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Abstract14

A hierarchical Bayesian classifier is trained at pixel scale with spectral data from15

the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) images. Its util-16

ity in detecting small exposures of uncommon phases is demonstrated with new geologic17

discoveries near the Mars-2020 rover landing site. Akaganeite is found in sediments on18

the Jezero crater floor and in fluvial deposits at NE Syrtis. Jarosite and silica are found19

on the Jezero crater floor while chlorite-smectite and Al phyllosilicates are found in the20

Jezero crater walls. These detections point to a multi-stage, multi-chemistry history of21

water in Jezero crater and the surrounding region and provide new information for guid-22

ing the Mars-2020 rover’s landed exploration. In particular, the akaganeite, silica, and23

jarosite in the floor deposits suggest either a later episode of salty, Fe-rich waters that24

post-date the Jezero crater delta or groundwater alteration of portions of the Jezero crater25

sedimentary sequence.26

1 Introduction27

Hyperspectral data collected by the Compact Reconnaissance Imaging Spectrom-28

eter for Mars (CRISM) aboard the Mars Reconnaissance Orbiter have proven instrumen-29

tal in the discovery of a broad array of aqueous minerals on the surface of Mars since30

2006 (Murchie, Mustard, et al., 2009; Pelkey et al., 2007; Viviano-Beck et al., 2014). Al-31

though these data have revolutionized our understanding of the planet, existing geologic32

discoveries are mostly limited to common mineral phases that occur with relatively large33

spatial extent. Secondary phases on Mars that occur at low abundances are important34

for a more complete interpretation of the underlying geologic processes. For example,35

specific minerals such as alunite and jarosite (acidic), serpentine (alkaline, reducing), anal-36

cime (alkaline, saline), prehnite (200 ◦C < temperature < 400 ◦C), and perhaps phases37

yet to be discovered, serve as direct environmental indicators of Mars water chemistry.38

Moreover, the identification of rare phases, even in just a few pixels, enables character-39

ization of the mineral assemblages within a geologic unit, which are critical for identi-40

fying the thermodynamic conditions and fluid composition during interactions of rocks41

with liquid water.42

Isolation and discovery of accessory mineral phases is challenging due to the sys-43

tematic artifacts, random noise, and other limitations of an aging instrument affecting44

more recently collected CRISM images. The most common spectral mineral-identification45

method involves ratioing the average spectra from two regions along-track in the image,46

where the numerator is the spectrum from the area of interest and the denominator is47

the spectrum derived from a spectrally homogeneous bland region (Carter, Loizeau, Man-48

gold, Poulet, & Bibring, 2015; B. L. Ehlmann et al., 2009; Murchie, Seelos, et al., 2009;49

Viviano, Moersch, & McSween, 2013). Summary parameters derived from key absorp-50

tion bands are used to identify candidate regions for the numerator and denominator (Pelkey51

et al., 2007; Viviano-Beck et al., 2014). Although summary parameters have been effec-52

tive for detecting common phases with relatively large spatial extent, distinctive absorp-53

tion bands useful for detecting accessory phases cannot be reliably recovered by sum-54

mary parameters for two reasons. First, rare phases span a limited number of nearby but55

not necessarily contiguous pixels in an image, which makes spectral averaging less use-56

ful in eliminating random noise. Second, key absorption bands of rare secondary min-57

erals can occur at wavelengths close to those of common phases in the image. The 6.5558

nm increments between two channels in CRISM offer enough spectral resolution to dif-59

ferentiate between such primary and secondary phases in ideal conditions. However, con-60

sidering the practical limitations of CRISM data and the occurrence of phases in mix-61

tures, such a distinction may not be possible without exploiting the spectral data in its62

entirety and identifying less obvious spectral features.63
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As part of our ongoing efforts to implement machine learning methods to fully au-64

tomate mineral discovery in CRISM data, we have previously reported new jarosite and65

alunite detections across Mars (Dundar & Ehlmann, 2016; B. Ehlmann & Dundar, 2015)66

