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ABSTRACT 

The constituent quark model is used to predict the electron 

energy spectrum in semileptonic D and B meson decays. Particu-

Jar attention is paid to the endpoint region of the electron spec-

trum in B decays since this is crucial to a determination of the 

b --> u weak mixing angle. 
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I. Introduction 

In the standard model, based on the gauge group SU(3) x SU(2) x U(1), the 

quarks couple to the W -bosons through the weak current 

(1) 

In eq. (1) i,j E l!. · · ·, nj are generation indices and Vij is ann x n unitary 

matrix that arises from diagonalization of the quark mass matrices. At present 

there is experimental evidence for three generations of quarks and leptons. In 

this case it is possible, by redefining the phases of quark fields, to write V in 

terms of three angles 8 1, 82 , 83 and a phase o (ref. 1) 

(2) 

Here ci = cos8i, si = sin8i and the angles 8i are chosen to lie in the first qua-

drant. 

In the standard model the elements of the matrix Vij are fundamental 

parameters, and their values must be determined experimentally. Experimental 

information on 8 1 comes from nuclear {3-decay and semileptonic hyperon 

decays. Experimental information on the angles 82 and 8 3 can be obtained from 

semileptonic B -meson decays. The differential rate for semileptonic B -meson 

decay has the form (V 13 = Vub and V 23 = Vcb) 

where dr(B ->X q e !7) denotes the contributions to df(B ->X e 17) from the part 
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of the weak "current (excluding the weak mixing angles) where a bottom quark 

couples to a quark q = c or u. In the free quark model where the bottom quark 

decays freely from rest 

(4) 

where f (x) = 1 - Bx + 8x6 - x 8 - 24x4 lnx. 

The contribution to f(B ->X ev) coming from the b -> u coupling can. in 

principle, be isolated experimentally by examining semileptonic B decays with 

electron energies that are so large that the mass of the hadronic state X must be 

less than the D meson mass. However, this endpoint of the electron energy spec-

trum comes from the production of a few low mass hadronic resonances and is 

sensitive to nonperturbative strong interaction effects, so that it cannot be 

satisfactorily treated in the free quark model. To treat this region of the spec-

trum requires a method for explicitly summing over low mass states Xc and Xu. to 

predict the shapes and strengths of both spectra in the endpoint region. Unfor-

tunately, although perturbative QCD can be used to predict the total rates with 

reasonable reliability, there are no rigorous methods available at the moment for 

handling these non-perturbative QCD effects which are crucial to determining 

the b -> u coupling. Until such methods become available, we must therefore 

rely on models of the low-lying hadrons to predict the endpoint spectrum we 

need. 

The quark model is a phenomenological model of QCD in the non-

perturbative regime which has had considerable success in describing hadronic 

structure.2 ) It is especially well suited (and well tested) for describing the low-

lying hadrons which one needs to predict the B ->X ev endpoint spectrum. The 

main purpose of this paper is to apply the quark model to this problem. The 
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calculations which we present here are based on the use of the non-relativistic 

version of the quark potential model; possible improvements on this simplest 

model will be discussed in our concluding section. 

II. Method 

Th t 't' t. 1 tf th B(~) x<t) -- · e rans1 ton rna nx e emen or e process ~ q e Ve ts 

(5) 

where Vqb is the element of the Kobayashi-Maskawa matrix (2) appropriate for 

the B -->X q transition and J//i, is the charged hadronic current in (1). Since the 

hadronic tensor 

h~-'v = ~<B(pB) lit IX(pxsx))<X(pxsx) IJ~-'IB(pB)). 
s, 

(6) 

must have the form 

(7) 

one can easily show, if the mass of the electron is neglected, that the differential 

decay rate of the B meson depends only on ex, f3++• and-y and is given by 
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mz l - ?'Y [1 - ~ - 4x + y] , 
ms 

(8) 

where 
Ee 

x =--andy 
ms 

(Ps- Px)2 

mJ 
Of course the result eq. (8) holds 

for other M--> M•e- Ve decays with the appropriate substitutions; for decays to 

e+ Ve one must in addition reverse the sign of the term proportional to?'· 

As explained in the introduction, we will estimate ex, f3++• and')' (for each 

channel X) using the quark model, building up the total electron spectrum ~~ 

by summing over contributing states X. If we include states X with mass up to 

mx. we will then have the complete spectrum from the maximum value of x 

1 m2 
down to X= -

2 
( 1 - ~) so that this method -in contrast to a free quark cal-

ms . 

culation - is very suitable for studying the crucial endpoint region of the spec-

trum. 

