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Abstract

Neural networks are achieving state of the art
and sometimes super-human performance on
learning tasks across a variety of domains.
Whenever these problems require learning in
a continual or sequential manner, however,
neural networks su↵er from the problem of
catastrophic forgetting ; they forget how to
solve previous tasks after being trained on a
new task, despite having the essential capac-
ity to solve both tasks if they were trained on
both simultaneously. In this paper, we pro-
pose to address this issue from a parameter
space perspective and study an approach to
restrict the direction of the gradient updates
to avoid forgetting previously-learned data.
We present the Orthogonal Gradient Descent
(OGD) method, which accomplishes this goal
by projecting the gradients from new tasks
onto a subspace in which the neural network
output on previous task does not change and
the projected gradient is still in a useful direc-
tion for learning the new task. Our approach
utilizes the high capacity of a neural network
more e�ciently and does not require stor-
ing the previously learned data that might
raise privacy concerns. Experiments on com-
mon benchmarks reveal the e↵ectiveness of
the proposed OGD method.

1 Introduction

One critical component of intelligence is the ability
to learn continuously, when new information is con-
stantly available but previously presented information
is unavailable to retrieve. Despite their ubiquity in the
real world, these problems have posed a long-standing
challenge to artificial intelligence (Thrun and Mitchell,
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1995; Hassabis et al., 2017).

A typical neural network training procedure over a se-
quence of di↵erent tasks usually results in degraded
performance on previously trained tasks if the model
could not revisit the data of previous tasks. This phe-
nomenon is called catastrophic forgetting (McCloskey
and Cohen, 1989; Ratcli↵, 1990; French, 1999). Ide-
ally, an intelligent agent should be able to learn con-
secutive tasks without degrading its performance on
those already learned. With the deep learning renais-
sance (Krizhevsky et al., 2012; Hinton et al., 2006; Si-
monyan and Zisserman, 2014) this problem has been
revived (Srivastava et al., 2013; Goodfellow et al.,
2013) with many follow-up studies (Parisi et al., 2019).

One probable reason for this phenomenon is that neu-
ral networks are usually trained by Stochastic Gra-
dient Descent (SGD)—or its variants—where the op-
timizers produce gradients that are oblivious to past
knowledge. These optimizers, by design, produce gra-
dients that are purely a function of the current mini-
batch (or some smoothed average of a short window
of them). This is a desirable feature when the train-
ing data is iid, but is not desirable when the train-
ing distribution shifts over time. In this paper, we
present a system where the gradients produced on a
training minibatch can avoid interfering with gradi-
ents produced on previous tasks.

The core idea of our approach, Orthogonal Gradient
Descent (OGD), is to preserve the previously acquired
knowledge by maintaining a space consisting of the
gradient directions of the neural network predictions
on previous tasks. Any update orthogonal to this gra-
dient space change the output of the network min-
imally. When training on a new task, OGD projects
the loss gradients of new samples perpendicular to this
gradient space before applying back-propagation. Em-
pirical results demonstrate that the proposed method
e�ciently utilizes the high capacity of the (often over-
parameterized) neural network to learn the new data
while minimizing the interference with the previously
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acquired knowledge. Experiments on three common
continual learning benchmarks substantiate that OGD
achieves state-of-the-art performance without the need
to store the historical data.

2 Preliminaries

Consider a continual learning setting in which tasks
{T1, T2, T3, . . .} arrive sequentially. When a model is
being trained on task Tk, any data from previous tasks
{Tt | t < k} is inaccessible. Each data point (x, y) 2 Tk

is a pair consists of input x 2 Rd and a label y. For a c-
class classification, y is a c-dimensional one hot vector.
The prediction of the model on input x is denoted by
f(x;w), where w 2 Rp are parameters (weights) of the
model (neural network). For classification problems,
f(x;w) 2 Rc where fj(x;w) is the j-th logit associated
to j-th class.

The total loss on the training set (empirical risk) for
task t is denoted by

Lt(w) =
X

(x,y)2Tt

L(x,y)(w), (1)

where the per-example loss is defined as

L(x,y)(w) = `(y, f(x;w)), (2)

and `(·, ·) is a di↵erentiable non-negative loss function.
For classification problems, a softmax cross entropy
loss is commonly used, i.e.,

`(y, f(x;w)) = �
cX

j=1

yj log aj , (3)

where aj = exp fj(x;w)/
P

k exp fk(x;w) is the j-th
softmax output.

