
Supporting Material for ”Perturbed Sachdev-Ye-Kitaev model: a polaron in the
hyperbolic plane.”

PACS numbers:

I. THE EFFECTIVE ACTION

In this part, we will describe the solution of the problem using a geometrical approach. The logic will be the
same as in the main text. We derive the effective action in adiabatic approximation and then the first non-adiabatic
correction. Full action is provided in Eq.(22).

A. Adiabatic approximation

The action of the SYK model at the Hyperbolic plane (we use Poincaré disk model) was presented at the main
text. After proper regularization it has the form:

S =

∫ β̃

0

{
1

2
gµνẊ

µẊν − γωµẊµ

}
dτ − gγ

4

∫ β̃

0

dτ1dτ2χ
1/2
z(τ1),z(τ2) (1)

Here gµν is a metric tensor and ωµ is the spin connection. We also introduced the following notations:

β̃ =
Jβ

γ
, g =

b2∆

2

NΓ2

J2
γ2−4∆ =

Nγ

4
√
π

Γ2

J2
. χ =

(1− |z1|2)(1− |z2|2)

|1− z∗1z2|2
(2)

Here z is a complex coordinate of the point at the model. We will use coordinates ξ and ϕ which are defined as
z = tanh(ξ/2)eiϕ to solve our problem. We also perform Hubbard–Stratonovich transformation, as a result the action
of the problem will be:

SSYK = 1
2

∫ β̃
0

[
ξ̇2

2 + sinh2(ξ) ϕ̇
2

2 − γ cosh(ξ)ϕ̇
]
dτ

SΦ = 1
4gγ

∫
dµΦ(x)(−L− 1

4 + δ2)Φ(x)

Sint =
∫ β̃

0
Φ(x(τ))dτ (3)

Here L is the Laplace operator and dµ is the invariant measure on the hyperbolic plane and we should take a limit
δ → 0. If we integrate the bosonic field Φ we will obtain the previous action. We employ an adiabatic approximation,
assuming that the motion along the phase ϕ is much slower than along radial coordinate ξ. Then functional integral
over trajectories ξ(τ) can be done at fixed value of ϕ, which is the way to find an effective action for ϕ̇(τ). Since

parameter γ � 1, we can use saddle point approximation for ϕ̇, which leads to the relation ϕ̇ = γ cosh(ξ)
sinh2(ξ)

. The effective

action is then defined in the following way:

Seff [ϕ(τ)] = ln

(∫
DΦDξδ

(
ϕ̇− γ cosh(ξ)

sinh2(ξ)

)
e−S

)
(4)

A Lagrange variable λ(τ) is used to remove the δ-function. Then we need to calculate the functional integral with
the action dependent of trajectories ξ(τ) and λ(τ):

S = SΦ + Sint +

∫ β̃

0

[
ξ̇2

2
− 1

2
γ2 cosh2(ξ)

sinh2(ξ)
− λ(τ)

(
ϕ̇− γ cosh(ξ)

sinh2(ξ)

)]
dτ (5)

' SΦ + Sint +

∫ β̃

0

[
1

2
ξ̇2 − λ(τ)

(
ϕ̇− 2γe−ξ(τ)

)]
dτ −

∫ β̃

0

2γ2e−2ξ(τ)dτ (6)

Representation (6) follows from Eq.(5) since the condition γ � 1 leads also to ξ � 1; we also omit irrelevant constant
γ2/2. Now calculation of the functional integral over ξ(τ) is reduced to the solution of the 1D quantum-mechanical
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problem with the Hamiltonian

H = −
∂2
ξ

2
+ 2γλ(τ)e−ξ + Φ(ξ, ϕ(τ)) (7)

It is the same Hamiltonian as one presented in the main text. Its eigenfunctions and eigenvalues will be presented
below. Last term in the action (6) was neglected in the Hamiltonian (7) due to its smallness w.r.t. other terms;
however, we will need this term later. The term Φ(ξ, ϕ) in Eq.(7) came from Sint term in Eq.(6). Explicit form of
Φ(ξ, ϕ) is to be obtained variationally. Variation of the full action over Φ leads to the relation