Central to this calculation is, obviously, the possibility of reliably estimating 

the matrix elements< X I j ~"I B) and the inclusion of all relevant states which will 

contribute above some minimum x. Our first assumption is that we can work in 

the approximation where we ignore the creation of additional quark-antiquark 

pairs. This means that the sum over final hadronic states X will be saturated by 

qq states, and that these states can be treated in the zero-width limit. (The 

widths of the qq states, which we are assuming to be responsible for populating 

multihadron channels, could be included in a straightforward way, but we expect 

that this detail would have very minor effects on ~~ .) One might at this point 
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conclude that it would be sufficient to sum over only the qq states of the usual 

quark model. For sufficiently small mx this should be true, but for large mx one 

must expect contributions from gluonic excitations of mesons (hybrid mesons). 

While in principle we could include such states in our calculation, this observa-

lion along with the sheer complexity of extending the sum over X to very high 

mx will mean that in practice we will truncate our sums at some maximum mx. 

With these approximations we have reduced our problem to that of calculat-

ing the matrix elements (X IP'IB) for the low-lying ordinary mesonic reso-

nances; it is natural to use the constituent quark model to make such a calcula-

lion. Since the major uncertainties in our results will arise from our use of the 

quark model to estimate these matrix elements, we will thoroughly describe our 

procedure in this section. In a subsequent section we will describe the evidence 

from various sources which bear on the reliability of these procedures. 

The basic idea of our method3 •4) is to make a correspondence between the 

Lorentz invariant form factors f which occur in the expansion of the matrix ele-

ment <X(px. sx) I j 11- I B (PB )) of the physical B and X and those (which we call f) 

which appear in the quark model calculation <X(pxsx) lj ~"I B (p8 )) (where, e.g., 

I B (PB )) is the quark model state vector in the weak binding, non-relativistic 

limit). Form factors f which appear in terms that are of sufficiently low order in 

momenta can be calculated in this limit. The corresponding form factors fare 

-
taken to match onto f at the zero recoil point; higher order form factors are 

neglected. 

As an example, consider the matrix element forB 0 -> D +,where D + is the c d 

pseudoscalar ground state meson. In general 
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(9) 

where f± are Lorentz invariant form factors which can be considered as functions 

of t - tm where tm = (m8 - mD )2 . (Note that in this example ex = 0, 

f3++ = If+ 12 , and 7 = 0 so that in fact only thef+ form factor is really required.) 

In the weak binding, non-relativistic limit, the matrix element of j!l; between 

quark model states B °Cps) and jj +(PD) [with, e.g., ms = m b + md so that 

- -2 2.!. 
E8 = (m8 + p8 ) 2 ] has an expansion exactly analogous to eq. (9) with form fac-

- - -
tors f± that are functions of t- tm. Our prescription is to take 

f±( t - tm) = j±( t - tm). Since tm is the value of t for PB = PD = 0, this gives 

the usual quark model correspondence between!± andf± at zero recoil. 

-
The calculation of the form factors f is straightforward. In the weak-

binding, non-relativistic limit the properly normalized meson state vectors have 

the form 

(1 0) 

where x:Sm• couples the spins s and s to the spin S, <Px(P hm, is the q q relative 

momentum wavefunction, and the C -factors couple L and S to the total spin sx. 

This form is correct to leading order in v /c. Ignoring strong renormalization of 

the weak currents from calculating at the constituent quark scale ( ~ 1 Ge V), one 

-
then simply computes free quark matrix elements between states B and X of the 

form (10). In our example one easily finds that 
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(11) 