Two objects that frequently appear throughout the
development of our method are the gradient of the
loss, rL(x,y)(w) 2 Rp, and the gradient of the model,
rf(x;w) 2 Rp⇥c, which are both with respect to w,
and it is critically important to distinguish the two. In
fact, the gradient of the loss, using the chain rule, can
be expressed as

rL(x,y)(w) = rf(x;w)`0(y, f(x;w)), (4)

where `0(·, ·) 2 Rc denotes the derivative of `(·, ·) with
respect to its second argument, and rf(x;w) is the
gradient of the model f with respect to its second ar-
gument (i.e., the parameters). For the classification
problem with cross entropy softmax loss, we have

rf(x;w) = [rf1(x;w); . . . ;rfc(x;w), ], (5)

and the derivative of the loss becomes

`0(y, f(x;w)) = [a1 � y1, . . . , ac � yc]
>, (6)

where, rfj(x;w) 2 Rc is the gradient of the j-th logit
with respect to parameters.

low error 
for task A

low error 
for task B

low error 
for both

Figure 1: An illustration of how Orthogonal Gradient De-

scent corrects the directions of the gradients. g is the origi-

nal gradient computed for task B and g̃ is the projection of

g onto the orthogonal space w.r.t the gradient rfj(x;w
⇤
A)

computed at task A. Moving within this (blue) space al-

lows the model parameters to get closer to the low error

(green) region for both tasks.

3 Orthogonal Gradient Descent

Catastrophic forgetting happens in neural networks
when the gradient updates with respect to a new task
are applied to the model without considering previous
tasks. We propose the Orthogonal Gradient Descent
method for mitigating this problem, which is based on
modifying the direction of the updates to account for
important directions of previous tasks. Figure 1 shows
an illustration of the core idea of OGD which con-
strains the parameters to move within the orthogonal
space to the gradients of previous tasks.

Suppose that the model has been trained on the task
A in the usual way until convergence to a parame-
ter vector w⇤

A so that the training loss/error is small
or zero, and consider the e↵ect of a small update to
W ⇤

A. In the high-dimensional parameter space of the
model, there could be update directions causing large
changes in the predictions from x 2 TA, while there
also exist updates that minimally a↵ect such predic-
tions. In particular, moving locally along the direction
of ±rfj(x;w) leads to the biggest change in model
prediction fj(x;w) given any sample x, while moving
orthogonal to rfj(x;w) leads to the least change (or
no change, locally) to the prediction of x. Supposing
task A has nA data points in the stochastic gradient
descent setting, there will be nA⇥c gradient directions
rfj(x;w). In order to guarantee the least change to
the predictions on task A, for an update towards task
B, the update has to be orthogonal to the nA ⇥ c di-
rections {rfj(x;w)}x2TA,j=1...c.

Denoting the gradient of the loss for task B (which can
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be either stochastic, batch, or full) by g, we propose
to “orthogonalize” it in a way that the new direction
g̃ satisfies the above requirement, i.e.,

g̃ ? rfj(x;w), 8x 2 TA, j = 1 . . . c . (7)

In this case, moving along direction g̃ makes the least
change to the neural network predictions on the pre-
vious task. As a result, we utilize the high capacity
of neural networks more e↵ectively. We know that a
neural network is part of a high dimensional param-
eter space (larger than or comparable to the number
of data points), so there always exist a direction that
conforms to the orthogonality condition.

In continual leaning, while processing TB , one does not
have access to TA anymore to compute rfj(x;w) at
the current parameter w. This means that, as an in-
herent limitation, we are unable to compute the exact
directions that will produce least changes on Task A
during training on Task B. To tackle this issue note
that the neural networks are often overparameterized,
which implies that in a close vicinity of the optimum
parameter for task A, there lies optimum parameters
for both tasks A and B (Azizan and Hassibi, 2018; Li
and Liang, 2018; Allen-Zhu et al., 2018; Azizan et al.,
2019). For any parameter w in that neighborhood, we
can basically approximate rf(x;w) ⇡ rf(x;w⇤

A) for
all x 2 TA. Therefore, we can use rf(x;w⇤

A) as proxy
and satisfy

g̃ ? rfj(x;w⇤
A), 8x 2 TA, j = 1 . . . c, (8)

for all (batch) loss gradients g̃ of task B. One can com-
pute and store rf(x;w⇤

A) for all x 2 TA when training
on task A is done and task B is introduced.

In practice, one does not need all nA ⇥ c direc-
tions {rfj(x;w)}x2TA,j=1...c to preserve the previ-
ously learned information. For example, per sample
x, we can compute the gradient with respect to the
average of the logits rather than use the individual log-
its themselves. We call this OGD-AVE in contrast to
OGD-ALL. Another alternative is to select the single
logit corresponding to the ground truth label. For data
point x coming from k-th class (yk = 1), we try to only
keep rfk(x;w) invariant. This alternative referred to
as OGD-GTL. Both OGD-GTL and OGD-AVE reduce
the storage size by a factor of c. We use OGD-GTL
in all of our following experiments and also empiri-
cally observe that OGD-GTL slightly outperforms the
other variants of OGD.To further control the amount
of memory required for this process, we store only a
subset of gradients from each task in our experiments
(200 for the MNIST experiments). While this poten-
tially misses some information, we find in practice that
it is su�cient and that increasing the collection size

Algorithm 1 Orthogonal Gradients Descent

Input Task sequence T1, T2, T3, . . . learning rate ⌘
Output The optimal parameter w.

