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Abstract. Improved knowledge of the contributing sources of uncertainty in13

projections of Arctic sea ice over the 21st century is essential for evaluating impacts of14

a changing Arctic ecosystem. Here, we consider the role of internal variability, model15

structure and emissions scenario in projections of Arctic sea-ice extent (SIE) by using16

six single model initial-condition large ensembles and a suite of models participating in17

Phase 5 of the Coupled Model Intercomparison Project. For projections of September18

Arctic SIE, internal variability accounts for as much as 60% of the total uncertainty19

in the next few decades, while emissions scenario dominates uncertainty toward the20

end of the century. Model structure accounts for approximately 70% of the total21

uncertainty by mid-century and declines to 20% at the end of the 21st century. For22

projections of wintertime Arctic SIE, internal variability contributes as much as 60% of23

the total uncertainty in the first few decades and impacts total uncertainty at longer24

lead times when compared to summer SIE. Model structure contributes the rest of25

the uncertainty with emissions scenario contributing little to the total uncertainty. At26

regional scales, the contribution of internal variability can vary widely and strongly27

depends on the month and region. For wintertime SIE in the GIN and Barents Seas,28

internal variability contributes approximately 70% to the total uncertainty over the29

coming decades and remains important much longer than in other regions. We further30

find that the relative contribution of internal variability to total uncertainty is state-31

dependent and increases as sea ice volume declines. These results demonstrate the need32

to improve the representation of internal variability of Arctic SIE in models, which is33

a significant source of uncertainty in future projections.34
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1. Introduction38

The rapid loss of Arctic sea ice over the last few decades has been one of the most iconic39

symbols of anthropogenic climate change. Since the beginning of the satellite record,40

September Arctic sea-ice extent (SIE) has decreased by approximately 50% (Stroeve41

and Notz, 2018) and experienced considerable thinning largely due to a lengthening of42

the melt season (Perovich and Polashenski, 2012; Stroeve et al., 2014). While state-of-43

the-art global climate models (GCMs) predict a decline of Arctic SIE throughout the44

21st century, the exact amount of ice loss remains highly uncertain (Massonnet et al.,45

2012; SIMIP, 2020). Studies suggest that in the summertime the Arctic will most likely46

be “ice free” by the end of the 21st century (Jahn, 2018; Niederdrenk and Notz, 2018;47

Sigmond et al., 2018) and could possibly be ice free as early as 2050 (Jahn, 2018) or48

2030 (Wang and Overland, 2009). To improve projections of Arctic sea ice, the rela-49

tive importance of the sources of uncertainty need to be characterized and if possible50

reduced, particularly at regional scales (Eicken, 2013; Barnhart et al., 2016).51

52

Internal variability, which refers to natural fluctuations in climate that occur even in the53

absence of external forcing, has long been known as an important source of uncertainty54

in projections of future climate (Hawkins and Sutton, 2009; Deser et al., 2012, 2020;55

Lehner et al., 2020; Maher et al., 2020). These fluctuations — intrinsic to the climate56

system — have been shown to exert a strong influence on short-term trends in numer-57

ous climate variables, such as surface temperature (Wallace et al., 2012; Smoliak et al.,58

2015; Deser et al., 2016; Lehner et al., 2017), precipitation (Hawkins and Sutton, 2011;59

Deser et al., 2012), snowpack (Siler et al., 2019), glacier mass balance (Marzeion et al.,60

2014; Bonan et al., 2019), ocean biogeochemical properties (Lovenduski et al., 2016;61

Schlunegger et al., 2020), and sea ice (Kay et al., 2011; Swart et al., 2015; Jahn et al.,62

2016; Screen and Deser, 2019; Rosenblum and Eisenman, 2017; England et al., 2019;63

Ding et al., 2019; Landrum and Holland, 2020). Recent estimates suggest that internal64

variability has contributed to approximately 50% of the observed trend in September65

