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Many-body localization from dynamical gauge fields
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A recent experiment [C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch,
and M. Aidelsburger, Nat. Phys. 15, 1168 (2019)] has realized a dynamical gauge system with a Z2 gauge
symmetry in a double-well potential. In this work we propose a method to generalize this model from a single
double well to a one-dimensional chain. We show that although there are no disordered potentials in the original
model, the phenomenon of many-body localization can occur. The key ingredient is that different symmetry
sectors with different local gauge charges play the role of different disorder configurations, which becomes clear
after exactly mapping our model to a transverse Ising model in a random longitudinal field. We show that both
the ergodic regime and the many-body localized regime exist in this model from four different metrics, which
include level statistics, volume law versus area law of entanglement entropy of eigenstates, quench dynamics of
entanglement entropy, and physical observables.

DOI: 10.1103/PhysRevB.102.104302

I. INTRODUCTION

In the past decade, one of the main research topics in
cold-atom physics is simulating synthetic gauge fields [1–3].
Two commonly used methods are utilizing Raman transitions
and shaking optical lattices periodically. It first started with
simulating a constant Abelian gauge field [4,5], which can
be gauged out and does not have observable effects. Physical
effects of gauge fields can be produced either by introducing a
spatial or temporal dependence [6,7] or by generalizing gauge
fields from Abelian ones to non-Abelian ones [8–10]. By
introducing spatial or temporal dependence, this protocol re-
alizes synthetic magnetic fields [6] or synthetic electric fields
[7], which manifest themselves as vortices in superfluids [6]
and the Hall effect [11]. By generalizing to the non-Abelian
case, spin-orbit couplings can be induced [12–14], which
give rise to rich physics such as the stripe superfluids for
Bose condensates [15–19] and topological bands for Fermi
gases [20]. Nevertheless, the primary focuses in these studies
are the properties of the matter fields since the gauge fields
are fixed by external classical sources, such as laser fields
and magnetic fields, and do not receive back-action from the
matter fields.

In the second wave of research along this line, the gauge
fields acquire their own dynamics. For example, recently
density-dependent gauge fields have been created using lattice
shaking, either by tuning the shaking frequency resonant with
the interaction strength [21] or by periodically driving both
the optical lattice and the interactions at the same frequency
[22]. As we know, the density of a many-body system is a
dynamical variable that can fluctuate spatially and temporally.

*hzhai@tsinghua.edu.cn

Therefore, such density-dependent gauge fields are dynam-
ical. Nevertheless, this does not mean they are “dynamical
gauge fields” as we understand in high-energy physics, where
local gauge symmetries are indispensable. In other words, to
be eligible for dynamical gauge fields, not only the gauge
fields need to have their own dynamics, but the dynamical
terms also have to be invariant under local gauge transforma-
tions. One familiar example is the Maxwell theory in which
the dynamical term − 1

4FμνFμν , where Fμν is the electro-
magnetic field tensor, is invariant under local U(1) gauge
transformations.

Significant progresses have been made in recent ex-
periments, and a zero-dimensional two-site Z2 version of
dynamical gauge fields has been created [23]. This model
possesses a Z2 gauge symmetry, although there is no dis-
tinction between “local” and “global” in the two-site case.
In the experiment reported in Ref. [23], two 87Rb atoms,
one in hyperfine state |F = 1, mF = 1〉 ( f atom) and one in
hyperfine state |F = 1, mF = −1〉 (a atom), are confined in a
double-well potential. The creation and annihilation operators
of f atom (a atom) are denoted by f̂ †

i (â†
i ) and f̂i (âi), with

i = 1, 2 for the two sites. Since the total number of f atoms
in the double well is conserved and fixed to be one, we can
introduce a spin- 1

2 operator τ̂ i for this double well defined as
follows (h̄ = 1):

τ̂ x = 1
2 ( f̂ †

1 f̂2 + f̂ †
2 f̂1), (1)

τ̂ y = i
2 ( f̂ †

2 f̂1 − f̂ †
1 f̂2), (2)

τ̂ z = 1
2 ( f̂ †

1 f̂1 − f̂ †
2 f̂2). (3)

By shaking the optical lattice at some fine-tuned frequency,
one can reach the following effective Hamiltonian to describe
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the coupling between the a atom and the f atom [23,24]:

Ĥdw = −2gτ̂ z(â†
1â2 + â†

2â1) − 2hτ̂ x. (4)

This model exhibits a Z2 symmetry: the Hamiltonian is invari-
ant under τ̂ z → −τ̂ z and simultaneously either â1 → −â1 or
â2 → −â2.

