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1 Introduction

In recent years, significant progress has been made on characterizing quantum chaos in

many-body systems. Developments in the study of holographic duality [1] pointed out a

close connection between chaotic many-body dynamics and gravitational physics, especially

black hole dynamics [2, 3]. Motivated by this connection, new characteristics of quantum

chaos have been studied, such as the out-of-time-ordered correlator (OTOC) [3–6]. The

OTOC can be viewed as a quantum generalization of the Poisson bracket in classical

dynamics. In the classical case, the Poisson bracket of canonical coordinates x(t) with

the coordinates at an earlier time x(0) determines how sensitive the trajectory is to initial

conditions, which characterizes chaos and is related to Lyapunov exponents. Similarly,

the OTOC provides a measure of “operator scrambling” — how operators become more

complicated under Heisenberg evolution. The decrease of the OTOC corresponds to an

increase of the commutator between two operators A(t) at time t and B(0) at time 0,

which captures that the support of A(t) in operator space grows.

Another related measure of operator scrambling is the operator size distribution [7, 8].

By expanding each operator in a polynomial of simple operators, such as single Pauli

operators in a spin chain, or single fermion creation/annihilation operators in a fermion

system, one obtains a superposition of terms, each of which is a product of multiple simple

building blocks. This leads to a definition of operator size distribution as the distribution

of support over products of different lengths. A single Pauli operator in a spin chain has

size 1, while a product of two Pauli’s on two sites has size 2. An operator’s size distribution

provides a more sophisticated characteristic of its complexity than the OTOC. It was also

shown that a particular average of OTOCs gives the average size, i.e. the first moment of the

operator size distribution [8, 9]. The operator size distribution have been studied in various

models including the Sachdev-Ye-Kitaev models [8, 9] and spin models [10–12]. Finite

temperature generalizations of (effective) operator size has been discussed recently [13, 14].

Interestingly, the operator size distribution has also been related to a certain momentum

quantum number in the holographic dual theory [8, 15–18].

Here, we investigate the role of operator size distribution in holographic duality by

studying the bulk operator size in the dual theory of SYK model. The SYK model has

been proposed to be dual to Jackiw-Teitelboim gravity [19, 20] with certain bulk mat-

ter content. Although the duality is not completely proven, from the behavior of the

boundary fermion in the SYK model (a conformal field with known conformal dimension,

and large-N factorization) it is reasonable to apply the known dictionary and determine

the corresponding bulk fermion field. In this paper, we compute the size distribution

of the boundary Majorana field in the low temperature, large N limit of SYK, using a

method inspired by a combination of [9] and [21] that makes clear the connection of this

boundary quantity to bulk quantities for a fermion in static AdS2. Then, in close analogy

with previous work for fields with other spin [22–25] (often referred to collectively as the

Hamilton-Kabat-Lifschytz-Lowe, or HKLL, constructions), we give an explicit construction

of the bulk fermion operator in terms of the boundary Majoranas. This enables us to give

a direct computation of the bulk fermion size, as well as a direct derivation of relation-
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ships between certain matrix elements of the boundary size operator, bulk fermion size,

and certain components of bulk momentum (i.e. SL(2,R) charge) in SYK models and their

bulk duals.

The remainder of the paper is organized as follows. In section 2 we review the essential

results on the definition of operator size distribution, and the generating function approach

that will be useful for us. In section 3 we review the key features of the SYK model, and

derive the boundary operator size distribution in the “low temperature” limit (N � βJ �
1 in the SYK variables introduced in section 3). In doing so, we directly find a relationship

between the boundary size generating function at low temperature and SL(2,R) generators.

In section 4 we develop a construction of bulk fermions from the boundary, and use this

to study the size of bulk fields in SYK. As a cross-check, we also present numerical results

based on the known large-q boundary size distribution [9]. Finally, section 5 contains

the conclusion and further discussion. Appendix A gives details on the derivation of the

boundary size. Appendix C contains explicit expressions for expectations of momenta in

static AdS2. Appendices D and E give the derivation of the bulk fermion reconstruction.

2 The size operator and its distribution

In this work, we will use the machinery developed in [9] to treat operator size on the

boundary. In this section, we present a brief overview of the setting and main results in

that work.

For concreteness, imagine the space of operators in our quantum mechanical Hilbert

space H is generated by some finite collection of N Majorana operators, {χj , χk} = δjk.

Any operator O can be written

O =

N∑
n=0

∑
1≤j1<···<jn≤N

O(n)
j1···jnχj1 · · ·χjn (2.1)

where the O(n)
j1···jn are complex numbers. We are interested in characterizing the “weight”

of O in different n-sectors. There is an abstract Hilbert space of operators, with Hilbert-

Schmidt inner product 〈O,S〉 = TrO†S, and we choose to measure the size in some n-sector

by the length of the projection of O to the subspace of length-n χj strings in this inner

product.

It can be useful to work in the setting of a “doubled Hilbert space” H(2) = H ⊗ H,

associated to two copies of the physical system, as opposed to the “operator Hilbert space”,

Hop = H ⊗ H∗. This requires a (non-unique) choice of isomorphism between the two

spaces. Fermionic or bosonic operators that appropriately commute or anti-commute with

all operators on the right or left tensor factor of H(2) are written OL or OR, respectively;1 if

{χj} generates the operator algebra on H, there are {χLj } that generate the same algebra

(and satisfy the same relations as the {χj} amongst themselves). In our case, we can

take an irreducible representation of the Majorana algebra for 2N fields (call this H(2)),

and arbitrarily call N of them χLj , and the other N χRj . This gives a factorization of

1Since we will need the fermionic statistics, we cannot simply use operators of the form O ⊗ 1.
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H(2) = H⊗H, where even products of χLj (χRj ) act only on the left (right) factor. States

in the doubled Hilbert space are written as |ψ). To implement our isomorphism, for an

operator O ∈ Hop, we define OL by expanding in terms of a generating set {χj} and making

the replacement χj → χLj . Then, we choose a state |0) ∈ H(2) and define |O) = OL|0).

In order for this map to be injective, we require |0) to have full Schmidt rank between

the two tensor factors, and to be proportional to an isometry, which requires the Schmidt

weights must all be equal. In other words, |0) is a maximally entangled state between the

two copies.

For our purpose, there is a particularly useful choice of maximally entangled state.

Form the fermionic annihilation operators

cj =
1√
2

(χLj + iχRj )

and choose |0) such that cj |0) = 0 for all j. It can be checked that this state is maximally

entangled between the two tensor factors. Furthermore, this state has

χLj |0) = −iχRj |0) =
1√
2
c†j |0). (2.2)

Then the information about the distribution of O across operators of different size is

contained in the moments of the numbers of χLj operators, or equivalently the cj fermions,

nj = c†jcj =
1

2
+ iχLj χ

R
j , n =

∑
j

nj

nj [O](k) =
(O|nkj |O)

(O|O)
, n[O](k) =

(O|nk|O)

(O|O)
.

This is a state-independent measure of size, which does not allow the characterization

of operator scrambling at a given energy scale or a subspace of states. To remedy this,

ref. [9] proposed to measure the size in the thermal ensemble by moments of the generating

function

Zβµ [O] =
(Oρ1/2

β |e−µn|Oρ
1/2
β )

(ρ
1/2
β |e−µn|ρ

1/2
β )

. (2.3)

The derivatives of the logarithm of this generating function over µ are the differences

between the size cumulants for Oρ1/2
β and ρ

1/2
β , for example the first moment is

nβ [O] ≡ −∂ logZβµ [O]

∂µ
= n[Oρ1/2

β ]− n[ρ
1/2
β ]. (2.4)

The “thermal size” nβ [O] depends on the reference state ρβ , which takes into account the

fact that certain operators are more important than others when applying to a subspace

of states.

– 4 –
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Finally, we note that Zβµ [O(t)] is related to a particular “thermal” two-point function

of the O. In particular, following ref. [9] we define the “boundary size kernel”

G̃∂µ(τ1, τ2) = G∂µ
(
−i
(
τ1 −

β

2

)
,−i

(
τ2 −

β

2

))

=
(0|T [e

−
(∫ β

0 dτHL(τ)+δ(τ−β/2)µn(τ)
)
χLj (τ1)χLj (τ2)]|0)

(0|T [e
−
(∫ β

0 dτHL(τ)+δ(τ−β/2)µn(τ)
)
]|0)

, (2.5)

so that

Zβµ [χj(t)] = G∂µ(t− iε, t+ iε).

The function G∂µ can be computed as a single-sided quantity, as was discussed in ref. [9].

3 The Sachdev-Ye-Kitaev model

The Sachdev-Ye-Kitaev (SYK) model is an ensemble of Hamiltonians

HSY K [J ] = iq/2
∑

1≤j1<···<jq≤N
Jj1···jqχj1 · · ·χjq , {χj , χk} = δjk (3.1)

where the Jj1···jq are independently drawn from normal distributions, with variance

〈J2
j1···jq〉 =

(q − 1)!

N q−1
J2 =

2q−1(q − 1)!

qN q−1
J 2.

This model is chaotic, in the sense that the out of time ordered four-point function

grows exponentially, but is at the same time solvable in a 1/N expansion. The SYK model

has an emergent approximate reparametrization symmetry, which is explicitly broken by

a UV cutoff term. At low temperature, the symmetry breaking is small, suppressed by
1
βJ . The quasi-Goldstone modes of reparametrization symmetry breaking are governed

by a Schwarzian action, which is also the action (in appropriate variables) for Jackiw-

Teitelboim (JT) two dimensional gravity with negative cosmological constant. In this

sense, the SYK model is approximately dual to JT gravity. The complete bulk description

is not known, but there is a possibility that the SYK model is an example of the AdS/CFT

duality between a d = 1 “nearly” CFT and a “nearly” AdS2 bulk described by JT gravity

coupled to interacting matter fields [26].

Given the full boundary size kernel for the χj fermions in the SYK model at low

temperature, if we assume that there is a weakly coupled gravity dual to SYK, we can

explicitly compute the size of the bulk fermions dual to the χj operators. In fact, the

boundary size kernel can be computed in two regimes; both at large q, computed in [9],

and at low temperature where the model is governed by the Schwarzian effective action. We

discuss the size distribution in the low temperature, or Schwarzian, regime in the following

section. In section 3.2 we describe a connection between the low temperature boundary

size operator and bulk AdS2 isometry generators that will be important for understanding

the bulk size.

– 5 –
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3.1 Boundary operator size in SYK models

In this section we examine the boundary size of the Majorana fermions in SYK in the low

temperature limit, N � βJ � 1. To understand the bulk size, it is helpful to examine the

derivation of the boundary size distribution in some detail. We work at large N , so that

in particular the non-local bulk interactions are suppressed. Then the SYK action can be

written in terms of non-local fields G and Σ. In particular, Σ is a Lagrange multiplier that

enforces

G(τ2, τ1) =
1

N

N∑
j=1

χj(τ2)χj(τ1),

where for convenience we take the arguments of G to be imaginary time.

As they are subleading in N , we ignore the normal ordering constants in the effective

action for the SYK model. We also assume that the model is totally self-averaging at

leading order in N , so that we can directly use the effective action after averaging over

the couplings. Then the effective action for size (derived in more detail in appendix A)

is [27, 28]

Ss = SSYK + Sµ, SSYK = − ln Pf(∂τ − Σ(τ, τ ′)) +
1

2

∫
dτdτ ′Σ(τ, τ ′)G(τ, τ ′)− J2

q
G(τ, τ ′)q

(3.2)

Sµ =
µ

2
− ln cosh

µ

2
− 2 tanh

µ

2
G

(
β

2
, 0

)
, (3.3)

in the sense that the size distribution function can be computed as

G∂µ(τ2, τ1) =

∫
DGDΣG(τ2, τ1)e−NSs[G,Σ]∫
DGDΣe−NSs[G,Σ]

. (3.4)

At large βJ , the low energy excitations of the SYK model can be thought of as repara-

metrizations of time φ→ θ(φ), with Schwarzian action [27–29]

S̃SYK = −2π

L

∫ 2π

0
dφ{tan

θ(φ)

2
, φ}, L =

βJ
αS

,

where φ is related to the boundary time by φ = 2πτ/β, and αS is a q-dependent constant

computed in [28].