(12) 

for PB = 0 and PD << mn. To proceed much further, one in general requires 

explicit momentum wavefunctions. We have chosen to use Schrodinger 

wavefunctions appropriate to the usual Coulomb plus linear potential 

( ) 
4cxs 

Vr =-~+c+br (13) 

with CXs = 0.5, c = -0.84GeV, and lr = 0.18GeV2 , and with constituent quark 

masses mu = md = 0.33 GeV, ms = 0.55GeV, me= 1.82GeV, and 

mb = 5.12 GeV. This simple model gives quite reasonable spin-averaged spectra 

of ud, c d, and bd mesons up to L = 2, and extends satisfactorily to the cc and 

bb systems (where we do not need it) with a running CXs = 0.4 and 0.3, respec-

tively. To avoid extensive numerical calculations, we use variational solutions of 

this Schrodinger problem based on harmonic oscillator wavefunctions: 

(14) 

(3fol2 .::l.~pr' 
.t,lP _ ---r e 2 
l"ll - 7T3/4 + 

(15) 

(16) 
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in which the (3's are employed as variational parameters .. The resulting (3 values 

are given in Table I. With these wavefunctions we can perform all the integrals we 

encounter analytically. The formulas for ex, f3++• and-y for the mesons with 1S, 

1P, and 2S spatial wavefunctions are given in the Appendix. These formulas can 

be used to calculate ~~. Before doing so, however, we must address a generic 

problem of our non-relativistic calculation. The reader may already have won

dered how we can, for example, calculate the slopes of form factors, since such 

slopes appear in terms of order Pi and so may contain contributions from rela

tivistic effects. Indeed, the answer is that the effective radii r 1 of our form fac-

tors (J(pi) = 1- ~ rJ Pi+ ···)include onlywavefunction overlap effects and 

so can be in error by terms of order 1/mq. In a truly non-relativistic situation 

1/mq << rf so that such corrections are unimportant, but in the cases at hand 

we are not surprised to find that our calculated pion and kaon charge radii are 

about 30% below their experimental values. (Meson charge form factors follow as 

special cases of (11) and (12).) We have therefore compensated all of our effec

tive radii by this amount to produce our best estimates of semileptonic decay 

rates. With a few exceptions, to be discussed below, whether or not this defect is 

corrected is of little importance. 

III. Results 

In this section we will present our results not only forB decay, but also for 

related processes like K --+ 7T e-v. and D --+X e+ v. since in the cases where data 

exists it supports the applicability of our methods. In the next section we will 

explain why we believe our results are the most reliable available at present, 

their limitations, and the possibilities for improving them. 
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a)K -->rre-v. 

This process was studied previously3 ) by the methods used here. We also find 

f+(tm)"" 1.02 and f-(tm)"" -0.29, both of which are in good agreement with 

experiment. We also agree with the measured t-dependence of the form factor 

f+· Note that although SU(3) breaking in the quark masses is substantial, the 

Ademollo-Gatto theorem5) continues to protect f+ from substantial deviations 

from unity. 

All strange mesons X with masses rnx < rn0 can contribute to the electron 

spectrum for D meson decay. Figure 1 shows our full predicted spectrum and 

how it is built up from contributing resonances. The free quark decay spectrum 

is shown for comparison. Note that our spectrum is dominated by the two 

processes D --> K e+ve and D --> K* e+ve which we predict to constitute approxi

mat~ly 40% and 58% of the total respectively. This saturation by K and K* is in 

agreement with experiment6•7), which gives for the ratio K /(K +K*) the value 

50 ± 11%; our D --> K form factor is also in agreement with the measured form 

factor6 ). Finally, we note that our absolute prediction for the total rate for sem

ileptonic D decay is r(D 0 .... X e+v.) = r(D+ .... X e+v.) = 0.21 X 1012sec-1, in 

reasonable agreement with the experimental result6 •7) of 

(0.19 ± .02) x 1012 sec-1 . Figure 2 shows our predicted electron spectrum, 

boosted as is appropriate forD l5 pairs produced from the 1/t(3770), compared to 

an experimental spectrum8 ) of such electrons. Our model thus clearly gives an 

account of these decays which seems to be accurate to about 20%. Fig. 3 shows 

our predictions for the electron spectra from Cabibbo suppressed n ° decays. The 

spectrum is dominated by the two processes n° .... rr-e+v. and n° .... p-e+v. which 

constitute about 33% and 61% of the total respectively. We will discuss the 
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interest of these processes in our concluding section. 

c) B ... X e-v. 

