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Abstract: We fabricate suspended single-mode optical waveguides and ring resonators in 3C-SiC 

that operate at telecommunication wavelength, leverage post-fabrication thermal annealing to 

minimize optical propagation losses and demonstrate Q of over 41,000. 

Cubic silicon carbide (3C-SiC) has been gaining momentum as a platform to realize many optical functionalities due 

to its diverse properties such as wide band gap (2.2 eV) , large second order nonlinear susceptibility [1], large Kerr 

nonlinear refractive index [2], high refractive index (~2.56), tolerance to high optical power, large bulk Young’s 

modulus and CMOS compatibility [3] make it a viable alternative to silicon with potential for integration of 

optoelectronics. Suspended SiC photonic structures, such as waveguides, micro-disks [4] and photonic crystal 

cavities [5] are of interest for opto-mechanical experiments [6], accelerometry, large-surface applications e.g. 

sensing and coupling of phonons to quantum emitters [7]. Suspended SiC structures fabricated on standard SiC on Si 

substrates are compatible with high temperature thermal annealing due to the absence of intermediate layers, as the 

thermal expansion coefficient of SiC and Si are of the same order in magnitude [8]. This is useful for increasing the 

crystal purity for lowered scattering or absorption losses from imperfect material growth, oxidation-smoothing of 

sidewalls with oxygen annealing or implantation of ions such as vanadium or rare earths [9] which are useful for 

creating optically active emitters or doped optical amplifiers. 

Up to now, suspended 3C-SiC ring resonators feature optical quality (Q) factors below 24,000 [10,11], where 

the latest results show waveguides featuring propagation losses of 21 dB/cm using 1550 nm light [11]. We show that 

the waveguide loss in these types of structures can be reduced by post fabrication thermal annealing. A root-mean-

squared (RMS) roughness of 1.7 nm on top of the fabricated waveguide is achieved after annealing. Our results 

show a reduction in loss from 24 dB/cm to 7 dB/cm at 1550 nm by annealing the waveguides in a high temperature 

oxygen atmosphere corresponding to an intrinsic Q factor of over 41,000. 

Fig. 1. (a) Optical micrograph of the fabricated device (b) scanning electron micrograph of the coupling region between the bus waveguide and 

ring waveguide with a 40 um radius, 0.8 um waveguide width and 100 nm coupling gap (c) atomic force micrograph of the waveguide surface 

after annealing 

We fabricate waveguide coupled suspended microring resonators with a bending radius of 40 µm, and various 

coupling gaps ranging from 100 nm up to 400 nm (increments of 50 nm) to cater for waveguide losses with 

microring waveguide widths of 0.8, 1, 1.5, 1.8 and 2 um totaling 40 resonators with each input and output coupled to 

a vertical grating coupler (VGC) as shown in Fig. 1a with the undercut region visible as a green translucent area 

surrounding the waveguides. The samples are annealed in an oxygen atmosphere at 1100ºC for 2 hours. Scanning 

electron microscopy (SEM) images with 30° tilt of the bus waveguide and ring resonator coupling region before and 

after thermal annealing are shown in Fig. 1b. A clear reduction in sidewall roughness of the waveguides is observed 
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after the annealing step. Atomic force microscopy (AFM) is used to measure the surface roughness of the 

waveguides which shows an RMS roughness of 1.7 nm (Fig. 1c) measured on the top surface of the waveguide 

compared to 2.4 nm RMS measured before annealing. 

 
Fig. 2. (a) Lorentzian fit of the resonance of the third order mode before (1520.5 nm) and after annealing (1532.7 nm) indicating a significant 
reduction in linewidth 

 

Critically, we determine the optical quality factor of the fabricated ring resonators prior to and subsequently 

after annealing to determine any impact of annealing on waveguide propagation loss. The comparatively large 

waveguide width is chosen to reduce the impact of sidewall scattering losses to the measured Q-factor such that 

intrinsic material limited loss can be inferred. The highest Q factors are observed in higher-order modes, suggesting 

intrinsic scattering may contribute more to loss than sidewall roughness. The same spatio-longitudinal mode, which 

features the highest intrinsic Q when compared to all other longitudinal modes, was compared to that before and 

after annealing as shown in Fig. 2a. A 146 pm linewidth was measured before annealing, corresponding to an 

intrinsic Q of 1.1×104 indicates linear propagation losses of around 24 dB/cm. After annealing the linewidth is 

reduced to 39 pm, corresponding to an intrinsic Q factor of over 4.1×104 which is the result of an estimated linear 

propagation loss of 7 dB/cm, a 340% improvement. 

In conclusion, we show that post fabrication thermal annealing is an effective and viable method for reducing 

optical propagation loss in 3C-SiC microring resonators. We find that thermal annealing can reduce sidewall 

roughness and potentially lead to a reduction in crystal defects which have traditionally been the dominate 

contributors to optical loss in 3C-SiC grown on Si. This work paves the way toward low loss suspended devices in 

3C-SiC which are important for optomechanical devices and opens the possibility for new experiments such as 

stimulated Brillouin scattering and surface acoustic devices which could utilize the excellent mechanical properties 

of this platform. This work was carried out at the Harvard Center for Nanoscale Systems (CNS), a member of the 

National Nanotechnology Infrastructure Network (NNIN). 
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