2019]). There are explicit constants C0, ε = poly
(
α−1, α, ‖A∗‖, ‖B∗‖, σ̄2

w, D, n, d
)

such that, for any 0 ≤ ε ≤ ε and for ‖Θ′ −Θ∗‖ ≤ ε, the infinite horizon performance of the policy
K(Θ′) on Θ∗ obeys the following,

J(K(Θ′), A∗, B∗, Q,R)− J? ≤ C0ε
2.

This result shows that there exists a ε-neighborhood around the system parameters that stabilizes
the system. This result further extended to quantify the stability in Cassel et al. [2020].

Lemma A.2 (Lemma 41 in Cassel et al. [2020]). Suppose J(K(Θ′), A∗, B∗, Q,R) ≤ J ′ for the LQR

under Assumption 2.1, then K(Θ′) produces (κ′, γ′)-stable closed-loop dynamics where κ′ =
√
J ′
ασ̄2

w

and γ′ = 1/2κ′2.

Combining these results, we obtain the following lemma which will be useful in defining the
exploration duration and the regret results.

Lemma A.3 (Strongly Stabilizable Neighborhood). Under Assumptions 2.1 & 2.3, for any ε ≤
min{

√
σ̄2
wnD/C0, ε}, such that ‖Θ′ −Θ∗‖ ≤ ε for any (κ, γ)-stabilizable system Θ∗, K(Θ′) produces

(κ′, γ′)-stable closed-loop dynamics on Θ∗ where κ′ = κ
√

2 and γ′ = γ/2.

Proof. Under Assumptions 2.1 & 2.3, for the given choice of ε, we have ε ≤ min{
√
J /C0, ε}, thus we

obtain J(K(Θ′), A∗, B∗, Q,R) ≤ 2J . Plugging this into Lemma A.2 gives the presented result.
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B ExpOpt

In this section, we provide the pseudocode of ExpOpt explicitly. The delay in the controller is a
technical consiquence in order to lower bound the smallest singular value of the regularized design
matrix Vt in Appendix C.

Algorithm 2 ExpOpt

1: Input: S > 0, δ > 0, λ > 0, Q, R, σw, σν , H0, Setting, Initial Exploration
2: if Setting = Controllable then
3: Set 1con = 1, choose S = Sc & set Tw = Tc
4: else
5: Set 1con = 0, choose S = Ss & set Tw = Ts

6: if Initial Exploration = Yes then
7: Set 1exp = 1, else set 1exp = 0

8:
9: Set V0 = λI, Θ̂0 = 0, τ = 0

10: Θ̃0 = arg minΘ∈C0∩S J(Θ)
11: for t = 0, . . . , T do
12: if (det(Vt) > 2 det(V0)) and (1con or (t− τ > H0)) then
13: Estimate Θ̂t using (5)
14: Find Θ̃t such that J(Θ̃t) ≤ infΘ∈Ct(δ)∩S J(Θ) + 1√

t
15: Set V0 = Vt and τ = t.
16: else
17: Θ̃t = Θ̃t−1

18: if 1exp and (t < Tw) then
19: Deploy control input ut = K(Θ̃t−1)xt + νt Optimism + Exploration
20: else
21: Deploy control input ut = K(Θ̃t−1)xt Optimism

22: Observe xt+1 and set Vt+1 = Vt + ztz
>
t for zt = [x>t u>t ]>

C Smallest Singular Value of Regularized Design Matrix Vt

In this section, we show that during the additional exploration, ExpOpt provides persistently
exciting inputs, which will be used to enable reaching a stabilizing neighborhood around the system
parameters. In other words, we will lower bound the smallest eigenvalue of the regularized design
matrix, Vt. The analysis generalizes the lower bound on smallest eigenvalue of the sample covariance
matrix in Theorem 20 of [Cohen et al., 2019] for the general case of subgaussian noise.

For the state xt, and input ut, we have:

xt = A∗xt−1 +B∗ut−1 + wt−1, and ut = K(Θ̃t−1)xt + νt (10)

Let ξt = zt−E [zt|Ft−1]. Using the equalities in (10), and the fact that wt and νt are Ft measurable,
we write E

[
ξtξ
>
t |Ft−1

]
as follows.
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E
[
ξtξ
>
t |Ft−1

]
=

(
I

K(Θ̃t−1)

)
E
[
wtw

>
t |Ft−1

]( I

K(Θ̃t−1)

)>
+

(
0 0
0 E

[
νtν
>
t |Ft−1

] )
=

(
I

K(Θ̃t−1)

)
(σ̄2
wI)

(
I

K(Θ̃t−1)

)>
+

(
0 0
0 σ2

νI

)
(11)

=

(
σ̄2
wI σ̄2

wK(Θ̃t−1)>

σ̄2
wK(Θ̃t−1) σ̄2

wK(Θ̃t−1)K(Θ̃t−1)> + 2κ2σ̄2
wI

)
(12)

� σ̄2
w

(
I K(Θ̃t−1)>

K(Θ̃t−1) 2K(Θ̃t−1)K(Θ̃t−1)> + I/2

)
(13)

=
σ̄2
w

2
I + σ̄2

w

(
1√
2
I√

2K(Θ̃t−1)

)(
1√
2
I√

2K(Θ̃t−1)

)>
(14)

� σ̄2
w

2
I (15)

where (12) follows from σ2
ν = 2κ2σ̄2

w and (13) follows from the fact that κ ≥ 1 and ‖K(Θ̃t−1)‖ ≤ κ
for all t. Let st = v>ξt for any unit vector v ∈ Rn+d. (15) shows that that Var [st|Ft−1] ≥ σ̄2

w
2 .

Lemma C.1. Suppose the system is stabilizable and we use stabilizable variant of ExpOpt with
enforced exploration. Denote st = v>ξt where v ∈ Rn+d is any unit vector. For a given positive
σ2

1, let Et be an indicator random variable that equals 1 if s2
t > σ2

1 and 0 otherwise. Then for any
positive σ2

1, and σ
2
2, such that σ2

1 ≤ σ2
2, we have

E [Et|Ft−1] ≥
σ̄2
w
2 − σ

2
1 − 4σ̄2

ν(1 +
σ2

2
2σ̄2
ν
) exp(

−σ2
2

2σ̄2
ν

)

σ2
2

(16)

Note that, for any σ̄ν ≥ σ̄w, there is a pair (σ2
1, σ

2
2) such that the right hand side of (16) is

positive.

Proof. Using the lower bound on the variance of st, we have,

σ̄2
w

2
≤ E

[
s2
t1(s2

t < σ2
1)|Ft−1

]
+ E

[
s2
t1(s2

t ≥ σ2
1)|Ft−1

]
≤ σ2

1 + E
[
s2
t1(s2

t ≥ σ2
1)|Ft−1

]
Now, deploying the fact that both νt and wt, for any t, are sub-Gaussian given Ft−1, have that

ξt is also sub-Gaussian vector. Therefore, st is a sub-Gaussian random variable with parameter σ̄ν ,
where σ̄ν := ((1 + κ)2 + 2κ2)σ2

w.

σ̄2
w

2
− σ2

1 ≤ E
[
s2
t1(s2

t ≥ σ2
1)|Ft−1

]
= E

[
s2
t1(σ2

2 ≥ s2
t ≥ σ2

1)|Ft−1

]
+ E

[
s2
t1(s2

t ≥ σ2
2)|Ft−1

]
(17)
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For the second term in the right hand side of the (17), under the considerations of Fubini’s and
Radon–Nikodym theorems, we derive the following equality,∫

s2≥σ2
2

P(s2
t ≥ s2|Ft−1)ds2 =

∫
s2≥σ2

2

∫
s′2≥s2

−dP(s2
t ≥ s′2|Ft−1)

ds′2
ds′2ds2

=

∫
s′2≥σ2

2

∫
s′2≥s2≥σ2

2

−dP(s2
t ≥ s′2|Ft−1)

ds′2
ds′2ds2

=

∫
s′2≥σ2

2

∫
s′2≥s2≥σ2

2

−dP(s2
t ≥ s′2|Ft−1)

ds′2
ds2ds′2

=

∫
s′2≥σ2

2

−dP(s2
t ≥ s′2|Ft−1)

ds′2
(s′2 − σ2

2)ds′2

= E
[
s2
t1(s2

t ≥ σ2
2)|Ft−1

]
− σ2

2

∫
s′2≥σ2

2

−dP(s2
t ≥ s′2|Ft−1)

ds′2
ds′2

= E
[
s2
t1(s2

t ≥ σ2
2)|Ft−1

]
− σ2

2 P(s2
t ≥ σ2

2|Ft−1),

resulting in the following equality,

E
[
s2
t1(s2

t ≥ σ2
2)|Ft−1

]
=

∫
s2≥σ2

2

P(s2
t ≥ s2|Ft−1)ds2 + σ2

2 P(s2
t ≥ σ2

2|Ft−1). (18)

Using this equality, we extend the (17) as follows,

σ̄2
w

2
− σ2

1 ≤ E
[
s2
t1(σ2

2 ≥ s2
t ≥ σ2

1)|Ft−1

]
+

∫
s2≥σ2

2

P(s2
t ≥ s2|Ft−1)ds2 + σ2

2 P(s2
t ≥ σ2

2|Ft−1)

≤ σ2
2 E

[
1(σ2

2 ≥ s2
t ≥ σ2

1)|Ft−1

]
+

∫
s2≥σ2

2

P(s2
t ≥ s2|Ft−1)ds2 + σ2

2 P(s2
t ≥ σ2

2|Ft−1)

≤ σ2
2 E [Et|Ft−1] +

∫
s2≥σ2

2

P(s2
t ≥ s2|Ft−1)ds2 + σ2

2 P(s2
t ≥ σ2

2|Ft−1). (19)

Rearranging this inequality, we have,

E [Et|Ft−1] ≥
σ̄2
w
2 − σ

2
1 −

∫
s2≥σ2

2
P(s2

t ≥ s2|Ft−1)ds2 − σ2
2 P(s2

t ≥ σ2
2|Ft−1)

σ2
2

≥
σ̄2
w
2 − σ

2
1 − 2

∫
s2≥σ2

2
exp(−s

2

2σ̄2
ν

)ds2 − 2σ2
2 exp(

−σ2
2

2σ̄2
ν

)

σ2
2

≥
σ̄2
w
2 − σ

2
1 − 4σ̄2

ν exp(
−σ2

2
2σ̄2
ν

)− 2σ2
2 exp(

−σ2
2

2σ̄2
ν

)

σ2
2

=

σ̄2
w
2 − σ

2
1 − 4σ̄2

ν(1 +
σ2

2
2σ̄2
ν
) exp(

−σ2
2

2σ̄2
ν

)

σ2
2

(20)

The inequality in (20) holds for any σ2
1 ≤ σ2

2 , therefore, the stated lower-bound on E [Et|Ft−1] in
the main statement holds.
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For the choices of σ2
1 and σ2

2 that makes right hand side of (16), let cp denote the right hand side

of (16), cp =

σ̄2
w
2
−σ2

1−4σ̄2
ν(1+

σ2
2

2σ̄2
ν

) exp(
−σ2

2
2σ̄2
ν

)

σ2
2

.