However, there is a difficulty in extending this model
from zero spatial dimension to higher dimensions. If we
allow f atoms to hop outside the double wells and their
numbers to change, the definition of the τ̂ i operator [Eqs. (1)–
(3)] becomes invalid and, consequently, the Z2 symmetries
are lost. If we allow a atoms to hop outside of the dou-
ble wells, it will render the local Z2 symmetries into
a global one.

At this stage, two important questions arise for study-
ing “dynamical gauge fields” with cold atoms. The first one
is how to realize dynamical gauge field models with local
gauge symmetries, especially, how to extend the double-
well models realized in Ref. [23] to include spatial degrees
of freedom. The second one is, provided that such mod-
els of dynamical gauge fields have been realized using cold
atoms, what are the unique physical effects, aside from
those have been discussed in the context of high-energy
physics. Recently, various attempts have been made to ad-
dress these two issues [23–46]. For example, Barbiero et al.
have proposed a way to link double wells together to form
a two-dimensional square lattice with local Z2 symmetries
[24].

In this work we offer our answers to these two questions.
First, we propose a scheme to extend the double-well model
(4) to one dimensional. The central idea of our proposal is
to utilize the interactions between particles to build up the
spatial dimension in a way that the local gauge symmetries
are preserved. Second, we show that the phenomenon of
many-body localization (MBL) can emerge in our dynami-
cal gauge field model. Although MBL is usually studied in
interacting disordered models [52,53], we show that the phe-
nomena can also occur in our model which is disorder free.
The key point is that different conserved local gauge charges
associated with their local gauge symmetries play the role
of disordered potentials in interacting disordered models of
MBL, due to the couplings between the gauge fields and the
matter fields. Recently, many-body localization due to local
gauge symmetries has also been discussed in several works
[43–46]. The model studied in this work is different from
theirs and we also apply different metrics to distinguish MBL
from thermalization.

II. MODEL

A. One-dimensional dynamical gauge fields

Here we consider two spatially overlapped one-
dimensional chains, each of which consists of a series of
double wells, as sketched in Fig. 1. In the first chain, for every
even number i, a double well is formed by the ith site and
(i + 1)th site, and each double well contains exactly one a
atom and one f atom. This means for each double well with

FIG. 1. Our model contains two chains with staggered double
wells denoted by the solid blue and red bonds. The blue chain
consists of a and f atoms, and the red chain is loaded with b and
d atoms. Although for illustration purposes two chains are drawn
separated in space, they, in reality, should overlap spatially to allow
for interaction between atoms at the same site.

a pair of sites i and i + 1, we can introduce a spin- 1
2 operator

τ̂ i for the f atom

τ̂ x
i = 1

2 ( f̂ †
i f̂i+1 + f̂ †

i+1 f̂i ), (5)

τ̂
y
i = i

2 ( f̂ †
i+1 f̂i − f̂ †

i f̂i+1), (6)

τ̂ z
i = 1

2 ( f̂ †
i f̂i − f̂ †

i+1 f̂i+1). (7)

Similarly, we can introduce another spin- 1
2 operator σ̂ i for the

a atom:

σ̂ x
i = 1

2 (â†
i âi+1 + â†

i+1âi ), (8)

σ̂
y
i = i

2 (â†
i+1âi − â†

i âi+1), (9)

σ̂ z
i = 1

2 (â†
i âi − â†

i+1âi+1). (10)

In this way, we have introduced τ̂ i and σ̂ i for every even
number i. The Hamiltonian of this chain is simply a sum of
that of each individual double well, Eq. (4), and takes the form

Ĥ =
∑

i=even

−4gτ̂ z
i σ̂

x
i − 2hτ̂ x

i , (11)

in terms of previously defined spin- 1
2 operators. This Hamil-

tonian has included the effect of lattice shaking, the
hopping of both a and f atoms inside the double wells,
and the interactions between a and f atoms [23,24]. It is
exactly the same model as that has been realized in the recent
experiment [23].

