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1 Introduction

A signomial is a function of the form x 7→
∑m

i=1 ci exp(αi ·x) for real scalars ci and
row vectors αi in R1×n. Signomial optimization (often called signomial program-
ming) concerns the minimization of a signomial, subject to signomial inequality and
equality constraints. Signomial programming is a computationally challenging prob-
lem with applications in chemical engineering [3], aeronautics [29], circuit design [15],
and communications network optimization [20]. Signomials are sometimes thought
of as generalizations of polynomials over the positive orthant; by a change of vari-
ables yi = expxi one arrives at “geometric form” signomials y 7→

∑m
i=1 ci

∏n
j=1 y

αij

j .
Despite this aesthetic similarity between polynomials and geometric-form signomi-
als, we must bear in mind that signomials and polynomials have many significant
differences. Where polynomials can be generated by a countably infinite basis, sig-
nomials require an uncountably infinite basis. Where polynomials are closed under
composition, signomials are not. Where polynomials and exponential-form signo-
mials are defined on all of Rn – geometric-form signomials are only defined on the
positive orthant.

For many years these abstract differences between signomials and polynomials
have coincided with algorithmic disparities. Contemporary methods for signomial
programming use some combination of local linearization, penalty functions, se-
quential geometric programming, and branch-and-bound [11, 12, 14, 16, 18, 23, 24]
– ideas which precede the advent of modern convex optimization. By contrast, the
field of polynomial optimization has been substantially influenced by semidefinite
programming, specifically through Sums-of-Squares (SOS) certificates of polyno-
mial nonnegativity [5, 8, 10]. In recent work, Chandrasekaran and Shah proposed
the Sums-of-AM/GM Exponential or SAGE certificates of signomial nonnegativity,
which provided a new convex relaxation framework for signomial programs akin
to SOS methods for polynomial optimization. [26]. Where SOS certificates make
use of semidefinite programming, SAGE certificates use the convex relative entropy
function. The authors of the present article further demonstrated that a natural
modification to SAGE certificates leads to a tractable relative entropy representable
sufficient condition for global polynomial nonnegativity [30].

This article is concerned with how proof systems for function nonnegativity can
be used in the service of constrained optimization. The basic idea here is simple:
for a function f , a set X, and a real number γ, we have inf{f(x) : x ∈ X} ≥ γ
if and only if f − γ is nonnegative over X. The trouble is that to leverage this
fact, we require ways to extend certificates for global nonnegativity (such as SOS
or SAGE certificates) to prove nonnegativity over X ( Rn. For the polynomial
case one usually performs this extension by appealing to representation theorems
from real algebraic geometry. In the absence of such representation theorems, one
typically relies on a dual problem obtained from the minimax inequality.

The primary contribution of this article is to show how SAGE certificates – by
virtue of their roots in convex duality – provide a simple and powerful alternative
method for describing functions which are nonnegative over proper subsets of Rn.
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Our method can be used both independently from and in conjunction with the min-
imax inequality. The space of possibilities with our method is large, and it is far
from obvious as to which variations of this methodology are most useful for given
problem structures. To facilitate research in this regard, we provide a user-friendly
software package which implements all functionality described in this article. We
provide detailed worked examples in several places alongside conceptual develop-
ment. A dedicated section on computational experiments is provided, and several
avenues of possible future research are outlined in a discussion section.

1.1 Article outline and our contributions

This article makes both mathematical and methodological contributions to signomial
and polynomial optimization. Section 2 speaks to key questions which help place
our work in a broader context. These questions include (1) What are the sources
of error in nonnegativity-based relaxations of constrained optimization problems,
and how are they usually mitigated? (2) How exactly are the original SAGE cones
formulated? (3) How can we understand partial dualization in the context of existing
nonnegativity and moment relaxations?

Once these questions are answered, we introduce the concept of conditional
SAGE certificates for signomial nonnegativity (Section 3). We prove a representa-
tion result for the cone of these nonnegativity certificates (Theorem 6), and develop
a solution recovery algorithm by investigating the dual cone (Algorithm 1). Sec-
tion 3.4 describes two “hierarchies” of SAGE-based convex relaxations for signomial
programs: one which uses the minimax inequality, and one which is minimax-free.
The authors know of no analog to the minimax-free hierarchy in the polynomial op-
timization literature, and believe the underlying idea of the minimax-free hierarchy
is of independent theoretical interest.

Section 4 extends the idea of conditional SAGE certificates to polynomials. We
discuss basic properties of the conditional SAGE polynomial cones before proving
representation results (Theorems 9 and 10) which provide the basis for tractable
relaxations of constrained polynomial optimization problems. Section 4.2 provides
simple descriptions for dual conditional SAGE polynomial cones, and develops an
efficient solution recovery algorithm based on these descriptions (Algorithm 2). Sec-
tion 4.4 proposes reference hierarchies for polynomial optimization with SAGE cer-
tificates. Our minimax-free hierarchy has an interesting structure which reflects a
link between SAGE signomials and SAGE polynomials, by way of the “signomial
representatives” from [30].

Section 5 reports the effectiveness of our methodology on fifty-one problems
appearing in the literature (sourced from [1, 2, 17, 23, 24, 28, 31, 34]), as well as
randomly generated problems. A central component of our experiments is a desire
to facilitate research both into theory underlying conditional SAGE relaxations, and
the practice of using these relaxations in engineering design optimization. Towards
this end, we provide the “sageopt” Python package.1 Sageopt is a documented,

1https://rileyjmurray.github.io/sageopt/
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tested, and convenient platform for constructing and solving SAGE relaxations, as
well as analyzing the results thereof. We used sageopt for all experiments in this
article.

1.2 Notation and preliminary definitions

Vectors and matrices always appear in boldface. The ith entry of a vector v is vi,
and the vector formed by deleting the ith entry of v is v\i. A matrix A is built by

stacking rows ai ∈ R1×n, and A\i is the submatrix formed by deleting the ith row
of A. All logarithms in this article are base-e. Elementary functions from R to R
are extended first to vectors in an elementwise fashion, and subsequently to sets in
a pointwise fashion. For a convex cone K ⊂ Rr, the dual cone is K†

.
= {y : yᵀx ≥

0 for all x in Rr}. For A,B ⊂ Rn, A ⊂ B and A ( B denote non-strict and strict
inclusion respectively. The operator “cl” computes set-closure with respect to the
standard topology.

For an m × n matrix α and a vector c in Rm, we write f = Sig(α, c) to mean
that f takes values f(x) =

∑m
i=1 ci exp(αi · x). When α is a matrix of nonnegative

integers, we write f = Poly(α, c) to mean that c is the coefficient vector of f with
respect to the monomial basis x 7→ xαi

.
=

∏n
j=1 x

αij

j . Given a matrix α and a set
X ⊂ Rn, one has the nonnegativity cones

CNNS(α, X)
.
= {c : Sig(α, c)(x) ≥ 0 for all x in X}

and
CNNP(α, X)

.
= {c : Poly(α, c)(x) ≥ 0 for all x in X}.

We write CNNS(α) and CNNP(α) in reference to the above cones when X = Rn.
Except in special cases on α, it is computationally intractable to check membership
in either CNNS(α) or CNNP(α) [4]. The inner-approximations of nonnegativity cones
developed in this article make use of the relative entropy function; this is the convex
function “D” with domain Rm+ × Rm+ taking values

D(u,v) =

m∑
i=1

ui log(ui/vi).

This article includes computational experiments with SAGE certificates and
states solver runtimes for many of these examples. All of these examples rely on
the MOSEK solver [32]. We use two different machines to provide a sense of when
it may be practical to solve a SAGE relaxation with given computational resources.
Machine W is an HP Z820 workstation, with two 8-core 2.6GHz Intel Xeon E5-2670
processors and 256GB 1600MHz DDR3 RAM. Machine L is a 2013 MacBook Pro,
with a dual-core 2.4GHz Intel Core i5 processor and 8GB 1600MHz DDR3 RAM.
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2 Background

In this article we study constrained nonconvex optimization problems of the form

(f, g, φ)?X = inf{f(x) : x in X ⊂ Rn, g(x) ≥ 0, φ(x) = 0} (1)

where f is a function from Rn to R, g maps Rn to Rk1 , and φ maps Rn to Rk2 . Our
primary goal is to produce lower bounds (f, g, φ)lbX ≤ (f, g, φ)?X . In the event that
(f, g, φ)lbX = (f, g, φ)?X , we are also interested in recovering optimal solutions to (1).
For ease of exposition, this section focuses on problems of the form (1) with only
inequality constraints– i.e. the problem of bounding

(f, g)?X = inf{f(x) : x in X ⊂ Rn, g(x) ≥ 0}. (1.1)

In Section 2.1 we review the Lagrange dual relaxation of the above problem, both
in minimax form and as a nonnegativity problem. Section 2.2 provides the minimum
background on SAGE and SOS nonnegativity certificates needed develop the con-
tributions of this article. In Section 2.3 we review standard techniques for strength-
ening nonnegativity-based relaxations of problems such as (1.1); this includes the
use of redundant constraints, nonconstant Lagrange multipliers, and strengthening
nonnegativity certificates via modulation. Section 2.4 concludes with discussion on
partial dualization. Until Section 2.4, the set X appearing in Problem 1.1 shall be
the whole of Rn.

2.1 Dual problems in nonconvex optimization

The simplest way to lower bound (f, g)?Rn is via the Lagrange dual. For each co-
ordinate function gi of g, we introduce a dual variable λi ≥ 0 and consider the
Lagrangian L(x,λ) = f(x)− λᵀg(x). The Lagrange dual problem is to compute

(f, g)LRn = sup
λ≥0

inf
x∈Rn

L(x,λ).

By the minimax inequality, we can be certain that (f, g)LRn ≤ (f, g)?Rn .
There are many situations when the Lagrange dual problem is intractable. For

signomial and polynomial optimization, one usually needs to compute yet another
lower bound (f, g)dRn ≤ (f, g)LRn . Contemporary approaches for computing such
bounds begin by introducing a parameterized function ψ(γ,λ) which takes values
ψ(γ,λ)(x) = L(x,λ)− γ. One reformulates the dual problem as

(f, g)LRn = sup{γ : λ ≥ 0, γ in R, ψ(γ,λ)(x) ≥ 0 for all x in Rn},

and the constraint that “ψ(γ,λ) defines a nonnegative function” is then tightened to
“ψ(γ,λ) satisfies a particular sufficient condition for nonnegativity.” The expecta-
tion is that the sufficient condition can be expressed by tractable convex constraints
on variables γ and λ. For example, SOS certificates for polynomial nonnegativity
can be expressed via linear matrix inequalities, and SAGE certificates for signomial
and polynomial nonnegativity can be expressed with the relative entropy function.
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2.2 SAGE and SOS nonnegativity certificates

In the development of the SAGE inner approximation for CNNS(α), Chandrasekaran
and Shah considered the structure where the coefficient vector c contained at most
one negative entry ck; if such a function was globally nonnegative, they called it an
AM/GM Exponential, or an AGE function [26]. One thus defines the kth AGE cone

CAGE(α, k) = {c : c\k ≥ 0 and c belongs to CNNS(α)}.

A key contribution of [26] was the use of convex duality to derive an efficient descrip-
tion of the AGE cones. The outcome of this derivation is that a vector c belongs to
CAGE(α, k) iff c\k ≥ 0 and

some ν in Rm−1+ has [α\i − 1αi]
ᵀν = 0 and D(ν, c\k)− νᵀ1 ≤ ck. (2)

The system of constraints given by (2) is crucially jointly convex in c and the
auxiliary variable ν. The set defined by the sum of all AGE cones

CSAGE(α)
.
=

{
c : there exist c(k) in CAGE(α, k) satisfying c =

m∑
k=1

c(k)

}
(3)

is therefore efficiently representable.
The SAGE cone as defined above applies to signomials, but a similar construction

exists for certifying global nonnegativity of polynomials [30]. Formally, we say that
f = Poly(α, c) is an AGE polynomial if it is nonnegative over Rn, and if f(x)
contains at most one term cix

αi that is not a monomial square. In conic form this
writes as

CPOLY
AGE (α, k) = {c : Poly(α, c)(x) ≥ 0 for all x in Rn, and

c\k ≥ 0, ci = 0 for all i 6= k with αi 6∈ 2N1×n}, (4)

and such AGE cones naturally give rise to

CPOLY
SAGE(α)

.
=

m∑
k=1

CPOLY
AGE (α, k) ⊂ CNNP(α). (5)

The SAGE polynomial cone can also be described by an appropriate reduction
to the SAGE signomial cone. For a nonnegative m×n integer matrix α and a vector
c in Rm, we define the set of signomial representative coefficient vectors as

SR(α, c) = {ĉ : ĉi = ci whenever αi is in 2N1×n, and

ĉi ≤ −|ci| whenever αi is not in 2N1×n}.

