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Nature’s Machinery, Repurposed: Expanding the Repertoire of 
Iron-Dependent Oxygenases
Noah P. Dunham and Frances H. Arnold*

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East 
California Boulevard, MC 210-41, Pasadena, California 91125, United States

ABSTRACT: Iron is an especially important redox-active cofactor in biology because of its 

ability to mediate reactions with atmospheric O2. Iron-dependent oxygenases exploit this earth-

abundant transition metal for the insertion of oxygen atoms into organic compounds. Throughout 

the astounding diversity of transformations catalyzed by these enzymes, the protein framework 

directs reactive intermediates toward the precise formation of products, which, in many cases, 

necessitates the cleavage of strong C–H bonds. In recent years, members of several iron-dependent 

oxygenase families have been engineered for new-to-nature transformations that offer advantages 

over conventional synthetic methods. In this Perspective, we first explore what is known about the 

reactivity of heme-dependent cytochrome P450 oxygenases and nonheme iron-dependent 

oxygenases bearing the 2-His-1-carboxylate facial triad by reviewing mechanistic studies with an 

emphasis on how the protein scaffold maximizes the catalytic potential of the iron-heme and iron 

cofactors. We then review how these cofactors have been repurposed for abiological 

transformations by engineering the protein frameworks of these enzymes. Finally, we discuss 

contemporary challenges associated with engineering these platforms and comment on their roles 

in biocatalysis moving forward.

KEYWORDS: biocatalysis, enzymology, directed evolution, mechanism, oxygenase, 
cytochrome P450
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1. INTRODUCTION

Nature’s finest catalytic machinery is comprised of protein-based enzymes. Constructed mainly of 

polypeptide chains of the twenty genetically encoded amino acids, enzymes can assume a 

multiplicity of three-dimensional forms, which is the foundation for the remarkable diversity of 

chemical transformations that are catalyzed with the efficiency and selectivity required to support 

a living organism.1 While a great deal of this catalysis can be achieved within the manifold of 

functional groups provided by the canonical proteinogenic amino acids, whether by simple acid-

base reactions or through intermediary covalent linkages, many essential biochemical 

transformations necessitate catalytic capabilities that exceed what is offered by these residues. The 

solution comes in the form of metallic or organic cofactors, with which many proteins are equipped 

to expand their catalytic repertoires. In this context, the interplay between the protein and cofactor 

is crucially important: the acquired catalytic function stemming from the unique properties of the 

cofactor is elicited or amplified by the protein environment. Cofactor-protein complexes achieve 

levels of activity and chemo-, regio-, and stereoselectivity that far surpass that which is produced 

by either component separately.

Since the emergence of our aerobic atmosphere, redox-active metals have taken on 

additional functions. Because the direct reaction of molecular oxygen (O2) in its 

thermodynamically favored triplet ground state with singlet organic compounds is generally spin-

forbidden, metallocofactors with unpaired d-electrons, such as iron, provide a channel to mediate 

such reactions by reductive activation of this atmospherically prevalent molecule.2-4 The resulting 

metal-oxygen species serve as intermediates in pathways that are central to biology, Complex IV 

of the electron transport chain in aerobic respiration perhaps being the most notable example. 

Many other metalloenzymes activate O2 to insert oxygen atoms into the structures of their organic 
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substrates.5 These oxygenases have provided us with powerful catalysts for biosynthesis and 

synthetic chemistry.

In this Perspective, we discuss the role of iron both in the heme complex and as free ferrous 

ion, and how its catalytic potential is maximized by proteins to effect oxygenase reactions. Toward 

this goal, we recount the catalytic cycles of heme-dependent cytochromes P450 and nonheme iron-

dependent oxygenases that utilize the 2-His-1-carboxylate facial triad, highlighting throughout 

how the protein sequence imparts selective catalysis. The knowledge accumulated from decades 

of rigorous mechanistic studies demonstrates the advantages of using an enzyme to achieve such 

outcomes, especially in cases where direct comparison can be made to the reactivity of the protein-

free cofactor.

From this foundational understanding of how Nature’s catalytic machinery controls 

reactivity and specific product outcomes, we bring the discussion to contemporary challenges in 

chemical synthesis by showing how the catalytic capabilities of natural enzymes can lead to 

discovery and optimization of new-to-nature transformations. Leveraging enzymes for the 

synthesis of high-value chemicals constitutes a powerful strategy with broad potential.6 While 

natural evolution has sharpened the myriad native functions of enzymes for specific biological 

advantages, it would be imprudent to look upon these functions as limits of achievability. Applying 

directed evolution, it is now feasible, even uncomplicated, to enhance the latent activities of 

enzymes for non-natural chemistry and further expand our synthetic toolbox,7 just as Nature has 

expanded hers over millions of years. In other words, the well of innovation is just waiting to be 

tapped. Recently, a number of iron-dependent oxygenases have been engineered to realize such a 

goal. Herein, we summarize the efforts of several research groups to push the hemoprotein and 
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4

nonheme 2-His-1-carboxylate enzymatic platforms into the world of abiological catalysis, and then 

speculate on the future impact on chemical synthesis.

Eliciting new reactivity from cofactor-dependent enzymes and honing this reactivity by 

directed evolution is truly at the interface between enzymology and synthetic chemistry. 

Inspiration drawn from both fields can contribute to transformational advancements in our ability 

to craft molecules using biocatalysts. While the focus of this Perspective is narrowed to iron-

dependent oxygenases, our broader goal is to inspire researchers to examine existing biological 

cofactors as potential sources of new and useful chemistry, from which fundamental knowledge 

stands to be extracted and new synthetic tools stand to be developed.