Lemma C.2. Consider s̄t = v>zt where v ∈ Rn+d is any unit vector. Let Ēt be an indicator random
variable that equal 1 if s̄2

t > σ2
1/4 and 0 otherwise. Then, there exist a positive pair σ2

1, and σ
2
2, and

a constant cp > 0, such that E
[
Ēt|Ft−1

]
≥ c′p > 0.

Proof. Using the Lemma C.1, we know that for st = v>ξt, we have |st| ≥ σ1 with a non-zero
probability cp. On the other hand, we have that,

s̄t = v>zt = v>ξt + v>E [zt|Ft−1] = st + v>E [zt|Ft−1]

Therefore, we have, |s̄t| =
∣∣st + v>E [zt|Ft−1]

∣∣. Using this equality, if
∣∣v>E [zt|Ft−1]

∣∣ ≤ σ1/2, since
|st| ≥ σ1 with probability cp, we have |s̄t| ≥ σ1/2 with probability cp.

In the following, we consider the case where
∣∣v>E [zt|Ft−1]

∣∣ ≥ σ1/2. For a constant σ3, using a
similar derivation as in (18) and (19), we have

E
[
s2
t |Ft−1

]
= E

[
s2
t1(σ3 < st < 0)|Ft−1

]
+ E

[
s2
t1(σ3 > st > 0)|Ft−1

]
+ E

[
s2
t1(s2

t ≥ σ2
3)|Ft−1

]
= E

[
s2
t1(σ3 < st < 0)|Ft−1

]
+ E

[
s2
t1(σ3 > st > 0)|Ft−1

]
+ 4σ̄2

ν(1 +
σ2

2

2σ̄2
ν

) exp(
−σ2

2

2σ̄2
ν

)

Using the lower bound in the variance results in,

σ̄2
w

2
≤ E

[
s2
t1(σ3 < st < 0)|Ft−1

]
+ E

[
s2
t1(σ3 > st > 0)|Ft−1

]
+ 4σ̄2

ν(1 +
σ2

3

2σ̄2
ν

) exp(
−σ2

3

2σ̄2
ν

)

Therefore,

σ̄2
w

2
− 4σ̄2

ν(1 +
σ2

3

2σ̄2
ν

) exp(
−σ2

3

2σ̄2
ν

) ≤ E
[
s2
t1(σ3 < st < 0)|Ft−1

]
+ E

[
s2
t1(σ3 > st > 0)|Ft−1

]
= σ2

3

(
E
[
s2
t

σ2
3

1(−σ3 < st < 0)|Ft−1

]
+ E

[
s2
t

σ2
3

1(σ3 > st > 0)|Ft−1

])
≤ σ2

3

(
E
[
|st|
σ3

1(−σ3 < st < 0)|Ft−1

]
+ E

[
st
σ3
1(σ3 > st > 0)|Ft−1

])
(21)

Note the for a large enough σ3, the second term on the left hand side vanishes. Since we have
E [st|Ft−1] = 0, we write the following, to further analyze the right hand side of (21),

E [st|Ft−1] = E [st1(st < 0)|Ft−1] + E [st1(st > 0)|Ft−1] = 0

→ E [|st|1(st < 0)|Ft−1] = E [st1(st > 0)|Ft−1]
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Note that, since st is sub-Gaussian variable, and has bounded away from zero variance, we have
E [1(st < 0)|Ft−1] +E [1(st > 0)|Ft−1] is bounded away from zero. We write this equality as follows:

E [|st|1(−σ3 < st < 0)|Ft−1] + E [|st|1(st ≤ −σ3)|Ft−1]

= E [st1(σ3 > st > 0)|Ft−1] + E [st1(st ≥ σ3)|Ft−1]

With rearranging this equality, and upper bounding the first term on the left hand side, we have

E [|st|1(−σ3 < st < 0)|Ft−1] ≤ E [st1(σ3 > st > 0)|Ft−1] + E [st1(st ≥ σ3)|Ft−1]

≤ E [st1(σ3 > st > 0)|Ft−1] + σ̄2
ν exp(

−σ2
3

2σ̄2
ν

) (22)

similarly we have

E [st1(σ3 > st > 0)|Ft−1] ≤ E [|st|1(−σ3 < st < 0)|Ft−1] + σ̄2
ν exp(

−σ2
3

2σ̄2
ν

) (23)

Using the inequality (22) on the right hand side of (21), we have

σ̄2
w
2 − 4σ̄2

ν(1 +
σ2

3
2σ̄2
ν
) exp(

−σ2
3

2σ̄2
ν

)

σ2
3

≤ E
[
|st|
σ3

1(−σ3 < st < 0)|Ft−1

]
+ E

[
st
σ3
1(σ3 > st > 0)|Ft−1

]
≤ 2E

[
st
σ3
1(σ3 > st > 0)|Ft−1

]
+ σ̄2

ν exp(
−σ2

3

2σ̄2
ν

)

≤ 2E [1(σ3 > st > 0)|Ft−1] + σ̄2
ν exp(

−σ2
3

2σ̄2
ν

)

≤ 2E [1(st > 0)|Ft−1] + σ̄2
ν exp(

−σ2
3

2σ̄2
ν

)

Similarly, using (22) on the right hand side of (21) we have

σ̄2
w
2 − 4σ̄2

ν(1 +
σ2

3
2σ̄2
ν
) exp(

−σ2
3

2σ̄2
ν

)

σ2
3

≤ E
[
|st|
σ3

1(−σ3 < st < 0)|Ft−1

]
+ E

[
st
σ3
1(σ3 > st > 0)|Ft−1

]
≤ 2E [1(st < 0)|Ft−1] + σ̄2

ν exp(
−σ2

3

2σ̄2
ν

)

Therefore, it results in the two following lower bounds,

E [1(st < 0)|Ft−1] ≥
σ̄2
w
2 − 4σ̄2

ν(1 +
σ2

3
2σ̄2
ν
) exp(

−σ2
3

2σ̄2
ν

)

2σ2
3

− 0.5σ̄2
ν exp(

−σ2
3

2σ̄2
ν

)

E [1(st > 0)|Ft−1] ≥
σ̄2
w
2 − 4σ̄2

ν(1 +
σ2

3
2σ̄2
ν
) exp(

−σ2
3

2σ̄2
ν

)

2σ2
3

− 0.5σ̄2
ν exp(

−σ2
3

2σ̄2
ν

) (24)
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Choosing σ3 sufficiently large results in the right hand sides in inequalities (24) to be positive and
bounded away form zero. Let c′′p > 0 denote the right hand sides in the (24). We use this fact to
analyze s̄t when

∣∣v>E [zt|Ft−1]
∣∣ ≥ σ1/2.

When v>E [zt|Ft−1] ≥ σ1/2, since probability c′′p, st is positive, therefore, |s̄t| ≥ σ1/2 with
probability c′′p. When v>E [zt|Ft−1] ≤ −σ1/2, since probability c′′p, st is negative, therefore, |s̄t| ≥
σ1/2 with probability c′′p.

Therefore, overall, with probability c′p := min{cp, c′′p}, we have that |s̄t| ≥ σ1/2, resulting in the
statement of the lemma.

Lemma C.3 (Persistence of Excitation During the Extra Exploration). When the exploration
duration Tw ≥ 6n

c′p
log(12/δ), then with probability at least 1− δ, ExpOpt has

λmin(VTw) ≥ σ2
?Tw,

for σ2
? =

c′pσ
2
1

16 .

Proof. Let Ut = Ēt − Et
[
Ēt|Ft−1

]
. Then Ut is a martingale difference sequence with |Ut| ≤ 1.

Applying Azuma’s inequality, we have that with probability at least 1− δ
Tw∑
t=1

Ut ≥ −
√

2Tw log
1

δ

Using the Lemma C.2, we have
Tw∑
t

Ēt ≥
Tw∑
t

Et
[
Ēt|Ft−n

]
−
√

2Tw log
1

δ

≥ c′pTw −
√

2Tw log
1

δ

where for Tw ≥ 8 log(1/δ)/c′2p , we have
∑Tw

t Ēt ≥
c′p
2 Tw. Now, for any unit vector v, define s̄t = v>zt,

therefore from the definition of Ēt we have,

v>VTwv =

Tw∑
t

s̄2
t ≥ Ētσ2

1/4 ≥
c′pσ

2
1

8
Tw

This inequality hold for a given v. In the following we show a similar inequality for all v
together. Similar to the Theorem 20 in [Cohen et al., 2019], consider a 1/4-net of Sn+d−1, N (1/4)

and set MTw := {V −1/2
Tw

v/‖V −1/2
Tw

v‖ : v ∈ N (1/4)}. These two sets have at most 12n+d−1 members.
Using union bound over members of this set, when Tw ≥ 20

c′2p
((n + d) + log(1/δ)), we have that

v>VTwv ≥
c′pσ

2
1

8 Tw for all v ∈MTw with a probability at least 1− δ. Using the definition of members
in MTw , for each v ∈ N (1/4), we have v>V −1

Tw
v ≤ 8

Twc′pσ
2
1
. Let vn denote the eigenvector of the

largest eigenvalue of V −1
Tw

, and a vector v′ ∈ N (1/4) such that ‖vn − v′‖ ≤ 1/4. Then we have

‖V −1
Tw
‖ = v>n V

−1
Tw
vn = v′>V −1

Tw
v′ + (vn − v′)>V −1

Tw
(zn + v′)

≤ 8

Twc′pσ
2
1

+ ‖vn − v′‖‖V −1
Tw
‖‖zn + v′‖ ≤ 8

Twc′pσ
2
1

+ ‖V −1
Tw
‖/2
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Rearranging, we get that ‖V −1
Tw
‖ ≤ 16

Twc′pσ
2
1
. Therefore, the advertised bound holds for Tw ≥

20
c′2p

((n+ d) + log(1/δ)) with probability at least 1− δ.

D System Identification and Confidence Set Construction, Proof
Lemma 4.1

To have completeness, for the proof of Lemma 4.1 we first provide the proof for confidence set
construction borrowed from Abbasi-Yadkori and Szepesvári [2011], since Lemma 4.1 builds upon
this confidence set construction.