The name “signomial representative” derives from the fact that if ĉ belongs to
SR(α, c), then nonnegativity of the signomial Sig(α, ĉ) would evidently imply non-
negativity of the polynomial Poly(α, c) (see Section 5.1 of [30]). The set SR(α, c)
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is useful because a constraint of the form “ĉ belongs to SR(α, c)” is jointly convex
in ĉ and c. Lemma 19 of [30] proves that the SAGE polynomial cone defined by
Equation 5 is equivalently given by

CPOLY
SAGE(α) = {c : SR(α, c) ∩ CSAGE(α) is nonempty }.

The generalization of SAGE polynomials considered in this article benefits from
both the Sum-of-AGE-function and signomial-representative viewpoints of ordinary
SAGE polynomials.

Lastly we consider Sums-of-Squares (SOS) polynomials. A polynomial f is said
to be SOS if it can be written in the form f =

∑m
i=1 f

2
i for appropriate polyno-

mials fi. In the context of polynomial optimization, one usually parameterizes the
SOS cone by a number of variables n and a maximum degree 2d; this cone can be
represented as

SOS(n, 2d) = {p : p(x) = Lnd (x)ᵀMLnd (x), M � 0}

where Lnd : Rn → R(n+d
d ) is the map from a vector x to the vector of all monomials

of degree at-most-d evaluated at x. The connection between SOS-representability
and semidefinite programming was first observed by Shor [5], and was subsequently
developed by Parrilo [8] and Lasserre [10].

2.3 Strengthening dual bounds in nonnegativity relaxations

A common method for strengthening dual problems is to introduce redundant con-
straints to the primal problem, particularly by taking products of existing constraint
functions. As an example of this principle in action, consider the toy polynomial
optimization problem

inf{−x2 : −1 ≤ x ≤ 1 } = −1.

One may verify that (f, g)LR = −∞, but by adding the single redundant constraint
(1− x)(1 + x) ≥ 0, we can certify a dual bound −1 ≤ (f, g)?R.

A more subtle method is to reconsider what is meant by “dual variables.” For
the Lagrange dual problem we use scalars λi ≥ 0, however it would be just as
valid to have λi be a function, provided that it was nonnegative over Rn. Such a
method is well-suited to our nonnegativity-based relaxations of the dual problem.
The following toy signomial program illustrates the utility of this approach

inf{− exp(2x) : 1 ≤ exp(x) ≤ 2} = −4.

Again the Lagrange dual problem returns a bound of −∞, but by considering λi of
the form λi(x) = ηi exp(x) with ηi ≥ 0, the resulting dual bound is −4 ≤ (f, g)?R.

Our third method for strengthening dual bounds only becomes relevant when
working with strict inner-approximations of nonnegativity cones. For two functions
w, f with w positive definite, it is clear that f is nonnegative if and only if the
product w · f is nonnegative. The method of modulation is to choose a generic
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positive-definite function w so that if f fails a particular test for nonnegativity (say,
being SOS, or being SAGE), there is still a chance that the product w · f passes a
test for nonnegativity. Indeed, modulation is a crucial tool for computing successive
bounds for unconstrained problems

f?Rn
.
= inf{f(x) : x in Rn} = sup{γ : f(x)− γ ≥ 0 for all x in Rn}.

Suppose for example that f is a signomial over exponents α; then for w = Sig(α,1)
we can compute a non-decreasing sequence of lower bounds

f
(`)
Rn = sup{γ : γ in R, w`(f − γ) is SAGE} ≤ f?Rn .

Under appropriate conditions on α (c.f. [26]), these lower bounds converge to f?Rn as
` goes to infinity. From an implementation perspective, the constraint that “ψ(γ)

.
=

w`(f − γ) is SAGE” is tractable because the coefficient vector of ψ(γ) is an affine
function of γ.

Modulation can similarly be applied to constrained optimization. Suppose that
L(x,λ) is the Lagrangian for Problem 1.1, and refer to the function x 7→ L(x,λ) as
L(λ). Then rather than requiring that “L(λ)− γ is SAGE”, one could require that
“ψ(γ,λ)

.
= w`(L(λ)− γ) is SAGE.” This would increase the size of the feasible set

for variables γ and λ, and remain tractable due to the affine dependence of ψ(γ,λ)
on γ and λ. Such modulation leads to a non-decreasing sequence of bounds which
converge to (f, g)LRn under suitable conditions.

2.4 Partial dualization

A partial dual problem is what results when the set “X” in Problem 1.1 is a proper
subset of Rn. In this case the natural generalization of the Lagrange dual is

(f, g)dX
.
= sup{ γ : λ ≥ 0, γ in R, L(x,λ)− γ ≥ 0 for all x in X}. (6)

The technique of partial dualization refers to the deliberate choice to restrict the
Lagrangian to X = {x : gi(x) ≥ 0 for all i in I} for some I ⊂ [k], even when the
constraints {gi}i∈I are of a functional form that is permitted in the Lagrangian.
Note that in the extreme case with X = {x : g(x) ≥ 0}, we are certain to have
(f, 0)dX = (f, g)?Rn – in this way, partial dualization provides a mechanism to com-
pletely eliminate duality gaps.

Before getting into how SAGE certificates integrate with partial dualization,
it is worth considering a simple example which combines partial dualization and
nonnegativity certificates. Suppose we want to minimize a univariate polynomial f
over an interval [a, b], subject to a single polynomial equality constraint g(x) = 0. In
this case we could form a Lagrangian L(x, µ) = f(x)−µg(x) with µ ∈ R, and find the
largest constant γ so that L(x, µ)−γ was nonnegative over x ∈ [a, b]. A well-known
result in real algebraic geometry is that a degree-d polynomial “p” is nonnegative
over an interval [a, b] if and only if p can be written as p(x) = s(x)2 + h[a,b](x)t(x)2,
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where h[a,b](x) = (b − x)(x − a), and s, t are polynomials of degree at most d and
d− 1 respectively [9]. Therefore the partial dual problem

(f, g)d[a,b] = sup{γ : γ, µ ∈ R, f(x)− µg(x)− γ ≥ 0 for all x in [a, b]}

can be framed as an SOS relaxation

(f, g)d[a,b] = sup{γ : f − µg − γ = s+ h[a,b]t

s ∈ SOS(1, 2d), t ∈ SOS(1, 2(d− 1))}.

Our last key concept is how partial dualization manifests in the dual of the dual.
To develop this idea, consider f = Poly(α, c) with α1 = 0, along with a set X ⊂ Rn.
The problem of computing f?X

.
= infx∈X f(x) has the following convex formulation

f?X = sup{ γ : c− γ(1, 0, . . . , 0) ∈ CNNP(α, X)}.

Of course, the above problem is intractable unless α and X satisfy very special
conditions. In spite of the possible intractability, we can still compute the dual
problem by applying standard rules of conic duality. The result of this process is

f?X = inf{cᵀv : v ∈ CNNP(α, X)†, v1 = 1}

where CNNP(α, X)† is the dual cone to CNNP(α, X). This second problem is what
we mean by “the dual of the dual.” It appears prominently in the literature on
polynomial optimization, where it is usually referred to as a moment relaxation
[10]. The term “moment relaxation” derives from the fact that CNNP(α,Rn)† is the
smallest closed convex cone containing the vectors

(Rn)α
.
= {(xα1 , . . . ,xαm) : x ∈ Rn},

and by thinking of a convex hull as computing expectations Ex∼F [(xα1 , . . . ,xαm)],
where F is a probability measure over Rn. One can similarly understand the dual
of a nonnegativty-based partial-dual problem in terms of probability and moment
relaxations. When X as a proper subset of Rn, the convex hull of Xα can be
framed as the set of all vector-valued expectations Ex∼F [(xα1 , . . . ,xαm)], where F
is a probability measure over X. In this way, the “dual” of partial dualization can
be understood in terms of conditional moments.

3 Conditional SAGE certificates for signomials

In this section we show how SAGE certificates for signomial nonnegativity can fully
leverage partial dualization, in the sense that any efficiently representable convex
set X gives rise to a parameterized and efficiently representable “X-SAGE” non-
negativity cone. The efficient representation of the X-SAGE cones (which we often
call “conditional SAGE cones”) leads to a practical, principled approach for solving
and approximating a range of nonconvex signomial optimization problems. In this
regard the most common sets X are of the form {x : g(x) ≤ 1} for signomials
gi with all nonnegative coefficients. An algorithm for solution recovery, and two
worked examples are provided.
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3.1 The conditional SAGE signomial cones

Definition 1 (Conditional AGE signomial cones). For a matrix α in Rm×n, a
subset X of Rn, and an index k in [m], the kth AGE cone with respect to α, X is

CAGE(α, k,X) = {c ∈ Rm : c\k ≥ 0 and Sig(α, c)(x) ≥ 0 for all x in X}.

Definition 2 (X-SAGE signomials). If the vector c belongs to

CSAGE(α, X)
.
=

m∑
k=1

CAGE(α, k,X)

then f = Sig(α, c) is an X-SAGE signomial.

Conditional SAGE cones are order-reversing with respect to the second argu-
ment. That is, if X2 ⊂ X1 ⊂ Rn, then CSAGE(α, X1) ⊂ CSAGE(α, X2) for all α
in Rm×n. Note that CSAGE(α, X) is defined for arbitrary X ⊂ Rn, including non-
convex sets, and convex sets which admit no efficient description. Moreover, as a
mathematical object, CSAGE(α, X) does not depend on the representation of X.

In practice we need conditions on X in order to optimize over CSAGE(α, X).
But before we get to those, it is worth mentioning some abstract results concerning
optimization. For f = Sig(α, c) with α1 = 0, define

fSAGE
X

.
= sup{ γ : γ in R, c− γ(1, 0, . . . , 0) in CSAGE(α, X)}

so that fSAGE
X ≤ f?X

.
= inf{f(x) : x in X}.

Theorem 3. If c ≥ 0, then f = Sig(α, c) has fSAGE
X = f?X for all X ⊂ Rn.

Proof. Let e1 = (1, 0, . . . , 0). The signomial f̃ = Sig(α, c − f?Xe1) is nonnegative
over X, and its coefficient vector c−f?Xe1 contains at most one negative entry. This
implies that f̃ is X-AGE, and hence X-SAGE.

Theorem 4. If X is bounded, then fSAGE
X > −∞ for every signomial f .

Proof. If X is empty then the result follows by verifying that CSAGE(α, X) = Rm.
Consider the case when X is nonempty. In this situation it suffices to prove the
result for all f of the form f(x) = c exp(a · x) where c 6= 0 and a belongs to
R1×n. Fixing such c, a, the boundedness of X implies the existence of L 6= 0 with
f̃(x) = c exp(aᵀx) +L nonnegative over x in X and cL < 0. Since f̃ is nonnegative
over X and contains exactly one negative coefficient, we have that fSAGE

X ≥ −L.

