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I. THE EFFECTIVE ACTION

In this part, we will describe the solution of the problem using a geometrical approach. The logic will be the
same as in the main text. We derive the effective action in adiabatic approximation and then the first non-adiabatic
correction. Full action is provided in Eq.(22).

A. Adiabatic approximation

The action of the SYK model at the Hyperbolic plane (we use Poincaré disk model) was presented at the main
text. After proper regularization it has the form:
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Here g, is a metric tensor and w,, is the spin connection. We also introduced the following notations:
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Here z is a complex coordinate of the point at the model. We will use coordinates § and ¢ which are defined as
z = tanh(&/2)e'? to solve our problem. We also perform Hubbard-Stratonovich transformation, as a result the action
of the problem will be:
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Here L is the Laplace operator and dyu is the invariant measure on the hyperbolic plane and we should take a limit
0 — 0. If we integrate the bosonic field ® we will obtain the previous action. We employ an adiabatic approximation,
assuming that the motion along the phase ¢ is much slower than along radial coordinate £&. Then functional integral
over trajectories £(7) can be done at fixed value of ¢, which is the way to find an effective action for ¢(7). Since

parameter v > 1, we can use saddle point approximation for ¢, which leads to the relation ¢ = Zlcnohsf ((f)) . The effective

action is then defined in the following way:
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A Lagrange variable A(7) is used to remove the d-function. Then we need to calculate the functional integral with
the action dependent of trajectories &(7) and A(7):
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Representation (6) follows from Eq.(5) since the condition v > 1 leads also to £ > 1; we also omit irrelevant constant
v2/2. Now calculation of the functional integral over £(7) is reduced to the solution of the 1D quantum-mechanical
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problem with the Hamiltonian
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It is the same Hamiltonian as one presented in the main text. Its eigenfunctions and eigenvalues will be presented
below. Last term in the action (6) was neglected in the Hamiltonian (7) due to its smallness w.r.t. other terms;
however, we will need this term later. The term ®(,¢) in Eq.(7) came from S;,: term in Eq.(6). Explicit form of
®(&, ) is to be obtained variationally. Variation of the full action over ® leads to the relation

dy’
e(¢’)

where G4 is the Green function of the operator —L — i + 62, and the limit § — 0 is implied. Full analysis of this
Green function is provided in Sec.IV below; here we need its asymptotic expression only (it coincides with Eq.(49) in
e—&1—€2
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the end of Sec.IV). Gg (&1, v1]€2, v2) = 297 ( 2 , where @15 = 2sin(#522).
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Using Eq.(8) and the result of variation of the full action over A(7), we obtain, as explained in the main text:
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We start our analysis of Eq.(7)) from the simplest case of ¢ = ¢ = 2r/B. Then Schrodinger equation (7) with
potential (9) allows for exact ground-state 14 and excited bound-state solutions ,,. We provide these functions
below together with corresponding eigenvalues, assuming x > 1:
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where x = 8y/7Xe /2 and U(n,m, x) is confluent hypergeometric function; line (11) is valid for 1 + 2n < .

Now we need to generalize the above result for non-constant but slowly varying ¢ = £(¢). Our goal is to determine
effective action S.¢f[p(7)]; equivalent representation can be obtained in terms of Ses¢[e(¢)], since it is always assumed
that ¢ = e(¢) > 0. Formally, this functional can be written as
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where ”saddle” means that ® and A should be determined from the saddle point equations.

To find the energy of the ground state for a general choice of (i) it is convenient to consider three terms in the
Hamiltonian (7) separately and notice that the term which contains A(p) is canceled out in the effective action (12).
Then we need to calculate the average of the two other terms in the Hamiltonian over the deformed ( dependent on
g(y)) ground state:
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The first term in (13) comes from kinetic term in the Hamiltonian (7), its dependence on £(¢p) is weak and we neglect
it in the following. We will estimate its influence below. The second term, together with Sg term in Eq.(12), combine
to our final result for the action in the adiabatic approximation:
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For the applicability of our adiabatic approximation strong inequality x > 1 is needed, thus *—= ~ 1.
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B. Main non-adiabatic correction