Arctic SIE decline since 1979 (Stroeve et al., 2007; Kay et al., 2011; Zhang, 2015; Ding66

et al., 2017, 2019) and has strongly controlled regional patterns of sea ice loss (England67

et al., 2019).68

69

The large role of internal variability in determining changes to Arctic SIE over the ob-70

servational record means the predictability of future Arctic SIE at decadal timescales71

could remain heavily influenced by internal variability. The advent of decadal predic-72

tion systems (e.g., Meehl et al., 2009, 2014) raises the question whether realistic physics73

together with proper initialization of observations can lead GCMs to successfully con-74

strain this internal variability and result in skillful estimates of SIE at decadal lead times75

(Koenigk et al., 2012; Yang et al., 2016). Initial-value predictability of Arctic SIE has76

been shown to be regionally and seasonally dependent (Blanchard-Wrigglesworth et al.,77

2011b; Bushuk et al., 2019), often only lasting a few years at most for total Arctic SIE78
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(Blanchard-Wrigglesworth et al., 2011a; Guemas et al., 2016). Using a suite of perfect79

model experiments (which quantify the upper limits of predictability), Yeager et al.80

(2015) showed that the rate of sea ice loss in the North Atlantic may slow down in the81

coming decades due to a reduction of ocean heat transport into the Arctic, which itself82

is highly predictable. Similarly, Koenigk et al. (2012) found a link between meridional83

overturning circulation and the potential predictability of decadal mean sea ice concen-84

tration in the North Atlantic — consistent with Yang et al. (2016). Indeed, this means85

that uncertainty due to internal variability is an important — and possibly reducible —86

source of uncertainty for short-term projections in some regions with properly initial-87

ized forecasts, but not for long-term projections. However, even if uncertainty due to88

internal variability cannot be reduced, understanding its magnitude will allow for better89

decision making in light of that uncertainty. This raises an important question: what90

is the relative role of internal variability in future projections of Arctic sea ice? Any91

accounting for the sources of uncertainty in projections of Arctic SIE must quantify the92

relative importance of each source at different spatial and temporal scales. For example,93

how important is internal variability for projections of Arctic sea ice 15 versus 30 years94

from now? Moreover, because models exhibit different magnitudes of internal variability95

in sea ice, particularly at regional scales (e.g., England et al., 2019; Topál et al., 2020),96

such quantification must sample the influence of model uncertainty in the estimate of97

internal variability itself.98

99

To examine these questions we use an unprecedented suite of single model initial-100

condition large ensembles (SMILEs) from six fully-coupled GCMs. Due to their sample101

size, these SMILEs uniquely allow us to partition uncertainty in projections of Arctic SIE102

into the relative roles of internal variability, model structure, and emissions scenario at103

both Arctic-wide and regional spatial scales without relying on statistical representations104

of the forced response or internal variability (e.g., Lique et al., 2016). The SMILEs also105

allow us to quantify the influence of different estimates of internal variability, a feature106

of sea ice projection uncertainty that has received little attention. In what follows, we107

first investigate the role of internal variability in projections of total Arctic SIE. We108

then explore how the relative partitioning of each source changes as a function of season109

and Arctic region and how this partitioning is influenced by the mean-state of Arctic110

sea ice.111

2. Data112

2.1. MMLEA output113

We use six SMILEs from the Multi-Model Large Ensemble Archive (MMLEA; Deser114

et al., 2020) to investigate the role of internal variability on projections of Arctic115

sea ice. These include the: 40 member Community Earth System Model Large116

Ensemble Community Project (CESM1-LE; Kay et al., 2015), 50 member Canadian117
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Earth System Model Large Ensemble (CanESM2-LE; Kirchmeier-Young et al., 2017), 30118

member Commonwealth Scientific and Industrial Research Organisation Large Ensemble119

(CSIRO-Mk3.6.0-LE; Jeffrey et al., 2013), 20 member Geophysical Fluid Dynamics120

Laboratory Large Ensemble (GFDL-CM3-LE; Sun et al., 2018), 30 member Geophysical121

Fluid Dynamics Laboratory Earth System Model Large Ensemble (GFDL-ESM2M-LE;122

Rodgers et al., 2015), and 100 member Max Planck Institute Grand Ensemble (MPI-123