Next, we consider the second chain constituted with b and
d atoms that play the same roles as a and f atoms in the first
chain, respectively. Note that compared with a and f atoms, b
and d atoms can be different atomic species and have different
ac polarizabilities. Therefore, b and d atoms experience a
different lattice potential from the other set of lasers such that,
in the second chain, each double well is formed by the ith
and (i + 1)th sites with odd i. Similar to the first chain, these
double wells are disconnected and each double well contains
exactly one b atom and one d atom. We can, therefore, intro-
duce two spin- 1

2 operators τ̂ i and σ̂ i for every odd number i.
Their definitions are given by Eqs. (5)–(7) upon substituting
f -atom operators with d-atom operators and by Eqs. (8)–(10)
after replacing a-atom operators with b-atom operators. In this
way, we have introduced τ̂ i and σ̂ i for every odd number i.
Moreover, the same shaking protocol is applied to this chain,
which generates the same Hamiltonian as Eq. (11) except that
the summation is over odd numbers of i. At this point, we have
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defined two sets of spin operators σ̂ i and τ̂ i for all the links in
this one-dimensional system.

Now, we turn on interactions between the two chains. We
emphasize again that these two chains are arranged to be
spatially overlapping with each other so that atoms at the same
site can interact with each other. The interactions between a
and f atoms and between b and d atoms have already been
taken into account when writing the effective Hamiltonian
(11). Since the interactions between atoms depend on the
magnetic levels and the location of magnetic field, due to the
presence of Feshbach resonances, one can choose a proper
location of magnetic field such that the interaction between a
and b atoms is much larger than others. Noting that for even
number i, we have

â†
i âi = 1/2 + σ̂ z

i ; (12)

b̂†
i b̂i = 1/2 − σ̂ z

i−1. (13)

And for odd number i, we have

â†
i âi = 1/2 − σ̂ z

i−1; (14)

b̂†
i b̂i = 1/2 + σ̂ z

i . (15)

The interactions between a and b atoms can then be cast into
the form

U
∑

i

â†
i âib̂

†
i b̂i = −U

∑
i

(
σ̂ z

i σ̂ z
i+1 − 1/4

)
. (16)

Hence, the total Hamiltonian of this system reads as

Ĥ =
∑

i

( − 4gτ̂ z
i σ̂

x
i − 2hτ̂ x

i − 4σ̂ z
i σ̂ z

i+1

)
. (17)

Here and hereafter, we set U/4 = 1 as our energy unit, and
g and h here are actually dimensionless numbers 4g/U and
4h/U in terms of the original parameters. Obviously, this
Hamiltonian is invariant under the transformation σ̂ x

i → −σ̂ x
i

and τ̂ z
i → −τ̂ z

i , and possesses a local Z2 gauge symmetry. Our
Hamiltonian can also be brought into the standard Ising gauge
theory by the following duality transformation:

σ z
i σ z

i+1 → σ̃ x
i , σ x

i → σ̃ z
i−1σ̃

z
i , (18)

where σ̃i is defined on the dual lattice. The dual Hamiltonian
nows take the form

Ĥ =
∑

i

( − 4gτ̂ z
i

ˆ̃σ z
i−1

ˆ̃σ z
i − 2hτ̂ x

i − 4 ˆ̃σ x
i

)
, (19)

which is the standard Ising gauge theory with Z2 matter fields
[47].