1: Initialize S  {}; w  w0

2: for Task ID k = 1, 2, 3, . . . do

3: repeat

4: g  Stochastic/Batch Gradient for Tk at w
5: g̃ = g �

P
v2S projv(g)

6: w  w � ⌘g̃
7: until convergence
8: for (x, y) 2 Tt and k 2 [1, c] s.t. yk = 1 do

9: u rfk(x;w)�
P

v2S projv(rfk(x;w))
10: S  S [ {u}

beyond this provides diminishing returns. One down-
side of this method (similar to other state-of-the-art
methods such as (Chaudhry et al., 2018; Lopez-Paz
and Ranzato, 2017; Riemer et al., 2018)) is that the
required storage size grows with the number of tasks.
An interesting extension to our method is to dynam-
ically remove less significant directions from set S or
perform principal component analysis on the gradient
space, which are left for future work.

We now proceed to formally introduce OGD-GTL.
Task B’s loss gradients should be perpendicular to the
space of all previous model gradients, namely

S = span{rfk(x,w⇤
A) | (x, y) 2 TA^k 2 [1, c]^yk = 1}.

We compute the orthogonal basis for S as {v1, v2, . . .}
using the Gram-Schmidt procedure on all gradients
w.r.t. samples (xi, yi) 2 TA in task A. We iteratively
project them to the previously orthogonalized vectors:

v1 = rfk1(x1;w
⇤
A) ,

vi = rfki(xi;w
⇤
A)�

X

j<i

projvj (rf(xi;w
⇤
A)),

where, ki represents the ground-truth index such that
yi,ki = 1, and projv(u) =

hu,vi
hv,viv is the projection (vec-

tor) of u in the direction of v. Given the orthogonal
basis S = {v1, . . . , vnA} for the gradient subspace of
task A, we modify the original gradients g of task B
to new gradients g̃ orthogonal to S, i.e.,

g̃ = g �
nAX

i=1

projvi(g) . (9)

The new direction �g̃ is still a descent direction (i.e.
h�g̃, gi  0) for task B meaning that 9 ✏ > 0 such
that for any learning rate 0 < ⌘ < ✏, taking the step
⌘g̃ reduces the loss.

Lemma 3.1. Let g be the gradient of loss function
L(w) and S = {v1, . . . , vn} is the orthogonal basis.
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Let g̃ = g �
Pk

i projvi(g). Then, �g̃ is also a descent
direction for L(w).

Proof. For a vector u to be a descent direction it
should satisfy hu, gi  0. To begin with, we have

h�g̃, gi = h�g̃, g̃ +
kX

i=1

projvi(g)i (10)

= �kg̃k2 � hg̃,
kX

i=1

projvi(g)i . (11)

Since g̃ = g�
Pk

i=1 projvi(g) is orthogonal to the space

spanned by S and
Pk

i=1 projvi(g) is a vector spanned

by S, hence hg̃,
Pk

i=1 projvi
(g)i = 0. Substituting this

into Eq. 11, we have h�g̃, gi = �kg̃k2  0. There-
fore, �g̃ is a descent direction for L(w) while being
perpendicular to S.

We can easily extend the method to handle multi-
ple tasks. Algorithm 1 presents this general case. In
this work, we apply the proposed Orthogonal Gradi-
ent Descent (OGD) algorithm to continual learning on
consecutive tasks. Its application potentially goes be-
yond this special case and can be utilized whenever
one wants the gradient steps minimally interfere with
the previous learned data points and potentially re-
duce the access or iterations over them.

It is worth reiterating the distinction made in Sec-
tion 2 between using the gradient of the logits—as
OGD does—and using the gradient of the loss—as
many other methods do, including the A-GEM base-
line (Chaudhry et al. (2018)) in the next section.
As Equation (4) indicates, the gradient of the loss
rL(x,y(w) can be zero or close to zero for the exam-
ples that are well fitted (`0(y, f(x;w)) ⇡ 0) carrying
e↵ectively low information on the previous tasks. In
contrast, OGD works directly with the model (through
its gradeint rf(x;w)) which is the essential informa-
tion to be preserved.

4 Experiments

We performed experiments in this section on three con-
tinual learning benchmark: Permuted MNIST, Rotated
MNIST, and Split MNIST.

Baselines. We considered the following baselines for
comparison purposes. (1) EWC (Kirkpatrick et al.,
2017): one of the pioneering regularization based
methods that uses fisher information diagonals as im-
portant weights. (2) A-GEM (Chaudhry et al., 2018):
using loss gradients of stored previous data in an in-
equality constrained optimization. (3) SGD : Stochas-
tic Gradient Descent optimizing tasks one after the

other. It can be seen as lower bound telling us what
happens if we do nothing to explicitly retain infor-
mation from the previous task(s). (4) MTL: Multi
Task Learning baseline using stochastic gradient de-
scent with full access to previous data. In this setting,
during task Tt, we trained the model on batches con-
taining all data Tt. This can be considered a sort of
upper bound on the performance.