Through this and the next section, we take a geometric approach to our computations,

similar to the techniques of [21]. It is useful to interpret the Schwarzian as the leading

non-trivial part of the extrinsic curvature of a long curve in Euclidean AdS2. In particular,

in Rindler coordinates, for a curve γ(φ) = (θ(φ), ρ(φ)) of large length L parameterized

proportionally to arc length by an angular coordinate φ∈ [0, 2π), the extrinsic curvature is

K = 1 +

(
2π

L

)2

{tan
θ(φ)

2
, φ}+O(L−4),

and by the Gauss-Bonnet theorem we find∫
∂M

K +

∫
M

R

2
= 2π =⇒ SSYK ≈ L−A− 2π

– 6 –
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where R = −2 is the Ricci scalar, and A is the area of the region bounded by γ. For this

reason, the curve corresponding to the saddle point for µ = 0 is simply a circle with large

length L.

Under a reparametrization φ→ θ(φ), the two-point function changes by

G(φ2, φ1)→ [θ′(φ2)θ′(φ1)]∆G(θ(φ2), θ(φ1)). (3.5)

When the φ are sufficiently separated in imaginary time, we approximate the saddle point

G by its conformal form,

Gc(φ2, φ1) = c∆

[(
2π

L

)2 1

2 sin2 φ2−φ1

2

]∆

sign(φ2 − φ1)

b∆ =
1

2

[
2

(
1

2
−∆

)
tanπ∆

π∆

]∆

, c∆ =
b∆

(2α2
S)∆

and compute Sµ on a reparametrization using (3.5). This shows that we can think of Sµ
as providing some “tension” between points on opposite sides of the circular saddle point

solution, and for sufficiently small µ it is self-consistent to compute around this saddle point.

Because of the symmetry of the problem, the new saddle point will be approximated by

a path which consists of two segments of equal length, each of which is a portion of a

circle C with the same fixed radius. Since we keep the length L fixed, we can parameterize

the problem by a single number, the fraction of the circle C that makes up one of the two

segments, in other words the angle λ. We give an illustration of the saddle point in figure 1.

This solution is only an approximation: we consider small reparametrizations, which will

keep the curve smooth, while the approximation has sharp corners at φ = 0, π.

We reiterate that on the saddle point solution, times in the boundary theory are

related to points in Euclidean AdS2 by the point on the saddle point curve at parameter

φ = 2πτ/β. To compute the two-point function on this saddle, we use the relation (A.8),

which gives (for τ2 later on the thermal circle than τ1)

G∂µ(τ2, τ1) ≈ c∆(cosh δ21 − 1)−∆, (3.6)

where δ is the geodesic distance between the points corresponding to τ2 and τ1 on the

saddle point curve. For the sizes of the thermal state and boundary fermion, it remains to

find the dependence of the angle λ on µ. In appendix A we find this to be

δλ = 2 tanh
µ

2

∆c∆

2∆

(
L

2π

)1−2∆

−
(

2 tanh
µ

2

)2 1− 2∆

π

(
∆c∆

2∆

)2( L

2π

)2−4∆

+O

((
2 tanh

µ

2
L1−2∆

)3
)
.

Our main interest is in the first moment of size, for which we only need the first term

in this expression. In general, for small µ, δλ can be expanded order-by-order in powers

of 2 tanh µ
2L

1−2∆ (the full expression can be found in appendix A). We note δλ is small

for small µ < αS/βJ , so in this regime our expansion around the µ = 0 saddle point is

self-consistent.

– 7 –
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χχ
λ

Figure 1. Overview of the computation of the saddle point. We show Euclidean AdS2 with radial

coordinate r = tanh ρ
2 ∈ [0, 1), with the conformal boundary drawn as a dotted line. In the first

panel, we draw the saddle point at µ = 0, which is a circle of length L. We also show the operator

insertions at φ = 0, π that give “tension” to the solution in the µ 6= 0 case. In the presence of these

operator insertions, the true saddle is a shape that is “pinched” towards the center. The solution

will consist of two circular segments. In the second panel, we show the top circular segment in

a coordinate where its center is at r = 0, with the µ = 0 saddle for reference. The length of

each segment is fixed to L/2, so for an inner angle λ > π, the radius of the circle must shrink

accordingly. In the last panel, we show the µ 6= 0 saddle in a coordinate that is symmetric between

the two segments, namely one where φ = 0, π coincide with θ = 0, π and these points are equidistant

from r = 0, where φ ∈ [0, 2π) parameterized the saddle curve proportionally to arc length. The

transformation of coordinates between the first and second panel is a boost in embedding coordinates

that moves the endpoints of the segment to the θ = 0, π line, given explicitly in (A.9).

The cumulants of the size distribution of the thermal state ρ
1/2
β are the derivatives of

the action NSµ. For example, the average size is

nβ
N

=
1

2
− b∆

(
π

βJ

)2∆

.

We can see that the nth cumulant will be of order N , but is in general of order

(βJ )n(1−2∆)−1 in coupling. Since we take βJ � N , we can consider the fluctuations in

size of the thermal state to be suppressed by (βJ )
1
2
−2∆/

√
N . We note that this matches

the results in the large-q limit [9].

3.2 Size of χ fermions and SL(2,R) generators

The geometrical picture allows us to not only compute the size of boundary fermions, but

also to uncover directly the relation of the size operator to bulk isometry generators. A

similar relationship for the “diagonal” matrix elements of the size operator, nβ [χ(u)], was

found by [18]. For the discussion of bulk size, we will need the more general matrix elements

(χ(u)ρ
1/2
β |n|χ(u′)ρ

1/2
β ), and in finding their relationship to isometry generators we also give

another direct derivation of the result in [18]. The key idea is that matrix elements of

the size operator are determined by the change of the two-point function G∂µ as a function

of µ. The two-point function on the saddle is approximately a function of the geodesic

distance (as in (A.8)), so µ affects the two-point function by deforming the boundary curve

in figure 1, which changes the distance between these two points in the bulk. Therefore the

µ dependence can be mapped to a relative motion of the two points geometrically, which

– 8 –
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X<

Figure 2. Illustration of the geometrical approach to the first size moment computation. In the

first panel, we show the µ = 0 location of the point X<, which will lie on the first segment of the

µ > 0 solution. In this coordinate, it lies at some θ0 < π. We indicate the location of the point

corresponding to X< with a dark dot, and show its previous location in a lighter color. Throughout,

we show only the top segment of the µ 6= 0 saddle. A line of points at θ = 0, π is drawn for reference.

In the second panel, we use a coordinate so that the segment X< lies on is centered at r = 0. The

boundary time is an affine parameter for the saddle point solution, so X< now lies at angle θ1 = λ
π θ0.

In the last panel, we have changed to the more symmetric coordinate of the third panel of figure 1

by the boost (A.9). Note that we can approximate the first move of X< by a rotation, generated

by B(E), and the second is the coordinate transformation boost, generated by E(E). A point X>

on the second segment, with some θ0 > π on the µ = 0, is transformed similarly (of course with the

opposite boost). Once we compute the positions of the points in the symmetric coordinate system,

we can transform by a final isometry to restore the position of one of the points, say X>.

can be achieved by applying the bulk isometry transformations to one of the two points

while keeping the other point fixed.2 The key elements of the computation in this section

are illustrated in figure 2.

Euclidean AdS2 (the hyperbolic plane) can be isometrically embedded in R(1,2) (R3

with metric (−1, 1, 1) and coordinate labels (X(0), X(1), X(2))) as the surface X2 = −1.

Likewise, Lorentzian AdS2 is the surface X2 = −1 in R(2,1) (R3 with metric (−1,−1, 1)

and coordinate labels (X(L0), X(L1), X(L2))). Unless otherwise noted, we will always use

these coordinates (in this ordering) on the embedding space. In these coordinates, the

matrices generating the independent isometries on Euclidean AdS2 are

E(E) =

0 1 0

1 0 0

0 0 0

 , B(E) =

0 0 0

0 0 1

0 −1 0

 , P (E) =

0 0 1

0 0 0

1 0 0

 , (3.7)

whose flows are shown in figure 3. A symmetric coordinate system to consider our problem

is one where the two distinct segments meet at θ = 0 and π. We must consider the motion

of two points, X< on the first arc, and X> on the second, as we perturb λ. This is easiest

2The self-consistency of this approximation is argued as follows. In section 3.1 and appendix A, we show

that for small enough µ it is self-consistent to compute the saddle point of Ss about the µ = 0 solution, and

we assume that µ is in this regime for this section as well. On this saddle point, G measures the geodesic

distance between points. As long as we do not scale our point splitting with N , at leading order in N

there will not be an additional modification to the saddle point resulting from insertion of G into the path

integral.

– 9 –
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Figure 3. Vector flows of the Euclidean symmetry generators B(E), E(E), and P (E).

to compute by placing the center of the circle our point is on at ρ = 0, computing the

location of X≷ in that coordinate for the given λ, then performing a boost by E(E) to

move the segment to its final position. The result is that (see figure 2 and appendix A for

more details)

d

dλ
(X> −X<) =− (tanh ρE(E) +B(E))

(
X> +X<

2

)
− tanh ρ

π

[
E(E)(sinφ+X> − sinφ−X<) + P (E)(cosφ+X> − cosφ−X<)

]
+
B(E)

π
[(φ+ − π)X> − (φ− − π)X<]. (3.8)

Alternatively, we could have considered a coordinate system where X> remains fixed as

a function of λ; this amounts to the replacement X> → X< on the right side of (3.8).

Analytically continuing the derivative to Lorentzian signature and using φ− = π − ε+ it1,

φ+ = π + ε+ it2, we find

d

dλ
X

(L)
<

∣∣∣∣
λ=π

=

[
i

(
tanh ρE(L) −

(
1 +

2ε

π

)
B(L)

)
+

tanh ρ

π

(
(sinh(t2 − iε)− sinh(t1 + iε))E(L)

− (cosh(t2 − iε)− cosh(t1 + iε))P (L)
)
− t2 − t1

π
B(L)

]
X

(L)
< . (3.9)

where the infinitesimal Lorentzian generators in our standard coordinates are

E(L) =

0 −1 0

1 0 0

0 0 0

 , B(L) =

0 0 0

0 0 1

0 1 0

 , P (L) =

0 0 1

0 0 0

1 0 0

 .

Flows of these generators are shown in figure 4.
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Figure 4. Vector flows of the Lorentzian generators B(L), E(L), and P (L) on a patch of global

AdS2. For reference, we have drawn in a portion of the Rindler wedge with finite boundary location,

as well as the right conformal boundary.

We can now compute the size in the low temperature limit. For convenience, we start

with the Euclidean expression (keeping only the leading order in L ∼ βJ )

− d

dµ
lnG∂µ(π + ε+ iφ, π − ε+ iφ)

=
∆2c∆

2∆

(
L

2π

)1−2∆ 1
1
2(X> −X<)2

(X> −X<) · d
dλ

(X> −X<)

= −∆2c∆

2∆

(
L

2π

)1−2∆ 1
1
2(X> −X<)2

(X> −X<) · (E(E) +B(E))X<

=
∆2c∆

2∆

(
L

2π

)1−2∆ coshφ− cos ε

sin ε
. (3.10)

As noted in [9], the size at φ = 0 should be given by 2G∂0(π, 0). We can use this to fix a

UV regulator so that the size units match at φ = 0, and find ε = 8π
∆2L

. Thus we find the

boundary size at low temperature is

nβ [χ(u)] = 2b∆

(
π

βJ

)2∆
(

1 +

(
∆2

αS

)2(
βJ
4π

)2

sinh2

(
πu

β

))
(3.11)

where we have written the size in boundary time units u. In general, in terms of the

behaviour of size, the regulator simply sets the units as long as it is ε ∼ π/βJ . We took the

case u1 = u2, and so were able to ignore contributions that vanish in this limit. Evaluating

the derivative for u1 6= u2 gives the general Schwarzian contribution to the four-point

function, which was also pointed out to be given by applying symmetry generators to one

time argument of the conformal two-point function in [30]. We note that the result (3.11)

matches the low-temperature limit of [9].

