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ABSTRACT

We report the discovery and confirmation of two new hot Jupiters discovered by the Transiting

Exoplanet Survey Satellite (TESS ): TOI 564 b and TOI 905 b. The transits of these two planets were

initially observed by TESS with orbital periods of 1.651 d and 3.739 d, respectively. We conducted

follow-up observations of each system from the ground, including photometry in multiple filters, speckle

interferometry, and radial velocity measurements. For TOI 564 b, our global fitting revealed a classical

hot Jupiter with a mass of 1.463+0.10
−0.096 MJ and a radius of 1.02+0.71

−0.29 RJ. TOI 905 b is a classical

hot Jupiter as well, with a mass of 0.667+0.042
−0.041 MJ and radius of 1.171+0.053

−0.051 RJ. Both planets orbit

Sun-like, moderately bright, mid-G dwarf stars with V ∼ 11. While TOI 905 b fully transits its star,

we found that TOI 564 b has a very high transit impact parameter of 0.994+0.083
−0.049, making it one of

only ∼ 20 known systems to exhibit a grazing transit and one of the brightest host stars among

them. TOI 564 b is therefore one of the most attractive systems to search for additional non-transiting,

smaller planets by exploiting the sensitivity of grazing transits to small changes in inclination and

transit duration over the time scale of several years.

Keywords: planetary systems, planets and satellites: detection, stars: individual (TIC 1003831,

TOI 564, TIC 261867566, TOI 905)

1. INTRODUCTION

Transiting hot Jupiters are among the best-studied

and the most mysterious classes of exoplanets. Despite

the discovery, confirmation, and characterization of hun-

dreds of these worlds, questions persist as to their mech-

anisms of formation and orbital evolution. It is not

known, for instance, whether hot Jupiters formed be-

yond the ice line and migrated inwards (Lin et al. 1996),

or whether they formed close to their present-day orbits

(Bodenheimer et al. 2000; Batygin et al. 2016). Are they

connected evolutionarily to warm Jupiters (Huang et al.

2016)? What can we infer about the presence of plan-

etary companions to hot Jupiters, which evidence sug-

gests are rare close to the star (Becker et al. 2015; Mill-

holland et al. 2016; Cañas et al. 2019a), but relatively

common farther out (Knutson et al. 2014)? What can

the atmospheres of hot Jupiters, which are best studied

through transit and eclipse observations, tell us about

their formation scenarios (e.g., Öberg et al. 2011; Sing

et al. 2016)?

Our empirical knowledge of hot Jupiters is based on

the foundation of our small but growing sample of these

worlds (currently numbering ∼250). While small, rocky

planets are understood to be present, on average, around

every star (e.g., Fressin et al. 2013; Petigura et al. 2018),

various studies have found that on the order of only

∼0.5% of stars host a hot Jupiter (e.g., Howard et al.

2012; Petigura et al. 2018; Zhou et al. 2019), about

∼10% of which will have a geometry resulting in a vis-

ible transit. Transiting hot Jupiters are therefore in-

trinsically rare, and so given the broad and abiding

questions surrounding them, there is value in each addi-

tional example found, particularly around stars that are

amenable to follow-up observations.

The Rossiter-McLaughlin (RM) effect (Holt 1893;

Schlesinger 1910; Rossiter 1924; McLaughlin 1924) al-

lows measurement of the sky-projected angle λ between

a planet’s orbital plane and its host star’s equator (e.g.,

Queloz et al. 2000; Addison et al. 2018). RM measure-

ments are most sensitive in systems with deep transits

of a planet orbiting a bright or rapidly rotating star. By

measuring spin-orbit alignments of many systems, we

can probe the processes involved in the formation and

migration of exoplanets (e.g., Lin et al. 1996; Boden-

heimer et al. 2000; Ford & Rasio 2008; Naoz et al. 2011;

Wu & Lithwick 2011), in particular hot (Crida & Baty-

gin 2014; Winn & Fabrycky 2015) and warm Jupiters

(Dong et al. 2014), and compact transiting multi-planet

systems (Albrecht et al. 2013; Wang et al. 2018).

While the Kepler (Borucki et al. 2010) and K2 mis-

sions (Howell et al. 2014) together examined only ∼5%
of the sky, the TESS mission (Ricker et al. 2015) is con-

ducting a survey of ∼80% of the sky, scanning sector-

by-sector for transit signals around the brightest and

nearest stars. After TESS completes its survey, we will

have identified nearly all of the most observationally fa-

vorable transiting hot Jupiters that will ever be avail-

able to astronomers. Therefore, these planets will serve

as the best-possible sample for testing the myriad open

questions surrounding hot Jupiters.

To date, five new hot Jupiters initially detected by

TESS have been confirmed: HD 202772A b (Wang et al.

2019), HD 2685 b (Jones et al. 2019), TOI-150 b (Cañas

et al. 2019b; Kossakowski et al. 2019), HD 271181 b

(Kossakowski et al. 2019), and TOI-172 b (Rodriguez et

al. 2019). Additionally, the HATNet survey (Bakos et

al. 2004) detected two transiting hot Jupiter candidates

in 2010, HATS-P-69 b and HATS-P-70 b, which were
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later observed by TESS leading to their confirmation

(Zhou et al. 2019).

A grazing transit is a transit in which only part of

the planet’s projected disk occults the stellar disk (for-

mally stated: b + Rp/Rstar > 1, where b is the impact

parameter, and Rp and Rstar are the radii of the planet

and star respectively). Such systems are observationally

rare; of the more than 3,000 known transiting planets,

only about half a percent exhibit a grazing transit at the

1σ level or higher (NASA Exoplanet Archive1; Akeson

et al. 2013). TESS has detected one grazing transit-

ing planet so far: TOI 216 b, a warm giant planet with

an outer companion near the 2:1 resonance, orbiting a

V = 12.4 star (Dawson et al. 2019).

Grazing transiting systems present both upsides and

downsides for a system’s characterization prospects. On

the one hand, the planetary radius is more difficult to

measure because of the covariance between the planet

size and other transit parameters (primarily the impact

parameter) compared to a fully transiting system. For

this reason, the inferred radius should perhaps be viewed

only as a lower limit with high confidence. Furthermore,

grazing systems will exhibit lower RM amplitudes be-

cause they cover less of the rotating star’s surface com-

pared to a fully transiting planet.

On the other hand, grazing transits afford unique op-

portunities to probe other aspects of the system. Ribas

et al. (2008) attempted to exploit the near-grazing tran-

sits of the hot Neptune GJ 436 b (Butler et al. 2004) to

infer perturbations in the orbital inclination caused by

interactions with a putative non-transiting outer planet,

GJ 436 c, in a 2:1 mean motion resonance. It was later

found that the proposed planet was on an unstable orbit

(Bean & Seifahrt 2008; Demory et al. 2009) and there

was a lack of expected TTV signals in future transits

(Alonso et al. 2008; Pont et al. 2009; Winn 2009). Nev-

ertheless, the underlying methodology is sound. A close-

in hot Jupiter, for instance, will experience both a pre-

cession in its periastron as well as a precession in its

line of nodes when an additional planet is present in

the system. These precessions cause impact parameter

variations, which, in the case of grazing transits, change

both the transit duration and transit depth dramati-

cally. Systems with grazing transits are therefore prime

candidates when seeking to detect non-transiting exo-

planets (e.g., Miralda-Escudé 2002) and even exomoons

(Kipping 2009, 2010).

