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The Chemical Reaction Network model has been proposed as a programming language 
for molecular programming. Methods to implement arbitrary CRNs using DNA strand 
displacement circuits have been investigated, as have methods to prove the correctness 
of those or other implementations. However, the stochastic Chemical Reaction Network 
model is provably not deterministically Turing-universal, that is, it is impossible to create a 
stochastic CRN where a given output molecule is produced if and only if an arbitrary Turing 
machine accepts. A DNA stack machine that can simulate arbitrary Turing machines with 
minimal slowdown deterministically has been proposed, but it uses unbounded polymers 
that cannot be modeled as a Chemical Reaction Network. We propose an extended version 
of a Chemical Reaction Network that models unbounded linear polymers made from a 
finite number of monomers. This Polymer Reaction Network model covers the DNA stack 
machine, as well as copy-tolerant Turing machines and some examples from biochemistry. 
We adapt the bisimulation method of verifying DNA implementations of Chemical Reaction 
Networks to our model, and use it to prove the correctness of the DNA stack machine 
implementation. We define a subclass of single-locus Polymer Reaction Networks and show 
that any member of that class can be bisimulated by a network using only four primitives, 
suggesting a method of DNA implementation. Finally, we prove that deciding whether an 
implementation is a bisimulation is �0

2-complete, and thus undecidable in the general case, 
although it is tractable in many special cases of interest. We hope that the ability to model 
and verify implementations of Polymer Reaction Networks will aid in the rational design 
of molecular systems.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider the problem of how molecules can compute: how do biological systems use their components to compute, 
and what computing systems can be built with biological or bio-compatible molecules? For relatively small molecules in a 
well-mixed solution, the well-studied Chemical Reaction Network (CRN) model is a natural way to describe them. Known 
examples of computation with CRNs include useful small devices such as the approximate majority CRN [3,17] and the 
rock-paper-scissors oscillator [32,20,49], boolean circuits [38] and neural networks [25], as well as more general results, 
including deterministic computation of arbitrary semilinear functions [2,15,21] and simulation of Turing machines with 
arbitrarily small error probability [47]. (For those not interested in computation per se, Turing universality may be taken as 
an assurance that these systems are capable of a wide class of complex behaviors.) Further, computationally interesting (or 
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uninteresting) CRNs can be “compiled” into physical devices: Soloveichik et al. [48], Qian et al. [42], and Cardelli [9], among 
others, give schemes to construct a DNA Strand Displacement (DSD) circuit that implements an arbitrary CRN.

One assumption of the CRN model is that the molecules are in a “well-mixed solution”: that there is no concept of 
geometry or spatial organization of the molecules, that any pair of molecules is as likely to interact as any other, and that 
the only relevant information about the current state is the count (or concentration) of each molecule present. For small 
circuits like the ones mentioned above, this is quite reasonable. For classic models of computation and for biological systems, 
however, this assumption doesn’t match: Turing machines, DNA/RNA/Proteins, and the cytoskeleton are all fundamental 
examples and fundamentally geometric. A counting argument suggests why: consider a system with k “types of object” (e.g. 
chemical species, Turing machine tape symbols) and a state of that system with n total objects. In a well-mixed CRN, the 
number of possible such states is on the order of (but less than) nk ; in a Turing machine or other geometric system, that 
number is on the order of kn . In uniform computation—a single machine built to handle arbitrarily large computations—we 
have a constant k with n scaling with the size of the computation; so for example, the CRN that simulates Turing machines 
mentioned above uses around 3n copies of a given molecule to simulate a Turing machine with n tape squares filled [47].

For such reasons, researchers have begun building molecular computing systems that take advantage of geometry. There 
are a number of variations on the concept of a DNA walker moving around a surface, often DNA origami, in a programmable 
way; a particularly complex example is the cargo-sorting robot of Thubagere et al. [52]. Chatterjee et al. have built logic 
circuits on origami, using a constant number of components regardless of the size of the circuit [14]. In the examples 
closest to abstract CRNs, Cardelli and Zavattaro discussed a CRN-like model with association and dissociation [13]; Qian et 
al. proposed a DNA implementation of a generic stack machine [42]; and Qian and Winfree proposed a DNA implementation 
of CRN-like reactions localized on a surface [43].

Also relevant to this topic are theoretical results on the computational power of well-mixed CRNs, and the difference 
in power between well-mixed CRNs and geometry-using models. The two most relevant results are that well-mixed CRNs 
that “always eventually” compute the right answer (in a certain sense well-defined in the theorem) can compute exactly 
the semilinear functions [2,15], and that the reachability problem for CRNs is decidable by a Turing machine [29,36]. The 
reachability problem is in an informal sense the CRN equivalent of the Turing machine halting problem; but since the 
Turing machine halting problem is undecidable, any CRN trying to simulate a Turing machine must have some reachable 
state that involves an error. Thus those CRNs that try to simulate Turing machines can either do so deterministically and 
space-efficiently in a non-uniform sense, where a single CRN can simulate a Turing machine with a given bound on its tape 
size by using separate species for each tape position, and thus a larger CRN must be created to simulate a larger Turing 
machine tape [38,28]; or do so uniformly but with some probability of error, and due to the counting argument above, 
using species counts exponential in the space used by the Turing machine [47]. In contrast, building on Bennett’s insights 
relating polymer biochemistry and Turing machines [7], formal polymer systems such as Computational Nucleic Acids [31], 
the Biochemical Ground Form [13], DNA stack machines [42,33], DNA Turing machines [55], DNA register machines [51], 
and Surface CRNs [43], can all simulate classical Turing machines with no chance of error and using the same amount of 
space as the Turing machine.

We focus in this paper on verification of polymer systems. Specifically, we focus on the problem of, given an abstract 
description of a polymer system and a physical system, does the physical system “do the same thing” as the abstract 
description? For example, we might compare the abstract description of the DNA stack machine to its actual physical imple-
mentation [42], and wonder if the properties of a stack machine are preserved. An analogous problem came up in the finite 
CRN case, where verification methods (based on serializability analysis [34], pathway decomposition [46], and CRN bisimu-
lation [27]) found subtle errors in some of the proposed CRN compilation schemes. Each of those methods has advantages 
and disadvantages relative to the others, but all are capable of proving relevant correspondences between the behavior of 
physical CRN implementations and the abstract CRNs, or pointing out implementations that fail to correspond to the abstract 
CRNs in important ways. For example, our previous work on CRN bisimulation [27] discusses a method of “interpreting” the 
chemical species of the physical system as combinations of species of the abstract system, then asking if the possible quali-
tative behaviors of the two systems are equivalent up to that interpretation. Two features of this theory—basing it on weak
bisimulation where the implementation may involve multiple “silent” steps for each step of the intended formal behavior, 
and allowing that interpretations are one-species-to-multiple-species rather than one-to-one—are necessary for treating the 
implementation of CRNs using dynamic DNA nanotechnology [48,9,17,49], but result in the NP-completeness and PSPACE-
completeness of several natural questions relating to finding and verifying bisimulation arguments [27]. (Methods more 
closely aligned with strong bisimulation, which in a sense require one-to-one steps and one-to-one interpretations, allow 
for much more efficient algorithms to verify bulk deterministic behavior and finite-volume stochastic behavior [10–12], but 
unfortunately these methods are not applicable to the prevailing DNA nanotechnology implementations. A variety of “equiv-
alence” notions exist for process algebras [53]; even weaker notions such as trace equivalence can fail to respect key aspects 
such as the branching structure of a process or the pitfalls of deadlock. Some examples of this failure in CRNs are discussed 
in our work on CRN bisimulation [27].)

In this paper, we show how CRN bisimulation can be adapted to polymer CRN-like systems and can help design practical 
systems. In Section 2 we define a model of “linear Polymer Reaction Networks”, henceforth referred to simply as PRNs, that 
may be considered a special case of CRNs with (usually) infinitely many species and reactions. The PRN model covers a 
wide range of polymer system behaviors while still being convenient for discussion of bisimulation. This model is based on 
species being arbitrary strings over a finite set of “monomers”, and a finite set of “reaction schemata” with wildcards from 
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which concrete reactions can be enumerated. Because PRNs are a special case of infinite CRNs, and most of the theorems 
of CRN bisimulation do not require the CRNs to be finite, CRN bisimulation can with a few new concepts be adapted to 
PRNs, resulting in a new theory for PRN bisimulation. Thus, PRN bisimulation can be used to verify designs for physical 
implementations of polymer systems, which we show in Section 3 by proving correct an updated version of the DNA stack 
machine by Qian et al. [42]. Although many of the theorems (such as transitivity and modularity) from our previous work 
on CRN bisimulation [27] still apply to PRN bisimulation, the algorithms for finding or checking a bisimulation interpretation 
assume finite CRNs, and in Section 4 we show that the corresponding problems are undecidable for polymer systems.

We believe that CRN and PRN bisimulation are not just useful for verifying systems once designed, but can be used as 
“goalposts” to help guide the design of CRN and PRN implementations. For example, a proof by bisimulation that a certain 
small class of reaction mechanisms is sufficient to implement any of a larger class of reactions, suggests a design strategy 
involving implementing that small class of reactions. In Section 5 we give an example of such a proof that any of a class 
of “single-locus reaction schemata”, which capture a notion of physically realistic single-step reactions, can be implemented 
up to PRN bisimulation by a specific set of five reaction primitives. Finally, since our linear PRNs are only one of many 
reasonable models of a polymer CRN-like system, in Section 6 we show how PRN bisimulation might be defined for other 
such systems, and suggest how our theorems might be extended accordingly.

2. Definitions

2.1. Multisets, languages, regular expressions, and automata

N is the set of natural numbers, {0, 1, 2, . . . }. Where A is a set, N A is the set of multisets of elements of A, or equiv-
alently, the set of functions from A to N . Where S ∈ N A , X ∈ A we write S(X) for the count of X in S; this is consistent 
with S as a function A →N . Addition and scalar multiplication of multisets are defined componentwise. Comparison is also 
defined, S ≥ T means ∀X S(X) ≥ T (X), and S > T if S ≥ T and S �= T . As we are only concerned with finite multisets, if A
is infinite we use N A to mean the set of multisets S with 

∑
X∈A S(X) < ∞. We use the notation {|. . . |} for multisets, e.g. 

{|X, Y |} or {|2X, Z |}.
Where � is a set, �∗ is the set of strings of 0 or more elements of �. ε is the empty string. ∅ is the empty set. A 

language is a set of strings. A regular language is the set of all strings that match a regular expression for some �. A regular 
expression is either a symbol in � ∪ {ε, ∅} or it is a∗ , ab, or (a|b) where a and b are already-defined regular expressions. 
No strings match ∅, ε matches ε, x matches x for x ∈ �, w matches (a|b) if w matches a or w matches b, w matches ab if 
w = w1 w2 and w1 matches a and w2 matches b, and w matches a∗ if w = w1 w2 and w1 matches a and w2 matches a∗ .

We use finite automata, stack machines, and Turing machines for various purposes. We generally assume familiarity with 
them, but give a brief description. A (nondeterministic) finite automaton (FA or NFA) is M = (Q , �, δ, q0, F ). Q is a set of 
states, � an alphabet, δ ⊂ (Q × � × Q ) a transition relation, q0 ∈ Q a start state, F ⊂ Q a set of accepting states. If δ
is a function (Q × �) → Q , then the automaton is deterministic (DFA). The automaton accepts a string w ∈ �∗ if there 
is a sequence q0 w1q1 . . . wnqn with (qi−1, wi, qi) ∈ δ and qn ∈ F . A language L ⊂ �∗ is the language accepted by a finite 
automaton if and only if it is the language that matches some regular expression, and we often use the two interchangeably 
[30]. We also use L(M) or L(e) to mean the languages of an NFA M or regular expression e respectively, so w ∈ L(M) or 
w ∈ L(e) mean w is accepted by M or matches e.

A stack machine augments a finite automaton with one or more last-in-first-out memory stacks; the input string is 
initialized on the first stack and if the machine halts, the contents of the first stack are considered to be the output. 
The stack alphabet � is a superset of the input/output alphabet �. For a K -stack machine, the transition relation δ ⊂
(Q × {1, . . . , K } × {P ush, Pop} × � × Q ) indicates an initial control state, which stack to interact with, whether to push or 
pop, the symbol being pushed or popped, and the next control state. In this paper we only consider deterministic stack 
machines, so at any given time there can be only one valid transition, or none when the machine halts. Similarly, a Turing 
machine augments a finite automaton with an unbounded bidirectional tape of memory, with � ⊂ � and the input and 
output strings being the initial and final tape contents. Here δ ⊂ (Q × � × � × {L, R} × Q ) specifies the initial head state, 
reads a symbol, writes a symbol, moves left or right on the tape, and enters a new head state. Again, here we only deal 
with deterministic Turing machines, where δ is a function (Q × �) → (� × {L, R} × Q ).

2.2. Chemical reaction networks

Definition 2.1. A Chemical Reaction Network (CRN) is a pair (S, R), where S is a set of species and R ⊂ NS ×NS is a set 
of reactions.

We often use chemical reaction notation to write reactions: (R, P ) = R → P . If (R, P ) and (P , R) are both reactions, we 
write R � P . Consistent with chemical reaction notation, when unambiguous we often identify each species A with the 
multiset {|A|}, so e.g. A + B and {|A, B|} refer to the same object. In general CRNs, each reaction is given a positive real 
number as a “rate constant”, so a reaction is a triple (R, P , k), sometimes written as R k−→ P . These rate constants affect the 
amount each reaction happens in a given time interval and, in the stochastic model, the likelihood of a reaction happening 
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Fig. 1. An example implementation CRN with interpretation. Various DNA complexes in the implementation system are modeled as species of the imple-
mentation CRN with interpretations as multisets of formal species. (Complexes marked as “fuel” are assumed always present and are not modeled as species 
in the implementation CRN [48,27]. For example, the reaction on the left is enumerated as xA � i A , ignoring the two fuel complexes.) Interpretations of 
trivial (left) and nontrivial (right) reactions follow from the interpretations of the species involved. Figure adapted from [27].

relative to other reactions. The theory of CRN and PRN bisimulation deals with whether a thing can happen in CRNs, but 
not how likely it is or how much time it takes, and for those questions the values of rate constants are irrelevant (as long 
as they are all positive real numbers). Thus for the purposes of this paper we define reactions as pairs of reactants and 
products without rate constants. We further assume that no reactions R → P with R = P exist.

We work with the stochastic model of CRN semantics, where a CRN starts with some count of each species present, 
and any possible reaction may occur, which changes the counts. Specifically, a CRN will at any point in time be at a state 
S ∈ NS , a multiset of species, and for each reaction R → P where S ≥ R the CRN can transition from state S to state 
S − R + P . Given rate constants, this process is a continuous-time Markov chain with transition rates dependent on the rate 
constants and the count of reactants in S; when we only care about which transitions are possible, the previous description 
is equivalent to that continuous-time Markov chain. A timed trajectory is an initial state S0 ∈NS together with a (finite or 
infinite) sequence of reactions ri ∈ R and times ti at which they occur. When we care only which reactions happened in 
what order but not at what exact time, we can define a trajectory as an initial state followed by a sequence of reactions, 
without the times.

Consider a pair of CRNs (S, R) and (S ′, R′), where (S, R) is some abstract CRN and (S ′, R′) a more realistic CRN 
intended to implement (S, R). We call (S, R) the formal CRN and (S ′, R′) the implementation CRN. We previously defined 
a concept of CRN bisimulation to check whether the implementation CRN is, in fact, a correct implementation of the formal 
CRN [27]. CRN bisimulation is based on an interpretation of each implementation species as a multiset of formal species, 
where the implementation is correct if (for some interpretation) from any initial state the possible formal trajectories and 
interpreted implementation trajectories are equivalent. An example DNA implementation with interpretation is shown in 
Fig. 1.

Definition 2.2. An interpretation is a function m : S ′ →NS from implementation species to multisets of formal species. We 
extend this linearly from species to states: for ai ∈N , m(

∑n
i=1 ai Xi) = ∑n

i=1 aim(Xi). We also define a natural interpretation 
of reactions: m(R ′ → P ′) = m(R ′) → m(P ′) unless m(R ′) = m(P ′), in which case m(R ′ → P ′) = τ and we say the reaction is 
trivial. For example, if m(i AB) = A + B , m(xA) = A, and m(tBC ) = B + C then m(i AB + xA) = 2A + B , and m(i AB → xA + tBC ) =
A + B → A + B + C . Trajectories are interpreted by interpreting the initial state and each reaction.

In our previous work [27] we considered the possibility that an implementation of a reaction might have “spurious 
catalysts”, i.e. extra species formally present in the interpretation that are not involved in or affected by the intended formal 
reaction. For example, in a physical DNA-based implementation, an extra strand might bind to some part of the reacting 
complex without affecting the actual reaction mechanism. This turns out to be a major concern in even abstract polymer 
systems, so we bring in that definition here.