Proof. Define Θ>∗ = [A,B] and zt =
[
x>t u

>
t

]>. The system in (1) can be characterized equivalently
as

xt+1 = Θ>∗ zt + wt

Given a single input-output trajectory {xt, ut}Tt=1, one can rewrite the input-output relationship
as,

XT = ZTΘ∗ +WT (25)

for

XT =


x>1
x>2
...

x>T−1

x>T

 ∈ RT×n ZT =


z>1
z>2
...

z>T−1

z>T

 ∈ RT×(n+d) WT =


w>1
w>2
...

w>T−1

w>T

 ∈ RT×n. (26)

Then, we estimate Θ∗ by solving the following least square problem,

Θ̂T = arg min
X
||XT − ZTX||2F + λ||X||2F

= (Z>T ZT + λI)−1Z>T XT

= (Z>T ZT + λI)−1Z>TWT + (Z>T ZT + λI)−1Z>T ZTΘ∗ + λ(Z>T ZT + λI)−1Θ∗ − λ(Z>T ZT + λI)−1Θ∗

= (Z>T ZT + λI)−1Z>TWT + Θ∗ − λ(Z>T ZT + λI)−1Θ∗

The confidence set is obtained using the expression for Θ̂T and subgaussianity of the wt,

|Tr((Θ̂T −Θ∗)
>X)| = |Tr(W>T ZT (Z>T ZT + λI)−1X)− λTr(Θ>∗ (Z>T ZT + λI)−1X)|

≤ |Tr(W>T ZT (Z>T ZT + λI)−1X)|+ λ|Tr(Θ>∗ (Z>T ZT + λI)−1X)|

≤
√

Tr(X>(Z>T ZT + λI)−1X) Tr(W>T ZT (Z>T ZT + λI)−1Z>TWT )

+ λ
√

Tr(X>(Z>T ZT +λI)−1X) Tr(Θ>∗ (Z>T ZT +λI)−1Θ∗), (27)

=
√

Tr(X>(Z>T ZT +λI)−1X)

[√
Tr(W>T ZT (Z>T ZT +λI)−1Z>TWT )+λ

√
Tr(Θ>∗ (Z>T ZT +λI)−1Θ∗)

]
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where (27) follows from |Tr(A>BC)| ≤
√

Tr(A>BA) Tr(C>BC) for square positive definite B due
to Cauchy Schwarz (weighted inner-product). For X = (Z>T ZT + λI)(Θ̂T −Θ∗), we get√

Tr((Θ̂T−Θ∗)>(Z>T ZT +λI)(Θ̂T−Θ∗))≤
√

Tr(W>T ZT (Z>T ZT +λI)−1Z>TWT )+
√
λ
√

Tr(Θ>∗ Θ∗)

Let ST = Z>TWT ∈ R(n+d)×n and si denote the columns of it. Also, let VT = (Z>T ZT + λI).
Thus,

Tr(W>T ZT (Z>T ZT + λI)−1Z>TWT ) = Tr(S>T V −1
T ST ) =

n∑
i=1

s>i V
−1
T si =

n∑
i=1

‖si‖2V −1
T
. (28)

Notice that si =
∑T

j=1wj,izj where wj,i is the i’th element of wj . From Assumption 2.1, we have
that wj,i is σw-subgaussian, thus we can use Theorem 5 to show that,

Tr(W>T ZT (Z>T ZT + λI)−1Z>TWT ) ≤ 2nσ2
w log

(
det (VT )1/2 det(λI)−1/2

δ

)
. (29)

with probability 1−δ. From Assumptions 2.2 or 2.3, we also have that
√

Tr(Θ>∗ Θ∗) ≤ S. Combining
these gives the self-normalized confidence set or the model estimate:

Tr((Θ̂T −Θ∗)
>VT (Θ̂T −Θ∗)) ≤

σw
√√√√2n log

(
det (VT )1/2 det(λI)−1/2

δ

)
+
√
λS

2

. (30)

Notice that we have Tr((Θ̂T −Θ∗)
>VT (Θ̂T −Θ∗)) ≥ λmin(VT )‖Θ̂T −Θ∗‖2F . Therefore,

‖Θ̂T −Θ∗‖2 ≤
1√

λmin(VT )

σw
√√√√2n log

(
det (VT )1/2 det(λI)−1/2

δ

)
+
√
λS

 (31)

To complete the proof, we need a lower bound on λmin(VTw). Using Lemma C.3, we obtain the
following with probability at least 1− 2δ:

‖Θ̂Tw −Θ∗‖2 ≤
1

σ?
√
Tw

σw
√√√√2n log

(
det (VT )1/2 det(λI)−1/2

δ

)
+
√
λS

 .

From Lemma 4.2 for both controllable and stabilizable systems, for t ≤ Tw, we have that ‖zt‖ ≤
c(n+ d)n+d with probability at least 1− 2δ, for some constant c. Combining this with Lemma I.1,

‖Θ̂Tw−Θ∗‖2≤
κe√
Tw

:=
1√
Tw

σw
σ?

√
n(n+d) log

(
1+

cT (1+κ2)(n+d)2(n+d)

λ(n+ d)

)
+2n log

1

δ
+
√
λS

 . (32)
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E Boundedness of States, Proof of Lemma 4.2

In this section, we will provide bounds on states for controllable and stabilizable systems with and
without additional exploration. First define the following. For controllable systems, let

Tc =
4(1 + κ)2κ2

e

(1−Υ)2

such that for Tw > Tc, we have ‖Θ̂Tw −Θ∗‖2 ≤ 1−Υ
2(1+κ) with probability at least 1− 2δ. Similarly for

stabilizable systems, let

Ts =
κ2
e

min{σ̄2
wnD/C0, ε2}

such that for Tw > Ts, we have ‖Θ̂Tw − Θ∗‖2 ≤ min{
√
σ̄2
wnD/C0, ε} with probability at least

1 − 2δ. Notice that due to Lemma A.3 and as shown in the following section for controllability,
these guarantee the stability of the closed-loop dynamics for deploying optimistic controller for the
remaining part of ExpOpt.

E.1 Controllable System

In this section we will first recall the boundedness of state result from Abbasi-Yadkori and Szepesvári
[2011]. Since our input is ut = K(Θ̃t−1)xt + νt for t ≤ Tc and ut = K(Θ̃t−1)xt for t > Tc, we will
first include the effect of additional uniform exploration in the bound of the state. Then we will
provide a new stability analysis for the states at t > Tc.

t ≤ Tc :
Choose an error probability, δ > 0. The following events are modified from Abbasi-Yadkori and
Szepesvári [2011]. In the probability space Ω:

• The event that the confidence sets hold for s = 0, . . . , T,

Et = {ω ∈ Ω : ∀s ≤ T, Θ∗ ∈ Cs(δ)}

• The event that the state vector stays “small” for s = 0, . . . , Tw,

F [c]
t = {ω ∈ Ω : ∀s ≤ Tw, ‖xs‖ ≤ αt}

where

αt =
1

1−Υ

( η
Υ

)n+d
[
GZ

n+d
n+d+1

t βt(δ)
1

2(n+d+1) + (‖B∗‖σν + σw)

√
2n log

nt

δ

]

η = max

(
1, sup

Θ∈S
‖A∗ +B∗K(Θ)‖

)
, ZT = max

1≤t≤T
‖zt‖

G = 2

(
2S(n+ d)n+d+1/2

√
U

)1/(n+d+1)

, U =
U0

H
, U0 =

1

16n+d−2 max
(
1, S2(n+d−2)

)
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and H is any number satisfying

H > max

(
16,

4S2M2

(n+ d)U0

)
, where M = sup

Y≥1

(
σw

√
n(n+ d) log

(
1+TY/λ

δ

)
+ λ1/2S

)
Y

.

Notice that E1 ⊇ E2 ⊇ . . . ⊇ ET and F [c]
1 ⊇ F [c]

2 ⊇ . . . ⊇ F [c]
Tc
. This means considering the

probability of last event is sufficient in lower bounding all event happening simultaneously. In Abbasi-
Yadkori and Szepesvári [2011], an argument regarding projection onto subspaces is constructed to
show that the norm of the state is well-controlled except n+ d times at most in any horizon T . The
set of time steps that is not well-controlled are denoted as Tt. The given lemma shows how well
controlled ‖(Θ∗ − Θ̂t)

>zt‖ is besides Tt.

Lemma E.1 (Abbasi-Yadkori and Szepesvári [2011]). We have that for any 0 ≤ t ≤ T ,

max
s≤t,s/∈Tt

∥∥∥(Θ∗ − Θ̂s)
>zs

∥∥∥ ≤ GZ n+d
n+d

t βt(δ/4)
1

2(n+d+1) .

Building upon this result we will bound the state during the exploration phase. This bound
follows the proof of Lemma 4 in [Abbasi-Yadkori and Szepesvári, 2011]. One can write the state
update as

xt+1 = Γtxt + rt

where

Γt =

{
Ãt−1 + B̃t−1K(Θ̃t−1) t /∈ TT
A∗ +B∗K(Θ̃t−1) t ∈ TT

and rt =

{
(Θ∗ − Θ̃t−1)>zt +B∗νt + wt t /∈ TT
B∗νt + wt t ∈ TT

(33)
Thus, using the fact that x0 = 0, we can obtain the following roll out for xt,

xt = Γt−1xt−1 + rt−1 = Γt−1 (Γt−2xt−2 + rt−2) + rt

= Γt−1Γt−2Γt−3xt−3 + Γt−1Γt−2rt−2 + Γt−1rt−1 + rt

= Γt−1Γt−2 . . .Γt−(t−1)r1 + · · ·+ Γt−1Γt−2rt−2 + Γt−1rt−1 + rt

=

t∑
k=1

(
t−1∏
s=k

Γs

)
rk (34)

Recall the following expressions,

η ≥ max
t≤T

∥∥∥A∗ +B∗K(Θ̃t)
∥∥∥ , Υ ≥ max

t≤T

∥∥∥(Ãt + B̃tK(Θ̃t)
)∥∥∥ .