Setup. We used a consistent training setup for all
MNIST experiments so that we can directly compare
the e↵ects of the model across tasks and methods. We
always trained each task for 5 epochs. The number of
epochs was chosen to achieve saturated performance
on the first task classification problem. The per-
formance numbers do not change substantially when
trained for more epochs and, crucially, the relative per-
formance between the di↵erent methods is identical
with more training epochs. We used a batch size of
10 similar to Chaudhry et al. (2018); Lopez-Paz and
Ranzato (2017). We found that batch size was not a
strong factor in the performance, other than in its in-
terplay with the number of epochs. For fewer than 5
epochs, the batch size had a noticeable e↵ect because
it significantly changed the number of batch updates.

Large learning rates do degrade the performance of
OGD (the larger the learning rate, the more likely a
gradient update violates the locality assumption). We
chose a learning rate of 10�3, consistent with other
studies (Kirkpatrick et al., 2017; Chaudhry et al.,
2018), and small enough that decreasing it further did
not improve the performance. For all experiments the
same architecture is used. The network is a three-layer
MLP with 100 hidden units in two layers and 10 logit
outputs. Every layer except the final one uses ReLU
activation. The loss is Softmax cross-entropy, and the
optimizer is stochastic gradient descent. This setting
is similar to previous works (Chaudhry et al., 2018;
Kirkpatrick et al., 2017). At the end of every task
boundary we performed some processing required by
the method. For OGD, this means computing the or-
thogonal gradient directions as described in Section 3.
For A-GEM, this means storing some examples from
the ending task to memory. For EWC, this means
freezing the model weights and computing the fisher
information. Both OGD and A-GEM need an storage.
A-GEM for actual data points and OGD for the gradi-
ents of the model on previous tasks. We set the storage
size for both methods to 200. In all the experiments
the mean and standard deviation of the test error on
the hold out MNIST test set are demonstrated using
10 independent random runs for 2 and 3 task experi-
ments and 5 independent runs for 5 task experiments.
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Figure 2: Performance of di↵erent methods on permuted

MNIST task. 3 di↵erent permutations (p1, p2, and p3) are
used and the model is trained to classify MNIST digits un-

der permutation p1 for 5 epochs, then under p2 for 5 epochs

and then under p3 for 5 epochs. The vertical dashed lines

represent the points in the training where the permutations

switch. The top plot reports the accuracy of the model on

batches of the MNIST test set under p1; the middle plot,

under p2; and the bottom plot under p3. The y-axis is

truncated to show the details. Note that MTL represents

a setting where the model is directly trained on all previous

tasks. Because we keep constant batch size and number of

epochs, the MTL method e↵ectively sees one third of the

task 3 data that other methods do. This is the reason that

MTL learns slower on task 3 than other methods.

4.1 Permuted MNIST

We tested our method on the Permuted MNIST setup
described in (Goodfellow et al., 2013) and utilized
in (Kirkpatrick et al., 2017; Chaudhry et al., 2018)
too. In this setup we generated a series of 3 permuta-
tions p1, p2, and p3 that shu✏e the pixels in an MNIST
image. We designated task Ti as the problem of classi-
fying MNIST digits that have been shu✏ed under per-
mutation pi. We chose these permutations randomly
so each task is equally hard and so the di↵erence in
accuracy between examples from task 1 and examples
from task 3 after task 3 has been trained is a measure
of how much the network is able to remember p1.

Figure 2 shows the accuracy of OGD and baselines on
the Permuted MNIST task. The plot shows that OGD
retains performance on task 1 examples as well as A-
GEM even after training on task 3. Both methods
perform slightly worse than a model that is trained on
all previous tasks (MTL), but significantly better than
the naive sequential model (SGD) and than EWC.

Figure 3: Rotated MNIST : Accuracies of multiple con-

tinual learning methods. Every classifier is trained for 5

epochs on standard MNIST and then trained for another

5 epochs on a variant of MNIST whose images are rotated

by the specified angle. The accuracy is computed over the

entire original (un-rotated) MNIST test set after the model

being trained on the rotated dataset. Each bar represents

the mean accuracy over 10 independent runs and the er-

ror bars reflect their standard deviations. MTL represents

the (non-continual) multi-task learning setting where the

model is trained with the combined data from all previous

tasks.

4.2 Rotated MNIST

We further evaluated our approach on identifying ro-
tated MNIST digits. The training setup is similar to
Permuted MNIST except that instead of arbitrary per-
mutation, we used fixed rotations of the MNIST digits.
Here we started with a two task problem: task 1 is to
classify standard MNIST digits and then task 2 is to
classify those digits rotated by a fixed angle.

Figure 3 shows the accuracy of the model when clas-
sifying task 1 examples (normal, un-rotated MNIST
digits) after the end of training on task 2 (rotated
MNIST digits). We report this as a function of the
angle of rotation. One can see that, as the angle of ro-
tation increases, the task becomes harder. Even in this
harder setting, we still observe that OGD and A-GEM
exhibit similar levels of performance.