GE; Maher et al., 2019). Each SMILE uses historical and RCP8.5 forcing. We also124

use the RCP2.6 and RCP4.5 100 member ensembles from the MPI-GE. From each125

SMILE we use sea ice concentration (SIC) to compute monthly Arctic SIE (defined as126

the area where SICą15%) for 6 Arctic regions and the pan-Arctic (see Figure S1). We127

also use sea ice thickness to compute monthly Arctic sea-ice volume (SIV) for these128

same spatial domains. Note that the output from GFDL-CM3 and GFDL-ESM2M is129

the average thickness over the ice-covered area of the grid cell. To compute SIV, the130

monthly averaged ice-covered thickness from both models was multiplied by the monthly131

average SIC of each cell to get the grid-cell average SIT. Prior to these calculations, all132

model output is regridded to a common 1˝ ˆ 1˝ analysis grid using nearest-neighbor133

interpolation.134

2.2. CMIP5 output135

We use monthly output from the historical, RCP2.6, RCP4.5, and RCP8.5 simulations136

of 30 different GCMs participating in CMIP5 (Taylor et al., 2012). Since the historical137

simulations end in 2005, we merge the 1850-2005 fields from the historical simulations138

with the 2006-2100 fields under each RCP forcing scenario. For each experiment, we139

use SIC to compute monthly Arctic SIE (defined as the area where SICą15%). The set140

of GCMs evaluated reflects those that provide the necessary output (see Table S1). All141

model output is regridded to a common 1˝ ˆ 1˝ analysis grid using nearest-neighbor142

interpolation.143

3. Uncertainty in projections of Arctic sea ice144

We begin by partitioning three sources of uncertainty following Hawkins and Sutton

(2009) and Lehner et al. (2020), where the total uncertainty (T ) is the sum of the

uncertainty due to model structure (M), the uncertainty due to internal variability (I)

and the uncertainty due to emissions scenario (S). Each source can be estimated for a

given time t and location x such that:

T pt, xq “ Ipt, xq `Mpt, xq ` Spt, xq (1)

where the fractional uncertainty from a given source is calculated as I{T , M{T , and145

S{T . I is calculated as the variance across ensemble members of each SMILE, yielding146

one time-varying estimate of I per SMILE. Averaging across the six I yields the multi-147

model mean internal variability uncertainty (see white line in Figure 1). To quantify148

ESSOAr | https://doi.org/10.1002/essoar.10504570.1 | CC_BY_4.0 | First posted online: Wed, 28 Oct 2020 09:23:10 | This content has not been peer reviewed. 



5

the influence of model uncertainty in the estimate of I we also use the model with149

the largest and smallest I (see white shaded regions in Figure 1). Model uncertainty150

in the estimate of I has emerged as an important and potentially reducible source of151

uncertainty in regional temperature and precipitation changes (Lehner et al., 2020; Deser152

et al., 2020) and projections of global ocean biogeochemical properties (Schlunegger153

et al., 2020). M is calculated as the variance across the ensemble means of the six154

SMILEs. It is important to note that the SMILEs used in this study are found to be155

reasonably representative of the CMIP5 inter-model spread for the percent of remaining156

Arctic sea ice cover (see Figure S2) and total Arctic SIE (see black lines in Fig. 1), but157

a more systematic comparison is necessary before generalizing this conclusion. Finally,158

since only a few of the SMILEs were run with more than one emissions scenario, we turn159

to CMIP5 for S, which is calculated as the variance across the multi-model mean RCP160

scenarios (see Table S1 for details). Prior to these variance calculations, the monthly SIE161

was smoothed with a 5-year running mean to isolate the effect of uncertainty on short-162

term projections and then used to calculate the percent of remaining sea ice relative to163

1995-2014 (see Figure S2).164

3.1. Total Arctic sea-ice extent165

We first consider projections of Arctic SIE in September (the seasonal minimum) and166

March (the seasonal maximum). Figure 1 shows the fractional contribution of each167

source of uncertainty to total uncertainty. In September, uncertainty due to internal168

variability is important initially, accounting for approximately 30% of total uncertainty.169

However, over time model uncertainty increases and eventually dominates for the first170

half of the 21st century, before scenario uncertainty starts to dominate after approxi-171

mately mid-century (Fig. 1c). However, model uncertainty in internal variability itself172

can have an effect on climate projections (e.g., Lehner et al., 2020). Accounting for173

the minimum and maximum contribution of internal variability to total uncertainty174

suggests that internal variability could account for as much as 50-60% or as little as175