Using these, we have that

‖xt‖ ≤
( η

Υ

)n+d
t∑

k=1

Υt−k+1 ‖rk‖

≤ 1

1−Υ

( η
Υ

)n+d
max

1≤k≤t
‖rk‖

24



We have that ‖rk‖ ≤
∥∥∥(Θ∗ − Θ̃k−1)>zk

∥∥∥+‖B∗νk + wk‖ when k /∈ TT , and ‖rk‖ = ‖B∗νk + wk‖ ,
otherwise. Hence,

max
k≤t
‖rk‖ ≤ max

k≤t,k/∈Tt

∥∥∥(Θ∗ − Θ̃k−1)>zk

∥∥∥+ max
k≤t
‖B∗νk + wk‖

The first term is bounded by the Lemma E.1. The second term involves summation of independent
‖B∗‖σν and σw subgaussian vectors. Using Lemma I.2 with a union bound argument, for all k ≤ t,
‖B∗νk + wk‖ ≤ (‖B∗‖σν + σw)

√
2n log nt

δ with probability at least 1− δ. Therefore, on the event of
E ,

‖xt‖ ≤
1

1−Υ

( η
Υ

)n+d
[
GZ

n+d
n+d

t βt(δ)
1

2(n+d+1) + (‖B∗‖σν + σw)

√
2n log

nt

δ

]
(35)

for t ≤ Tw. Using union bound, we can deduce that ET ∩ F [c]
Tc

holds with probability at least 1− 2δ.
Notice that this bound depends on Zt and βt(δ) which in turn depends on xt. Using Lemma 5 of
Abbasi-Yadkori and Szepesvári [2011], one can obtain the following bound

‖xt‖ ≤ c′(n+ d)n+d. (36)

for some large enough constant c′.
t > Tc :

Recall that once t ≥ Tc, the controller stops using the exploratory component νt. Thus, the state
has the following dynamics,

xt+1 = (A∗ +B∗K(Θ̃t−1))xt + wt

=
(
A∗ − Ãt−1 + Ãt−1 +B∗K(Θ̃t−1)− B̃t−1K(Θ̃t−1) + B̃t−1K(Θ̃t−1)

)
xt + wt. (37)

Hence, it propagates according to the linear system given in equation (37) with closed loop dynamics
Mt =

(
A∗ − Ãt−1 + (B∗ − B̃t−1)K(Θ̃t−1) + Ãt−1 + B̃t−1K(Θ̃t−1)

)
driven by the process wt with

xTc as the initial state. With the Assumption 2.2, for the given Tc, if the event of E holds, we have
‖Mt‖ < 1+Υ

2 < 1 for all t > Tc. Then for t > Tc,

‖xt‖ =

∥∥∥∥ t∏
i=Tc+1

MixTc +

t∑
i=Tc+1

(
t−1∏
s=i

Ms

)
wi

∥∥∥∥ (38)

≤
(

1 + Υ

2

)t−Tc
‖xTc‖+ max

Tc<i≤t
‖wi‖

(
t∑

i=Tc+1

(
1 + Υ

2

)t−i)
(39)

≤
(

1 + Υ

2

)t−Tc
‖xTc‖+

2

1−Υ
max
Tc<i≤t

‖wi‖ (40)

Using Lemma I.2 with a union bound argument, we get ‖wi‖ ≤ σw
√

2n log(n(t− Tc)/δ) with
probability 1− δ, for all t > Tc. Using (43), for all T ≥ t > Tc, with probability 1− 3δ,
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‖xt‖ ≤
2σw

1−Υ

√
2n log

n(T − Tc)
δ︸ ︷︷ ︸

Xs

+

(
1 + Υ

2

)t−Tc
c′(n+ d)n+d (41)

Notice that for t > Tc + (n+d) log(n+d)+log(c′)−log(Xs)
log 2

1+Υ

:= Tr,c, the second term in (41) is equal to Xs
which is the same as if the noise is driving the stable system starting at an initial state x0 = 0, i.e.
the effect of unstable controllers during the exploration is removed. Therefore, for all T ≥ t > Tr,c

we have ‖xt‖ ≤ 2Xs = 4σw
1−Υ

√
2n log n(T−Tc)

δ .

E.2 Stabilizable System

Notice that Lemma E.1 does not depend on controllability or the stabilizability of the system. Thus,
we will again use Lemma E.1 for all 1 ≤ t ≤ T for the variant of ExpOpt that deploys only OFU
principle and for t ≤ Tw for the variant of ExpOpt with additional exploration. Then we consider
the effect of stabilizing controller for the additional exploration variant of ExpOpt in stabilizable
systems.

Recall the following events in the probability space Ω:

• The event that the confidence sets hold for s = 0, . . . , T,

Et = {ω ∈ Ω : ∀s ≤ T, Θ∗ ∈ Cs(δ)}

• The event that the state vector stays “small” for s = 0, . . . , Tw,

F [s]
t = {ω ∈ Ω : ∀s ≤ Tw, ‖xs‖ ≤ ᾱt}

where

ᾱt =
18κ3

γ(8κ− 1)
η̄n+d

[
GZ

n+d
n+d+1

t βt(δ)
1

2(n+d+1) + (‖B∗‖σν + σw)

√
2n log

nt

δ

]
,

for η̄ defined in (42) and the rest are the same with controllable setting.

ExpOpt with only OFU: Following similarly with the controllable system, we have the same
state update in (33) and same roll out for xt in (34). However, the controller is optimistically designed
from set of parameters are (κ, γ)-strongly stabilizable by their optimal controllers. Therefore, we
now have

η̄ ≥ max
t≤T

∥∥∥A∗ +B∗K(Θ̃t)
∥∥∥ , 1− γ ≥ max

t≤T
ρ
(
Ãt + B̃tK(Θ̃t)

)
. (42)

During the exploration phase, since the estimates of Θ are not refined enough, the closed loop
matrix is not stable. In order to have the previous proof go through, we need to satisfy that the
epochs that we use a particular optimistic controller is long enough that the state doesn’t scale too
badly during the exploration. By choosing H0 = 2γ−1 log(2κ

√
2), adopting Lemma 39 of Cassel

et al. [2020], we guarantee that

‖xt‖ ≤
18κ3

γ(8κ− 1)
η̄n+d

[
GZ

n+d
n+d+1

t βt(δ)
1

2(n+d+1) + (‖B∗‖σν + σw)

√
2n log

nt

δ

]
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Again using Lemma 5 of Abbasi-Yadkori and Szepesvári [2011], one can obtain the following
bound

‖xt‖ ≤ c′(n+ d)n+d. (43)

for some large enough constant c′.

ExpOpt with additional exploration: The bound for t ≤ Tw follows exactly from previous
section. We know consider the state after Tw. Since once t ≥ Tw, the controller stops using the
exploratory component νt, the state follows the dynamics of

xt+1 = (A∗ +B∗K(Θ̃t−1))xt + wt (44)

Similar to controllable setting, denote Mt = A∗ +B∗K(Θ̃t−1) as the closed loop dynamics of the
system. From the choice of Ts for the stabilizable systems, we have that Mt is (κ

√
2, γ/2)-strongly

stable. Thus, we have ρ(Mt) ≤ 1− γ/2 for all t > Ts and ‖Ht‖‖H−1
t ‖ ≤ κ

√
2 for Ht � 0, such that

‖Lt‖ ≤ 1− γ/2 for Mt = HtLtH
−1
t . Then for T > t > Ts, if the same policy, M is applied starting

from state xTs , we have

‖xt‖ =

∥∥∥∥ t∏
i=Ts+1

MxTs +
t∑

i=Ts+1

(
t−1∏
s=i

M

)
wi

∥∥∥∥ (45)

≤ κ
√

2(1− γ/2)t−Ts‖xTs‖+ max
Ts<i≤T

‖wi‖

(
t∑

i=Ts+1

κ
√

2(1− γ/2)t−i+1

)
(46)

≤ κ
√

2(1− γ/2)t−Ts‖xTs‖+
2κσw

√
2

γ

√
2n log(n(t− Ts)/δ) (47)

Note that H0 = 2γ−1 log(2κ
√

2). This gives that κ
√

2(1− γ/2)H0 ≤ 1/2. Therefore, at the end of
each controller period the effect of previous state is halved. Using this fact, at the ith policy change
after Ts, we get

‖xti‖ ≤ 2−i‖xTs‖+

i−1∑
j=0

2−j
2κσw

√
2

γ

√
2n log(n(t− Ts)/δ)

≤ 2−i‖xTs‖+
4κσw

√
2

γ

√
2n log(n(t− Ts)/δ)

For all i > (n+ d) log(n+ d)− log(2κσw
√

2
γ

√
2n log(n(t− Ts)/δ)), at policy change i, we get

‖xti‖ ≤
6κσw

√
2

γ

√
2n log(n(t− Ts)/δ).

Finally, from (47), we have that

‖xt‖ ≤
(12κ2 + 2κ

√
2)σw

γ

√
2n log(n(t− Ts)/δ), (48)

for all t > Tr,s where

Tr,s = Ts +

(
(n+ d) log(n+ d)− log(

2κσw
√

2

γ

√
2n log(n(t− Ts)/δ))

)
H0.
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F Regret Decomposition

ExpOpt without Additional Exploration The regret of ExpOpt using only OFU yields the
same regret decomposition in Section 4.2 of Abbasi-Yadkori and Szepesvári [2011], since the underlying
system dynamics is the same. Let J∗(Θ∗, wt) denote the optimal average expected cost of an LQR,
Θ∗, with wt disturbances obtained by its optimal controller. Therefore, under the event ET ∩F [s]

T for
ExpOpt without additional exploration, we have

Regret(T ) =
T∑
t=0

(
x>t Qxt + u>t Rut

)
− TJ∗(Θ∗, wt) ≤ R1 −R2 −R3 + 2

√
T

where

R1 =
T∑
t=0

{
x>t P (Θ̃t−1)xt − E

[
x>t+1P (Θ̃t)xt+1

∣∣Ft−1

]}
(49)

R2 =
T∑
t=0

E
[
x>t+1

(
P (Θ̃t−1)− P (Θ̃t)

)
xt+1

∣∣Ft−1

]
(50)

R3 =

T∑
t=0

{(
Ãt−1xt + B̃t−1ut

)>
P (Θ̃t−1)

(
Ãt−1xt + B̃t−1ut

)
− (A∗xt +B∗ut)

> P (Θ̃t−1) (A∗xt +B∗ut)

}
.

(51)

ExpOpt with Additional Exploration (Controllable or Stabilizable) Since for the addi-
tional exploration ExpOpt applies independent external perturbation through the controller but still
designs the optimistic controller (optimal controller for the optimistically chosen system), one can
consider the external perturbation as a component of the underlying system and consider the regret
obtained by using the external perturbation separately.