4.3 Variants of Orthogonal Gradient Descent

As described in Section 3 we test OGD with three
settings for the which gradients to store, and 3 settings
for how many gradients to store. OGD-ALL stores the
gradients with respect to all logits of the model. OGD-
AVG stores the gradients with respect to the average of
all logits. OGD-GTL stores the gradient with respect
to the ground truth logit. We run tests storing 20,
200, and 2000 gradients. Table 4.3 summarizes the
results of this experiment. We observe that increasing
the number of gradients improves performance across
the board (which is expected). We observe the OGD-
GTL and OGD-ALL have similar performance in most
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cases, with a bit of an edge to OGD-GTL. OGD-AVG
performs worse in most cases.

rotated Accuracy ± Std (%)
MNIST 20 Grads 200 Grads 2000 Grads

OGD-ALL 75.7 ± 2.6 79.9 ± 1.4 86.6 ± 1.0
OGD-AVG 75.3 ± 2.4 75.5 ± 1.4 77.7 ± 1.6
OGD-GTL 76.4 ± 2.2 82.9 ± 1.6 87.1 ± 1.1

permuted Accuracy ± Std (%)
MNIST 20 Grads 200 Grads 2000 Grads

OGD-ALL 87.3 ± 2.8 89.7 ± 1.5 90.5 ± 0.9
OGD-AVG 86.8 ± 1.4 86.9 ± 1.4 89.4 ± 1.7
OGD-GTL 86.5 ± 1.5 89.4 ± 1.0 91.4 ± 1.7

Table 1: The performance of various OGD gradient
methods as a function of number of gradients stored on
rotated MNIST (top) and permuted MNIST (bottom).
Numbers are the accuracy on task 1 after fully training
on task 2.

4.4 Split MNIST

We also tested OGD in a setting where the labels be-
tween task 1 and task 2 are disjoint. We followed the
setup for split MNIST laid out in Zenke et al. (2017)
with some variations. We defined a set of tasks T1

. . .TN , with task Ti defined by a series of integers

t1i . . . t
ki
i with 0  tji  10 and tji = tj

0

i0 if and only
if i = i0 and j = j0. For each task Ti, then, the task is
to classify MNIST digits with labels in {tji}.

Because a given task does not contain all labels, we
used a slightly di↵erent architecture for this task com-
pared to other tasks. Instead of having a single output
layer containing 10-logits for all the MNIST classes, we
used separate heads for each task, where each head has
the same number of logits as there are classes in the
associated task. This means that, for each task Ti,
the softmax and cross-entropy calculation only runs
over the logits and labels {tji}. We found that this
model has higher performance under all methods than
a model using a joint head.

We began with a two task classification problem,
where the MNIST dataset is split into two disjoint
sets each containing 5 labels. The tasks are then just
to classify examples from the set associated with each
task. Figure 4 shows the accuracy of the fully-trained
model to classify images from task T1. We report the
results for 5 di↵erent partitions of the labels into the
task sets, to ensure that the partition does not have a
strong e↵ect on the results. In all cases, we observe the
OGD performs the best, beating A-GEM again. We
also observe that the performance order is preserved

Figure 4: Split MNIST : Accuracies of multiple continual

learning methods. The training regime is the same as that

of Figure 2. The reported value is the accuracy on task 1

after the model being trained on task 2. Di↵erent plots cor-

respond to di↵erent configurations, i.e., di↵erent partitions
of the MNIST labels into task 1 and task 2.

Accuracy ± Std. (%)

Task 1 Task 2 Task 3 Task 4 Task 5

mtl 99.6± 0.2 99.8± 0.1 98.8± 0.2 98.2± 0.4 99.1± 0.2

ogd 98.6± 0.8 99.5± 0.1 98.0± 0.5 98.8± 0.5 99.2± 0.3
a-gem 92.9± 2.6 96.3± 2.1 86.5± 1.6 92.3± 2.3 99.3± 0.2
ewc 90.2± 5.7 98.9± 0.2 91.1± 3.5 94.4± 2.0 99.3± 0.2
sgd 88.2± 5.9 98.4± 0.9 90.3± 4.5 95.2± 1.0 99.4± 0.2

Table 2: Split MNIST 2
: The accuracy of models for test

examples from the indicated class after being trained on all

tasks in sequence, except the multi-task setup (mtl). The

best continual learning results are highlighted in bold.

across di↵erent configurations of the experiment.

We again generalized this experiment to a longer se-
quence of tasks by splitting MNIST into 5 tasks, each
with two classes. We used a multi-headed architec-
ture as in the 2 task case. We report the accuracy
of the fully trained model on examples from each of
the 5 classes in Table 2. As in the previous case,
we evaluated this on multiple partitions of the labels;
the results from other partitions are shown in the ap-
pendix. In this setting, OGD performs very closely
to the multi-task training benchmark and consistently
outperforms the other baselines.

5 Related Work

There is a growing interest in measuring catastrophic
forgetting (Toneva et al., 2018; Kemker et al., 2018),
evaluating continual learning algorithms (Farquhar
and Gal, 2018; Hayes et al., 2018; Dı́az-Rodŕıguez
et al., 2018; De Lange et al., 2019; Hsu et al., 2018),
and understating this phenomenon (Nguyen et al.,
2019; Farquhar and Gal, 2019). The existing work on
alleviating catastrophic forgetting can be divided into

2
The accuracy for di↵erent assignments of labels to

tasks in Table 2 can be found in the appendix.
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a few categories.