B. Mapping to a model of many-body localization

For later convenience, we shall rotate τ̂ i as follows:

τ̂ x
i → τ̂ z

i , τ̂
y
i → −τ̂

y
i , and τ̂ z

i → τ̂ x
i . (20)

The Hamiltonian then becomes

Ĥ =
∑

i

( − 4gτ̂ x
i σ̂ x

i − 2hτ̂ z
i − 4σ̂ z

i σ̂ z
i+1

)
. (21)

In this new basis, one can easily see that Q̂i = 4σ̂ z
i τ̂ z

i com-
mutes with Ĥ and its eigenvalue qi takes the value of +1
or −1. For any eigenstate |〉, we have Q̂i|〉 = qi|〉, and qi can
be understood as the conserved local gauge charge associated
with the local gauge symmetries. The four local bases of site
i, |σ z

i τ z
i 〉, fall into two classes: |↑↑〉 and |↓↓〉 with qi = 1,

and |↑↓〉 and |↓↑〉 with qi = −1. To make use of the reduced
local Hilbert space for given qi, we introduce another spin- 1

2

operator �̂i defined as

�̂x
i = 2τ̂ x

i σ̂ x
i , �̂

y
i = 2τ̂ x

i σ̂
y
i , and �̂z

i = σ̂ z
i . (22)

Indeed, these operators satisfy the SU(2) algebra: [�̂x
i , �̂

y
i ] =

i�̂z
i , [�̂y

i , �̂
z
i ] = i�̂x

i , and [�̂z
i , �̂

x
i ] = i�̂y

i (note h̄ = 1). It can
be verified that the spin-up and -down states, denoted as |⇑〉
and |⇓〉, of the �̂i operator, are |↑↑〉 and |↓↓〉, respectively, for
the subspace with qi = 1, and are |↑↓〉 and |↓↑〉, respectively,
for the subspace with qi = −1. Noticing that

τ̂ z
i = 4τ̂ z

i σ̂
z
i σ̂ z

i = Q̂i�̂
z
i , (23)

we can always replace τ̂i by qi�̂i in the Hamiltonian when it
acts on states in a symmetry sector with given {qi}. With the
help of the definition of the �̂i operators, the Hamiltonian in
this symmetry sector can be simplified to

Ĥ =
∑

i

( − 2g�̂x
i − 2hqi�̂

z
i − 4�̂z

i �̂
z
i+1

)
. (24)

Because qi takes ±1 in different symmetry sectors, hqi can
be either +h or −h and acts as a Z2 random field. In this
way, we map our model to a transverse Ising model in the
presence of a disordered longitudinal field. This mapping
clearly reveals that the local conserved gauge charges play
the role of disordered potentials. Since the gauge charge is
always quantized, the difference between this model and usual
models of MBL is the distribution of the random field. In
a usual model of MBL, the field takes a continuous distri-
bution, say, uniformly distributed in [−h, h], whereas in our
effective model, the field takes two discrete values with equal
probabilities. Nevertheless, this difference does not exclude
the possibility of MBL. In the weak disorder limit h � g,
the system is ergodic and obeys the eigenstate thermalization
hypothesis (ETH) [48–51]. In the opposite strong disorder
limit h 	 g, ETH fails and the system is expected to be in the
MBL regime [52,53]. Below we will demonstrate the presence
of both the ETH (thermal) regime and the MBL regime in this
model from several different metrics.

III. MANY-BODY LOCALIZATION

The differences between the ETH regime and the MBL
regime can be characterized using a number of different physi-
cal quantities [51,54–56]. In this section, we will employ four
different metrics, related to the properties of eigenstate and
the behavior of quench dynamics from a product state listed
in Fig. 2.
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FIG. 2. Summary of four metrics to distinguish a thermal (ETH)
phase from a MBL phase: (i) r, which is a quantity characterizing
level statistics of eigenstates and is defined by Eq. (25); (ii) sub-
system size LA dependence of the entanglement entropy S of an
eigenstate with nonzero energy density; (iii) time evolution of the
entanglement entropy of subsystem A after a quench from a product
state of different sites in linear timescale (left panel) and logarithmic
timescale (right panel); (iv) time evolution of a physical observable
Ô after a quench from a generic initial state.