We mention that this method extends to higher moments of size. These moments

depend on higher order derivatives of G∂µ over λ. From the exact bulk location of X≷ as a

function of λ (computed in appendix A), we just compute the derivatives of these points

over λ to the required order. We then compute the derivatives of λ over µ to the same

order, and differentiate G∂µ to find the size moment to the desired order.
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In addition to providing an analytic computation of operator size distribution in the low

temperature region, the discussion in this subsection also gives a direct relation of boundary

operator size with SL(2,R) generators. If we consider a bulk dual fermion, the correlation

function of which reproduces that of the boundary fermion for points approaching the

boundary, we can also relate the boundary operator size to an SL(2,R) quantum number

of the bulk fermion. This is a warm-up calculation for the bulk operator size results in the

next section, but we present it here since it does not depend on any bulk reconstruction,

and is closely related to the previous part of this subsection.

Since the two-point function of a bulk fermion in static AdS2 approaches Gc as ρ→∞
(cf. appendix C), from (3.9) we can conclude that the boundary size at low temperature is

given by the bulk expectation of generators for a free fermion, taken to the boundary and

normalized by the appropriate factors. Explicitly, define

S = E −B (3.12)

J1 = − i
π

((sinh(t2 − iε)− sinh(t1 + iε))E − (cosh(t2 − iε)− cosh(t1 + iε))P ) (3.13)

J2 = i
t2 − t1
π

B. (3.14)

If we take the natural Rindler vielbien, there is a particular fermion component, say with

index j, whose two-point function vanishes slower as ρ → ∞ (corresponding to the eigen-

value of γ1 that does not vanish in the limit of (C.8); if we take the bulk mass positive

(negative) this is the +1 (−1) eigenvector). Then we find, writing 〈·〉 to mean expectation

values for a free fermion in the Poincare vacuum on AdS2,

cosh ρ0 �
L

2π
, xj = (tj , ρ0), B∆ =

b∆
N∆,1(1− 2∆)

(
π

βJ

)2∆

(3.15)

− d

dµ

∣∣∣∣
µ=0

G∂µ(t2, t1) = (χ(t2)ρ
1/2
β |n|χ(t1)ρ

1/2
β )−Gc(t2, t1)nβ (3.16)

≈ ∆b∆
4∆αS

(
βJ
2π

)1−2∆

B∆(cosh ρ0)2∆〈ψ(x2)j(S + J1 + J2)ψ†(x1)j〉

(3.17)

where N∆,1 is defined in appendix C. In the Euclidean signature, the term in the derivative

of the coordinates that gives rise to J1 is

dρ

dλ

∣∣∣∣
λ=π

∂ρ(X> −X<) = − 1

π
(X> −X<).

Thus the contribution of this term to the size matrix element is actually just a constant, and

we can replace J1 → −2∆
π . Its contribution to the boundary size is subleading in ε (since it

gives a contribution to the matrix element that is proportional to the two-point function).

The J2 generator is not as simple, but its contribution also vanishes when t2 = t1.

We then find that, to leading order in βJ � 1, the boundary size is proportional to

the expectation of E − B. In this sense we have given another derivation of the similar

result in [18]. One important difference is that we have also computed the “off-diagonal
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matrix elements” of n, namely expectations like (χ(u2)ρ
1/2
β |n|χ(u1)ρ

1/2
β ) where u2 6= u1.

These will be essential for the computation of bulk operator size, as will be discussed in

next section.

4 Size of bulk fields

In order to use boundary CFT computations to determine the size of “bulk” operators, we

use an explicit construction of certain bulk operators as superpositions of boundary opera-

tors of various size. After describing our construction, we present some general properties

of bulk size for SYK-type models.

4.1 The explicit construction of bulk fields

The method for constructing bulk fields we pursue is analogous to that first worked out by

Hamilton, Kabat, Lifschytz, and Lowe (HKLL) for certain quantizations of scalar [22–24]

and higher-spin fields [25]. There are different ways to understand this procedure; here, we

take an approach that makes explicit corrections due to interactions.

Consider a d-dimensional CFT with a bulk dual, with a spinor field χ of dimension

∆. We work in the limit of large N and strong CFT coupling, so the dual AdSd+1 theory

is weakly coupled. Sources (of dimension d − ∆) for the boundary field χ correspond to

boundary conditions for a bulk fermion ψ. The fluctuating modes of ψ in the absence of

sources, when taken near the boundary and appropriately scaled, behave as a fermion of

dimension ∆ and are identified with χ. Explicitly, if z is some coordinate that approaches

zero near the conformal boundary of AdS (and x are the remaining coordinates),

lim
z→0

ψ(x, z)↔ z∆χ(x). (4.1)

The behaviour of χ can then distinguish different ways of approaching the boundary. Our

main example will be a d = 1 model where the boundary lies at constant Rindler ρ coor-

dinate in AdS2. In this case, the explicit expression is

lim
ρ→∞

ψ(tR, ρ)↔ (sech ρ)∆χ(x).

When the fermion is weakly interacting, we have the approximate equation

( /∇−m)ψ(x, z) ' 0.

This, in addition to the holographic principle, inspires us to look for a bispinor

( /∇−m)GF (x, x′) = GF (x, x′)(
←−
/∇ −m) =

δd+1(x− x′)√−g
with support only for spacelike separated x, x′. Then we have, for any spinor ψ(x) on a

d+ 1-manifold M which we take to assume the boundary value ψ(x)→ z∆χ(x),

ψ(x) =

∫
M
dd+1x′

√−g(GF (x, x′)(
←−
/∇ −m))ψ(x′) (4.2)

=

∫
∂M

d(∂M)(−√−g(z′)∆GF (x, x′) /N)χ(x′) +

∫
M
dd+1x′GF (x, x′)( /∇−m)ψ(x′)

(4.3)
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ψ ψ

+ 1
N + · · ·

Figure 5. Illustration of the perturbative HKLL reconstruction, in the right Rindler wedge of

AdS2. We show a diagram that appears at lowest, and at next-to-lowest order in the interaction.

We will focus on the lowest order contribution; our kernels only have support on the right boundary,

so to this order the fermion is reconstructed only from boundary operators inside the right light cone

(indicated in grey). In the picture with the spacelike propagator GF as in (4.2), all the interaction

vertices must be contained in the gray spacelike separated region. Fermion propagators are shown

with a solid line, and the propagator of some putative scalar field interacting with the fermion is

drawn with a wavy line.

where N is the outward-point normal vector to the boundary ∂M , and /N = NµΓµ. This

expansion provides a perturbative (in the interaction) diagrammatic approach to comput-

ing the bulk operator ψ(x) from boundary data; these will be bulk Witten diagrams with

propagators replaced by ones like GF with spacelike support. We illustrate this diagram-

matic expansion in figure 5. Since we are in the large N limit, which suppresses interactions,

we focus only on the first term in this expansion. We are assuming that in this limit, we

can ignore the contribution of the interaction vertices to the bulk fermion. Regardless of

the contribution of this term, as long as the boundary field χ is nearly conformal, keeping

just the first term gives an approximately local bulk field.

In special coordinate systems in the free limit, there is a more direct way to understand

the HKLL procedure (this is the fermionic version of the “mode sum” approach taken in

the original work). Essentially, the Fourier transform of the reconstruction kernel is the

operator Fω that takes constant spinors to solutions of the Dirac equation and is an eigen-

function under the flow by the time coordinate t, normalized so that as the coordinate

z → 0, the dependence of Fω on z and t becomes Fω → z∆e−iωt. Then in Fourier space,

the reconstruction happens simply by multiplying the boundary creation and annihilation

operators at each momentum by the appropriate function of frequency. We give more de-

tails in appendix D. In particular, we will use the fact that, for time-translation invariant

quadratic expectations of fermions on the boundary, the Fourier transform of a bulk func-

tion in these special coordinates is a product of the Fourier transforms of the boundary

function and the kernel.
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In appendix D and E we find concrete position-space expressions for these kernels for

AdS2. There are two cases to consider, depending on the sign of ∆ − 1/2, where ∆ is the

boundary spinor dimension. The simpler case is ∆ > 1/2, where we show that there exists

a “smearing kernel” K∆(x, z|y) such that, to leading order in N and at strong coupling (so

that χ(y) is nearly conformal and free),

ψ0(x, z) ≡
∫
ddyK∆(x, z|y)χ(y) (4.4)

behaves exactly as a free fermion on AdSd+1 of mass |m| = ∆ − d/2. This smearing

function is indeed supported on points of the conformal boundary such that (x, z) is space-

like separated from (y, z′) as z′ → 0. For example, in the AdS2 Rindler coordinate (we do

not normalize the kernels in any particular way, since our discussion will not depend on

the normalization),

K∆(tR, ρ)=
1+eρ tanh(tR/2)γ2√

1−e2ρ tanh2
(
tR
2

) (cosh ρ− sinh ρ cosh tR)∆−1 v−1Θ((tR, ρ) spacelike to 0)

(4.5)

γ1v−1 = −v−1 (4.6)

K∆(tR, ρ|u)= K∆(tR − u, ρ), (4.7)

with gamma matrices {γj , γk} = ηjk. Note that although there is only a single component

fermion on a d = 1 boundary, the smearing kernel has two components for the two bulk

fermions. Then, given a boundary size kernel G∂µ(y, y′), we can simply compute

GBµ (x, z, x′, z′) =
(0|T [e

−
(∫ β

0 dτHL(τ)+δ(τ−β/2)µn(τ)
)
ψLj (y)ψLj (y′)]|0)

(0|T [e
−
(∫ β

0 dτHL(τ)+δ(τ−β/2)µn(τ)
)
]|0)

(4.8)

=

∫
ddyddy′K∆(x, z|y)†jK∆(x′, z′|y′)jG∂µ(y, y′). (4.9)

The diagonal entries GBµ (x, z, x, z)jj will be the generating function for the relative size

distribution of ψ(x, z), as measured in terms of χ(y) at t0.

In the SYK model, the boundary fermions have ∆ = 1/q < 1/2, so the simpler kernel

above does not apply. For a fermion of mass m in the bulk, the Dirac equation admits

solutions that behave as z∆± for z → 0, where ∆± = d
2±|m|. In fact, for |m| < d/2 there are

two inequivalent ways to quantize a free fermion with no boundary sources, distinguished by

their boundary behaviour. Since these quantizations have different behaviour (for example

near the boundary), the smearing kernels must be different. We give more details on

derivations of this kernel in appendices D and E, and summarize the important points

here. The simplest approach turns out to be to use the analytic form of the kernel (4.5)

(except changing v−1 → v1 if we would like to keep the mass positive in the Dirac equation),

but give a prescription for handling the non-integrable divergences in the kernel on the light

cone for ∆ < 1/2. One method is to use the analyticity of the free bulk modes in ∆, so

that when integrating against analytic functions we just use a contour that analytically
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continues from the ∆ > 1/2 case. Another possibility is to write the kernel as a linear

differential operator that does not depend on time, acting on a function with integrable

divergences. One way to accomplish this is

K∆(tR, ρ) = e−(∆+1)ρ[
(eρ + γ2)

(
/∇+

(
∆ +

1

2

)
(csch ργ0 − coth ργ1)− (∆ + 1)γ1

)
+ eργ1

]
eρ

2
I(tR, ρ)Θ(spacelike to 0)v1

I(tR, ρ) = e−tR/2 cosh2∆−1

(
tR
2

)
(1− x2)∆−1/2

x = eρ tanh

(
tR
2

)
, v1 = γ1v1

K∆(tR, ρ|u) = K∆(tR − u, ρ);

in this expression, the derivatives only act on tR, not u. For u away from the light cone

of (tR, ρ), we can evaluate the derivatives and find exactly (4.5), except with v−1 replaced

by v1. The prescription is to regulate divergences by formally pulling the derivatives

out of integrals against the kernel, and evaluating the derivatives on the now convergent

integrals. More details on the different regularizations and quantizations can be found in

appendix D. The important point is that even in the case that regularization is required,

the reconstruction is explicitly supported on points spacelike separated to the bulk point.

We also point out that for the ∆ < 1/2 case, the kernel diverges at the light cone, and

there is a large weight for operators “as late as possible” in boundary time.