Denote the system evolution noise at time t as ζt. For t ≤ Tw, during the additional exploration,
system evolution noise can be considered as ζt = B∗νt + wt and for t > Tw, ζt = wt. Denote
the optimal average cost of system Θ̃ under ζt as J∗(Θ̃, ζt). The regret of the algorithm can be
decomposed as follows:

REGRET(T ) =

T∑
t=0

(
x>t Qxt + u>t Rut + 2ν>t Rut + ν>t Rνt

)
− TJ∗(Θ∗, wt) (52)

where ut is the optimal controller input for the optimistic system Θ̃t−1, νt is the noise injected and
xt is the state of the system Θ̃t−1 with the system evolution noise of ζt. From Bellman optimality
equations for LQR, [Bertsekas, 1995], we can write the following for any LQR,

J∗(Θ̃t−1, ζt) + x>t P (Θ̃t−1)xt = x>t Qxt + u>t Rut

+ E
[(
Ãt−1xt + B̃t−1ut + ζt

)>
P (Θ̃t−1)

(
Ãt−1xt + B̃t−1ut + ζt

) ∣∣Ft−1

]
,
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where we considered the optimistic system, Θ̃t−1. Following the decomposition used in without
additional exploration, we get,

J∗(Θ̃t−1, ζt) + x>t P (Θ̃t−1)xt

= x>t Qxt + u>t Rut + E
[(
Ãt−1xt + B̃t−1ut

)>
P (Θ̃t−1)

(
Ãt−1xt + B̃t−1ut

) ∣∣Ft−1

]
+ E

[
ζ>t P (Θ̃t−1)ζt

∣∣Ft−1

]
= x>t Qxt + u>t Rut + E

[(
Ãt−1xt + B̃t−1ut

)>
P (Θ̃t−1)

(
Ãt−1xt + B̃t−1ut

) ∣∣Ft−1

]
+ E

[
x>t+1P (Θ̃t−1)xt+1

∣∣Ft−1

]
− E

[
(A∗xt +B∗ut)

> P (Θ̃t−1) (A∗xt +B∗ut)
∣∣Ft−1

]
= x>t Qxt + u>t Rut + E

[
x>t+1P (Θ̃t−1)xt+1

∣∣Ft−1

]
+
(
Ãt−1xt + B̃t−1ut

)>
P (Θ̃t−1)

(
Ãt−1xt + B̃t−1ut

)
− (A∗xt +B∗ut)

> P (Θ̃t−1) (A∗xt +B∗ut)

where in the one before the last equality we use xt+1 = A∗xt +B∗ut + ζt and the martingale property
of the noise. Hence,

T∑
t=0

J∗(Θ̃t−1, ζt) +Rζ1 =
T∑
t=0

(
x>t Qxt + u>t Rut

)
+Rζ2 +Rζ3

where

Rζ1 =

T∑
t=0

{
x>t P (Θ̃t−1)xt − E

[
x>t+1P (Θ̃t)xt+1

∣∣Ft−1

]}
(53)

Rζ2 =
T∑
t=0

E
[
x>t+1

(
P (Θ̃t−1)− P (Θ̃t)

)
xt+1

∣∣Ft−1

]
(54)

Rζ3 =
T∑
t=0

{(
Ãt−1xt + B̃t−1ut

)>
P (Θ̃t−1)

(
Ãt−1xt + B̃t−1ut

)
− (A∗xt +B∗ut)

> P (Θ̃t−1) (A∗xt +B∗ut)

}
(55)

Therefore, on ET ∩ F [s]
Ts

or ET ∩ F [c]
Tc
,

T∑
t=0

(
x>t Qxt + u>t Rut

)
=

T∑
t=0

J∗(Θ̃t−1, ζt) +Rζ1 −R
ζ
2 −R

ζ
3

=

Tw∑
t=0

(
σ2
ν Tr(P (Θ̃t−1)B∗B

>
∗ )
)

+
T∑
t=0

(
σ̄2
w Tr(P (Θ̃t−1))

)
+Rζ1 −R

ζ
2 −R

ζ
3

where the last equality follows from the fact that, J∗(Θ̃t−1, ζt) = Tr(P (Θ̃t−1)W ) where W =
E[ζtζ

>
t |Ft−1] for a corresponding filtration Ft. The optimistic choice of Θ̃t provides that σ̄2

w Tr(P (Θ̃t−1)) =
J∗(Θ̃t−1, wt) ≤ J∗(Θ∗, wt) = σ̄2

w Tr(P (Θ∗)). Thus we get,
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T∑
t=0

(
x>t Qxt + u>t Rut

)
− TJ∗(Θ∗, wt) ≤ Tw max

0≤t≤Tw

{
σ2
ν Tr(P (Θ̃t−1)B∗B

>
∗ )
}

+Rζ1 −R
ζ
2 −R

ζ
3

Combining this with (52) and Assumption 2.2 or 2.3,

REGRET(T ) ≤ σ2
νTwD‖B∗‖2F +

Tw∑
t=0

(
2ν>t Rut + ν>t Rνt

)
+Rζ1 −R

ζ
2 −R

ζ
3.

In the next section, we will bound each term individually.

G Regret Analysis

In this section, we provide the bounds on each term in regret decomposition for both with and
without additional exploration. Notice that ExpOpt without additional exploration in stabilizable
setting yields the same regret decomposition with Abbasi-Yadkori and Szepesvári [2011] and the
bound on the state throughout the algorithm is again c′(n+ d)n+d. Therefore, the main difference
compared to OFULQ which is tailored for controllable systems is the update rule due to maintaining
boundedness of states in stabilizable setting. This reflects its’ effect on R2 (50) and R3 (51) regret
terms and the analysis of R1 in Abbasi-Yadkori and Szepesvári [2011] directly applies.

For additional exploration in LQRs, the update rule is still doubling of the determinant of
regularized design matrix, thus the additional regret of exploration and the benefit of stabilization
in regret are considered.

G.1 Regret of ExpOpt without additional exploration in stabilizable LQRs

G.1.1 Bounding R1

The following lemma from Abbasi-Yadkori and Szepesvári [2011] bounds R1 with high probability.

Lemma G.1 (R1 in Abbasi-Yadkori and Szepesvári [2011]). Let R1 be as defined by (49). With
probability at least 1− δ/2, under the event of ET ∩ F [s]

Ts
,

R1 ≤ 2DW2

√
2T log

8

δ
+ n

√
Bδ,R1

where W = σw
√

2n log(8nT/δ) and

Bδ,R1 = (1 + TD2S2(n+ d)2(n+d)(1 + κ2)) log

(
4n

δ

√
1 + TD2S2(n+ d)2(n+d)(1 + κ2)

)
G.1.2 Bounding |R2|

This term can be bounded by showing that ExpOpt rarely changes policy and besides policy change
instances all the terms are 0.
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Lemma G.2 (Number of Policy Changes in Stabilizable LQR without additional exploration). On
the event of ET ∩ F [s]

Ts
, in a stabilizable LQR, ExpOpt without additional exploration changes the

policy at most

min

{
T/H0, (n+ d) log2

(
1 +

T (n+ d)2(n+d)(1 + κ2)

λ

)}
(56)

Proof. Changing policy K times up to time T requires det(VT ) ≥ λn+d2K . We also have that

λmax(VT ) ≤ λ+
T−1∑
t=0

‖zt‖2 ≤ λ+ T (n+ d)2(n+d)(1 + κ2)

Thus, λn+d2K ≤ (λ+ T (n+ d)2(n+d)(1 + κ2))n+d. Solving for K gives

K ≤ (n+ d) log2

(
1 +

T (n+ d)2(n+d)(1 + κ2)

λ

)
.

Moreover, the number of policy changes is also controlled by the lower bound H0 on the duration
of each controller. This policy update method would give at most T/H0 policy changes. Since for
the policy update, ExpOpt requires both conditions to be met, the upper bound on the number of
policy changes is minimum of these.

Lemma G.3 (Bounding R2). Let R2 be as defined by (50). Under the event of ET ∩ F [s]
Ts
, we have

|R2| ≤ 2D(n+ d)2(n+d)+1 log

(
1 +

T (n+ d)2(n+d)(1 + κ2)

λ

)

Proof. Each non-zero term in the summation of R2 is bounded by 2D(n+ d)2(n+d). Using Lemma
G.2 as the upper bound on the number of changes we get the result.

G.1.3 Bounding |R3|

The proofs in this section are adapted from Abbasi-Yadkori and Szepesvári [2011]. First consider
the following lemma.

Lemma G.4. On the event of ET ∩ F [s]
Ts
, in a stabilizable LQR, the following holds,

T∑
t=0

‖(Θ∗−Θ̃t)
>zt‖2≤8 max

2,

(
1+

(1+κ2)(n+d)2(n+d)

λ

)H0

β2
T (δ)(1+κ2)(n+d)2(n+d)

λ
log

(
det(VT )

det(λI)

)

Proof. Let st = (Θ∗ − Θ̃t)
>zt and τ ≤ t be the time step that the last policy change happened. We

have the following using triangle inequality,

‖st‖ ≤ ‖(Θ∗ − Θ̂t)
>zt‖+ ‖(Θ̂t − Θ̃t)

>zt‖.
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For all Θ ∈ Cτ (δ), we have

‖(Θ− Θ̂t)
>zt‖ ≤ ‖V 1/2

t (Θ− Θ̂t)‖zt‖‖V −1
t

(57)

≤ ‖V 1/2
τ (Θ− Θ̂t)‖

√
det(Vt)

det(Vτ )
‖zt‖V −1

t
(58)

≤ max

√2,

√(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0

 ‖V 1/2
τ (Θ− Θ̂t)‖‖zt‖V −1

t
(59)

≤ max

√2,

√(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0

βτ (δ)‖zt‖V −1
t

(60)

where (57) follows from Cauchy-Schwarz, (58) follows from Lemma 11 of Abbasi-Yadkori and
Szepesvári [2011]. For (59) consider the following,

det(Vt)/ det(Vτ ) =

t∏
i=τ+1

(1 + ‖zi‖2V −1
i−1

).

ExpOpt has policy update when the determinant of the regularized design matrix is doubled and
H0 time steps has passed since the last update. Therefore this ratio is either 2 or it is upper

bounded by
∏τ+H0
i=τ+1(1+‖zi‖2V −1

i−1

) ≤
(

1 + (1+κ2)(n+d)2(n+d)

λ

)H0

, where we use the fact that ‖zi‖2V −1
i−1

≤

(1 + κ2)(n+ d)2(n+d)/λ, which gives (59). Finally at (60), we use the fact that λmax(M) ≤ Tr(M)
for M � 0. Using this result, we obtain,

T∑
t=0

‖(Θ∗ − Θ̃t)
>zt‖2

≤ 8 max

2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0

 β2
T (δ)(1 + κ2)(n+ d)2(n+d)

λ
log

(
det(VT )

det(λI)

)

where we use Lemma I.1.