2. HEME

2.1. Structure and Reactivity

Heme cofactors employ the organic porphyrin framework to coordinate iron for a diversity of 

functions.8 The 18π electrons of the core structure (Figure 1, red substructure), which consists of 

four pyrrole subunits connected by methine bridges, are thought to be the basis of the cofactor’s 

aromatic character,9 the key contributor to its absorption properties and the generation of π-cation 

radicals during the formation of high-valent iron intermediates.10 The resulting planar structure 

coordinates the iron in a tetradentate fashion and occupies an entire plane of the octahedron. One 

or both coordination sites perpendicular to this equatorial plane can be occupied by additional axial 

ligands (X in Figure 1), which often play a crucial role in tuning the electronic properties of the 

metal (vide infra).11 In the active site of an enzyme, these ligands are contributed by amino acid 

side-chains.
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5

Heme’s impressive catalytic repertoire is evident 

throughout its assortment of biological functions. From oxygen 

maintenance12,13 and electron transfer14 to decomposition of 

harmful oxygen species15,16 and facilitating an array of 

chemically challenging oxidative transformations,17-21 Nature 

has given this special cofactor a starring role. Heme has also been 

an inspiration to chemists for decades. Their efforts have not only 

yielded model complexes that elevated our understanding of 

hemoproteins, but also afforded a collection of biomimetic 

catalysts that have addressed a number of synthetic challenges. 

These synthetic porphyrins have been extensively reviewed elsewhere.19,22-26

Although Nature and humanity together have leveled a great deal of attention on heme, the 

natural forms of the cofactor by itself have found very limited use in biology as well as industrial 

pursuits. Thus, the question must be asked: how does the hemoprotein environment tune the 

cofactor such that the desired reactivity is achieved? Here we strive to answer this question in the 

context of cytochromes P450, the family of hemoproteins that have been described as ‘a biological 

blowtorch’.27 These enzymes catalyze a suite of aliphatic and aromatic C–H oxidations,28,29 

heteroatom oxidations,30,31 olefin epoxidations,32 C–C desaturations,33,34 and more,18,35 rendering 

them an ideal subject for a case study on how the polypeptide chain can activate and tune the heme 

cofactor for highly selective transformations that are not observed in the absence of the protein 

scaffold.

2.2. C–H Hydroxylation Catalyzed by Cytochromes P450

Figure 1. Structure of heme 
B. The bolded red bonds 
constitute the 18π electrons 
of the aromatic system in 
the [18]annulene model. X 
represents the axially 
coordinated protein ligand.
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Cytochromes P450—named for the 450 nm absorption band observed with the reduced, CO-bound 

state of the heme B cofactor36—are found throughout every kingdom of life.37 P450s coordinate 

one of the two axial sites of the iron center with a cysteine ligand, leaving the other open for 

binding of water or O2. In the hydroxylation reaction, the net four-electron reduction of O2 is 

balanced by the two-electron oxidations of both NAD(P)H and the aliphatic C–H bond undergoing 

oxygenation (Equation 1).18 Amazingly, the bond dissociation energies (BDE) of the targeted C–

H bonds can range as high as 102.9 kcal/mol,38 an energy barrier that is overcome by reactive high-

valent iron-oxo intermediates. Throughout the step-by-step mechanism presented below, we 

highlight the role of the protein scaffold and its contributing ligands in facilitating the formation 

and directing the reactivity of these reactive intermediates.

RH + O2 + NAD(P)H + H+  →  ROH + H2O + NAD(P)+                          (1)

In the resting state of the P450 active site, a water ligand occupies the sixth coordination 

site of the low-spin (S = 1/2) Fe(III) cofactor (Figure 2, state I).11,18,39 Binding of the substrate 

then displaces this axially coordinated water, which is important for two main reasons: (1) an axial 

coordination site is now open for binding of O2, and (2) the change in the coordination environment 

shifts the iron to a high-spin (S = 5/2) state (state II).11,18 The latter consequence brings the redox 

potential of the iron into the range of the corresponding cytochrome P450 reductase, which then 

delivers an electron originating from NAD(P)H through the reduced form of its flavin 

mononucleotide (FMN) cofactor.40-42 The coupling of this protein-controlled substrate binding 

event with the reorganization of the ligand sphere effectively prevents entrance into the catalytic 

cycle in the absence of substrate. It is worthy of note that while this substrate-induced spin-shift 

strategy is a classic example of the control of electron flow in P450 catalysis, it is not universally 

employed within the family. Alternative mechanisms have been reviewed elsewhere.43
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Reduction of the heme to Fe(II) triggers binding and reduction of O2 to yield a ferric 

superoxo species (Figure 2, state IV), an intermediate that, if neglected, will produce harmful 

reactive oxygen species (ROS).44 Thus, efficient delivery of a second electron and a proton are 

required at this stage to push the reaction forward toward the formation of the ferric hydroperoxo 

intermediate known as compound 0 (state VI).45 This sequence, in addition to the initial reduction 

of the cofactor, necessitates precisely controlled access of the partner P450 reductase to the P450 

Figure 2. Mechanism of P450-catalyzed hydroxylation. The red inset (left) depicts the active 
site of the P450BM3 heme domain in the substrate-free crystal structure (PDB: 2BMH). The 
conserved T268 residue sits directly above the heme, in close contact with an ordered water 
network (red spheres) for the proton-transfer steps. The blue inset (right) shows the 
conformational shift between the closed and open states of the full-length P450BM3 dimeric 
complex (models derived from cryo-EM maps EMD: 20785 and EMD: 20786), which brings 
the heme (red spheres) from one monomer and FMN (green spheres) from the other in close 
proximity for the electron transfer steps.
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active site. Complementing the years of rigorous explorations into this process,46 the recently 

solved single-particle cryo-EM structure of the full-length cytochrome P450 from Bacillus 

megaterium (P450BM3), a self-sufficient P450 with the partner reductase fused into a single 

polypeptide chain, is an excellent model of how such control can be imparted by the protein 

framework.47 This structure provides a clear picture of how the dimeric complex can exist in open 

and closed states, and how a conformational shift to the former brings the FMN cofactor of one 

monomer into close proximity with the heme of the other, presenting a mechanism by which 

electrons can be delivered to the cofactor in a manner controlled at the quaternary level of the 

protein structure (blue inset). Meanwhile, a conserved threonine residue (T268 in P450BM3) 

positioned above the heme likely facilitates the proton transfer either by direct interaction with 

distal oxygen of the ferric peroxo intermediate (state V), or by extending its access to a nearby 

water network (red inset).48-50

This conserved threonine residue also plays a crucial role in the subsequent O–O bond 

scission step by assisting the delivery of a second proton to the distal oxygen of compound 0 

(Figure 2, red inset), which results in release of water and formation of compound I (state VII). 