The expansion based methods allocate new neurons or
layers or modules to accommodate new tasks while uti-
lizing the shared representation learned from previous
ones. Rusu et al. (2016) proposed progressive neural
networks in which parameters for the original task are
untouched while the architecture is expanded by al-
locating new sub-networks with fixed capacity to be
trained on the new task. Similarly, Xiao et al. (2014)
proposed a method in which the network not only
grows in capacity, but forms a hierarchical structure
as new tasks arrive at the model. Yoon et al. (2018)
proposed a dynamically expanding network that ei-
ther retrain or expand the network capacity upon ar-
rival of a new task with only the necessary number
of units by splitting/duplicating units and timestamp-
ing them. Draelos et al. (2017) used auto-encoder to
dynamically decide to add neurons for samples with
high loss and whether the older data needs to be re-
trained or not. Along this idea Jerfel et al. (2019)
proposed to use Dirichlet process mixture of hierar-
chical Bayesian models over the parameters of neural
networks to dynamically cope with the new tasks. Re-
cently, Li et al. (2019b) proposed to utilize the neu-
ral architecture search to find the optimal structure
for each of the sequential tasks. These methods avoid
storing data and are aligned with neurogenesis in the
brain Aimone et al. (2009) but may be complex for the
current neural network libraries.

In the regularization based approaches, catastrophic
forgetting is tackled by imposing constraints on the
weight updates of the neural network according to
some importance measure for previous tasks. The
di↵erence lies in the way how importance weights
are computed. In Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) the importance
weights are the diagonal values of the Fisher informa-
tion matrix which approximates the posterior distribu-
tion of the weights. Along this Bayesian perspective,
Titsias et al. (2019) proposed to work over the function
space rather than the parameters of a deep neural net-
work to avoid forgetting a previous task by construct-
ing and memorizing an approximate posterior belief
over the underlying task-specific function. Employing
other Bayesian techniques, Nguyen et al. (2017) com-
bine online variational inference and recent advances
in Monte Carlo methods. Ritter et al. (2018) recur-
sively approximate the posterior after every task with
a Gaussian Laplace approximation of the Hessian for
continual learning, and Ebrahimi et al. (2019) used un-
certainty measures to help continual learning. Schwarz
et al. (2018) proposed a cycle of active learning (pro-
gression) followed by consolidation (compression) that
requires no architecture growth and no access to or

storing of previous data or tasks which is similar in
spirit to distillation based methods of continual learn-
ing Li and Hoiem (2017); Hu et al. (2018). Knowledge
Distillation (Hinton et al., 2015) and its many vari-
ants(Romero et al., 2014; Mirzadeh et al., 2019) are
useful to retain the previous information.

In (Zenke et al., 2017) each parameter accumulates
task relevant information over time, and exploits this
information to rapidly store new tasks without forget-
ting old ones. Lee et al. (2017) incrementally match
the moment of the posterior distribution of the neural
network trained on the first and the second task to
regularize its update on the latter. Other works along
this line are (Aljundi et al., 2018; Kolouri et al., 2019)
which penalize the weights based on a Hebbian like
update rule. These approaches are well motivated by
neuro-biological models of memory Fusi et al. (2005);
Kaplanis et al. (2018) and are computationally fast
and do not require storing data. However, these con-
solidated weights reduce the degree of freedom of the
neural network. In other words, they decrease the ef-
fective volume of parameter space to search for a con-
figuration that can satisfy both the old and new tasks.

The repetition based methods employ memory systems
that store previous data or, alternatively, train a gen-
erative model for the first task and replay them inter-
leaved with samples drawn from the new task. Shin
et al. (2017); Kamra et al. (2017); Zhang et al. (2019);
Rios and Itti (2018) learned a generative model to cap-
ture the data distribution of previous tasks, along with
the current task’s data to train the new model so that
the forgetting can be alleviated. Lüders et al. (2016)
used a Neural Turing Machine that enables agents to
store long-term memories by progressively employing
additional memory components. In the context of Re-
inforcement learning Rolnick et al. (2018) utilized on-
policy learning on fresh experiences to adapt rapidly
to new tasks, while using o↵-policy learning with be-
havioral cloning on replay experience to maintain and
modestly enhance performance on past tasks. Lopez-
Paz and Ranzato (2017) proposed Gradient Episodic
Memory (GEM) to e�ciently use an episodic storage
by following loss gradients on incoming task to the
maximum extent while altering them so that they do
not interfere with past memories. While minimizing
the loss on the current task GEM treats the losses on
the episodic memories of previous tasks as inequality
constraints, avoiding their increase but allowing their
decrease. Chaudhry et al. (2018) improved GEM by
changing the loss function and proposed dubbed Aver-
aged GEM (A-GEM), which enjoys the same or even
better performance. Riemer et al. (2018) combined ex-
perience replay with optimization based meta-learning
to enforce gradient alignment across examples in or-
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der to learn parameters that make interference based
on future gradients less likely. A few other works
have utilized gradient information to protect previous
knowledge. He and Jaeger (2018) proposed a variant
of the back-propagation algorithm named conceptor-
aided backprop that shields gradients against degrada-
tion of previously learned tasks. Zeng et al. (2018) en-
sure that gradient updates occur only in the orthogo-
nal directions to the input of previous tasks. This class
of methods also have their root in neuroscience (Ku-
maran and McClelland, 2012) making training samples
as identically distributed as possible. However, they
need to store a portion of the data or learning a gen-
erative model upon them, which might not be possible
in some settings, e.g., with user data when privacy
matters. Moreover, many of these methods work with
the gradients of the loss, which can be close to zero for
many samples and therefore convey less information
on previous tasks. In contrast, we work with the gra-
dients of the model (logits or predictions) which is the
actual knowledge to be preserved on the course of con-
tinual learning. By providing more e↵ective shield of
gradients through projecting to the space of previous
model gradients, we achieve better protection to previ-
ously acquired knowledge, yielding highly competitive
results in empirical tests compared to others.