Corollary 5 (See [30]). Let X ⊂ Rn be arbitrary. If c is a vector in CSAGE(α, X)
with nonempty N = {i : ci < 0}, then there exist vectors {c(i)}i∈N satisfying

c(i) ∈ CAGE(α, i,X) c =
∑
i∈N

c(i) and c
(i)
j = 0 for all j 6= i in N .
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Proof. This is simply the statement of Theorem 2 from [30], which was proven for
ordinary SAGE cones, i.e. with X = Rn. The entire proof of that theorem (including
Lemmas 6 and 7 of [30]) extends to conditional SAGE cones simply by replacing
references to “CAGE(α, i)” and “CSAGE(α)” with “CAGE(α, i,X)” and “CSAGE(α, X)”
respectively.

In order to reliably optimize over CSAGE(α, X), we need X to be a tractable
convex set. This is essentially the only requirement on X, as is shown by the
following theorem.

Theorem 6. For a matrix α in Rm×n, an index i in [m], and a convex set X ⊂ Rn
with support function σX(λ)

.
= supx∈X λ

ᵀx, we have

CAGE(α, i,X) = {c : ν in Rm−1, c in Rm,λ in Rn satisfy

σX(λ) +D(ν, c\i)− νᵀ1 ≤ ci,
[α\i − 1αi]

ᵀν + λ = 0, and c\i ≥ 0}.

Proof. Let δX denote the indicator function of X, taking values

δX(x) =

{
0 if x belongs to X

+∞ if otherwise
.

A vector c with c\i ≥ 0 belongs to CAGE(α, i,X) if and only if

p? = inf{δX(x) +
∑`

i=1 c̃i exp ti : x ∈ Rn, t ∈ R`, t = Wx} ≥ −L (7)

for ` = m− 1, W = [α\i − 1αi] ∈ R`×n, c̃ = c\i ∈ R`, and L = ci.
The dual to the above optimization problem is easily calculated by applying

Fenchel duality (c.f. [13]); the result of this process is

d? = sup{−σX(λ)−D(ν, c̃) + νᵀ1 : λ ∈ Rn,ν ∈ Rm−1, W ᵀν + λ = 0}. (8)

When X is nonempty, one may verify that the hypothesis of Corollary 3.3.11 of
[13] (concerning strong duality) hold for the primal-dual pair (7)-(8). In particular,
p? ≥ −L holds if and only if −d? ≤ L, and the dual problem attains an optimal
solution whenever finite. When X is empty, it is clear that p? = +∞, and by taking
both λ and ν as zero vectors, we have d? = +∞. The result follows.

Theorem 6 is stated in terms of support functions for maximum generality. From
an implementation perspective, it is useful to assume a representation of X. For
example, if X = {x : Ax+ b ∈ K} for a matrix A, a vector b, and a convex cone
K, then weak duality ensures

σX(λ)
.
= sup{λᵀx : Ax+ b ∈ K} ≤ inf{bᵀη : Aᵀη + λ = 0, η ∈ K†}.
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An upper bound on the support function is all we need to construct an inner-
approximation of a given AGE cone. For all X = {x : Ax+ b ∈ K}, we have

{c : ν in Rm−1, c in Rm, and η in K†

D(ν, c\i)− νᵀ1 + ηᵀb ≤ ci,
[α\i − 1αi]

ᵀν = Aᵀη, and c\i ≥ 0} ⊂ CAGE(α, i,X).

If there exists an x0 so that Ax0 + b belongs to the relative interior of K, then by
Slater’s condition the reverse inclusion in the preceding expression also holds.

3.2 Dual perspectives and solution recovery

Here we discuss how dual SAGE relaxations can be used to recover optimal and
near-optimal solutions to signomial programs of the form (1). For concreteness, we
state the simplest such relaxation here. Let f , {gi}k1i=1 and {φi}k2i=1 be signomials
over exponents α, with α1 = 0. If c is the coefficient vector of f , and the rows of
G ∈ Rk1×m, Φ ∈ Rk2×m specify coefficient vectors of gi, φi respectively, then

inf{cᵀv : v ∈ CSAGE(α, X)†, v1 = 1, Gv ≥ 0, Φv = 0} (9)

is a convex relaxation of Problem 1. It is readily verified that if v? is an optimal
solution to (9) and v? = exp(αx) for some x in X, then x is optimal for (1).

The prospect of inverting the moment-type vector v? to obtain a feasible point
x ∈ X drives our interest in understanding the dual cone CSAGE(α, X)†. By standard
rules in convex analysis, the dual SAGE cone is given by

CSAGE(α, X)† = ∩i∈[m]CAGE(α, i,X)†.

An expression for the dual AGE cones can be recovered from Theorem 6. Using
coX = {(x, t) : t > 0, x/t ∈ X} to denote the cone over X, the usual conic-duality
calculations yield

CAGE(α, i,X)† = cl{v : vi log(v/vi) ≥ [α− 1αi]z

(z, vi) ∈ coX, v in Rm+ , and z in Rn}. (10)

The auxiliary variables “z” appearing in the representation for the dual X-AGE
cones are a powerful tool for solution recovery. If z,v satisfy the constraints in (10)
with vi > 0, then x

.
= z/vi belongs to X. Additionally, if the inequality constraints

involving the logarithm are binding and we meet the normalization condition vi =
exp(αi · x), then we will have exp(αx) = v.

These observations form the core – but not the entirety – of our solution recovery
algorithm. Depending on solver behavior and dimension-reduction techniques used
to simplify a SAGE relaxation, it is possible that v = exp(αx) for some x in X, and
yet no dual AGE cone generated this value. Therefore it is also prudent to solve a
constrained least-squares problem to find x in X with αx near log v.
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Algorithm 1 signomial solution recovery from dual SAGE relaxations.

Input: Signomials f , {gi}k1i=1, and {φi}k2i=1 over exponents α in Rm×n. A vector v
in CSAGE(α, X)†. Infeasibility tolerances εineq, εeq ≥ 0.

1: procedure SigSolutionRecovery(f, g, φ,α,v, εineq, εeq)
2: solutions← []
3: for j = 1, . . . , length(v) do
4: Recover z in Rn s.t. vj log(v/vj) ≥ [α− 1αj ]z and (z, vj) ∈ coX.
5: x← z/vj .
6: solutions.append(x).
7: end for
8: if αx 6= log v for all x in solutions then
9: Compute xls in argmin{‖ log v −αx‖ : x in X}.

10: solutions.append(xls).
11: end if
12: solutions← [ x in solutions if g(x) ≥ −εineq and |φ(x)| ≤ εeq ].
13: solutions.sort(f, increasing).
14: return solutions.
15: end procedure

Assuming that Equation 10 is used to represent the dual AGE cones, the runtime
of Algorithm 1 is dominated by Line 10. The runtime of Line 10, in turn, should
be substantially smaller than the time required to compute v ∈ CSAGE(α)† which is
optimal for an appropriate SAGE relaxation.

Note how Algorithm 1 implicitly assumes that v is elementwise positive. For
numerical reasons, this will be the case in practice. At a theoretical level, if v
contains some component vi = 0, then there is no x in Rn which could attain
vi = exp(αi · x), and so solution recovery is not a well-posed problem in such
situations. Note also how in the important (and possibly nontrivial) case with
k1 = k2 = 0, Algorithm 1 always returns at least one feasible solution.

In the authors experience it is useful to take solutions generated from Algorithm
1 and pass them to a local solver as initial conditions. This additional step is
especially worthwhile when there is a gap between a SAGE bound and a problem’s
true optimal value, or when solution recovery to the desired precision of εineq, εeq
fails. The term “Algorithm 1L” henceforth refers to the use of Algorithm 1, followed
by local-solver solution refinement. For the examples in this article, the authors use
Powell’s COBYLA solver for the solution refinement [6].2

2A FORTRAN implementation is accessible through SciPy’s optimize submodule. The argu-
ments we pass to that FORTRAN implementation are RHOBEG=1, RHOEND= 10−7, and MAXFUN= 105.
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3.3 A first worked example

The following problem has appeared in many articles concerning algorithms for
signomial programming [11, 14, 16, 18, 23].

inf
x∈R3

f(x)
.
= 0.5 exp(x1 − x2)− expx1 − 5 exp(−x2) (Ex1)

s.t. g1(x)
.
= 100− exp(x2 − x3)− expx2 − 0.05 exp(x1 + x3) ≥ 0

g2:4(x) = expx− (70, 1, 0.5) ≥ 0

g5:7(x) = (150, 30, 21)− expx ≥ 0

This problem (“Example 1”) is an excellent candidate for conditional SAGE re-
laxations, because each of the seven constraints defines an efficiently representable
convex set. Constraint functions g2:7 can be can be represented with six linear in-
equalities, and the constraint function g1 can be represented with three exponential
cones and one linear inequality. As a separate matter, Example 1 is interesting be-
cause the Lagrange dual problem performs poorly: regardless of how many products
we take of existing constraint functions gi, the −5 exp(−x2) term in the objective
will cause Lagrangians f −

∑
I λI

∏
j∈I gj to be unbounded below for all values of

dual variables λI ≥ 0.
Now we describe how SAGE relaxations fare for Example 1. We begin by setting

X = {x : g1:7(x)}; since X is bounded, Theorem 4 tells us that fSAGE
X is finite. The

dual SAGE relaxation can be solved with MOSEK on Machine L in 0.01 seconds,
and provides us with a lower bound fSAGE

X = −147.86 ≤ f?X . By running Algorithm
1 on the dual solution, we recover

x? = (5.01063529, 3.40119660,−0.48450710) satisfying f(x?) = −147.66666.

From this solution, we know that the bound obtained from the SAGE relaxation is
within 0.13% relative error of the true optimal value. The ability to recover near-
optimal solutions even in the presence of a gap fSAGE

X < f?X can be attributed to how
our solution recovery algorithm differs from traditional “moment” techniques. As it
happens, the point x? recovered from Algorithm 1 is actually an optimal solution to
Example 1. In order to certify this fact, we need stronger SAGE relaxations. Table
1 shows the results of these relaxations, using the minimax-free hierarchy described
in Section 3.4.

level SAGE bound W time (s) L time (s)

0 -147.85713 0.03 0.01
1 -147.67225 0.05 0.02
2 -147.66680 0.08 0.08
3 -147.66666 0.19 0.26

Table 1: SAGE bounds for Example 1, with solver runtime for Machines W and L.
A level-3 bound certifies the level-0 solution as optimal, within relative error 10−8.
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3.4 Reference hierarchies for signomial programming

This section gives a particular set of choices regarding SAGE-based hierarchies for
signomial programming. Because SAGE certificates are sparsity-preserving, one
must be careful when describing relaxations which use nonconstant Lagrange mul-
tipliers, or positive-definite modulators. In particular, when we say “f and gi are
signomials over exponents α,” we mean that {x 7→ exp(αj · x)}mj=1 is the smallest
monomial basis spanning all linear combinations of f , gi, and the function that is
identically equal to one.

First we describe a SAGE-based hierarchy that does not make use of the minimax
inequality. This could be understood as a hierarchy for unconstrained optimization,
but really applies whenever minimizing a signomial over a tractable convex set
X ⊂ Rn. In the event that we cannot certify nonnegativity f − γ with γ = f?X ,
we can use modulators as described in Section 2.3 to improve the largest SAGE-
certifiable bound on f . Formally, for a signomial f over exponents α, a nonnegative
integer `, and a tractable convex set X, the level-` SAGE relaxation for f?X is

f
(`)
X

.
= sup{ γ : Sig(α,1)`(f − γ) is X-SAGE}.

The special case with ` = 0 was introduced earlier in this section as “fSAGE
X .”

Now we consider the case with functional constraints; let f , gi, and φi be signo-
mials over exponents α. SAGE relaxations for the problem of computing (f, g, φ)?X
are indexed by three integer parameters: p, q, and `. Starting from p ≥ 0 and q ≥ 1,
define α[p] as the matrix of exponent vectors for Sig(α,1)p, and define g[q] as the
set of all products of at-most-q elements of g (similarly define φ[q]). The SAGE
relaxation for (f, g, φ)?X at level (p, q, `) is then

(f, g, φ)
(p,q,`)
X = sup γ s.t. sh, zh are signomials over exponents α[p] (11)

L .
= f − γ −

∑
h∈g[q] sh · h−

∑
h∈φ[q] zh · h

Sig(α,1)`L is an X-SAGE signomial

sh are X-SAGE signomials.