10-20% of total uncertainty in projections of September SIE in the coming decades and176

could contribute approximately 10% throughout the 21st century. Note, these results177

are similar for most summer months and summertime averages (see Fig. S4 and S5).178

179

A different story emerges for projections of Arctic SIE in March. While uncertainty180

due to internal variability is again important initially and accounts for more of the total181

uncertainty at longer lead times, model uncertainty increases and quickly dominates182

until the end of the century (Fig. 1d). Scenario uncertainty is relatively less important183

for projections of Arctic SIE in March and, more broadly, during the wintertime (see184

Fig. S4). Uncertainty in model internal variability remains large throughout the 21st185

century, suggesting internal variability could account for as much as 20% or as little as186

5% of the total uncertainty beyond mid-century. The relative partitioning is similar for187

most winter months and wintertime averages (see Fig. S4 and S5).188
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a b

c d

Figure 1. (a-b) Arctic sea-ice extent from 1950-2100 for six single model initial-

condition large ensembles (SMILEs) in (a) September and (b) March. The bold line

represents the ensemble-mean of each SMILE and the shading represents the range of

each SMILE under historical and RCP8.5 forcing. The colored dotted lines represent

the RCP scenarios from CMIP5 (shown only for the MPI-GE). The black vertical lines

at 1950 and 2100 represent the spread from the 30 CMIP5 simulations. (c-d) Fractional

contribution of model structure, emissions scenario, and internal variability to total

uncertainty for the percent of remaining Arctic sea ice cover in (c) September and (d)

March. The solid white lines denote the borders between each source of uncertainty,

while the transparent white shading around those lines is the range of this estimate

based on different estimates of internal variability in the MMLEA. Both fractional

uncertainty panels are for five-year mean projections of percent of remaining Arctic

sea-ice cover relative to 1995-2014.
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189

These results suggest that uncertainty in short-term projections of Arctic sea ice,190

regardless of the season, is dominated by internal variability, while for long-term191

projections of Arctic sea ice, both scenario and model uncertainty become important. At192

long lead times, scenario uncertainty accounts for most of the uncertainty in projections193

of Arctic SIE in the summer months and model uncertainty accounts for most of the194

uncertainty in projections of Arctic SIE in the winter months. This likely reflects the195

fact that September Arctic SIE disappears in most GCMs by 2100 under RCP8.5.196

a b

Figure 2. Fractional contribution of model structure and internal variability to total

uncertainty for Arctic sea-ice extent (SIE) in (a) September and (b) March as a function

of Arctic sea-ice volume (SIV). The solid white lines denotes the border between the

two sources of uncertainty. Both fractional uncertainty panels are for projections of

Arctic sea-ice extent with no temporal averaging or reference period. Note the x-axis

is different for (a) and (b).

3.2. State dependence of internal variability197

These results show a clear time-scale dependence for the relative importance of inter-198

nal variability in uncertainty of projections of Arctic SIE. However, recent studies have199

shown that the internal variability and the predictability of Arctic sea ice can change200

over time and under anthropogenic forcing (Goosse et al., 2009; Mioduszewski et al.,201

2019; Holland et al., 2019). September Arctic SIE variability is expected to increase202

under warming (Goosse et al., 2009; Mioduszewski et al., 2019), suggesting that the role203

of internal variability in sea ice projections is mean-state dependent. To investigate the204

role of internal variability in projections of Arctic sea ice as a function of the mean-state,205

we partition the relative sources of uncertainty with respect to SIV by binning a given206

SIE to its associated SIV for each month. We then perform the same variance analysis207

described above as a function of SIV instead of as a function of time. Doing this for208

each SMILE member and the ensemble-mean of each SMILE allows us to examine the209
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contributing sources of uncertainty as a function of SIV.210

211

Figure 2 shows the fractional contribution of internal variability and model structure212

to total uncertainty for future Arctic SIE in September and March as a function of213