WASP-34 b (Smalley et al. 2011), a hot sub-Saturn,

was the first planet discovered to have a likely graz-

1 http://exoplanetarchive.ipac.caltech.edu

ing transit (with a confidence of 80%), and its host

star remains the brightest known grazing transit host

at V = 10.3. Other notable grazing transiting plan-

ets include hot Jupiters such as HAT-P-27 b/WASP-40

b (Béky et al. 2011/Anderson et al. 2011), WASP-45

b (Anderson et al. 2012), Kepler-434 b (Almenara et

al. 2015), Kepler-447 b (Lillo-Box et al. 2015), K2-31 b

(Grziwa et al. 2016), WASP-140 b (Hellier et al. 2017),

Qatar-6b (Alsubai et al. 2018), and NGTS-1 b (Bayliss

et al. 2018). A pair of sub-Saturns, WASP-67 b (Hel-

lier et al. 2012; Bruno et al. 2018) and CoRoT-25 b

(Almenara et al. 2013) are the smallest known grazing

transiting planets.

In this work, we report the discovery and confirma-

tion of two new hot Jupiters detected by TESS, each

around relatively bright (V ∼ 11) stars: TOI 564 b and

TOI 905 b. TOI 564 is particularly noteworthy as one of

the brightest hosts of a grazing transiting planet, making

it highly amenable to follow-up observations. Section

2 describes the observations and data reduction meth-

ods. Section 3 details the stellar parameters for the host

stars. Section 4 presents planetary and system param-

eters from global analyses. Section 5 summarizes these

results and places them in context.

2. OBSERVATION AND DATA REDUCTION

2.1. TESS Photometry

TOI 564 (TIC 1003831) was observed by TESS in Sec-

tor 8 by CCD 4 on Camera 2 from 2019 February 2 to

2019 February 27. TOI 905 (TIC 261867566) was ob-

served by TESS in Sector 12 by CCD 1 on Camera 2

from 2019 May 21 to 2019 June 18. Neither target will

be observed again as part of TESS ’s primary mission.

Basic parameters for both targets are given in Table 1.

The photometric data were analyzed with the Science

Processing Operations Center (SPOC) pipeline (Jenkins

et al. 2016) by NASA Ames Research Center. The data

have a cadence of two-minutes, and there is a gap of six

days in the case of TOI 564 and a gap of one day in the

case of TOI 905. TESS ’s CCD pixels have an on-sky

size of 21′′. The SPOC pipeline produces two types of

light curves: the Simple Aperture Photometry (SAP)

light curves, which are corrected for background effects;

and the Pre-search Data Conditioning (PDCSAP) light

curves (Smith et al. 2012; Stumpe et al. 2014), which

are additionally corrected for systematics that appear

in reference stars.

An automated data validation report (described in

Twicken et al. 2018) was created for the PDCSAP light

curve of both of our targets, revealing eleven transits

on TOI 564 with a period of 1.65114 d and six transits

with a period of 3.7395 d for TOI 905. This preliminary
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Figure 1. Left: Transits of TOI 564 b. In blue, an LCO-
SSO B-band light curve from 2019 May 15 (§2.2.1). In green,
a PEST V -band light curve from 2019 May 10 (§2.2.3). In
orange, the detrended and phase-folded light curve of eleven
transits from TESS (§2.1). In maroon, an LCO-CTIO z′-
band light curve from 2019 April 13 (§2.2.1). The model
corresponding to each light curve’s filter is shown in grey
(§4). Right: Residuals obtained by subtracting the model
from the observed transits.

analysis gave a companion radius of 1.22 ± 0.16RJ for

TOI 905 , consistent with a hot Jupiter. For TOI 564 ,

the pipeline gave a companion radius of 0.49± 0.24RJ,

but the impact parameter was extremely poorly con-

strained; we would later find that this impact parameter

was near unity, consistent with a grazing transit, and so

our ultimate measurement of the planetary radius was

substantially larger than the initial estimate (see Section

4). Overall, both reports gave highly dispositive results

in favor of the planetary hypothesis. The tests used in-

cluded (for TOI 564 and TOI 905 respectively) the odd-

even test (2.1σ and 1.6σ difference), the weak secondary

test (3σ and 2σ for the max secondary peak), the statis-

tical bootstrap test (extrapolated FAP ∼ 3× 10−96 and

< 10−97), the ghost diagnostic test (core-to-halo ratio of

3.6 and 5.9), and perhaps most importantly, the differ-

ence image centroid offsets from either the TIC position

or the out-of-transit centroid (2′′ in both cases, which

is one tenth of a pixel). The difference images are also

extremely clean and consistent with the difference image

centroids, demonstrating that each the transit source is

collocated with the target star image to within the res-

olution of the survey image.
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Figure 2. Left: Transits of TOI 905 b. In blue, an LCO-SSO
G-band light curve from 2019 July 27 (§2.2.1). In red, an El
Sauce Rc-band light curve from 2019 July 31 (§2.2.5). In
orange, the detrended and phase-folded light curve of eleven
transits from TESS (§2.1). In maroon, a Brierfield I-band
light curve from 2019 July 27 (§2.2.4). The model corre-
sponding to each light curve’s filter is shown in grey (§4).
Right: Residuals obtained by subtracting the model from
the observed transits.

To remove any stellar variability and other system-

atics that remained in the PDCSAP light curves, we

further detrended the data using the following approach

(see, e.g., Günther et al. 2017, 2018). First, we masked

out the in-transit data. Then we trained a Gaussian

Process (GP) model with a Matern 3/2 kernel and a

white noise kernel on the out-of-transit data, using the

celerite package (Foreman-Mackey et al. 2017). After

constraining the hyper-parameters of the GP this way,

we applied the GP to detrend the entire light curve.

The resulting phase-folded TESS light curves near the

transits of TOI 564 and TOI 905 are shown in orange in

Figure 1 and Figure 2 respectively.

2.2. Ground-Based Transit Photometry

Ground-based photometric follow-up observations

were used to confirm both that the transit signals

detected by TESS were indeed on the correct stars

(TIC 1003831 and TIC 261867566) and to ensure that

the detections were robust in multiple bands. Four dis-

tinct transits of TOI 564 were observed between 2019

April 13 and 2019 May 15 in three unique bands from

four ground-based telescopes. Two distinct transits of

TOI 905 were observed on July 27 and July 31 in three
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Table 1. Basic Observational Parameters

Parameter TOI 564 TOI 905 Source

R.A. (hh:mm:ss) 08:41:10.8368 15:10:38.0821 Gaia DR2

Dec. (dd:mm:ss) −16:02:10.7789 −71:21:41.8739 Gaia DR2

µα (mas yr−1) −2.508 ± 0.050 −25.839 ± 0.033 Gaia DR2

µδ (mas yr−1) −11.025 ± 0.04 2 −41.150 ± 0.051 Gaia DR2

Parallax (mas) 4.982 ± 0.031 6.274 ± 0.028 Gaia DR2

TESS (mag) 10.670 ± 0.006 10.572 ± 0.006 TIC V8

B (mag) 11.946 ± 0.138 12.358 ± 0.151 Tycho

V (mag) 11.175 ± 0.103 11.192 ± 0.071 Tycho

J (mag) 10.044 ± 0.030 9.890 ± 0.020 2MASS

H (mag) 9.710 ± 0.030 9.510 ± 0.020 2MASS

K (mag) 9.604 ± 0.020 9.448 ± 0.020 2MASS

W1 (mag) 9.562 ± 0.023 9.372 ± 0.022 AllWISE

W2 (mag) 9.598 ± 0.020 9.433 ± 0.019 AllWISE

W3 (mag) 9.587 ± 0.041 9.291 ± 0.030 AllWISE

W4 (mag) — 9.151 ± 0.533 AllWISE

G (mag) 11.142a 11.081a Gaia DR2

GBP (mag) 11.527a 11.509a Gaia DR2

GRP (mag) 10.622a 10.528a Gaia DR2

aFor global fitting, we adopted an uncertainty of 0.020 for each Gaia magnitude.