and have identified a previously unknown CRISM artifact that mimics the characteris-67

tics of real mineral absorption at 2.1 µm range that could have significant implications68

in the search for perchlorate (Leask, Ehlmann, Dundar, Murchie, & Seelos, 2018). Here,69

we present technical details of our hierarchical Bayesian model and demonstrate its util-70

ity by reporting new discoveries of minerals from the NE Syrtis area and Jezero crater71

and their geologic context. Jezero crater and NE Syrtis are of high interest as regions72

where the Mars-2020 rover will conduct its in situ exploration and as some of the most73

dust-free and ancient areas where strata are well-exposed for study of Mars geologic his-74

tory. Prior studies of Jezero crater and its watershed have focused primarily on the Fe/Mg75

smectite clays and carbonates that make up deltaic and crater floor deposits and the sur-76

rounding, eroded Noachian stratigraphy (B. L. Ehlmann et al., 2008, 2009; Goudge, Mus-77

tard, Head, Fassett, & Wiseman, 2015). Here, we focus on identification of small, rare78

phases to inform the geologic history of the crater in both the crater floor lake sediments,79

wallrock of Jezero crater, and surrounding region. The region is a well-suited proving80

ground for the proposed Bayesian model because of its mineral diversity, excellent im-81

age availability, and high relevance for Mars exploration.82

2 Methods83

2.1 Image datasets84

We use CRISM I/F data, which are derived by dividing surface radiance by solar85

irradiance. Radiance data are used for ruling out artifacts during our verification pro-86

cess (Leask et al., 2018). Simple atmospheric and photometric corrections are applied87

to all images using CRISM Analysis Toolkit (Morgan et al., 2009; Murchie, Seelos, et88

al., 2009). Only spectral channels that cover the spectral region from 1.0 to 2.6µm (24889

channels) are used in this study.90

Geographically projected CRISM data were co-registered with high resolution Con-91

text camera (CTX) (Malin et al., 2007) and HiRISE (High Resolution Imaging Science92

Experiment) (McEwen et al., 2007) image data. The CTX global mosaic was used as the93

basemap for examination of morphology (Dickson, Kerber, Fassett, & Ehlmann, 2018),94

and standard pipelines for producing local digital elevation models were produced us-95

ing Caltechs Murray Laboratory pipeline, which utilizes the Ames stereo pipeline (Beyer,96

Alexandrov, & McMichael, 2018; Shean et al., 2016). CRISM spectral analysis proceeds97

in multiple steps, described below.98

2.2 Creating a training library of spectral patterns by unsupervised learn-99

ing and visual classification100

Over fifty independently characterized CRISM images from the Nili Fossae and Mawrth101

Vallis regions were processed by a nonparametric Bayesian clustering technique Yerebakan,102

Rajwa, and Dundar (2014). This method generates a few hundred spectra per image pro-103

cessed, which are visually inspected for mineral detections reported in the literature. Ver-104

ified spectra are manually classified to create an initial spectral training library. This un-105

supervised learning approach is not only computationally intensive but also requires a106

tedious task of manually assigning extracted spectra to classes. Nonetheless, this step107

is needed to initiate the active machine learning process to collect a representative train-108

ing library essential for training a robust mineral classifier. In the second phase, the train-109

ing library collected in this phase is used to implement two models: a bland pixel scor-110

ing function for column-wise ratioing and a classifier model that operates on the ratioed111

data to render mineral classification. Both the scoring function and the classifier uses112

our two-layer Bayesian Gaussian mixture model.113
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2.3 Two-layer Bayesian Gaussian Mixture Model114

Note that true distributions of spectral patterns in the training library are not known.116