4.2 Bulk size in the low temperature limit

From the full boundary size matrix elements at low energy in (3.16), and a perturbative

definition of bulk operators, we proceed to compute the size of the bulk fermions. A

schematic formula for the size of the bulk fermions constructed by HKLL in terms of the

boundary Majorana fermions is given by

nβ [ψj(x)] =

∫
K∆ (x|u2)j K∆ (x|u1)j

[(
χ(u2)ρ

1/2
β

∣∣∣n ∣∣∣χ(u1)ρ
1/2
β

)
−Gc(u2, u1)nβ

]
∫
K∆(x|u2)jK∆(x|u1)jGc(u2, u1)

(4.10)

=

(
ψ(x)jρ

1/2
β

∣∣∣n ∣∣∣ψ(x)jρ
1/2
β

)
−
〈
ψ(x)jψ(x)†j

〉
nβ〈

ψ(x)jψ(x)†j

〉 (4.11)

where
〈
ψ(x)jψ(x)†j

〉
is the covariant AdS2 fermion two-point function discussed in ap-

pendix C. Note that as written, this formula does not seem to depend on the choice of

coordinate, but does depend on the choice of vielbein used to define the kernel K∆ (since

we are taking particular components).

The AdS2 fermion two-point function appears in the strong coupling limit since inte-

gration of the kernel K∆ against a conformal boundary two-point function gives the bulk
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function by construction. Likewise, “expectations” (i.e. expressions like 〈ψ(x)Eψ(x′)〉) of

bulk symmetry generators are given by integrals against K∆ of expectations of boundary

symmetry generators, since the reconstruction acts at the operator level.

To compute the numerator in (4.11), we treat the three terms in (3.12) separately. The

S = E − B generator has no boundary time dependence, so we can simply integrate over

the two boundary fields separately before taking the expectation value, and find that this

term becomes the bulk expectation of the same generator S. As discussed at the end of

section 3.1, we can make the replacement J1 → −2∆
π , and so can make that replacement

in the bulk as well.

At this point, we need to address the question of regulating (4.11). In principle, a UV

regulation in the boundary theory means that reconstructed bulk operators will have the

singularities in their two-point functions smeared out as well, so we can take the two bulk

points exactly equal in (4.11). One way to understand the effect of a UV regulator is to

regulate the boundary conformal two-point functions by an iε prescription (in the SYK

model, we should take ε ∼ π/βJ ). Since the kernel K∆ is time translation invariant, an

iε regulation of a conformal boundary correlator is the same as splitting the bulk points

by iε in the time coordinate, and keeping the boundary theory exactly conformal. Note

that we have introduced some additional dependence on the coordinate choice. When we

consider bulk points such that cosh ρ� 1/ε, the two points are split by a small (Euclidean)

geodesic distance, so reconstructed bulk quantities at such coordinates will be dominated

by the short distance divergence in the true bulk functions. Importantly, for coordinates

such that cosh ρ � 1/ε the Euclidean geodesic distance is large, and the bulk correlation

functions become conformal. Thus in the large ρ limit, the bulk size is simply the boundary

size, and approximated by an expectation of the symmetry generator S = E −B.

It remains to understand the contribution of the J2 term in the bulk. Since it is time

translation invariant, we can directly compute the Fourier transform of its bulk contribu-

tion. We will need the Fourier transform∫
dueiωu

(
sin

(
iu+ ε

2

))−2p

= 4pe(π−ε)ωB(p+ iω, p− iω).

Since the bulk size matrix element is given by dividing bulk expectations of generators

by the bulk two-point function, only the high-frequency behaviour contributes as we take

the separation between bulk points to zero. The contribution of the J2 term becomes
1
π (1+ω∂ω)G(ω), where G(ω) is the Fourier transform of the boundary two-point function.G

decays exponentially for large negative ω, but for large positive ω it has power law behaviour

∼ ω2∆−1. Consequently, at large frequency this term becomes ∼ 2∆
π G(ω), and therefore

contributes a constant 2∆
π to the bulk size. Therefore we find that the bulk size (such that

cosh ρ� 1/ε) is given by the bulk quantity

nβ [ψ(tR, ρ)j ] ∝
〈ψ(tR − iε, ρ)j(E −B)ψ(tR, ρ)†j〉
〈ψ(tR − iε, ρ)jψ(tR, ρ)†j〉

. (4.12)
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Figure 6. Bulk size in the limit cosh ρ � 1/ε (in arbitrary size units; note that in this limit,

the bulk fermion size of both components has the same behaviour). The plot is shown in global

coordinates σ, tG over the part of the Rindler wedge tR > 0. As discussed in section 4.3, this remains

a good approximation to the bulk size in the presence of finite βJ corrections on the boundary.

Using (3.17) to fix the normalization constants (i.e. units of size), we conclude that

the bulk size both for small and large ρ is well-approximated by

n[ψ(x)j ]β ≈
∆b∆
4∆αS

(
βJ
2π

)1−2∆ 〈ψ(tR − iε, ρ)j(E −B)ψ(tR, ρ)†j〉
〈ψ(tR − iε, ρ)jψ(tR, ρ)†j〉

, (4.13)

where ε ∼ π/βJ determines what we mean by “small” and “large” ρ, and ν is some

numerical constant that can be used to fix units of size. Calling the vector field V that

generates the symmetry of AdS2 associated to E − B, we have 〈ψ(x)j(E − B)ψ(x′)†j〉 =

iV µ∇µGψ(x, x′)γ0, where Gψ(x, x′) = 〈ψ(x)ψ(x′)〉 is a covariant two-point function. As

mentioned, the behaviour at large ρ is just the boundary size (3.11). We compute the full

expression for this expectation of generators in appendix C, but here we note the simple

behaviour in the limit ε→ 0,

〈ψ(tR − iε, ρ)j(E −B)ψ(tR, ρ)†j〉
〈ψ(tR − iε, ρ)jψ(tR, ρ)†j〉

−−→
ε→0

coth ρ cosh tR − 1

ε
(4.14)

= ε−1

(
sinσ cos tG

sin2 σ − sin2 tG
− 1

)
(4.15)

where we have also given the limit in global coordinates σ, tG. At fixed ε, this is an accurate

approximation to the size for cosh ρ� 1/ε. The behaviour of this function in the Rindler

wedge is shown in figure 6.

– 18 –



J
H
E
P
1
0
(
2
0
2
0
)
0
5
3

4.3 Numerics at large q

The boundary size distribution is also known at large q, for all values of the coupling [9]:

Gµ
(
β+

4
+ iu,

β−

4
+ iu′

)
=

e−µGµ(u− u′)(
1 + 1−e−qµ

2

(
J
αµ

)2
Gµ(u− u′)q/2(cosh(αµ(u+ u′))− cosh(αµ(u− u′)− iε))

)2/q
(4.16)

where

Gµ(u) =

(
sin γµ

sin(γµ + iαµu)

)2/q

, (4.17)

and αµ and γµ satisfy

sin γµ =
αµ
J and sin

(
αµβ

2
+ 2γµ

)
= e−qµ sin

(
αµβ

2

)
. (4.18)

At low temperature N � βJ � 1, our discussion above applies. To help further under-

stand the effect of finite βJ corrections on the boundary, we numerically compute the bulk

size using (4.9) directly.3 We have to regulate divergent integrals against the kernel, and

have checked that both methods described in appendix D.1 agree; details on practically

useful numerical versions of these schemes are given in appendix F.

First, we note that even at relatively small coupling the approximation (4.14) cap-

tures both the qualitative and quantitative behaviour of size away from the boundary. We

illustrate this by showing the logarithm of the ratio between the approximation and the

numerical result for a relatively small coupling βJ ≈ 61 in figure 7. For stronger cou-

plings, the agreement holds nearer to the boundary, as expected. In light of this, we will

concentrate on the behaviour near the boundary, ρ→∞, for the remainder of this section.

Here, the size of the component of the bulk field decaying faster near the boundary,

in other words the field “not present” at the boundary, asymptotes to a constant size

greater than nβ [χ(tR)], while the other component briefly levels off at this larger size, then

rapidly drops to nβ [χ(tR)] as we go further towards the boundary. We refer to the two

components, respectively, as the “non-boundary” and “boundary” components. Figure 10

shows this behaviour for a particular temperature. The location of this rapid drop in the

size is a function of βJ , with lower temperatures pushing the location of the drop in size

to larger ρ. Some example sizes demonstrating this pattern are shown in figures 8 and 9.

This suggests to identify the approximate location of the boundary with this drop. Further

numerical evidence for this identification is that, once we find some ρ at some fixed tR
at which the bulk size of the “boundary” component approaches ñβ [χ(tR)], the boundary

value is approached at the same ρ for different times tR.

3If one interprets finite βJ corrections as affecting the location of the boundary, it is natural to wonder

if we should correct the reconstruction kernel as well. For fermions, we cannot naively put the boundary

at a finite location in (4.2) to include such corrections for the technical reason that it is only in the limit

of a conformal boundary that the kernel is proportional to a projector, while we always only have a single

fermion component on the boundary.
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(a) Fermion component decaying slower near

the boundary.
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(b) Fermion component decaying faster near

the boundary.

Figure 7. Comparison of the approximation (4.14) and numerical results for q = 1000 and βJ ≈ 61

(π − βαµ=0 = 0.1). In particular, we show the logarithm of the ratio between these expressions for

the two bulk fermion components. We show it both as a function of tG and σ, and as the profile

seen from σ = 0 or tG = π/2. The ratio is constant for a large portion of the bulk. The deviations

near σ = π/2, tG = 0 are significant for both components. There is an abrupt drop, not present

in the simple approximation, in the size of the component decaying slower near the boundary as

the boundary is approached that only appears as a line of points in this figure. We note that for

the purpose of these plots, we have fixed a choice of size unit (an overall constant multiplying the

numerical size).

Figure 8. Size at fixed tR = 0 for various βJ and q = 1000. Lines corresponding to higher βJ lie

to the right. We have indicated the intersection of the vertical line ln βJ with the respective size

curve by a star.
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Figure 9. Size at fixed tR = 1 for various βJ and q = 1000. As in figure 8, curves at lower

temperature lie to the right, we have marked the intersection of the vertical line ln βJ with the

respective size curve by a star.

Figure 10. Size for large ρ for q = 1000, βJ = 100. The fast “dip” and subsequent saturation in

size of the γ1 = +1 component occurs at a fixed ρ for all tR, well after the γ1 = −1 component has

saturated. Note there is a finite range of ρ where it would appear both components are saturating

to the same size.

5 Conclusion

In conclusion, we have studied the operator size distribution of bulk dual fermion of SYK

model, using a combination of the HKLL formalism and SYK calculations. Our results

provide an explicit proof of the relation between operator size and AdS2 quantum number

in the bulk. Operator size grows exponentially for operators deeper in the bulk, which

therefore can be used as a measure of the bulk emergent spatial dimension. In higher

dimensions, it is easier to see how operators deeper inside the bulk are more complicated,
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since they can only be reconstructed on a bigger region on the boundary [31]. For a

0 + 1-dimensional bulk theory, since there is no spatial locality on the boundary, it is more

difficult to quantify the relation of emergent bulk spatial dimension with complexity and

quantum error correction. The operator size distribution provides a useful tool to make

progress along this direction.

There are many open questions along this direction. One question is whether there

is an analog of the quantum error correction understanding of bulk locality in higher

dimensions. How local is the bulk dual theory of SYK model in sub-AdS scale? How is

sub-AdS locality related to the operator size distribution? It is also interesting to ask how

to generalize the operator size measure and its dual interpretation to other models, such

as the eternal traversable wormhole (i.e. global AdS2) geometry that is dual to a pair of

coupled SYK sites [32]. Intuitively, when a fermion moves from one boundary to the other

in the global AdS2 geometry, one expects the operator size to increase and then decrease.