The aim of this Section is to find the first non-adiabatic correction to the action. This correction is due to virtual
transitions between the levels of the 1D quantum mechanical problem with the Hamiltonian (7) which describes
motion along coordinate . General form of such a correction to Seyy is
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Here E, is an energy of the excited state n which adiabatically depends on 7 and (0, H )n4 is a matrix element of the
operator 0, H between ground state and n-th state. Equation (15) can be obtained applying quantum-mechanical
perturbation theory with respect to time-dependent terms in the Hamiltonian. The expression (15) comes in the next
order after the Berry phase term.

To employ general form (15) for our purpose, it is convenient to introduce the following notations:
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In the limit x> 1 we have: M,,, = F(FTF;*) a=n/2 Time derivative OH /OT can be written in the form
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Using Eq.(17) and notations (16) we write:
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Here the limit of large x was used to obtain the last result. As E,, = —35(— + 2n+ 1)? and £ > 1 the leading

contribution to the S.r¢ comes from the first term in the sum. It brings us to the following expression:
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The last expression follows from the expression for A in (9).

Now we recall the last term in the action (6), which was not taken into account in the adiabatic approximation. In
the limit of large x the contribution of this term into the ground-state energy can be evaluated as —2+? Ik dfd)g (€)e 2.
Thus its contribution to the effective action is

_ 1 ? 2 7£2N_1 27rdi2
s=—5 | [aioee a5 [ B (20)

Combining the terms in Egs.(19,20) we find total non-adiabatic contribution to the action
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which exactly reproduces the Schwarzian action known for the SYKy theory. Full action is given by the sum of Eq.(21)
and Eq.(14):

1T dy 2\ 9 [ (len)elen)\? dprde
Sepp = §/0 =) ((@,5(@))2 —&(p) ) - 2/( ;%2 - ) 5(@1;6(@22) 2

In the next Section we will evaluate fluctuations of £(¢) controlled by the action (22).

II. FLUCTUATION CORRECTIONS

In the Section we analyze Gaussian fluctuations of the function e(y) using the action provided in Eq.(22), and
estimate corrections to the fermion Green function related to these fluctuations.



A. Gaussian fluctuations of the ¢(¢) function

Consider the 2nd-order expansion of the action over Fourier-components de,, defined as
1 4
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We will assume de(0) < €o; equivalently, we write ¢ = 6 + u(6) and u(f) <« 1. Do derive the action up to quadratic
terms in fluctuations, we need to expand £(¢) up to a second order:
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The first term in Eq.(22) leads to:
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The second term in Eq.(22) is not quite trivial to handle, since the integral over (p; — o) formally diverges, so
some regularization is needed. Explicit regularization with invariant short-scale cut-off ¢2,/c(p1)e(p2) > [ can be
used to demonstrate that higher harmonics €, are free from this log-divergence. Since this calculation is relatively

cumbersome, we present here simpler derivation based on dimensional regularization. Namely, we replace power =

2
in the 2-nd term in (22) by some d < 3 and then take the limit d — § — 0. At d < § straightforward Fourier-

transformation leads to (with the accuracy up to terms quadratic in &,,):
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Then last integral in Eq.(26) can be calculated using the following formula:

Tdp (1 N 1 L(m + d)
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where m is any integer number. We are interested in the m-dependent coefficients which are obtained by derivative
of the ratio I'(m + d)/I'(m + 1 — d) over d, evaluated in the limit d — 5. The result reads
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Here ¢p(z) = W(x+1/2) — ¥(—1/2) and ¥(z) = (InT(z))’ is the digamma function. This action leads to the following
correlation function:
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We use it below for calculations of the corrections to fermion Green function.
B. Estimation of the fluctuations of the kinetic term
The contribution to the action from the kinetic term has the form:
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Assuming smallness of fluctuations we can write k = kg + 0k where kg is defined by £(¢) = g9. We will also define
a parameter o = %g < 1. The connection between dx and de can be obtained from the definition of x and has the
0
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form:



This expression leads to the following form of the above action:
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One can see smallness of this part due to the factor K%O < 1 with respect to the second term in the (28)

C. Correction to the Green function

Fermion Green function can be obtained as an average of the field G(6;,6,), evaluated with the effective action
(22), where
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The saddle point approximation (¢(6) = 6) leads to (G(61,602)) = G. = (va E") . We are interested in the

quadratic correction to the Green’s function. So we need to find the second-order correction by de to G :
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For large k only terms with large m will be important. In this case: O,,(6) = ﬁ(A — 1+ Acos(mb)) ~ ﬁ

SO we can write
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Here m, is defined us e3(m? — 1) = gd;(m*) For large » we can write, using Eq.(9): egm. = §, thus corrections to
fermion Green function are small at any 6.

III. HIGHER ORDERS OF THE FERMIONIC GREEN FUNCTION.

The major object of our theory is the Majorana Green function G(7) averaged over disorder variables which enter
the Hamiltonian, Eq.(1) of the main text. However, local Majorana Green function G;(7,7") = —{x;(7)x:(7')) contains
more information about system’s dynamics.

One of the methods to extract this additional information is to consider higher-order Green functions, defined
below:

G(p)(T,T E <_ZX1 ’L >> (35)

Here we restrict ourselves by the region of moderately high p < N, where it is easy to show that
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Angular brackets in the middle formula of the above equation mean averaging over quantum action S.y¢, see Eq.(11)
of the main text. Formula in the R.H.S. of (36) is obtained after we take average over fluctuations of &; and & over
the polaron ground state 14(€), where C, is defined below:
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We used assumption o < k to make the last approximation. Final averaging over S, in the R.H.S. of Eq.(36) should
be done with the full phase-dependent action given by Eq.(22). Last expression in Eq.(37) is valid in the main order
of approximation for x > 1 and a > 1.

Consider now the effect of integration over fluctuations of angular modes €(¢) and define relevant measure for these
fluctuations

(G (11, 72))
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where G.(71,72) is the conformal saddle-point Green function, while the function dg(6y,6s) is defined via the relation
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We use here definitions ¢ = 6 + u(0) and ¢(¢) = 50%. To calculate the average in the R.H.S. of Eq.(38) we need to
expand the R.H.S. of Eq.(39) up to linear terms in «(#) and then use Fourier series:
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Now we can average R.H.S. of Eq.(38) in the Gaussian approximation, using representation (40) and correlation
function defined in (29). Correlation function in the f-representation is (below 6 = 61 — 63):
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where egm, = /8 and last equality just defines a convenient notation. Asymptotic limits for the function f(#) are
given by

1 m.0 > 1
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Finally, combining Egs.(36,37,38,41) and replacing A — % we obtain
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IV. THE GREEN FUNCTION OF THE BOSON FIELD ON THE HYPERBOLIC PLANE.

The action of the bosonic field is

So = %/dmb(m)(—L _ i +8)0(x) (44)

Here L is the Laplace operator and du is an invariant measure on the hyperbolic plane and § — 0. We use the
Poincaré disk model. The Green function of the bosonic field satisfy the following equation:
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All objects here are invariant under SL(2, R) transformations so let us use transforms which maps zo — 0 in this case
z1 — 2=20_ In new coordinates the form of equation will be the same but ¢ function will be localized in the origin

of the hypeorbolic plane so we expect the rotation invariant solution. It leads us to the equation:
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Here u = |z|?. This equation can be written as the homogeneous equation with boundary conditions: the Green
function should decay faster than (1 —u)'/? at u — 1, while at u < 1 it should behave as G (u) — —%. Then we
come to the following result:
1 145 1 1
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Here o F(a, b, c; z) is a hypergeometric function. In the limit 6 — 0
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Here K (w) is the complete elliptic integral of the first kind. In the limit w — 0 we have:
G (21, 20) = w'/? (49)

It is the last form (49) for the Bose field Green function Gg, which we use in the main text and in Sec.I above.