The decision variables in (11) are γ ∈ R, the coefficient vectors of {sh}h∈g[q], and the
coefficient vectors of {zh}h∈φ[q]. The most basic level of this hierarchy is (p, q, `) =
(0, 1, 0). This corresponds to using scalar Lagrange multipliers (sh ≥ 0 and zh ∈ R),
the original constraints (g[0] = g, φ[0] = φ), and modulating the Lagrangian by
the signomial that is identically equal to 1. Note that when p > 0, the Lagrange
multipliers sh are required to be nonnegative only over X, rather than over the
whole of Rn.

Once an appropriate SAGE relaxation has been solved, there is the matter of
attempting to recover a solution from the dual problem. Oftentimes a SAGE re-
laxation produces a tight bound on (f, g, φ)?X , and yet no feasible solution can be
recovered from Algorithm 1 with reasonable values of εeq. Thus we also suggest
that one eliminate equality constraints through substitution of variables, when pos-
sible. When it is not possible to eliminate all equality constraints, we recommend
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allowing large violations of equality constraints in Algorithm 1 (e.g. εeq = 1.0), and
passing the returned values as near-feasible points to a local solver in the manner
of Algorithm 1L.3 This principle also extends to allowing large values of εineq prior
to solution-refinement, however the authors find that this is usually not necessary.

3.5 A second worked example

This section’s example can be found in the 1976 PhD thesis of James Yan [1], where
it illustrates signomial programming in the service of structural engineering design.
This problem is notable because it is nonconvex even when written in exponential
form. Such signomial programs have received limited attention in the engineering
design optimization community, largely due to a lack of reliable methods for solving
them. We restate the problem here (as Example 2) in geometric form.4

inf
A∈R3

++
P∈R++

104(A1 +A2 +A3) (Ex2)

s.t. 104 + 0.01A−11 A3 − 7.0711A−11 ≥ 0

104 + 0.00854A−11 P − 0.60385(A−11 +A−12 ) ≥ 0

70.7107A−11 −A
−1
1 P −A−13 P = 0

104 ≥ 104A1 ≥ 10−4 104 ≥ 104A2 ≥ 7.0711

104 ≥ 104A3 ≥ 10−4 104 ≥ 104P ≥ 10−4

Let X ⊂ R4 be the feasible set cut out by the eight bound constraints in Example
2. With an X-SAGE relaxation where all constraints appear in the Lagrangian, we

obtain (f, g, φ)
(0,1,0)
X = 14.1423 in 0.04 seconds of solver time. This bound is very

close to the optimal value claimed by Yan [1]. However, Algorithm 1 only returns
candidate solutions “x” with equality constraint violations φ(x) ≈ 70.

In an effort to improve our chances of solution recovery, we use the equality con-
straint to define the value P ← 70.7107A3/(A3+A1). After clearing the denominator
(A3 +A1) for inequality constraints involving P , we obtain a signomial program (in
geometric-form) in only the variables A1, A2, A3. We solve a level-(0, 1, 0) dual con-
ditional SAGE relaxation for this signomial program, and exponentiate the result
of Algorithm 1 to recover

A = (7.0711000e−04, 7.0711000e−04, 1.00000000e−08), P =
70.7107A3

A1 +A3
.

This solution is feasible up to machine precision, and attains objective matching the
14.142300 SAGE bound. The entire process of solving the SAGE relaxation and
recovering the optimal solution takes less than 0.05 seconds on Machine W.

3COBYLA is an excellent example of a solver which suppports infeasible starts.
4The objective and inequality constraint functions are multiplied by 104 for numerical reasons;

see equation environment (6.15) on page 106 of [1] for the original problem statement.
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3.6 Remarks on “geometric-form” signomial programming

By now we have seen signomial programs in both exponential and geometric forms.
The authors have hitherto preferred the exponential form, primarily because it al-
lows us to build upon the substantial theories of convex analysis and convex opti-
mization. However it is important to acknowledge that from an applications per-
spective, it is far more common to express signomial programs in geometric form.
Here we briefly present a geometric-form parameterization of conditional SAGE
certificates for signomial nonnegativity – both in effort to appeal to those who are
accustomed to working with geometric-form signomial programs, and as a prelude
to our discussion on conditional SAGE polynomials.

Geometric form signomials f(x) =
∑m

i=1 cix
αi are defined at points x in Rn++,

and so it only makes sense to discuss conditional nonnegativity cones for signomials
over sets X ⊂ Rn++. Henceforth, define

CGEOM
NNS (α, X) = {c :

∑m
i=1 cix

αi ≥ 0 for all x in X}

for matrices α in Rm×n and sets X contained in Rn++. By applying the change of
variables x 7→ expy and considering the subsequent change of domain X 7→ logX,
one may verify that CGEOM

NNS (α, X) = CNNS(α, logX). Thus for X ⊂ Rn++, one arrives
naturally at the definition

CGEOM
SAGE (α, X)

.
= CSAGE(α, logX).

From here it should be easy to deduce various corollaries for CGEOM
SAGE (α, X), by ap-

pealing to results from Section 3.1. The most important such result is that one can
efficiently optimize over CGEOM

SAGE (α, X) whenever logX is a convex set for which the
epigraph of the support function is efficiently representable.

4 Conditional SAGE certificates for polynomials

In the previous section we saw how conditional SAGE certificates for signomial
nonnegativity are inextricably linked to convex duality. Here we show how the
broader idea of conditional SAGE certificates can extend to polynomials. In this
context it is not convexity of X that determines when an X-SAGE polynomial cone
is tractable, but rather convexity of an appropriate logarithmic transform of X.

The organization of this section is similar to that of Section 3. Definitions, rep-
resentations, and other basic theorems for the conditional SAGE polynomial cones
are given in Section 4.1. Section 4.2 covers solution recovery from dual SAGE
relaxations, and Section 4.3 provides a worked example with special focus on so-
lution recovery. Section 4.4 describes reference hierarchies for optimization with
conditional SAGE polynomial cones: one based on the minimax inequality, and one
that is “minmax free.” Section 4.5 applies various manifestations of the minimax
hierarchy to an example problem.
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4.1 The conditional SAGE polynomial cones

We call f = Poly(α, c) an X-AGE polynomial if it is nonnegative over X, and f(x)
contains at most one term cix

αi which is negative for some x in X.

Definition 7 (Conditional AGE polynomial cones). For α in Nm×n, a subset X of
Rn, and an index i in [m], the ith AGE polynomial cone with respect to α, X is

CPOLY
AGE (α, i,X) = {c : Poly(α, c)(x) ≥ 0 for all x in X,

cj ≥ 0 if j 6= i and xαj > 0 for some x in X,

cj ≤ 0 if j 6= i and xαj < 0 for some x in X }.

Let us work through some consequences of the definition. For starters, if xαj

takes on positive and negative values as x varies over X, then cj = 0 whenever
c ∈ CPOLY

AGE (α, i,X) and i 6= j. Note that xαj can only take on both positive and
negative values when αj does not belong to the even integer lattice. If X contains
an open ball around the origin, then xαj takes on both positive and negative values
if and only if αj does not belong to the even integer lattice. Thus Definition 7
agrees with the definition of ordinary AGE polynomial cones, as proposed in [30]
and as restated in Equation 4. Another important case is when X is a subset
of the nonnegative orthant. This point is addressed in some detail later in this
section; as a preliminary remark, we note that by considering the connection between
polynomials and geometric-form signomials, one can easily see that if X ⊂ Rn++

then CPOLY
AGE (α, i,X) = CAGE(α, i, logX). With these facts in mind, we define the

conditional SAGE polynomial cone in the natural way.

Definition 8 (X-SAGE polynomials). If the vector c belongs to

CPOLY
SAGE(α, X)

.
=

m∑
k=1

CPOLY
AGE (α, k,X)

then we say that f = Poly(α, c) is an X-SAGE polynomial.

Many of our earlier theorems for signomials apply to X-SAGE polynomials with-
out any special assumptions on X. For example, it is easy to show that Theorem
4 applies to conditional SAGE polynomials: if X is bounded, then f = Poly(α, c)
with α1 = 0 has

fSAGE
X

.
= sup{ γ : γ in R, c− γ(1, 0, . . . , 0) in CPOLY

SAGE(α, X)} > −∞.

Corollary 5 likewise extends to polynomials. Other than substituting AGE signomial
cones with AGE polynomial cones, the only difference is that N becomes N = {i :
cix

αi < 0 for some x in X}.
Now we turn to representation of SAGE polynomial cones. By applying a simple

continuity argument one can show that if X = clX◦ ⊂ Rn+ – where X◦ is the interior
of X – then CPOLY

SAGE(α, X) = CSAGE(α, logX◦). This claim is strengthened slightly
and made more explicit through the following theorem.
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Theorem 9. Suppose X ⊂ Rn+ is representable as X = cl{x : 0 < x, H(x) ≤ 1}
for a continuous map H : Rn → Rr. Then for Y = {y : H(expy) ≤ 1}, we have
CPOLY
SAGE(α, X) = CSAGE(α, Y ).

The proof of Theorem 9 is straightforward, and hence omitted. A more so-
phisticated result concerns when X is not contained in any particular orthant, but
nevertheless possesses a certain sign-symmetry.

Theorem 10. Suppose X ⊂ Rn is representable as X = cl{x : 0 < |x|, H(|x|) ≤ 1}
for a continuous map H : Rn → Rr. Then for Y = {y : H(expy) ≤ 1}, we have

CPOLY
SAGE(α, X) = {c : SR(α, c) ∩ CSAGE(α, Y ) is nonempty }. (12)

By combining Theorem 6 with Theorems 9 and 10, we know that there exist
a range of sets X for which optimization over X-SAGE polynomials is tractable.
There remains the potentially nontrivial task of formulating a problem so that one
of these theorems provides an efficient representation of CPOLY

SAGE(α, X); important
examples of when this is possible include constraints such as

−a ≤ xj ≤ a, ‖x‖p ≤ a, |xαi | ≥ a, and x2j = a

where a > 0 is a fixed constant.

Proof of Theorem 10. Suppose that c in CPOLY
SAGE(α, X) admits the decomposition c =∑m

i=1 c
(i), where c(i) belongs to the ith AGE polynomial cone with respect to α, X.

Define {c̃(i)}mi=1 as follows

c̃
(i)
j =

{
−|c(i)j | if αi is not even, and j = i

c
(i)
j if otherwise

.

By the invariance of X under reflection about hyperplanes {x : xj = 0}, and
continuity of polynomials, we have that

0 ≤ inf{Poly(α, c(i))(x) : x in X} = inf{Poly(α, c̃(i))(x) : x in X ∩ Rn+}
= inf{ Sig(α, c̃(i))(y) : y in Y }.

The signomials Sig(α, c̃(i)) are thus nonnegative over Y = {y : H(expy) ≤ 1}, and
posses at most one negative coefficient. This implies that c̃

.
=

∑m
i=1 c̃

(i) belongs to
CSAGE(α, Y ). One may verify that c̃ also satisfies c̃ ∈ SR(α, c), and so we conclude
that the right-hand-side of Equation (12) contains CPOLY

SAGE(α, X).
Now we address the reverse inclusion. Let c be such that SR(α, c)∩CSAGE(α, Y )

is nonempty. One may verify that basic properties of CSAGE(α, Y ) and SR(α, c)
ensure that if the intersection is nonempty, it contains an element c̃ satisfying |c| =
|c̃|. Henceforth fix c̃ satisfying these conditions. Next we appeal to a relaxed form
of Corollary 5. Setting N = {i : c̃i ≤ 0}, there exist vectors c̃(i) satisfying

c̃ =
∑

i∈N c̃
(i), c̃(i) ∈ CAGE(α, i, Y ), and c̃

(i)
j = 0 for all i 6= j in N .
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Note how the definition of SR(α, c) ensures that N = {i : αi is not even, or ci ≤ 0}.
Thus we define c(i) by

c
(i)
j =

{
(sgn cj)|c̃j | if αi is not even, and j = i

c̃
(i)
j if otherwise

so that c =
∑

i∈N c
(i), and each c(i) has the necessary sign pattern for membership

in the ith AGE cone with respect to α, X. Finally, note that

inf{Poly(α, c(i))(y) : x in X} = inf{Sig(α, c̃(i))(y) : y in Y } ≥ 0.

to complete the proof.