We now turn to the cases of interest for extracting I Vub 12/l Vcb 12. We first 

discuss B -> Xc e-v. where Xc is a charmed meson with mass rnx < rns. Our 

present calculations extend only up to rnx"" 2.5 GeV, but as can be seen from 

Fig. 4, which shows how our predicted spectrum is built up out of contributing 

resonances, the full rate appears to be rapidly saturated by the lowest-lying 

states. We show the free quark decay spectrum for comparison: note that our 

spectrum is softer in the endpoint region. Our spectrum is once again dominated 

by the 1 1S 0 and 13S 1 states with the D(1.87) and D*(2.02) contributing 19% 

and 71% (respectively) of our total spectrum. This D* /(D + D*) ratio of 0.79 is 

in good agreement with the preliminary experimental measurements 7 •9 ) of 

0.85 ± 0.32. 

Anticipating that b -> u / b -> c will be small, our absolute prediction for the 

total B semileptonic rate is 

From the experimental value of this rate7) we find that 

I vcb I = .041 ± .oo4 ± .oo5 . (18) 

We will discuss the uncertainties in this determination of I Vcb I associated with 

our calculation(the second error in (18); the first is experimental and arises 

from uncertainties in the B lifetime and semileptonic branching ratio) below. 

Figure 5 shows our predicted spectrum for B 0 -> X;i e-v. where X;i is a ud 

meson belonging to any of our eight lowest-lying meson families. (The spectrum 

forB+ decay is almost identical: the splitting of the decay strength into neutral 
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isoscalar and isovector mesons has only a very small effect.) It is clear from our 

calculations that these !ow-lying states (which includeall states with 

mx ;:(; 1. 7 Ge V) do not in this case saturate the rate. One indication of this is that 

the 2S states still contribute as strongly as the 1S states. See Table II for 

details. Another is that our summed semileptonic rate is only about half of the 

free quark decay rate (also shown in Fig. 5). Recall, however, that our calculation 

does saturate the contributions of B ->Xu e-v. to the region at the end of the 

spectrum where B -> Xc e-v. is small or vanishes. This fraction of the spectrum 

is therefore all we need to determine (or to set an upper limit on) I Vub 1. Note 

that our B ->Xu spectrum is considerably softer than the free quark spectrum. 

Figure 6 shows our predicted B meson semileptonic spectra, boosted as is 

appropriate forB B pairs produced on the 1(10575), compared to some recent 

data.9 •10l. Our absolute prediction of the shape of the spectrum with Vub = 0 is in 

good agreement with experiment7 >. The implications of this observation, along 

with a discussion of its reliability, will be given in the next section. 

IV. Discussion 

Most attempts to extract I Vub 12/ I Vcb 12 from the B ->X ev endpoint spec-

A 

trum have fit to the form (3) with df's given by a QCD-perturbed free quark cal-

culation in which extra parameters were introduced to correct for non-

perturbative effects. 11>. With recent improvements in the data these attempts 

have, as might have been anticipated, encountered difficulties7 •9 >. These diffi-

culties have made it clear that the predicted endpoint behavior of the Ref. 11 

calculations are being controlled almost entirely not by perturbative QCD, but by 

the ad hoc parameters introduced to describe bound state effects. Our calcula-

tion, in contrast, is especially suitable for the endpoint region: not only is the 
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dynamics of the quark model more appropriate to this region, but also it 

correctly handles the kinematics of the opening of new channels with their 

appropriate quantum numbers. 

Of course our calculations still have sources of uncertainty. Nevertheless, 

we would first like to stress that our calculation of B --> Xc e-v. seems to be 

largely immune to these uncertainties. The success of the analogous 

D --> Xs e+v. calculation is evidence for the reliability of B --> Xc e-v •. but we have 

also checked that reasonable variations of the wavefunctions (for example, ones 

that change r f by 30%) have little effect on our spectra. There are some simple 

reasons for this. One is that the bd and c d wavefunctions are sufficiently simi

lar that they overlap very well (see eqs. (11) and (12)). Another is that in the 

recoiling Xc the charm quark carries most of the momentum so that the calcu

lation does not rely on the tail of the B --> Xc form factor. Also, the recoiling Xc is 

not excessively relativistic. It is more difficult to assess the systematic uncer

tainties associated with this calculation. We will discuss below some possible 

improvements on our methods which could check several possible sources of 

error,but for now we just note that the success of our predictions for K --> 1T, 

D --> Xs, and various known features of B --> Xc, along with the demonstrably weak 

parameter dependence of our results, lead us to have confidence that the abso

lute rate predictions shown in Fig. 4 are valid at the 20% level, and that the shape 

of the predicted electron spectrum is very good. 