Different instances of the same pattern detected across different images exhibit varying117

spectral properties due to differences in atmospheric effects and viewing geometry as well118

as inherent differences in surface material spectral properties. Our two-layer Gaussian119

mixture model uses one mixture model for each spectral pattern in the lower layer. Herein,120

a spectral pattern might represent a mineral phase, a known artifact, a bland pixel cat-121

egory, a common mixed phase, or an unidentified pattern. The number of components122

in a mixture model for a given pattern is determined by the number of images in which123

that pattern occurs as the model introduces one Gaussian component for every image124

the pattern is detected. For example, out of 330 images available in our current train-125

ing library prehnite exists in eleven of them, which implies that there are elven observed126

instances of the prehnite pattern (“instance” refers to an occurrence in an image, which127

can be one or several pixels). The model introduces a Gaussian component for each in-128

stance to spectrally model the prehnite pixels corresponding to that instance. Gaussian129

components corresponding to the same spectral pattern are regulated by a shared local130

prior and local priors associated with each pattern are in turn modeled by a global prior.131

In this context the local prior can be thought of as the estimate for the true distribu-132

tion of the corresponding pattern and the global prior can be interpreted as a template133

for all viable spectral patterns. This two-layer hierarchical model (illustrated in Figure134

1) offers flexibility and robustness for modeling pattern distributions. The lower layer135

models spectral variations of the same pattern across images whereas the upper layer mod-136

els spectral variations across patterns. Further technical details of the model and the deriva-137

tion of the posterior predictive distribution (PPD) is provided in the supplementary ma-138

terial.139

2.4 Bland pixel scoring and ratioing140

To compute the likelihood of individual pixels originating from bland pattern cat-141

egories an ensemble version of the model discussed in Section 2.3 is used. Multiple dif-142

ferent submodels each with different subset of channels are included in the ensemble. En-143

semble models offer better generalizability and are more robust with respect to noise com-144

pared to a single model Breiman (2001).145

These likelihood scores are then used to identify denominator regions during column-146

wise ratioing. The denominator is obtained as the average spectrum of a small number147

of pixels with the highest bland pixel scores sharing the same column as a pixel of in-148

terest but lies within a 2w row neighborhood of that pixel, where w defines the size of149

row neighborhood. For robust denominator-insensitive ratioing a range of w values are150

considered to obtain multiple denominators, and their corresponding ratioed spectra are151

averaged to obtain a single ratioed spectrum for that pixel. Once all pixels in each I/F152

image are ratioed this way the ratioed data are used by the pattern classifier for pixel-153

scale classification.154

2.5 Automated pattern classification155

Ratioed I/F data are further processed using a cascaded set of one-dimensional me-156

dian filters with decreasing window sizes to gradually eliminate large spikes Liu, Shah,157

and Jiang (2004). These ratioed and despiked data are used to train the two-layer Bayesian158

classifier. This training process involves estimating the parameters of the PPD correspond-159

ing to each pattern. Unlike bland pixel scoring, which uses only bland pattern categories,160

the pattern classifier is implemented with spectral data from all patterns available in the161

training library. An image is classified at the pixel-scale by evaluating the likelihood of162

each of its pixel originating from one of the patterns in the training library and then as-163

signing it to the pattern that maximizes this likelihood.164
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2.6 Active machine learning165

The initial training library consisted of patterns detected from a limited number166

of CRISM images. To obtain a more representative training library, while classifying new167

images, an active learning scheme is adopted. After each image is classified all detected168

patterns are visually inspected to confirm automated detections and training library is169

updated accordingly. The classifier is retrained, i.e., PPDs are updated, every time the170

training data is updated. The vast majority of images in our training set were selected171

from Nili Fossae and Syrtis, Mawrth Vallis, Terra Sirenium, Valles Marineris, Libya Montes,172

and Gale Crater. There are also images processed from elsewhere on Mars to enrich the173

spectral diversity of detections such as the serpentine detection in Clarites rise, water174

ice and gypsum detections in polar dunes.175

2.7 False positive mitigation176

Apart from known artifacts, vertical striping and pixel spiking some CRISM im-177

ages also suffer from poor signal-to-noise ratio, which is more evident in images acquired178