Continual Learning as a sub-field in AI has close con-
nection and ties to other recent e↵orts in machine
learning. Meta learning algorithms use a data-driven
inductive bias to enhance learning new tasks (Jerfel
et al., 2019; He and Jaeger, 2018; Vuorio et al., 2018;
Al-Shedivat et al., 2017; Riemer et al., 2018). Few
shot learning also serves the same purpose and can be
leveraged in continual learning (Wen et al., 2018; Gi-
daris and Komodakis, 2018) and vice versa. The way
we treat previous knowledge (i.e. through the model
prediction gradients not the actual data) is also related
di↵erential private learning (Wu et al., 2017; Li et al.,
2018; Pihur et al., 2018; Han et al., 2018) and feder-
ated learning (Bonawitz et al., 2019; Smith et al., 2017;
Vepakomma et al., 2018). Multi-task learning (Sorokin
and Burtsev, 2019), curriculum learning (Bengio et al.,
2009), and transfer learning (Pan and Yang, 2009; Li
et al., 2019a) are other related areas helpful to develop
better continual learning machines that do not catas-
trophically forget previous experiences.

6 Conclusion and Outlook

In this paper, we propose to project the current gra-
dient steps to the orthogonal space of neural net-
work predictions on previous data points. The goal
is to minimally interfere with the already learned
knowledge while gradually stepping towards learning
new tasks. We have demonstrated that our method
matches or exceeds other state-of-the-art methods on

a variety of benchmark experiments. We have ob-
served that OGD is able to retain information over
many tasks and achieved particularly strong results
on the split MNIST benchmark.

There are several avenues for future study based on
this technique. Firstly, because we cannot store gra-
dients for the full datasets there is some forgetting
happening. Finding a way to store more gradients
or prioritize the important directions would improve
the performance. One can also maintain higher-order
derivatives of the model for a more accurate repre-
sentation of previously learned knowledge, at the ex-
pense of more memory and computation. Secondly,
we have observed that all methods (including ours)
fail considerably when the tasks are dissimilar (for ex-
ample rotations larger than 90 degrees for the MNIST
task). This calls for a lot more future research to be
invested in this important yet under-explored problem
of continual learning. Thirdly, it is observed that our
method is sensitive to the learning rate and it some-
times fail to produce comparable results to A-GEM
for large learning rates. It’s aligned with our expecta-
tion that the learning rate is determining the locality
and the neighborhood of the search. The gradients of
the model predictions at optimal points are a good ap-
proximation for the gradients on others if they lie in a
close neighborhood. Further work on coping with this
would allows OGD to apply to settings where higher
learning rates are desired. Another interesting direc-
tion for future research is to extend this idea to other
types of optimizers such as Adam or Adagrad.

Finally, it is worth noting that the implications of the
proposed Orothogonal Gradient Descent goes beyond
the standard continual learning setup we described.
Firstly, it does not require tasks to be identified and
distinguished. OGD minimally interfere with previ-
ously seen data points no matter what class they be-
long to. This makes it applicable when the task shift
does not arrive as a distinct event, but rather a grad-
ual shift (He et al., 2019). Moreover, it is applicable to
standard learning paradigm where one does not have
the luxury of iterating over numerous epochs, as it can
preserve information that has not yet been strongly
encoded in the weights of the network. A principled
extension and verification on common gradient neural
network training methods is left as future work.
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Dı́az-Rodŕıguez, N., Lomonaco, V., Filliat, D., and
Maltoni, D. (2018). Don’t forget, there is more than
forgetting: new metrics for continual learning. arXiv
preprint arXiv:1810.13166.

Draelos, T. J., Miner, N. E., Lamb, C. C., Cox, J. A.,
Vineyard, C. M., Carlson, K. D., Severa, W. M.,
James, C. D., and Aimone, J. B. (2017). Neuro-
genesis deep learning: Extending deep networks to
accommodate new classes. In International Joint
Conference on Neural Networks, pages 526–533.