Definition 2.3. Let (S, R) and (S ′, R′) be a formal and implementation CRN with m : S ′ → NS an interpretation of 
implementation species, which is extended to implementation states as in Definition 2.2. An interpretation of reactions 
mr :R′ → (NS ×NS ) ∪ {τ } is consistent with m if, for each R ′ → P ′ ∈R′:

(i) If m(R ′) = m(P ′) then mr(R ′ → P ′) = τ , and
(ii) If m(R ′) �= m(P ′) then mr(R ′ → P ′) = R → P for some R, P , C ∈NS with m(R ′) = R + C and m(P ′) = P + C .
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Naturally, the natural interpretation of reactions given an interpretation m is in fact consistent with m. In general be-
low we abuse notation and use m to refer to all of the interpretation of species, the extension to states, and the chosen 
interpretation of reactions (natural or otherwise) consistent with the interpretation of species.

We defined correctness of an interpretation in three ways: trajectory equivalence, three conditions, and weak bisimu-
lation. Loosely, trajectory equivalence is what we want “correctness” to imply, the three conditions are easy to define and 
check, and weak bisimulation is the well-studied theory of which CRN bisimulation is an instance. A theorem from our 
previous work proves that these three definitions are equivalent, as desired. As notation, S

r−→ means reaction r can occur 
in state S , while S

r−→ T means that reaction r takes state S to state T . In the implementation CRN, S ′ r′⇒ and S ′ r′⇒ T ′ mean 
the same for a sequence of zero or more trivial reactions followed by r′ . Where S ′ is an implementation state and r is a 
formal reaction, S ′ r−→ T ′ means “S ′ r′−→ T ′ for some r′ with m(r′) = r”, and similarly for S ′ r⇒ T ′ , S ′ r−→, and S ′ r⇒. In the 
formal CRN, S

r⇒ T is equivalent to S
r−→ T .

Definition 2.4 (Three notions of correctness). An implementation CRN (S ′, R′) is a correct implementation of a formal CRN 
(S, R) if a correct interpretation exists. An interpretation m : S ′ →NS is correct, in which case we say m is a CRN bisimu-
lation, if any of the following three sets of conditions are true:

I Equivalence of trajectories
(i) The set of formal trajectories and interpretations of implementation trajectories are equal.

(ii) For every implementation state S ′ , the set of formal trajectories starting from m(S ′) and interpretations of imple-
mentation trajectories starting from S ′ are equal.

II Three conditions on the interpretation
(i) Atomic condition: For every formal species A, there exists an implementation species xA such that m(xA) = {|A|}.

(ii) Delimiting condition: The interpretation of any implementation reaction is either trivial or a valid formal reaction.

(iii) Permissive condition: If S
r−→ and m(S ′) = S , there exists an implementation reaction r′ such that m(r′) = r and S ′ r′⇒.

III Weak bisimulation
(i) For all implementation states S ′:

if S ′ r−→ T ′ , then S
r⇒ T where S = m(S ′) and T = m(T ′).

(ii) For all formal states S , there exists S ′ with m(S ′) = S , and for all such S ′:
if S

r−→ T , then for some T ′ , S ′ r⇒ T ′ and m(T ′) = T .

Our previous work proved a number of theorems about CRN bisimulation. For this work, the relevant ones are those 
that do not assume the CRNs involved are finite. In particular, the equivalence of the three definitions of correctness, the 
transitivity lemma, and the modularity condition will all apply to polymer systems.

Theorem 2.1. The three definitions of correctness, namely trajectory equivalence, the three conditions on the interpretation, and weak 
bisimulation, are equivalent.

Lemma 2.1 (Transitivity). If m2 is a bisimulation from (S ′′, R′′) to (S ′, R′) and m1 is a bisimulation from (S ′, R′) to (S, R), then 
m = m1 ◦ m2 is a bisimulation from (S ′′, R′′) to (S, R).

It is a convenient abuse of notation to write m1 ◦ m2 when m2 takes S ′′ →NS ′
and m1 takes S ′ →NS . Intuitively, we 

extend m1 to an interpretation on multisets over S ′; formally, for x ∈ S ′′ , m(x) = ∑
y∈S ′ m2(x)(y)m1(y), where m2(x)(y)

means the count of y in m2(x) and is applied as a scalar multiplier for the multiset m1(y).

Definition 2.5 (Modularity condition). Let m be a bisimulation from (S ′, R′) to (S, R). Let S ′
0 ⊂ S ′ and S0 ⊂ S be subsets of 

implementation and formal species, respectively, where y ∈ S ′
0 ⇒ m(y) ⊂ S0. We say that m is a modular interpretation with 

respect to the common (implementation and formal) species S ′
0 and S0 if for any x ∈ S ′ there is a sequence of trivial reactions 

{|x|} τ⇒ Y + Z where Y ⊂ S ′
0 and m(Z) ∩ S0 = ∅, i.e. all common formal species in the interpretation of x are extracted as 

common implementation species.

Theorem 2.2 (Modularity). Let m1 be a bisimulation from (S ′
1, R′

1) to (S1, R1) and m2 be a bisimulation from (S ′
2, R′

2) to (S2, R2)

where m1 and m2 agree on S ′
1 ∩S ′

2 . Let S ′ = S ′
1 ∪S ′

2 , R′ =R′
1 ∪R′

2 , S = S1 ∪S2 , and R =R1 ∪R2 , and m : S ′ →NS equal m1
on S ′

1 and m2 on S ′
2 . If m1 and m2 are both respectively modular bisimulations with respect to the common implementation species 

S ′
1 ∩S ′

2 and common formal species S1 ∩S2 , then m is a bisimulation from (S ′, R′) to (S, R), and m is also modular with respect to 
S ′ ∩ S ′ and S1 ∩ S2 .
1 2
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Fig. 2. A PRN is defined as a set of monomers (a), a regular expression restriction (which may be given as a compatibility relation, b), and a set of reaction 
schemata (one shown in c). The species of a PRN are the set of all strings of monomers that match the regular expression (three examples shown in 
d). Reactions are obtained by substituting strings of monomers for wildcards in the reaction schemata such that both sides of the reaction respect the 
compatibility relation; for example, ∗1 = AB and ∗2 = BC in ∗1 B A∗2 → ∗1 B B∗2 enumerates the reaction AB B ABC → AB B B BC (e).

2.3. Polymer reaction networks

A Polymer Reaction Network, like a Chemical Reaction Network, will be a set of species and a set of reactions. Unlike 
a typical CRN, a typical polymer system allows arbitrarily long polymers to be made from its set of monomers, and allows 
the same “reactions” to occur among monomers regardless of the content of the rest of the polymer. When modeled as 
a CRN, such a system would typically have an infinite number of both species and reactions. To handle this with a finite 
specification, we define a Polymer Reaction Network as a finite species schema and a finite set of reaction schemata, which 
will then generate the set of species and reactions.

The species of a polymer system are, in general, arbitrarily long polymers made up of a finite set of monomers. While 
polymers with branches and loops can exist, we wished to avoid the associated complexity. As many of the essential 
features we wish to study arise in linear polymer systems, we focus on those. We discuss further the reasons for this in 
Section 6. Thus our species will be strings over some finite “alphabet” or set of monomers. We assume that “left” and “right” 
are distinguished, so that the strings e.g. abc and cba are different molecules; a b monomer in this example would have 
two distinct binding sites, and the molecules differ in which site is bound to a and which to c. Again Section 6 contains 
discussion on what can happen if this assumption is not true.

In a physical system, typically not every string of monomers can actually exist as a polymer; some pairs of monomers 
will have the appropriate interfaces for binding to each other, and other pairs will not. Similarly, we assume that only 
some monomers can occur on the left edge of a polymer, which we represent by �, and similarly for the right edge �; 
some monomers might not be stable when unbound. We model this by letting the set of species to be restricted to those 
that match a specified regular expression. We justify this by showing that a more physically meaningful restriction, of only 
allowing certain monomers to bind to each other and to the edges, is equivalent to a regular expression up to interpretation.

One might ask why it is necessary to restrict the set of possible polymers at all. To answer that, intrinsic to our notion 
of CRN bisimulation is that the behaviors of the two CRNs are equivalent from any initial state, and we would like to have 
the same guarantee for PRNs. Many systems would have some polymers that can never exist physically, but if they could 
exist, would have absurd behavior that breaks the system. Either the regular expression restriction or the local compatibility 
restriction (as defined below) can solve this problem.

Given an infinite set of species generated from a finite set of monomers, we would like to specify the possible reactions of 
those species with a finite set of rules. A reasonable assumption is that there are a finite number of “reaction mechanisms”, 
each of which depends on some features of its context but may be independent of others. To use an example from the stack 
machine of Qian et al. [42], a 02 (symbol 0 on stack 2) unit at the right end of a polymer can react with a query strand 
Q 2, removing the 02 symbol while leaving the rest of that polymer unchanged, and releasing a signal strand, which we 
call 0 f

2 . This reaction depends on the 02 symbol being on the end of its polymer, but is independent of what else makes 
up the remainder of the polymer. We could write this reaction mechanism as ∗102 + Q 2 → ∗1 + 0 f

2 , where the string ∗102
means “any polymer that ends in 02”. Here ∗1 is a wildcard, which can be filled in by any string, provided that the same 
wildcard is replaced by the same string in each of its appearances; since there are infinitely many possible strings that 
can replace ∗1, this reaction schema generates infinitely many reactions. So for example, λ212021202 + Q 2 → λ2120212 + 0 f

2

would match this schema, but λ21202 + Q 2 → λ2 + 0 f
2 would not. Other mechanisms can also be described with wildcards: 

∗1 + P → ∗1 + ∗1 + P models P catalytically copying an arbitrary string, for example, while ∗1 AB∗2 → ∗1∗2 models AB
removing itself from anywhere in a polymer. We thus define the reactions of a PRN by a set of reaction schemata, each of 
which is a reaction over strings including wildcards, and generate the reactions of a PRN by substitution into the wildcards 
of the schemata. A pictorial example is given in Fig. 2.
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As is usual in CRN notation, we will write R � P to represent the pair of reaction schemata R → P and P → R . This is 
valid if every wildcard that appears in either R or P appears in both, and if so, observe that the schema is truly reversible: 
any reaction enumerated by one direction will have its reverse reaction enumerated by the other.

Definition 2.6. A Polymer Reaction Network is a triple (�, e, 	) of a monomer set �, regular expression e over �, and set of 
reaction schemata 	. When the reaction schemata are irrelevant, we refer to the pair (�, e) as a species schema. A reaction 
schema ψ ∈ 	 is a pair (R, P ) of multisets of strings over � ∪ ∗N where ∗N = {∗1, ∗2, . . . }, such that any ∗n that appears 
in either R or P appears at least once in R . Given a PRN, it induces an enumerated CRN (S, R). (We sometimes write 
S(�, e), R(�, e, 	).) S is the set of all nonempty strings over � that match e. To enumerate R, consider a reaction schema 
ψ = (R, P ) ∈ 	, and for each ∗n that appears in ψ , choose a string sn and substitute sn for each appearance of ∗n , to 
obtain a pair of multisets of strings over �. If every string obtained this way (in both R and P ) matches e, then the pair of 
multisets is a reaction of species in S; R is the set of all such reactions.

Definition 2.7. An augmented PRN is a triple (�, e, 	) of a monomer set �, regular expression e over �, and set of aug-
mented reaction schemata 	. An augmented reaction schema ψ ∈ 	 is a reaction schema (R, P ) together with, for each ∗n

that appears in the schema, a regular expression en over �. The enumerated CRN (S, R) has S enumerated as usual, while 
R is the set of reactions enumerated as for an unaugmented PRN with the additional restriction that in a schema ψ , each 
string sn substituted for ∗n must match en .

We do not discuss augmented PRNs much until Section 5, where among other results we show that an augmented PRN 
can be implemented, up to PRN bisimulation, by an unaugmented PRN.

Consider a particular type of mechanism that restricts which strings over � are valid polymers: only some pairs of 
monomers have the complementary binding sites necessary to bind. We might also assume that only some monomers are 
stable on the left edge of a polymer, and only some monomers are stable on the right. We can write this as a relation ρ
on monomers, where aρb means ab can bind in that order in a polymer. Technically, we must expand the domain of the 
relation to indicate which monomers can occur on the left and right ends of a polymer. Such a relation cannot be more 
powerful than a regular expression, and up to an interpretation (as defined below), we show that it is as powerful as a 
regular expression.

Definition 2.8. Given a monomer set � with notation �� = � ∪ {�}, �� = � ∪ {�}, where � ∩ {�, �} = ∅, a compatibility 
relation is a relation ρ ⊂ �� × �� . Given a monomer set � and compatibility relation ρ , the set of enumerated species 
S(�, ρ) is the set of all w = x1 . . . xn ∈ �∗ such that all of �ρx1, xiρxi+1, and xnρ�. As we show below that any compat-
ibility relation can be described by a regular expression, a PRN (augmented or not) can be given as (�, ρ, 	) instead of 
(�, e, 	).

Lemma 2.2. For any regular expression e over an alphabet �, there is a monomer set �′, compatibility relation ρ ′ , and interpretation 
π : �′ → � such that a string x = x1 . . . xn ∈ �∗ ∈ L(e) if and only if there is a species x′ = x′

1 . . . x′
n ∈ S(�′, ρ ′) with π(x′

i) = xi for 
1 ≤ i ≤ n. This construction can be done with �′ = �, ∀xπ(x) = x if and only if e has the property that for x ∈ �, u1, v1, u2, v2 ∈ �∗ , 
if u1xv1 and u2xv2 match e then so does u1xv2; if so, we say that e is local. Conversely, given any monomer set � with compatibility 
relation ρ there is a local regular expression e with S(�, e) = S(�, ρ). All of these transformations can be computed in polynomial 
time.

Proof. Consider a nondeterministic finite automaton M that recognizes strings that match e. Where Q is the set of states of 
M , let �′ = � × Q and let π((x, q)) = x. Let ((x1, q1), (x2, q2)) ∈ ρ ′ if and only if M can transition from state q1 to state q2
by reading x2, let (�, (x, q)) ∈ ρ ′ if and only if M can transition from its start state q0 to q by reading x, and ((x, q), �) ∈ ρ ′
if and only if q is an accept state of M . Valid polymers correspond exactly to accepting computation paths of M on their 
interpretations.

If e is local, then for any states qi, q j both of which have incoming transitions labeled x, either one of those transitions 
is not reachable on any string and can be removed, or given locality, the set of strings accepted after reaching qi and q j are 
the same. In that case, an equivalent automaton has qi and q j collapsed into one state. Repeating this process constructs a 
finite automaton that recognizes e where for each state x there is at most one state qx with incoming transitions labeled x
(it may be that qx = qy for x �= y). Applying the above construction to this new finite automaton and labeling the monomer 
(x, qx) as x gives the desired (�, ρ).

Given (�, ρ), a finite automaton as above can be easily constructed: for each monomer x a state qx , with qx
y−→ qy ⇐⇒

xρ y, q0
x−→ qx ⇐⇒ �ρx, and qx accepts if and only if xρ�. As above, valid polymers correspond exactly to accepting 

computation paths of M . �
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Fig. 3. These example Polymer Reaction Networks demonstrate various features of the PRN model. Shown for each PRN is the monomer set �; the regular 
expression e describing the set of polymers and/or, if e is local, the equivalent compatibility relation ρ; and the reaction schemata. Additionally for some 
PRNs, rate constants are assigned to each reaction schema and a sample stochastic simulation, as described above, from the given initial conditions is 
shown. Which of these PRNs are useful and/or interesting is left as an exercise to the reader.

2.4. PRN examples

To help get a feel for the PRN model, we provide several illustrative examples of PRNs and their behaviors in Fig. 3. Three 
of the examples are explicitly simulated, and in these cases we provide rate constants for each of the reaction schemata. It 
is important to note that some aspects of PRN behaviors may be sensitive to the rate constants (such as whether it is likely 
to reach some state from another state) while other aspects will be rate-independent (such as whether it is possible to 
reach some state from another state). CRN bisimulation and thus PRN bisimulation are rate-independent theories, and thus 
they can only speak to that aspect of the behavior. The guarantees they provide are stronger than just reachability; they also 
guarantee a correspondence between the trajectories – i.e. how one gets there. For example, bisimulation will distinguish 
between a clockwise and a counter-clockwise trajectory through a cycle, while analysis based purely on reachability would 
not; on the other hand, bisimulation would not distinguish between a clockwise trajectory that likely spends most of its 
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time in one state and rushes through the others, versus a clockwise trajectory that distributes its time roughly uniformly. It 
is a useful exercise to consider which behavioral features of the examples in Fig. 3 are rate-independent, and thus likely to 
be captured by PRN bisimulation.

Because a PRN is an infinite CRN, we can simulate a PRN using the semantics of a stochastic CRN, such as Gillespie’s 
algorithm [23]. Although the number of reactions in a PRN may be infinite, if at a given time there are a finite number 
of polymers each of finite length, then at that time there will be a finite number of reactions possible. The only difficulty 
is that the set of possible reactions in general must be re-computed every time a new species is produced, preventing 
various methods of optimizing the Gillespie algorithm that are possible for a finite CRN. However, implementing the basic 
Gillespie algorithm is possible using a “just-in-time” reaction enumeration approach, which has been done in Visual DSD for 
polymer-like systems created from DNA strand displacement networks [35]. A second issue that must be addressed is how 
to assign rate constants to each specific CRN reaction that is derived from the PRN schemata. Here, we assume that each 
reaction schema has a rate constant, that every reaction enumerated from that schema has that schema’s rate constant, and 
that the same reaction enumerated multiple times (from different schemata and/or different substitutions into the same 
schema) has as its rate constants the sum of schema rate constants from all of its enumerations (which is guaranteed to be 
finite). Other methods of specifying rate constants are possible.