Table 2. Ground-Based Transit Photometric Observations

Telescope Camera Filter Pixel Scale Est. PSF Aperture Radius Date Duration # σ

(′′) (′′) (pixel) (UT) (minutes) of obs (ppt)

TOI 564:

LCO-CTIO (1 m) Sinistro z′ 0.389 1.68 15 2019 April 13 195 165 0.9

MLAO (0.356 m) STF-8300M B 0.839 4.26 9 2019 May 2 82.2 48 12.0

PEST (0.3 m) ST-8XME V 1.23 4.1 7 2019 May 10 155 122 3.0

LCO-SSO (1 m) Sinistro B 0.389 2.04 14 2019 May 15 199 169 1.0

TOI 905:

LCO-SSO (0.4 m) SBIG 6303 g 0.571 9.59 15 2019 July 27 228 278 2.5

Brierfield (0.36 m) Moravian 16803 I 1.47 4.7 6 2019 July 27 452 137 1.7

El Sauce (0.36 m) STT1603-3 Rc 1.47 4.46 6 2019 July 31 184 186 1.4

unique bands from three ground-based telescopes. Fig-

ure 1 and Figure 2 show the light curves for each transit

observed for TOI 564 and TOI 905 respectively.

We used TESS Transit Finder, which is a cus-

tomized version of the Tapir software package (Jensen

2013), to schedule all of the following photometric time-

series follow-up observations. Table 2 gives a summary

of the observations, which are described in detail in the

following sections.

2.2.1. Las Cumbres Observatory Global Telescope

We acquired ground-based time-series follow-up pho-

tometry of full transits of TOI 564 on 2019 April 13 in

z′ band and on 2019 May 15 in B band from two Las

Cumbres Observatory Global Telescope (LCOGT) 1.0 m

telescopes (Brown et al. 2013) located at Cerro Tololo

Inter-American Observatory (CTIO) and Siding Spring

Observatory (SSO) respectively. Additionally, we ob-

served a full transit of TOI 905 on 2019 July 27 using

the LCOGT 0.4 m telescope at SSO in G band. All

images were calibrated by the standard LCOGT BAN-

ZAI pipeline, and the photometric data were extracted

using the AstroImageJ (AIJ) software package (Collins

et al. 2017). The two 1.0 m telescopes used for TOI 564

are each equipped with a 4096× 4096 LCO SINISTRO

camera that each have an image scale of 0.′′389 px−1.
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The 0.4 m telescope at SSO used an SBIG 6303 camera

with an image scale of 0.′′571 px−1. For TOI 564 , 165

images were acquired during the 195 minute observation

in z′ band, and 169 images were acquired over the 199

minute observation in B band. For the G-band transit

of TOI 905 , 278 images were taken over 228 minutes.

The TOI 564 light curves show clear transit detections

using apertures with radii ∼ 5.′′5. The nearest known

Gaia DR2 star is 23′′ from TOI 564 and 7.2 mag fainter.

The FWHM of the target and nearby stars are ∼ 1.′′7

and ∼ 2.′′0 in z and B bands, respectively, so the follow-

up aperture is negligibly contaminated by known nearby

Gaia DR2 stars. The z′- and B-band light curves show

events having depths consistent with the TESS depth

within uncertainties.

The TOI 905 light curve also shows a clear transit de-

tection that is consistent with the TESS light curve us-

ing a photometric aperture with radius of 8.′′5. Gaia

DR2 finds there is a star that is 6.1 mag fainter located

2.′′2 away from TIC 261867566.

2.2.2. Maury Lewin Astronomical Observatory

We observed a transit of TOI 564 b on 2019 May

2 from the Maury Lewin Astronomical Observatory

(MLAO), a home observatory located in Glendora, Cal-

ifornia, USA, using a 0.356 m F10 Schmidt-Cassegrain

Celestron C-14 Edge HD telescope with an SBIG STF-

8300 detector and a B-band filter. The transit was ob-

served at relatively high airmass, ranging from ∼ 2 to

∼ 3, which resulted in low precision (∼ 12.0 ppt) and

a large trend in the time series data. We fitted and re-

moved this airmass trend and found that the transit’s

depth and shape was generally consistent with the other

three ground-based transits, within the large error bars.

Because of the lower precision of this transit observa-

tion compared to the other B-band transit observed by

LCO-SSO, we ultimately do not include the MLAO data

in the global fitting in Section 4.

2.2.3. Perth Exoplanet Survey Telescope

We observed a full transit of TOI 564 b on 2019 May 10

in V -band from the 0.3 m Perth Exoplanet Survey Tele-

scope (PEST). PEST is a home observatory located near

the city of Perth, Western Australia. The 1530 × 1020

pixel SBIG ST-8XME camera has an image scale of 1.′′23

px−1 resulting in a 31′ × 21′ field of view. Image reduc-

tion and aperture photometry were performed using the

C-Munipack program coupled with custom scripts. The

light curve has a precision of ∼ 3.0 ppt, which is easily

sufficient to verify that the transit depth is consistent

with the other light curves.

2.2.4. Brierfield Observatory

We observed a transit of TOI 905 on 2019 July 27 in I

band using a 0.36 m telescope (PlaneWave CDK14) at

the Brierfield Observatory, a home observatory in Brier-

field, New South Wales, Australia. The detector was a

Moravian 16803 camera, which provided a pixel scale of

1.′′47 px−1. Seeing conditions were average with some

early high cloud limiting pre-ingress time. We observed

a continuous transit using 137 images over 452 minutes.

The images were reduced and measured as described in

§2.2.1 with a photometric aperture of 8.′′8.

2.2.5. El-Sauce

We observed the ingress and of a transit of TOI 905

on 2019 July 31 in Rc band with a 0.36 m telescope

(PlaneWave CDK14) at the El Sauce Observatory, lo-

cated in Coquimbo Province, Chile. The detector was

an SBIG STT1603-1 CCD with a pixel scale of 4.′′46

px−1. We acquired 186 images over 184 minutes, which

were processed with AstroImageJ. Conditions were ex-

cellent with no moon or clouds. However, the camera

lost its USB connection shortly before egress, so this

part of the transit was not captured in this dataset.

2.3. High Angular-Resolution Observations

High angular-resolution observations were used to

check both systems for close binary companions (includ-

ing background stars or bound binary companions). We

found that both stars have a faint companion nearby, all

located within the apertures of the available photomet-

ric observations.

2.3.1. SOAR/HRCam

TOI 564 was observed using speckle interferometry on

2019 May 18 with HRCam (Tokovinin 2018; Ziegler et

al. 2019) in I band on the SOAR 4.1 m telescope. The

detector has a pixel scale of 15.75 mas px−1, and the

angular resolution was 63 mas. We rule out any com-

panions above this limit (e.g., we can rule out a 5.1 mag

companion at > 1′′ separation).

HRCam also conducted I-band speckle interferomet-

ric observations of TOI 905 on 2019 August 12 with an

angular resolution of 71 mas. The ACF image in Fig-

ure 3 shows the 5σ detection limit for this target. The

HRCam reveals another source located 2.′′28 away from

TOI 905 that is 5.9 mag fainter in I band. There is no

evidence that this companion is physically associated

with the system.

2.3.2. Palomar 5.1m/PHARO

TOI 564 was observed with AO using the Palomar

High Angular Resolution Observer (PHARO) on the

Palomar-5.1m telescope on 2019 November 10 inH band
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Figure 3. HRCam I-band contrast curve for TOI 905 with
autocorrelation function (ACF) inset. Each point gives the
measured 5σ contrast at various separations from the target,
with a smoothing line indicating the expected shape of the
contrast curve. The cyan arrow indicates the ∆mag = 5.9
companion 2.′′28 away from the primary star.

Figure 4. PHARO Br-γ (K band) contrast curve for
TOI 564 with AO image inset. The cyan arrow indicates
a ∆mag = 3.53 companion 0.′′5 away from the primary star.