September and March Arctic SIV, respectively. Note, scenario uncertainty was excluded214

in these calculations (by using simulations from RCP 8.5 only) to isolate the effect of215

internal variability at different mean-states with respect to model uncertainty under216

the same mean-state. In September, as SIV declines — which is expected to occur217

throughout the 21st century — internal variability remains constant for most SIV218

values, accounting for approximately 10% of total uncertainty. However, at lower SIV219

regimes (ă 3,000 km3), the contribution of internal variability increases and accounts220

for approximately 80% of the total uncertainty at low thickness sea ice regimes (i.e.,221

SIV ă 1,000 km3). This is consistent with previous work that has shown increased222

variability of summer Arctic SIE as it approaches zero (e.g., Mioduszewski et al., 2019).223

In March, the contribution of internal variability to total uncertainty remains relatively224

constant at all SIV regimes, likely reflecting the fact that sea ice is present in most225

winter climates in future projections (e.g., Goosse et al., 2009). It is important to note226

that this increase in the contribution of internal variability to uncertainty at lower SIV227

regimes holds for summer (June, July, and August) months (not shown).228

a b c

Figure 3. Fractional contribution of model structure, emissions scenario, and internal

variability to total uncertainty for percent of remaining sea ice cover in July, August

and September (JAS) for the Central Arctic, Siberian Marginal Seas (Kara Sea, Laptev

Sea, East Siberian Sea), and North American Marginal Seas (Chukchi Sea, Beaufort

Sea, Canadian Archipelago). The solid white lines indicate the borders between sources

of uncertainty, while the transparent white shading around those lines is the range of

this estimate based on different estimates of internal variability in the MMLEA. All

panels are for five-year mean projections of percent of remaining Arctic sea-ice cover

relative to 1995-2014.
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3.3. Regional Arctic sea-ice extent229

While the loss of total Arctic SIE is important for understanding the global climate re-230

sponse, climate change and sea ice loss are experienced predominately at regional scales231

(Barnhart et al., 2014; Lehner and Stocker, 2015). To investigate uncertainty in regional232

SIE projections, we compute SIE for 6 Arctic regions, which include the Central Arctic,233

Siberian Marginal Seas, North American Marginal Seas, Baffin/Hudson Bay and the234

Labrador Sea, the Bering Sea and Sea of Okhotsk, and Greenland-Iceland-Norwegian235

(GIN) and Bering Seas. These regions were chosen to represent geographically distinct236

parts of the Arctic ocean, where SIE retreat occurrs with different velocities. As with237

total Arctic SIE, the SMILEs used in this study are found to be reasonably representa-238

tive of the CMIP5 inter-model spread for the percent of remaining Arctic sea ice cover239

in each region (see Figure S3).240

241

Figure 3 shows the fractional contribution of each source of uncertainty to total uncer-242

tainty in projections of July, August, and September (JAS) SIE in the Central Arctic243

(Fig. 3a), Siberian Marginal Seas (Fig. 3b), and North American Marginal Seas (Fig.244

3c). We only show summertime SIE as these regions are fully ice covered in the winter-245

time and exhibit little wintertime variability throughout much of the 21st century. As246

with total September Arctic SIE, there is a large role for internal variability initially,247

accounting for as much as 80% of total uncertainty in the Siberian and North American248

Marginal Seas (Fig. 3b and 3b) and 60% in the Central Arctic (Fig. 3a). However, over249

time model uncertainty increases and eventually dominates for the first half of the 21st250

century in Central Arctic (Fig. 3a) and marginal seas (Fig. 3b and Fig. 3c), accounting251

for 40-50% of the total uncertainty. Note, the contribution of model structure to total252

uncertainty at the end of the century is lowest for the North American Marginal Seas.253

By the end of the 21st century scenario uncertainty dominates and accounts for over254

half of the uncertainty, meaning that whether or not an ice free Arctic occurs in the255

summertime is a direct consequence of climate change policy. Notably, the range of256

simulated internal variability contributions remain quite large through the 21st century257

in each region.258

259

Figure 4 shows the fractional contribution of each source of uncertainty to total uncer-260

tainty in projections of January, February, and March (JFM) Arctic SIE in Baffin Bay,261