Mutation of this threonine residue to alanine in either P450BM3 or P450CAM diminished 

hydroxylation activity and increased production of H2O2.48,49 The uncoupling of O2 reduction from 

substrate oxidation highlights the importance of precision proton delivery for efficient O–O bond 

scission. Moreover, a recent study showed that a glutamic acid substitution allowed these P450s 

to operate as peroxygenases, whereby substrate oxidation could be achieved through the peroxide 

shunt pathway.51 These “pull” effects are complemented by the “push” effect exerted by the axial 

cysteine ligand: the strong σ-donation from the thiolate, which effectively drives electron density 

into the antibonding O–O orbital, also contributes to productive O–O bond heterolysis.11,19,52
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The two additional electrons required for reduction of hydrogen peroxide to water and O–

O bond scission are afforded by the iron and the organic porphyrin scaffold, resulting in the 

formation of the high-valent Fe(IV)-oxo (ferryl) π-cation radical species known as compound I 

(Figure 2, state VII).10,53 This potent oxidant intermediate facilitates hydrogen atom transfer 

(HAT) from the substrate C–H bond to the cofactor, generating the Fe(IV)-hydroxide species 

known as compound II and a substrate radical (state VIII).54 The reaction cycle is completed by 

transfer of the oxygen ligand to the carbon-centered radical (termed oxygen rebound, state VIII to 

IX),55 release of the hydroxylated product, and then rebinding of the water, returning the cofactor 

to its resting state (state IX to I).18

During this sequence, P450s exhibit exquisite control over highly reactive intermediates 

(e.g., compound I) to achieve productive cleavage of the substrate C–H bond while preventing the 

oxidation of readily oxidizable amino acids within its own framework, such as tyrosines and 

tryptophans. The axial cysteine ligand was initially posited to play a crucial role in the prevention 

of such undesired reactions because it is present in all P450s and chloroperoxidase (CPO),11 the 

members of the hemoprotein family known to cleave strong C–H bonds. Green, Dawson, and Gray 

postulated the difference in free energy between the productive C–H activation pathway and 

nonproductive tyrosine oxidation pathway was largely dependent on the pKa of the resulting 

compound II, which was increased by the strong electron donation from the thiolate ligand.56,57 In 

2013, Green and coworkers validated this hypothesis by trapping and characterizing compound II 

of Streptomyces coelicolor CYP158 at differing pH values, determining its pKa to be nearly 12 

(more than 8 orders of magnitude more basic than the histidine-ligated heme peroxidases).54,56 This 

change in axial ligand from histidine to cysteine alters the thermodynamic favorability of tyrosine 

oxidation (via uncoupled proton and electron transfer) over substrate C–H bond cleavage (via 
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10

HAT) from ~14 kcal/mol to only 3 kcal/mol, bringing the P450-catalyzed C–H oxidation reaction 

into the range of kinetic control.54 These conclusions were further supported by the correlation of 

a shorter Fe–S bond length with increased reactivity in P450s and CPOs,58 and then later by the 

increase in reactivity of a selenocysteine-ligated P450,59 which exhibits even stronger electron 

donation to the metal center than its sulfur counterpart. It is worthy of mention that other heme-

dependent oxygenases, such as tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase, 

indeed utilize histidine axial ligands to direct high-valent iron intermediates, but activation of their 

aromatic substrates presents a distinct set of challenges requiring divergent catalytic solutions. The 

mechanisms of these transformations have been discussed elsewhere.60,61

The decades of P450-centered research summarized above illustrate how the interplay 

between peptide and cofactor can achieve reactivity that is nonexistent with either individual 

component. The hydroxylation pathway is just one of many examples: Nature has tuned the P450 

peptide-heme interaction for many other catalytic functions. From the perspective of the protein 

engineer, a question that naturally follows is: can this remarkable catalytic machinery be hijacked 

for abiological reactions and likewise tuned to achieve useful levels of activity and selectivity?

2.3. New Hemoprotein Activities Emerge

In recent years, our understanding of reactions catalyzed by hemoproteins and the characterization 

of their reaction intermediates have been leveraged to develop new reactivities, which, combined 

with engineering techniques such as directed evolution, have furnished a suite of powerful 

hemoprotein catalysts. The examples recounted below are not intended to serve as a detailed 

analysis of contributions to synthetic methodology, but rather to summarize that which is currently 

possible with hemoprotein biocatalysts.
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11

Inspired by the powerful transition metal-catalyzed carbene-transfer reactions developed 

by synthetic chemists,62 Coelho, Brustad, and coworkers hypothesized that the heme cofactor 

could form analogous metal-carbenoid intermediates, as they would have an isolobal relationship 

with compound I.63 The carbene could then be transferred, for example, to an olefin substrate to 

form a cyclopropane product, similar to native P450-catalyzed epoxidation reactions. Indeed, 

P450BM3 exhibited activity for the cyclopropanation of styrene with ethyl diazoacetate (EDA) as 

the carbene precursor, which forms the iron-carbenoid intermediate upon loss of N2.64 Although 

this reaction is also catalyzed by free hemin in the presence of dithionite, the protein environment 

enforced a different selectivity of the product configuration. Screening a collection of P450 

variants identified P450BM3-CIS, which catalyzed the reaction with 199 total turnovers (TTNs), a 

71:29 cis/trans ratio, and up to a 94% enantiomeric excess (% ee)—a significant improvement in 

both activity and selectivity over the cofactor alone.

Coelho and Brustad then initiated a directed evolution campaign to generate even more 

efficient catalysts, screening this new function in whole Escherichia coli cells. Their experiments 

suggested that the cofactor was predominantly active in the Fe(II) state, as the reaction occurred 

optimally in the presence of dithionite and the absence of O2. Moreover, reduction of the cofactor 

by the native NADPH-dependent reductase domain was unsuccessful, suggesting that the non-

native substrate fails to trigger the necessary shift in the iron’s spin state, as observed in the native 

reaction sequence (Figure 2). These roadblocks to enzyme-catalyzed cyclopropanation in vivo 

were circumvented by mutating the axial cysteine ligand, which, as described above, plays a major 

role in tuning the electronics of the cofactor.65 Indeed, substitution with the less electron-donating 

serine in P450BM3 (named P411BM3 for the Soret band shift from 450 nm to 411 nm) resulted in a 