(continuum) and K band (narrow band Br-γ). Figure

4 reveals a stellar companion is located 0.′′5 away from

the primary star, with H magnitude of 13.40 ± 0.04 and

K magnitude of 13.18 ± 0.03. These magnitudes and

the H − K color are consistent with a early-to-mid M

dwarf binary companion with a projected separation of

100 AU, or a giant star 4–5 kpc distant. The former

scenario is more parsimonious and has greater potential

to create a false positive detection, so we will operate

under this assumption.

2.4. Doppler Measurements

We obtained radial velocity (RV) measurements of

both systems using three high-precision spectrographs.

The velocities for TOI 564 (Figure 5) and TOI 905 (Fig-

ure 6) both show strong and clear Keplerian signals,

which are discussed in more detail in Section 4.

2.4.1. FLWO 1.5m/TRES

We obtained two spectra of TOI 564 with TRES

(Fűrész et al. 2008) on the 1.5 m Tillinghast Reflec-

tor telescope at Fred L. Whipple Observatory (FLWO)

on Mount Hopkins, AZ, on 2019 April 15 and 16. TRES

is an R ∼ 44, 000 echelle spectrograph with a precision

of ∼10 to 15 m s−1. Spectra are calibrated using a pair

of ThAr lamp exposures flanking each set of science

exposures. Observations used exposure times of ∼ 20

minutes, which yielded a S/N per resolution element of

∼ 32 at 5110 Å. TRES has an on-sky fiber radius of

1.′′15.

The reduction and analysis procedures are described

in Buchhave et al. (2010). To summarize, the 2D spectra

are optimally extracted and then cross correlated order-

by-order using the stronger of the two observations as

the template. The radial velocities are determined from

a fit to the summed cross-correlation function (CCF),

and the internal errors at each epoch are estimated from

the standard deviation of the radial velocities derived

from the CCF of each order. We also track the instru-

mental zero point and instrumental precision by mon-

itoring RV standards every night and use this analysis

to adjust the RVs and uncertainties. While the internal

errors dominate for this star, we do inflate the internal

errors by adding the instrumental uncertainty (∼ 10 m

s−1) in quadrature. The RVs and uncertainties reported

in Table 3 include these corrections.

2.4.2. SMARTS 1.5m/CHIRON

We collected ten spectra of TOI 564 with CHIRON

(Tokovinin et al. 2013), a fiber-fed spectrograph on the

SMARTS 1.5 m telescope at Cerro Tololo, Chile, be-

tween 2019 May 4 and 2019 June 4, and sixteen spectra

of TOI 905 between 5 August 2019 and 30 August 2019.

The short period of both planet candidates allowed us

to quickly verify that the star showed an RV signal con-

sistent with a planetary-mass companion by observing

each star near the quadrature points implied by the tran-

sit ephemerides and the assumption of a circular orbit.

We then proceeded to fill out the phase curve of each

planet’s orbit.
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Figure 5. Left: Radial velocities of TOI 564 as a function of time, with RVs from TRES and CHIRON plotted in orange and
blue respectively. In black, the modeled RV curve based on the median posterior values for parameters derived from the global
fitting given in Table 5. TRES RVs were offset to minimize the rms residual from the model determined by CHIRON data.
Right: Same as Left, but radial velocity is given as a function of orbital phase. The transit is centered at phase = 0; the closest
RV observation to this point did not occur during the transit.
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Figure 6. Left: Radial velocities of TOI 905 as a function of time, with RVs from CHIRON and HARPS plotted in blue and
green respectively. In black, the modeled RV curve based on the median posterior values for parameters derived from the global
fitting given in Table 5. HARPS RVs were offset to minimize the rms residual from the model determined by CHIRON data.
Right: Same as Left, but radial velocity is given as a function of orbital phase. The transit occurs at phase = 0.
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Table 3. Radial Velocity Measurements

BJDa - 2400000 RV b σRV BIS σBIS FWHM σFWHM S/N c Target Instrument

(m s−1) (m s−1) (m s−1) (m s−1) (km s−1) (km s−1)

58588.6801 413.0 24.4 6.9 10.2 — — 31.0 TOI 564 TRES

58589.6683 -22.8 24.4 -6.9 10.2 — — 34.2 TOI 564 TRES

58607.5990 -198.7 16.7 13.7 10.5 10.124 0.153 37.1 TOI 564 CHIRON

58608.5907 240.8 13.6 8.6 9.1 10.441 0.118 47.6 TOI 564 CHIRON

58609.5843 -184.6 20.8 27.4 12.9 9.501 0.163 30.9 TOI 564 CHIRON

58612.5903 -234.5 15.3 -12.0 15.2 10.162 0.129 38.7 TOI 564 CHIRON

58621.5585 95.6 12.3 12.0 10.2 10.088 0.116 39.8 TOI 564 CHIRON

58622.5497 -254.5 10.9 13.7 9.6 10.107 0.122 39.4 TOI 564 CHIRON

58625.5427 -22.0 13.2 30.9 10.9 10.243 0.128 38.4 TOI 564 CHIRON

58626.5368 177.7 13.1 24.0 8.1 10.405 0.125 48.5 TOI 564 CHIRON

58637.5439 -223.5 15.9 18.9 13.5 10.241 0.134 43.0 TOI 564 CHIRON

58638.5128 207.4 15.6 22.3 15.9 10.195 0.112 39.9 TOI 564 CHIRON

58701.4994 32.2 9.7 1.3 16.5 9.953 0.073 46.8 TOI 905 CHIRON

58702.5685 83.1 9.7 -2.6 14.1 9.885 0.079 42.2 TOI 905 CHIRON

58704.4989 -93.5 11.3 -16.7 19.2 9.747 0.100 36.3 TOI 905 CHIRON

58705.5794 61.7 10.3 -14.1 18.9 9.864 0.094 41.1 TOI 905 CHIRON

58706.5228 39.5 12.3 -7.7 22.4 9.842 0.087 38.1 TOI 905 CHIRON

58707.5088 -78.8 10.2 -18.0 13.6 9.804 0.085 39.8 TOI 905 CHIRON

58708.5073 -36.4 8.8 -27.0 16.4 9.860 0.087 44.7 TOI 905 CHIRON

58710.5776 -5.7 12.4 0.0 20.4 9.766 0.096 38.8 TOI 905 CHIRON

58713.5038 94.3 11.6 10.3 11.1 9.917 0.088 44.4 TOI 905 CHIRON

58718.5033 -54.9 9.4 -12.9 16.5 9.984 0.083 45.8 TOI 905 CHIRON

58719.5102 -94.1 21.8 -78.4 31.2 9.598 0.108 28.9 TOI 905 CHIRON

58720.5899 61.4 9.4 6.4 16.8 9.951 0.091 44.6 TOI 905 CHIRON

58721.4963 46.2 10.7 1.3 14.9 9.937 0.081 44.1 TOI 905 CHIRON

58723.4948 -32.1 10.9 -12.9 25.0 9.826 0.090 38.9 TOI 905 CHIRON

58724.4959 82.3 7.3 9.0 14.4 9.968 0.087 45.4 TOI 905 CHIRON

58726.4917 -81.9 11.8 38.6 20.1 9.871 0.085 40.2 TOI 905 CHIRON

58739.513 83.1 4.845 43.4 — 6.664 — 39.9 TOI 905 HARPS

58741.512 -82.5 4.054 15.9 — 6.673 — 44.5 TOI 905 HARPS

aTimes are reported according to the BJD at the UTC time at the midpoint of each exposure.

b CHIRON RVs are reported with an arbitrary zero point. The zero-point for the TRES and HARPS RVs were each chosen to minimize the
least-squared distance from the RV model for the target system based on the global analysis performed on the CHIRON RVs and photometry.

c Signal-to-noise ratio per resolution element, reported at 5110 Å for TRES and 5500 Å for CHIRON and HARPS.
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We used CHIRON’s R = 80, 000 slicer mode for all

observations, which provides substantially higher instru-

mental throughput when compared to the slit or narrow

slit mode (relative efficiencies of the modes are 0.82,

0.25, and 0.11, respectively; Tokovinin et al. 2013). In

addition, we did not use the iodine cell, which would

have absorbed about half of the stellar light in the

∼ 5000-6100 Å region. Each observation used an expo-

sure time of 25 minutes, which provided a typical S/N

per resolution element of ∼ 40 at 5500 Å. The on-sky

fiber radius of CHIRON is 1.′′35.