The temperature dependent operator size measure (2.4) does not directly apply, because

the two sites together could be at zero temperature. This suggests that a more general

relation between operator size and bulk spatial dimension requires a modified operator size

measure.
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A SYK size effective action

Here, we work out some details related to the SYK effective size action. First, we derive the

size effective action. We begin by noting that e−µnj = e−
µ
2

+ln cosh µ
2 (1+2 tanh µ

2χ
L
j (−iχRj )),

and then simply expand the definition

(0 |ρ1/2
β χLj (u2)e−µnχLj (u1)ρ

1/2
β |0) (A.1)

= e−N(µ2−ln cosh µ
2 )(0|ρ1/2

β χLj (u2)

[∏
k=1

1 + 2 tanh
µ

2
χLk (−iχRk )

]
χLj (u1)ρ

1/2
β |0) (A.2)

= e−N(µ2−ln cosh µ
2 )

N∑
m=0

∑
{k1,...,km}

(
−2 tanh

µ

2

)m
× (0|ρ1/2

β χLj (u2)χLk1
· · ·χLkmχLj (u1)ρ

1/2
β χLkm · · ·χLk1

|0) (A.3)

– 22 –



J
H
E
P
1
0
(
2
0
2
0
)
0
5
3

= e−N(µ2−ln cosh µ
2 )

N∑
m=0

∑
{k1,...,km}

(
−2 tanh

µ

2

)m
〈
T
{
χj

(
β

2
+ ε+ iu2

)
χk1

(
β

2

)
· · ·χkm

(
β

2

)
χj

(
β

2
− ε+ iu1

)
χkm(0) · · ·χk1(0)

}〉
β

(A.4)

= e−N(µ2−ln cosh µ
2 )

N∑
m=0

∑
{k1,...,km}

(
2 tanh

µ

2

)m
〈
T
{
χj

(
β

2
+ ε+ iu2

)(
χk1

(
β

2

)
χk1(0)

)
· · ·
(
χkm

(
β

2

)
χkm(0)

)
χj

(
β

2
− ε+ iu1

)}〉
β

(A.5)

= e−N(µ2−ln cosh µ
2 )

N∑
m=0

(
N2 tanh µ

2

)m
m!

〈
T
{
χj

(
β

2
+ε+iu2

)
G

(
β

2
, 0

)m
χj

(
β

2
−ε+iu1

)}〉
β

(A.6)

=

〈
T
{
e−NSµχj

(
β

2
+ ε+ iu2

)
χj

(
β

2
− ε+ iu1

)}〉
β

, (A.7)

where Sµ in the last line is defined in eq. (3.3). In (A.4) we introduce a time-ordered path

integral, whence all the fermions χ become Grassmanian variables squaring to zero, and

in (A.6) we use this property of Grassmanians to introduce G. The denominator in the

effective size expression is derived with similar manipulations.

Next, we find the saddle point for small µ. As discussed in the main text, we really

just need to find the dependence of λ on µ. We note that

−X1 ·X2 =
1

2
(X2 −X1)2 + 1 = cosh δ(X1, X2)

= coth ρ(φ1) coth ρ(φ2)

√
1−

(
2π

L
ρ′(φ1)

)2
√

1−
(

2π

L
ρ′(φ2)

)2

[
2

θ′(φ1)θ′(φ2)

(
L

2π
sin

θ(φ1)− θ(φ2)

2

)2
]

+ cosh(ρ(φ1)− ρ(φ2)) cos(θ(φ1)− θ(φ2))

where δ is the geodesic distance. Thus, we can approximate

[θ′(φ1)θ′(φ2)]∆G(θ(φ2), θ(φ1)) ≈ c∆[cosh δ(X1, X2)− 1]−∆ sign(θ(φ2)− θ(φ1)) (A.8)

in the large L limit. Thus, we should find the opening angle λ(µ) that minimizes

−A− 2 tanh
µ

2
c∆ cosh δ(Xπ, X0)−∆.

The basic quantities in the action are easiest to find by first considering the circle to

have center at ρ = 0 in Rindler coordinates, with radius r and segment angle λ. The

– 23 –



J
H
E
P
1
0
(
2
0
2
0
)
0
5
3

distance between the endpoints of the circular segment is simplest to find by the inner

product in embedding coordinates,

cosh2 r(1− tanh2 r cosλ).

The area of a single segment is given by a fraction λ of the area of the circle, plus the area

of the triangular wedge, which we find from the interior angles (we call the one that is not

2π − λ, γ) after another application of Gauss-Bonnet,

A

2
= λ cosh r − 2γ − π

tan γ = sech r tan
λ− π

2
.

Using these expressions, we can expand the derivative of the action to leading order in L

to find an equation for λ = π + δλ,(
2(π + δλ)

L

)1−2∆(
tan2 δλ

2
+ sec2 δλ

2

sin δλ

π + δλ

)
= 2 tanh

µ

2

∆c∆

2∆+1
cos−2∆ δλ

2

(
tan

δλ

2
+

2

π + δλ

)
+O(L−2).

If we further expand to second order in δλ, we find

δλ = 2 tanh
µ

2

∆c∆

2∆

(
L

2π

)1−2∆

−
(

2 tanh
µ

2

)2 1− 2∆

π

(
∆c∆

2∆

)2( L

2π

)2−4∆

+O

((
2 tanh

µ

2
L1−2∆

)3
)
.

In general, for small µ we can solve the equation for δλ order-by-order in a power series

in 2 tanh µ
2L

1−2∆. The behaviour of size can be understood as the response under small

changes in the angle λ, with the complication that we need to multiply by the appropriate

derivative of λ over µ.

For concrete computations using the geometric saddle point solution, we need to map

from boundary time to location on the bulk curve, using that the former is an affine

parameter for the latter. To this end, it is useful to transform between coordinate systems

where one of the µ 6= 0 segments is centered, as in the second panel of figure 1, and a

coordinate that is symmetric between the two segments, as in the third panel of figure 1.

This transformation is given by some AdS2 isometry, which is simplest to express in the

embedding coordinate. Suppose we start in the coordinate where the first segment is

centered, as in the second panel of figure 1. Then, the endpoints of the first segment

are located at (cosh ρ,− sinh ρ sin λ−π
2 ,± sinh ρ cos λ−π2 ). The isometry that brings these

points to points equidistant from the origin with θ = 0, π is the boost with parameter

tanhβ = tanh ρ sin λ−π
2 generated by E(E). Explicitly, it is the embedding coordinate

matrix

Fβ =

coshβ sinhβ 0

sinhβ coshβ 0

0 0 1

 . (A.9)
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The inverse boost gives the transformation to the symmetric coordinate from the coordi-

nate where the second segment is centered. In this way, we can always work in centered

coordinates for the appropriate segment to map boundary times to bulk points.

Using this transformation, we compute the location of the bulk points corresponding

to φ± = π ± ε+ it± for the saddle point solution corresponding to angle λ. Start with the

− coordinate, so use a coordinate system where the upper segment is centered as in the

second panel of figure 1. The radial coordinate ρ is fixed by the requirement sinh ρ = L/2λ.

The angular coordinate is given by the affine parameter condition,

θ1− =
λφ−
π
− λ− π

2
. (A.10)

Forming this into a coordinate X̃< = (cosh ρ, sinh ρ sin θ1−, sinh ρ sin θ1−), the coordinate

in the symmetric system is given by X<(λ) = FβX̃<. For the + coordinate, we have

θ1+ =
λ− π

2
− λ

π
(2π − φ+), (A.11)

X̃> = (cosh ρ, sinh ρ sin θ1+, sinh ρ cos θ1+) in the coordinate where the second segment is

centered, and X>(λ) = F−βX̃> in the symmetric system. To compute derivatives over λ,

we use the definitions of θ±, ρ, β, and the useful identities

∂θ±X̃≷ = B(E)X̃≷, ∂ρX̃≷ = (sin θ±E
(E) + cos θ±P

(E))X̃≷. (A.12)

B AdS space coordinates and symmetries

For convenience, we collect here some AdSd, and in particular AdS2, coordinate systems

and related expressions.

B.1 Embedding coordinates

A convenient definition of AdSd+1 involves the hyperboloid X2 = −1 in the space Rd+2,

with metric η of signature (−,−,+, . . . ,+). We will also refer to the two timelike coordi-

nates as T 0 and T 1, and in general start our numbering of embedding coordinates from 0.

The global AdSd+1 space is defined as the universal covering of this hyperboloid, but we

will also be interested in coordinate patches that cover only part of the global space.

The Killing vectors in AdSd+1 are the suitably restricted Killing vectors of the Lorentz

group in the embedding space,

Kµν = Xµ∂ν −Xν∂µ.

It will be useful in what follows to identify a particular set of “light-cone” coordinates,

U± = X2 ± T 1

V ± = X2 ± T 0

and to identify the Casimir

C =
1

2

p+q∑
j1,j2,k1,k2=1

ηj1j2ηk1k2Kj1k1Kj2k2 .
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B.1.1 AdS2 Rindler coordinates

The Rindler coordinate takes some boost, say K20, to be time translation. Orbits of this

boost occur at the intersection of the constant T 1 planes with the hyperboloid; an explicit

coordinate choice is

T 1 = cosh ρ

V ± = e±tR sinh ρ

with metric

ds2 = − sinh2 ρdt2R + dρ2.

Then the restrictions of the symmetry generators become

K20 = ∂tR

K01 ±K21 = e∓tR(coth ρ∂tR ± ∂ρ).

B.1.2 AdSd Poincare coordinates

In the Poincare coordinate, some boost, say K21, becomes the naive coordinate “dilatation”

when restricted to the projective boundary of the hyperboloid. An explicit coordinate

system is

U+ =
1

z

Xj =
xj

z
for j 6∈ {1, 2}

ds2 =
dxjdxj + dz2

z2

where indices are lowered on the xj with the same signature as the Xj . The restricted

symmetry generators are

K21 = −z∂z − xj∂j
K2j −K1j = ∂j for j 6∈ {1, 2}

Kjk = xj∂k − xk∂j for j 6∈ {1, 2}
K2j +K1j = 2xj(x

k∂k + z∂z)− (x2 + z2)∂j .

B.1.3 AdSd global coordinates

In the “global” coordinate system, we choose the T 0 − T 1 rotation to give the local time

translations. The explicit coordinates are

T 1 = secσ cos τ, T 0 = secσ sin τ

Xj = tanσΩj
d−1, for j 6∈ {0, 1}

ds2 =
−dτ2 + dσ2 + sin2 σdΩd−1

cos2 σ
,
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and the symmetry generators become

K10 = −∂τ
Kjk → rotations of Ωd−1 for j, k 6∈ {0, 1}
u± = σ ± τ

K1j ± iK0j = −eiu±xj∂± − e−iu
∓
xj∂∓ + e±iτ (cscσδkj + xkxj)∂k.

C Position space fermion two-point function

In this section, we extend the work [33, 34] on geometric expressions for propagators in

symmetric spaces to spinor representations in arbitrary dimension D = d+1, and curvature

normalized to sR = R
D(D−1) ∈ {0, 1,−1}. Call the geodesic distance from x to x′, δ(x, x′),

gµν the metric tensor, and Π(x, x′)µν′ the operator that parallel transports vectors along

the shortest geodesic from x to x′. We will repeat the convention established in [34] that

primed (unprimed) indices correspond to indices that refer to the tangent space at x′ (x),

and omit the arguments x, x′ where there is no ambiguity. The tangent vectors at the ends

of the geodesic connecting x and x′ are nµ = ∇µδ (n(L) without indices), and nµ′ = ∇µ′δ
(n(R) without indices). Define also sxx′ = nµn

µ = nµ′n
µ′ , which is 1 (−1) for points that

are spacelike (timelike) separated. Then it can be shown [34] that any tensor acting on the

tangent spaces at x and x′ that is invariant (i.e. has zero Lie derivative) under the flow by

an isometry can be written as scalar functions of the geodesic distance multiplying tensor

products of Π, g, n(L) and n(R). We call such tensors “invariant”. For example,

pµν = gµν − sxx′nµnν (C.1)

∇µnν = A(δ)pµν , A = sxx′A (C.2)

(∇µnν′)Πν′
ν = B(δ)pµν , B = sxx′B (C.3)

(∇µΠνσ′)Π
σ′
σ = C(δ)(pµνnσ − pµσnν) = C(δ)(gµνnσ − gµσnν) (C.4)

where we have used ∇n(L)n(L) = 0, Πn(R) = −n(L) (parallel transport of geodesic tangent

vector), nµ
′∇νnµ′ = 0, ∇n(L)Π(x, x′) = 0, and that parallel transport preserves all inner

products to fix the forms of the above tensors. Note that we must have A + B → 0 as

δ → 0 since the components n(L) approach −n(R) (equivalently, Π→ 1). To find C, use

sxx′Bpµν =−∇µnν − nν
′∇µΠν′ν

=−∇µnν + nσC(pµνnσ − pµσnν)

=⇒ C = A+B.