Fig. 3 gives examples that showcase various relevant features of the Polymer Reaction Network model. Code for simulat-
ing all these systems can be found in our Mathematica package [54]. We discuss some of those examples in further detail 
here.

Example 2.1 (Dynamic instability). Shown in the upper left of Fig. 3, this PRN has 5 monomers, � = {D, T , S, D f , T f }; regular 
expression restriction S D∗T ∗ | D f | T f , which is equivalent to the compatibility relation ρ shown; and 5 reaction schemata.

We give an example PRN that describes a model of dynamic instability, inspired by (but an oversimplification of) biolog-
ical microtubules [18]. Our model, in English, is as follows: A polymer is a seed S followed by any number of D monomers 
then any number of T monomers; those latter two types of monomers can also exist free-floating in solution, represented 
by D f and T f . A free T f monomer can attach onto the right end of a polymer as a T ; T monomers can convert into D
monomers starting from the left end of a polymer; and only D monomers can fall off the right end. In solution, free D f
converts back into T f , to complete the cycle.

In the compatibility relation, first observe the patterns (�, D f ), (D f , �) and similarly (�, T f ), (T f , �), with no other 
occurrences of D f or T f ; the result of this is that D f and T f can exist as monomers but can’t polymerize. Effectively, D f
and T f are CRN species. The only other presence of � is (�, S), so any polymer must start with S , and given (S, �) ∈ ρ , can 
end immediately. Otherwise, (S, D), (D, D), (D, T ), (T , T ), and (T , �) allow for one or more D then one or more T , while 
(S, T ) and (D, �) allow the possibility of 0 D ’s or 0 T ’s, respectively. Thus the set of possible polymers is, as claimed in 
Fig. 3, represented by the regular expression S D∗T ∗ | D f | T f .

The reaction schemata then correspond to the above description of the system’s behavior; for example, ∗1 + T f → ∗1T
is a free T f attaching to the right edge of a polymer, while ∗1 D → ∗1 + D f is a D falling off the right edge. Recall that 
in enumerating reactions, a string can only be substituted for a given wildcard if doing so respects ρ in both the reactants 
and the products. Thus in the reaction schema ∗1 + T f → ∗1T , while for example ∗1 = D f would make valid reactants 
D f + T f , the product D f T does not respect ρ , and D f + T f → D f T is not a reaction in this PRN. (This reaction schema is 
the only one in this figure for which this consideration is relevant. Replacing ∗1 + T f → ∗1T with either the one schema 
S ∗1 +T f → S ∗1 T or the three schemata S + T f → ST , ∗1 D + T f → ∗1 DT , and ∗1T + T f → ∗1T T would give the same 
set of reactions without taking advantage of this technicality, and the generalization of this is discussed further elsewhere 
in this paper.)

The graph shown is from a Mathematica simulation [54] of this PRN as discussed previously, from an initial state with 11 
copies of (the length-1 polymer) S and 1000 copies of T f . Mathematica was instructed to track the length of one individual 
S polymer, and the plot shows that one polymer’s length over time. Several phenomena are evident: growth of polymers 
while the cap of T remains stable, shrinkage during a catastrophe event when the cap of T dissolves, and occasional rescue.

Example 2.2 (Copy-tolerant Turing machine). Shown in the middle right of Fig. 3, this PRN has 8 monomers; a regular ex-
pression restriction (0l | 1l)

∗(q1 | q2 | q3 | h)(0r | 1r)
∗; and 15 reaction schemata corresponding to the 6 transition rules of a 

particular 3-state Turing machine.

The PRN shown in Fig. 3 simulates a particular 3-state Busy Beaver Turing machine with transition rules shown in 
Table 1. This Turing machine, from state q1 on a blank (all-0) initial tape, halts after 14 steps with 6 1’s on the tape [37]. 
Similarly, in the PRN the polymer q1 will, after 14 unimolecular reactions, become the polymer 1l1l1lh1r1r1r (and any 
polymer with q1 preceded by any number of 0l and followed by any number of 0r will have a similar trajectory).

This PRN is an instance of a general method of simulating Turing machines with linear PRNs, using unimolecu-
lar reaction schemata corresponding to the transition rules of the Turing machine; for example, the reaction schema 
∗1q10r∗2 → ∗11lq2∗2 corresponds to the rule “in state 1, reading 0, write 1, move right, and transition to state 2”. Transition 
rules reading a 0 require an additional reaction schema for the right edge of the tape, assuming blank spaces are treated as 
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Table 1
The transition rules of the Turing machine whose 
polymer implementation is shown in Fig. 3.

q1 q2 q3

0 1, R, q2 0, R, q3 1, L, q3

1 1, R, h 1, R, q2 1, L, q1

0, and transition rules moving left require multiple reaction schemata for a 0, 1, or left edge of the tape to the left of the 
current square; this causes the 6 transition rules of the 3-state, 2-symbol Turing machine to require 15 reaction schemata.

A state of a Turing machine tape is any number of tape symbols, followed by a Turing machine head state, followed 
by any number of tape symbols. For a 2-symbol 3-state Turing machine this can be described by the regular expression 
(0 | 1)∗(q1 | q2 | q3 | h)(0 | 1)∗ , which is not local. If we wanted to physically implement this restriction, we could not do 
so using only nearest-neighbor interactions. Applying the construction from Lemma 2.2 requires 0 and 1 to each have two 
monomers representing them, leading to the regular expression (0l | 1l)

∗(q1 | q2 | q3 | h)(0r | 1r)
∗ shown in Fig. 3. (One could 

imagine some creative methods to physically implement the nonlocal regular expression, such as having a qi monomer 
destabilize 0 and 1 monomers to its right and left in different ways. We would argue that such creative solutions are 
best modeled by treating “0 destabilized by a q on its right” and “0 destabilized by a q on its left” as distinct monomers, 
since they would be physically distinct and have different behaviors. This is equivalent to the 0l, 0r model shown.) As this 
regular expression is local, it can be implemented by a compatibility relation ρ containing pairs (�, 0l), (�, 1l); (a, b) for 
a, b ∈ {0l, 1l}; (a, q) for a ∈ {0l, 1l}, q ∈ {q1, q2, q3, h}; (q, a) for q ∈ {q1, q2, q3, h}, a ∈ {0r, 1r}; (a, b) for a, b ∈ {0r, 1r}; (0r, �), 
and (1r, �). The generalization to a Turing machine with any number of states and/or tape symbols is obvious.

We previously mentioned that well-mixed CRNs can simulate Turing machines with arbitrarily small probability of error 
but using species counts exponential in the space of the Turing machine [47], and provably cannot simulate Turing machines 
deterministically [2,15,36]. Formal polymer systems such as Qian et al.’s stack machine [42] and Cardelli et al.’s Biochemical 
Ground Form (BGF) [13] are already known to be able to simulate Turing machines deterministically, in some cases with 
no time or space slowdown. The PRN shown in Fig. 3, if it can be implemented, has a feature that the DNA stack machine 
and the BGF register machine do not: because a Turing machine tape is encoded in a single polymer and its transitions are 
all unimolecular reactions, multiple copies of the Turing machine can coexist in the same solution without interfering with 
each other. Bennett’s hypothetical polymer Turing machine [7] also shares this desirable feature.

Example 2.3 (String copying). The middle left and lower left of Fig. 3 show respectively a one-step nonlocal and a multi-step 
local model of string copying with PRNs. The one-step model has monomers � = {A, T , G, C, P }, local regular expression 
restriction (A | T | G | C)∗ | P , and four reaction schemata to copy, in one step catalyzed by P , any string that starts with A, 
T , G , or C . The local model takes a string made of monomers A, T , G, C and transcribes the corresponding string of a, t, g, c, 
using monomers P , s, and S to copy one monomer at a time and eventually split the two strings.

The string copying PRNs illustrate an interesting feature of wildcards using models inspired by, but not accurate to the 
mechanisms of, DNA and RNA polymerases. The one-step model can be thought of as an abstraction of the result of DNA 
polymerase: where P exists only as a monomer and any string over A, T , G, C is possible under e, the PRN has four reaction 
schemata of the form P + x∗1 → P + x ∗1 +x∗1 for x ∈ {A, T , G, C}; note that given e, this implies that ∗1 must be made 
of A, T , C, G . (The reaction schema P + ∗1 → P + ∗1 + ∗1 would have allowed the reaction 2P → 3P , which is certainly 
not what we wanted and is known to go to infinity in finite time [16]. If we were to use an augmented PRN model to 
constrain ∗1 to match (A|T |C |G)∗ , then this single reaction schema would suffice.) Because when enumerating reactions 
from a schema, each instance of a given wildcard is substituted by the same string, the result of these schemata is to copy 
any string made of A, T , G, C , catalyzed by P . However, the idea that a second copy of an arbitrarily long string can be 
produced in one step is not physically realistic, and while this PRN may represent the result of DNA polymerase, it certainly 
does not represent its mechanism.

The local model of string copying is a more realistic PRN that accomplishes the result of RNA polymerase, i.e. given a 
string over A, T , G, C it creates an additional copy of the corresponding string over a, t, g, c, catalyzed by P . (While this is 
a more physically realistic mechanism with a result analogous to RNA polymerase without the t vs u distinction, it is not 
in fact the mechanism of RNA polymerase, because that mechanism cannot be modeled with only linear polymers.) This 
concept of local mechanisms as “physically realistic”, in a sense that many exotic uses of wildcards are not, is formalized in 
the concept of single-locus PRNs in Section 5.

2.5. PRN bisimulation

Because a PRN is an infinite CRN, we can extend the definition of CRN bisimulation from CRNs to PRNs, but doing so 
requires an infinite interpretation. To finitely express an infinite interpretation, we build an interpretation of species from 
an interpretation of monomers. The obvious thing to do is to have the interpretation of a polymer be the concatenation 
of interpretations of its monomers, but that would not allow interpreting one implementation polymer as a multiset of 
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Fig. 4. Features of a polymer interpretation. An implementation monomer x has a pair of interpretations π(x) and μ(x), shown respectively in the top, 
middle, and bottom parts of the node (a). An implementation polymer (e.g. lc1r1) is interpreted by concatenating π -interpretations and adding μ-
interpretations (b). Given an interpretation of species, interpretations of states and reactions (c) follow as in CRN bisimulation [27], Definitions 2.2 and 
2.3. Intuitively, interpretations of reaction schemata can follow from interpretations of monomers (d, see also Theorem 2.3); see text for details.

formal polymers (as is possible in the finite case). We therefore require that our interpretation be built from two finite 
functions, μ and π , defined on the implementation monomers. Here π(x) is the contribution of the monomer x to the 
polymer it is contained in and μ(x) is a multiset of additional, free-floating species represented by x. We sometimes say 
that x polymerizes as π(x) and carries μ(x). A convenient diagramatic notation that highlights monomer names and their 
interpretations, is illustrated in Fig. 4. Because in PRNs every species is thought of as a polymer, even monomers that never 
“polymerize”, in such cases we will typically encode the interpretation in π and leave μ empty. Note that with this notion 
of interpretation, a single implementation monomer cannot represent (“polymerize as”) monomers of two distinct arbitrary-
length polymers, as would be needed if we wanted arbitrary DNA duplexes to represent the multiset containing the two 
strands as separate species. We refrain from attempting that generalization here.

Definition 2.9. Given a formal PRN (�, e, 	) and implementation PRN (�′, e′, 	′), a polymer interpretation is a pair (π, μ)

of functions π : �′ → (� ∪ {+})∗ and μ : �′ →NS . These functions induce an interpretation m : S ′ →N�∗
defined by

m(x1 . . . xn) = π(x1) . . .π(xn) +
n∑

i=1

μ(xi).

As a notation, we use π(x1 . . . xn) to mean π(x1) . . . π(xn) and μ(x1 . . . xn) to mean 
∑n

i=1 μ(xi), so where s = x1 . . . xn ∈ S ′
the above could have read m(s) = π(s) + μ(s).

The symbol + is interpreted as breaking a polymer, matching the notation for separate CRN species (see Fig. 4): if 
the π -interpretation of a polymer reads as e.g. AB + C D , then it is interpreted as separate species AB and C D (plus its 
μ-interpretation). For example, if π(x) = AB + C D and μ(x) = E F + 2G H then m(xx) = AB + C D AB + C D + 2E F + 4G H . 
Redundant + are allowed and treated as redundant. If an implementation species x carries nothing, μ(x) = ∅, and if it 
polymerizes as nothing, π(x) = ε, the empty string. Note that an empty-string polymer is not considered to be a species, 
so if all π(xi) = ε (or some number of + with no actual formal monomers) then m(x1 . . . xn) = ∑n

i=1 μ(xi). As in CRN 
bisimulation it is possible for a given m(x1 . . . xn) = ∅, in this case if all π(xi) = ε and all μ(xi) = ∅.

The induced interpretation m maps S ′ to N�∗
, multisets of strings of formal polymers, while what CRN bisimulation 

wants is an interpretation that maps S ′ to NS , multisets of formal species (i.e., strings that match e). If we had that, we 
could straightforwardly adapt the definition of CRN bisimulation to PRNs, although there is one remaining snag. Consider 
an interpretation where π(x) = X and μ(x) = Y while π(z) = Z and μ(z) = ∅, in which case the reaction scheme ∗1x∗2 →
∗1z∗2 intuitively should be interpreted as ∗1 X ∗2 +Y → ∗1 Z∗2. However, substituting x for ∗1 and ε for ∗2 yields xx → xz, 
which would be interpreted as X X + 2Y → X Z + Y , which cannot be obtained by substituting any two strings into the 
given formal reaction scheme. Avoiding this requires using the spurious-catalyst extension of CRN bisimulation from [27], 
in which an implementation reaction whose interpretation has catalysts can be labeled as a formal reaction without some 
or all of those catalysts. In the default case, we assume any species present in μ of some monomer in a wildcard are 
spurious catalysts. The intuition here is that we expect the reaction schema to correspond to a molecular mechanism, so 
the monomers that are explicitly represented (i.e. not in a wildcard) are the only ones that could be playing an important 
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(e.g. catalytic) role. In more complex cases, such as ones similar to those where the spurious catalyst interpretation would 
be necessary in CRN bisimulation, a different definition of spurious catalysts may be necessary.

Definition 2.10. Let r′ = R ′ → P ′ ∈ R(�′, e′, 	′) be an implementation reaction that can only be enumerated in one way, 
and ψ ′ ∈ 	′ be the reaction schema from which r′ is enumerated. Let ∗1, . . . , ∗n be the wildcards appearing in ψ ′ , ai be 
the count of appearances of ∗i in the reactants of ψ ′ and bi the same for the products, and s1, . . . , sn the substitutions that 
enumerate r′ from ψ ′ . Where C R = ∑n

i=1 aiμ(si) and C P = ∑n
i=1 biμ(si), if C R = C P then the multiset of wildcard-based 

catalysts of r′ is C = C R = C P , and the wildcard-based interpretation of r′ is m(r′) = R ′ − C → P ′ − C .

If somehow two distinct implementation schemata produce identical implementation reactions that would have different 
spurious catalysts (for example, xy∗1 → xa∗1 and ∗1 yz → ∗1az both enumerate the reaction xyz → xaz), then the above 
wildcard-based interpretation of that reaction would depend on which schema it was enumerated from; this is inconsistent 
with our formalism that does not allow CRNs to have multiple copies of identical reactions and with the requirement 
that the interpretation of a reaction must be a single formal reaction (or τ ). Although these situations are avoided in 
the examples and theorems discussed in this paper, such situations could arise in some cases. For example, there may 
be distinct schemata that represent distinct physical mechanisms that, in some cases, happen to produce the same result. 
Another situation might be when schemata are generated by an algorithm that is allowed to be redundant as long as it 
covers all cases. In such cases, the user of the PRN bisimulation theory would have to make decisions about how to assign 
spurious catalysts or augment the theory.

Most of our theorems are not affected much by this edge case. Section 3 discusses a particular system in which this 
edge case does not occur; Section 4 discusses complexity results that are not made harder by the edge case; and theorems 
in Section 5 either construct a system in which the edge case doesn’t occur, or assume the existence of a bisimulation 
interpretation which implicitly assumes that, if the edge case does occur, then the interpretation specifies how to handle it.

We can get a proper interpretation m : S ′ →NS in either of two ways. The obvious way is if x ∈ S ′ guarantees m(x) ⊂ S:

Definition 2.11. Let (�, e) and (�′, e′) be a formal and implementation species specification, with π -interpretation π :
�′ → (� ∪ {+})∗ . Introduce notation for regular expression e that e[+] = (e|ε)(+(e|ε))∗ , i.e. a string matches e[+] if it is 
a +-separated list of strings that each match e or are empty. We say that π satisfies the compatibility condition if x1 . . . xn
matching e′ implies π(x1) . . . π(xn) ∈ L(e[+]).

In this case, given that any μ by assumption is a function �′ →NS , the induced m will in fact be a CRN interpretation 
S ′ →NS as desired, and asking whether m is a CRN bisimulation is well-defined.