The RVs were derived closely following the procedure

described in Jones et al. (2017) and Wang et al. (2019).

Briefly, we first built a template by stacking the indi-

vidual CHIRON spectra, after shifting all of them to

a common rest frame. We then computed the cross-

correlation-function (CCF) between each observed spec-

trum and the template. The CCF was then fitted with

a Gaussian function plus a linear trend. The velocity

corresponding to the maximum of the Gaussian fit cor-

responds to the observed radial velocity. We applied

this method to a total of 33 orders, covering the wave-

length range of ∼ 4700 - 6500 Å. Since CHIRON is not

equipped with a simultaneous calibration fiber, we ob-

tained a ThAr lamp immediately before each science ob-

servations. The CHIRON pipeline therefore recomputes

a new wavelength solution from this calibration obser-

vation, thus correcting for the instrumental drift. Us-

ing this method, we achieve a long-term stability better

than 10 m s−1, which has been tested using RV standard

stars. The final RV at each epoch is obtained from the

median in the individual order velocities, after applying

a 3σ rejection method. The corresponding uncertainty is

computed from the error in the mean of the non-rejected

velocities (see more details in Jones et al. 2017). The

typical RV error found was about 15 m s−1. Finally,

we also computed the bisector inverse slope (BIS) and

full-width-at-half-maximum (FWHM) of the CCF. The

full results of the CCF analysis are given in Table 3,

including the BIS and FWHM diagnostics.

2.4.3. ESO 3.6m/HARPS

We collected two spectra of TOI 905 with the High

Accuracy Radial velocity Planet Searcher (HARPS)

(Mayor et al. 2003) at the ESO 3.6 meter telescope.

HARPS has a spectral resolution of R = 115, 000 and a

fiber with an on-sky radius of 0.′′5. Exposure times were

25 minutes, achieving S/N ∼ 42 at 5500 Å.

Our motivation in collecting HARPS spectra was to

test if the semiamplitude of the signal was consistent

between HARPS and CHIRON, which have sky fibers

of 0.′′5 and 1.′′35 respectively. If there is potential RV

contamination from the nearby star 2.′′28 away (§2.3.1),

then the Doppler semiamplitude should be different be-

tween the instruments. Figure 6 shows that when the

HARPS RVs are offset to match CHIRON, they agree

closely.

3. HOST STAR CHARACTERIZATION

It is well-understood that when the transit and RV

techniques are used for planet characterization, we can

only know the planet as well as we know the star. We de-

rived physical and atmospheric parameters for TOI 564

and TOI 905 using several independent methodologies

and data sets that are described in the following sub-

sections (the stellar parameters determined by EXO-

FASTv2 are described later in Section 4).

We find that among the values probed by multiple

methods there is generally agreement within 1–2σ, giv-

ing us greater confidence in their collective veracity.

Both stars are G-type main sequence stars, which are

roughly Sun-like in their mass, radius, and temperature.

Both stars are metal-rich. A summary of the parameters

derived is shown in Table 4.

3.1. Results from FLWO 1.5m/TRES

We derived spectral parameters from the TRES spec-

tra of TOI 564 using the Spectral Parameter Classifica-

tion (SPC) tool (Buchhave et al. 2012). SPC cross corre-

lates the observed spectrum against a grid of synthetic

spectra based on Kurucz atmospheric models (Kurucz

1993). Teff , log g∗, [Fe/H], and V sin i are allowed to

vary as free parameters. We find that Teff = 5666±50 K,

log g∗ = 4.41±0.10, [Fe/H] = 0.15±0.08, and V sin i =

3.54± 0.5 km s−1.

3.2. Results from SMARTS 1.5m/CHIRON

We derive the atmospheric parameters of both

TOI 564 and TOI 905 following the method presented in

Jones et al. (2011) and Wang et al. (2019). We used the

CHIRON template (see §2.4) to measure the equivalent

width (EW) of a total of 110 Fe i and 20 Fe ii lines in

the weak-line regime (EW < 150 Å). The EWs were

measured after fitting the local continuum using the

ARES2 v2 automatic tool (Sousa et al. 2015).

We then solved the radiative transfer equation by

imposing local excitation and ionization equilibrium

(Boltzmann and Saha equations, respectively) and as-

suming a solar metal content distribution. For this, we

used the MOOG code (Sneden 1973) along with the Ku-

rucz (1993) stellar atmosphere models. For models with

different Teff , log g∗ , and [Fe/H] , we iterate until no

dependence between the excitation potential and wave-

length of the individual lines with the model abundance
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Table 4. Stellar Parameters

Parameter FLWO 1.5m/TRES SMARTS 1.5m/CHIRON SED (Stassun) SED (EXOFASTv2)

TOI 564:

M∗ (M�) — 1.1± 0.1 1.06± 0.06 0.998+0.068
−0.057

R∗ (R�) — 1.04± 0.05 1.092± 0.020 1.088± 0.014

L∗ (L�) — 1.06± 0.11 — 1.078+0.028
−0.030

Teff (K) 5666± 50 5780± 100 — 5640+34
−37

log g∗ (cgs) 4.41± 0.10 4.23± 0.20 — 4.364+0.032
−0.028

V sin i (km s−1) 3.54± 0.5 — — —

[Fe/H] (dex) 0.15± 0.08 0.34± 0.20 — 0.143+0.076
−0.078

Age (Gyr) — — — 7.3+3.5
−3.6

TOI 905:

M∗ (M�) — 0.85± 0.10 1.15± 0.07 0.968+0.061
−0.068

R∗ (R�) — 1.14± 0.03 0.964± 0.052 0.918+0.038
−0.036

L∗ (L�) — 0.93± 0.05 — 0.730+0.12
−0.095

Teff (K) — 5300± 100 — 5570+150
−140

log g∗ (cgs) — 3.94± 0.20 — 4.498+0.025
−0.027

V sin i (km s−1) — — — —

[Fe/H] (dex) — 0.20± 0.10 — 0.14+0.22
−0.18

Age (Gyr) — — — 3.4+3.8
−2.3

is found, and with the constraint that the model abun-

dance is the same for both the Fe i and Fe ii lines. We

note that the microturbulence velocity (vt) is a free pa-

rameter in the fit. Using this method, we obtained the

following atmospheric parameters for TOI 564: Teff =

5780 ± 100 K, log g∗ = 4.23 ± 0.20 dex, [Fe/H] =

0.34± 0.20 and vt = 0.75 ± 0.10 km s−1. For TOI 905 ,

we found: Teff = 5300 ± 100 K, log g∗ = 3.94±0.20 dex,

and [Fe/H] = 0.20± 0.10.

We adopted a value of Av = 0.10 ± 0.10 for the in-

terstellar reddening to derive corrected visual apparent

magnitudes. We also correct the Gaia parallax by a sys-

tematic offset of 82 ± 32 µ′′ (Stassun & Torres 2018) to

obtain $ = 5.0638 ± 0.04738 and 6.66+0.32
−0.30 for TOI 564

and TOI 905 respectively. Using the bolometric correc-

tions presented in Alonso et al. (1999), we calculate a

stellar luminosity of L? = 1.06 ± 0.11 L�. Finally, by

comparing the L?, Teff , and [Fe/H] with the PARSEC

evolutionary tracks (Bressan et al. 2012), we derived a

stellar mass and radius of 1.1 ± 0.1 M� and 1.04 ± 0.05

R� respectively for TOI 564 , and 0.85 ± 0.10 M� and

1.14 ± 0.03 R� for TOI 905.