at higher temperatures. Some false positives are unavoidable when images are automat-179

ically ratioed and classified at pixel-scale. To reduce the number of false positives we use180

spatial constraints to identify the most viable detections. More specifically, once the im-181

age is classified at pixel scale, we map pixel labels onto the image and identify connected182

components, i.e., groups of pixels sharing the same class label and connected to each other183

with 8-neighborhood connectivity. All connected components with less than three pix-184

els or all pixels in the same column are considered less viable and are ignored from fur-185

ther processing. We maintain an interactive machine learning workflow to verify all vi-186

able detections, especially those with limited spatial exposures. As such, all of the de-187

tections reported in this manuscript have been carefully validated by us. Given the nu-188

merator region detected by the algorithm, we manually selected a numerator from a sim-189

ilar pixel set and manually selected multiple denominators to verify the pattern iden-190

tified by the algorithm.191

3 Results192

3.1 Diverse wallrock minerals at Jezero crater193

Mapping of wallrock materials with CRISM data previously revealed low-Ca py-194

roxenes and Fe/Mg smectites (B. L. Ehlmann et al., 2008, 2009; Goudge et al., 2015).195

Here we show also Al phyllosilicates and Fe/Mg phyllosilicates, which have an absorp-196

tion at distinctively longer wavelength than Fe/Mg smectites (Figure 2). The Al phyl-197

losilicates are found on the western crater rim (FRT00005850, HRL000040FF) and the198

southern crater rim (FRT0001C558) over an elevation range of -2200m to -2500m rel-199

ative to the Mars datum. The observed Al phyllosilicate spectra have an absorption cen-200

tered between 2.19-2.20 µm as well as absorptions at 1.4 and 1.9 µm. The slight asym-201

metry in many of the spectra suggests the presence of kaolinite (Figure 2d). The breadth202

of some of the Al phyllosilicate absorptions, particularly 1C558 may indicate a mixture203

of phases, but the breadth is too narrow for opaline silica. The unique Fe/Mg phyllosil-204

icate detections are best isolated right on the rim in FRT0005850 with 1.4, 1.9, and 2.3205

µm absorptions. The absorption between 2.32-2.34 µm is longer than that of the Fe/Mg206

smectites, also observed on the rim (Goudge et al., 2015), and that of the Mg carbon-207

ates and Fe/Mg smectites that are common in Jezero crater sediments and basin floor208

deposits, and this location lacks a 2.5 µm absorption. The spectra are consistent with209

chlorite or mixed layer Fe/Mg smectite-chlorite phyllosilicates.210
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3.2 Silica and Jarosite at Jezero crater221

As also reported by (Tarnas et al., 2019), we find exposures of hydrated silica within222

the Jezero crater basin (Figure 2). The exposures have 1.4, 1.9, and 2.2 µm absorptions;223

the 2.2-µm absorption is substantially wider than in the wallrock Al-phyllosilicates (Fig-224

ure 2b). At least three small exposures <500m2 are found scattered in the heavily de-225

graded northern delta (FRT000047A3). Locally, the silica is topographically lower and226

associated with darker, smoother material below the roughened sediments with Fe/Mg227

smectite and Mg carbonate. These could be confined to a sedimentary bed within the228

delta, though the orbital data are ambiguous (Figure Suppl. 2i-l) A small exposure of229

silica is also found on the southernmost lobe of the western delta, adjacent to higher stand-230

ing carbonate-smectite sediments (HRL000040FF, FRT00005C5E). The exposure is slightly231

darker in albedo but otherwise unremarkable relative to the surroundings.232

In two images (HRL000040FF, FRT00005C5E) material with an absorption of sim-233

ilar width to the hydrated silica is found, but here the band minimum is at 2.26 µm (Fig-234

ure 2b). This suggests the presence of jarosite, separate or intermixed with the silica,235

although at the signal to noise of the dataset, mixtures of silica with another mineral can-236

not be completely excluded. The location and spectral characteristics are the same in237

both images.238

3.3 Akaganeite at Jezero crater and NE Syrtis246

A new type of hydrated mineral deposit in Jezero crater was discovered by iden-247

tifying a cluster of spatially co-located but not always adjacent similar pixels by the hi-248

erarchical Bayesian model and then confirmed with traditional ratio techniques (Figure249