Lemma G.5 (Bounding R3). Let R3 be as defined by (51). Under the event of ET ∩ F [s]
Ts
, we have

|R3| ≤ (1+κ2)(n+d)2(n+d)SDβT (δ)

√√√√32T

λ
max

{
2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0
}

log

(
det(VT )

det(λI)

)
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Proof.

|R3| ≤
T∑
t=0

∣∣∣∣∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥2
−
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥2
∣∣∣∣

≤

(
T∑
t=0

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥−∥∥∥P (Θ̃t)
1/2Θ>∗ zt

∥∥∥)2
)1/2( T∑

t=0

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥+
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥)2
)1/2

≤

(
T∑
t=0

∥∥∥∥P (Θ̃t)
1/2
(

Θ̃t −Θ∗

)>
zt

∥∥∥∥2
)1/2( T∑

t=0

(∥∥∥P (Θ̃t)
1/2Θ̃>t zt

∥∥∥+
∥∥∥P (Θ̃t)

1/2Θ>∗ zt

∥∥∥)2
)1/2

≤

√√√√8Dmax

{
2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0
}
β2
T (δ)(1 + κ2)(n+ d)2(n+d)

λ
log

(
det(VT )

det(λI)

)
×
√

4TD(1 + κ2)(n+ d)2(n+d)S2

≤ (1 + κ2)(n+ d)2(n+d)SDβT (δ)

√√√√32T

λ
max

{
2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0
}

log

(
det(VT )

det(λI)

)
≤ (1 + κ2)(n+ d)2(n+d)SDβT (δ)×√√√√32T (n+ d)

λ
max

{
2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0
}

log

(
1 +

T (n+ d)2(n+d)(1 + κ2)

λ(n+ d)

)

G.1.4 Combining Terms for Final Regret Upper Bound

Proof of Theorem 1: Combining Lemmas G.1, G.3 and G.5 we obtain the following,

Regret(T ) ≤ R1 −R2 −R3 + 2
√
T

≤ 2DW2

√
2T log

8

δ
+ n

√
Bδ,R1 + 2D(n+ d)2(n+d)+1 log

(
1 +

T (n+ d)2(n+d)(1 + κ2)

λ

)
+ 2
√
T

+ (1 + κ2)(n+ d)2(n+d)SDβT (δ)×√√√√32T (n+ d)

λ
max

{
2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0
}

log

(
1 +

T (n+ d)2(n+d)(1 + κ2)

λ(n+ d)

)

for W = σw
√

2n log(8nT/δ) and

Bδ,R1 = (1 + TD2S2(n+ d)2(n+d)(1 + κ2)) log

(
4n

δ

√
1 + TD2S2(n+ d)2(n+d)(1 + κ2)

)
.

This gives the advertised regret upper bound of ExpOpt for the stabilizable system without using
additional exploration.

�
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G.2 Direct Effect of Additional Exploration, Bounding
∑Tw

t=0

(
2ν>t Rut + ν>t Rνt

)
in the event of ET ∩ F [s]

Ts
or ET ∩ F [c]

Tc

The following result also holds for stabilizable setting since the state is upper bounded similar to the
controllable LQRs, i.e., ‖xt‖ ≤ c′(n+ d)n+d for t ≤ Tw. Thus, we present the result for generic Tw
and specialization to the settings can be obtained by picking Tc or Ts.

Lemma G.6 (Direct Effect of Enforced Exploration on Regret). If ET ∩F [s]
Ts

or ET ∩F [c]
Tc

holds then
with probability at least 1− δ,

Tw∑
t=0

(
2ν>t Rut + ν>t Rνt

)
≤ dσν

√
Bδ + d‖R‖σ2

ν

(
Tw +

√
Tw log

4dTw
δ

√
log

4

δ

)
(61)

where

Bδ = 8
(

1 + Twκ
2‖R‖2(n+ d)2(n+d)

)
log

(
4d

δ

(
1 + Twκ

2‖R‖2(n+ d)2(n+d)
)1/2

)
.

Proof. Let q>t = u>t R. The first term can be written as

2

Tw∑
t=0

d∑
i=1

qt,iνt,i = 2
d∑
i=1

Tw∑
t=0

qt,iνt,i

Let Mt,i =
∑t

k=0 qk,iνk,i. By Theorem 5 on some event Gδ,i that holds with probability at least
1− δ/(2d), for any t ≥ 0,

M2
t,i ≤ 2σ2

ν

(
1 +

t∑
k=0

q2
k,i

)
log

2d

δ

(
1 +

t∑
k=0

q2
k,i

)1/2


On ET ∩ F [s]
Ts

or ET ∩ F [c]
Tc
, ‖qk‖ ≤ κ‖R‖(n + d)n+d, thus qk,i ≤ κ‖R‖(n + d)n+d. Using union

bound we get, for probability at least 1− δ
2 ,

Tw∑
t=0

2ν>t Rut ≤

d

√
8σ2

ν

(
1 + Twκ2‖R‖2(n+ d)2(n+d)

)
log

(
4d

δ

(
1 + Twκ2‖R‖2(n+ d)2(n+d)

)1/2) (62)

Let W = σν

√
2d log 4dTw

δ . Define Ψt = ν>t Rνt − E
[
ν>t Rνt|Ft−1

]
and its truncated version

Ψ̃t = ΨtI{Ψt≤2DW 2}.
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Pr

( Tw∑
t=1

Ψt > 2‖R‖W 2

√
2Tw log

4

δ

)
≤

Pr

(
max

1≤t≤Tw
Ψt > 2‖R‖W 2

)
+ Pr

(
Tw∑
t=1

Ψ̃t > 2‖R‖W 2

√
2Tw log

4

δ

)

Using Lemma I.2 with union bound and Theorem 6, summation of terms on the right hand side
is bounded by δ/2. Thus, with probability at least 1− δ/2,

Tw∑
t=0

ν>t Rνt ≤ dTwσ2
ν‖R‖+ 2‖R‖W 2

√
2Tw log

4

δ
. (63)

Combining (62) and (63) gives the statement of lemma for the regret of external exploration
noise.

G.3 Regret of ExpOpt with additional exploration in LQRs

G.3.1 Bounding Rζ1 in the event of ET ∩ F [s]
Ts

or ET ∩ F [c]
Tc

In this section, we state the bounds on Rζ1 for both controllable and stabilizable systems. We first
provide high probability bound on the system noise.

Lemma G.7 (Bounding sub-Gaussian vector). With probability 1− δ
8 , ‖ζk‖ ≤ (σw+‖B∗‖σν)

√
2n log 8nT

δ

for k ≤ Tw and ‖ζk‖ ≤ σw
√

2n log 8nT
δ for Tw < k ≤ T .

Proof. From the subgaussianity assumption, we have that for any index 1 ≤ i ≤ n and any time
k, |wk,i| ≤ σw

√
2 log 8

δ and |(B∗νk)i| < ‖B∗‖σν
√

2 log 8
δ with probability 1 − δ

8 . Using the union
bound, we get the statement of lemma.

Using this we state the bound on Rζ1 for controllable systems.

Lemma G.8 (Bounding Rζ1 for controllable LQR). Let Rζ1 be as defined by (53). Under the event
of ET ∩ F [c]

Tc
, with probability at least 1− δ/2, for controllable LQR, for t > Tr,c, we have

R1 ≤ kc,1(n+ d)n+d(σw + ‖B∗‖σν)n
√
Tr,c log((n+ d)Tr,c/δ)

+ kc,2σ
2
w

n
√
n

(1−Υ)

√
t− Tr,c log(n(t− Tc)/δ)

+ kc,3nσ
2
w

√
T − Tw log(nT/δ) + kc,4n(σw + ‖B∗‖σν)2

√
Tw log(nT/δ),

for some problem dependent coefficients kc,1, kc,2, kc,3, kc,4.
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Proof. Assume that the event ET ∩ F [c]
Tc

holds. Let ft = A∗xt +B∗ut. One can decompose R1 as

R1 = x>0 P (Θ̃0)x0 − x>T+1P (Θ̃T+1)xT+1 +
T∑
t=1

x>t P (Θ̃t)xt − E
[
x>t P (Θ̃t)xt

∣∣Ft−2

]
Since P (Θ̃0) is positive semidefinite and x0 = 0, the first two terms are bounded above by zero. The
second term is decomposed as follows

T∑
t=1

x>t P (Θ̃t)xt−E
[
x>t P (Θ̃t)xt

∣∣Ft−2

]
=

T∑
t=1

f>t−1P (Θ̃t)ζt−1+

T∑
t=1

(
ζ>t−1P (Θ̃t)ζt−1 − E

[
ζ>t−1P (Θ̃t)ζt−1

∣∣Ft−2

])
Let R1,1 =

∑T
t=1 f

>
t−1P (Θ̃t)ζt−1 and R1,2 =

∑T
t=1

(
ζ>t−1P (Θ̃t)ζt−1 − E

[
ζ>t−1P̃tζt−1

∣∣Ft−2

])
. Let

v>t−1 = f>t−1P (Θ̃t). R1,1 can be written as

R1,1 =

T∑
t=1

n∑
i=1

vt−1,iζt−1,i =

n∑
i=1

T∑
t=1

vt−1,iζt−1,i.

Let Mt,i =
∑t

k=1 vk−1,iζk−1,i. By Theorem 5 on some event Gδ,i that holds with probability at least
1− δ/(4n), for any t ≥ 0,

M2
t,i ≤ 2(σ2

w + ‖B∗‖2σ2
ν)

1 +

Tr,c∑
k=1

v2
k−1,i

 log

4n

δ

1 +

Tr,c∑
k=1

v2
k−1,i

1/2


+ 2σ2
w

1 +
t∑

k=Tr,c+1

v2
k−1,i

 log

4n

δ

1 +
t∑

k=Tr,c+1

v2
k−1,i

1/2
 for t > Tr,c.

Notice that ExpOpt stops additional exploration after t = Tw, and the state starts decaying until
t = Tr,c. For simplicity of presentation we treat the time between Tw and Tr,c as exploration
sacrificing the tightness of the result. On ET ∩ F [c]

Tc
, ‖νk‖ ≤ DS(n + d)n+d

√
1 + κ2 for k ≤ Tr,c

and ‖νk‖ ≤ 4DSσw
√

1+κ2

1−Υ

√
2n log n(T−Tc)

δ for k > Tr,c. Thus, vk,i ≤ DS(n + d)n+d
√

1 + κ2 and

vk,i ≤ 4DSσw
√

1+κ2

1−Υ

√
2n log n(T−Tc)

δ respectively for k ≤ Tr,c and k > Tr,c . Using union bound we
get, for probability at least 1− δ

4 , for t > Tr,c,

R1,1 ≤ n
√

2(σ2
w + ‖B∗‖2σ2

ν)
(
1 + Tr,cD2S2(n+ d)2(n+d)(1 + κ2)

)
×√

log

(
4n

δ

(
1 + Tr,cD2S2(n+ d)2(n+d)(1 + κ2)

)1/2)

+ n

√
2σ2

w

(
1 + 32(t− Tr,c)D2S2

nσ2
w

(1−Υ)2
(1 + κ2) log

(
n(T − Tc)

δ

))
×√

log

(
4n

δ

(
1 + 32(t− Tr,c)D2S2

nσ2
w

(1−Υ)2
(1 + κ2) log

(
n(T − Tc)

δ

)))
.
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LetWexp = (σw+‖B∗‖σν)
√

2n log 8nT
δ andWnoexp = σw

√
2n log 8nT

δ . Define Ψt = ζ>t−1P (Θ̃t)ζt−1−

E
[
ζ>t−1P (Θ̃t)ζt−1|Ft−2

]
and its truncated version Ψ̃t = ΨtI{Ψt≤2DW 2

exp} for t ≤ Tw and Ψ̃t =

ΨtI{Ψt≤2DW 2
noexp} for t > Tw . Notice that R1,2 =

∑T
t=1 Ψt.