If π does not satisfy the compatibility condition, the structure of the implementation reaction schemata may still make 
the system well-behaved. For example, consider the following implementation for the Rock Paper Scissors Oscillator of 
Fig. 3:

r + ∗1s → r + ∗1sos p + ∗1r → p + ∗1ror s + ∗1 p → s + ∗1 pop

r + ∗1 pop → r + ∗1 p + ∗1sos → p + ∗1s s + ∗1ror → s + ∗1r

with the interpretation m(r) = (R, ∅), m(p) = (P , ∅), m(s) = (S, ∅), m(o) = (ε, ∅) and the species regular expression e′ =
(r|p|s)(o(r|p|s))∗ that allows o to bind to any information-bearing monomer on its right or left. This PRN does not satisfy 
the compatibility condition because, for example, rop ∈ L(e′) but R P /∈ L(e). Nonetheless, started from any implementation 
state whose interpretation is a valid formal state, only valid next states can be produced. For example, sosos ∈ L(e′) and 
r + sosos → r + sososos ∈R(�′, e′, 	′) preserves the restriction that polymers are of homogeneous type.

We capture this concept as follows:

Definition 2.12. Let (�, e) be a formal species specification and (�′, e′, 	′) an implementation PRN, with π -interpretation 
π : �′ → (� ∪{+})∗ . We say that π satisfies the consistency condition if, for any reaction R ′ → P ′ enumerated from a schema 
in 	′ , if all x ∈ R ′ has π(x) ∈ L(e[+]) then all y ∈ P ′ has π(y) ∈ L(e[+]).

If (π, μ) is a polymer interpretation where π satisfies the consistency condition, then let S ′
0 = {x ∈ S ′ | π(x) ∈ L(e[+])}. 

Naturally, m restricted to S ′
0 will be a function S ′

0 → NS ; the consistency condition implies that “restricting” the enu-
merated implementation CRN to S ′

0 is well-defined. That is, the CRN (S ′
0, R′

0) where R′
0 is the set of reactions with all 

reactants and products in S ′
0 contains every reaction with all reactants in S ′

0. Then m : S ′
0 → NS is a CRN interpretation 

from that CRN to the enumerated formal CRN, and asking whether m is a CRN bisimulation is well-defined.

Definition 2.13. Let (�, e, 	) and (�′, e′, 	′) be a formal and implementation PRN, with polymer interpretation (π, μ) and 
induced CRN interpretation m. Let S = S(�, e) and S ′ = S(�′, e′). We say (π, μ) is a PRN bisimulation if π satisfies the 
compatibility condition and m is a CRN bisimulation. We say (π, μ) is a PRN bisimulation up to reachability (from valid initial 
states) if π satisfies the consistency condition and m (restricted to S ′ as defined above) is a CRN bisimulation.
0
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In our previous work we proved that CRN bisimulation was equivalent to up-to-interpretation trajectory equivalence 
[27], and that result holds for infinite CRNs and thus for PRNs. Because of this, we use CRN bisimulation (with either 
the compatibility condition or the consistency condition) as the definition of PRN bisimulation, despite the fact that the 
atomic, delimiting, and permissive conditions now each refer to an infinite set of objects. We could, instead, have defined 
similar conditions on the polymer structure of a PRN, and showed that those conditions imply the three conditions of CRN 
bisimulation, just as a polymer interpretation induces a CRN interpretation. Such conditions would capture most of the 
typical PRN implementations, while missing some edge cases that nevertheless satisfy CRN bisimulation. Although not the 
definition of PRN bisimulation, one such set of sufficient conditions is useful for proving that common implementations 
satisfy PRN bisimulation.

Theorem 2.3. Let (�, e, 	) and (�′, e′, 	′) be a formal and implementation PRN with polymer interpretation (π, μ). Assume either 
π satisfies the compatibility condition and m is the induced CRN interpretation, or the system satisfies the consistency condition and 
m is the CRN interpretation restricted to formally valid species and reactions. If (π, μ) satisfies the following three conditions, then 
m is a CRN bisimulation (and thus a PRN bisimulation or PRN bisimulation up to reachability depending on whether it satisfies the 
compatibility or consistency condition):

1. Polymer Atomic Condition: For each formal monomer X there is a canonical implementation monomer x0 with π(x0) = X and 
μ(x0) = ∅. e and e′ are local and equivalent to compatibility relations ρ and ρ ′ respectively, where for all formal monomers X, Y
with canonical implementation monomers x0, y0 respectively, (X, Y ) ∈ ρ ⇒ (x0, y0) ∈ ρ ′ (also X = � = x0 or Y = � = y0).

2. Polymer Delimiting Condition: For each reaction schema in the implementation PRN, each wildcard appears the same number of 
times in the products as it does in the reactants, and syntactically replacing each non-wildcard monomer with its π and μ either 
produces equal expressions for the reactants and products or produces a formal reaction schema.

3. m as a CRN interpretation satisfies the permissive condition.

Proof. The polymer atomic condition implies the atomic condition: any formal polymer can be built up from its correspond-
ing implementation monomers. The polymer delimiting condition implies the delimiting condition: any implementation 
reaction enumerated from a schema will be interpreted as trivial or as a formal reaction enumerated from the “syntactically 
interpreted” formal reaction schema. (This last statement requires either the compatibility condition to imply that the re-
sulting formal reaction is valid, or the consistency condition for an implementation reaction in the restricted subsystem to 
imply the same.) �

Note that the above conditions are sufficient, but not necessary, for PRN bisimulation. In some sense they describe a 
“natural” or “polymer” way to satisfy the conditions of PRN bisimulation. However, a pair of PRNs with a compatible or 
consistent interpretation may happen to satisfy the conditions of CRN bisimulation, and thus PRN bisimulation, without 
satisfying the stronger polymer conditions.

3. Verifying the DNA stack machine

We show the use of the Polymer Reaction Network model, and PRN bisimulation, by analyzing an existing DNA strand 
displacement system that uses polymers. Specifically, we analyze the system proposed by Qian et al. to implement arbitrary 
stack machines using DNA strand displacement [42]. This system uses a reversible addition primitive to add units repre-
senting stack symbols onto a growing stack, and uses a systematic CRN implementation for state transitions. The reversible 
addition primitive can grow polymers of unbounded length (as desired for a stack machine), and thus the system cannot 
be modeled as a Chemical Reaction Network. Modeling the DNA stack machine as a Polymer Reaction Network allows us 
to check whether the strand displacement system is a correct bisimulation of an abstract stack machine. We show that the 
obvious interpretation on the DNA stack machine, with a correction for irreversible reactions, is a bisimulation between the 
DNA strand displacement system and the set of abstract reactions discussed in the original stack machine paper.

To prove that two systems are (or are not) equivalent using PRN bisimulation, we need to find an interpretation (or con-
sider all potential interpretations for the negative case), check the compatibility or consistency condition (the stack machine 
as we model it will satisfy the compatibility condition), then check the atomic, delimiting, and permissive conditions. All 
of that assumes the two systems are a formal and implementation PRN; if not, we need to model each system as a linear 
PRN. For the stack machine, the formal system is a linear PRN and the implementation a DSD system; we use reaction 
enumeration as described below to describe it as an implementation PRN. To take advantage of the modularity condition 
from our previous work [27], we will add an additional step of dividing both systems into modules before checking the 
three conditions of CRN bisimulation. Thus the steps are as follows: enumerate the reaction schemata of the DSD system 
as an implementation PRN; construct an interpretation; check the compatibility condition; modularize; check the atomic, 
delimiting, and permissive conditions for each module.

When enumerating a DSD system without polymers as a CRN, every new DNA complex is a new species in the CRN. With 
polymers, on the other hand, most DNA complexes are polymers made out of monomer subunits; this requires identifying 
which patterns of DNA strands are the formal monomers. The naive approach, of having each strand be a monomer, might 
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Fig. 5. Choice of monomers in Qian et al.’s DNA stack machine [42]. The π and μ interpretations are shown as “?” because our next challenge will to figure 
out what they should be.

work in a model that explicitly permits branched polymers, but fails in our linear polymer model given strands with more 
than two binding domains. We do not currently have a way to automate the identification of monomer subunits in polymer 
DSD systems. Therefore we describe below (and in Fig. 5) which DNA complexes we choose as monomers in �′ , after which 
e′ is a local regular expression generated from a ρ ′ where monomer complexes can bind if they have complementary long 
domains and 	′ is determined by the enumerated set of strand displacement reactions. Although currently Peppercorn [5]
cannot automatically enumerate polymer reaction schemata, below we give an implementation PRN that we claim is the 
result of applying Peppercorn’s condensed semantics to the DSD stack machine [42], and invite the reader to confirm that 
this is the case. For the six-state three-stack machine in Figure 4(a) of Qian et al. [42], the resulting implementation PRN is 
(�′, e′, 	′) as follows:

�′ = { 01,0 f
1 ,11,1 f

1 , λ1, λ
f
1 ,02,0 f

2 ,12,1 f
2 , λ2, λ

f
2 ,03,0 f

3 ,13,1 f
3 , λ3, λ

f
3 ,

0+
1 ,0−

1 ,1+
1 ,1−

1 , λ+
1 , λ−

1 ,0+
2 ,0−

2 ,1+
2 ,1−

2 , λ+
2 , λ−

2 ,0+
3 ,0−

3 ,1+
3 ,1−

3 , λ+
3 , λ−

3 ,

Q , Q 1, Q 2, Q 3, I Q
1 , I Q

2 , I Q
3 , S1, S2, S3, S4, S5, S6,

I1012Q
1 , I1012Q

2 , I1012Q
3 , I1012Q

4 , I1114Q
1 , I1114Q

2 , I1114Q
3 , I1114Q

4 ,

I1λ16
1 , I1λ16

2 , I1λ16
3 , I1λ16

4 ,

I2Q 302
1 , I2Q 302

2 , I2Q 302
3 , I2Q 302

4 , I3Q 103
1 , I3Q 103

2 , I3Q 103
3 , I3Q 103

4 ,

I4Q 512
1 , I4Q 512

2 , I4Q 512
3 , I4Q 512

4 , I5Q 113
1 , I5Q 113

2 , I5Q 113
3 , I5Q 113

4 ,

w1, w2, w1012Q , w1114Q , w1λ16, w2Q 302, w3Q 103, w4Q 512, w5Q 113}
e′ = λ1(01 | 11)

∗(0+
1 | 0−

1 | 1+
1 | 1−

1 | ε) | λ+
1 | λ−

1 | 0 f
1 | 1 f

1 | λ f
1

| λ2(02 | 12)
∗(0+

2 | 0−
2 | 1+

2 | 1−
2 | ε) | λ+

2 | λ−
2 | 0 f

2 | 1 f
2 | λ f

2

| λ3(03 | 13)
∗(0+

3 | 0−
3 | 1+

3 | 1−
3 | ε) | λ+

3 | λ−
3 | 0 f

3 | 1 f
3 | λ f

3

| Q | Q 1 | Q 2 | Q 3 | I Q
1 | I Q

2 | I Q
3 | S1 | S2 | S3 | S4 | S5 | S6

| I1012Q
1 | I1012Q

2 | I1012Q
3 | I1012Q

4 | I1114Q
1 | I1114Q

2 | I1114Q
3 | I1114Q

4

| I1λ16
1 | I1λ16

2 | I1λ16
3 | I1λ16

4

| I2Q 302
1 | I2Q 302

2 | I2Q 302
3 | I2Q 302

4 | I3Q 103
1 | I3Q 103

2 | I3Q 103
3 | I3Q 103

4

| I4Q 512
1 | I4Q 512

2 | I4Q 512
3 | I4Q 512

4 | I5Q 113
1 | I5Q 113

2 | I5Q 113
3 | I5Q 113

4

| w1 | w2 | w1012Q | w1114Q | w1λ16 | w2Q 302 | w3Q 103 | w4Q 512 | w5Q 113



98 R.F. Johnson, E. Winfree / Theoretical Computer Science 843 (2020) 84–114
We give the reaction schemata in 	′ in multiple groups based on their intended function. The reaction schemata that 
implement pushing and popping onto the stack are, for each stack i ∈ {1, 2, 3} and symbol x ∈ {0, 1}, where λ indicates the 
bottom of the stack:

∗1 � ∗1x−
i (1)

∗1x−
i + x f

i � ∗1x+
i (2)

∗1x+
i � ∗1xi + Q i (3)

λ−
i + λ

f
i � λ+

i (4)

λ+
i � λi + Q i (5)

For each stack i, interchangeability of Q is implemented by:

Q i � I Q
i (6)

I Q
i � Q (7)

The irreversible stack machine transitions as shown in Figure 1 of Qian et al. [42] are incorrect according to CRN bisim-
ulation, as discussed in our previous work: releasing the output species before the first irreversible step allows the reaction 
to reverse itself, producing a small probability of formally incorrect pathways [27]. As one would expect, this would be 
incorrect according to PRN bisimulation as well. Qian and Winfree have come up with a corrected version of the DSD mech-
anism (unpublished), and we give the reaction enumeration of the corrected version below. The stack machine transitions 
of the form Si + A → S j + B , where A and B are either free stack symbols x f

k or Q (which correspond to the seven classes 
of I i A jB monomers), are implemented by:

Si � I i A jB
1 (8)

I i A jB
1 + A � I i A jB

2 (9)

I i A jB
2 → I i A jB

3 + S j + w1 (10)

I i A jB
3 � I i A jB

4 + B (11)

I i A jB
3 → wi A jB + w2 (12)

The formal PRN that describes the stack machine is given in Figure 4(d) of Qian et al. [42]. Adapted to our notation, the 
formal PRN is (�, e, 	) as follows:

� = { 01,0 f
1 ,11,1 f

1 , λ1, λ
f
1 , λ−

1 ,02,0 f
2 ,12,1 f

2 , λ2, λ
f
2 , λ−

2 ,03,0 f
3 ,13,1 f

3 , λ3, λ
f
3 , λ−

3 ,

Q , Q 1, Q 2, Q 3, S1, S2, S3, S4, S5, S6}
e = λ1(01 | 11)

∗ | λ2(02 | 12)
∗ | λ3(03 | 13)

∗

| 0 f
1 | 1 f

1 | λ f
1 | λ−

1 | 0 f
2 | 1 f

2 | λ f
2 | λ−

2 | 0 f
3 | 1 f

3 | λ f
3 | λ−

3

| Q | Q 1 | Q 2 | Q 3 | S1 | S2 | S3 | S4 | S5 | S6

With 	 containing the reaction schemata:

S1 + 0 f
1 → S2 + Q

S1 + 1 f
1 → S4 + Q

S1 + λ
f
1 → S6 + λ

f
1

S2 + Q → S3 + 0 f
2

S3 + Q → S1 + 0 f
3

S4 + Q → S5 + 1 f
2

S5 + Q → S1 + 1 f
3

Q � Q i | i ∈ {1,2,3}
∗1 + x f

i � ∗1xi + Q i | x ∈ {0,1}, i ∈ {1,2,3}
λ− + λ

f � λi + Q i | i ∈ {1,2,3}
i i
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Fig. 6. Enumeration of reaction schemata and interpretation of the monomers in Qian et al.’s DNA stack machine [42] as enumerated in Fig. 5.

Theorem 3.1. There exists a polymer interpretation (π, μ), from the implementation PRN as described above to the formal PRN as 
described above, that is a PRN bisimulation.

The proof of Theorem 3.1, including constructing π and μ, is the remainder of this section. While the proof is given as 
though for this specific stack machine, it is in fact general and should apply to any instance of the DNA stack machine [42].

Given the formal and implementation PRNs, since we are proving that the implementation is correct, the next step 
is to construct an interpretation. For the stack machine, as with most engineered implementation systems, the rationale 
behind the construction suggests a natural interpretation which, if the implementation is correct at all, will be a valid PRN 
bisimulation. When we give this interpretation, recall the notation m(x) = (A; B) as a shorthand for π(x) = A, μ(x) = B
where x is an implementation monomer, A a string of formal monomers, and B a multiset of formal species. Here the 
natural interpretation, shown in Fig. 6, is as follows:

1. A monomer x that appears in both the formal and implementation PRNs, such as x = S3 or x = 02, has m(x) = (x; ∅). 
Note that this covers all formal monomers.

2. For monomers involved in pushing and popping from the stack, for each stack i ∈ {1, 2, 3}, m(s−
i ) = (ε; ∅) for s ∈ {0, 1}

and m(s+
i ) = (si; Q ) for s ∈ {0, 1, λ}. (The case m(λ−

i ) = (λ−
i ; ∅) is covered as λ−

i is a formal monomer.)

3. For intermediates I i A jB
k in the stack machine transitions, implementing Si + A → S j + B for A, B ∈ {x f

1 , x f
2 , x f

3 , Q }, we 
have π(I i A jB

k ) = ε while μ(I i A jB
1 ) = Si , μ(I i A jB

2 ) = Si + A, μ(I i A jB
3 ) = B , and μ(I i A jB

4 ) = ∅. Similarly for the interchange 
of Q , m(I Q

i ) = (ε; Q ). Each m(w ...) = (ε; ∅).