Taking the trace of (C.2) shows A = 1
d∇2δ. Furthermore, we can find the derivatives of A,

B in several ways by taking derivatives along geodesics. For example,

A
′
pµν = nσ∇σ(∇µnν) = nσ∇µ∇σnν +Rνλσµn

σnλ

= −(∇µnσ)(∇σnν)− sRsxx′pµν = −(A
2

+ sRsxx′)pµν .
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Likewise, by considering nσ∇σ(∇µnν′) and nσ
′∇σ′(∇µnν), we find the relations

A
′
= −B2

= −(A
2

+ sRsxx′)

B
′
= −AB.

Finally, since all fields arise from the same principal bundle (so only the generators change

in the “spin connection”), the parallel transport operator S(x, x′) for any associated bundle

satisfies

∇µS(x, x′) = CgµνnσΣνσS(x, x′)

where Σνσ are the appropriate spin group generators.

Now we specialize to the case of spinors. Fix some vielbien by a choice of an appropriate

vector-valued one-form σ. Then if we define Γµ = γaσ
a
µ and /n = Γµn

µ, we have

∇µS(x, x′) =
C

4
[Γµ, /n]S(x, x′).

For a different choice of vielbien σ(x) = σ̃(x)Λ(x), S̃(x, x′) = Λ(x)S(x, x′)Λ(x′)−1. Next,

we use that there are no invariant totally antisymmetric tensors with more than 1 index

(of course, we take all these indices to be at a single point, say x). This can be shown by

induction, or simply by noting all invariant tensors with indices at a single point x must

be built out of sums of products of g and n(L).4 Call the invariant two-point function

of spinors Gψ(x, x′). Since traces of Gψ(x, x′)S(x, x′)−1 against products of the Γµ give

invariant tensors with indices at a single point, the most general form of the fermion two-

point function is

Gψ(x, x′) = (F0(δ) + F1(δ)/n)S(x, x′)

for scalar functions of the geodesic distance F0, F1. It will also be useful to have the

covariant derivative and Dirac operator

∇µGψ(x, x′) = ((F ′0(δ) + F ′1(δ)/n)nµ +AF1(δ)pµνΓν)S(x, x′)

+Gψ(x, x′)S(x, x′)−1C

4
[Γµ, /n]S(x, x′) (C.5)

/∇Gψ(x, x′) = Γµ∇µGψ(x, x′)

=

[
(F ′0(δ) +

d

2
CF0(δ))/n+ sxx′(F

′
1(δ) +

d

2
(A−B)F1(δ))

]
S(x, x′). (C.6)

The Dirac equation when x 6= x′, ( /∇−m)Gψ(x, x′) = 0, reduces to the pair of equations

mF1(δ) = F ′0(δ) +
d

2
CF0

F ′1(δ) +
d

2
(A−B)F1(δ)− sx,x′mF0 = 0.

In the non-flat case sR 6= 0, there is a useful function K = −A/B, whence from our above

relations we find K ′′(δ) = −sRsxx′K and ∇2K = −sRDK, so A = −sRK/K ′. Then in

4We need to consider discrete reflections to eliminate the totally antisymmetric tensor.
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terms of y = 1+K
2 we can write a second-order equation for F0,[
y(y − 1)∂2

y +D

(
y − 1

2

)
∂y +

((
d

2

)2

+ sRm
2 +

d

4y

)]
F0 = 0. (C.7)

From here, we consider sR = −1. Then the solution of (C.7) that is properly normalized

to a delta-function singularity in Euclidean signature and has the right decay at infinity

for the Poincare vacuum is

K(δ) =

{
cosh δ sxx′ > 0

cos δ sxx′ < 0
, y =

1 +K

2

N∆,d =
1

Ωd

Γ
(
∆ + 1

2

)
Γ
(
∆− d

2

)
2dΓ

(
2
(
∆− d

2

)
+ 1
)

Γ
(
d+1

2

) , Ωd =
2π

d+1
2

Γ
(
d+1

2

)
F0(δ) = N∆,dmf0(y), F1(δ) = N∆,dK

′(δ)f1(y)

f0(y) = y−∆
2F1

(
∆ +

1

2
,∆− d

2
; 2

(
∆− d

2

)
+ 1;

1

y

)
f1(y) = −∆− d

2

2
y−(∆+1)

2F1

(
∆ +

1

2
,∆− d− 2

2
; 2

(
∆− d

2

)
+ 1;

1

y

)
where as long as ∆ > 0, we can choose ∆ = d

2 ±m. We fix the branches of 2F1 for the

Lorentzian Wightmann function by analytic continuation of a Euclidean time coordinate

τ → ε + it. This is well-defined (meaning all relevant covariant derivatives continue in a

consistent way) as long as we continue with respect to a Euclidean time τ such that ∂τ is

a Killing vector orthogonal to a family of hypersurfaces (in other words, the metric can be

taken independent of τ , and with no cross-terms involving dτ).

The “expectations” of symmetry generators, i.e. expressions like 〈ψ(x)Eψ(x′)〉, are

especially simple to compute in this formalism. Given the vector field V generating the

isometry of the manifold associated to E, we have

〈ψ(x)Eψ(x′)〉 = i∇VGψ(x, x′),

where the covariant derivative acts on the unprimed coordinate. We also note that for prac-

tical computations, S(x, x′) can be found explicitly as the spinor transformation, smoothly

connected to the identity, corresponding to Λab′(x, x
′) = σµa (x)Πµν′σ

ν′
b′ (x

′). Πµν′ itself can

be found from ∇µnν′ .

C.1 AdS2 propagator and generator expectation values

Our main focus is on the Rindler coordinate on AdS2. This is the coordinate with Euclidean

metric

ds2 = sinh2 ρdτ2 + dρ2.

We take the natural vielbien σ(x) = sinh ρe0dτ + e1dρ. The bulk points we consider in

the main text are at the same ρ coordinate, but different τ . We consider imaginary point
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splitting by some fixed amount ε. In fact, for different ρ this corresponds to different

regimes of geodesic distance.

If we first take the ρ → ∞ limit, then we should consider the propagator in the limit

of large geodesic distance. In this limit, /n → γ1. It remains to find S(x, x′). If we take a

vielbien σ̃(x, x′)aµ = Πµν′σ
aν′(x′), then S̃(x, x′) = 1, since we have chosen a non-coordinate

basis in which parallel transport along the geodesic from x to x′ is trivial. In the original

σ vielbien, S(x, x′) = Λ the spinor Lorentz transformation, smoothly connected to the

identity, that corresponds to Πab(x, x
′) = σ(x)νaσ(x)ν

′
b Πνν′ . If we take ρ → ∞ at fixed ε,

then Λ, the Lorentz transformation taking n(R) → −n(L) in the non-coordinate basis given

by σ, becomes a rotation by (minus) π, so S(x, x′) → e−πΣ01
= −γ0γ1. Then the large-ρ

limit becomes

Gψ(x, x′) −−−→
ρ→∞

sech2∆ ρ(2N∆,1|m|)
(

sin2 τ − τ ′
2

)−∆

1− sign
(

∆− d
2

m

)
γ1

2

 γ0, (C.8)

where the last term is a projector onto a certain eigenspace of γ1. This is an indication

that there is only a single fermion component on the boundary.

In the small geodesic distance limit, F0(δ)→ −mGd(δ), where Gd is the Green function

for the flat Laplacian in dimension d+ 1. We also have that F1(δ)→ −G′d(δ). The vector

n→ csch ρ∂τ , and S(x, x′)→ 1.

The main use of this propagator in this paper is to compute the expectation of the

generators E − B; call the vector generating this isometry V . Continuing the equation

i∇VGψ to Euclidean signature, we find that we need to compute

−∇V (E)Gψ(x, x′), V (E) = sin τ∂ρ + (coth ρ cos τ − 1)∂τ .

The exact expression is then given by taking the inner product of V (E) with (C.5) and

analytically continuing. For this it is useful to have the (Euclidean) spinor propagator

S((τ, ρ), (τ ′, ρ)) =
1− cosh ρ tan τ−τ ′

2 γ2√
1 + cosh2 ρ tan2 τ−τ ′

2

. (C.9)

D Fermion modes in AdS2

In this section, we give fermion mode solutions corresponding to the natural time in several

AdS2 coordinates. These modes serve four roles in this work. First, they give an explicit

consistent quantization of the “unusual” fermions with boundary dimension ∆ < d
2 . Sec-

ond, the Fourier transform of a reconstruction kernel can be read off of the modes. Third,

they are used to show that our regularization of the kernel for ∆ < d
2 is correct. Finally,

they have been used to check the two-point function we derive by a mode sum. We illustrate

these points in detail for the example of Poincare coordinates.
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D.1 Poincare coordinates

We start in the simpler Poincare coordinates to illustrate some general points. The metric is

ds2
d+1 =

dz2 + ηabdx
adxb

z2
, (D.1)

with Dirac operator

/∇ = zγj∂j −
d

2
γz. (D.2)

We are looking for modes of the equation ( /∇ − m)ψ = 0. The boundary fermion will

have dimension ∆ = d
2 ±m depending on our particular mode choice, and we allow either

sign as long as ∆ > 0. To emphasize this point, when |m| < d
2 , there are two consistent

quantizations, one with ∆ > d/2, and one with ∆ < d/2. As we will show, both choices give

rise to normalizable modes in AdSD. Define πg
z

to be the projector onto some eigenvalue

of γz, πg
z

= 1
2(1 + gzγz). Define also |p| =

√
−papbηab and /n = iγapbηab/|p|. The (matrix-

valued) function

Fgzp(x, z) = eip·x
√
|p|
2

z
d+1

2

(2π)
d−1

2

[
J∆− d+1

2
(z|p|) + /nγzJ∆− d−1

2
(z|p|)

]
πg

z
(D.3)

= ( /∇+m+ γz)γz

[
eip·x√

2|p|
( z

2π

) d−1
2
J∆− d−1

2
(z|p|)

]
πg

z
(D.4)

solves the Dirac equation with m = gz(∆ − d
2). In terms of this function, the normalized

modes of the Dirac equation (associated to the Poincare Killing vector) are

ψjgzp(x, z) = Fgzp(x, z)ujgz(p) (D.5)

ujgz(p) = Λ−1
1/2(p)ujgz(0). (D.6)

where ujgz(0) is a basis for the γz = gz eigenspace, γzujgz(0) = gzujgz(0), and p is re-

stricted to be timelike. Λ1/2(p) is the Lorentz boost that takes the timelike vector

(sign p0
√
−p2, 0, . . .) → p. There are solutions with spacelike p, but these are not nor-

malizable in the bulk. These modes are normalized according to∫
dd−1xdzz−dψjgzp(x, z)†ψjgzq(x, z) = δjkδd(p− q). (D.7)

As we take z → 0, the dominant behaviour is

Fgzp(x, z) −−−→
z→0

z∆

(
eip·x

(2π)
d−1

2 Γ
(
∆− d−1

2

) ( |p|
2

)∆− d
2

)
πg

z
. (D.8)

Notice that this function is proportional to πg
z
. This is how we get the correct (reduced)

number of fermion components on the boundary.

We can construct smearing functions by the following procedure. First, we fix some

notation. The bulk fermion field has the mode expansion

ψ(z, x) =

∫
dd−1p

∫ ∞
|~p|

dp0
∑
j

ψjgzp(x, z)cjp + ψjgz−p(x, z)dj†p , (D.9)
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while the boundary is

χ0(x) =
1

Γ
(
∆− d−1

2

)
(2π)

d−1
2

∫
dd−1p

∫ ∞
|~p|

dp0
∑
j

eip·x
( |p|

2

)∆− d
2

ujgz(p)c
j
p

+ e−ip·x
( |p|

2

)∆− d
2

ujgz(−p)dj†p (D.10)

Define u = u†(−iγ0). We then have

cjp =
Γ
(
∆− d−1

2

)
(2π)

d+1
2

( |p|
2

) d
2
−∆

ujgz(p)/n

∫
ddxe−ip·xχ0(x) (D.11)

dj†p =
Γ
(
∆− d−1

2

)
(2π)

d+1
2

( |p|
2

) d
2
−∆

ujgz(−p)/n
∫
ddxeip·xχ0(x); (D.12)

note that here all momenta, including /n in both expressions, have p0 > 0. Now, we re-insert

these operators into (D.9). It is useful to have the formula∑
j

ujs(p)u
j
s(p)/n = sign p0πg

z
. (D.13)

Then for

K∆(x, z) =
Γ
(
∆− d−1

2

)
(2π)

d+1
2

∫
ddpθ(−p2)

( |p|
2

) d
2
−∆

Fgzp(x, z) (D.14)

we find

ψ(x, z) =

∫
ddx′K∆(x− x′, z)χ0(x′)

as an operator equation.