127 mV increase in the resting-state reduction potential (E°’ Fe[III/II] = -293 mV), bringing it into 
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the range of the reductase domain (E°’ NADP+/NADPH = -320 mV). Exchanging the axial 

cysteine for serine in P450BM3-CIS (furnishing P411BM3-CIS) abolished the competing epoxidation 

reaction, even in the presence of O2. However, the P411 enzyme catalyzed the styrene 

cyclopropanation reaction with up to 67,800 TTN in whole cells.65

These pioneering studies opened the floodgates to a wave of abiological reactions catalyzed 

by hemoproteins (Figure 3), of which many sport substitutions of key active-site residues 

distinguished by mechanistic research. A pool of olefin cyclopropanation catalysts has now been 

engineered to address several reactivity and selectivity challenges within the context of this 

valuable transformation.66-78 The concept of carbene transfer to π systems has also been expanded 

to include alkyne substrates, from which the highly strained cyclopropene and bicyclobutane 

products are furnished in high yield and with excellent selectivity.79,80 Additionally, hemoproteins 

Figure 3. Summary of abiological carbene-transfer reactions catalyzed by hemoproteins. The 
red asterisks indicate possible chiral centers in the reaction products; the red and blue spheres 
indicate the possibility of variable functional groups originating from the diazo-bearing 
substrates.
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13

have been engineered for insertion of carbenes into N–H,81,82 S–H,68,83 Si–H,84 and B–H bonds.85-87 

These advancements recently culminated in P411 enzymes proficient at inserting carbenes into 

C(sp3)–H bonds,88-90 a reaction with enormous potential to transform the way we construct C–C 

bonds.

Hemoproteins have also been discovered and engineered to act as efficient transferases of 

nitrene intermediates, similar to carbenes. That hemoproteins could insert nitrene intermediates 

into C–H bonds was shown as far back as 1985.91 It was not until 28 years later, however, that this 

reactivity was exploited and improved upon by directed evolution to achieve multiple turnovers 

(Figure 4). McIntosh, Coelho, and coworkers demonstrated that a cyclopropanating enzyme, 

P411BM3-CIS, could catalyze an intramolecular C–H amination reaction of the 2,4,6-

Figure 4. Summary of abiological nitrene-transfer reactions catalyzed by hemoproteins. The red 
asterisks indicate possible chiral centers in the reaction products.

Page 13 of 43

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

triethylbenzene-1-sulfonyl azide nitrene precursor (wherein the loss of N2 drives formation of an 

iron-nitrenoid, analogous to the carbene-transfer reaction) with up to 680 TTN;92 Singh and 

coworkers engineered P450s for a similar purpose.93 An intermolecular version of this reaction 

was later established with tosyl azide and 4-ethylanisole.94 Aziridination of olefin substrates was 

also achieved with engineered P411 catalysts, using the same nitrene precursor.95 Recent advances 

in synthetic methodology,96 and subsequent discovery of a natural P450 nitrene transferase, 

BezE,97 however, inspired researchers in our laboratory to turn to hydroxylamine esters as a nitrene 

source, which could furnish unprotected amine products in a single step. Engineered hemoproteins 

were active with these nitrene precursors in the asymmetric aminohydroxylation of olefin 

substrates, the top variants exhibiting impressive levels of activity and selectivity.98 More recently, 

a lineage of P411s was engineered to insert these unprotected nitrenes directly into primary, 

secondary, and tertiary C(sp3)–H bonds, an invaluable transformation that currently has no 

synthetic counterpart.99

Throughout this expansion of carbene- and nitrene-transfer reactions catalyzed by 

hemoproteins, the choice of hemoprotein has also grown. P450s, cytochromes c,84 myoglobins,70 

protoglobins,66 and a nitric oxide dioxygenase (NOD)66 have all served as starting points for site-

specific mutagenesis or directed evolution to engineer more active and more selective biocatalysts. 

Furthermore, an assortment of both natural and noncanonical amino acids has been explored as 

axial ligands to the heme.100 Following the Hilvert Lab’s discovery that an N-methyl-His axial 

ligand enhanced the native reactivity of ascorbate peroxidase and the peroxidase activity of 

myoglobin,101,102 Carminati and Fasan demonstrated that a myoglobin variant presenting this 

noncanonical amino acid to a synthetic iron-2,4-diacetyl deuteroporphyrin IX cofactor catalyzed 

the cyclopropanation of both electron-rich and electron-poor olefins, of which the latter had 
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remained a challenging substrate for such biocatalytic transformations.75 Interestingly, their 

experimental observations suggested that the reaction mechanism had been altered, and now 

proceeded down a stepwise radical pathway rather than the previously hypothesized concerted 

carbene-transfer pathway. We anticipate more such observations as the hemoprotein platform is 

pushed in creative new directions to overcome contemporary synthetic challenges.

The studies recounted above demonstrate how iron-carbenoid and iron-nitrenoid 

intermediates within an enzyme active site can be channeled toward the construction of useful 

bonds, but these highly reactive species can also escape down reaction pathways that generate 

undesirable side products. In carbene-transfer reactions, alkylation of the heme cofactor or nearby 

protein residues is a limiting factor in maximizing catalytic turnovers.103 While this side reaction 

is also possible in nitrene-transfer reactions, reduction of the nitrene to a primary amine is perhaps 

the most problematic side pathway, particularly in the context of intermolecular reactions.94,104 In 

both carbene- and nitrene-transfer reactions, substrates bearing multiple modes or sites of 

reactivity further exacerbate this problem, as additional pathways of intermediate decay can result 

in diminished chemo-, regio-, and stereoselectivity. While these obstacles should always be 

considered when embarking on a new reaction, it is worth recognizing the benefits imparted by a 

mutable protein scaffold: in many of the carbene-transfer and virtually all of the nitrene-transfer 

reactions described to date, the free heme cofactor fails to produce measurable quantities of the 

desired products. And, in the cases where activity is observed, the TTNs and enantiomeric excesses 

pale in comparison to those with the engineered hemoproteins. In summary, the laboratory-evolved 

protein architecture plays a crucial role in directing reactive intermediates along the desired 

reaction pathways, much the same way that the natural versions of these cytochromes P450 direct 

compounds I and II.
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3. NONHEME IRON