Given an interpretation, we check the compatibility condition or the consistency condition to see if CRN bisimulation 
is even definable. In this case, the stronger, compatibility condition holds: the π -interpretation of any valid implemen-
tation species is a valid formal species or ε. Start with e′ , which describes all valid implementation species: 3 regular 
expressions describing stack polymers, and a number of species that exist as monomers (i.e., length-1 polymers). The 
stack polymer expressions are of the form λi(0i | 1i)

∗(0+
i | 0−

i | 1+
i | 1−

i | ε); since π(0+
i ) = π(0i) = 0i , π(1+

i ) = π(1i) = 1i , 
π(0−

i ) = π(1−
i ) = ε, and π(λi) = λi , any implementation polymer matching this expression will have its π -interpretation 

match the λi(0i | 1i)
∗ subexpression of e, and thus be a valid formal polymer. The monomers are I-type species whose 

π -interpretation is ε; formal species Q , Q i , Si , x f
i , and λ−

i whose π -interpretations are themselves and which appear in e
as valid formal length-1 polymers; and the λ+

i species whose π -interpretation λi matches the λi(0i | 1i)
∗ subexpression of 

ρ . This covers all cases in e′ , proving that the compatibility condition holds.
Given the compatibility condition, the induced interpretation m (see Definition 2.9) is in fact a CRN interpretation, and is 

a PRN bisimulation if and only if it is a CRN bisimulation (Definition 2.13). Thus the last thing we need to do is show that m
satisfies the atomic, delimiting, and permissive conditions (Definition 2.4.II). Again, for a PRN treated as an infinite CRN, an 
algorithmic way of doing this is generally infeasible; in fact we will show in the next section that checking the permissive 
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condition in the general case for linear PRNs is undecidable. To check an engineered system, one would typically rely on 
the intent of the designers being formalizable into a proof of correctness. The stack machine was designed in subsystems, 
each of which correctly implements one formal reaction or formal reaction schema, which when combined form a correct 
implementation of the formal PRN. The modularity condition from Theorem 2.2 covers exactly this case: we will only need 
to prove each module correct, and the correctness of the whole system will follow. Thus, the next step is to divide the 
enumerated formal and implementation CRNs into modules.

To specify each module we must specify a set of formal species, formal reactions, implementation species, implementa-
tion reactions, and sets of “common” formal and implementation species, each subsets of their respective sets of species. 
The modularity condition expects each module to have an interpretation; since we already have m defined, each module’s 
interpretation is just m restricted to its implementation species. For each stack i, we have one module consisting of: all 
formal species matching λi(0i | 1i)

∗ | λ−
i | λ

f
i | 0 f

i | 1 f
i | Q i , the formal reaction λ−

i + λ
f
i � λi + Q i , and all formal reactions 

enumerated from the two reaction schemata ∗1 + x f
i � ∗1xi + Q i | x ∈ {0, 1} (recall that a reversible reaction schema is a 

shorthand for two irreversible schemata); all implementation species matching λi(0i | 1i)
∗(0+

i | 0−
i | 1+

i | 1−
i | ε) | λ+

i | λ−
i |

0 f
i | 1 f

i | λ
f
i | Q i , and all implementation reactions enumerated from reaction schemata of type (1) through (5) for stack 

i; and the common formal species being all formal species, while the common implementation species are all those with 
the same name as a formal species. For each stack i, we have a separate module containing formal species Q and Q i and 
reactions Q � Q i ; implementation species Q , Q i , and I Q

i and reactions of type (6) and (7) for stack i; and {Q , Q i} is 
again both the set of common formal species and of common implementation species. For each formal reaction of the form 
Si + A → S j + B , we have a module consisting of those formal species and that formal reaction; implementation species Si , 
S j , A, B , and all I i A jB

k species, and reactions of type (8) through (11) for this formal reaction; and again, all formal species 
are common and all implementation species with the same name as a formal species are common. In this three-stack, six-
state, seven-transition stack machine, this gives 13 modules, shown in Fig. 7; we prove below that each of those 13 modules 
satisfies the atomic, delimiting, permissive, and modularity conditions.

Recall the polymer atomic and polymer delimiting conditions from Theorem 2.3. The argument that the whole system 
satisfies the atomic condition starts similarly to the polymer atomic condition: each formal monomer x has an implemen-
tation monomer with the same name and with m(x) = (x; ∅). Then observing that e is a subexpression of e′ , any formal 
species w ∈ S (i.e., string matching e) will also match e′ , thus w ∈ S ′ and will have m(w) = {|w|}. Because each module, for 
each formal species it contains, also contains the implementation species with the same name, each module satisfies the 
atomic condition.

The whole system satisfies the polymer delimiting condition, which we prove by going through the types of implemen-
tation reaction schemata. The reader can verify that schemata of types (1) and (3), and reactions of types (5), (7), (8), (9), 
and (11) are all trivial (for example, type (3) is syntactically interpreted as ∗1xi + Q i � ∗1xi + Q i ); schemata of type (2) are 
syntactically interpreted as ∗1 + x f

i � ∗1xi + Q i ; reactions of type (4) as λ−
i + λ

f
i � λi + Q i ; type (6) as Q i � Q ; and type 

(10) as the appropriate Si + A → S j + B . All of those nontrivial syntactically interpreted reactions or schemata appear in 
the formal PRN, so the polymer delimiting condition is satisfied, which proves that the whole system satisfies the delimit-
ing condition. Again, each module, for each nontrivial implementation reaction it contains, also contains the corresponding 
formal reaction, so each module satisfies the delimiting condition.

The permissive condition is where the division into modules matters. To prove the permissive condition we will have 
to check each formal reaction within each module; since no formal reaction appears in multiple modules, modularity does 
not increase how much we have to check, and since the size of each implementation module is smaller than the whole 
implementation CRN, we have less to check per reaction, thus less overall. As discussed in our previous work on CRN 
bisimulation, we prove the permissive condition by showing that for each formal reaction, for each minimal implementation 
state whose interpretation contains all the formal reactants, that reaction can be implemented; since if every minimal 
implementation state can do something, then every implementation state can do the same thing [27]. This is illustrated in 
Fig. 8.

To treat the simple cases first, consider the formal reactions that are not schemata (i.e. have no wildcards). A formal 
reaction of the form Si + A → S j + B appears only in its own module, in which the minimal implementation states con-

taining Si + A in their interpretation are {|Si + A|}, { |I i A jB
1 + A| }, and { |I i A jB

2 | }. These states implemement Si + A → S j + B
by, respectively, forward reactions of type (8) then (9) then (10); (9) then (10); or just (10); (8) and (9) are trivial reactions 
followed by (10) which is interpreted as Si + A → S j + B . As an edge case, if A = B (as is the case for S1 + λ

f
1 → S6 + λ

f
1 ), 

then any of the above three states with A replaced by I i A jB
3 is also a minimal state. Such a state implements Si + A → S j + B

by the forward reaction of type (11) followed by the appropriate sequence mentioned above. Similarly, the formal reactions 
Q � Q i each appear only in their own modules, in which the minimal states for Q → Q i are {|Q |} and { |I Q

i | }, and the only 
minimal state for Q i → Q is {|Q i |}. Those three states implement the appropriate formal reaction respectively by forward 
(6) followed by forward (7); just forward (7); and just reverse (7).

The remaining formal reactions all derive from the stack modules: the λ−
i + λ

f
i � λi + Q i reactions and the reactions 

enumerated from the ∗1 +x f � ∗1xi + Q i schemata. Each of the three stack modules thus contains infinitely many reactions: 
i
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Fig. 7. Examples of the three types of modules. Top left: the stack module for stack 2. Bottom left: the Q exchange module for stack 2. Right: the stack 
machine transition module for formal reaction S2 + Q → S3 + 0 f

2 . Common species are outlined in red dashed lines. DNA complexes covered in gray boxes 
are fuel complexes, which are not explicitly included in the implementation PRN.
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Fig. 8. The “minimal states argument” from our previous work on CRN bisimulation [27] is often the most effective way to prove the permissive condition. 
Here we show some of the minimal implementation states (within the stack 2 module) in which the formal reaction λ2 + Q 2 → λ−

2 + λ
f
2 should be able to 

occur. Arrows between states represent trivial implementation reactions; the arrow with no target represents the implementation reaction λ+
2 → λ−

2 + λ
f
2 , 

which is interpreted as the desired formal reaction. As in the finite CRN bisimulation case, reversible reactions from a minimal state to a non-minimal state 
may be shown as irreversible arrows between minimal states, e.g. ∗11+

2 � ∗112 + Q 2 taking λ2 + λ2121+
2 to (a non-minimal state containing) λ2 + Q 2. 

Unlike the finite CRN case, here we have infinitely many minimal states (for example, every state of the form λ2 +λ2 w1+
2 , w ∈ {02, 12}∗), so the permissive 

condition cannot be verified by simply checking for paths in this graph; however, the argument given in the text based on this graph can prove it.

in stack module i ∈ {1, 2, 3}, for each w ∈ {0, 1}∗ and x ∈ {0, 1}, where wi is w made up of 0i ’s and 1i ’s, ∗1 + x f
i � ∗1xi + Q i

enumerates a pair of reactions λi wi + x f
i � λi wi xi + Q i .

There is only one minimal implementation state for λ−
i +λ

f
i → λi + Q i , { |λ−

i +λ
f
i | }, which implements the formal reaction 

by a forward reaction of type (4). λi wi +x f
i → λi wi xi + Q i has four minimal states, namely x f

i plus any one of λi wi , λi wi0
−
i , 

λi wi1
−
i , λi w ′

i y+
i if w = w ′ y for y ∈ {0, 1}, or λ+

i if w = ε. These states implement the formal reaction as follows: λi w ′
i y+

i
becomes λi wi + Q i by a reaction of type (3); λ+

i becomes λi + Q i by a reaction of type (5); λi wi(1 − x)−i becomes λi wi by 
a reverse reaction of type (1); λi wi becomes λi wi x

−
i by a forward reaction of type (1), all of the so-far-mentioned reactions 

being trivial; and λi wi x
−
i + x f

i implements the formal reaction by a reaction of type (2). The reverse reactions are slightly 
more complex, because the Q i can be provided by any implementation species in the module whose interpretation contains
Q i , namely Q i itself, λ+

i , or any λiui y+
i for u ∈ {0, 1}∗ , y ∈ {0, 1}. The minimal states for λi + Q i → λ−

i + λ
f
i are then either 

λ+
i by itself, or one of λi , λi0

−
i , or λi1

−
i plus one of any species providing Q i (other than λ+

i , in which case the state would 
not be minimal). Similarly, the minimal states for λi wi xi + Q i → λi wi + x f

i are either λi wi x
+
i by itself, or one of λi wi xi , 

λi wi xi0
−
i , or λi wi xi1

−
i plus one of any non-λi wi x

+
i species providing Q i . These states implement the formal reaction as 

follows: any species providing Q i releases the implementation Q i by a reaction of type (3) or (5) as appropriate; any 0−
i

or 1−
i “falls off” by a reverse reaction of type (1); free Q i joins λi by a reverse reaction of type (5) or λi wi xi by a reverse 

reaction of type (3); and finally the formal reaction is implemented by a reverse reaction of type (2) or (4) as appropriate. 
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This covers all modules, and proves that within each module, the permissive condition is satisfied; but does not prove that 
the permissive condition is satisfied for the whole system.

From our previous work, the modularity theorem proves that, if each module satisfies the permissive condition and the 
modularity condition, then the whole system satisfies the permissive condition (and the modularity condition) [27]. So the 
last step is to prove that each module satisfies the modularity condition: each implementation species can “decompose”, 
via trivial reactions, into one multiset of common implementation species and another multiset of implementation species 
whose interpretation contains no common formal species. For common implementation species, and for implementation 
species containing no common formal species, this decomposition is already done. The non-common implementation species 
are the I i A jB

k intermediates, I Q
i intermediates, λ+

i , λ−
i , λ f

i and x f
i monomers, and stack polymers matching the expression 

λi(0i | 1i)
∗(0+

i | 0−
i | 1+

i | 1−
i | ε), but of those only I i A jB

k for k �= 4, I Q
i , λ+

i , and species matching λi(0i | 1i)
∗(0+

i | 1+
i ) contain 

common formal species. Each of those species decomposes as follows: I i A jB
1 to Si via reverse reaction (8); I i A jB

2 to A + Si

via reverse reactions (9) and (8); I i A jB
3 to I i A jB

4 + B via reaction (11); I Q
i to Q via reaction (7); λ+

i to λi + Q i via reaction 
(5); and a species of the form λi wi x

+
i to λi wi xi + Q i via a reaction enumerated from reaction schema (3). This satisfies 

the modularity condition, meaning that the permissive condition will be satisfied when the initial implementation state 
combines species from different modules. This completes the proof that the given (π, μ) is a PRN bisimulation from the 
DNA stack machine to its formal description, which implies that the two systems will have the same set of trajectories 
from any initial state. Since it is intuitive that the formal system, when started in the appropriate initial states, performs a 
rate-independent simulation of an abstract stack machine, so does the DNA system.

4. Hardness results

Having defined a concept of correctness of an implementation of a polymer network, we would like to be able to algo-
rithmically check, given two polymer networks and an interpretation, whether that interpretation is a bisimulation. Knowing 
that polymer networks are capable of Turing-universal computation, we might suspect that to be impossible. A next best 
thing would be if bisimulation or non-bisimulation was recursively enumerable: either that any correct interpretation would 
have a proof of correctness, or that any incorrect interpretation would have a proof of incorrectness. Unfortunately, neither 
one is the case. We show that verifying our notion of bisimulation for PRNs is equivalent to the uniform halting problem, 
which given a Turing machine, asks if every possible configuration of the Turing machine will eventually lead to a halting 
configuration [24]. This problem is in the class �0

2, the complement of the second level of the arithmetic hierarchy, which is 
the class of all languages L = {x | ∀y∃zφ(x, y, z)}, where φ is a decidable predicate. Since each level of the arithmetic hierar-
chy strictly contains the previous levels, a �0

2-complete problem cannot be recursively enumerable, nor can its complement 
[30]. Since the uniform halting problem is �0

2-complete [24], so is PRN bisimulation. It is also interesting to note that the 
atomic condition, which is trivial to check for finite CRNs, becomes PSPACE-complete for Polymer Reaction Networks, proven 
by reduction from the problems of checking whether a regular expression describes the language of all strings, or whether 
two regular expressions describe the same language or languages one of which contains the other [26,50,39].

Lemma 4.1. Given a formal species schema (�, e), implementation species schema (�′, e′), and interpretation (π, μ), the problem of 
checking the atomic condition and that of checking the compatibility condition are both PSPACE-complete. If one or both are required to 
be local, or equivalently, given as a compatibility relation (�, ρ) and/or (�′, ρ ′), then checking the atomic condition remains PSPACE-
complete. In contrast, checking the compatibility condition can be done in polynomial time if the formal schema is known to be local, 
while it remains PSPACE-complete if only the implementation schema is known to be local.

Proof. To show that a decision problem is PSPACE-complete, we must show that (a) it is in PSPACE, i.e. that it can be 
decided by a Turing machine that uses polynomial space, and (b) that it is complete, e.g. by exhibiting a polynomial-time 
reduction from a known PSPACE-complete problem to this one. The problems of, given a pair of regular expressions (e1, e2)

over �, deciding whether the language of e1 is contained in that of e2, deciding whether the languages are identical, and 
deciding whether L(e1) = �∗ , are all PSPACE-complete [26,50,39] (and there are simple reductions between them).

Recall that the CRN atomic condition requires that for every formal (polymer) species, there is an implementation species 
interpreted as exactly one copy of that formal species. The compatibility condition states that the π -interpretation of a valid 
implementation polymer cannot result in an invalid formal polymer: x1 . . . xn ∈ L(e′) implies π(x1) . . . π(xn) ∈ L(e[+]).

To check the atomic condition in polynomial space, we choose e1 = e to describe the set of formal polymer species 
allowed in the formal PRN, while e2 will describe the set of interpretations of polymers in the implementation that cor-
respond to exactly one formal polymer. This is laborious but straightforward: e2 is an expression for π -interpretations of 
strings matching e′ that polymerize as a single formal polymer and carry nothing, union with the (finite) set of A ∈ �∗
produced as the only formal polymer carried in the μ-interpretation of an implementation polymer that polymerizes as 
nothing. The CRN atomic condition holds if L(e1) ⊂ L(e2). (The compatibility condition implies that L(e2) ⊂ L(e1), in which 
case these two sets of formal polymer species need to be identical. However, for PRN bisimulation up to reachability, the 
consistency condition may allow for implementation species to exist that do not correspond to formal polymers, so long 
as they will not be reached. In that case the atomic condition still requires L(e1) ⊂ L(e2).) To construct the first part of 
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e2, we start with e′ and restrict it to use only monomers x ∈ �′ with μ(x) = ∅, replace each valid monomer with its π -
interpretation, and intersect with +∗�∗+∗ . This can be done in polynomial time. To construct the second part of e2, we 
look for strings A ∈ �∗ such that some x0 has π(x0) = ε and μ(x0) = {|A|} and there exist u, v with ux0 v ∈ L(e′) where 
all monomers x in uv have m(x) = (ε, ∅), i.e. they are “empty monomers”. Given an NFA for e′ , which can be obtained in 
polynomial time from e′ , this is simple: identify all states of the NFA reachable from the start using only empty monomers, 
identify all states that can reach an accepting state using only empty monomers, and identify all desired x0 that transi-
tion between them. Then with e1 and e2 constructed, we use the known PSPACE algorithm for testing the containment of 
languages described by regular expressions.