4.2 Solution recovery for sparse moment problems

This section concerns using dual SAGE relaxations to recover solutions to optimiza-
tion problems of the form (1.1), where f and gi are polynomials over exponents α.
If G a k × m matrix whose ith row is the coefficient vector of gi, α1 is the zero
vector, and c is the coefficient vector of f , then the simplest such relaxation is

inf{cᵀv : v ∈ CPOLY
SAGE(α, X)†, v1 = 1, Gv ≥ 0}. (13)

Overall, our goal is to recover vectors x in X satisfying v = (xα1 , . . . ,xαm), where
v is an optimal solution to a relaxation such as the one above. We assume that X
is of a form where one of Theorems 9 or 10 provide a tractable representation of
CSAGE(α, X); this assumption allows us to leverage the following corollary.

Corollary 11. Fix Y = {y : H(expy) ≤ 1} for a continuous H : Rn → Rr.

• If X = cl{x : 0 < x, H(x) ≤ 1}, then CPOLY
SAGE(α, X)† = CSAGE(α, Y )†.

• If X = cl{x : 0 < |x|, H(|x|) ≤ 1}, then

CPOLY
SAGE(α, X)† = {v : there exists v̂ in CSAGE(α, Y )† with

|v| ≤ v̂, and vi = v̂i when αi ∈ 2N1×n}.

We make a running assumption that “Y ” is convex.
Solution recovery for polynomial optimization is more difficult than for signomial

optimization, because monomials possess both signs and magnitudes. We propose a
two-phase approach for this problem, where different techniques are used to recover
variable magnitudes and variable signs. The main ideas for each phase are described
in Sections 4.2.1 and 4.2.2, while the formal algorithms are given in the appendix.
The recovered signs and magnitudes are then combined in an elementary way, as
given by the following algorithm.

20



Algorithm 2 solution recovery for dual SAGE polynomial relaxations.

Input: Polynomials f , {gi}k1i=1, and {φi}k2i=1 over exponents α ∈ Nm×n. Vectors
v ∈ CPOLY

SAGE(α, X)† and v̂ ∈ CSAGE(α, Y )†. Tolerances εineq, εeq, ε0 > 0.

1: procedure PolySolutionRecovery(f, g, φ,α,v, v̂, εineq, εeq, ε0)
2: M ← VariableMagnitudes(α, v, v̂, ε0). # Algorithm 3
3: S ← {1}
4: if X is not a subset of Rn+ then
5: S.union( VariableSigns(α, v) ) # Algorithm 4
6: end if
7: solutions← [].
8: for xmag in M and s in S do
9: x← xmag � s # denotes elementwise multiplication

10: if g(x) ≥ −εineq and |φ(x)| ≤ εeq then
11: solutions.append(x)
12: end if
13: end for
14: solutions.sort(f, increasing).
15: return solutions.
16: end procedure

If v is optimal for Problem (13) and v = (xα1 , . . . ,xαm) for an elementwise
nonzero x in X, then Algorithm 2 will return an optimal solution to Problem 1.1.
As with Algorithm 1 in the signomial case, the authors find it useful to apply a
simple local solver to the output of Algorithm 2 as a sort of solution refinement.
We say “Algorithm 2L” in reference to such a method, with COBYLA as the local
solver.

4.2.1 Recovering variable magnitudes

Given v in CPOLY
SAGE(α, X)†, we want to find x ∈ X satisfying (xα1 , . . . ,xαm) = |v|.

Regardless of whether X is sign-symmetric or X ⊂ Rn+, the variable v ∈
CPOLY
SAGE(α, X) is associated with an auxiliary variable v̂ in CSAGE(α, Y ), and the

variable v̂ is associated with additional auxiliary variables zi as part of the dual
Y -AGE signomial cones. As we discussed in Section 3.2, the vectors yi = zi/v̂i
belong to Y , and so the vectors xi = expyi must belong to X. These vectors xi are
not only feasible with respect to X, but also satisfy

(xα1
i , . . . ,xαm

i ) = v̂ (14)

under the binding-constraint and normalization conditions discussed in Section 3.2.
Of course, if v̂ = |v|, then Equation (14) is precisely what we desire from our
variable magnitudes. Since v̂ = |v| always holds at least for X ⊂ Rn+, the vectors
xi = exp(zi/v̂i) are reasonable candidates for variable magnitudes.
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When X is sign-symmetric, it is possible that v̂ does not equal |v|. This is
particularly likely when v is subject to additional linear constraints, such asGv ≥ 0.
Therefore when X is sign-symmetric it is worth considering variable magnitudes
which supplement the ones described above. We propose that one picks a threshold
ε0 > 0, computes

y ∈ argmin{
∑

i:vi 6=0(αi · y − log |vi|)2 :y in Y, (15)

αi · y ≤ log(ε0) for all vi = 0}
and exponentiates x = expy. The role of ε0 is to ensure that x = expy satisfies
|x|αi ≤ ε0 whenever vi = 0. Extremely small values of ε0 (such as 10−100) would be
reasonable here.

A formal statement of our method for magnitude recovery (Algorithm 3) can be
found in the appendix.

4.2.2 Recovering variable signs

For v in Rm, let α−1(v) denote the set of x ∈ Rn satisfying v = (xα1 , . . . ,xαm).
Henceforth, fix v and assume α−1(v) is nonempty. Here we describe how to find
vectors s in {+1, 0,−1}n so that at least one x ∈ α−1(v) satisfies xi > 0 when
si = +1, xi = 0 when si = 0, and xi < 0 when si = −1. Once we describe this
process, we relax the problem slightly so that si = +1 allows xi = 0.

First we address when si should equal zero. Let U = {i ∈ [m] : vi 6= 0}.
Consider how if some x ∈ α−1(v) has xj = 0, then we must have αij = 0 for all
i in U (else the equality xαi = vi 6= 0 would fail). Thus when αij = 0 for all i
in U , we set sj = 0 without loss of generality. Now let W = {j ∈ [n] : αij >
0 for some i in U}; these are indices for which sj is not yet decided. Consider the
vector (v < 0) ∈ {0, 1}n with values (v < 0)i = 1 if vi < 0, and zero if otherwise. Let
α[U, :] be the submatrix of α formed by rows {αi}i∈U , and similarly index (v < 0).
Finally, solve

α[U, :]z ≡ (v < 0)[U ] mod 2 and zj = 0 for all j in [n] \W (16)

for z in {0, 1}n. The remaining (sj)j∈W are sj = −1 if zj = 1 and sj = 1 otherwise.
An individual solution to (16) can be computed efficiently by Gaussian elim-

ination over the finite field F2. Standard techniques for finite-field linear algebra
also allow us to compute a basis for a null space of a matrix in mod 2 arithmetic
(c.f. [19]), and so in principle one can readily recover all possible solutions to (16).
In practice we must be careful, since the number of solutions to the linear system
can easily be exponentially large in n (for example, when α ≡ 0n×m mod 2). Our
formal algorithm for sign recovery accounts for this fact, and employs an additional
hueristic to handle the case when (16) is inconsistent. See the appendix for details.

4.3 A first worked example

This section’s example is to minimize a function appearing in the formulation of
the cyclic n-roots problem. The general cyclic n-roots problem is a challenging
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benchmark problem in computer algebra [7]. Our problem is to minimize

f(x) = −64
7∑
i=1

∏
j∈[7]\{i}

xj (Ex3)

over the box X = [−1/2, 1/2]7. To the authors’ knowledge, this problem was first
used as an optimization benchmark in the work by Ray and Nataraj, on computing
the extrema of polynomials over boxes [17]. One may verify that f?X = −7, and
that this objective value is attained at x(1) = 1/2 and x(2) = −1/2. Despite this
problem’s simplicity, it requires nontrivial computational effort with SOS methods.
The lowest relaxation order that allows Gloptipoly3 [21] to compute f?X = −7 results
in a semidefinite program that takes MOSEK 90 seconds to solve with Machine W.

SAGE relaxations automatically exploit the structure in this problem. Since the
seven functions fi(x) = 1− 64

∏
j 6=i xi are X-AGE and sum to f + 7, we have that

−7 ≤ fSAGE
X ≤ f?X . To address the dual SAGE relaxation and solution recovery,

we introduce the 8 × 7 matrix α, with final row α8 = 0, αii = 0 for i ≤ 7, and
αij = 1 for the remaining entries. Next we write X = {x : x2 ≤ 1/4}, and for
Y = {y : exp(2y) ≤ 1/4} numerically solve

fSAGE
X = inf{−64 · 1ᵀv1:7 : −v̂ ≤ v ≤ v̂, v̂ in CSAGE(α, Y )†, v8 = v̂8 = 1} = −7.

MOSEK solves this problem in 0.01 seconds with Machine W.
We recover candidate magnitudes by using the eight Y -AGE cones associated

with the auxiliary variable v̂ ∈ CSAGE(α, Y )†. To machine precision, each of these
AGE cones yields the same candidate magnitude |x| = 1/2. The optimal moment
vector v = 1/64 is elementwise positive, and so sign-pattern recovery is a matter of
finding all solutions to the system αz ≡ 0 mod 2. There are exactly two solutions
to this system: z(1) = 0, and z(2) = 1. The first of these gives rise to signs s(1) = 1,
and the second of these results in s(2) = −1. By combining these candidate signs
with candidate magnitudes, we obtain candidate solutions {1/2,−1/2}; since these
solutions are feasible and obtain objective values matching the SAGE bound, we
conclude that both candidate solutions are minimizers of f over X.

4.4 Reference hierarchies for POPs

If X ⊂ Rn+, then one should use the same hierarchies described in Section 3.4, where
“Sig” is replaced by “Poly” and constraints that a function is “an X-SAGE signo-
mial” are replaced by constraints that the function is “an X-SAGE polynomial.”
This section focuses on the more complicated case when X is sign-symmetric.

Our reference hierarchy for functionally constrained polynomial optimization is
similar to that used for signomial programming. Let f , {gi}k1i=1, and {φi}k2i=1 be
polynomials over common exponents α ∈ Nm×n, and fix sign-symmetric X ⊂ Rn.
Define α̂ as the matrix formed by stacking α on top of 2α, and then removing any
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duplicate rows. The SAGE relaxation for (f, g, φ)?X at level (p, q, `) is then

(f, g, φ)
(p,q,`)
X = sup γ s.t. sh, zh are polynomials over exponents α̂[p] (17)

L .
= f − γ −

∑
h∈g[q] sh · h−

∑
h∈φ[q] zh · h

Poly(2α,1)`L is an X-SAGE polynomial

sh are X-SAGE polynomials.

As before, the decision variables are γ ∈ R, and the coefficient vectors of {sh}h∈g[q],
{zh}h∈φ[q]. The main difference between (17) and it’s signomial equivalent (11), is
that the Lagrange multipliers are slightly more complex in (17). This change was
made to improve performance for problems where only a few rows of α belong to
the nonnegative even integer lattice.

Our minimax-free reference hierarchy for polynomial optimization is meaning-
fully different from the signomial case. We begin by assuming a representation X =
cl{x : 0 < |x|, H(|x|) ≤ 1}, and subsequently defining Y = {y : H(expy) ≤ 1}.
Let A and C be operators on polynomials so that f = Poly(A(f), C(f)) always holds,
and let s be the vector in Rm with si = 1 when αi is even, and si = 0 otherwise.
The SAGE relaxation for f?X at level (p, q) is

f
(p,q)
X = sup γ (18)

s.t. ψ
.
= Poly(α, s)p(f − γ)

c ∈ SR(A(ψ), C(ψ))

[Sig(A(ψ), 1)]q Sig(A(ψ), c) is Y -SAGE

over optimization variables c and γ.
Formulation (18) uses two parameters out of desire to mitigate both sources of

error in the SAGE polynomial cone: the error from replacing a polynomial by its
signomial representative, and the error from replacing the signomial nonnegativity
cone by the SAGE cone. As we show in Section 5.2, the signomial representative
complexity parameter “q” can make the difference in our ability to solve problems
when X = Rn.