Φ0(ϕ, ξ) = −
∫
GΦ(ξ, ϕ|ξ′, ϕ′)ψ2

g(ξ′, ϕ′)
dϕ′

ε(ϕ′)
dξ′ (8)

where GΦ is the Green function of the operator −L − 1
4 + δ2, and the limit δ → 0 is implied. Full analysis of this

Green function is provided in Sec.IV below; here we need its asymptotic expression only (it coincides with Eq.(49) in

the end of Sec.IV). GΦ(ξ1, ϕ1|ξ2, ϕ2) = 2gγ
(
e−ξ1−ξ2

ϕ2
12

)1/2

, where ϕ12 = 2 sin(ϕ1−ϕ2

2 ).

Using Eq.(8) and the result of variation of the full action over λ(τ), we obtain, as explained in the main text:

Φ0(ξ, ϕ) = −κ
√
λγ

2
e−ξ/2 where λ(τ) =

κ(κ− 1)

32ϕ̇
and κ2 = 32g ln

(
κβ

16π

)
(9)

We start our analysis of Eq.(7)) from the simplest case of ϕ̇ = ε0 ≡ 2π/β̃. Then Schrodinger equation (7) with
potential (9) allows for exact ground-state ψg and excited bound-state solutions ψn. We provide these functions
below together with corresponding eigenvalues, assuming κ > 1:

ψg(χ) =
e−χ/2χκ/2−1/2√

2Γ(κ− 1)
; Eg = − (κ− 1)2

32
(10)

ψn(χ) =
1√

2Γ(n+1)Γ(κ−n)
κ−2n−1

e−χ/2χ(−1−2n+κ)/2U(−n,−2n+ κ, χ) ; En = − (1 + 2n− κ)2

32
(11)

where χ = 8
√
γλe−ξ/2 and U(n,m, χ) is confluent hypergeometric function; line (11) is valid for 1 + 2n < κ.

Now we need to generalize the above result for non-constant but slowly varying ϕ̇ ≡ ε(ϕ). Our goal is to determine
effective action Seff [ϕ(τ)]; equivalent representation can be obtained in terms of Seff [ε(ϕ)], since it is always assumed
that ϕ̇ ≡ ε(ϕ) > 0. Formally, this functional can be written as

Seff [ϕ(τ)] =

[
SΦ +

∫ β

0

Eg(λ(τ),Φ)dτ −
∫ β

0

λ(τ)ϕ̇dτ

]
saddle

(12)

where ”saddle” means that Φ and λ should be determined from the saddle point equations.
To find the energy of the ground state for a general choice of ε(ϕ) it is convenient to consider three terms in the

Hamiltonian (7) separately and notice that the term which contains λ(ϕ) is canceled out in the effective action (12).
Then we need to calculate the average of the two other terms in the Hamiltonian over the deformed ( dependent on
ε(ϕ)) ground state:

Ẽg =
κ− 1

32
−
∫
GΦ(ξ, ϕ|ξ′, ϕ′)ψ2

g(ξ′, ϕ′)ψ2
g(ξ, ϕ)

dϕ′

ε(ϕ′)
dξ′dξ (13)

The first term in (13) comes from kinetic term in the Hamiltonian (7), its dependence on ε(ϕ) is weak and we neglect
it in the following. We will estimate its influence below. The second term, together with SΦ term in Eq.(12), combine
to our final result for the action in the adiabatic approximation:

Seff = −1

2

∫
GΦ(ξ, ϕ|ξ′, ϕ′)ψ2

g(ξ′, ϕ′)ψ2
g(ξ, ϕ)

dϕ′dϕ

ε(ϕ′)ε(ϕ)
dξ′dξ = −g

2

∫
κ− 1

κ

(
ε(ϕ1)ε(ϕ2)

ϕ2
12

)1/2
dϕ1dϕ2

ε(ϕ1)ε(ϕ2)
(14)

For the applicability of our adiabatic approximation strong inequality κ� 1 is needed, thus κ−1
κ ≈ 1.
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B. Main non-adiabatic correction