3). The hydrated phase has a ∼1.9-µm absorption that indicates H2O and a 2.45-µm250

absorption (Figure 3f). Relative to nearby spectrally “bland” materials there is also a251

red slope from shorter to longer wavelengths that indicates electronic transitions related252

to Fe mineralogy different from those of other floor materials. The spectra are most sim-253

ilar to akaganeite Fe3+(O,OH,Cl) and the spectral properties as well as geologic set-254

ting near a basin margin are similar to akaganeite reported in Sharp crater (Carter, Viviano-255

Beck, Loizeau, Bishop, & Le Deit, 2015). The strong 2.45µm absorptions are similar to256

the 2.42-2.46 µm absorptions found in hydrated and dehydrated akaganeites measured257

by (Bishop, Murad, & Dyar, 2015; Peretyazhko, Ming, Rampe, Morris, & Agresti, 2018)258

and are spectrally distinct from the schwertmanite and mixtures of iron oxides/oxyhydroxides259

measured by these authors. Importantly, the phase is detected in the same locality with260

the same spectral characteristics in four different images (Figure 3b-3e). The akaganeite-261

bearing materials are located near eroded remnants of deltas on the Jezero crater floor262

on the margins of a local topographic low (Figure 3g). The area with akaganeite appears263

rougher and more rubbly than surrounding floor, with occasional long, cross-cutting ridges264

(Figure 3g), but is otherwise geomorphologically unremarkable.265

Sizeable deposits (>0.5 km2) with an akaganeite spectral signature are also found266

around NE Syrtis. In CRISM image FRT00019DAA, the signature occurs in basin fill267

deposits that are incised by a channel that flows west to east over the Syrtis lava flows268

and is just upstream from late-Hesperian or early Amazonian fill deposits that host Fe/Mg269

phyllosilicate clay minerals (Figure 4; region further described in (Quinn & Ehlmann,270

2019)). The phase is spectrally similar to the akaganeite in Jezero crater but is distinct271

from nearby polyhydrated sulfate and jarosite spectral signatures (Figure 4d; e.g., (B. L. Ehlmann272

& Mustard, 2012; Quinn & Ehlmann, 2019). The akaganeite is spatially restricted to a273

specific deposit on the upstream end of the basin in a local low that erodes into blocky274

boulders and may exhibit coarse-scale layering on the eastern portion of the outcrop over275

length scales of 20-50 m (Figure 4c). In addition, north of this location, another deposit276

of akaganeite in NE Syrtis has been located using the same approach (CRISM FRT00019538),277

also within small, basin-fill deposits.278
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4 Discussion292

4.1 Two-layer Bayesian Gaussian Mixture Modeling Performance293

The proposed hierarchical Bayesian classifier improves mineral mapping in Jezero294

crater beyond that attained from by-hand work of previous investigators. Small expo-295

sures of uncommon phases were identified, testifying to the utility of this approach, which296

may lead to additional new discoveries elsewhere on Mars and offers new information for297

interpretation of geologic history.298

4.2 Wallrock and Jezero Crater Floor deposits299

Jezero crater impacts into a Noachian basement stratigraphy. Fe/Mg phyllosilicates300

are not unexpected in the wallrock as similar phases are observed in the walls of other301

impact craters regionally (B. L. Ehlmann et al., 2009; Viviano et al., 2013), specifically302