ForB --> Xue-v. our predicted spectral shape is once again very stable in 

the endpoint region. However, we have considerably less confidence in this case 

in our ability to predict absolute rates: few of the features which stabilized 

B --> Xc e-v. are present here. for example, when we vary the {3's over the range 

we consider reasonable, we get substantial variations in the absolute rates of the 
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exclusive modes. (The inclusive rate should be more stable, but recall that our 

calculation does not exhaust the exclusive modes). We have concluded that our 

absolute rate predictions in this case could be as much as 30% higher and a fac-

tor of two lower than the true rates. This uncertainty will affect our ability to 

determine (or bound) Vub from the data. 

There are, incidentally, two general approaches one can take to determine 

Vub. One could use Fig. 6 alone to determine the fraction I Vub 12/ I Vcb 12 of the 

B -> Xu spectrum which when added to the B -> Xc spectrum leads to consistency 

with the data in the endpoint region. This method is weakened by the fact that 

our B ->Xu spectra does not saturate the spectrum of b -> u transitions. It is 

possible that a better determination of I Vub 12 can be made by using a "hybrid 

model" which requires free quark behavior of 1x for small x matching onto our 

spectrum near the endpoint x = Xm· One such model is 

df' = 16 x2(3- 4x) [ 1- x/xm 12 f'tree 
dx 1-x/(xm+o) 

(19) 

where o > 0 is a parameter used to fit onto our endpoint spectrum. The main 

advantages of such a hybrid model are that it allows a global fit to the electron 

energy spectrum and that it only uses our prediction for the shape of the elec-

tron spectrum in the endpoint region which is much more reliable than its nor

malization. Of course in such a fit one must contend with uncertainties in f'tree 

which are still substantial. 

One might hope to reduce the uncertainties in the results we have presented 

by improving upon our quark model calculation. To a certain extent we believe 

that this is possible. It would be useful, for example, to extend our calculations 

to higher masses (see, however, the warning in our introduction). It would also 
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be interesting to check on the importance of relativistic effects13>. Unfor

tunately, we doubt the utility of making a check of such effects in the bag model 

(though it naturally comes to mind as a relativistic quark model) since one will 

encounter two problems with the static bag approximation: heavy quark 

wavefunctions will not be adequately described, and the recoiling quark will 

populate both excited meson states and spurious center of mass motion states. 

An alternative is to build some relativistic corrections into the quark potential 

model12>. Here one must be careful to ensure that the model predicts meson 

spectra and static properties as well as the non-relativistic quark model. One 

might also consider supplementing our quark model calculation with some sort 

of pole dominance model for the t-dependence of the weak form factors. Our 

form factors are actually quite close to pole dominance form factors in many 

cases, but we can also appreciate from our calculation that the pole model is not 

generally applicable. These form factors are largest (and therefore normally 

most important) at the zero recoil point where the quark model applies and 

where, in some cases, there is no reason to expect a single meson pole to dom

inate. An extreme case would be the elastic form factor of the 1Jc: this form fac

tor near t = 0 will clearly be controlled by the 1Jc wavefunction (which will give 

r f ~ ('me a 5 )-l) and not by the lowest vector meson (which would giver 1 ~'me-l). 

The failure of vector meson dominance in this case is easy to understand: on the 

scale of=$, the spacing between vector meson states is small. 

V. Conclusions and Summary 

We have argued that the extraction of I Vub 12/l Vcb 12 from the endpoint of 

B ->X e-v. requires an understanding of the non-perturbative physics which 

binds the quarks into hadrons. The quark model calculation presented here 
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represents one approach to this physics; we believe that it will be difficult at the 

moment to improve upon the resulting picture of the endpoint. 

Our results give a B -> Xc endpoint spectrum that is softer than the free 

quark spectrum; this leads to a predicted B -> Xc spectrum that fits the data 

quite well with no admixture of B ->Xu· Our B ->Xu spectrum is considerably 

softer than the free quark spectrum, so that the limits which one can obtain on 

the strength of Vub from the lepton spectra in the endpoint region will be 

correspondingly weaker. 