Pr

(
Tw∑
t=1

Ψt > 2DW 2
exp

√
2Tw log

8

δ

)
+ Pr

(
T∑

t=Tw+1

Ψt > 2DW 2
noexp

√
2(T − Tw) log

8

δ

)

≤ Pr

(
max

1≤t≤Tw
Ψt > 2DW 2

exp

)
+ Pr

(
max

Tw+1≤t≤T
Ψt > 2DW 2

noexp

)
+ Pr

(
Tw∑
t=1

Ψ̃t > 2DW 2
exp

√
2Tw log

8

δ

)
+ Pr

(
T∑

t=Tw+1

Ψ̃t > 2DW 2
noexp

√
2(T − Tw) log

8

δ

)

By Lemma I.2 with union bound and Theorem 6, summation of terms on the right hand side is
bounded by δ/4. Thus, with probability at least 1− δ/4, for t > Tw,

R1,2 ≤ 4nDσ2
w

√
2(t− Tw) log

8

δ
log

8nT

δ
+ 4nD(σw + ‖B∗‖σν)2

√
2Tw log

8

δ
log

8nT

δ
.

Combining R1,1 and R1,2 gives the statement.

Recall from Lemma 4.2, the bound on the state in stabilizable system is similar to its controllable
counterpart in the additional exploration period. Similarly after stabilization the state is bounded as
‖xt‖ ≤ (12κ2+2κ

√
2)σw

γ

√
2n log(n(t− Ts)/δ). Therefore, the same result for Rζ1 directly translates to

stabilizable setting with change of bounds on the states. We have the following bound in stabilizable
systems with additional exploration.

Lemma G.9 (Bounding Rζ1 for stabilizable LQR). Let Rζ1 be as defined by (53). Under the event
of ET ∩ F [s]

Ts
, with probability at least 1− δ/2, for stabilizable LQR, for t > Tr,s, we have

R1 ≤ ks,1(n+ d)n+d(σw + ‖B∗‖σν)n
√
Tr,s log((n+ d)Ts,c/δ)

+
ks,2(12κ2 + 2κ

√
2)

γ
σ2
wn
√
n log(n(t− Ts)/δ)

+ ks,3nσ
2
w

√
T − Tw log(nT/δ) + ks,4n(σw + ‖B∗‖σν)2

√
Tw log(nT/δ),

for some problem dependent coefficients ks,1, ks,2, ks,3, ks,4.

G.3.2 Bounding |Rζ2| on the event of ET ∩ F [s]
Ts

or ET ∩ F [c]
Tc

In this section, we will bound |Rζ2| for both controllable and stabilizable systems. This term is similar
to R2 analyzed in Appendix G.1.2. In a controllable LQR policy change is governed only by the
determinant of regularized design matrix Vt.
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Lemma G.10 (Number of Policy Changes in Controllable LQR with additional exploration). On
the event of ET ∩F [c]

Tc
, in a controllable LQR, ExpOpt with additional exploration changes the policy

at most

(n+ d) log2

1 +
Tr,c(n+ d)2(n+d)(1 + κ2) + (T − Tr,c)32nσ2

w(1+κ2)
(1−Υ)2 log n(T−Tc)

δ

λ

 (64)

Proof. Changing policy K times up to time T requires det(VT ) ≥ λn+d2K . We also have that

λmax(VT ) ≤ λ+
T−1∑
t=0

‖zt‖2 ≤ λ+ Tr,c(n+ d)2(n+d)(1 + κ2) + (T − Tr,c)
32nσ2

w(1 + κ2)

(1−Υ)2
log

n(T − Tc)
δ

Thus, λn+d2K ≤
(
λ+ Tr,c(n+ d)2(n+d)(1 + κ2) + (T − Tr,c)32nσ2

w(1+κ2)
(1−Υ)2 log n(T−Tc)

δ

)n+d
. Solv-

ing for K gives

K ≤ (n+ d) log2

1 +
Tr,c(n+ d)2(n+d)(1 + κ2) + (T − Tr,c)32nσ2

w(1+κ2)
(1−Υ)2 log n(T−Tc)

δ

λ

 .

Similarly we have the following for stabilizable LQR.

Lemma G.11 (Number of Policy Changes in Stabilizable LQR with additional exploration). On
the event of ET ∩ F [c]

Tc
, in a stabilizable LQR, ExpOpt with additional exploration changes the policy

at most

min

{
T/H0, (n+ d) log2

(
1 +

λ+ Tr,s(n+ d)2(n+d)(1 + κ2) + (T − Tr,s)X2
s

λ

)}
(65)

where Xs = (12κ2+2κ
√

2)σw
γ

√
2n log(n(t− Ts)/δ)

Proof. Changing policy K times up to time T requires det(VT ) ≥ λn+d2K . We also have that

λmax(VT ) ≤ λ+
T−1∑
t=0

‖zt‖2 ≤ λ+ Tr,s(n+ d)2(n+d)(1 + κ2) + (T − Tr,s)X2
s

Thus, λn+d2K ≤
(
λ+ Tr,s(n+ d)2(n+d)(1 + κ2) + (T − Tr,s)X2

s

)n+d. Solving for K gives

K ≤ (n+ d) log2

(
1 +

Tr,s(n+ d)2(n+d)(1 + κ2) + (T − Tr,s)X2
s

λ

)
.

Moreover, the number of policy changes is also controlled by the lower bound H0 on the duration
of each controller. This policy update method would give at most T/H0 policy changes. Since for
the policy update, ExpOpt requires both conditions to be met, the upper bound on the number of
policy changes is minimum of these.
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Notice that besides the policy change instances, all the terms in Rζ2 are 0. Therefore, we have
the following results for controllable and stabilizable systems respectively.

Lemma G.12 (Bounding Rζ2 for controllable LQR). Let Rζ2 be as defined by (54). Under the event
of ET ∩ F [c]

Tc
, for controllable LQR, we have

|R2| ≤ 2D(n+ d)2(n+d)+1 log2

(
1 +

Tr,c(n+ d)2(n+d)(1 + κ2)

λ

)

+ 2D
32nσ2

w(1 + κ2)

(1−Υ)2
log

n(T − Tc)
δ

(n+ d)×

log2

1 +
Tr,c(n+ d)2(n+d)(1 + κ2) + (T − Tr,c)32nσ2

w(1+κ2)
(1−Υ)2 log n(T−Tc)

δ

λ


Proof. On the event ET ∩F [c]

Tc
, we know the maximum number of policy changes up to Tr,c and T using

Lemma G.10. Using the fact that ‖xt‖ ≤ (n+ d)n+d for t ≤ Tr,c and ‖xt‖ ≤ 4σw
1−Υ

√
2n log n(T−Tc)

δ ,
we obtain the statement of the lemma.

Lemma G.13 (Bounding Rζ2 for stabilizable LQR). Let Rζ2 be as defined by (54). Under the event
of ET ∩ F [s]

Ts
, for stabilizable LQR, we have

|R2| ≤ 2D(n+ d)2(n+d)+1 log2

(
1 +

Tr,s(n+ d)2(n+d)(1 + κ2)

λ

)

+ 2DXs(n+ d) log2

(
1 +

λ+ Tr,s(n+ d)2(n+d)(1 + κ2) + (T − Tr,s)X2
s

λ

)

where Xs = (12κ2+2κ
√

2)σw
γ

√
2n log(n(t− Ts)/δ)

The proof follows the same with the controllable counterpart.

G.3.3 Bounding |Rζ3| on the event of ET ∩ F [s]
Ts

or ET ∩ F [c]
Tc

For Rζ3, we will first consider the controllable LQR. The following adapts the proof of Abbasi-Yadkori
and Szepesvári [2011] to our setting.

Lemma G.14. On the event of ET ∩ F [c]
Tc
, in a controllable LQR, the following holds,

T∑
t=0

‖(Θ∗ − Θ̃t)
>zt‖2≤

16(1 + κ2)β2
T (δ)

λ

(
(n+ d)2(n+d) log

det(VTr,c)

det(λI)
+X2

c log
det(VT )

det(VTr,c)

)

where X2
c = 32nσ2

w(1+κ2)
(1−Υ)2 log n(T−Tc)

δ
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Proof. Let st = (Θ∗ − Θ̃t)
>zt and τ ≤ t be the time step that the last policy change happened. We

have the following using triangle inequality,

‖st‖ ≤ ‖(Θ∗ − Θ̂t)
>zt‖+ ‖(Θ̂t − Θ̃t)

>zt‖.

For all Θ ∈ Cτ (δ), we have

‖(Θ− Θ̂t)
>zt‖ ≤ ‖V 1/2

t (Θ− Θ̂t)‖zt‖‖V −1
t

(66)

≤ ‖V 1/2
τ (Θ− Θ̂t)‖

√
det(Vt)

det(Vτ )
‖zt‖V −1

t
(67)

≤
√

2‖V 1/2
τ (Θ− Θ̂t)‖‖zt‖V −1

t
(68)

≤
√

2βτ (δ)‖zt‖V −1
t

(69)

where (66) follows from Cauchy-Schwarz, (67) follows from Lemma 11 of Abbasi-Yadkori and
Szepesvári [2011]. We use the update rule for (68) and finally at (69), we use the fact that
λmax(M) ≤ Tr(M) for M � 0. Using this result, we obtain,

Tr,c∑
t=0

‖(Θ∗ − Θ̃t)
>zt‖2 ≤

8(1 + κ2)β2
Tr,c

(δ)

λ
(n+ d)2(n+d)

Tr,c∑
t=0

min{‖zt‖2V −1
t
, 1}

≤
16(1 + κ2)β2

T (δ)

λ
(n+ d)2(n+d) log

det(VTr,c)

det(λI)

T∑
t=Tr,c

‖(Θ∗ − Θ̃t)
>zt‖2 ≤

8(1 + κ2)β2
T (δ)

λ

32nσ2
w(1 + κ2)

(1−Υ)2
log

n(T − Tc)
δ

T∑
t=Tr,c+1

min{‖zt‖2V −1
t
, 1}

≤
16(1 + κ2)β2

T (δ)

λ

32nσ2
w(1 + κ2)

(1−Υ)2
log

n(T − Tc)
δ

log
det(VT )

det(VTr,c)
.

where we use Lemma I.1 in the last lines.