Fe/Mg smectites and chlorite. Fe/Mg smectite has been reported previously in Jezero303

crater (Goudge et al., 2015), and here we show chlorite mixed with smectite is also in304

the wallrock.305

In contrast, Al phyllosilicate has been reported previously on the upper surfaces306

of the regional Noachian basement, but it is atypical in impact crater walls (B. L. Ehlmann307

et al., 2009). In Jezero crater, multiple small Al phyllosilicate deposits are associated with308

the rim region. The detections are ∼2km outside of the crater, right on the rim as well309

as in down-slumped portions of the rim and discrete blocks (Figure 2; Suppl. Figure 1a-310

h). The Al phyllosilicates in Jezero crater could result from simple excavation of Noachian311

basement materials that locally record enhanced alteration. This would be consistent312

with interpretations of Al phyllosilicate elsewhere in the region. However, except for one313

coherent block (Suppl. Fig c,d) the occurrences at Jezero crater are associated with ma-314

terials that surround or embay knobs of excavated rock rather than the rock itself. This315

could indicate that the Al phyllosilicates along the wall formed from alteration after the316

Jezero crater impact, in conduits of fluid flow around knobby outcrops, a hypothesis best317

tested with in situ rover data. Alternatively, the texture of material eroded from the out-318

crop may enhance the Al-phyllosilicate signal, as interpreted elsewhere on Mars (Wray319

et al., 2011). Similarly, Al phyllosilicates formed by post-impact alteration or rim rock320

have been found in situ by the Opportunity rover (Arvidson et al., 2014).321

Our finding of silica on Jezero crater floor units expands on similar small exposures322

reported previously by (Tarnas et al., 2019). The silica may record changes in lake chem-323

istry over time; however, their fairly limited spatial extent, which is not obviously con-324

fined to layers, may instead indicate focused zones of groundwater flow and upwelling.325

Sub-meter scale analysis of rock textures with Mars-2020 will differentiate between these326

hypotheses.327

4.3 Environmental History Implied by Akaganeite328

This is the first report of akaganeite in the greater Nili Fossae area. Akaganeite is329

the best candidate to explain the observed spectral properties of this new phase discov-330

ered by the hierarchical Bayesian classifier. Akaganeite forms in Fe-rich, Cl-rich waters,331

often but not exclusively in acidic environments (Bishop et al., 2015; Peretyazhko et al.,332

2018); in lab experiments, the acidity promotes crystallinity and sharper 2.46µm absorp-333

tions (Peretyazhko et al., 2018).334

In both Jezero crater and NE Syrtis, the akaganeite-bearing deposits are associ-335

ated with eroded, basin-filling materials. The akaganeite setting in local topographic lows336

is similar to that of the first orbitally-detected akaganeite in Sharp crater (Carter, Viviano-337

Beck, et al., 2015). The detections in our study area are consistent with a geologic sce-338

nario where salty, Cl-bearing, Fe-bearing and possibly acidic Martian waters flowed over339
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the southern Nili Fossae area forming a set of local closed-basin lakes, perhaps dammed340

by ice (Quinn & Ehlmann, 2019; Skok, Matherne, Karunatillake, & Mustard, 2018). The341

fluvial activity that formed the NE Syrtis akaganeite is constrained to occur in the late342

Hesperian or Amazonian by superposition on the Syrtis lavas. At Jezero crater, the set-343

ting is more ambiguous as the crater floor unit has been variously attributed to lava or344

sedimentary fluvial-lacustrine deposits (B. L. Ehlmann et al., 2008; Goudge et al., 2015;345

Shahrzad et al., 2019). The akaganeite detection is on the margin of a local topographic346

low in the lake basin where the surface is rubbly and has ridges (Figure 3). In situ rover347

data are required to determine whether the texture is responsible for the strength of the348

spectral signature here and whether primary precipitates or groundwater mineralization349

is responsible. Regardless, the chemistry implied by the akaganeite detections is distinct350

from the alkaline waters implied by Mg carbonate elsewhere in Jezero crater basin fill-351

ing sediments. A later episode of salty Fe-/Cl-rich waters during the evaporation of Jezero352

crater when it was a closed-basin lake is one potential interpretation, to be tested in situ.353