A. Level statistics

We first focus on the eigenstate properties. It is known
that energy-level spacings obey the Wigner-Dyson distribu-
tion in the ETH regime and the Poisson distribution in the
MBL regime [51]. To determine the specific distribution, a
dimensionless quantity r has been introduced [57]

r = 〈rn〉 =
〈

min(δn, δn−1)

max(δn, δn−1)

〉
, (25)

where n is the ascending energy level index, δn = En+1 − En

is the energy-level spacing between two consecutive energy
levels, and the average, in our case, is taken over all energy
levels, including a first average over all the eigenstates in a
given symmetry sector and then a second average over dif-
ferent symmetry sectors. It can be shown that r ≈ 0.53 for
the Wigner-Dyson distribution and r ≈ 0.39 for the Poisson
distribution [57].

We use the exact diagonalization method with the open
boundary condition to compute all eigenvalues and determine
the value of r. As can been seen from Fig. 3, the general
trend is that when g becomes larger, the value of r approaches
0.53, and when g is small, the value of r is around 0.39. By
comparing Figs. 3(a) and 3(b), one can see that when h is
larger, it also requires a larger g to reach the ETH regime
where r ≈ 0.53. This agrees with our expectation that the

(a)

(b)

FIG. 3. The value of r, defined in Eq. (25), as a function of g for
system sizes L = 8, 10, 12, and 14 at (a) h = 0.2 and (b) h = 2.0.
The error bar stands for one standard deviation when averaging over
symmetry sectors. The two dashed black lines are r = 0.39 and 0.53
lines.

system is driven from the ETH regime to the MBL regime
as the relative strength of disorder increases.

B. Entanglement entropies for eigenstates

How the von Neumann entanglement entropy Sv of a
generic eigenstate with nonzero energy density scales with the
size of the subsystem LA is another way to differentiate the
ETH regime from the MBL regime. The ETH ansatz implies
the reduced density matrix of a small subsystem A approaches
its thermal density matrix at the temperature T fixed by the
energy of the eigenstate, leading to the volume law for Sv

[55,56]. In contrast, a MBL system fails to thermalize, and
the entanglement entropy obeys the area law [55,56].

The above difference is schematically shown in Fig. 2, and
the behavior of Sv is also verified in our numerical studies. As
can be seen from Fig. 4(a), when h is small compared with
g, the entanglement entropy increases almost linearly with LA

until LA approaches half of the system size, confirming the
volume law. In contrast, as shown in Fig. 4(b), when h is large
compared with g, the entanglement entropy tends to quickly
saturate as LA increases, demonstrating the area law.
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(a)

(b)

FIG. 4. The von Neumann entanglement entropy Sv as a func-
tion of subsystem size LA averaged over eigenstates within a small
energy window [E , E + �E ], where E = −1 and �E = 0.1, at
(a) (g, h) = (1.0, 0.2) and (b) (g, h) = (0.2, 2.0). Data for system
sizes L = 8, 10, 12, and 14 are presented, and error bars stand for
one standard deviation.

C. Entanglement entropy growth after a quench

Aside from eigenstate properties, the differences between
the ETH regime and the MBL regime also manifest them-
selves in quench dynamics. Starting with a product state of
different sites, the entanglement entropy of a subsystem A
will increase from zero. In the ETH regime, the entanglement
entropy increases linearly until it saturates [58]. In the MBL
regime, following a short linear growth, the entanglement en-
tropy will undergo a slow logarithmic increase in an extended
time region [59–62]. This logarithmic increase is often seen
as the hallmark of the MBL phase and can be explained by
the phenomenological theory of MBL [63,64]. Yet, this linear
versus logarithmic growth of entropy is also directly related to
the exponential versus power-law behavior of the out-of-time-
ordered correlators [65–70].