3.1. Reactions of Ferrous Iron with Oxygen Species

Ferrous iron alone can also be a catalyst in reactions with various oxygen species. Although the 

oxidation of Fe(II) to Fe(III) in the presence of O2 in aqueous solutions generally leads to the 

undesired precipitation of ferric hydroxide complexes, especially in alkaline solutions, other 

conditions that promote useful iron-catalyzed reactions have been described. In the Fenton 

reaction, for instance, Fe(II) disproportionates H2O2 to HO• and HOO•, and produces H2O as a 

byproduct.105 The resulting radical species can then oxidize organic compounds, which is the basis 

of the reaction’s application to the purification of groundwater and soils contaminated with 

hydrocarbons.106 Fe(II) in the presence of peroxy acids is converted to the Fe(IV)-oxo (ferryl) 

intermediate, which was demonstrated to catalyze C–H oxidation reactions that later helped 

establish the stepwise model (HAT and oxygen rebound) for many biological oxidations.107,108 

Reaction of aqueous Fe(II) with ozone (O3) also produces the reactive ferryl species.109 Under 

these conditions, ketones and other byproducts were generated from one- and two-electron 

oxidations of cyclic alcohols.110 In the Gif oxygenation systems, these ferryl species are formed 

directly from O2 in the presence of reductants (Zn or NaS) and pyridine.111-113 While the 

culmination of this body of work has indeed yielded catalytic systems that can functionalize strong 

C–H bonds, many of these fundamentally important reactions suffer from unproductive oxidation 

and precipitation of the catalyst, a general lack of control over intermediary radical species, and 

limited regio- and stereoselectivity, hindering their applications more broadly.

Nonheme iron-dependent oxygenases, however, effect similar C–H functionalization 

reactions efficaciously by protecting the ferrous cofactor from unproductive oxidation, tuning 

reactivity with O2, and positioning substrates such that reactive intermediates are guided down the 

desired pathway. Here, we narrow our focus to mononuclear Fe(II)-dependent oxygenases that 
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employ the 2-His-1-carboxylate iron-binding 

motif. These enzymes catalyze a remarkable 

diversity of oxidative transformations stemming 

from this ostensibly simple, earth-abundant 

metal, providing another example of how the 

protein environment can modulate cofactor 

reactivity and maximize its catalytic potential.

3.2. C–H Oxidation Reactions Catalyzed by 2-
His-1-Carboxylate Enzymes

2-His-1-carboxylate enzymes activate O2 for a 

diversity of C–H oxidation reactions with an iron-

binding motif comprised of two histidines and 

one glutamate or aspartate.2,114-116 This facial triad 

of protein ligands occupies the vertices of one 

face of the octahedral iron, leaving open three 

coordination sites for waters, substrates, co-

substrates, and various species of oxygen (Figure 

5A). Because of the divergence in requirements 

for additional co-substrates and cofactors, 

enzymes that utilize this motif are divided into the 

following five families: the extradiol 

dioxygenases (Figure 5B),117 the Rieske 

dioxygenases (Figure 5C),118 the 2-oxoglutarate 

Figure 5. A, The 2-His-1-carboxylate 
facial triad iron-binding motif. The vertices 
of one face of the octahedron are occupied 
by the three protein ligands (blue triangle). 
The general reactions catalyzed by each of 
the 2-His-1-carboxylate enzyme families 
are shown in B-F. The conversion of δ-(L-
α-aminoadipoyl)-L-cysteinyl-D-valine 
(ACV) to isopenicillin N by the oxidase 
IPNS is a representative example in the 
miscellaneous class, which includes 
oxygenases, oxidases, and peroxidases. 
(F).
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(2OG)-dependent oxygenases (Figure 5D),119 the tetrahydrobiopterin (BH4)-dependent 

hydroxylases (Figure 5E),120 and a miscellaneous class that includes isopenicillin N-synthase 

(IPNS),121,122 (S)-2-hydroxypropyl-1-phosphonate epoxidase (HppE),123 2-

hydroxyethylphosphonate dioxygenase (HEPD),124 methylphosphonate synthase (MPnS) (Figure 

5F),125 and 1-aminocyclopropane-1-carboxylate oxidase (ACCO).126 The references logged above 

provide a more comprehensive discussion of each individual family, as the staggeringly large 

catalogue of chemical transformations described by these enzymes is outside the scope of this 

Perspective. Biomimetic nonheme iron model complexes have also been reviewed extensively.127-

129

Despite the catalytic diversity of 2-His-1-carboxylate enzymes, a general strategy to 

regulate entry into the reaction cycle has emerged. The ferrous resting state of the cofactor renders 

it, in principle, highly susceptible to unproductive oxidation, necessitating a mechanism to protect 

the active site during periods of inactivity. Similar to P450s (vide supra), the binding of substrates 

Figure 6. Abbreviated mechanism of the conversion of L-δ-aminoadipoyl-L-Cys-D-Val (ACV, 
green) to isopenicillin N (IPN) catalyzed by IPNS. The crystal structure of the NO-bound 
complex (right, PDB: 1BLZ), a mimic of the HAT-initiating ferric superoxide intermediate, 
demonstrates how the protein-enforced orientation of the iron-bound substrate results in 
productive reactivity.
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triggers the dissociation of one or more coordinated water molecules, constituting a protein-

controlled shift in the ligand sphere to promote a five-coordinate Fe(II) center, which opens a site 

for binding of O2.2,115 The displacement of water with anionic ligands is also thought to decrease 

the Fe(III/II) reduction potential for productive oxidation of the cofactor.115 Whereas the substrates 

or co-substrates of the extradiol dioxygenases, 2OG-dependent oxygenases, and IPNS fill this role 

by directly coordinating to the iron,117,119,130 the BH4-dependent hydroxylases and Rieske 

dioxygenases, whose substrates contribute no additional anionic ligands, effect a similar outcome 

by bidentate coordination of the protein’s carboxylate ligand.118,120

The steps following substrate binding and O2 activation in each of the 2-His-1-carboxylate 

families diverge, giving rise to an assortment of structurally and electronically distinct 

intermediates. Nevertheless, a unifying theme concerning the protein’s influence over the reaction 

progression is clear: the polypeptide scaffold binds the substrate, co-substrate, or additional 

cofactor involved in the subsequent step in an orientation that encourages productive interaction 

with the intermediary iron-bound oxygen species. In IPNS, the end-on ferric superoxide initiates 

a HAT from the substrate C–H bond neighboring the iron-coordinated thiolate, the committed step 