A completely similar sequence of steps in other coordinate systems gives the Fourier

transform of the reconstruction kernel directly from the bulk mode solutions. The key

ingredient is that, near the boundary, the mode becomes proportional to the eigenspace of

some γ-matrix. This particular type of decay is easiest to anticipate by examining the Dirac

operator in a given coordinate system. A general feature is that the Fourier transform of

the reconstruction kernel is given by the spinor operator that is

1. an eigenfunction of the flow by the Killing vector associated to the time coordinate,

2. takes arbitrary fixed spinors to a solution of the Dirac equation (this is (D.3) in the

Poincare coordinate),

3. and is normalized to approach (z′)∆πeip·x (up to numerical factors and functions of

other coordinates for which there is no translation symmetry) for some projector π

and some coordinate z′ tending to zero as the conformal boundary is approached.

This smearing function will correspond to approaching the conformal boundary at con-

stant z′.
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We directly compute the position space smearing function for d = 1. We use the

integral∫ ∞
0
dµ cos

(
µ
x0−y0

z

)
µ−∆J∆(µ) =

0 z < |x0 − y0|
2−∆√π

Γ(∆+1/2)

(
z2−(x0−y0)2

z2

)∆−1/2
otherwise;

(D.15)

and the form (D.4) of the bulk mode operator, and find

K∆(t, z) =
Γ(∆)

2
√
πΓ
(
∆ + 1

2

)z−∆

(
/∇+

1

2
gz
)
gz(z2 − t2)∆− 1

2 θ(z − |t|)πgz (D.16)

=
mΓ(∆)√
πΓ
(
∆ + 1

2

)−tγ0 + zγz√
−t2 + z2

(−t2 + z2

z

)∆−1

πg
z
θ(z − |t|), (D.17)

where the second line is valid only for ∆ > 1/2 because of derivatives of the step function. If

the relevant integrals converge, we can just use this smearing function directly to construct

bulk quantities. For ∆ < 1/2, there is a divergence in this kernel on the light cone that

is not integrable. This derivation assures us that the divergence is not spurious; it comes

from unregulated arbitrarily high-momentum modes.

There are several possibilities to regulate the ∆ < 1/2 divergence. One is to take

the derivatives in (D.16) after integrating against the kernel (since the Dirac operator is

independent of time). The most immediate is to analytically continue in ∆. All that

we need to reproduce the bulk modes is that the integral against boundary modes, ∝∫
K∆(t−u, z)eiωu, gives the properly normalized bulk modes, which themselves are analytic

in ∆. If we define the integral of the kernel against analytic functions by taking a “figure-

eight” contour around the poles at t = ±z (and normalize by eiπ∆ cosπ∆), , then

for ∆ > 1/2 this gives the correct answer, and for ∆ < 1/2 gives the correct bulk modes

by analytic continuation.

The analytic continuation method is also related to a simple high-frequency regulator.

This can be done by giving an exponential energy damping e−ε|ω| on each mode in (D.14).

Instead of the sharp step in (D.15), the integral defining the regulated K∆(t, z) becomes,

calling α = (x0 − y0)/z,

Re

[∫ ∞
0
dµe−(ε+iα)µµ−∆J∆(µ)

]
→ 2−∆

Γ(∆ + 1)

1√
α2 + ε2

Im

(
2F1

(
1

2
, 1; ∆ + 1;

1

α2 − iε

))
(D.18)

→
√
π

2∆Γ(∆ + 1/2)

Re
(
e−iπ∆(1− (α2 − iε))∆−1/2

)
cos(π∆)

. (D.19)

We can now freely take derivatives of this integral as in (D.16) to find the regulated

Poincare kernel; the difference will only be non-vanishing in ε near α = 1. Integrating this

regulated kernel against analytic functions is the same as our contour prescription in the

limit ε → 0. Since we only consider integrals of the kernel against analytic functions, and

the analyticity argument is simpler than carrying out explicit regulated integrals, in other

coordinate systems we will simply use the analytic continuation as the definition of the

kernel for ∆ < 1/2.
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D.2 d = 1 global coordinates

In global coordinates, we have

dsAdS2 =
−dτ2 + dσ2

cos2 σ
.

We choose vielbiens

ea = cosσ∂a;

with this choice the nonzero component of the spin connection is

wτ01 = −wτ10 = − tanσ

and the Dirac operator is

/∇ = cosσ(γ0∂τ + γ1∂σ) +
sinσ

2
γ1.

The normalized positive frequency solutions to this equation are given by

ψ(+)
n (σ, τ) =

√
2n!Γ(2∆ + n)

2∆Γ(∆ + n)
e−i(∆+n)τ cos∆(σ)(

cos
(π

4
− σ

2

)
P (∆−1,∆)
n (sinσ) + iγ2 sin

(π
4
− σ

2

)
P (∆,∆−1)
n (sinσ)

)
us (D.20)

where P
(α,β)
n are the Jacobi polynomials, us are eigenvectors of γ1 with eigenvalue s, such

that ∆ = 1/2−sm, and γ2 = γ0γ1. If we work in a basis where γ2 and us are real, then we

can take the negative frequency modes just the complex conjugates of (D.20); in general

they are

ψ(−)
n (σ, τ) =

√
2n!Γ(2∆ + n)

2∆Γ(∆ + n)
ei(∆+n)τ cos∆(σ)(

cos
(π

4
− σ

2

)
P (∆−1,∆)
n (sinσ)− iγ2 sin

(π
4
− σ

2

)
P (∆,∆−1)
n (sinσ)

)
us.

(D.21)

These modes are orthonormal under the inner product∫ π/2

−π/2
dσ secσψsn(τ, σ)†ψs

′
m(τ, σ) = δnmδss′ .

D.3 d = 1 Rindler coordinates

It is convenient to make the change of variable to u=− ln tanh ρ
2 . The new coordinates are

T 1 = cothu = cosh ρ

V ± = cschue±tR = sinh ρe±tR .

The metric in these coordinates becomes

ds2 =
−dt2R + du2

sinh2 u
.
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The boundary is located at u→ 0. The natural vielbiens in this coordinate are

ea = sinhu∂a

and the Dirac operator is

/∇ = sinhu/∂ − 1

2
coshuγ1.

To find the modes, we solve the Dirac equation ( /∇ − m)ψ(tR, ρ) = 0. The normalized

expressions are

ψ(tR, u) = Nωe
−iωtR(−z)c̃/2(1− z)

1−c̃
2 Fω,m(z)πsus

Fω,m(z) = c̃2F1(a, b; c̃; z)− aγ2(−z)c̃2F1(c̃+ a, c̃+ b; 1 + c̃; z)

z = − sinh2 u

2

a = iω, b = −iω, c̃ =
1

2
+mγ1

Nω =
1

∆

√
2 cosh(πω)B(∆ + iω,∆− iω)

πB(∆,∆)
.

A mode sum for the kernel for ∆ > 1/2 gives (4.5).

E Details on the reconstruction kernel

A very direct way to derive the kernel is the mode sum approach. We have carried out

the mode sum both in Poincare and Rindler coordinates for ∆ > 1/2 to confirm our

expressions. That approach also illustrates that the ∆ < 1/2 case can be treated either by

analytic continuation from ∆ > 1/2, or equivalently by regulating high-momentum modes

on the boundary.

To connect with the invariant description of reconstruction in (4.2), and to show more

explicitly the role that choice of coordinate and vielbien plays in the reconstruction kernel,

we write the kernel using the geometric quantities described in C. First, call Nµ the normal

vector the conformal boundary, and /N = ΓµN
µ. Note that /N depends on how we approach

the boundary, which is different in different coordinate systems. Now solve the Dirac

equation for spacelike separation using the same ansatz (and notation) as in C, but now

demanding regularity as points approach each other. The solution is

GK(x, x′) = (F0(δ) + F1(δ)/n)S(x, x′)

F0 = my−
d
2 2F1

(
∆− d

2
, d−∆− d

2
;
d+ 1

2
; 1− y

)
F1 =

2
√
y − 1

(
∆− d

2

)2
2F1

(
∆ + 1

2 , d−∆ + 1
2 ; d+3

2 ; 1− y
)

d+ 1
.

It can be checked that the kernel in either coordinate system can be written (using z′

as a general coordinate tending to zero at the conformal boundary, for example sech ρ in
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Rindler)

K∆(x, x′) ∝ lim
z′→∞

√
−g(x′)(z′)∆GK(x, x′) /N

∝ lim
z′→∞

√
−g(x′)(z′)∆S(x, x′)y∆−d

(
1− ∆− d

2

m
n

(R)
µ′ Γµ

′
(x′)

)
/N.

The form of the reconstruction kernel in Rindler and Poincare coordinate systems, (4.5)

and (D.17) respectively, has been chosen to reflect the second equality here. The matrix

appearing in the front of both kernels is S(x, x′),

lim
z′→0

S(x, x′) ∝


γaxa+γzz√
xaxa+z2 γ

z Poincare

1+eρ tanh(tR/2)γ2√
1−e2ρ tanh2

(
tR
2

) Rindler
,

and the projector on the right is just (1− ∆− d
2

m n
(R)
µ′ Γµ

′
(x′)) /N (in (4.5) we instead just wrote

the vector in the image of this projector), both in the limit z′ → 0. These two matrices

encode the vielbien choice, and the matrix on the right encodes the relationship between ∆

and mass. We can check that the kernel transforms properly between the two coordinate

systems by using the spinor transformation corresponding to the change of vielbien from

Poincare to Rindler coordinates, which is

v− =

(
− tanh tR

2

eρ

)
, Λ1/2 =

−γ0v0
− + γ1v1

−√
ηabv

a
−v

b
−

γ2.

We also show that the form of the kernel is fixed where it is nonzero by demanding dif-

feomorphism invariance for the bulk spinor, while the boundary spinor is a quasi-primary

operator of dimension ∆. To find equations for the kernel, we use that the unitaries gener-

ating bulk isometries generate boundary conformal transformations. The bulk field should

transform according to the flow generated by the appropriate vector field. Concretely, we

fix an orthonormal frame ea, and consider the transformation generated by the flow of a

Killing vector ξ. Under the pushforward by this flow, the components of ea change by

−Lξea = −[ξ, ea]. Since ξ is a Killing vector, the generator J(ξ)ab = 〈ea,Lξeb〉 is antisym-

metric. A bulk field in a representation ρ of the spin group transforms by

−LBξ ψ(x, z) = −(ρ(J(ξ)ab) + ξ)ψ(x, z).

This is the flow generated by the operator ξ̂, and in the case of AdSd+1, the same operator

generates conformal transformations on the boundary. Then if the bulk field is written

ψ(x, z) =

∫
ddyK(x, z|y)χ(y),

and the conformal transformation acts on χ(y) by

[ξ̂, χ(y)] = −Lξχ(y)
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we find the operator constraints

LB(x,z)
ξ K(x, z|y) = K(x, z|y) ◦ L(y)

ξ (E.1)

where on the Lie derivatives we have indicated which variables the differential parts can act

on. Actually, these are too restrictive in general dimension (specifically odd AdS), where

the difference from (E.1) can be by terms that integrate to zero against a boundary field,

but in even AdS this stronger constraint can be satisfied.