The aim of this Section is to find the first non-adiabatic correction to the action. This correction is due to virtual
transitions between the levels of the 1D quantum mechanical problem with the Hamiltonian (7) which describes
motion along coordinate ξ. General form of such a correction to Seff is

δSeff =

[∑
n

∫ β

0

dτ
(∂τH)ng(∂τH)gn
(En(τ)− Eg(τ))3

]
saddle

(15)

Here En is an energy of the excited state n which adiabatically depends on τ and (∂τH)ng is a matrix element of the
operator ∂τH between ground state and n-th state. Equation (15) can be obtained applying quantum-mechanical
perturbation theory with respect to time-dependent terms in the Hamiltonian. The expression (15) comes in the next
order after the Berry phase term.

To employ general form (15) for our purpose, it is convenient to introduce the following notations:

Mnα =

∫ ∞
0

ψn(χ)ψg(χ)χα
2dχ

χ
=

1√
Γ(n+1)Γ(κ−n)Γ(κ−1)

κ−2n−1

Γ(−1− n+ κ+ α)Γ(α+ n)

Γ(α)
(16)

In the limit κ� 1 we have: Mnα = Γ(n+α)
Γ(α) κα−n/2. Time derivative ∂H/∂τ can be written in the form

∂τH = 2γ∂τλe
−ξ − κ

√
γλ∂τλ

4λ
e−ξ/2 =

∂τλ

32λ

(
χ2 − κχ

)
(17)

Using Eq.(17) and notations (16) we write:

(∂τH)gn =
1

32

∂τλ

λ
(Mn2 − κMn1) =

1

32

∂τλ

λ
nκ2−n/2

√
Γ(n+ 1) (18)

Here the limit of large κ was used to obtain the last result. As En = − 1
32 (−κ + 2n + 1)2 and κ � 1 the leading

contribution to the Seff comes from the first term in the sum. It brings us to the following expression:

δSeff =
1

2

∫ β

0

(
∂τλ

λ

)2

dτ =
1

2

∫ 2π

0

dϕ

ε(ϕ)
(∂ϕε(ϕ))

2
(19)

The last expression follows from the expression for λ in (9).
Now we recall the last term in the action (6), which was not taken into account in the adiabatic approximation. In

the limit of large κ the contribution of this term into the ground-state energy can be evaluated as −2γ2
∫
dξψ2

g(ξ)e−2ξ.
Thus its contribution to the effective action is

δS = −1

2

∫ β

0

∫
dξψ2

g(ξ)(2γe−ξ)2 ≈ −1

2

∫ 2π

0

dϕ

ε(ϕ)
ε2(ϕ) (20)

Combining the terms in Eqs.(19,20) we find total non-adiabatic contribution to the action

δSeff = −
∫ β

0

Sch
{
eiϕ(τ), τ

}
dτ (21)

which exactly reproduces the Schwarzian action known for the SYK4 theory. Full action is given by the sum of Eq.(21)
and Eq.(14):

Seff =
1

2

∫ 2π

0

dϕ

ε(ϕ)

(
(∂ϕε(ϕ))

2 − ε(ϕ)2
)
− g

2

∫ (
ε(ϕ1)ε(ϕ2)

ϕ2
12

)1/2
dϕ1dϕ2

ε(ϕ1)ε(ϕ2)
(22)

In the next Section we will evaluate fluctuations of ε(ϕ) controlled by the action (22).

II. FLUCTUATION CORRECTIONS

In the Section we analyze Gaussian fluctuations of the function ε(ϕ) using the action provided in Eq.(22), and
estimate corrections to the fermion Green function related to these fluctuations.
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A. Gaussian fluctuations of the ε(ϕ) function

Consider the 2nd-order expansion of the action over Fourier-components δεm defined as

ε(θ) = ε0 +
1

2π

∑
m

δεme
imθ (23)

We will assume δε(θ)� ε0; equivalently, we write ϕ = θ + u(θ) and u(θ)� 1. Do derive the action up to quadratic
terms in fluctuations, we need to expand ε(ϕ) up to a second order:

ε(ϕ) = ε0
dϕ

dθ
= ε0(1 + u′(θ)) ≈ ε0(1 + u′(ϕ)− u(ϕ)u′′(ϕ)) (24)

The first term in Eq.(22) leads to:

1

2

∫ 2π

0

dϕ

ε(ϕ)

(
(∂ϕε(ϕ))

2 − ε(ϕ)2
)
≈ ε0

2

∫ 2π

0

dϕ
(

(u′′)
2 − (1 + u′u′)

)
=

1

4πε0

∑
m

δεmδε−m(m2 − 1) (25)

The second term in Eq.(22) is not quite trivial to handle, since the integral over (ϕ1 − ϕ2) formally diverges, so
some regularization is needed. Explicit regularization with invariant short-scale cut-off ϕ2

12/ε(ϕ1)ε(ϕ2) > l can be
used to demonstrate that higher harmonics εm are free from this log-divergence. Since this calculation is relatively
cumbersome, we present here simpler derivation based on dimensional regularization. Namely, we replace power 1

2

in the 2-nd term in (22) by some d < 1
2 and then take the limit d → 1

2 − 0. At d < 1
2 straightforward Fourier-

transformation leads to (with the accuracy up to terms quadratic in εm):

g

4γ

∫ (
ε(ϕ)ε(ϕ′)

ϕ12

)d
dϕ′dϕ

ε(ϕ′)ε(ϕ)
=

1

2

g

4γ

∑
m 6=0

umu−m
m2

∫ 2π

0

dϕ

2π
2(d− 1)ε2d−4

0

(
1

4 sin2(ϕ)

)d
((d− 1) cos(2mϕ) + d) (26)

Then last integral in Eq.(26) can be calculated using the following formula:∫ 2π

0

dϕ

2π

(
1

4 sin2(ϕ)

)d
e2imϕ =

1

2 cos(πd)

Γ(m+ d)

Γ(2d)Γ(1 +m− d)
(27)

where m is any integer number. We are interested in the m-dependent coefficients which are obtained by derivative
of the ratio Γ(m+ d)/Γ(m+ 1− d) over d, evaluated in the limit d→ 1

2 . The result reads

Seff ≈
1

4πε0

∑
m

δεmδε−m(m2 − 1) +
g

2

∑
m

ψ̃(m)

4πε3
0

δεmδε−m (28)

Here ψ̃(x) = Ψ(x+ 1/2)−Ψ(−1/2) and Ψ(x) = (ln Γ(x))′ is the digamma function. This action leads to the following
correlation function:

〈δεmδε−m〉 =
2πε3

0

ε2
0(m2 − 1) + g

2 ψ̃(m)
(29)

We use it below for calculations of the corrections to fermion Green function.

B. Estimation of the fluctuations of the kinetic term

The contribution to the action from the kinetic term has the form:

Skin =

∫
κ

32
dτ κ2 = 32g ln

(
κ

8ε(ϕ)

)
(30)

Assuming smallness of fluctuations we can write κ = κ0 + δκ where κ0 is defined by ε(ϕ) = ε0. We will also define
a parameter α = 32g

κ2
0
� 1. The connection between δκ and δε can be obtained from the definition of κ and has the

form:

δκ =
κ0

2

(
α

2

(
δε

ε0

)2

− αδε
ε0

)
(31)
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This expression leads to the following form of the above action:

Skin =
1

2π

g

2κ0

∑
n

δεnδε−n
ε2

0

(32)

One can see smallness of this part due to the factor 1
κε0
� 1 with respect to the second term in the (28)

C. Correction to the Green function

Fermion Green function can be obtained as an average of the field Ĝ(θ1, θ2), evaluated with the effective action
(22), where

Ĝ(θ1, θ2) = −

bγ2 ε(θ1)ε(θ2)

4 sin2
(
ϕ(θ1)−ϕ(θ2)

2

)
∆

(33)

The saddle point approximation (ϕ(θ) = θ) leads to 〈Ĝ(θ1, θ2)〉 = Gc = −
(
bγ2 ε20