4.4 Implications for landed rover exploration354

At Jezero crater and NE Syrtis, small detections of uncommon phases are crucial355

for developing hypotheses about environmental evolution to test in situ, guiding the Mars-356

2020 rover, and for contextualizing its discoveries. Here we are conservative in our re-357

porting of detections, detailing only those that we were able to verify via traditional tech-358

niques, after recognition by the two-layer Bayesian approach. These encompass phases359

of significance for interpreting the environmental history. However, additional power for360

operational decision-making about the rover path could come from incorporating all de-361

tections and their probabilities into a systematic map of the crater, a potential sub-362

ject for our future work. Most important is the recognition of possible impact-related363

alteration (indicated by rim-rock detections) and the changes in Jezero crater lake wa-364

ter chemistry with time implied by the silica and akaganeite.365

4.5 The importance of machine learning for planetary hyperspectral data366

analysis367

Our study demonstrates that machine learning can be highly effective in exposing368

tiny outcrops of specific phases, in CRISM data on Mars that are not uncovered in tra-369

ditional approaches to imaging spectroscopy data analysis. Here we report results only370

from Jezero crater and NE Syrtis owing to their significance for upcoming, near-term landed371

exploration, but similar outcrops of rare phases have been detected across Marsand have372

the potential to enhance our understanding of Martian geologic history. Moreover, sim-373

ilar techniques can be applied to imaging spectrometer data from other planetary bod-374

ies, using machine learning to reveal new insights into planetary processes.375
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Figure 2. CRISM images of Jezero crater show sub-km exposures of Al phyllosilicates and

Fe/Mg phyllosilicates (e.g. corrensite) on the crater walls and hydrated silica and jarosite within

basin-filling floor units. (a) CRISM false color images (R: 2.5 µm, G: 1.5 µm, B: 1.1 µm) overlain

on a CTX mosaic. The regions of interest with colors corresponding to the spectra in (b-d) are

shown, with dashed circles and arrows to flag the locations. Zoom-ins of each area along with

corresponding CTX of the same area are shown in the Supplementary Material (Suppl. Figure

1b-d) ratioed CRISM spectra identified by the hierarchical Bayesian algorithm and median fil-

tered to remove spurious spikes (see Supplement for raw numerator and denominator spectra).

(e) library spectra from USGS (Clark et al., 2017) and KECK/NASA reflectance experiment

laboratory (RELAB).
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Figure 3. (a) CRISM images covering the floor of Jezero crater show akaganeite. Basemap

is the same as Figure 2; yellow regions indicate akaganeite, circled where the pixels are detected

in multiple images. (b)-(e) zoom on segments of the CRISM images with the akaganeite sub-km

exposures. (f) ratioed CRISM spectra from each of the images compared to laboratory spectra of

akaganeite. (g) HiRISE digital elevation model (ESP 023379 1985 ESP 023524 1985) on HiRISE

showing the portion of the more rubbly floor materials with akaganeite. Elevations range from

-2450 m to -2600 m.
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Amazonian fluvial channels (white arrow). (b) CRISM FRT00019DAA false color image (R: 2.5

µm, G: 1.5 µm, B: 1.1 µm) overlain on the CTX mosaic with pixels of akaganeite detected by a

conservative threshold application of the 2-layer Gaussian Bayesian model shown in red. Arrows

indicate the approximate locations of the color spectra in panel (d). (c) CTX and HiRISE images
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arrow indicates short length-scale, potential coarse-layering or erosion along beds in HIRISE

ESP 018065 1975. The inset shows how the deposit erodes into boulders (d) spectra of previously

identified polyhydrated sulfates (blue) and jarosite (magenta) from (Quinn & Ehlmann, 2019)

along with the new phase we identify as akaganeite (shown in comparison to library spectra in

from the RELAB spectral library). The arrows in (B) signify the locations of centers of regions of

interest for the spectra.
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