natureresearch

https://doi.org/10.1038/s41579-020-00460-0

Supplementary information

The gut microbiota-brain axis in behaviour and brain disorders

In the format provided by the authors and unedited

Supplementary Table 1. Approaches and Tools for Investigating the Gut microbiota-brain axis

Technique/tool	Principle	<u>Refs. to</u>	<u>Other</u>
		<u>Microbiota</u>	<u>Refs.</u>
		<u>Research</u>	
16S microbiome	Sequencing of the 16S rRNA gene isolated from gut	1-5	
profiling	samples (either tissue or fecal samples) is used to provide		
	the general composition of the bacteria in the gut from a		
	"bird's eye" perspective (i.e., roughly at the genus level		
	and higher taxonomy). This information is a useful starting		
	point for gut microbiota investigations.		
Shotgun metagenomic	Provides a comprehensive description of gut microbial	6-8	
sequencing	communities at the species level as well as the gene		
	catalog carried by those members through sequencing of		
	DNA isolated from the gut microbiota. Can be used to		
	define the "functional potential" of a polymicrobial		
	community (e.g., their metabolic complexity, presence of		
	classical virulence genes, etc.).		
Shotgun	Provides survey of gut microbiome transcriptional activity,		9
metatranscriptomic	which acts as a proxy for bacterial physiology. This RNA		
sequencing	sequencing approach should be used in conjunction with		
	metagenomic (DNA) sequencing to provide context to		
	expression patterns, and is has been applied in chronic		
	diseases, such as inflammatory bowel disease.		
Metabolomics	Provides survey of molecules, nutrient sources, and other	10,11	
	metabolic products that are available in different body		
	compartments, including the gut, brain, and circulatory		
	systems.		
In vitro bacterial	Culturing of bacteria in vitro allows for fine control of the	12,13	
culturing	bacteria's environment, which can be used to determine		

	bacterial metabolism (including the degradation of		
	psychiatric drugs) and cooperative growth using signaling		
	molecules.		
Correction of the second		14–18	
Germ-free and	Provides ability to test necessity of gut microbiota in		
antibiotic treated	mediating biological effects, as removal of the gut		
mouse models	microbiota can be tested to either enhance or suppress		
	phenotypes. Germ-free animals must be bred and		
	maintained under completely sterile conditions, but		
	antibiotic administration has been used to study depletion		
	of gut bacteria from animals born with a complete		
	microbiota.		
Fecal microbiota	The gut microbiota of mammals (e.g., humans or mice,	1,2,10,19	
transfers in mice	etc.) can be transferred to germ-free or antibiotic treated		
(not clinical FMT)	rodents through gavage with slurries from donor fecal		
	samples. This can be used to test if the gut microbiota is		
	sufficient to transfer a phenotype from one mouse to		
	another or from a human to a recipient mouse.		
Monocolonization	The colonization of a germ-free mouse with a single	11,20	
	bacterial species to determine their sufficiency in		
	modulating a phenotype. Can be expanded to include gene		
	knockouts of specific pathways in genetically tractable		
	organisms.		
Probiotic	Bacteria can be administered to rodent models through	21,22	
administration	gavage or, in some cases, through drinking water to		
	suppress adverse neuropsychiatric phenotypes. Stable		
	colonization of probiotics is difficult to attain given the		
	nature of colonization resistance by the gut microbiota, so		
	probiotics may require chronic administration to have an		
	appreciable effect.		
Gene knockouts (KO)	Useful for studying genes and genetic pathways implicated	11,17,18,23	
and transgenic	disease or other outcomes. KO and transgenic animals can		
and transfollit	discuse of other outcomes. No and transponte animals can		

• •			
animals	be used for modelling human diseases associated to		
	genetic risks.		
Cre and/or Lox-P	Site, cell type and time-specific recombination system	23,24	
recombinase animals	widely used for conditional gene-targeting, a		
	bioengineering tool repurposed from bacteriophage		
	recombination systems.		
CRISPR/Cas9 system	Cas9 has been used to induce cell-type (e.g., neurons)		25
	genome-editing and generation of stable gene knockouts, a		
	bioengineering tool adapted from bacterial "immune		
	systems" to phage infection. Useful to model disorders		
	associated to genetic risks, including ASD.		
Pharmacological	Drugs for studying neurocircuitry and neurotransmitter	19,23,26	
agents	involvement. Can have limited site and time specificity		
	(e.g., 5-HT receptor agonists, neurotransmitter receptor		
	antagonists, or sodium channel blockers).		
Vagotomy	The surgical severance of the vagus nerve that disrupts	21,27,28	
	signaling from various peripheral organs to the brain.		
	Different types of vagotomy can be used depending on the		
	goal (e.g., truncal vagotomy, selective vagotomy).		
Optogenetics	Enables genetically engineered cells to express membrane	N/A	29
	bound light-sensitive proteins (opsins) that can affect		
	neuronal activity, inhibition, or modulation of intracellular		
	signaling in transgenic animals (e.g., Cre-recombinase		
	animals). Activity turned on or off by light.		
Chemogenetics	Engineered proteins are used to reach neuronal temporal	30	31
	and spatial specificity in transgenic animals. Designer		
	receptors exclusively activated by designer drugs		
	(DREADDs) are the most common tool used to define		
	neuronal population activity.		
Electrophysiology	Technique that explores electrical activity from action	10,22,23	
	potentials in neuronal cells <i>in vitro</i> and <i>in vivo</i> (live		

	behaving animals).	
Golgi staining, Dyes	Tracing tools that can be deliver to nervous system cells	32
and Tracing Proteins	(e.g., non-specific membrane tracing; Fluorogold and	
	Retrobeads; dextran amines).	
Immediate Early	Allows a broad overview of recently activated neurons	33
Genes (IEG) readouts	during defined windows of time and in response to a	
	specific stimulus.	
Functional Magnetic	Whole brain imaging in a live subject for functional	34,35
Resonance (fMRI)	connectivity measurements. Poor temporal resolution. Not	
	cell-type specific.	
Electron microscopy	Allows ultrastructure cell morphology and visualization of	36,37
	fine synapsis connectivity.	