Hudson Bay and the Labrador Sea (Fig. 4a), Bering Sea and Sea of Okhotsk (Fig. 4b),262

and GIN and Barents Seas (Fig. 4c). These regions were selected to examine wintertime263

SIE as there is highly variable SIE in winter and little-to-no SIE in summer. As with264

regions of variable summer sea ice cover, these regions show a distinct pattern of un-265

certainty partitioning. For Baffin Bay, Hudson Bay, and Labrador Sea, approximately266

80% of total uncertainty in the next few decades is attributable to internal variability.267

Note that the contribution of uncertainty in the estimate of internal variability itself268

can cause this to change to only 20% (mainly driven by CSIRO-Mk3.6.0, which clearly269
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a b c

Figure 4. Fractional contribution of model structure, emissions scenario, and internal

variability to total uncertainty for percent of remaining sea ice cover in January,

February, and March (JFM) for (a) Baffin Bay, Hudson Bay, and the Labrador Sea,

(b) Being Sea and Sea of Okhotsk, and the (c) GIN and Barents Seas. The solid white

lines indicate the borders between sources of uncertainty, while the transparent white

shading around those lines is the range of this estimate based on different estimates

of internal variability in the MMLEA. All panels are for five-year mean projections of

percent of remaining Arctic sea-ice cover relative to 1995-2014.

overestimates sea-ice extent in this region and Arctic-wide). The internal variability270

contribution diminishes to approximately 10% by the end of the century, and model271

structure dominates by 2030. A similar picture emerges for the Bering Sea and Sea272

of Okhotsk, but instead scenario uncertainty dominates in the latter half of the 21st273

century. Interestingly, the uncertainty partitioning for the GIN and Barents Seas has a274

distinct structure: internal variability dominates projection uncertainty for the next 30275

years and remains persistent throughout much of the 21st century. The contribution of276

internal variability is notably larger than in other regions and is most likely related to277

the influence of Atlantic heat transport on sea ice (Årthun et al., 2012).278

279

A key result here — in contrast to total Arctic SIE for March and September — is280

the larger role of internal variability in contributing to total uncertainty, which persists281

throughout much of the 21st century. This suggests decadal predictions of regional282

Arctic SIE will be highly influenced by internal variability, especially for wintertime283

conditions in the GIN and Barents Seas. Moreover, the range of internal variability284

across models presents a unique challenge as internal variability could account for as285

much as 80% or as little as 20% of the total uncertainty in regions like the Labrador Sea286

in the coming decades. Understanding the cause of the range in this internal variability287

uncertainty is an important next step, whether it is related to model biases or dependent288

on the sea ice mean-state.289
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a b c

d e f

Figure 5. Percent of occurrence of separate 5-year trends in September Arctic sea-ice

extent (SIE) from 1950-2019 for the (a) CESM1-LE, (b) CanESM2-LE, (c) CSIRO-

Mk3.6.0-LE, (d) GFDL-CM3-LE, (e) GFDL-ESM2M-LE, and (f) MPI-GE. A 4th order

polynomial was removed from each member of each SMILE prior to trend calculations

to estimate the forced response. The bars show the distribution of trends for all

members. The grey bars show percent of occurrence of separate 5-year trends in

September Arctic SIE from 1930-2019 as estimated from Walsh et al. (2017). A 4th

order polynomial was removed from the dataset prior to trend calculations to estimate

the forced response.

4. Concluding remarks290

The impacts of Arctic sea ice loss will be predominately felt by coastal communities,291

making it crucial to quantify and reduce projection uncertainty at regional scales. Here,292

we used a suite of SMILEs to investigate the sources of uncertainty in projections of293

Arctic SIE. For September SIE, model structure contributes between 40-80% of the total294

uncertainty over the next century, while for March SIE, model structure contributes ap-295

proximately 40-90% of the total uncertainty over the next century and accounts for more296

uncertainty at the end of the 21st century. We find a clear timescale dependence for297

internal variability. For September SIE, internal variability contributes approximately298

20-60% of total uncertainty in the next few decades, while for March SIE — and winter299