Ebrahimi, S., Elhoseiny, M., Darrell, T., and
Rohrbach, M. (2019). Uncertainty-guided contin-
ual learning with bayesian neural networks. arXiv
preprint arXiv:1906.02425.

Farquhar, S. and Gal, Y. (2018). Towards robust
evaluations of continual learning. arXiv preprint
arXiv:1805.09733.

Farquhar, S. and Gal, Y. (2019). A unifying
bayesian view of continual learning. arXiv preprint
arXiv:1902.06494.

French, R. M. (1999). Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
3(4):128–135.

Fusi, S., Drew, P. J., and Abbott, L. F. (2005). Cas-
cade models of synaptically stored memories. Neu-
ron, 45(4):599–611.

Gidaris, S. and Komodakis, N. (2018). Dynamic few-
shot visual learning without forgetting. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4367–4375.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A.,
and Bengio, Y. (2013). An empirical investigation
of catastrophic forgetting in gradient-based neural
networks. arXiv preprint arXiv:1312.6211.

Han, B., Tsang, I. W., Xiao, X., Chen, L., Fung, S.-f.,
and Yu, C. P. (2018). Privacy-preserving stochastic
gradual learning. arXiv preprint arXiv:1810.00383.

Hassabis, D., Kumaran, D., Summerfield, C., and
Botvinick, M. (2017). Neuroscience-inspired artifi-
cial intelligence. Neuron, 95(2):245–258.

Hayes, T. L., Kemker, R., Cahill, N. D., and Kanan,
C. (2018). New metrics and experimental paradigms
for continual learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 2031–2034.

He, X. and Jaeger, H. (2018). Overcoming catastrophic
interference using conceptor-aided backpropagation.
In ICLR 2018.

He, X., Sygnowski, J., Galashov, A., Rusu, A. A., Teh,
Y. W., and Pascanu, R. (2019). Task agnostic con-
tinual learning via meta learning. arXiv preprint
arXiv:1906.05201.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A
fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554.

Hsu, Y.-C., Liu, Y.-C., and Kira, Z. (2018). Re-
evaluating continual learning scenarios: A catego-
rization and case for strong baselines. arXiv preprint
arXiv:1810.12488.



Orthogonal Gradient Descent for Continual Learning

Hu, W., Lin, Z., Liu, B., Tao, C., Tao, Z., Ma, J.,
Zhao, D., and Yan, R. (2018). Overcoming catas-
trophic forgetting for continual learning via model
adaptation.

Jerfel, G., Grant, E., Gri�ths, T. L., and Heller, K. A.
(2019). Reconciling meta-learning and continual
learning with online mixtures of tasks. In NeurIPS.

Kamra, N., Gupta, U., and Liu, Y. (2017). Deep gen-
erative dual memory network for continual learning.
arXiv preprint arXiv:1710.10368.

Kaplanis, C., Shanahan, M., and Clopath, C. (2018).
Continual reinforcement learning with complex
synapses. arXiv preprint arXiv:1802.07239.

Kemker, R., McClure, M., Abitino, A., Hayes, T. L.,
and Kanan, C. (2018). Measuring catastrophic for-
getting in neural networks. In Thirty-second AAAI
conference on artificial intelligence.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness,
J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.

Kolouri, S., Ketz, N., Zou, X., Krichmar, J., and Pilly,
P. (2019). Attention-based structural-plasticity.
arXiv preprint arXiv:1903.06070.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.
(2012). Imagenet classification with deep convolu-
tional neural networks. In Advances in neural infor-
mation processing systems, pages 1097–1105.

Kumaran, D. and McClelland, J. L. (2012). General-
ization through the recurrent interaction of episodic
memories: a model of the hippocampal system. Psy-
chological review, 119(3):573.

Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang,
B.-T. (2017). Overcoming catastrophic forgetting by
incremental moment matching. In Neural informa-
tion processing systems, pages 4652–4662.

Li, A., Hu, H., Mirowski, P., and Farajtabar, M.
(2019a). Cross-view policy learning for street navi-
gation. arXiv preprint arXiv:1906.05930.

Li, C., Zhou, P., Xiong, L., Wang, Q., and Wang,
T. (2018). Di↵erentially private distributed online
learning. IEEE Transactions on Knowledge and
Data Engineering, 30(8):1440–1453.

Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C.
(2019b). Learn to grow: A continual structure learn-
ing framework for overcoming catastrophic forget-
ting. arXiv preprint arXiv:1904.00310.

Li, Y. and Liang, Y. (2018). Learning overparameter-
ized neural networks via stochastic gradient descent

on structured data. In Advances in Neural Informa-
tion Processing Systems, pages 8157–8166.

Li, Z. and Hoiem, D. (2017). Learning without for-
getting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947.

Lopez-Paz, D. and Ranzato, M. (2017). Gradient
episodic memory for continual learning. In Advances
in Neural Information Processing Systems, pages
6467–6476.
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