The stabilizable counterpart follows similarly.

Lemma G.15. On the event of ET ∩ F [s]
Ts
, in a stabilizable LQR, the following holds,

T∑
t=0

‖(Θ∗ − Θ̃t)
>zt‖2≤

8(1 + κ2)β2
T (δ)

λ
×

(
(n+ d)2(n+d) max

2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0

 log
det(VTr,s)

det(λI)

+X2
s max

{
2,

(
1 +

(1 + κ2)X2
s

λ

)H0
}

log
det(VT )

det(VTr,s)

)

where Xs = (12κ2+2κ
√

2)σw
γ

√
2n log(n(t− Ts)/δ).
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Proof. Let st = (Θ∗ − Θ̃t)
>zt and τ ≤ t be the time step that the last policy change happened. We

have the following using triangle inequality,

‖st‖ ≤ ‖(Θ∗ − Θ̂t)
>zt‖+ ‖(Θ̂t − Θ̃t)

>zt‖.

For all Θ ∈ Cτ (δ), for τ ≤ Tr,s, we have

‖(Θ− Θ̂t)
>zt‖ ≤ ‖V 1/2

t (Θ− Θ̂t)‖‖zt‖V −1
t

(70)

≤ ‖V 1/2
τ (Θ− Θ̂t)‖

√
det(Vt)

det(Vτ )
‖zt‖V −1

t
(71)

≤ max

√2,

√(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0

 ‖V 1/2
τ (Θ− Θ̂t)‖‖zt‖V −1

t
(72)

≤ max

√2,

√(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0

βτ (δ)‖zt‖V −1
t
. (73)

Similarly, for for all Θ ∈ Cτ (δ), for τ > Tr,s, we have

‖(Θ− Θ̂t)
>zt‖ ≤ max

√2,

√(
1 +

(1 + κ2)X2
s

λ

)H0

βτ (δ)‖zt‖V −1
t

Using these results, we obtain,

T∑
t=0

‖(Θ∗ − Θ̃t)
>zt‖2

≤ 8 max

2,

(
1 +

(1 + κ2)(n+ d)2(n+d)

λ

)H0

 β2
T (δ)(1 + κ2)(n+ d)2(n+d)

λ
log

(
det(VTr,s)

det(λI)

)

+ 8 max

{
2,

(
1 +

(1 + κ2)X2
s

λ

)H0
}
β2
T (δ)(1 + κ2)X2

s

λ
log

(
det(VT )

det(VTr,s)

)
where we use Lemma I.1.

Remark 1. Here, we provide another lemma which bounds the quantity in Lemma G.15 more
tightly using the system properties and assumptions. Note that Lemma G.15 is more general. After
stabilization, updating the policy in doubling epochs, instead of doubling of determinant of regularized
design matrix, would remove the dependency on H0 in Lemma G.15 for t ≥ Tr,s, by using the fact
that ‖Θ∗ − Θ̃t‖ = Õ(1/

√
t).

Lemma G.16. On the event of ET ∩ F [s]
Ts
, in a stabilizable LQR, let the ExpOpt update its policy

in doubling epochs after stabilizing the system where the base epoch length is Tr,s, i.e., after time-step
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Tr,s, first controller is applied for Tr,s time steps, second controller is applied for 2Tr,s time steps, so
on. Then the following holds for this new update rule,

T∑
t=0

‖(Θ∗ − Θ̃t)
>zt‖2≤ κ2

e(1 + κ2)X2
s log(T )

for Xs = (12κ2+2κ
√

2)σw
γ

√
2n log(n(t− Ts)/δ).

Proof. Let st = (Θ∗ − Θ̃t)
>zt and τ ≤ t be the time step that the last policy change happened. We

have the following using triangle inequality,

‖st‖ ≤ ‖(Θ∗ − Θ̂t)
>zt‖+ ‖(Θ̂t − Θ̃t)

>zt‖.

For all Θ ∈ Cτ (δ), for τ > Tr,s, we have

‖(Θ− Θ̂t)
>zt‖ ≤ ‖(Θ− Θ̂t)‖‖zt‖

≤ κe√
τ

√
1 + κ2Xs

Let τt denote the time step that last policy change occured before time t. Using the new update
rule we obtain,

T∑
t=Tr,s

‖(Θ∗ − Θ̃t)
>zt‖2 ≤

T∑
t=Tr,s

4
κ2
e(1 + κ2)X2

s

τt

≤ Tr,s4
κ2
e(1 + κ2)X2

s

Tr,s
+ 2Tr,s4

κ2
e(1 + κ2)X2

s

2Tr,s
+ ...

≤ κ2
e(1 + κ2)X2

s log(T ),

where the last line follows from the fact that there can be at most log(T ) updates in this update
scheme.

Now, we bound Rζ3 in controllable systems.

Lemma G.17 (Bounding Rζ3 for controllable LQR). Let Rζ3 be as defined by (55). Under the event
of ET ∩ F [c]

Tc
, for controllable LQR, we have

|Rζ3| = Õ
(

(n+ d)2(n+d)
√
Tr,c + (n+ d)n2

√
T − Tr,c

)
Proof. The proof follows similar decomposition with Lemma G.5, i.e., after using triangle inequlity
and we use Cauchy Schwarz inequality and again triangle inequality, and gives the following result:
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Tr,c(1 + κ2)(n+ d)2(n+d) + (T − Tr,c)

(
32nσ2

w(1+κ2)
(1−Υ)2 log n(T−Tc)

δ

)
λ(n+ d)



The stabilizable counterpart follows similarly with the required changes, thus it’s proof is omitted.

Lemma G.18 (Bounding Rζ3 for stabilizable LQR). Let Rζ3 be as defined by (55). Under the event
of ET ∩ F [s]

Ts
, for stabilizable LQR, we have

|Rζ3| = Õ
(

(n+ d)(H0+1)(n+d)
√
Tr,s + (n+ d)n2+H0/2

√
T − Tr,s

)
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If one uses Lemma G.16, then the following result is obtained directly.

Lemma G.19 (Improved bound on Rζ3 for stabilizable LQR using doubling epoch length). Let
Rζ3 be as defined by (55). Under the event of ET ∩ F [s]

Ts
, for stabilizable LQR, after stabilization if

ExpOpt updates its policy in doubling epochs with base epoch length of Tr,s, we have

|Rζ3| = Õ
(

(n+ d)(H0+1)(n+d)
√
Tr,s + (n+ d)n2

√
T − Tr,s

)
G.3.4 Combining Terms for Final Regret Upper Bounds

Proof of Theorem 2: Recall that

REGRET(T ) ≤ σ2
νTwD‖B∗‖2F +

Tc∑
t=0

(
2ν>t Rut + ν>t Rνt

)
+Rζ1 −R

ζ
2 −R

ζ
3.

Combining Lemma G.6 for
∑Tc

t=0

(
2ν>t Rut + ν>t Rνt

)
, Lemma G.8 for Rζ1, Lemma G.12 for |Rζ2| and

Lemma G.17 for |Rζ3|, we get the advertised regret bound.
�

Proof of Theorem 3: Recall that

REGRET(T ) ≤ σ2
νTwD‖B∗‖2F +

Ts∑
t=0

(
2ν>t Rut + ν>t Rνt

)
+Rζ1 −R

ζ
2 −R

ζ
3.

• Combining Lemma G.6 for
∑Ts

t=0

(
2ν>t Rut + ν>t Rνt

)
, Lemma G.9 for Rζ1, Lemma G.13 for

|Rζ2| and Lemma G.18 for |Rζ3|, we get the advertised regret bound.

Remark 2. Note that this bound is in general setting. If the structure and the assumptions of the
system is further exploited, then using Lemma G.19 in bounding Rζ3, we remove the dependency on
H0 in the polynomial in dimension regret bound after stabilization.

�

H Stabilizability Discussion

In Assumption 2.3, we are given a set, Ss, that consists of (κ, γ)-stabilizable systems, i.e. for all
(A,B) ∈ S0, ∃K such that ρ(A+BK) < 1− γ, ‖K‖ ≤ κ and A+BK is (κ, γ)-strongly stable.

Definition H.1. A matrix M is (κ, γ)-strongly stable (for κ ≥ 1 and 0 ≤ γ ≤ 1) if there exists
matrices H � 0 and L such that M = HLH−1 with ‖L‖ ≤ 1− γ and ‖H‖‖H−1‖ ≤ κ.

This is a valid assumption since for all stabilizable systems, by setting 1− γ = ρ(A+BK) and κ
to be the condition number of P 1/2 where P is the positive definite matrix that satisfies the following
Lyapunov equation:

(A+BK)>P (A+BK) � P, (74)

one can show that closed-loop system is (κ, γ)-strongly stable Lemma B.1 of Cohen et al. [2018].
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I Technical Theorems and Lemmas

Theorem 5 (Self-normalized bound for vector-valued martingales [Abbasi-Yadkori et al., 2011]). Let
(Ft; k ≥ 0) be a filtration, (mk; k ≥ 0) be an Rd-valued stochastic process adapted to (Fk) , (ηk; k ≥ 1)
be a real-valued martingale difference process adapted to (Fk) . Assume that ηk is conditionally
sub-Gaussian with constant R. Consider the martingale

St =
t∑

k=1

ηkmk−1

and the matrix-valued processes

Vt =
t∑

k=1

mk−1m
>
k−1, V t = V + Vt, t ≥ 0

Then for any 0 < δ < 1, with probability 1− δ

∀t ≥ 0, ‖St‖2V −1
t
≤ 2R2 log

(
det
(
V t

)1/2
det(V )−1/2

δ

)

Theorem 6 (Azuma’s inequality). Assume that (Xs; s ≥ 0) is a supermartingale and |Xs −Xs−1| ≤
cs almost surely. Then for all t > 0 and all ε > 0,

P (|Xt −X0| ≥ ε) ≤ 2 exp

(
−ε2

2
∑t

s=1 c
2
s

)

Lemma I.1 (Bound on Logarithm of the Determinant of Sample Covariance Matrix [Abbasi-Yadkori
et al., 2011]). The following holds for any t ≥ 1 :

t−1∑
k=0

(
‖zk‖2V −1

k
∧ 1
)
≤ 2 log

det (Vt)

det(λI)

Further, when the covariates satisfy ‖zt‖ ≤ cm, t ≥ 0 with some cm > 0 w.p. 1 then

log
det (Vt)

det(λI)
≤ (n+ d) log

(
λ(n+ d) + tc2

m

λ(n+ d)

)
Lemma I.2 (Norm of Subgaussian vector). Let v ∈ Rd be a entry-wise R-subgaussian random
variable. Then with probability 1− δ, ‖v‖ ≤ R

√
2d log(d/δ).
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