4.5 A second worked example

The following problem appears in work on “Bounded Degree Sums-of-Squares”
(BSOS) and “Sparse Bounded Degree Sums-of-Squares” (Sparse-BSOS) methods
for polynomial optimization [28, 31]. The latter paper reports that BSOS and
Sparse-BSOS compute (f, g)?R6 = −0.41288 in 44.5 and 82.1 seconds respectively,
when using SDPT3-4.0 on a machine with a quad-core 2.6GHz Core i7 processor
and 16GB RAM.
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inf
x∈R6

f(x)
.
= x61 − x62 + x63 − x64 + x65 − x66 + x1 − x2 (Ex4)

s.t. g1(x)
.
= 2x61 + 3x22 + 2x1x2 + 2x63 + 3x24 + 2x3x4 + 2x65 + 3x26 + 2x5x6 ≥ 0

g2(x)
.
= 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6 ≥ 0

g3(x)
.
= 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6 ≥ 0

g4(x)
.
= x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6 ≥ 0

g5(x)
.
= x21 + 4x62 − 3x1x2 + x23 + 4x64 − 3x3x4 + x25 + 4x66 − 3x5x6 ≥ 0

g6:10(x)
.
= 1− g1:5(x) ≥ 0

g11:16(x) = x ≥ 0

This problem (Example 4) is a good example for conditional SAGE polynomial
relaxations, because it allows for several choices in partial dualization.

The simplest choice is to use no partial dualization at all– simply solve relaxations
of the form (17) with X = Rn. Indeed, it is possible to solve Example 3 with
only these ordinary SAGE certificates, however the necessary level of the hierarchy

(f, g)
(1,1,0)
R6 = −0.41288 requires 101 seconds of solver time on Machine W.

A strictly preferable alternative is to apply partial dualization with X = R6
+.

With this choice of X it is natural to drop the first two and last six constraints from
g (all of which will be trivially satisfied), and work with ĝ = g3:10. This allows us to

compute (f, ĝ)
(1,1,0)
X = −0.41288 in 3.04 seconds of solver time on Machine W, and

4.4 seconds of solver time on Machine L. It is significant that the SAGE relaxation
can be solved in this amount of time on Machine L, since it is an order of magnitude
faster than BSOS solve time reported in [31].

The most aggressive choice for partial dualization is X = {x : x ≥ 0, g6:7 ≥ 0}.
With this choice of X one has the option of using ĝ = (g3:5, g8:10), or ĝ = g3:10; in

the first case Machine W computes (f, ĝ)
(1,1,0)
X = −0.47121 in 3.3 seconds, and in

the second case Machine W computes (f, ĝ)
(1,1,0)
X = −0.41288 in 5.67 seconds. It

is worth emphasizing that even though g6:7 were incorporated into X, the SAGE
bound with Lagrange multiplier complexity p = 1 improved by including g6:7 in the
Lagrangian.

5 Computational experiments

This section presents the results of some computational experiments with SAGE
relaxations. Experiments with signomial programs consist of twenty-nine problems
drawn from the literature, of which seventeen are solved to optimality (see Section
5.1). Examples for polynomial optimization include twenty-two problems from the
literature (Section 5.2), as well as randomly generated problems (Section 5.3).

All experiments described here were run with the provided sageopt python
package. Sageopt is an extension and refinement of the “sigpy” package intro-
duced by the authors in the appendix of [30]. In the spirit of Gloptipoly3 [21],
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sageopt includes its own basic rewriting system to cast a SAGE relaxation into
conic forms acceptable by appropriate solvers. The rewriting system also provides
mechanisms for computing constraint violations, analyzing low-level problem data,
and constructing a set X (in an appropriate representation) from lists of constraint
functions g and φ. Once problem data f , g, and φ are defined, a SAGE relaxation
can be constructed and solved in just two lines of code. Solution recovery simi-
larly requires no more than two lines of code. Sageopt currently supports the conic
solvers ECOS [22, 25] and MOSEK [32].

Unless otherwise stated, experiments were conducted on Machine W. All exper-
iments were conducted with the MOSEK solver, using the default solver tolerances.
We note that although Sections 3.4 and 4.4 only stated the SAGE relaxations in
primal form, these experiments were conducted by symbolically constructing pri-
mal and dual problems, and solving them separately from one another. In order
to communicate the quality of these numeric solutions, we generally report “SAGE
bounds” to the farthest decimal point where the primal and dual objectives agree.

5.1 Signomial programs from the literature

The examples in this section were drawn from the PhD thesis of James Yan [1], a
popular benchmarking paper by Rijckaert and Martens [2], and the more contempo-
rary works [23, 24]. The organization of this section is chronological with respect to
these three sources. Many of the problems considered here can be found elsewhere
in the literature, including work by Shen et al. [11, 14, 18], Wang and Liang [12]
and Qu et al. [16].

SAGE recovers best-known solutions for all but six of the twenty nine problems
considered here. For every one of these six problematic examples, numerical issues
resulted in solver failures for level-(p, q, `) relaxations whenever p > 0; the results for
these six problems should not be taken as definitive. For the twenty-three problems
where SAGE recovered best-known solutions, there are two important trends we
can observe. First, our solution recovery algorithms are more likely to succeed
with a conditional SAGE relaxation than with an ordinary SAGE relaxation, even
when the ordinary SAGE relaxation is tight. Second– the local solver refinement in
Algorithm 1L can help tremendously not only in the presence of suboptimal strictly-
feasible initial solutions (Example 8), but also in the presence of both large and small
constraint violations (Examples 9 and 6 respectively). The initial condition from
a SAGE relaxation in Algorithm 1L is important; the underlying COBYLA solver
can and will return suboptimal solutions if initialized poorly.

5.1.1 Problems from the PhD thesis of James Yan

We attempted to solve nine example problems appearing James Yan’s 1976 PhD
thesis Signomial programs with equality constraints : numerical solution and ap-
plications [1]. This section reproduces two of the six problems which we solved to
global optimality via SAGE certificates. Yan’s “Problem B” (page 88) and “Problem
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C” (page 89) serve as our Examples 5 and 6 respectively.

inf
x∈R4

f(x)
.
= 2− exp(x1 + x2 + x3) (Ex5)

s.t. g1(x)
.
= 4− expx3 − 15 exp(x2 + x3)− 15 exp(x3 + x4) ≥ 0

g2:5(x)
.
= (1, 1, 1, 2)− expx ≥ 0

g6:9(x)
.
= expx− (1, 1, 1, 1)/10 ≥ 0

φ1(x)
.
= expx1 + 2 expx2 + 2 expx3 − expx4 = 0

It is possible to quickly compute (f, g, φ)?R4 = 1.925 with both conditional and
ordinary SAGE certificates, although conditional SAGE certificates exhibit better

performance for solution recovery. Specifically, (f, g, φ)
(1,1,0)
R4 = 1.92592592 can be

computed in 0.12 seconds, but no solution can be recovered from Algorithm 1 unless
ε is set to an unacceptably large value of 0.1. Instead we set X = {x : g(x) ≥ 0},
compute (f, g, φ)

(1,1,0)
X = 1.92592593 in 0.18 seconds, and by running Algorithm 1

recover x? satisfying g(x?) > 1E-11, |φ(x?)| < 1E-8, and f(x?) = 1.92592593.

inf
y∈R3

++

y0.61 y2 + y2y
−0.5
3 + 15.98y1 + 9.0824y22 − 60.72625y3 (Ex6)

s.t. y−22 y3 − y1y−22 − 0.48 ≥ 0

y0.51 y23 − y0.251 y3 − y22 − 5.75 ≥ 0

(1000, 1000, 1000) ≥ y ≥ (0.1, 0.1, 0.1)

y21 + 4y22 + 2y23 − 58 = 0

y1y
−1
2 y2.53 + y2y3 − y22 − 16.55 = 0

Setting X = {x ∈ R3 : g(x) ≥ 0}, we can compute (f, g1:2, φ)
(0,1,0)
X = −320.722913

in 0.04 seconds. By running Algorithm 1 with εineq =1E-8 and εeq =1E-6, we
recover x with objective f(x) = −320.722913 and that is feasible up to tolerance
8E-7. We then pass this solution to COBYLA with parameter RHOEND=1E-10, and
subsequently recover recover x? with the same objective, but constraint violation of
only 5E-13.

The remaining problems which we solved to optimality were “Problem A” on
page 60, “Problem A” on page 88, “Problem D” on page 89, and the problem in
equation environment “(6.15)” on page 106. The last of these was introduced in
Section 3.5 as “Example 2.” The problems which we did not solve to optimality
were “Problem B” on page 61, the problem in equation environment “(6.29)” on page
113, and the problem in equation environment “(6.36)” on page 120. In each of these
unsolved cases, we encountered solver-failures for level-(p, q, `) relaxations whenever
p > 0. Therefore the bounds computed for each of these problems were essentially
limited to those of Lagrange dual problems, with modest partial dualization.
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5.1.2 Problems from the benchmarking paper of Rijckaert and Martens

We attempted to solve problems 9 through 18 of the popular signomial-geometric
programming benchmark paper by Rijckaert and Martens [2]. Of these ten prob-
lems, seven met with at least moderate success, in that SAGE relaxations produced
meaningful lower bounds on a problem’s optimal value, and also facilitated recovery
of best-known solutions to these problems. SAGE certificates allow us to certify
global optimality for four of these seven problems. Problem statistics and a quali-
tative summary of SAGE performance is given in Table 2.

We reproduce Rijckaert and Martens’ problems 10 and 15 as our Examples 7
and 8 respectively; both problems are written in exponential-form.

inf
x∈R3

f(x)
.
= 0.5 exp(x1 − x2)− expx1 − 5 exp(−x2) (Ex7)

s.t. g1(x)
.
= 100− exp(x2 − x3)− expx1 − 0.05 exp(x1 + x3) ≥ 0

g2:4(x)
.
= (100, 100, 100)− expx ≥ 0

g5:7(x)
.
= expx− (1, 1, 1) ≥ 0

The bound constraints appearing in Example 7 are not included in [2], however f
is unbounded below if we omit them. The solution proposed in [2] has expx =
(88.310, 7.454, 1.311), and objective value f(x) = −83.06. The actual optimal solu-
tion has value −83.25, and this can be certified by running Algorithm 1 on a dual

solution for f
(3)
X = −83.2510, where X = {x : g(x) ≥ 0}. Solving the necessary

SAGE relaxation takes 0.1 seconds on Machine W.

inf
x∈R10

f(x)
.
= 0.05 expx1 + 0.05 expx2 + 0.05 expx3 + expx9 (Ex8)

s.t. g1(x)
.
= 1 + 0.5 exp(x1 + x4 − x7)− exp(x10 − x7) ≥ 0

g2(x)
.
= 1 + 0.5 exp(x2 + x5 − x8)− exp(x7 − x8) ≥ 0

g3(x)
.
= 1 + 0.5 exp(x3 + x6 − x9)− exp(x8 − x9) ≥ 0

g4(x)
.
= 1− 0.25 exp(−x10)− 0.5 exp(x9 − x10) ≥ 0

g5(x)
.
= 1− 0.79681 exp(x4 − x7) ≥ 0

g6(x)
.
= 1− 0.79681 exp(x5 − x8) ≥ 0

g7(x)
.
= 1− 0.79681 exp(x6 − x9) ≥ 0

A level (1,1,0) ordinary SAGE relaxation for Example 8 can be solved in 2.8 seconds

on Machine W; this returns the bound (f, g)
(1,1,0)
R10 = 0.2056534. When Algorithm 1

is run on the dual solution, it returns a point x satisfying f(x) ≈ 0.38 and g(x) ≥
0.053. However by subsequently running Algorithm 1L, we obtain x? satisfying
f(x?) = 0.20565341 and gi(x

?) ≥ 1E-8 for all i in [k]. We thus conclude that the
level-(1, 1, 0) SAGE relaxation was tight.
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Num. in [2] n k solution quality optimal?