3.3. Results from independent SED fitting

Although we will compute stellar parameters based on

the broadband spectral energy distribution (SED) in a

global analysis using EXOFASTv2 (see §4), we also per-

form a separate SED analysis as an independent check

on the derived stellar parameters. Here, we use the SED

together with the Gaia DR2 parallax in order to de-

termine an empirical measurement of the stellar radius

following the procedures described in Stassun & Tor-

res (2016); Stassun et al. (2017, 2018). We pulled the

BTVT magnitudes from Tycho-2, the BV gri magnitudes

from APASS, the JHKS magnitudes from 2MASS, the

W1–W4 magnitudes from WISE, the G magnitude from

Gaia, and the NUV magnitude from GALEX. Together,

the available photometry spans the full stellar SED over

the wavelength range 0.2–22 µm for TOI 564 and 0.4–

22 µm for TOI 905 (see Figure 7).

We performed a fit using Kurucz stellar atmosphere

models. The priors on effective temperature (Teff),

surface gravity (log g∗), and metallicity ([Fe/H]) were

from spectroscopically determined values for TOI 564

and from the values provided in the TIC (Stassun et

al. 2018) for TOI 905. The remaining free parameter is

the extinction (AV ), which we restricted to the maxi-

mum line-of-sight value from the dust maps of Schlegel

et al. (1998). The resulting fits are excellent (Figure 7)

with a reduced χ2 of 3.8 when excluding the NUV flux,

which suggests mild chromospheric activity. The best-

fit extinction is AV = 0.03+0.11
−0.03. Integrating the (unred-

dened) model SED gives the bolometric flux at Earth

of Fbol = 9.04 ± 0.32 × 10−10 erg s cm−2. Taking the

Fbol and Teff together with the Gaia DR2 parallax, ad-

justed by +0.08 mas to account for the systematic offset

reported by Stassun & Torres (2018), gives the stellar

radius as R = 1.092± 0.020 R�. Finally, estimating the

stellar mass from the empirical relations of Torres et al.

(2010) gives M = 1.06±0.06 M�, which with the radius

gives the mean stellar density ρ = 1.15± 0.12 g cm−3.
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Figure 7. Spectral energy distribution (SED). Red symbols
represent the observed photometric measurements, where the
horizontal bars represent the effective width of the passband.
Blue symbols are the model fluxes from the best-fit Kurucz
atmosphere model (black).

4. PLANETARY SYSTEM PARAMETERS FROM

GLOBAL ANALYSIS

We model planetary system and stellar parameters,

as in Wang et al. (2019), using EXOFASTv22 (East-

man et al. 2013; Eastman 2017; Eastman et al. 2019),

a fast and powerful exoplanetary fitting suite. We per-

formed a global simultaneous analyses of both systems

using light curves from TESS, LCO-CTIO, PEST, LCO-

SSO, Brierfield, El-Sauce, RVs from CHIRON, and stel-

lar spectral energy distributions. We did not include

the MLAO B-band light curve for TOI 564 because of

its lower precision compared to the LCO-SSO B-band

light curve. We also did not include the two TRES or

the two HARPS RVs, which, on their own, were not

informative enough to justify introducing an additional

two degrees of freedom to the fitting (namely instrumen-

tal offset and instrumental jitter); nevertheless, we note

that each of these pairs of RVs were consistent with the

CHIRON RVs in both systems.

During the global fitting, we applied the quadratic

limb darkening law and performed a coefficients fit with

a TESS -band prior based on the relation of stellar

parameters (log g∗, Teff , and [Fe/H]) and coefficients

(Claret et al. 2018). The corrected Gaia parallax for

each target (§3.2) is adopted as the Gaussian prior im-

posed on the Gaia DR2 parallaxes. An upper limit is

imposed on the V -band extinction of 0.14 from Schlafly

& Finkbeiner (2011).

2 https://github.com/jdeast/EXOFASTv2

To constrain each SED, we utilized the photometry

from Tycho (Høg et al. 2000), 2MASS JHK (Cutri et al.

2003), AllWISE (Cutri et al. 2013), and Gaia DR2 (Gaia

Collaboration et al. 2018); these magnitudes are given in

Table 1. With the initial value of Teff (5780±100 K and

5300± 100 K for TOI 564 and TOI 905 respectively) de-

rived from §3.2, we utilized the available spectral energy

distribution and the MIST stellar-evolutionary models

(Dotter 2016; Choi et al. 2016) to further constrain the

stellar parameters.

We began the fit with relatively standard Hot Jupiter

starting conditions, but, as suggested by Eastman et al.

(2019), we iterated with relatively short MCMC runs

with parallel tempering enabled to refine the starting

conditions and ensure that the AMOEBA optimizer

could find a good solution to all constraints simultane-

ously. This is not strictly required, but can dramatically

improve the efficiency of EXOFASTv2. Once we found

a good solution, we ran a final fit until the standard

criteria (both the number of independent draws being

greater than 1000 and a Gelman-Rubin statistic of less

than 1.01 for all parameters) were satisfied six consec-

utive times, indicating that the chains were considered

to be well-mixed (Eastman et al. 2013).

Table 5 summarizes the relevant parameters reported

by EXOFASTv2, with median value and 68% confidence

intervals (CI) for each posterior. TOI 564 is found to

be Sun-like, with a mass of 0.998+0.068
−0.057 M�, radius of

1.088 ± 0.014 R�, and Teff of 5640+34
−37 K. TOI 905 is

slightly smaller with a mass of 0.968+0.061
−0.068 M�, radius of

0.918+0.038
−0.036 R�, and Teff of 5570+150

−140. The two stars are

each metal-rich with [Fe/H] = 0.143+0.076
−0.078 and 0.14+0.22

−0.18

dex, respectively, which is consistent with our under-

standing of hot Jupiter host stars (Fischer & Valenti

2005).

The masses of both planets are determined from the

CHIRON RVs and the modeled inclinations. TOI 564 b

has a mass of 1.463+0.10
−0.096MJ, and TOI 905 b has a mass

of 0.667+0.042
−0.041MJ. The RV curves corresponding to the

median posterior values for the relevant orbital and plan-

etary parameters are shown in Figure 5 and Figure 6 in

black.

The transit models based on the median posterior val-

ues for each planet and photometric band are plotted in

Figure 1 and Figure 2. EXOFASTv2 finds a median ra-

dius and 68% CI of TOI 905 b of 1.171+0.053
−0.051RJ. The

radius of TOI 564 b is far more difficult to constrain; we

find a median and 68% CI of 1.02+0.71
−0.29 RJ. This value

is very sensitive to small changes in the the impact pa-

rameter, which we determine to be 0.994+0.083
−0.049 with an

inclination of 78.38+0.71
−0.85 degrees. This high impact pa-

rameter corresponds to a grazing transit scenario, and it
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creates a tricky interplay between the modeled Rp and

b.

The uncertainties in the radius of TOI 564 b are com-

pounded in the median and 68% CI of the bulk density

estimate of 1.7+3.1
−1.4 g cm−3. The density of TOI 905 b is

more precisely determined to be 0.515+0.063
−0.057 g cm−3. We

find that the eccentricity is consistent with 0 with a me-

dian value and 68% CI of 0.072+0.083
−0.050. Indeed, a circular

orbit is to be expected for this planet based on the rapid

tidal circulation timescale (as computed by Adams &

Laughlin 2006, withQ∗ = 106) of 0.043+0.20
−0.040 Gyr, which

is very short compared to the stellar age of 7.3+3.6
−3.5 Gyr.

TOI 905 b also has an eccentricity that is consistent with

a circular orbit: 0.024+0.025
0.017 . The tidal circularization

timescale for this planet is 0.323+0.063
0.054 Gyr.