References

- 1. Zheng, P. *et al.* Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. *Mol. Psychiatry* **21**, 786–796 (2016).
- 2. Kelly, J. R. *et al.* Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. *J. Psychiatr. Res.* **82**, 109–118 (2016).
- 3. Valles-Colomer, M. *et al.* The neuroactive potential of the human gut microbiota in quality of life and depression. *Nat. Microbiol.* **4**, 623–632 (2019).
- 4. Kang, D.-W. *et al.* Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. *Anaerobe* **49**, 121–131 (2018).
- 5. Coretti, L. *et al.* Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. *Sci. Rep.* **7**, 45356 (2017).
- 6. Strati, F. *et al.* New evidences on the altered gut microbiota in autism spectrum disorders. *Microbiome* **5**, 24 (2017).
- 7. Bedarf, J. R. *et al.* Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients. *Genome Med.* **9**, 39 (2017).
- Zhang, M., Ma, W., Zhang, J., He, Y. & Wang, J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. *Sci. Rep.* 8, 13981 (2018).
- 9. Schirmer, M. *et al.* Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. *Nat. Microbiol.* **3**, 337–346 (2018).
- 10. Sharon, G. *et al.* Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. *Cell* **177**, 1600–1618.e17 (2019).
- 11. Blacher, E. *et al.* Potential roles of gut microbiome and metabolites in modulating ALS in mice. *Nature* **572**, 474–480 (2019).
- 12. Fung, T. C. *et al.* Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. *Nat. Microbiol.* **4**, 2064–2073 (2019).
- 13. Maier, L. *et al.* Extensive impact of non-antibiotic drugs on human gut bacteria. *Nature* **555**, 623–628 (2018).
- 14. Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. *Mol. Psychiatry* **19**, 146–148 (2014).
- 15. Hoban, A. E. *et al.* Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. *Neuroscience* **339**, 463–477 (2016).
- 16. Clarke, G. *et al.* The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. *Mol. Psychiatry* **18**, 666–673 (2013).

- 17. Erny, D. *et al.* Host microbiota constantly control maturation and function of microglia in the CNS. *Nat. Neurosci.* **18**, 965–977 (2015).
- 18. Sampson, T. R. *et al.* Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease. *Cell* **167**, 1469–1480.e12 (2016).
- 19. Sun, M.-F. *et al.* Neuroprotective effects of fecal microbiota transplantation on MPTPinduced Parkinson's disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. *Brain Behav. Immun.* **70**, 48–60 (2018).
- 20. Sudo, N. *et al.* Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. *J. Physiol. (Lond.)* **558**, 263–275 (2004).
- 21. Bercik, P. *et al.* The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. *Neurogastroenterol. Motil.* **23**, 1132–1139 (2011).
- 22. Buffington, S. A. *et al.* Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. *Cell* **165**, 1762–1775 (2016).
- 23. Sgritta, M. *et al.* Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. *Neuron* **101**, 246–259.e6 (2019).
- 24. Rothhammer, V. *et al.* Microglial control of astrocytes in response to microbial metabolites. *Nature* **557**, 724–728 (2018).
- 25. Platt, R. J. *et al.* Chd8 Mutation Leads to Autistic-like Behaviors and Impaired Striatal Circuits. *Cell Rep.* **19**, 335–350 (2017).
- Yang, X., Qian, Y., Xu, S., Song, Y. & Xiao, Q. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of parkinson's disease. *Front. Aging Neurosci.* 9, 441 (2017).
- Perez-Burgos, A. *et al.* Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. *Am. J. Physiol. Gastrointest. Liver Physiol.* **304**, G211–20 (2013).
- 28. Bravo, J. A. *et al.* Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. *Proc. Natl. Acad. Sci. USA* **108**, 16050–16055 (2011).
- 29. Deisseroth, K., Etkin, A. & Malenka, R. C. Optogenetics and the circuit dynamics of psychiatric disease. *JAMA* **313**, 2019–2020 (2015).
- 30. Muller, P. A. *et al.* Microbiota modulate sympathetic neurons via a gut-brain circuit. *Nature* **583**, 441–446 (2020).
- 31. Chan, K. Y. *et al.* Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. *Nat. Neurosci.* **20**, 1172–1179 (2017).

- 32. Luczynski, P. *et al.* Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. *Eur. J. Neurosci.* **44**, 2654–2666 (2016).
- Stilling, R. M. *et al.* Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. *Brain Behav. Immun.* 50, 209–220 (2015).
- 34. Gao, W. *et al.* Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. *Psychopharmacology* **236**, 1641–1651 (2019).
- 35. Bagga, D. *et al.* Probiotics drive gut microbiome triggering emotional brain signatures. *Gut Microbes* **9**, 486–496 (2018).
- 36. Gacias, M. *et al.* Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. *Elife* **5**, (2016).
- 37. Hoban, A. E. *et al.* Regulation of prefrontal cortex myelination by the microbiota. *Transl. Psychiatry* **6**, e774 (2016).