SIE more generally — internal variability contributes between 50-60% of total uncer-300
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tainty and influences projections at longer lead times. Scenario uncertainty contributes301

mainly to uncertainty in summertime projections, accounting for approximately 70%302

of total uncertainty by the end of the century. We also find that the role for internal303

variability is mean-state dependent with thinner summer sea ice regimes more heavily304

influenced by internal variability, accounting for approximately 80% of total uncertainty305

for SIV ă 1,000 km3. At regional scales, the contribution of internal variability to total306

uncertainty increases, but has a large range and strongly depends on the month and307

region. In the GIN and Barents Seas, for instance, internal variability contributes ap-308

proximately 50-70% of the total uncertainty over the next 30 years, while for the Central309

Arctic, internal variability accounts for approximately 20-30% of the total uncertainty.310

This is likely related to the influence of Atlantic heat transport on sea ice in the North311

Atlantic during the wintertime.312

313

A unique result of our analysis is the partitioning of uncertainty due to different es-314

timates of internal variability, which varies considerably across GCMs. This suggests315

that at least some GCMs are biased in their magnitude of variability. Due to the short316

observational record, it is difficult to precisely estimate the real-world magnitude of317

SIE internal variability (e.g., Brennan et al., 2020). However, using a reconstruction318

of September Arctic SIE to 1850 (Walsh et al., 2017) we try and estimate historical319

Arctic SIE variability. We limit our analysis to 1930 due to sparse data coverage in320

the Arctic prior to the 1930s. Figure 5 shows histograms of separate 5-year trends in321

September Arctic SIE from 1950-2019 using all members of each SMILE. A 4th order322

polynomial was used to approximate and remove the forced response to be consistent323

with comparison to observations. The grey bars indicate the range from Walsh et al.324

(2017) using separate 5-year trends from 1930 to 2019 after approximating the forced325

response as a 4th order polynomial fit and removing it. While most models appear to326

span the range of internal variability in the historical record, CSIRO-Mk3.6.0 does not327

simulate a large enough range of 5-year trends, most likely reflecting the fact that sea ice328

is biased high throughout the summer. This suggests the lowest contribution of internal329

variability to total uncertainty in projections September Arctic SIE is likely not realis-330

tic. Understanding and resolving these biases in internal variability across fully-coupled331

GCMs should remain a focus of the sea ice community as it is important for attribution332

of observed sea ice loss to anthropogenic climate change as well as for efforts of decadal333

prediction.334

335

Recent work has highlighted the role of remote internal processes in determining sea336

ice trends across these same SMILEs (Topál et al., 2020), but a more process-oriented337

analysis of the spatial and temporal timescales of this variability may better reveal the338

sources of inter-model spread. For instance, it has been shown that these remote pro-339

cesses are not stable on longer time scales (Bonan and Blanchard-Wrigglesworth, 2020),340

suggesting that associated variability in September SIE during the satellite era does not341

paint a complete picture of the future SIE variability. The outsized role for internal vari-342
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ability in projections of Arctic sea ice changes in the coming decades further motivates343

the use of SMILEs to investigate a wide range of possible sequences of sea ice internal344

variability and its drivers. However, such work is beyond the scope of this paper, whose345

primary goal is to highlight the relative contribution of different sources of uncertainty346

to Arctic sea ice projections at different spatial and temporal scales.347

348

While internal variability poses a great challenge for predicting Arctic SIE in the349

coming decades, the contribution of model structure to total uncertainty should not be350

ignored. So-called “emergent constraints”, which link the inter-model spread in climate351

projections to observable predictors, should be used when characterizing projection352

uncertainty. Previous work has related the amount of future ice loss to the magnitude353

of historical SIE trends (Boé et al., 2009; Hall et al., 2019) and to the initial state of the354

sea ice (Bitz, 2008; Massonnet et al., 2012; Hall et al., 2019) and the Arctic climate355

(Senftleben et al., 2020), but open questions remain as to why these relationships356

exist and persist throughout the next century. Understanding biases in these trends357

(e.g., Rosenblum and Eisenman, 2016, 2017) and the physical mechanisms behind these358

constraints will improve the reliability of sea ice projections and increase confidence in359

our understanding of what controls Arctic sea ice loss.360
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