θ212

)∆

. We are interested in the

quadratic correction to the Green’s function. So we need to find the second-order correction by δε to Ĝ :

δĜ(θ1,θ2)
Gc(θ1,θ2) = 1

2

∑
m6=±1,0〈δεmδε−m〉Om(θ1 − θ2)

Om(θ) = − ∆

(2π)2 sin2( θ2 )ε20m2
((∆(1−m2) + 1) cos(mθ) + cos(θ)

(
(∆− 1)m2 −∆ + ∆

(
m2 + 1

)
cos(mθ)

)
−∆

(
m2 + 1

)
+m2 + 2∆m sin(θ) sin(mθ)− 1)

For large κ only terms with large m will be important. In this case: Om(θ) = 2∆
(2πε0)2 (∆ − 1 + ∆ cos(mθ)) ∼ 2∆

(2πε0)2

so we can write

δĜ(θ1, θ2)

Gc(θ1, θ2)
∼ 1

2

2∆

(2πε0)2

∑
m 6=±1,0

〈δεmδε−m〉 =
1

2

2∆

2π

∑
m 6=±1,0

ε0

ε2
0(m2 − 1) + g

2 ψ̃(m)
∼ ∆

π

1

ε0m∗
(34)

Here m∗ is defined us ε2
0(m2

∗ − 1) = g
2 ψ̃(m∗). For large κ we can write, using Eq.(9): ε0m∗ = κ

8 , thus corrections to
fermion Green function are small at any θ.

III. HIGHER ORDERS OF THE FERMIONIC GREEN FUNCTION.

The major object of our theory is the Majorana Green function G(τ) averaged over disorder variables which enter
the Hamiltonian, Eq.(1) of the main text. However, local Majorana Green function Gi(τ, τ

′) = −〈χi(τ)χi(τ
′)〉 contains

more information about system’s dynamics.
One of the methods to extract this additional information is to consider higher-order Green functions, defined

below:

G(p)(τ, τ ′) ≡ 〈

(
− 1

N

∑
i

χi(τ)χi(τ
′)

)p
〉 (35)

Here we restrict ourselves by the region of moderately high p� N , where it is easy to show that

G(p)(τ1, τ2) = (−1)p

〈[
b

e−ξ1−ξ2

sin2( 1
2 (ϕ1 − ϕ2))

]∆p〉
= (−1)pC2

∆p

〈[
b

4γ

ε(ϕ1)ε(ϕ2)

sin2( 1
2 (ϕ1 − ϕ2))

]∆p〉
Sϕ

(36)

Angular brackets in the middle formula of the above equation mean averaging over quantum action Seff , see Eq.(11)
of the main text. Formula in the R.H.S. of (36) is obtained after we take average over fluctuations of ξ1 and ξ2 over
the polaron ground state ψg(ξ), where Cα is defined below:

Cα =

(
2γ

ε(ϕ)

)α ∫
e−αξψ2

g(ξ, ϕ)dξ =
Γ(κ+ 2α− 1)

Γ(κ− 1)
κ−α(κ− 1)−α ≈ exp

(
2α2

κ

)
(37)
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We used assumption α� κ to make the last approximation. Final averaging over Sϕ in the R.H.S. of Eq.(36) should
be done with the full phase-dependent action given by Eq.(22). Last expression in Eq.(37) is valid in the main order
of approximation for κ� 1 and α� 1.

Consider now the effect of integration over fluctuations of angular modes ε(ϕ) and define relevant measure for these
fluctuations

gp(τ1, τ2) =
〈G(p)(τ1, τ2)〉
C2

∆pG
p
c(τ1, τ2)

= 〈exp [∆pδg(θ1, θ2)]〉 = exp

(
(∆p)2

2
〈(δg(θ1, θ2))2〉

)
(38)

where Gc(τ1, τ2) is the conformal saddle-point Green function, while the function δg(θ1, θ2) is defined via the relation

ε(ϕ1)ε(ϕ2)

4 sin2(ϕ1−ϕ2

2 )
·

[
ε0ε0

4 sin2( θ1−θ22 )