9 2 1 same unknown
10 3 1 improved yes
11 4 2 same yes
12 8 4 same unknown
13 8 6 no solution no
14 10 7 same unknown
15 10 7 same yes
16 10 7 same yes
17 11 8 no solution no
18 13 9 no solution no

Table 2: Columns n and k give number of variables and number of inequality con-
straints for the indicated problem. “Solution quality” is “same” (resp. “improved”)
if Algorithm 1L returned a feasible solution with objective equal to (resp. less
than) that proposed in [2]. Problems 9, 12, and 14 are discussed in Table 3. We
encountered solver failures for level-(1, 1, 0) relaxations of problems 13, 17, and 18.

SAGE relaxation Algorithm 1 Algorithm 1L
Num. in [2] (p, q, `) bound f(x) min g(x) f(x) min g(x)

9 (3,3,1) 11.7 12.500 0.00438 11.9600 2.00E-10
12 (0,2,1) -6.4 -5.7677 0.00034 -6.0482 -5.00E-09
14 (0,4,0) 0.7 2.5798 0.01541 1.14396 -8.00E-09

Table 3: Problems for which we did not certify optimality, but nevertheless recovered
best-known solutions by using SAGE relaxations. Note that Algorithm 1 returned
strictly-feasible solutions in each of these cases. In the next section we present
examples where Algorithm 1 does not return feasible solutions, and so solution
refinement (i.e. Algorithm 1L) becomes more important.

5.1.3 Problems from contemporary sources

Here we describe our attempts at solving six problems from the 2014 article by Hou,
Shen, and Chen [23], as well as four problems from the 2014 article by Xu [24].
SAGE relaxations are quite successful in this regard: seven of the ten problems are
solved to global optimality (verified SAGE bounds), while best-known (but possibly
suboptimal) solutions are obtained for the remaining three problems. Summary
results can be found in Tables 4 and 5. We explicitly reproduce problem [23]-8 as
our Example 9.
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source num. n k1 k2 objective infeasibility optimal?

[23] 1 4 10 0 0.7650822 0 yes
- 2 2 5 0 11.964337 0 yes
- 3 3 7 0 -147.66666 0 yes
- 5 5 16 0 10122.493 4.00E-13 unknown
- 7 3 6 0 -10.363636 2.00E-15 yes
- 8 15 37 6 156.21963 4.00E-14 yes

[24] 4 2 1 1 1.3934649 2.00E-10 yes
- 5 6 9 4 -0.3888114 5.00E-17 unknown
- 6 2 4 2 1.1771243 4.00E-12 yes
- 7 6 20 3 10252.790 8.00E-14 unknown

Table 4: Columns n, k1, and k2 specify the number of variables, inequality con-
straints, and equality constraints in the indicated problem. The last three columns
specify the objective value and constraint violation of a solution obtained by running
Algorithm 1L on the output of a dual SAGE relaxation, as well as a note on whether
the objective matched a SAGE bound. Problems with “unknown” optimality status
are described in Table 5.

inf
y∈R15

++

∑4
i=1 yi+11(12.62626− 1.231059yi) (Ex9)

s.t. y12 − y11 ≤ 0, y11 − y12 ≤ 50, y10 − y4 ≤ 0

y9 − y10 ≤ 0, y8 − y9 ≤ 0, 2y7 − y1 ≤ 1

y3 − y4 ≤ 0, y2 − y3 ≤ 0, y1 − y2 ≤ 0

50y4 + y10y15 − 50y10 − y4y15 ≤ 0

50y10 + y4y5 + y9y14 − 50y9 − y3y14 − y8y15 ≤ 0

50y7 + y2y13 + y7y12 − 50y8 − y1y12 − y8y13 ≤ 0

50y8 + y1y12 + y8y13 − 50y7 − y2y13 − y7y12 ≤ 0

50y8 + 50y9 + y3y14 + y8y13 − y2y13 − y9y14 ≤ 500

y6y11 + y1y12 + y7y11 − y6y12 ≤ 0

100yi+5 + 0.0975y2i − 3.475yi − 9.75yiyi+5 ≤ 0 for all i in [5]

y ≥ (1.000000, 1, 9, 9, 9, 1, 1.000000, 1, 1, 1, 50, 0.0, 1.0, 50, 50)

y ≤ (8.037732, 9, 9, 9, 9, 1, 4.518866, 9, 9, 9, 100, 50, 50, 50, 50)

Six of the fifteen variables in Example 9 have matching upper and lower bounds –
these are the six equality constraints alluded to in Table 4. Our formulation differs
from [23]-8, in that a constraint “x3x2 − x3 ≤ 0” in the original problem statement
was replaced by “y2 − y3 ≤ 0” in our problem statement. This change is necessary
because the original problem is actually infeasible.

We approach Example 9 by maximizing our use of partial dualization: the set
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X ⊂ R15 includes all bound constraints, all but two of the first nine inequality
constraints, as well as the constraint fourth from the end of the problem statement.
The equality constraints implied for variables y3, y4, y5, y6, y14, y15 are not included in
the Lagrangian. A level-(0,1,0) conditional SAGE relaxation then produces a bound
(f, g)?X ≥ 156.2196 in 0.05 seconds. By running Algorithm 1L with εineq = 100, we
subsequently obtain the geometric-form solution

y?1:8 = (8.037732, 9, 9, 9, 9, 1, 1, 1.15686275)

y?9:15 = (1.21505203, 1.58987319, 50, 3E-50, 1, 50, 50).

The solution y? is feasible up to forward-error 3.6E-14, and attains an objective
value of 156.219629. Because this objective matches the SAGE bound, we conclude
that y? is optimal up to relative error 2E-7.

source-num. (p, q, `) bound εineq εeq objective infeasibility

[23]-5 (0,1,0) 9171.00 1.00E-08 0 10122.493 4.00E-13
[24]-5 (2,2,0) -0.390 1.00E-08 1 -0.3888114 5.00E-17
[24]-7 (0,1,0) 9397.8 1.00E-08 1 10252.790 8.00E-14

Table 5: Signomial programs for which we did not certify optimality, but neverthe-
less recovered best-known solutions by using SAGE relaxations. Columns εineq and
εeq indicate the value of infeasibility tolerances when running Algorithm 1, prior to
feeding the output of Algorithm 1 to COBYLA as part of Algorithm 1L. The last
two columns list the objective function value and constraint violations for the out-
put of Algorithm 1L. [24]-7 reports a solution with smaller objective value, however
that solution violates an equality constraint with forward error in excess of 0.11.

5.2 Polynomial optimization problems from the literature

Here we review results of the reference hierarchies from Section 4.4, as applied
to twenty-two polynomial optimization problems from the literature. We begin
with six unconstrained and eight box-constrained problems (drawn from [34] and
[17] respectively). There are two important lessons which we highlight with the
box-constrained problems. First, bound constraints should still be included in the
Lagrangian, even if they can be completely absorbed into the set “X” in a conditional
SAGE relaxation. Second, even if the original problem does not feature many sign-
symmetric constraints, it is often easy to infer valid sign-symmetric constraints which
can improve performance of a conditional SAGE relaxation. The remaining eight
problems discussed in this section have nonconvex objectives, nonconvex inequality
constraints, and constraints that the optimization variables are nonnegative [28].
Our experience with such problems is that partial dualization plays a crucial role in
solving them efficiently, primarily with the simpler constraints x ≥ 0.

Table 6 gives problem data for the unconstrained and box-constrained problems;
three such problems are reproduced here, as our Examples 10 through 12.

inf{f(x)
.
= 4x21 − 2.1x41 + x61/3 + x1x2 − 4x22 + 4x42 : x in R2} (Ex10)

31



The polynomial f in Example 10 is known as the six-hump camel function; its
minimum f?R2 ≈ −1.0316 is attained at two points, which differ only by sign. By
using polynomial modulators, a level-(3,0) relaxation returns a bound −1.03170 in
0.63 seconds of solver time on Machine W. By instead solving a level-(0,2) relaxation
(i.e. modulating the signomial representative of f − γ) we obtain −1.031630 ≤ f?R2

in 0.19 seconds. Example 10 shows how the two-parameter hierarchy in Section 4.4
can be of practical importance.

Our next two examples are box-constrained problems from the work of Ray and
Nataraj [17]; their problems “Capresse 4” and “Butcher 6” serve as our Examples
11 and 12. A consistent trend for these problems is that even when a feasible set X
can be incorporated entirely into an X-SAGE cone, it is still useful to take products
of constraints, and solve a relaxation such as (17) which includes those constraints
in the Lagrangian.

infx∈R4 f(x)
.
= −x1x33 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3 (Ex11)

+ 4x23 − 10x2x4 − 10x24 + 2

s.t. g1:4(x)
.
= x+ (1, 1, 1, 1)/2 ≥ 0

g5:8(x)
.
= (1, 1, 1, 1)/2− x ≥ 0

Letting X = {x ∈ R4 : −0.5 ≤ xi ≤ 0.5}, one can compute (f, g)
(1,2,0)
X = (f, g)?R4 =

−3.1176903, where the equality is verified by recovering a solution with Algorithm
2. Example 11 is noteworthy because the recovered solution required no local-solver
refinement that occurs in Algorithm 2L.

inf
x∈R6

f(x)
.
= x6x

2
2 + x5x

2
3 − x1x24 + x34 + x24 − 1/3x1 + 4/3x4 (Ex12)

s.t. g1:6(x)
.
= x+ (1, 0.1, 0.1, 1, 0.1, 0.1) ≥ 0

g7:12(x)
.
= (0, 0.9, 0.5,−0.1,−0.05,−0.03)− x ≥ 0

We can produce a tight bound for Example 12 with ordinary SAGE certificates:
a level-(0,3,0) relaxation returns −1.4392999 ≤ (f, g)? in 0.67 seconds. Solution
recovery is not so easy. Unless we move to a computationally expensive level-(0,3,1)
ordinary SAGE relaxation, Algorithm 2 fails to return a feasible point. Instead,
we infer valid inequalities to describe a set “X” for use in a conditional SAGE
relaxation:

|x1| ≤ 1, |x2| ≤ 0.9, |x3| ≤ 0.5, and

0.1 ≤ |x4| ≤ 1, 0.05 ≤ |x5| ≤ 0.1, 0.03 ≤ |x6| ≤ 0.1.

The resulting level (0,3,0) relaxation can be solved in 0.64 seconds. We recover a
feasible solution with Algorithm 2, and obtain a solution matching the SAGE bound
after refinement by COBYLA. Example 12 reinforces a message from signomial
optimization: even if an ordinary SAGE relaxation can produce a tight bound, a
conditional SAGE relaxation is likely to fare better with solution recovery. Example
12 also shows how useful sign-symmetric constraints can be inferred from a problem
statement, even when those constraints are weaker than those found in the problem.
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source name n d minimum SAGE solved

[34] Rosenbrock variable 4 0 yes
- 6-hump camel 2 6 -1.0316 yes
- 3-hump camel 2 6 0 yes
- Beale 2 8 0 no
- Colville 4 4 0 no
- Goldstein-Price 2 8 3 no

[17] L.V. 4 4 4 -20.8 yes
- Cap 4 4 4 -3.117690 yes
- Hun 5 5 7 -1436.515 no
- Cyc 5 5 4 -3 yes
- C.D. 6 6 2 -270397.4 no
- But 6 6 3 -1.4393 yes
- Heart 8 8 4 -1.367754 yes
- Viras 8 8 2 -29 yes

Table 6: Results for SAGE on unconstrained and box-constrained polynomial min-
imization problems. Column “d” indicates the degree of the polynomial to be min-
imized. The Rosenbrock example allows for different numbers of variables, though
results from [30] show SAGE is tight for any number of variables. The Beale,
Colville, and Goldstein-Price polynomials proved very difficult for optimization via
SAGE certificates.