Figure 7. Established mechanism of aliphatic C–H hydroxylation catalyzed by 2OG-dependent 
oxygenases. The NO-bound crystal structure of CAS1 (left, PDB: 1GVG) shows a close 
proximity of the distal oxygen of the ferric superoxide intermediate to C2 of 2OG (yellow), 
leading to oxidative cleavage of the co-substrate to succinate and CO2, and ultimately 
hydroxylation of the primary substrate.
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leading to C–N and C–S bond formation.122 The juxtaposition of the implicated atoms was shown 

clearly in the NO-bound crystal structure (PDB: 1BLZ), wherein the distal oxygen of the O2 

surrogate is in close proximity to the target carbon (Figure 6).130 Similar observations were made 

in the NO-bound crystal structures of the 2OG-dependent enzymes clavaminate synthase 1 (CAS1, 

PDB: 1GVG) and WelO5 (PDB: 5IQV).131,132 In these cases, however, the distal oxygen of the O2 

surrogate is poised to attack C2 of the co-substrate 2OG, which ultimately provokes O–O bond 

scission and ferryl formation (Figure 7). In the 

BH4-dependent hydroxylases, a bridged Fe(II)–

O–O–BH4 intermediate is thought to precede 

ferryl formation and substrate oxidation, again 

necessitating a propinquity of the two 

cofactors.133,134 Indeed, this was observed in a 

crystal structure of the phenylalanine 

hydroxylase ternary complex with the 3-(2-

Figure 8. Abbreviated mechanism of the conversion of L-phenylalanine to L-tyrosine catalyzed 
by phenylalanine hydroxylase. The BH4-bound crystal structure with the 3-(2-thienyl)-L-alanine 
(THA, green) substrate analogue (right, PDB: 1KW0) shows how the protein orients the two 
cofactors in such a way to achieve reductive cleavage of O2 and oxidation of the aromatic 
substrate.

Figure 9. A side-on binding orientation of O2 
to the iron cofactor in the Rieske dioxygenase 
family, as observed in the crystal structure of 
NDO (left, PDB: 1O7N) with the indole 
substrate analogue (green), results in syn-
hydroxylation of aromatic substrates.
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thienyl)-L-alanine (THA) substrate analogue (PDB: 1KW0, Figure 8).135 The Rieske and extradiol 

dioxygenases leverage a side-on binding mode of O2 to affect product formation. In the former 

family, the orientation of the substrate results in syn-hydroxylation of the aromatic system, as was 

revealed by the crystal structures of naphthalene dioxygenase (NDO, PDB: 1O7N) and carbazole 

1,9a-dioxygenase (CARDO, PDB: 3VMI) bearing the intermediate state (Figure 9).136,137 In the 

latter family, a single crystal structure depicting multiple states of the homoprotocatechuate 2,3-

dioxygenase (2,3-HPCD, PDB: 2IGA) reaction cycle demonstrates how the cofactor-substrate 

relationship promotes substrate-driven reduction of O2 and eventually cleavage of the aromatic 

ring (Figure 10).138 In a more recent study on 3-hydroxyanthranilate-3,4-dioxygenase (HAO), a 

close relative of the extradiol dioxygenases, an astonishing seven states of the reaction cycle were 

captured by x-ray crystallography.139 Although this enzyme does not appear to bind O2 in the same 

side-on orientation, the protein scaffold still guides the reaction through a similar course of events.

Several of the 2-His-1-carboxylate families form high-valent ferryl intermediates for the 

cleavage of strong C–H bonds.140 Unlike those formed free in solution, these enzymatic 

Figure 10. Abbreviated mechanism of the cleavage of catechol substrates catalyzed by members 
of the extradiol ring-cleaving dioxygenase family. The side-on binding mode of O2 observed in 
the crystal structure of 2,3-HPCD (right, PDB: 2IGA) positions the intermediate close to the 
correct carbon of the 4-nitrocatechol substrate (4NC, green), which results in substrate-driven 
reduction of O2 and ultimately insertion of both oxygens into product structure. Remarkably, 
multiple states of this reaction cycle were captured in different subunits of the asymmetric unit 
in the same crystal sample.
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intermediates are channeled with precise stereoelectronic control. 2OG-dependent oxygenases, in 

particular, are a testament to such precise channeling, as ferryl-mediated C–H activation leads to 

an astounding diversity of transformations that, in most instances, are catalyzed with exceptional 

selectivity.141 In this family, the reduction of O2 and oxidative conversion of 2OG to succinate and 

CO2 results in ferryl formation,142-152 which then effects C–H bond cleavage to yield ferric-

hydroxide and substrate-centered radical intermediates, a key branchpoint in 2OG-dependent 

oxygenase catalysis. The origin of chemoselectivity stemming from this state has been studied 

extensively by dissecting and comparing the mechanisms employed by the hydroxylase and 

halogenase subfamilies. In the hydroxylation pathway, oxygen rebound furnishes the product and 

regenerates the Fe(II) cofactor for subsequent turnovers (Figure 7), similar to P450-cataylzed 

hydroxylation reactions.18,119 In the halogenation pathway, a cis-coordinated halogen is transferred 

(Cl• or Br•) in lieu of the hydroxyl group (Figure 11). This transfer is first enabled by substitution 

of the iron-binding carboxylate ligand of the facial triad for an alanine or glycine, as demonstrated 

by the substrate-free crystal structure of the carrier-protein-dependent chlorinase SyrB2 (PDB: 

Figure 11. Comparative models showing the generalized protein-dictated orientations of the 
substrate and ferryl intermediate in 2OG-dependent enzyme catalysis. The inline ferryl with 
substrate bound directly above the oxo is the typical configuration for hydroxylation (A). 
Halogenation is achieved by binding the substrate such that rebound of the halogen radical is 
favored (B), or by reorientation of the ferryl to disfavor oxygen rebound (C). The blue X 
represents an iron-coordinated aspartate, glutamate, or halide; the substrate is depicted as R–H; 
the gray R–H and iron-oxo bond are shown to illustrate the change in position of the respective 
species, not to be interpreted as being present in the complex.
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2FCV and 2FCT), wherein the halide coordinates directly to the cofactor.153 Further dissection of 

the SyrB2 reaction placed crucial importance on the substrate-cofactor disposition to achieve a 

selective halogenation outcome (Figure 11B).154-156 More recently, structural studies on the 

chlorinase WelO5 presented an alternative strategy to effect halogenation: a protein-controlled 

rearrangement of the ferryl intermediate properly juxtaposes the substrate and cofactor for 

selective halogen transfer (Figure 11C).132 In both cases, subtle yet precise effects of the protein 

environment seem to dictate the preference for rather disparate outcomes, a premise that is also 

relevant to the desaturation,157 epoxidation,152,158 cyclization,150,159,160 epimerization,148 and 

endoperoxidation161 reactions catalyzed by this family.