Our initial product state is prepared with all τ i spins po-
larized along the x direction and all σ i spins aligned upward
or downward in a domain-wall fashion, as illustrated in the
inset of Figs. 5(b) and 6(b). In terms of the original τ i spins
before rotation, Eq. (20), all τ i spins are actually polarized
along the z direction. That is to say, all f and d atoms are
prepared in the left wells, and all a and b atoms are localized
either in the left (σ z

i upward) or right wells (σ z
i downward).

The advantage of choosing such an initial state is twofold.
First, the wave function is an equal-weight superposition of
states from all symmetry sectors. Second, the initial state has

(a)

(b)

FIG. 5. Quench dynamics of (a) entanglement entropies and
(b) the staggered magnetization defined in Eq. (26) from an initial
product state illustrated in the inset of (b). Both the von Neumann
entropy Sv and the Rényi entropy SR are plotted. Here t actually
stands for dimensionless 4tU in terms of original parameters. The
system size is L = 10 and the size of subsystem A is LA = 5. The
simulation is performed at (g, h) = (1.0, 0.2) which is shown to be
inside the ETH regime.

a relative high energy which mitigates the problem of limited
accessible system sizes in numerical simulations.

We numerically study the growth of both the von Neumann
entanglement entropy Sv and the second-order Rényi entropy
SR of the subsystem A that is chosen as half of the entire
system. The presence of both the ETH regime and the MBL
regime is demonstrated using two representative parameter
sets, (g, h) = (1.0, 0.2) and (g, h) = (0.2, 1.0), as shown in
Figs. 5 and 6, respectively. From Fig. 5(a), one can see that
for the former case where the disorder (h term) is relatively
weak, two entanglement entropies both increase linearly in
time, as indicated by the red dashed line. In contrast, for
the latter case where the disorder is relatively strong, a log-
arithmic growth of both entanglement entropies is revealed,
as demonstrated by the red dashed lines in Fig. 6(a). The
characteristic saturation time is also much longer than the
former case.

D. Evolution of observable after a quench

Finally, we study the time evolution of physical observ-
ables following a quench. If a system is thermal, all local
physical observables will evolve toward their thermal equilib-
rium values. For a MBL system, local physical observables,
however, keep part of the memory of the initial state and
do not necessarily approach the thermal equilibrium values.
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(a)

(b)

FIG. 6. Quench dynamics of (a) entanglement entropies and
(b) the staggered magnetization defined in Eq. (26) from an ini-
tial product state illustrated in the inset of (b). Both the von
Neumann entropy Sv and the Rényi entropy SR are plotted in
logarithmic timescale. Here, t actually stands for dimensionless
4tU in terms of original parameters. The system size is L = 10
and the size of subsystem A is LA = 5. The simulation is per-
formed at (g, h) = (0.2, 1.0) which is shown to be inside the
MBL regime.

This criterion has been applied in identifying MBL phases in
cold-atom experiments [71].

Here, we consider a specific observable, the staggered
magnetization, whose definition depends on the initial state

m̂s = 2

L

∑
i

ξiσ̂
z
i , (26)

where ξi = 1 if initially σ z
i = 1

2 and ξi = −1 if initially σ z
i =

− 1
2 . The advantage of defining such an observable is also

twofold. First, the initial expectation value of our observable
is always ms = 1. Second, it is easy to show that the thermal
average of m̂s is always zero because of the σ̂ z

i → −σ̂ z
i , qi →

−qi symmetry of the Hamiltonian, under which ms changes
its sign. By comparing Figs. 5(b) and 6(b), it is clear that the
system thermalizes in the former case but fails to thermalize
in the latter case.

IV. OUTLOOK

In summary, we have established that many-body local-
ization can occur in a disorder-free system with local gauge
symmetries. In our model, we explicitly show that gauge
charges of different symmetry sectors can play the role of
disorder potentials. All together with recent efforts [43–46],
we would like to conclude this work by posting the following
question. Is the many-body localization a generic feature of
all dynamical gauge theories with local gauge symmetries?
If yes, can this development can also shed light on studying
lattice gauge theories in high-energy physics?
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