Now we turn to problems from [28], featuring nonconvex inequality constraints.
One of these problems was introduced in Section 4.5 as “Example 4,” and all of
these problems have a similar structure to that of Example 4. Most importantly,
problems featured here include nonnegativity constraints x ≥ 0. The natural SAGE
hierarchy produces tight bounds for all of these problems; results are summarized
in Table 7.

There are a few subtle distinctions between geometric-form signomial programs
(SPs), and nonnegative polynomial optimization problems (POPs) such as those
considered here. While a polynomial optimization problem over x ≥ 0 may include
xi = 0 in the feasible set, geometric-form SPs typically cannot allow this (since
there is the possibility of dividing by zero, or encountering indeterminate forms).
Thus solution recovery from SAGE relaxations is nominally more challenging for
a true nonnegative POP, relative to a geometric-form SP. Despite this challenge,
Algorithm 2L successfully recovers optimal solutions for all of these problems. See
Table 8 for details.

The other important distinction between geometric-form SPs and nonnegative
POPs, is that there exist established Sums-of-Squares based methods for dealing
with nonnegative POPs. Thus it is useful to understand the performance of SAGE-
based methods in the context of SOS-based methods for polynomial optimization.
Although SAGE relaxations took a very long time to solve problems P4 6 and P4 8,
the runtimes for problems such as P6 8 are remarkable. The unspecified machine in
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[28] took over 1600 and 200 seconds to solve P6 8 with BSOS and SOS respectively,
while SAGE can solve the same problem in under 4 seconds on a mid-tier laptop
from 2013. It seems to the authors that SAGE provides a compelling option for non-
negative polynomial optimization problems, at least for low levels of the hierarchy
(such as (1, 1, 0), or (0, q, 0) with small q).

name k minimum (p, q, `) W time (s) L time (s)

P4 4 8 -0.033538 (1,1,0) 0.47 0.7
P4 6 7 -0.060693 (1,1,1) 289 292
P4 8 7 -0.085813 (2,1,0) 396 460
P6 4 8 -0.576959 (1,1,0) 3.45 4.1
P6 6 8 -0.412878 (1,1,0) 3.04 4.37
P6 8 8 -0.409020 (1,1,0) 3.25 3.83
P8 4 8 -0.436026 (1,1,0) 7.18 7.25
P8 6 8 -0.412878 (1,1,0) 8.67 8.21

Table 7: Generic polynomial optimization problems, over the nonnegative orthant.
Problems can be found in both [28] and [31]; names “Pn d” indicate the number
of variables n and degree d of the given problem. Column k gives the number of
inequality constraints, excluding constraints x ≥ 0, as well as those which trivially
follow from x ≥ 0. SAGE solved all problems listed here, at the indicated level of
the hierarchy, and with the indicated solver runtimes (in seconds).

Algorithm 2 Algorithm 2L
name f(x) min g(x) f(x) min g(x)

P4 4 -0.033386 0.00E-00 -0.033538 0.00E-00
P4 6 -0.057164 4.06E-02 -0.060693 -2.44E-14
P4 8 -0.066671 1.42E-01 -0.085813 -3.46E-14
P6 4 -0.570848 4.04E-08 -0.576959 -1.03E-13
P6 6 -0.412878 5.46E-09 -0.412878 -1.68E-13
P6 8 -0.409018 1.07E-07 -0.409020 -5.82E-14
P8 4 -0.436024 3.27E-08 -0.436026 -2.58E-13
P8 6 -0.412878 2.78E-43 -0.412878 -2.55E-12

Table 8: Comparison of Algorithm 2 and Algorithm 2L for solution recovery for
eight nonconvex polynomial optimization problems in the literature (ref. [28, 31]).
Both algorithms were initialized with solutions to a level-(1,1,0) conditional SAGE
relaxation, and Algorithm 2L always recovers an optimal solution. It is especially
notable that Algorithm 2L recovers optimal solutions for problems P4 6 and P4 8,
since level-(1,1,0) relaxations do not produce tight bounds for these problems.

34



5.3 Minimizing random sparse quartics over the sphere

In this section we describe how SAGE relaxations perform for minimizing sparse
quartic forms over the unit sphere; this particular class of test problems is inspired
from similar computational experiments by Ahmadi and Majumdar in their work
on LP and SOCP-based inner-approximations of the SOS cone [27].

Our method for generating these problems is as follows: initialize f = 0 as a
polynomial in n variables, and proceed to iterate over all tuples “t” in [n]4. With
probability n log n/n4, sample a coefficient ct from the standard normal distribution,
and add the term ctx

αt to f , where αt ∈ [4]n has αtj = |{i : ti = j}|. The
expected number of terms in f after this procedure is roughly n log n. Once a
polynomial is generated, we solve a level-(0,2,0) conditional SAGE relaxation for
(f, g)?Rn , where g(x) = 1− xᵀx.5 The set “X” in the conditional SAGE relaxation
is X = {x : g(x) ≥ 0}. Figure 1 and Table 9 report results for 20 problems in 10
variables, 20 problems in 20 variables, 14 problems in 30 variables, and 10 problems
in 40 variables.

n = 10, m 23
0.00

0.05

0.10

0.15

0.20

n = 20, m 60

0.100

0.075

0.050

0.025

0.000

n = 30, m 102
0.00

0.02

0.04

0.06

0.08

n = 40, m 148
0.000

0.025

0.050

0.075

0.100

0.0 0.2 0.4 0.6 0.8 1.0
random polynomials in n variables with m terms

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

op
tim

al
ity

 g
ap

minimizing sparse quartics over the unit sphere

Figure 1: Upper-bounds on the optimality gap |(f, g)
(0,2,0)
X −(f, g)?Rn |/|(f, g)?Rn |. The

value (f, g)?Rn in these calculations was replaced by the objective value of a solution
produced by Algorithm 2L. SAGE solved 4 problems in 10 variables, 10 problems
in 20 variables, 6 problems in 30 variables, and 4 problems in 40 variables.

5Because f is homogeneous, xᵀx = 1 may be relaxed to xᵀx ≤ 1 without loss of generality
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solve time (s) n = 10 n = 20 n = 30 n = 40

mean 7.54E-01 6.50E-00 6.46E+01 4.59E+02
std dev. 8.74E-02 8.54E-01 1.38E+01 7.20E+01

Table 9: Solver runtimes for level-(0,2,0) conditional SAGE relaxations, on Machine
W. Similar runtimes can be expected for Machine L with n ∈ {10, 20, 30}. Solve
times with Machine L can take much longer for n ≥ 40, since only a portion of the
problem fits in RAM.

6 Discussion and Conclusion

In this article we introduced and developed notions of conditional SAGE certificates
for both signomials and polynomials. In the signomial case, the underlying theory
of the X-SAGE cones has deep roots in convex duality, while in the polynomial
case, we derived efficient representations of important X-SAGE cones by employ-
ing “signomial representatives” introduced by the authors in earlier work. Through
worked examples and computational experiments, we have demonstrated that sub-
sequent convex relaxations can be used to solve many signomial and polynomial
optimization problems from the literature. The authors believe that conditional
SAGE certificates are a fertile area for research in both the theory and practice of
constrained optimization; we briefly describe some possible directions here.

From an applications perspective, it would be interesting to see how conditional
SAGE certificates can help with branch-and-bound algorithms. Whether considering
signomials in geometric form, signomials in exponential form, or polynomials, bound
constraints can easily be incorporated into X-SAGE cones. On the algorithmic
front, important work remains to be done on solvers for relative entropy programs,
primarily with regards to problems where the optimal solution contains a large
number of variables along certain extreme rays of the exponential cone.

Conditional SAGE certificates raise many questions of potential interest to re-
searchers in real algebraic geometry, and optimization-via-nonnegativity-certificates.
Consider for example how the minimax-free hierarchy from Section 3.4 adopted a
particular form for the modulating function: Sig(α,1)`. What benefit might there
be to instead using a modulator Sig(α̂,1)`, where α̂ was chosen with consideration
to X? Equally important, how could one efficiently identify good candidates for
such α̂, given only α and a description of X? And at the most fundamental level,
one asks – for what exponents α and what sets X do X-SAGE cones coincide with
X-nonnegativity cones? Prior work (c.f. [30], and more recently [33]) has uncovered
meaningful sufficient conditions for this problem when X = Rn. These sufficient
conditions have hitherto been stated in terms of the combinatorial geometry of the
exponent vectors {αi}mi=1. It will be very interesting to see how such results do (or
do not) generalize to X-SAGE cones for arbitrary X.
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7 Appendix

Algorithm 3 magnitude recovery for dual SAGE polynomial relaxations.

Input: A matrix α ∈ Nm×n. Vectors v ∈ CPOLY
SAGE(α, X)† and v̂ ∈ CSAGE(α, Y ). Zero

threshold parameter ε0 > 0.

1: procedure VariableMagnitudes(α,v, v̂, ε0)
2: M ← []
3: for j = 1, . . . ,m do
4: if v̂j = 0 then
5: Continue
6: end if
7: Recover z in Rn s.t. v̂j log(v̂/v̂j) ≥ [α− 1αj ]z and (z, v̂j) ∈ coY .
8: y ← z/v̂j
9: M .append(expy)

10: end for
11: if (xα1 , . . . ,xαm) 6= |v| for all x in M then
12: Compute (y, t) solving Problem 15, for given ε0.
13: M .append(expy)
14: end if
15: return M .
16: end procedure
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As in the signomial case, Algorithm 3 always returns a vector x ∈ X. Assuming
that z from Line 7 are already computed as part of representing v̂, the complexity of
this algorithm is dominated by Line 12. The runtime of Line 12 is in turn negligible
relative to solving a SAGE relaxation to obtain vectors v and v̂. Infeasibility errors
encountered in Line 12 should be handled by jumping to Line 15.

Algorithm 4 sign recovery for dual SAGE polynomial relaxations.

Input: A matrix α ∈ Nm×n. A vector v in Rm. A Boolean heuristic.

1: procedure VariableSigns(α,v, heuristic)
2: U ← {i : vi 6= 0 and αi is not even }
3: W ← {j : αij ≡ 1 mod 2 for some i in U}
4: Z ← {z ∈ {0, 1}n : α[U, :]z ≡ (v < 0)[U ] mod 2, zi = 0 for i in [n] \W}
5: S ← {}
6: for z in Z do
7: s← 1
8: for j in {j : αij > 0 for some i in U} do
9: sj ← −1 if zj = 1, 1 if zj = 0

10: end for
11: S ← S ∪ {s}
12: end for
13: If S = ∅ and heuristic, update S ← {HueristicSigns(α,v)}.
14: return S.
15: end procedure

Let us describe the ways in which Algorithm 4 differs from the discussion in
Section 4.2.2. First- there are changes to the sets U and W . The set U now drops
any rows αi from α where αi is even; it is easy to verify that this does not affect
the set of solutions to the appropriate linear system. The set W changes by only
considering j where at least one αij ≡ 1 mod 2. This change is valid because if
αij is even for all i, then the sign of variable xj is irrelevant to the underlying
optimization problem, and we make take xj ≥ 0 without loss of generality.

Next we speak to the “hueristic” sign recovery. We partly mean to leave this as
open-ended, however for completeness we describe the algorithm used in sageopt.
The goal is to find a vector s in {+1,−1} so that the signs of sα

.
= (sα1 , . . . , sαm)

match the signs of v to the greatest extent possible. However, we consider how
having sαi match the sign of vi may not be very important if vi is very small.
Therefore we use a merit function M(s) = vᵀsα to evaluate the quality of candidate
signs s. We apply a greedy algorithm to maximize the merit function M(s) as
follows: initialize s = 1, and a set of undecided coordinates C = {1, . . . , n}. As long
as the set C is nonempty, find an index i? ∈ C so that changing si? = 1 to si? = −1
maximizes improvement in the merit function. If the improvement is positive, then
perform the update si? ← −1. Regardless of whether or not the improvement is
positive, remove i? from C. Once C is empty, return s.
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