3.3. The Facial Triad Supports Abiological Activity

The astonishing catalytic repertoire of nonheme iron-dependent oxygenases, oxidases, and 

peroxidases bearing the 2-His-1-carboxylate facial triad has inspired researchers to investigate 

whether this enzymatic platform could be extended to useful abiological transformations. While 

this vision has indeed proven to be possible, the collection of engineered catalysts is still in its 

infancy. However, the future is nonetheless bright for this family of enzymes, and we anticipate 

that the progress summarized below is just the beginning.

Members of the 2OG-dependent halogenase subfamily hold great biocatalytic potential 

within the confines of their native catalytic function, as there is currently a paucity of methods to 

directly halogenate aliphatic C–H bonds with a high degree of selectivity.162-166 Our understanding 

of these enzymes also led some researchers to investigate whether other anionic species that would 

likely coordinate to the cofactor could be coupled to intermediate substrate radicals via an 

analogous mechanism. Indeed, trace levels of nitration and azidation activity were detected in 

SyrB2 preparations with the native substrate and substrate analogues, constituting an important 
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abiological addition to the growing number of enzymatic C–H functionalization reactions (Figure 

12A).167 In recent years, a few other halogenases that operate on freestanding amino acids and 

other small molecules have also been shown to catalyze the azidation reaction.168,169 Although 

direct azidation of amino acids may prove to be a useful tool for bioorthogonal chemistry 

applications,170 these enzymes have yet to be engineered for this specific purpose. During future 

directed evolution campaigns, the second-sphere residues analogous to those implicated in ferryl 

redirection by the studies of native and engineered halogenases,132,171 as depicted in Figure 11C, 

are sensible targets for site-saturation mutagenesis and screening to enhance these activities.

Figure 12. Abiological azidation and nitration (A), nitrile formation (B), and nitrene-transfer (C) 
reactions catalyzed by 2-His-1-carboxylate enzymes. S—SyrB1 represents the carrier-protein 
appended to the substrate by phosphopantetheine; NOG = N-oxalylglycine, a structural mimic of 
2OG.
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Azide-bearing amino acids have also been explored as substrates for 2OG-dependent 

oxygenases. In a recent study, the native hydroxylases PolL and LdoA catalyzed the oxidative 

conversion of these azidated substrates to nitrile products (Figure 12B).172 Further investigation 

demonstrated the requirement of both O2 and 2OG, suggesting that the reaction still proceeds by 

ferryl formation and HAT, and that the azido moiety acts as an assisting group. A similar finding 

was also reported in the Rieske dioxygenase family, wherein toluene dioxygenase (TDO) 

converted a benzyl azide to a benzyl nitrile.173 In both cases, iron-nitrenoid intermediates were 

proposed as a possible branchpoint after substrate hydroxylation.

Goldberg, Knight, and coworkers recently demonstrated that similar iron-nitrenoid 

intermediates could effect nitrene-transfer reactions (Figure 12C) analogous to those catalyzed by 

engineered hemoproteins (vide supra).174 Activity for the intermolecular aziridination of styrene 

and the intramolecular benzylic C–H insertion of 2-ethylbenzenesulfonyl azide was detected with 

the 2OG-dependent ethylene-forming enzyme (EFE). EFE variants exhibiting improvements in 

both activity and stereoselectivity were obtained by directed evolution, establishing that this family 

of enzymes can also be tuned for abiological catalysis. A subsequent study by Vila, Steck, and 

coworkers suggests that nitrene transferase activity may be a common side reactivity of 2-His-1-

carboxylate enzymes, as various 2OG-dependent oxygenases and Rieske dioxygenases were also 

shown to facilitate similar nitrene-transfer reactions.175

The presence of multiple iron coordination sites left unoccupied by protein ligands creates 

attractive opportunities for engineering this enzymatic platform using exogenous ligands to tune 

the reactivity of the cofactor (Figure 5A). Indeed, Goldberg and Knight discovered the native co-

substrate, 2OG, of EFE enhanced the activity of the aziridination and C–H insertion reactions with 

both the native and engineered versions of the enzyme.174 Other anionic ligands, such as acetate 
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and N-oxalylglycine (NOG), further boosted the activity of both reactions and improved the 

chemoselectivity of the C–H insertion reaction. Although they did not determine the mechanisms 

of these enhancements, their observations demonstrate that exogenous ligands are a further handle 

for tuning novel reactivities. This expanded access to the iron provides an additional, flexible 

component upon which the protein scaffold can draw to guide reactive intermediates down new 

pathways.

4. ENGINEERING THE FUTURE

4.1. From Comprehension to Application

The machinery of natural enzymes has fueled the imagination of researchers for decades. But is 

an understanding of mechanism a prerequisite to engineering an abiological function? Luckily, the 

answer is no. While the disparities between our understanding of the chemistry occurring at the 

enzyme active site and the astounding complexity of interactions that contribute to protein folding, 

dynamics, and catalysis preclude us from designing most new biocatalysts de novo (at least for the 

time being), we can engineer new enzymes from existing scaffolds even if the intricacies of such 

scaffolds cannot be fully deconstructed. Nevertheless, knowledge gained from mechanistic 

studies, while not strictly required, can certainly assist in discovering new reactivities and 

streamlining engineering processes such that desired catalytic enhancements can be achieved on 

reasonable timescales. To bridge the gap between comprehension and application, we introduce 

the challenges of engineering natural enzymes for abiological chemistry, and then provide 

examples of how mechanistic knowledge of both natural and laboratory-evolved enzymes has 

guided protein engineers in tuning iron-dependent oxygenases.