To show completeness, we are now given arbitrary e1 and e2 for the regular expression containment problem. To reduce 
this problem to checking the atomic condition for PRNs, we are free to choose a formal PRN with arbitrary e, along with 
an implementation PRN containing the same monomers but a different regular expression e′ , and an interpretation where 
every monomer polymerizes as itself and carries nothing. It follows that we can set e = e1 and e′ = e2 such that the atomic 
condition holds iff L(e1) ⊂ L(e2). Thus, checking the atomic condition is PSPACE-complete.

Similarly, to check the compatibility condition, e2 = e[+] and e1 is the expression of π -interpretations of strings match-
ing e′ , this time regardless of their μ-interpretations, and we use the known PSPACE algorithm that decides containment 
for regular expressions. Again, proving completeness uses �′ = � and m(x) = (x; ∅), which allows reduction from regular 
expression containment since our interpretation does not use “+”. Given arbitrary e1 and e2, L(e1) ⊂ L(e2) if and only if the 
compatibility condition is satisfied for a formal PRN (�, e2) and implementation PRN (�, e1).

If one or both species schemata are given as local regular expressions or compatibility relations, then we recall 
Lemma 2.2, that given any regular expression there is a compatibility relation on an implementation monomer set and 
a π -interpretation under which they allow the same set of strings. Here we use that deciding whether a regular expression 
e matches all strings over � is also PSPACE-complete [26,50,39]. For the atomic condition, consider a formal species schema 
(�, ρ) with ρ = �� × �� (allowing all strings) and implementation schema (�′, ρ ′) and π -interpretation implementing e
according to Lemma 2.2. In such a case, the atomic condition is true if and only if e matches all of �∗ . This proves PSPACE-
completeness of the atomic condition when both formal and implementation regular expressions are local, which a fortiori
also applies when only one is local.

We have already established the PSPACE-completeness of checking the compatibility condition when both formal and 
implementation schema are allowed to be nonlocal; here we will cover the other three cases. It turns out that whether the 
implementation schema is local does not affect the complexity. When the formal schema is allowed to be nonlocal, consider 
an unrestricted implementation PRN (�, �∗) and formal PRN (�, e) with an arbitrary regular expression e, where m(x) =
(x; ∅). �∗ is of course local and the implementation is correct (with respect to compatibility) if and only if L(e) = �∗ , thus 
proving that checking the compatibility condition remains PSPACE-complete even when the implementation schema must 
be local. However, when the formal schema is required to be local—or equivalently, given by a compatibility relation—the 
result changes. Given a formal schema (�, ρ) and implementation schema (�′, e′) where e′ may be local or not, we show 
how to test the compatibility condition in polynomial time. We first check that for every implementation monomer x, there 
are no violations of ρ within π(x) itself; this requires checking boundary conditions (with � and �) only if and where π(x)
contains a + symbol, because we don’t yet know whether x can begin or end a polymer according to e′ . If this test passes, 
we must further test that when the π -interpretations of monomers in an implementation polymer are strung together, 
there are no violations of ρ at the boundaries. A complication is that since a monomer may polymerize as nothing, the 
π -interpretation of a monomer may abut the π -interpretation of another monomer that is distant in the implementation 
polymer. We check this with a pseudo-compatibility relation ρ ′

ε which represents implementation monomers that can be 
connected to each other by zero or more monomers that polymerize as nothing, which can then be compared to the 
formal ρ . Define ρ ′

ε such that xρ ′
ε y if any uxv yw ∈ S(�′, e′), u, v, w ∈ (�′)∗ , with π(v) = ε; the case x = � (resp. y = �) 

corresponds to v yw ∈ S(�′, e′) (resp. uxv ∈ S(�′, e′)) with the same restrictions on u, v, w . This can be computed in 
polynomial time with reachability questions on the nondeterministic finite automaton associated with e′ . It is in general 
not true that S(�′, e′) = S(�′, ρ ′

ε), but where π(x)1 and π(x)−1 are the first and last characters, respectively, of π(x), it 
is true that the compatibility condition is true if and only if for all x ∈ �′ ∪ {�} and y ∈ �′ ∪ {�} with π(x) �= ε �= π(y), 
xρ ′

ε y ⇒ π(x)−1ρπ(y)1, with the convention π(�)−1 = � and π(�)1 = �, and where +ρ y ⇐⇒ �ρ y, xρ+ ⇐⇒ xρ�. Thus 
when the formal schema is local, the compatibility condition can be computed in polynomial time. �
Theorem 4.1. The problem of, given a formal PRN (�, e, 	), implementation PRN (�′, e′, 	′), and interpretation (π, μ), deciding 
whether that interpretation is a bisimulation is �0

2-complete.

Proof. Weak bisimulation is the statement that for all pairs of related states and steps in one of the two states there exists a 
corresponding sequence of steps in the other state, which is naturally a �0

2 statement. (In PRN bisimulation this description 
applies to both the delimiting and permissive conditions, while the atomic condition is decidable in PSPACE by Lemma 4.1.) 
To prove completeness, we reduce from the uniform halting problem: given a Turing machine, is true that from any com-
bination of state and tape contents, the Turing machine halts? Since PRNs can simulate Turing machines, we show that the 
condition that, for all states of a PRN, a given reaction can happen is equivalent to the condition that, for all configurations 
of a Turing machine, the Turing machine will halt. In the case of PRN bisimulation, the above condition corresponds to the 
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permissive condition, in an implementation PRN where the delimiting condition is true. Since the uniform halting problem 
is �0

2-complete [24], so is bisimulation.
Given a Turing machine M with alphabet {0, 1} (blank squares treated as 0), with set of states Q including a start state 

q0 and halt state qH , we construct a pair of PRNs and an interpretation which is a bisimulation if and only if M halts from 
every instantaneous description. The formal PRN is ({Q , H}, Q | H, {Q → H}). The implementation PRN is the simulation 
of M generalized from Example 2.2, simulating M using state monomers qi and tape squares 0l and 1l to the left of the 
state, 0r and 1r to the right, and between one and six reaction schemata for each transition in M . μ(x) = ∅ for all x, 
π(0l) = π(0r) = π(1l) = π(1r) = ε, π(qi) = Q for each non-halting state qi , and π(qH ) = H .

Given e′ = (0l | 1l)∗(qi)(0r | 1r)∗ from the generalized Example 2.2, the valid implementation polymers are exactly the 
valid instantaneous descriptions of M , and the only reactions that can happen are simulations of steps of M . Any valid 
implementation species has only one state qi , and thus interprets to either Q or H , both of which are valid formal species, 
which also satisfies the atomic condition. Any implementation reaction is a transition of M , so the corresponding formal 
step is either trivial, if the transition is not to qH , or Q → H if it is, satisfying the delimiting condition. In any formal state 
with a Q , and any implementation state interpreted as that formal state, there is at least one polymer representing a non-
halting instantaneous description of M , and the statement that all such states can eventually do Q → H (the permissive 
condition) is equivalent to the statement that all instantaneous descriptions eventually halt. �

While the general case is undecidable, it would be valuable to identify restricted (yet useful) classes where PRN bisimu-
lation can be efficiently determined algorithmically.

5. Single-locus networks

Given a class of interesting Polymer Reaction Networks, we would naturally want to find a physical implementation of 
some or all of those networks. So far, theoretical steps taken towards implementing polymer reactions with DNA nanotech-
nology include the stack machine implementations by Qian et al. [42] and by Lakin and Phillips [33], the Turing machine 
implementation by Yahiro and Hagiya [55], the register machine by Tai and Condon [51], and the surface CRN implementa-
tions by Qian and Winfree [43]. To illustrate one challenge in implementation, recall the string copying and equality/reverse 
detection PRNs from Fig. 3. For example, the one-step string copying PRN uses reaction schemata of the form

P + A∗1 → P + A ∗1 +A ∗1 .

While this schema describes the copying of an arbitrarily long string starting with A and catalyzed by P , physical systems 
(biological, engineered, or otherwise) tend not to copy arbitrarily long strings in one step. The local model string-copying 
PRN in Fig. 3 transcribes a string of length n in O (n) steps, each of which affects only a constant number of monomers 
(specifically, at most 3). In general, physical systems will—on the most realistic level—be modeled as such local and bounded 
reactions, by which we mean reactions that only “read” and “write” a finite number of monomers and/or connections 
between monomers.

If we try to model the local mechanism of DNA polymerase as an implementation of P + A∗1 → P + A ∗1 +A∗1, an 
immediate problem is that the structure is no longer linear, but branched. This problem is somewhat related to an issue 
with naively enumerating a PRN from a DNA strand displacement system: in the stack machine, for example, treating a 
single strand as a monomer will fail when some strands have enough domains to bind to three other strands at once. In that 
case, since the “third branch” never exceeded a fixed size, a clever choice of DNA complexes to be treated as implementation 
monomers allowed us to model the system as a linear PRN, but the same is not true for DNA polymerase. A DNA polymerase 
“implementation” network could be modeled in Cardelli’s Biochemical Ground Form [13], or in the branching PRN extended 
model we discuss in Section 6, but not in the linear Polymer Reaction Network model. Even if we use a model with 
branching polymers, the implementation will not be correct according to bisimulation: in the formal network, the second 
copy of the arbitrarily long polymer A∗1 is produced in one step, which is impossible in an implementation network made 
up of only local and bounded reactions. (The network could be correct according to CRN bisimulation on the induced infinite 
CRNs, where for each polymer w the branched structure being built up from an initial A∗1 = w is interpreted as w + P until 
the final dissociation step, at which point each copy of w is interpreted as w . However, PRN bisimulation would require 
each individual monomer to have an interpretation, preventing this workaround.)

The key obstacle here is the (so far informal) concept of “local and bounded”, and the difficulty of implementing formal 
reaction schemata that are not “local and bounded” using only implementation schemata that are. (Or at least, the difficulty 
of doing so in a way bisimulation can recognize and verify.) For the moment, therefore, we will turn to implementation 
of reaction schemata that are local and bounded, with a suitable definition. We define a concept of a single-locus reaction 
schema, which we feel captures the informal concept of “local and bounded” (see Fig. 9). We will show that these single-
locus reaction schemata can be implemented up to bisimulation by a set of four polymer primitives, three of which have 
candidate DNA implementations from the stack machine [42] or surface CRNs [43]. We show that a class of infinite CRNs, 
which is intuitively the class of single-locus PRNs plus compatibility relation-based computational power, is closed under 
bisimulation and any member of that class can be implemented by the given primitives, suggesting that the concept of 
single-locus schemata is a natural class to discuss.
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Fig. 9. Single-locus reaction schemata are, intuitively, schemata whose reactions occur entirely within one region whose size is not affected by wildcards. 
This region may be in the middle of one polymer (if ∗1 and ∗2 are on different edges of the same polymer), at the joining of two polymers (if ∗1 and ∗2

are on separate polymers), or at either end of one polymer (if either ∗1 and/or ∗2 does not exist). The schema may consume, produce, and/or be catalyzed 
by any number of additional, finite polymers, since such a reaction can still be thought of as taking place within a finite region.

Definition 5.1. A reaction schema is single-locus if:

(i) Any wildcard that appears at all, appears exactly once in the reactants and exactly once in the products.
(ii) Wildcards appear only at the beginning or at the end of a polymer, and each wildcard that appears, appears at the 

same place (beginning or end) in the products as in the reactants.
(iii) All wildcards that appear at the beginning of a polymer must have the same numerical subscript, and likewise for all 

wildcards that appear at the end of a polymer.

For the purpose of conditions (ii) and (iii), a wildcard that is the entire polymer can be counted as at the beginning or 
at the end, and the reaction schema is single-locus if it satisfies the conditions for at least one of those two choices. For 
example, ∗1 � ∗1 E , ∗1 � E∗1, and ∗1 + ∗2 � ∗1 I∗2 are all single-locus.

A PRN (�, e, 	) is single-locus if e is local and each reaction schema in 	 is single-locus. An augmented PRN (�, e, 	)

is augmented single-locus if each reaction schema in 	, ignoring its regular expression restrictions, is single-locus; in the 
augmented case e is not required to be local.

Intuitively, a reaction schema is single-locus if it only “reads from” (is conditional on) and “writes to” (changes) one 
region of finite size, i.e. containing no wildcards. ∗1 AB∗2 → ∗1C D E∗2 is the ideal example of this; it “reads” AB and 
“writes” C D E , a region of size at most 3, while leaving ∗1 and ∗2 unchanged. Similarly, in ∗1 A ∗2 +B → ∗1C∗2, the “region” 
includes both the region A on the polymer ∗1 A∗2 and the free monomer B , which since the monomer B has no wildcards 
is still a finite size. A reaction schema ∗1 + A∗1 → ∗1 + B∗1 would not be single-locus, since to check that both polymers 
have the same sequence substituted for the wildcard ∗1 requires reading that sequence, and a wildcard’s sequence is not 
bounded by a finite size. Similarly, ∗1 A ∗2 B∗3 → ∗1C ∗2 D∗3 requires reading both the A and B and writing both C and D , 
which thanks to the intervening ∗2 cannot be included in one region of finite size. (These examples correspond to violations 
of conditions (i) and (ii), respectively.) A schema such as ∗1 A ∗2 + ∗3 B∗4 → ∗1C ∗2 + ∗3 D∗4 is not single-locus by the above 
definition because it violates condition (iii), even though the A and B could be viewed as a finite region to read from and 
write to. To do so, however, we would have to view the A-B region as a single region on a branched polymer, and for 
the same reason, implementing this reaction schema (up to PRN bisimulation) with “physically possible” (i.e., single-locus) 
reactions of linear polymers is impossible. We will, however, return to this topic in Section 6. An augmented single-locus 
PRN is not exactly local, and reaction schemata may read (but not change) unbounded regions; however, it turns out that 
augmented single-locus PRNs are a natural class of PRNs closed under PRN bisimulation.

Theorem 5.1. For any formal single-locus PRN (�, e, 	), there is a PRN (�′, (�′)∗, 	′) and bisimulation up to reachability interpre-
tation (π, μ) such that all reaction schemata in 	′ are of one of the following four forms:

∗1 AB∗2 → ∗1C D∗2 (Context-sensitive Replacement)

∗1 A ∗2 +B � ∗1C∗2 (Monomer-dependent Replacement)

∗1 � ∗1 E or ∗1 � F∗1 (Reversible Addition)

∗1 + ∗2 � ∗1 I∗2 (Reversible End-joining)

Proof. This proof is centered around a way to implement any reaction schema of the form

∗1x1 . . . xn ∗2 +r1 + · · · + rk → ∗1 y1 . . . ym ∗2 +p1 + · · · + pl,

where xi and yi are monomers, ri = ri,1 . . . ri,ni and similarly pi are strings of monomers. First we show how to convert 
any single-locus PRN into that form. Reactants or products of the form ∗1 w1 + w2∗2 (here wi are strings of monomers) 
can be replaced by ∗1 w1 I w2∗2 together with the reaction schema ∗1 + ∗2 � ∗1 I∗2, where m(I) = (+; ∅). Reactants or 
products without ∗1 (resp. ∗2) can replace w∗2 with ∗1 F L w∗2 with the reaction schema ∗1 � F L∗1 (resp. replace ∗1 w



R.F. Johnson, E. Winfree / Theoretical Computer Science 843 (2020) 84–114 107
with ∗1 w F R∗2 and add the reaction schema ∗1 � ∗1 F R ), where m(F L) = m(F R) = (ε; ∅). This argument implicitly makes 
use of the transitivity property of CRN bisimulation [27], which applies equally well to infinite CRNs and thus to PRNs. For 
example, it is simple to confirm that (for any reasonable �, e, �′ , e′) {∗1 AI B∗2 → ∗1C∗2, ∗1 + ∗2 � ∗1 I∗2} is a correct 
(up to PRN bisimulation) implementation of {∗1 A + B∗2 → ∗1C∗2}, so by transitivity, any correct implementation of the 
former PRN will be a correct implementation of the latter. We also assume that ux1 . . . xn v ∈ L(e) ⇒ uy1 . . . ym v ∈ L(e); 
since e is local, this is easily checkable in terms of the corresponding compatibility relation ρ: we require that {z | (z, x1) ∈
ρ} = {z | (z, y1) ∈ ρ}, and similarly {z | (xn, z) ∈ ρ} = {z | (ym, z) ∈ ρ}. If this is not the case, we can replace this schema 
with multiple schemata of the form ∗1x0x1 . . . xnx−1 ∗2 + · · · → ∗1x0 y1 . . . ymx−1 ∗2 + · · · for every combination x0 and x−1
allowed by ρ (and consider each such schema separately), each of which trivially satisfies the condition. Such a replacement 
will again be a correct implementation up to bisimulation of the original single schema, and again transitivity applies. Given 
an implementation of each reaction schema in a formal PRN, combining the implementation reaction schemata will produce 
a correct implementation of the formal PRN; this relies on the modularity property of CRN bisimulation [27], and in fact 
the implementation we give will satisfy the condition for modularity to hold.