5. DISCUSSION

5.1. Consideration of False Positive Scenarios

False positive scenarios such as background eclipsing

binaries, or nearby eclipsing binaries can masquerade

as giant planets in transit data and occasionally also in

radial velocity data as well (e.g., Torres et al. 2004). We

should be especially wary of these scenarios given that

nearby stars were detected for both of these primary

host stars. Here we explicitly discuss several tests for

false positive scenarios. Taken together, we find that the

lines of evidence collectively demonstrate the planetary

nature of these bodies.

5.1.1. RV CCF Correlations

Strong correlations between the CCF BIS or CCF

FWHM and RV can raise concerns of stellar activ-

ity masquerading as planet signals. Additionally, a

marginally resolved double-lined binary can cause RV-

correlated CCF variations while producing a false posi-
tive diluted planetary transit signal.

We examined the BIS and FWHM for possible lin-

ear correlations with both the RVs using the Pearson

correlation coefficient, ρ. We calculated ρ over 100,000

realizations of the data resampled from a bivarate nor-

mal distribution using the 1σ errors in both quantities.

The results are seen in orange in Figure 8 and Figure

9 for TOI 564 and TOI 905 respectively. TOI 564 shows

no correlations between BIS and RV, but the zero cor-

relation case for FWHM and RV is excluded with high

confidence. For TOI 905, there is a marginally signif-

icant correlation between BIS and RV, and, again, a

highly significant non-zero correlation for FWHM and

RV.

These correlations are potentially concerning. How-

ever, we believe that the correlations are better ex-

plained as manifestations of systematic errors in our re-
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vs. S/N (blue diamonds). Right: histograms of the Pearson
correlation coefficient (ρ) values between either BIS (top) or
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Figure 9. Same as Figure 8, but for TOI 905.

duction pipeline that increase with low S/N. The corre-

lations between the CCF and S/N are also in Figure 8

and Figure 9 plotted in blue. We find that in each of

the cases where zero correlation was ruled out between

the RVs and BIS or FWHM, the correlation was many-σ

stronger when compared to S/N instead. For instance,

for TOI 905 the FWHM and RV have non-zero correla-

tion at the 3.3σ-level, whereas the FWHM and S/N have



14 Davis et al.

a non-zero correlation at the 9.5σ-level. Therefore, we

do not conclude that we have observed statistically sig-

nificant astrophysically produced CCF-RV correlations,

and we so fail to refute the planetary interpretation.

5.1.2. TODCOR Analysis

Since a potentially significant bisector correlation was

detected in the CCFs of TOI 905, we further analyzed

these spectra using TODCOR (Zucker, & Mazeh 1994).

We searched for additional RV components separated

by less than ∼15 km/s in a procedure similar to the one

applied in the analysis of the wide binary companion

of HD 202772 (Wang et al. 2019). The search revealed

no significant secondary velocity signal. TODCOR con-

firmed the RV signal was on target, and that it was not

induced by a blend with another component. The upper

limit on the relative flux contribution of another star in

the system was estimated to be ∼5–10%.

An independent reduction of the RVs obtained with

TODCOR and BIS measurements obtained with UNI-

COR (Engel et al. 2017) reproduced the observed RV

semi-amplitude using the reduction described in §2.4.2,

but not the strong CCF correlations found by the

CHIRON reduction; this reinforces our conclusion that

the correlations discussed in §5.1.1 are dominated by re-

duction issues and are not astrophysical in origin.

5.1.3. Bounds for Inclination of M-dwarf Binary

The apparent grazing transit of TOI 564 combined

with the existence of a likely M-dwarf companion in the

system raises the possibility that the system may con-

sistent of a close M-dwarf binary pair that orbit the G

star in a hierarchical triple system. In this scenario, an

eclipse of the M-dwarf pair would be contaminated by

the bright G star, leading to a spurious planetary transit

signal, and the RVs of the system would similarly con-

sist of high amplitude RVs from the M-dwarf pair that

are diluted by the G star.

The agreement of the 1.65 day period between the

transit and RV observations rule out a mutual-eclipse

scenario in a hypothetical M-dwarf pair; such a binary

must only experience one eclipse per orbit. A single-

eclipse orbit necessitates an orbit that has non-zero ec-

centricity. The RVs for this system constrain the eccen-

tricity to 0.072+0.083
−0.050.

We simulated this geometry, assuming the two M-

dwarfs each were 0.3 M� and 0.3 R�. The semi-major

axis is therefore 0.0231 AU. We find that an inclination

of 82.5◦ < i < 83.5◦ is required to produce exactly one

eclipse in this scenario. Although possible, it would be

unlikely a priori to find a two-body system that falls

within such a tight inclination bounds.

5.1.4. Color Dependence

In the hierarchical triple system scenario for TOI 564

explored in §5.1.3, an eclipse of an M dwarf would pro-

duce transits that are deeper in redder wavelengths, in

accordance with the cool stars’ colors. A typical M3

star has B − V = 1.5, compared to the primary star’s

measured B − V value of 0.77. This color difference be-

tween the two spectral types corresponds to a factor of

∼2 difference in the expected transit depths between B

and V if the M dwarf is being eclipsed. Instead, we find

that there is only a ∼ 0.1 ppt depth difference between

the transit depth in B and V for this star; indeed, all

transit depths only vary by 0.5 ppt between B and z′.

The hierarchical triple system scenario would similarly

cause a color dependence in the RVs, due to a varying

amount of spectral contamination from the red to the

blue wavelengths. We found that RVs as a function of

spectral order were distributed randomly, and there is

no sign of any color dependence.

5.2. Planets in Context

TOI 564 b and TOI 905 b are each classical transiting

hot Jupiters, orbiting G-type host stars with (respec-

tively) periods of 1.65 d and 3.74 d, masses of 1.46 and

0.67 MJ, and radii of 1.02 and 1.17 RJ. Figure 10

(left) shows that these planets’ masses and radii com-

pared to other transiting planets. TOI 905 b sits com-

fortably among previously discovered gas giants, as does

TOI 564 b, even near the extremes of its 68% CI radius

values. Given the nature of the grazing transit, however,

TOI 564 b could be much larger (commensurate with a

greater value of the impact parameter).

Based on TOI 564 b’s calculated Teq of 1714+20
−21 K,

the fact this is a gas-giant mass planet, and compar-

ison to other known hot Jupiters (see, e.g., Wu et al.

2018), it is likely that TOI 564 b is inflated. A typi-

cal hot Jupiter at this Teq would have a radius of ∼1.3

RJ, which is consistent within our measured radius of

1.02+0.71
−0.29 RJ. If TOI 564 b’s radius fell at the low end of

the 68% CI derived from EXOFASTv2, it would be one

of the least inflated giant planets given its temperature.

Given the difficulties in modeling a grazing transit, we

suggest that TOI 564 bś radius should be viewed cau-

tiously as a lower-bound. TOI 905 b has a calculated

Teq of 1192+39
−36 K, which puts it just past the critical

temperature of inflation (1123.7 ± 3.3 K) found by Wu

et al. (2018). At 1.17 RJ, this planet is fully consistent

with known giant planets at this Teq.

The high impact parameter, b = 0.994+0.083
−0.049, makes

TOI 564 b stand out in Figure 10 (right), which plots the

grazing transit condition vs. Gaia magnitude. TOI 564

is among the brightest stars known to host a grazing
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transiting planet. This makes it one of the most at-

tractive targets for long term monitoring in searches for

transit depth variations and impact parameters varia-

tions that could reveal the presence of non-transiting

planets or exomoons (Kipping 2009, 2010). The grazing

transits also offer an opportunity to search for exotrojan

asteroids (e.g., Lillo-Box et al. 2018) by exploiting the

sensitivity of the orbit of TOI 564 b to co-orbital pertur-

bations.