From controlling the flow of electrons and protons to protecting the active-site architecture 

from oxidative inactivation, natural evolution has honed iron-dependent oxygenases into 
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sophisticated molecular machines. The driving force behind this process is the selective advantage 

conferred by the products, which promote the survival of an organism bearing mutations that 

enhance the reaction outcome. Over time, this selective pressure can furnish a highly refined 

enzyme. In the context of evolving a biocatalyst for an abiological reaction, the protein engineer 

must first discover an enzyme exhibiting measurable activity for the desired reaction, generate  

mutants of this parent enzyme, and then foster the desired outcome by compounding beneficial 

mutations and rejecting mutations that fail to yield improvements.176 In principle, this process 

could produce enzymes comparable to the products of natural evolution. In practice, however, time 

constitutes a major limitation: screening the entire landscape of possible mutations in the context 

of even the smallest of proteins is impracticable. Moreover, many abiological reactions cannot be 

coupled to the fitness of an organism, or the products fail to produce a distinctive fluorogenic 

handle that would allow for rapid detection. Most efforts necessitate use of more time-intensive 

analytical techniques that decrease capacity to screen sequences (e.g., liquid and gas 

chromatography). Consequently, we resort to strategies to create smarter, experimentally tractable 

libraries that allow us to climb local fitness peaks (e.g., site-saturation mutagenesis).177 Although 

such a process will likely miss out on some of the characteristics that make natural enzymes so 

powerful, the results are nonetheless impressive.

An understanding of natural enzyme mechanism, even one that is rudimentary, can point 

the engineer to specific residues or regions of a protein structure that are important to catalysis.178 

This knowledge can then be applied to the design of libraries for engineering. In the context of 

iron-dependent oxygenases, this is clearly exemplified in the transformation of P450BM3 to 

P411BM3 (vide supra): although the entirety of the contemporary P450 C–H activation model was 

likely superfluous, knowledge of the axial ligand’s electronic effects on the heme cofactor was 
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pivotal to the discovery of P450BM3 variants that exhibited redox potentials suited for 

cyclopropanation in whole cells.65 Likewise, crystal structures of the P450BM3 heme domain and 

engineered variants thereof have aided numerous other directed evolution campaigns in the 

exploration of the platform’s ability to catalyze abiological reactions.65,94,179

Mechanistic investigations of laboratory-evolved variants can also confer useful 

information for the design of smarter libraries. A recent study of Rhodothermus marinus 

cytochrome c engineered for C–Si and C–B bond formation yielded a crystal structure with an iron 

porphyrin-bound carbene intermediate.180 The structure revealed how mutations to a surface loop 

region rendered it more flexible than that of the native enzyme, an observation that was leveraged 

to engineer a C–B bond-forming enzyme capable of accepting diverse trifluorodiazo alkane 

carbene precursors to furnish the corresponding α-trifluoromethylated organoborane products.87 

Site-saturation libraries focused on this region yielded multiple beneficial mutations, and the final 

variant maintained levels of activity and selectivity with a trifluorodiazo alkane substrate scope 

comparable to the model reaction. Computational analysis of the engineered enzyme supported the 

original mechanism-driven hypothesis: the heme-binding pocket positioned the iron-carbenoid 

intermediate such that the pro-R face was exposed to the putative borane-binding pocket, while the 

variable alkyl substituent was arranged to have a minimal effect on the reaction outcome.87

Although the finer details of our mechanistic knowledge oftentimes lack a direct 

application to the engineering process, it is difficult to imagine a world where we climb to the 

same peaks of ingenuity without the contributions from mechanistic enzymology. It is even 

conceivable that some of these recent innovations, and those still to be described, already exist in 

the biological world, which will render their eventual discoveries all the more enchanting.

4.2. Iron-Dependent Oxygenases in Organic Synthesis
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We are optimistic that applications of iron-dependent biocatalysts as real-world synthetic tools 

will grow, as the expansion of methods to selectively functionalize C–H bonds will certainly have 

an impact on both the de novo synthesis and late-stage modification of drug compounds and 

potentially therapeutic natural products. The native oxidative functions of P450s have already been 

applied to such goals, whether in the hydroxylation of steroids and other useful organic 

molecules,181,182 or more recently in the chemoenzymatic syntheses of nigelladine A and several 

meroterpenoid natural products.183,184 Likewise, native 2OG-dependent hydroxylases and 

halogenases have been utilized by the Renata Lab and others in the synthesis and tailoring of 

natural product compounds.185-195 A few examples of the abiological transformations enabled by 

these platforms have already surfaced: the cyclopropyl core structures of the approved drugs 

levomilnacipran, ticagrelor, tranylcypromine, and tasimelteon, as well as a TRPV1 antagonist drug 

candidate, have been constructed with engineered P450s and globins.196-198

Enzyme engineers ultimately aspire to see the products of their creativity and labor used 

directly in the manufacture of valuable compounds. Industrial-scale processes, however, require 

much more than exciting new reactivity. Space-time yield (g L-1 h-1) of the desired product is a 

key metric of overall performance, to which the activity, specificity, and stability of the enzyme 

are all contributing factors. From a protein engineering standpoint, advances in both experimental 

technologies and computational methods—to effectively increase screening capacity and narrow 

library sizes, respectively—will better equip us to navigate complex fitness landscapes and reach 

these requisite fitness peaks. However, other factors in the process must also be considered, 

including substrate and product titers, solvent compatibility with upstream and downstream steps, 

and isolation of the products in pure form. The challenges associated with incorporating 
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biocatalysts into industrial processes and realistic approaches moving forward have been the 

subjects of several recent and comprehensive reviews.199-202

5. CONCLUDING REMARKS

Until the day when computational methods and de novo protein design can furnish biocatalysts 

capable of fulfilling our demands, leveraging our understanding of natural enzymes toward 

discovery and evolution of new functions remains a fruitful approach to the development of useful 

synthetic tools. Nature’s catalytic machinery has energized the scientific community for centuries, 

and engineered versions of enzymes have now expanded the pool from which to draw inspiration. 

As in all disciplines of science, collaboration is crucial. The convergence of enzymology, synthetic 

chemistry, computation, and engineering is the motor that drives forward the field of biocatalysis.
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