Given a formal reaction schema of the above form, we can implement it as follows: use ∗1 AB∗2 � ∗1C E∗2 and/or 
∗1 A ∗2 +B � ∗1C∗2 trivial reactions to combine all reactants into two monomers on one polymer; use a ∗1 AB∗2 → ∗1C D∗2
reaction to convert those two into two monomers representing the products; finally use the reverse of the first process to 
separate those into the intended products. In the implementation CRN we have a monomer a for each formal monomer 
A, and a monomer for each prefix w of x, y, or any ri or pi . (If a string w is a prefix of multiple such strings, they will 
use the same w monomer.) We have an implementation monomer E with m(E) = (ε, ∅), and reaction schemata ∗1 � ∗1 E
and ∗1 w E∗2 � ∗1 E w∗2 for every prefix monomer w (including formal monomers as prefixes of length 1). Where w is a 
prefix of any of the above and w A is the next prefix, we have a reaction schema ∗1 w A∗2 � ∗1 E(w A)∗2, where w A on the 
left means the two monomers w and A while (w A) on the right means the one monomer for the prefix w A; with these 
schemata, we can collect, reversibly, any prefix of any individual reactant or product into one monomer. We have monomers 
ri for 1 ≤ i ≤ k and pi for 1 ≤ i ≤ l; where ri (resp. pi ) refers to the “prefix” monomer that is the entire string of the formal 
species ri (resp. pi ) and r0 = p0 = E , we have reaction schemata ∗1ri−1 ∗2 +ri � ∗1ri∗2 (resp. ∗1 pi−1 ∗2 +pi � ∗1 pi∗2); 
with these schemata, we can collect, reversibly, all reactants or products into two monomers on one polymer. Finally, we 
have a reaction schema to convert the two monomers representing the reactants into the two monomers representing the 
products: where x (resp. y) is the prefix monomer for the entire string x1 . . . xn (resp. y1 . . . ym), we have the reaction 
schema ∗1rkx∗2 → ∗1 pl y∗2. As an edge case, if n = 0 the reactants of that last reaction are ∗1rk∗2, if k = 0 the reactants 
are ∗1x∗2, and if n = k = 0 the reactants are ∗1 E∗2; the products are treated similarly if m and/or l = 0. We let e′ = (�′)∗; 
anything can bind to anything else, but we rely on the reaction schemata to keep the polymers formally valid and the 
consistency condition to ensure that they do. We show that this is a correct implementation, according to modular PRN 
bisimulation up to reachability, of the given formal reaction schema.

To show that this implementation is correct, we construct an interpretation; show that it satisfies the consistency 
condition; then show that it satisfies the atomic, delimiting, permissive, and modularity conditions. The interpretation is in-
tuitive: where w is an implementation monomer that is a string of formal monomers, m(w) = (w; ∅), m(ri) = (ε; ∑i

j=1 r j), 
m(pi) = (ε; ∑i

j=1 p j), and m(E) = (ε, ∅). The consistency condition then follows from the assumption that {x0 | (x0, x1) ∈
ρ} = {x0 | (x0, y1) ∈ ρ} and {x−1 | (xn, x−1) ∈ ρ} = {x−1 | (ym, x−1) ∈ ρ}: the only reaction schema that changes the π -
interpretation of any polymer is the intended formal schema, ∗1rkx∗2 → ∗1 pl y∗2, which replaces an x1 after ∗1 and xn
before ∗2 with y1 after ∗1 and ym before ∗2. (The ∗1ri−1 ∗2 +ri � ∗1ri∗2 and similar pi schemata create and destroy π -
interpretations, but those ri and pi are by assumption valid formal species.) This allows m as a CRN interpretation to be 
defined.

The atomic condition follows from the polymer atomic condition, which is satisfied by the formal monomers as imple-
mentation monomers. The delimiting condition follows from the polymer delimiting condition: it is simple to confirm that 
all reaction schemata are syntactically interpreted as trivial except ∗1rkx∗2 → ∗1 pl y∗2, which is syntactically interpreted 
as the single formal reaction schema. To prove the permissive condition, it is simpler to prove the modularity condition 
first, with respect to all formal species as common formal species and all polymers made of only formal species as com-
mon implementation species. We thus show that any implementation species can be decomposed, via trivial reactions, into 
common implementation species. Given an arbitrary non-common implementation species, decompose it as follows: first, 
use ∗1ri∗2 → ∗1ri−1 ∗2 +ri and ∗1 pi∗2 → ∗1 pi−1∗2 schemata to produce a set of species with only prefix monomers and E
monomers. Observe that ∗1 � ∗1 E and ∗1 w E∗2 � ∗1 E w∗2 schemata can take any such polymer to any other such polymer 
with the same sequence of prefix monomers interspersed with any pattern of E ’s. In particular, for each polymer in the cur-
rent decomposition, take that polymer to one where each prefix monomer w is to the right of exactly |w| − 1 E monomers. 
From such a state, ∗1 E(w A)∗2 → ∗1 w A∗2 schemata will produce polymers with only formal monomers, finishing the de-
composition to only common implementation species.

Given that every non-common implementation species can be decomposed via trivial reactions to common implemen-
tation species, we need only prove the permissive condition from minimal states consisting of only common species. 
For each formal reaction, i.e. each choice of w1 and w2 to be substituted for ∗1 and ∗2, exactly one such minimal 
state exists: w1x1 . . . xn w2 + r1 + · · · + rn . This minimal state implements the formal reaction by the intuitive path: 
∗1 w A∗2 → ∗1 E(w A)∗2 reactions to reach w1 En−1xw2 (in the edge case where k > 1 and n = 0 or n = 1, use ∗1 → ∗1 E
and ∗1 w E∗2 → ∗1 E w∗2 to reach w1 Exw2); ∗1ri−1 ∗2 +ri → ∗1ri∗2 reactions with the initial r0 = E on the E directly to 



108 R.F. Johnson, E. Winfree / Theoretical Computer Science 843 (2020) 84–114
the left of x, reaching w1 En−2rkxw2 (in the edge case k = 0 ignore this step; in the edge case n < 2 the result will be 
w1rkxw2); then the reaction w1 En−2rkxw2 → w1 En−2 pl yw2 is enumerated from ∗1rkx∗2 → ∗1 pl y∗2 and is interpreted as 
w1x1 . . . xn w2 + r1 + · · · + rk → w1 y1 . . . ym w2 + p1 + · · · + pl , satisfying the permissive condition. Any minimal state within 
this module implements that formal reaction by first decomposing all non-common implementation species then following 
the above path; any minimal state from outside this module satisfies the permissive condition by the modularity theorem; 
so this completes the proof that this interpretation is a PRN bisimulation up to reachability. �

Initially we expected the class of single-locus PRNs would be closed under PRN bisimulation, but quickly found a coun-
terexample: a formal PRN with reaction schemata A ∗1 X → A ∗1 Y and B ∗1 X → B ∗1 Z is not single-locus, but can 
be implemented by single-locus reaction schemata ∗1xA → ∗1 y and ∗1xB → ∗1z where π(xA) = π(xB) = X , π(y) = Y , 
π(z) = Z , if the implementation compatibility relation guarantees that xA can only appear in a polymer whose interpreta-
tion begins with A, and xB only in a polymer whose interpretation begins with B . Intuitively, a single-locus implementation 
schema has “computational power” equal to the computational power of its formal syntactic interpretation (in the sense of 
the polymer delimiting condition, Theorem 2.3) plus that of the regular expression restriction. (Given Lemma 2.2, this extra 
power would still be present had we defined PRNs using compatibility relations instead of regular expressions.) It is also 
important to note that in Definition 2.13 we defined PRN bisimulation as roughly a (π, μ) polymer interpretation whose 
induced CRN interpretation m is well-defined and is a CRN bisimulation, which cares about the set of implementation and 
formal reactions but not about the set of reaction schemata from which they were enumerated. Thus our statement about 
closed classes takes the form, “given a (possibly infinite) formal CRN and a single-locus implementation PRN with polymer 
interpretation that is a CRN bisimulation, the set of formal reactions is equal to the set of reactions enumerated from some 
set of augmented single-locus formal reaction schemata”.

The proof given below requires m to use the wildcard-based interpretation (Definition 2.10) because it depends on, 
for each implementation schema, “syntactically interpreting” it to create a formal schema. Conveniently, the definition of 
single-locus schema implies that the multisets of wildcards in reactants and in products of a schema are equal, so the 
wildcard-based interpretation is defined for any reaction that can only be enumerated in one way from one schema. The 
process of “syntactically interpreting” a schema inherently interprets wildcards as wildcards, discarding any members of 
the μ-interpretation of monomers in wildcards, thus naturally corresponding to the wildcard-based interpretation, which is 
why we argue that is the “natural” definition of what is a spurious catalyst in a polymer reaction. If an alternate spurious 
catalyst interpretation is used, the proof and/or the theorem may or may not hold; we suspect a sufficiently complex 
spurious catalyst interpretation may effectively add “non-single-locus behavior” to a PRN, in which case we would not even 
want the theorem to hold.

Theorem 5.2. Let (�′, e′, 	′) be a single-locus implementation PRN, (�, e) a formal species schema, and R a set of formal reactions 
such that (S(�, e), R) is a formal CRN. Let (π, μ) be a polymer interpretation between the above species schemata that satisfies 
the consistency condition and whose induced interpretation m, using the wildcard-based interpretation for spurious catalysts in each 
reaction, is a CRN bisimulation. Then there is some set 	0 of augmented single-locus reaction schemata such that R(�, e, 	0) = R. 
Conversely, given an augmented single-locus PRN (�, e, 	0) there is an implementation PRN (�′, e′, 	′) where all schemata in 	′ are 
of the types described in Theorem 5.1 with PRN bisimulation interpretation (π, μ). If e is local, then (�′, e′, 	′) is single-locus, and 
further (�′, (�′)∗, 	′) is also single-locus and the same (π, μ) defined on that PRN is a PRN bisimulation up to reachability.

Proof. Given (�′, e′, 	′), (�, e), R, and (π, μ), we produce a set 	0 of augmented single-locus reaction schemata with 
R(�, e, 	0) = R. Recall the concept of “syntactically interpreting” a reaction schema, as used in Theorem 2.3: replace each 
implementation monomer with its π -interpretation and add its μ-interpretation to the appropriate side of the reaction 
schema, producing a reaction schema defined in terms of formal monomers. The desired 	0 is the set of syntactic interpre-
tations ψi of each reaction schema ψ ′

i ∈ 	′ (which, given that syntactic interpretations preserve the placement of wildcards, 
will be single-locus). For each ∗1 (or ∗2) in ψ ′

i , because the schema is single-locus, it appears as either ∗1x′. . . , . . . x′∗1, ∗1∗2, 
or ∗1 alone. In either case, the set of possible implementation sequences preceding or following some x′ , or forming the 
first (or last) part of a polymer, or forming an entire polymer, can be described by a regular expression over �′ . The regular 
expression restriction ei,1 (or ei,2) is obtained from this regular expression by replacing each implementation monomer 
with its π -interpretation.

It follows from the three conditions of CRN bisimulation that the set of formal reactions R equals the set of nontrivial in-
terpretations of implementation reactions in R(�′, e′, 	′). (If π satisfies the consistency condition but not the compatibility 
condition, then this is true for the set of nontrivial interpretations of implementation reactions whose reactants are inter-
preted as valid formal species.) Then given any reaction enumerated from some ψ ′

i ∈ 	′ (with the above condition if π only 
satisfies the consistency condition), its interpretation will be enumerated from the corresponding ψi : whatever values ∗1
and ∗2 take in the implementation enumeration, their π -interpretations will be the values of ∗1 and ∗2 in the formal enu-
meration. Those values, by construction, will satisfy the regular expressions ei,1 and ei,2, and the full (i.e., combining π and 
μ) interpretation of the monomers in ψ ′

i will be the monomers and extra polymers in ψi ; the compatibility or consistency 
condition, as appropriate, ensures that the formal interpretations match e so that the reaction is in fact enumerated. (If the 
μ-interpretation of implementation monomers in ∗1 or ∗2 is nonempty, then those monomers will appear as both reactants 
and products, and its wildcard-based interpretation, which must appear in R for m to be a CRN bisimulation, is the reaction 
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without those spurious catalysts.) Given any reaction enumerated from some ψi ∈ 	0, similarly consider the corresponding 
ψ ′

i ∈ 	′ . By construction, the regular expression restrictions on ψi represent all strings that are π -interpretations of some 
string of implementation monomers that would be a valid substitution for the appropriate wildcard; those strings for the 
formal values of ∗1 and ∗2 will be the implementation values of ∗1 and ∗2. Recalling that the spurious catalysts definition 
of bisimulation removes nonempty μ-interpretations, the interpretation of the implementation reaction so produced will be 
the formal reaction in question. Thus the set of reactions enumerated from 	0 with restrictions is the set of interpretations 
of nontrivial reactions enumerated from 	′ , which since m is a CRN bisimulation is equal to R.

Given a formal augmented single-locus PRN (�, e, {ψ}) with one reaction schema, we construct an unaugmented imple-
mentation PRN (�′, e′, 	′) and PRN bisimulation interpretation (π, μ), where every reaction schema in 	′ is single-locus, 
and if e is local then so is e′ . Given Theorem 5.1 and the transitivity and modularity results, this is sufficient to prove the 
statement of this theorem. Effectively, we will construct an implementation PRN that uses (non-augmented) single-locus 
trivial reactions to check that the wildcards satisfy their regular expression restrictions, and if the check passes, imple-
ments ψ . The information that the check passed will be stored next to the “single locus” that ψ affects, thus making the 
implementation single-locus without augmentation.

Say ψ takes the form ∗1x1 . . . xn ∗2 +r1 + · · · + rk → ∗1 y1 . . . ym ∗2 +p1 + · · · + pl , where some xi and/or yi may be +
(if ∗1 and ∗2 are on different polymers), and ∗1 is restricted to match the regular expression e1 while ∗2 must match e2. 
Let M1 be an NFA recognizing e1 and M2 an NFA recognizing the reverse of e2. Let �′ be � together with, for each x ∈ �

and q a state in M1 or M2, two additional species xq and x′
q . Construct e′ as the intersection of two regular expressions as 

follows. First, replacing each xq and x′
q with x should produce a string that matches e. Second, starting from the leftmost 

monomer may trace a valid partial computation of M1 as follows: k − 1 monomers of the form (xi)
′
qi

, 0 < i < k, followed 

by a monomer (xk)qk , such that where q0 is the start state of M1, qi−1
xi−→ qi for 1 ≤ i ≤ k; and starting from the rightmost 

monomer reading right-to-left may trace a valid partial computation of M2 in the same manner, while between these partial 
computations only monomers x ∈ � appear. Observe that because the partial computation regular expression is local, if e is 
local then so is e′ .

	′ will have reversible reaction schemata

x∗1 � xq ∗1 for (�, x) ∈ ρ, q0;M1

x−→ q;
and

∗1xq y∗2 � ∗1x′
q ys ∗2 for (x, y) ∈ ρ, q

y−→ s ∈ M1

to simulate M1; similarly

∗1x � ∗1xq for (x,�) ∈ ρ, q0;M2

x−→ q

and

∗1xyq∗2 � ∗1xs y′
q ∗2 for (x, y) ∈ ρ, q

x−→ s ∈ M2

to simulate M2; and

∗1xqx1 . . . xn ys ∗2 +r1 + · · · + rk → ∗1xq y1 . . . ym ys ∗2 +p1 + · · · + pl

for any pair of formal monomers (x, y) and any pair (q, s) of accepting states of M1 and M2 respectively. (For clarity, in 
that last reaction schema x1 . . . xn and y1 . . . ym are the monomers in � that appear in ψ , while xq , ys , etc. are monomers 
x, y ∈ � subscripted with NFA states.) The polymer interpretation will have

π(x) = π(xq) = π(x′
q) = x

and

μ(x) = μ(xq) = μ(x′
q) = ∅

for all x, q.
The construction of e′ implies that π satisfies the compatibility condition, and � ⊂ �′ with strings matching e also 

matching e′ implies the atomic condition. For the delimiting condition, first, any reaction enumerated from one of the 
reversible reaction schemata will be trivial. For any reaction enumerated from the last schema, which matches the formal 
schema, to be made of valid implementation species, it must have ∗1xq be an accepting computation of M1 and yr∗2
(the reverse of) an accepting computation of M2, implying that the corresponding formal strings match e1 and e2. The 
same requirement implies that the interpreted string matches e, which means that the interpreted formal reaction is a 
reaction enumerated from ψ with the restrictions; thus the delimiting condition is satisfied. For the permissive condition, 
observe that any implementation polymer containing partial computations can reverse itself to a formal polymer, thus 
proving modularity (with respect to both sets of common species being S). Starting from only formal polymers whose 
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interpretation can implement a reaction enumerated from 	, the applicable implementation polymers can use the reversible 
reaction schemata to simulate M1 on the beginning and M2 on the end, at which point the nontrivial schema applies and 
the formal reaction can be implemented.