The transformation of boundary primary fields is particularly simple in Poincare co-

ordinates. We can derive the constraints on the Poincare kernel,

K(x, z|y) = K(x− y, z)

(2xj(∆− d)− (x2 + z2)∂xj + 2xkΣjk + 2zΣjz)K(x, z) = 0

(xj∂j + z∂z)K(x, z) = (∆− d)K(x, z)

(xj∂xk − xk∂xj )K(x, z) = −(ΣjkK(x, z)−K(x, z)Σ∂
jk)

where Σjk is the generator of the Lorentz group in the desired bulk representation, Σ∂
jk is

the generator of the Lorentz group in the boundary representation, and ∆ is the dimension

of the boundary field. The last equation shows that K(0, z) is an intertwiner for represen-

tations of the boundary Lorentz group. These equations can be used to find the form of the

kernel for arbitrary spin. In the spinor case (we assume the spinor transforms irreducibly

on the boundary), a non-zero solution

K(x, z) =
/x+ zγz√
xjxj + z2

(
z2 + xjxj

z

)∆−d
ι1

where ι1 maps the boundary spinor representation into the γz = 1 eigenspace of the bulk

spinor representation (its presence and image as a particular eigenspace of γz is mandated

by the fact that K(0, z) is an intertwiner for an irreducible representation of a Lorentz

subgroup, so its image is irreducible and hence γz is constant on the image, but the choice

of sign of eigenspace is arbitrary). This is the unique non-zero solution, up to choice of scale

and the sign of the γz eigenspace for the irreducible representation. It is also straightforward

to show directly from the constraints that K must satisfy a Dirac equation,

/∇K(x, z) =

(
∆− d

2

)
K(x, z).

F Numerics

Here we note some practical formulas for numerics with our divergent kernels. If we have

some boundary quantity F ∂(u) that is linear in boundary fields, we need to compute

FB(tR, ρ) =

∫
duI(tR − u, ρ)F ∂(u)Θ(spacelike)

= 2e−ρF̃B(tR, ρ)

F̃B(tR, ρ) =

∫ 1

−1
Ĩ(x, ρ)F ∂(tR − u(x))dx
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Ĩ(x, ρ) =
1

1 + e−ρx

1

(1− (e−ρx)2)∆
(1− x2)∆−1/2

uρ(x) = ln
1 + e−ρx

1− e−ρx.

We will also need the partial derivatives

∂tRF̃
B(tR, ρ) =

∫ 1

−1
dxĨ(x, ρ)∂tRF

∂(tR − uρ(x))

∂ρF̃
B(tR, ρ) =

∫ 1

−1
dxĨ(x, ρ)

e−ρx

1− (e−ρx)2

(
1− (2∆ + 1)e−ρx+ 2∂tR

)
F ∂(tR − uρ(x)).

Finally, to make the integral against (1− x2)∆−1/2 manifestly convergent, we can use that∫ 1

−1
dx(1− x2)∆−1/2f(x) =

∫ π/2

−π/2
dθ(cos θ)

1
2

+∆f(sin θ)

=
1

1
2 + ∆

∫ 1

0

dt

(2− t1/(1/2+∆))1/2−∆
(f(1− t1/(1/2+∆)) + f(t1/(1/2+∆) − 1)).

The bulk size distribution is

GBµ (tR, ρ)j =

∫
dudu′K∆(tR − u, ρ)jK∆(tR − u′, ρ)jG∂µ(u, u′).

We can symmetrize the integrand, which is the same as taking the real part in a basis

where all the γj are real. Following the above, the bulk quantity can be written in terms of

Hµ(tR, ρ, t
′
R, ρ

′) =

∫ 1

−1
dxdx′Ĩ(x, ρ)Ĩ(x′, ρ′) Re[G∂µ(tR − uρ(x), t′R − uρ′(x′))]

and its derivatives. This function satisfies the identity Hµ(tR, ρ, t
′
R, ρ

′) = Hµ(t′R, ρ
′, tR, ρ).

F.1 Chebyshev polynomial method

Another strategy to numerically integrate against the kernel is to expand in the complete

Chebyshev polynomials Tn(x), and use the analytic continuation of∫ 1

−1
(1− x2)αTn(x)dx = 22α+1B(α+ 1, α+ 1)3F2

(
−n, n, α+ 1;

1

2
, 2α+ 2; 1

)

−−−−−−→
α→∆−3/2

0 n odd

(−1)
n
2

41−∆π
2∆−1

1
B(∆+n

2
,∆−n

2
) n even

,

where we can define the integral for α < 1 by a figure-eight contour.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 38 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
2
0
)
0
5
3

References

[1] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]

[INSPIRE].

[3] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[4] A. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity,

Sov. Phys. JETP 28 (1969) 1200.

[5] S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296]

[INSPIRE].

[6] A. Kitaev, hidden correlations in the hawking radiation and thermal noise, talk at 2015

Breakthrough prize symposium, San Francisco U.S.A. (2014),

https://www.youtube.com/watch?v=OQ9qN8j7EZI.

[7] P. Hosur and X.-L. Qi, Characterizing eigenstate thermalization via measures in the fock

space of operators, Phys. Rev. E 93 (2016) 042138 [arXiv:1507.04003] [INSPIRE].

[8] D.A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06

(2018) 122 [arXiv:1802.02633] [INSPIRE].

[9] X.-L. Qi and A. Streicher, Quantum Epidemiology: Operator Growth, Thermal Effects, and

SYK, JHEP 08 (2019) 012 [arXiv:1810.11958] [INSPIRE].

[10] X.-L. Qi, E.J. Davis, A. Periwal and M. Schleier-Smith, Measuring operator size growth in

quantum quench experiments, arXiv:1906.00524 [INSPIRE].

[11] S. Xu and B. Swingle, Locality, Quantum Fluctuations, and Scrambling, Phys. Rev. X 9

(2019) 031048 [arXiv:1805.05376] [INSPIRE].

[12] B. Vermersch, A. Elben, L.M. Sieberer, N.Y. Yao and P. Zoller, Probing scrambling using

statistical correlations between randomized measurements, Phys. Rev. X 9 (2019) 021061

[arXiv:1807.09087] [INSPIRE].

[13] A. Lucas, Operator size at finite temperature and Planckian bounds on quantum dynamics,

Phys. Rev. Lett. 122 (2019) 216601 [arXiv:1809.07769] [INSPIRE].

[14] A. Mousatov, Operator Size for Holographic Field Theories, arXiv:1911.05089 [INSPIRE].

[15] A.R. Brown, H. Gharibyan, A. Streicher, L. Susskind, L. Thorlacius and Y. Zhao, Falling

Toward Charged Black Holes, Phys. Rev. D 98 (2018) 126016 [arXiv:1804.04156] [INSPIRE].

[16] L. Susskind, Why do Things Fall?, arXiv:1802.01198 [INSPIRE].

[17] L. Susskind, Complexity and Newton’s Laws, arXiv:1904.12819 [INSPIRE].

[18] H.W. Lin, J. Maldacena and Y. Zhao, Symmetries Near the Horizon, JHEP 08 (2019) 049

[arXiv:1904.12820] [INSPIRE].

[19] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

[20] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions,

Phys. Lett. B 126 (1983) 41 [INSPIRE].

– 39 –

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+J%20%22Int.J.Theor.Phys.%2C38%2C1113%22
https://doi.org/10.1088/1126-6708/2008/10/065
https://arxiv.org/abs/0808.2096
https://inspirehep.net/search?p=find+J%20%22JHEP%2C0810%2C065%22%20and%20year%3D2008
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1403%2C067%22%20and%20year%3D2014
https://doi.org/10.1007/JHEP12(2014)046
https://arxiv.org/abs/1312.3296
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1412%2C046%22%20and%20year%3D2014
https://www.youtube.com/watch?v=OQ9qN8j7EZI
https://doi.org/10.1103/PhysRevE.93.042138
https://arxiv.org/abs/1507.04003
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CE93%2C042138%22
https://doi.org/10.1007/JHEP06(2018)122
https://doi.org/10.1007/JHEP06(2018)122
https://arxiv.org/abs/1802.02633
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1806%2C122%22%20and%20year%3D2018
https://doi.org/10.1007/JHEP08(2019)012
https://arxiv.org/abs/1810.11958
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1908%2C012%22%20and%20year%3D2019
https://arxiv.org/abs/1906.00524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.00524
https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevX.9.031048
https://arxiv.org/abs/1805.05376
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CX9%2C031048%22
https://doi.org/10.1103/PhysRevX.9.021061
https://arxiv.org/abs/1807.09087
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CX9%2C021061%22
https://doi.org/10.1103/PhysRevLett.122.216601
https://arxiv.org/abs/1809.07769
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C122%2C216601%22
https://arxiv.org/abs/1911.05089
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.05089
https://doi.org/10.1103/PhysRevD.98.126016
https://arxiv.org/abs/1804.04156
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD98%2C126016%22
https://arxiv.org/abs/1802.01198
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.01198
https://arxiv.org/abs/1904.12819
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.12819
https://doi.org/10.1007/JHEP08(2019)049
https://arxiv.org/abs/1904.12820
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.12820
https://doi.org/10.1016/0550-3213(85)90448-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB252%2C343%22
https://doi.org/10.1016/0370-2693(83)90012-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB126%2C41%22


J
H
E
P
1
0
(
2
0
2
0
)
0
5
3

[21] Y. Gu, A. Lucas and X.-L. Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP

09 (2017) 120 [arXiv:1708.00871] [INSPIRE].

[22] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A

Boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118]

[INSPIRE].

[23] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local

bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

[24] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A

Holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum

ibid. 75 (2007) 129902] [hep-th/0612053] [INSPIRE].

[25] D. Kabat, G. Lifschytz, S. Roy and D. Sarkar, Holographic representation of bulk fields with

spin in AdS/CFT, Phys. Rev. D 86 (2012) 026004 [arXiv:1204.0126] [INSPIRE].

[26] D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017)

092 [arXiv:1702.08016] [INSPIRE].

[27] A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,

JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].

[28] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94

(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[29] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum

mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

[30] A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,

JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].

[31] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in

AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

[32] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

[33] B. Allen and C.A. Lütken, Spinor Two Point Functions in Maximally Symmetric Spaces,

Commun. Math. Phys. 106 (1986) 201 [INSPIRE].

[34] B. Allen and T. Jacobson, Vector Two Point Functions in Maximally Symmetric Spaces,

Commun. Math. Phys. 103 (1986) 669 [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP09(2017)120
https://doi.org/10.1007/JHEP09(2017)120
https://arxiv.org/abs/1708.00871
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.00871
https://doi.org/10.1103/PhysRevD.73.086003
https://arxiv.org/abs/hep-th/0506118
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0506118
https://doi.org/10.1103/PhysRevD.74.066009
https://arxiv.org/abs/hep-th/0606141
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0606141
https://doi.org/10.1103/PhysRevD.75.106001
https://arxiv.org/abs/hep-th/0612053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0612053
https://doi.org/10.1103/PhysRevD.86.026004
https://arxiv.org/abs/1204.0126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.0126
https://doi.org/10.1007/JHEP05(2017)092
https://doi.org/10.1007/JHEP05(2017)092
https://arxiv.org/abs/1702.08016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.08016
https://doi.org/10.1007/JHEP05(2018)183
https://arxiv.org/abs/1711.08467
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.08467
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.07818
https://doi.org/10.1016/j.nuclphysb.2016.08.002
https://arxiv.org/abs/1607.00694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.00694
https://doi.org/10.1007/JHEP05(2018)183
https://arxiv.org/abs/1711.08467
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1805%2C183%22%20and%20year%3D2018
https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1504%2C163%22%20and%20year%3D2015
https://arxiv.org/abs/1804.00491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00491
https://doi.org/10.1007/BF01454972
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C106%2C201%22
https://doi.org/10.1007/BF01211169
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C103%2C669%22

	Introduction
	The size operator and its distribution
	The Sachdev-Ye-Kitaev model
	Boundary operator size in SYK models
	Size of chi fermions and SL(2,R) generators

	Size of bulk fields
	The explicit construction of bulk fields
	Bulk size in the low temperature limit
	Numerics at large q

	Conclusion
	SYK size effective action
	AdS space coordinates and symmetries
	Embedding coordinates
	AdS2 Rindler coordinates
	AdSd Poincare coordinates
	AdSd global coordinates


	Position space fermion two-point function
	AdS2 propagator and generator expectation values

	Fermion modes in AdS2
	Poincare coordinates
	d=1 global coordinates
	d=1 Rindler coordinates

	Details on the reconstruction kernel
	Numerics
	Chebyshev polynomial method