While improved measurements of the endpoint spectrum may well remain 

the best way to limit and eventually observe Vub, our calculation does open up 

one other possible avenue. Since we provide absolute rates for a large number of 

exclusive semileptonic modes to non-charmed mesons (see Table II), a limit on 

(or a measurement of) any of these modes can now be turned into a limit on (or a 

measurement of) I Vub 1. 

We also note that as a byproduct of these calculations we have made predic

tions for how the B ->Xc, B ->X u• D -> X5 , and D ->X d spectra are built up out of 

exclusive channels 14l. These predictions, which are of interest in their own right, 

can be used to check the reliability of our calculations. It would be especially 

rigorous to check our predictions (via a,fl++• and')') of the detailed structure of 

the relevant Dalitz plots. One other possible application of these results would be 

to use our predictions to extract Vcd from an exclusive mode like D + ... p0 e+v., 

thereby producing an independent check on the validity of the K -M parameter

ization . . 
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Appendix: Formulas for the Functions a, f3++ and-y in B 0 -> x+ e-v. 

We give here the formulas for a, f3++• and-y required in eq. (8) for d 2r 
dxdy 

for· 

X = qd in the states 1 1S O• 13 S 1, 13 P 2• 13 P 1o 13 Po. 1 1 P 1, 2 1 S 0, and 23 S 1 in the 

spectroscopic notation n 23 + 1LJ· Throughout the following we will employ the 

definitions 

Fn = ~X [ f3n f3x ln/2 exp - [ :n~_ l (tm -t) 
]

1/2 I 
=n f3nx 4rnx=n f3sx 

(A1) 

where 

f3sx = ~ <f3s + f31) (A2) 

and 

(A3) 

is the maximum momentum transfer, and 

(A4) 

We also denote by VI' and A I' the quark currents q-yl' b and q -yl'-y5 b respectively. 

The determination of most of the form factors given below is based on a 

straightforward application of the discussion of the text. However, some of the 

form factors we need (those corresponding to X recoiling with non-minimal 

orbital angular momentum) require for their complete specification knowledge 

of the quark currents. and boosted state vectors beyond leading order in v /c. In 

such cases we show below. all terms which are expected to be more important 

than those we are unable to calculate, and denote the pieces we are thereby 
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ignoring in our computations by an additional term: +0 ( · · · ). Since the con-

tributions of these incompletely determined higher order form factors vanish at 

the threshold fix = 0, this uncertainty should not introduce a large error in our 

computed rates. 

The axial vector matrix element vanishes, and with 

(A5) 

we obtain 

(A6) 

and 

(3++ = ~~' (A7) 

where 

(AB) 

and 

[ ( - - )( 1 1 m d (3 ~ ) I f- = F3 1 - mB + mx -- - ------2 -
Zmq 4J."+ mx f38 x 

(A9) 

With 
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(AlO) 

and 

we have 

(A12) 

(A13) 

and 

7 = 2gf. (A14) 

Here p; = ([mg(l - y )+m}]2/4mg)- m} is the square of the recoil three 

momentum of the X. The form factors f and g are given by 

(A15) 

(A16) 

The form factor a+ is of the troublesome type described above. In this case there 

are no calculable contributions which are expected to dominate the recoil 

uncertainties, and we can only calculate that a+ = 0 ( • • ). 
msmx 
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With 

and 

we have 

2 
R __ 1 rnffpx h 2 + 
I"++- -y 

2 rn} 

2 
7nff [y + 4px ]k2 

24m} rn} 

+ _g_ =sPx b2 + [ 
2 2]2 

3 rn} + 
1 7nffp;[7nff(1- ) -1]kb 
3 rn} rn} y +' 

and 

= 7nffp; kh 
'l rn} . 

The form factors h and k are given by 

7nd 
k = v'ZF5-f3s . 