]−1

≡ 1 + δg(θ1, θ2) = 1 + u′(θ1) + u′(θ2) + cot

(
θ1 − θ2

2

)
(u(θ2)− u(θ1)) (39)

We use here definitions ϕ = θ + u(θ) and ε(ϕ) = ε0
dϕ
dθ . To calculate the average in the R.H.S. of Eq.(38) we need to

expand the R.H.S. of Eq.(39) up to linear terms in u(θ) and then use Fourier series:

δg(θ1, θ2) =
1

2π

∑
m

(
imeimθ1 + imeimθ1 + cot

(
θ1 − θ2

2

)(
eimθ2 − eimθ1

))
um (40)

Now we can average R.H.S. of Eq.(38) in the Gaussian approximation, using representation (40) and correlation
function defined in (29). Correlation function in the θ-representation is (below θ = θ1 − θ2):

〈δg2(θ1, θ2)〉 =
1

(2π)2

∑
m

(
2m cos

(
mθ

2

)
− 2 cot

(
θ

2

)
sin

(
mθ

2

))2

〈umu−m〉 (41)

≈ 1

2πε0
<

∑
m 6=0,±1

1

m2

1

m2 +m2
∗

[
2m2

(
1 + eimθ

)
+ 4im cot

(
θ

2

)
eimθ + 2 cot2

(
θ

2

)(
1− eimθ

)]

=
1

ε0

(2 +m∗θ)

m3
∗θ

2

[
2m∗θ cosh

(
m∗θ

2

)
− 4 sinh

(
m∗θ

2

)]
exp

{
−m∗θ

2

}
≡ 8

κ
f(θ)

where ε0m∗ = κ/8 and last equality just defines a convenient notation. Asymptotic limits for the function f(θ) are
given by

f(θ) =

{
1 m∗θ � 1
θm∗

3 m∗θ � 1
(42)

Finally, combining Eqs.(36,37,38,41) and replacing ∆→ 1
4 we obtain

G(p)(τ1, τ2)

[G(τ1, τ2)]p
= exp

[
p2

4κ
(1 + f(θ12))

]
(43)

IV. THE GREEN FUNCTION OF THE BOSON FIELD ON THE HYPERBOLIC PLANE.

The action of the bosonic field is

SΦ =
1

2g

∫
dµΦ(x)(−L− 1

4
+ δ2)Φ(x) (44)

Here L is the Laplace operator and dµ is an invariant measure on the hyperbolic plane and δ → 0. We use the
Poincaré disk model. The Green function of the bosonic field satisfy the following equation:

(−L− 1

4
+ δ2)G(z1, z0) = g

δ(z1 − z0)√
g(x0)

(45)
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All objects here are invariant under SL(2, R) transformations so let us use transforms which maps z0 7→ 0 in this case
z1 7→ z1−z0

1−z1z̄0 . In new coordinates the form of equation will be the same but δ function will be localized in the origin
of the hyperbolic plane so we expect the rotation invariant solution. It leads us to the equation:[

−(1− u)2(u∂2
u + ∂u)− 1

4
+ δ2

]
G(z) = g

δ(u)

4π
(46)

Here u = |z|2. This equation can be written as the homogeneous equation with boundary conditions: the Green

function should decay faster than (1− u)1/2 at u → 1, while at u � 1 it should behave as G(u) → − ln(u)
4π . Then we

come to the following result:

G(u) = g
1

4
(1− u)

1
2 +δ

2F1

(
1

2
+ δ,

1

2
+ δ, 1 + 2δ, 1− u

)
(47)

Here 2F1(a, b, c;x) is a hypergeometric function. In the limit δ → 0

G(z1, z0) = g

√
wK(w)

2π
where w =

(1− |z1|2)(1− |z0|2)

(1− z1z̄0)(1− z0z̄1)
(48)

Here K(w) is the complete elliptic integral of the first kind. In the limit w → 0 we have:

GΦ(z1, z0) ≈ g

4
w1/2 (49)

It is the last form (49) for the Bose field Green function GΦ, which we use in the main text and in Sec.I above.