If e is not local, then applying Theorem 5.1 with transitivity and modularity to any number of reaction schemata in 
(�, e, 	0) produces a (�′, e′, 	′) with single-locus schemata in 	′ (since the classes of schemata in Theorem 5.1 are all 
single-locus), but the PRN itself is not single-locus since e′ is not local. However, if e is local, then so is e′ , so the same 
(�′, e′, 	′) is single-locus. In that case, given the compatibility relation ρ that is equivalent to e, we can remove from the 
	′ any schema where the interpretations of two adjacent monomers are not compatible according to ρ . (For example, the 
last schema would only be present for (x, x1), (xn, y), (x, y1), and (ym, y) all ∈ ρ .) Since we are no longer relying on e′ to 
ensure that enumerated reactions respect e, we can define a PRN (�′, (�′)∗, 	′) and guarantee that (π, μ) defined on that 
PRN will satisfy the consistency condition, since the only reaction schemata defined are those that respect ρ everywhere 
outside the wildcards and leave monomers adjacent to wildcards unchanged. For the same reason as shown in Theorem 5.1, 
this (π, μ) is a PRN bisimulation up to reachability. �

While, as mentioned above, the class of single-locus PRNs are not closed under PRN bisimulation, combining Theorem 5.2
with the transitivity of PRN bisimulation provides us with the desired related result that the class of augmented single-locus 
PRNs are closed under PRN bisimulation.

Corollary 5.3. Let (�′, e′, 	′) be an augmented single-locus implementation PRN, (�, e, 	) a formal PRN, and (π, μ) a PRN bisimu-
lation interpretation. Then R(�, e, 	) =R(�, e, 	0) where (�, e, 	0) is an augmented single-locus PRN.

6. Alternate polymer models and extended models

In defining linear Polymer Reaction Networks and PRN bisimulation, we made various choices of model properties. 
Alternative choices would have led to different models, some of which would have similar theorems applicable, some of 
which would have had different results. Here we briefly discuss two of those alternative choices, and what effects they 
would have had on the above theory.

6.1. Altered wildcards

Recall again the one-step and local string copying and comparison models in Fig. 3. As opposed to the previous section, 
here we pay attention to what behaviors we can define if we don’t care about single-locus restrictions on wildcards. If we 
want to copy, move, or remove an arbitrary polymer, or compare two polymers, wildcards as defined can do that:

∗1 + P → ∗1 + ∗1 + P

On the other hand, consider a simplified model of RNA polymerase, written (in not-yet-defined notation) as:

∗1{A, T , C, G} + P → ∗1 + P + ∗1[A → a, T → u, C → c, G → g]
Here RNA polymerase acting on a polymer made up of the DNA bases A, T , C , and G produces a copy replacing each 
DNA base with the corresponding RNA base a, u, c, or g , similar to the result of the string copying local model. String 
transcription is not significantly stranger than string copying, and it seems reasonable to construct a model that, if it can 
describe one as a one-step process, can do the same for both. We might similarly want to model effects that have a 
wildcard and its reverse, such as polymerase reverse-copying a single strand of DNA, or a stack and its reverse meeting and 
annihilating each other (also shown as a multi-step mechanism in Fig. 3), or possibly other transformations of wildcards.

One way to define such a model is as follows: In a reaction schema, each wildcard ∗i must, in exactly one spot in the 
reactants, be written ∗i{A1, . . . , An}, for some set of monomers {A j}. (As a notational convenience, ∗i{�} can be written as 
just ∗i .) At any other point in the reactants and/or products where ∗i appears, it can appear as ∗i[A1 → B1, . . . , Ak → Bk], 
and/or be tagged ∗rev

i . Such a schema is enumerated as follows: ∗i{A1, . . . , An} is replaced by a string wi containing only the 
A j ’s, and modified instances of ∗i are replaced by wi reversed and/or with each A j replaced by B j , as appropriate. Other 
tags, with the same syntax as reverse and with corresponding modifications in the semantics, could be defined as necessary. 
More generally, wildcards in reactants and products could be related by finite state transducers [45]. Schemata that use these 
features, however, would seldom be single-locus, since these features involve reading and/or writing arbitrarily large strings 
in the wildcards.

Mostly, the main content of this paper is orthogonal to this aspect of the model. A PRN with this extension is still 
enumerated into and treated as a (probably infinite) CRN; PRN bisimulation is still defined as previously discussed; the 
hardness results still apply. Single-locus PRNs are defined (as they should be) to exclude these features, so those results are 
similarly unaffected. Overall, we did not define PRNs with these features because we did not need these features to discuss 
the DNA stack machine, but the model should handle these features without too much difficulty.

It is also of interest when physically rotating a polymer in a way that reverses left and right causes the same molecule 
to be described by a different string of monomers. For example, say we want to represent fully double-stranded DNA as a 
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linear polymer, and we let the monomer T represent a T base on the top strand paired with an A on the bottom strand, 
and similarly for A, C , and G . Then e.g. the strings T GGC and GCC A represent the same physical molecule, and any good 
model should recognize that. To handle this we could say that in a rotatable PRN, there is some function on monomers 
x → xt with (xt)t = x, which extends to polymers such that (uv)t = ut vt , and the species of the enumerated CRN are pairs 
of equivalent strings {w, wt}. Reactions are enumerated from schemata such that for some substitution into the wildcards, 
whatever strings are produced, the pairs containing those strings are the CRN species involved in the enumerated reaction. 
This requires intuitive restrictions on the compatibility relation, (x, y) ∈ ρ ⇐⇒ (yt , xt) ∈ ρ where �t = �, and on polymer 
interpretations, π(xt) = π(x)t and μ(xt) = μ(x). The rest of the theory should be compatible without further changes. As 
an example, if the string-reverse detection local model from Fig. 3 is taken as a rotatable PRN with 0t

l = 0r , 1t
l = 1r , St = S , 

and Y t = Y , then it will identify a string over {0l, 1l} with its reverse over {0r, 1r}, and two copies of the same such string 
will go through the mechanism that eventually produces Y .

6.2. Branched polymers

Examples of Turing-universal computation used in molecular programming, such as register machines [13,51], stack 
machines [42,33], and Turing machines themselves [43,55], tend to be linear, so we studied a system of linear PRNs: each 
monomer can bind to at most two other monomers, and we can write a polymer as a string of monomers. We could 
instead have allowed each monomer to make either an arbitrary number of bonds, or up to some finite (characteristic of the 
monomer) number of bonds, either of which would allow us to model much more general systems. Such an approach would 
present some complications for defining reaction schemata, and present further complications for defining bisimulation, but 
we believe those complications are all solvable.

The obvious way to extend our definition of linear Polymer Reaction Networks to more general PRNs is effectively a 
graph-rewriting system with wildcards [44]. In this sense, a (linear) polymer reaction schema such as ∗1 A ∗2 +B → ∗1C∗2
is already a graph rewriting rule, where all graphs must be lines, and this is a straightforward generalization. Two examples 
of this would be:

When we defined polymer interpretations for PRN bisimulation, we defined a π -interpretation and a μ-interpretation. 
With linear polymers, it was easy to say that, given a string of monomers, we interpret them by concatenating their π -
interpretations. The equivalent for nonlinear polymers, if a monomer’s π -interpretation is anything other than a single 
monomer, is not obvious. One solution might be to say that each monomer must have a finite set of “faces”, i.e. potential 
bonds, and for each face of an implementation monomer, its π -interpretation specifies a face of a formal monomer in 
the π -interpretation to correspond to that implementation face. As a special case, we could say that an implementation 
monomer whose π -interpretation is ε must have at most two faces, and if it has two faces both connected to something, 
the connections are connected to each other in the interpreted formal polymer. This concept of faces would also solve a 
similar problem with defining the compatibility relation, and would allow linear PRNs as defined above to be a subcase of 
branched PRNs, where every monomer has exactly two faces, “left” and “right”. The rest of the theory of PRN bisimulation 
should extend naturally to branched PRNs. To develop this idea into a working theory, chemistry-inspired graph rewriting 
approaches might be a good place to start [1].

Single-locus PRNs can be defined for branched PRNs, and in fact can be defined in a somewhat more natural way than 
for linear PRNs. Recall Definition 5.1 of linear single-locus PRNs, in particular condition (iii), that no two distinct wildcards 
appear at the beginning of a polymer, and similarly for the end. This definition was motivated by that, when imagining a 
physical implementation of a single-locus reaction schema, such an implementation of a schema that violates condition (iii) 
would require an intermediate step that is not linear. When the underlying PRN model allows branched polymers, this is 
not as much of a problem. For branched PRNs, we would define single-locus reaction schemata as follows: (i) any wildcard 
that appears at all, appears exactly once in the reactants and exactly once in the products, and (ii) all wildcards have at 
most one bond. (Of the above branched reaction schemata, the first is single-locus and the second is in multiple ways not 
single-locus.) We suspect a theorem similar to Theorem 5.1 would be provable for branched single-locus PRNs.

The Biochemical Ground Form (BGF), discussed by Cardelli and Zavattaro [13], serves as an example of what a branched 
polymer model could look like. (The concept of faces, for example, corresponds roughly to association labels in the BGF.) The 
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BGF, instead of graph rewriting reaction schemata, defines reactions in terms of the actions of different “agents” (monomers), 
some of which may require coordination with other agents. Implicitly, if a monomer A can take an action a, it can do so 
regardless of what that monomer is bound to, which in our way of writing means every reaction (schema) has all possible 
wildcards. In particular, we suspect every BGF system could be written a single-locus branched PRN. The BGF as described 
has no mechanism for a monomer to coordinate specifically with another monomer bound to it, as opposed to another monomer 
of the specific type that may be on a different polymer; with such a mechanism, we suspect but have not proven that the 
BGF could implement, up to bisimulation, any single-locus branched PRN.

Extending bisimulation from branched polymers to molecules with arbitrary graph topology, again with reactions imple-
mented as graph rewriting rules [44,1], would also be an interesting research direction. Indeed, certain types of bisimulation 
for graph grammars have been studied [6].

6.3. Relation to string rewriting models

Linear Polymer Reaction Networks have a number of close connections to string rewriting systems [8], not the least 
of which being that objects are simply represented as strings. For example, semi-Thue systems, which allow derivations 
wherein at each step a substring ui from a given set is replaced by the corresponding vi , can be modeled exactly by a PRN 
with the unimolecular reactions ∗1ui∗2 → ∗1 vi∗2. Semi-Thue systems are already Turing universal [40]. (For example, the 
copy-tolerant Turing machine in Fig. 3 illustrates this point.) Not only do PRNs allow a wide range of rewriting operations, 
but they also allow bimolecular reactions and reactions with more than one product, making them in our opinion more 
appropriate and natural for modeling chemical reaction networks involving polymers (despite that the computational power 
is not increased). Similarly, branched Polymer Reaction Networks would be related to term rewriting systems [4] as the 
main representation is a tree; again, the notion of bimolecular reactions and counts of species are novel to the chemistry 
context.

L-systems [41] are another related string rewriting model from the study of natural computing that has been used 
effectively to model growth processes ranging from chains of dividing bacteria to multicellular plant development. Like 
cellular automata, L-systems are one-dimensional and invoke a simultaneous parallel update semantics, but unlike cellular 
automata, each cell (character of the string) is replaced by either a length-1 string (cell state update) or a longer string 
(growth) or an empty string (death). While synchronous updates are not natural in the PRN model, unimolecular PRN 
reaction schemata can directly model asynchronous variants of both cellular automata and L-systems. More generally, our 
PRN model can be considered an example of a string-based artificial chemistry [19,22].

7. Discussion

Our main claim is that polymer CRN-like systems are a strong candidate for powerful and practical molecular com-
putation; that formal verification is useful for systematic construction of (eventually, large) polymer systems; and that 
bisimulation is a useful technique in formal verification of polymer systems. To show this, we defined a model of linear 
Polymer Reaction Networks, and defined PRN bisimulation based on that model. We proved some useful properties of PRN 
bisimulation; we showed how to use PRN bisimulation to verify an existing system; and we showed an example of how 
PRN bisimulation can identify good design strategies for implementing a large class of systems. Although we did all of this 
within the model of linear PRNs, we discussed how PRN bisimulation is likely to be applicable, and our results translatable, 
to other models of polymer CRN-like systems. Thus, even if this model of linear PRNs is not the optimal model for polymer 
systems in molecular programming, the concept of PRN bisimulation will likely remain useful.

Our definition of PRN bisimulation interprets each state of the implementation system as a state of the formal system, 
and checks whether, from any initial state, the possible trajectories of the two systems are equivalent under that interpreta-
tion. However, it ignores quantitative aspects of the system such as rate constants, meaning PRN bisimulation says nothing 
about the kinetics of the system (i.e. how long things take) or the probabilities of the various possible trajectories. It also 
assumes that the model of the implementation system as a PRN is accurate, and the model we used in this case ignores the 
“leak reactions” and other side reactions typical of DNA strand displacement systems; with no way to distinguish between 
likely and unlikely reactions, PRN bisimulation evaluated on a model including leak reactions would say that the imple-
mentation is incorrect. This means that when an implementation is proven correct according to PRN bisimulation, we know that a 
specific class of its behavior is equivalent to the corresponding behavior of its specification (formal PRN), namely the rate-independent 
behavior up to (if applicable) whatever model we used to describe the implementation system as an implementation PRN. In systems 
such as stack machines and Turing machines, the rate-independent behavior is the only relevant behavior of the abstract 
system, so PRN bisimulation proves that the implementation has the behavior we want. In systems such as oscillators or 
dynamic instability, while PRN bisimulation can prove some correspondence between the implementation and the abstract 
system, it may not be able to say anything about the kinetics that imply the relevant behavior. (Whether an extension of 
PRN bisimulation can take kinetics into account is, as it is for CRN bisimulation [27], an important open question.) Intu-
itively we expect that for “systematic implementations” such as the stack machine or the various CRN translation schemes, 
if the scheme has no qualitative (i.e., detectable by CRN/PRN bisimulation) errors then its kinetics are “close enough” to 
and/or can be tuned to match those of the abstract system. Experimental implementations such as the CRN oscillator by 
Srinivas et al. [49] suggest this is the case, and the experiments of Chen et al. [17] demonstrate an experimentally working 
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CRN even when CRN bisimulation identifies a potential error (that, presumably, averages out). In our experience, polymer 
systems (compared to well-mixed CRNs) are more likely to depend on rate-independent computation and not care about 
kinetics; for example, well-mixed CRNs require kinetics to approximate the behavior of “A happens, then B happens”, while 
polymer systems can use geometric separation to achieve the same thing with less probability of error. (This is more often 
true for polymer systems that simulate classic models of computation than for those found in biology.) Consequently, while 
PRN bisimulation cannot prove correct every relevant aspect of an implementation PRN in general, it is a useful tool to 
verify the important aspects of many useful polymer systems.

The simplest thing to do with PRN bisimulation is to, given one formal PRN and one putative implementation, verify by 
hand that the implementation matches the formal PRN. We demonstrated an example of this with the DNA stack machine 
from Qian et al. [42]. (Lakin and Phillips [33] also provide verification of their improved DNA stack machine implementation, 
but unlike our symbolic approach that guarantees correctness for all possible inputs, their application of probabilistic model 
checking relies on explicit enumeration of the state space for specific inputs. This is likely to catch systematic errors in 
the implementation, but not guaranteed to.) We suspect that bisimulation can be used in more powerful ways, such as 
automated verification of systems too large to verify by hand, or as a basis for formal proofs that certain classes of systems 
will or will not be correct implementations of other classes, or as an intuition to guide designers of molecular devices in 
their search for correct implementations.

As we would expect for a model equivalent in power to Turing machines, whether two systems are PRN bisimulation 
equivalent is undecidable in general, but this does not rule out any form of computer-aided verification. Exactly what form 
such verification could take, we don’t know, but we have two possibilities to suggest. The main problem that produces 
the undecidability result stems from the permissive condition, that for every formal reaction in any implementation state 
whose interpretation can do that reaction, the implementation state can implement the formal reaction after some sequence 
of zero or more trivial reactions. The problem is that there is no upper bound on the number of trivial reactions; the 
undecidability result uses a formal reaction that can be implemented only if a Turing machine computation made of trivial 
reactions halts. Systems intended to be built in practice typically use a small, and in particular bounded, number of trivial 
reactions per formal reaction. Based on this, the first suggestion is that some bound on the number of trivial reactions may 
give a definition of PRN bisimulation that is decidable or even tractable. Exactly what type of bound is best, and whether 
this idea covers all the physical implementations we care about, is unknown. Similarly, systems intended to be built in 
practice typically have a designer who knows how the system is intended to work, and can provide a “proof” that the 
permissive condition is satisfied, as we did for the DNA stack machine above. The hardness result shows that not every 
correct implementation will have a finite proof at all, let alone one that can be checked in reasonable time, but it may be 
that a large enough class of “reasonable” implementations does. How exactly such a proof should be specified, and what 
class of systems can be proven correct this way, is unknown.

That formal verification methods such as PRN bisimulation can be used to guide design is a speculation of ours. We 
showed a concrete example of this idea with the proof that any “physically realistic” (single-locus) PRN can be implemented 
by five reaction schema “primitives”. This sort of result will likely be helpful for designing complex polymer systems, 
where whatever complex behavior the designer needs can be implemented in a known way with simple primitives, which 
themselves can be implemented in some known way yet to be discovered. We further hope that, with a formal definition 
in mind of what makes a correct implementation, someone designing physical implementations would have a better idea of 
what systems to design.
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