Miralda-Escudé (2002) examines this possibility using

the 51 Peg system (Mayor, & Queloz 1995) as an ex-

ample. A close-in hot Jupiter will experience both a

precession in its periastron as well as a precession in

its line of nodes when an additional planet is present

in the system. Miralda-Escudé (2002) finds, for exam-

ple, that in the case of an Earth-mass planet located

at a = 0.2 AU with an inclination of 45◦, 51 Peg b

would experience transit duration changes of 1 s yr−1,

which would be detectable over many years of observa-

tion. However, the grazing nature of TOI 564 b’s transit

means that any line-of-nodes precession will manifest it-

self as a change to the already-high impact parameter,

upon which the transit duration and transit depth are

both extremely sensitive. These changes can be used to

dynamically constrain the presence of smaller and more

distant planetary companions, which are of particular

interest because they can help address hot Jupiter for-

mation and evolution scenarios.

We find that TOI 564 b is unlikely to be eclipsed by

its host star, with the 68% CI eclipse duration be-

ing 0.000+0.021
−0.00 d. However, TOI 905 b is expected to

be eclipsed by its host, with an eclipse duration of

0.0845+0.0011
−0.0015 d. There is therefore potential for further

study of this planet’s thermal emission and atmospheric

characterization.

We simulated the Rossiter-McLaughlin effect using

ExOSAM (see, Addison et al. 2018) for both TOI 564 b

and TOI 905 b. Following the results of the TRES obser-

vations, we set set V sin i = 3.5 km s−1 for TOI 564, and

we consider two cases: an aligned orbit with λ = 0◦, and

with a polar orbit with λ = 90◦. For an aligned orbit,

the predicted semi-amplitude of the velocity anomaly

is ∼ 8 m s−1. In the case where λ ∼ 90◦ and the star

has a non-trivial vsini, either the red-shifted or the blue-

shifted limb of the star will be occulted, which will result

in a measurable, fully asymmetric Rossiter-McLaughlin

signal of ∼ 7 m s−1. With a transit duration of just

over one hour, it would be readily possible for a large-

aperture telescope with a spectrograph attaining better

than 4 m s−1 precision with a cadence of ∼ 10 min, (e.g.,

Keck/HIRES, Vogt et al. 1994; Magellan/PFS, Crane et

al. 2006), to measure λ in this system. We do not have

measurements of V sin i for TOI 905, but the deeper

transit would probably create a larger RM signal; e.g.,

arbitrarily assuming the same V sin i of 3.5 km s−1, we

find that TOI 905 b would have an RM semi-amplitude

of ∼ 23 m s−1 for an aligned orbit.
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The confirmation of this grazing transiting planet may

also serve as a valuable data point in informing the mys-

tery behind the paucity in detections of exoplanets with

grazing transits, even after accounting for the detection

biases resulting from their shallower and shorter tran-

sits. Polar star spots have been observed on both main

sequence stars (Jeffers et al. 2002) and active, rapid ro-

tators (Schuessler & Solanki 1992). These spots reduce

the background flux of the region occulted by planets

exhibiting a grazing transit, which necessarily transit at

high latitude in the default case of λ = 0◦. Oshagh

et al. (2015) posits that this effect could be responsible

for the dearth of grazing transiting planet detections by

Kepler. If TOI 564 b is indeed in an aligned orbit, then

its transits must cross the stellar pole (because of the

grazing transits), which would grant us the opportunity

to study this phenomenon.

6. SUMMARY AND CONCLUSION

We report the discovery and confirmation of two

new hot Jupiters identified by TESS : TOI 564 b and

TOI 905 b. TOI 564 b is noteworthy in that it displays

a grazing transit across its Sun-like host star in over its

1.65 d orbit. Both targets are main sequence G stars

that are relatively bright (V ∼ 11), making them good

targets for follow-up characterization.

Both planets were validated based on the TESS light

curves, ground-based photometry in three different fil-

ters, and robust radial velocity detections by CHIRON.

Both stars were observed with speckle interferometry

(HRCam/SOAR) and TOI 564 was also observed with

PHARO/Palomar AO. TOI 564 is a probable binary sys-

tem, with an M-dwarf companion at a projected distance

of ∼100 AU.

We conducted multiple independent measurements of

the host stars’ stellar parameters using the high reso-

lution CHIRON and TRES spectra as well as an SED

analysis and found a general agreement between the de-

rived parameters. Using the EXOFASTv2 planet fitting

suite, we ran a global analysis by simultaneously fitting

the transit and RV data with a Markov chain Monte

Carlo. TOI 564 b’s impact parameter was found to be

near unity, diminishing our ability to constrain its ra-

dius, but its mass, as well as the radius and mass of

TOI 905 b, was measured with high precision.

We explored and rejected a variety of false positive

scenarios for both systems. We conducted simulations

of the Rossiter-McLaughlin effect for TOI 564 b, assum-

ing either an equatorial orbit or a polar orbit and found

that in both cases the RV anomaly (∼ 8 m s−1) should

be detectable by large aperture telescopes with spectro-

graphs capable of attaining ∼ 4 m s−1 precision with

∼ 10 minute cadence. We noted that the unique sensi-

tivity of grazing transits to small orbital perturbations

like inclination changes (the effects of which are magni-

fied when the transit depth changes) may be exploited to

search the system for additional non-transiting bodies.
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Öberg, K. I., Murray-Clay, R., & Bergin, E. A. 2011, ApJL,

743, L16

Oshagh, M., Santos, N. C., Figueira, P., et al. 2015, A&A,

583, L1

Petigura, E. A., Marcy, G. W., Winn, J. N., et al. 2018, AJ,

155, 89

Pont, F., Gilliland, R. L., Knutson, H., et al. 2009,

MNRAS, 393, L6

Queloz, D., Eggenberger, A., Mayor, M., et al. 2000, A&A,

359, L13

Ribas, I., Font-Ribera, A., & Beaulieu, J.-P. 2008, ApJL,

677, L59

Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015,

Journal of Astronomical Telescopes, Instruments, and

Systems, 1, 014003

Rodriguez, J. E., Quinn, S. N., Huang, C. X., et al. 2019,

AJ, 157, 191

Rossiter, R. A. 1924, ApJ, 60, 15

Rossum, G. 1995, Python Reference Manual

Schlafly, E. F., Finkbeiner, D. P., 2011, ApJ, 737, 103

Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ,

500, 525

Schlesinger, F. 1910, Publications of the Allegheny

Observatory of the University of Pittsburgh, 1, 123

Sing, D. K., Fortney, J. J., Nikolov, N., et al. 2016, Nature,

529, 59

Schuessler, M., & Solanki, S. K. 1992, A&A, 264, L13

Smalley, B., Anderson, D. R., Collier Cameron, A., et al.

2011, A&A, 526, A130

Smith, J. C., Stumpe, M. C., Van Cleve, J. E., et al. 2012,

PASP, 124, 1000

Sneden, C. 1973, ApJ, 184, 839

Sousa, S. G., Santos, N. C., Adibekyan, V., Delgado-Mena,

E., & Israelian, G. 2015, A&A, 577, A67

Stassun, K. G., Collins, K. A., & Gaudi, B. S. 2017, AJ,

153, 136

Stassun, K. G., Corsaro, E., Pepper, J. A., & Gaudi, B. S.

2018, AJ, 155, 22

Stassun, K. G., Oelkers, R. J., Pepper, J., et al. 2018, AJ,

156, 102

Stassun, K. G., & Torres, G. 2016, AJ, 152, 180

Stassun, K. G. & Torres, G. 2018 ApJ, 862, 61

Stumpe, M. C., Smith, J. C., Catanzarite, J. H., et al. 2014,

PASP, 126, 100

Tokovinin, A., Fischer, D. A., Bonati, M., et al. 2013,

PASP, 125, 1336

Tokovinin, A. 2018, PASP, 130, 035002

Torres, G., Konacki, M., Sasselov, D. D., et al. 2004, ApJ,

614, 979

Torres, G., Andersen, J., & Giménez, A. 2010, A&A Rv,
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