(A18) 

(A19) 

(A20) 

(A21) 

(A22) 

(A23) 
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The form factor b+, is like a+ in 3S 1 decays: we can only conclude that 

The relevant matrix elements are 

and 

It follows that 

1 [mj I f3++ = z2j4m}-mgy q2 + Z m}(1-y) -1 lc+ + 

where 

-y = Zql , 

1 md 1 
q = -

2 
F5-.--{3 , 

mx B 

2 2 
maPx 2 
m} c+ 

(A24) 

(A26) 

(A27) 

(A28) 

(A29) 
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and 

[
_1 -
fL 

mdmq f3s + 2{3s 
2mxf.L~ f3sx mdmbf.L-

(A31) 

The vector matrix element vanishes, and with 

we have 

(A33) 

CX=f'=O, (A34) 

where 

(A35) 
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The matrix elements of the vector and axial vector currents have the form 

and 

It follows that 

1 [ mj l (3++=r 2/4m}-mjyv 2 + 2 m}(1-y)-1 rs++ 

I' = 2rv , 

with 

v=O 

2 
mifJx 2 

m} s+ 

(A36) 

(A38) 

(A39) 

(A40) 

(A41) 

(A42) 

(A43) 
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Again the axial contribution vanishes, and with 

we have that 

The form factor f' + is given by 

R -j•2 tJ++- +. 

(A45) 

(A46) 

(A47) 

The matrix elements of the axial vector and vector currents can be written 

as 

(A48) 

and 

Then we find that 
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(A50) 

f3++=f'2/4m}-mjyg'2 +-~(1-y)-1f'a'++ 8 xa,;(A51) 1 1m2 l m2p
2 

2 m} m} 

-y = 2g'f' . (A52) 

The form factors!' and g' are given by 

(A53) 

f3n ] 
f3Jx 

(A54) 

The form factor a' +• like a+, undetermined: we can only conclude that 
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Table I: Variational Solutions of the Coulomb plus Linear Problem* 

meson flavor: ud us uc ub 

f1s( Ge V) 0.31 0.34 0.39 0.41 

e -- negligible --

{1p(GeV) 0.27 0.30 0.34 

• In general ""IS and 1f2s mix with some mixing angle e so that the ground state 

wavefunction is cose 'if! IS + sine 1f2S. For the particular masses and potentials in 

these systems, e turns out to always be less than 0.01. 

Table II: Partial Decay Rates for B 0 --> X;i" e-v. in units of J Vub J2 x 1QI4 sec -I 

11' .02 

p .16 

Az+AI+Ao+B .19 

11'' + P' .20 
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Figure Captions 

1 dr 
--- forD -> X 5 e+ve showing the contributions of K, K*, and the total 
r dE. 

contribution from all lS, lP and 2S states; also shown is the corresponding 

free quark curve. Absolute rates can be obtained by using 

f = 0.21 X 1012sec-1 and ffree = 0.34 X 1012 sec-1. 

2. df /dEe for D -> X5 e+v. from Fig. 1 boosted to correspond to D's from 

y(3770) decay and compared to the data of Ref. 8. The integrated theoreti-

cal and experimental rates have been roughly adjusted to agree in order to 

facilitate a comparison of the spectral shapes. 

3. ~ da:. forD ->X de+ve showing the contributions of rr,p and the total con-

tribution from alllS, lP and 2S states; also shown is the corresponding free 

quark curve. Absolute rates can be obtained by using 

r = 0.25 X 1012 I Vcd I 2sec -1 and rfree = 0.54 X 10121 Vcd 12sec -1. 

4. ~ da;; for B -> Xc e-v. showing the contributions of D ,D* and the total 

• 

5. 

contributions from lS, lP and 2S states; also shown is the corresponding 

free quark curve. Absolute rates can be obtained by using 

1 dr 
rfree dE • forB .... X ;i e-v. showing the contributions of rr,p, the lP states 

A 2 ,A 1 ,A 0 and B, and the 2S states 1T1 and p'; also shown is the free quark 

curve 1 
rtree 

drfree 
dEe . 

Absolute rates can be obtained by using 
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6. df /dE • for B -> X 0 e-v • and B -> Xu e-v • from Figs. 4 and 5 boosted to 

correspond to B 's from T( 10575) decay and compared to the shape of the 

spectra of Refs. 9 and 10. The two curves are correctly normalized to one 

another for I Vcb I = I Vub I; the data sets are normalized to fit the 

B -> X 0 e-ve curve. 
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