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Exact dynamical decay rate for the almost

Mathieu operator

Svetlana Jitomirskaya, Helge Krüger, and Wencai Liu

We prove that the exponential decay rate in expectation is well
defined and is equal to the Lyapunov exponent, for supercritical
almost Mathieu operators with Diophantine frequencies.

1. Introduction

In physics literature, Lyapunov exponent is often referred to as the inverse
localization length, and its positivity is often considered a manifestation of
localization in a 1D system. At the same time, various physically desirable
conclusions, such as e.g. the exponential decay of the two-point function at
the ground state and positive temperatures with correlation length staying
uniformly bounded as temperature goes to zero, are often implicitly assumed
as attributes of localization. A way to derive them currently requires a strong
form of dynamical localization [3]: the exponential (in space) rate of decay
of the two point function, that is

(1) E
∑

s

|φs(ℓ)||φs(k)| ≤ Ce−γ|k−ℓ|

where {φs}s is a complete set of orthonormalized eigenfunctions (and the
sum may be localized in energy, if needed).

In view of this, the exponential decay rate in expectation was defined in
[14] as

(2) γ+ := lim sup
k→∞

(

−
lnE(

∑

s |φs(0)| · |φs(k)|)

|k|

)

,

and

(3) γ− := lim inf
k→∞

(

−
lnE(

∑

s |φs(0)| · |φs(k)|)

|k|

)

.
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It is obviously connected to the minimal inverse correlation length. This
definition can be localized to an energy range by summing over the eigen-
functions with energies falling in the range, in which case it is linked to the
minimal inverse correlation length for Fermi energies falling in that range.

It is well known that there is a long road from positive Lyapunov expo-
nents to a statement like (1). First, positive Lyapunov exponents don’t even
imply pure point spectrum for a.e. phase [6]. Even for models with positive
Lyapunov exponents and known pure point spectrum, dynamical localization
may not hold [9], and then an averaged statement (dubbed strong dynami-
cal localization) is strictly stronger, and a result such as (1) is stronger yet
(albeit equivalent in all known examples so far).

Yet it may be natural to expect that there is a certain reason to physi-
cists’ jump in conclusions, and that for physically relevant models Lyapunov
exponent is indeed related to γ±.

In this paper we prove the first such result.
It turns out that for almost Mathieu operators, arguably the most pop-

ular 1D model in physics, the Lyapunov exponent precisely defines the dy-
namical decay rate.

We define the almost Mathieu operator by its action on u ∈ ℓ2(Z),

(4) (Hλ,α,θu)(n) = u(n+ 1) + u(n− 1) + Vλ,α,θ(n)u(n),

with the potential Vλ,α,θ given by

(5) Vλ,α,θ(n) = 2λ cos 2π(θ + nα),

where λ ̸= 0 is the coupling, α ∈ R\Q is the frequency, and θ ∈ R is the
phase.

We say that frequency α is Diophantine if there exist κ > 0 and τ > 0
such that for k ̸= 0,

||kα||R/Z ≥
τ

|k|κ
,

where ||x||R/Z = infℓ∈Z |x− ℓ|.
Let L := max{0, ln |λ|} be the Lyapunov exponent of the almost Mathieu

operator for energies in the spectrum [8]. We have

Theorem 1.1. Let |λ| > 1, and α be Diophantine. Then

(6) γ+ = γ− = L.
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Remark 1.2. We define γ± only in the regime of localization, but of course
it is natural to set γ± = 0 in absence of localization. With this definition
Theorem 1.1 holds also without the asumption |λ| > 1.

Without loss of generality, we assume λ > 0. We note that almost Math-
ieu operators have Anderson localization with eigenfunctions decaying ex-
actly at the Lyapunov rate if and only if λ > 1, and α is Diophantine [15],
thus we establish equality of the exponential decay rate in expectation and
the Lyapunov exponent throughout this entire regime1.

Previous quantum dynamics results in the regime of localization have
been limited to lower bounds for related quantities, for any model. Bounds
for the supercritical (that is λ > 1) almost Mathieu operator go back to
[12, 21]. Dynamical localization for general analytic quasiperiodic potentials
was obtained in [7].

A lower bound on γ−, establishing its positivity, was proved, under
the same assumptions as in Theorem 1.1, in [14]. Previously, lower bounds
on γ− were obtained for the Anderson model, i.e. for the potential being
independent identically distributed random variables, in [10, 22] for the
one-dimensional case and in [1, 4] for higher dimensions throughout the
regimes where corresponding proofs of localization work, thus excluding e.g.
Bernoulli. The corresponding result for continuum operators was proven in
[2]. Recently, a proof of such lower bound was obtained for an arbitrary 1D
bounded Anderson model in [11] using a more delicate implementation of
the method of [19] and some ideas of [14].

While lower bounds on γ− are a corollary of localization, that is of taming
the resonances, upper bounds on γ+ are a corollary of delocalization, that
is of exploiting the presence of the resonances. It is well known that the
latter task is usually harder. In this paper we achieve this, at the same time
making both estimates sharp. Our analysis uses (a small part of the) delicate
estimates on eigenfunctions obtained in [16]. The statements we need that
are similar to those in [16] are presented in the appendix, while the body of
the paper consists of the new argument needed to derive the sharp upper
and lower bounds. The technique we develop to obtain sharp estimates is
also an important ingredient in the upcoming work [17].

1More precisely, exact Lyapunov decay of the eigenfunctions holds if and only
if λ > 1, and lim sup ln qn+1

qn
= 0, where qn are denominators of continued fraction

approximants of α [15]. Our result depends on Lemmas from [16] that were for-
mulated there for the standard Diophantine condition, but our proof would hold
for the entire regime lim sup ln qn+1

qn
= 0 if those lemmas were correspondingly up-

graded, which is a technical matter.
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It is tempting to conjecture that Theorem 1.1 has a universal nature, but
one should be cautious. For example, we do not expect it to hold even for
weakly Liouville almost Mathieu operators for which localization has been
established in [5, 15], with eigenfunctions decaying exponentially but at a
non-Lyapunov rate [15]. However, even for those a statement of the form
γ+ = L may be plausible. Moreover, almost Mathieu operators are special
in that their Lyapunov exponent is constant on the spectrum, and without
this condition the statement of the theorem doesn’t even make sense. Yet,
it is natural to expect that in many physically relevant situations it should
be true that γ± = L±, where L+ = supL(E) (L− = inf L(E)) over E in
the spectrum. For example, it is a very interesting question to establish
such a connection for the Anderson model where eigenfunctions do decay
at the Lyapunov rate (e.g. [19]) as well as in the other models where there
is Lyapunov decay of the eigenfunctions. In the framework of the method
of [11, 19] this would require more delicate estimates on the probabilities of
large deviation sets.

2. Preliminaries

In the following, we will consider λ > 1 and α Diophantine fixed, and so set
Hθ := Hλ,α,θ. We know that for almost every θ, the spectrum of Hθ is pure
point [20]. We denote by ϕθ;s an orthonormal basis consisting of eigenfunctios
of Hθ, where the enumeration can be assumed to be measurable [13] . Let
nθ;s be the position of the leftmost maximum of ϕθ;s, so

(7) |ϕθ;s(nθ;s)| = ∥ϕθ;s∥ℓ∞(Z).

A key step in the proof of Theorem 1.1 will be to prove the following
localization result. Below ε is always small.

Theorem 2.1. Let λ > 1, α Diophantine, θ ∈ R, ℓ ∈ Z, and ℓ′ = |ℓ− nθ;s|.
Let x0 ∈ [−2ℓ′, 2ℓ′] be such that

(8) | sinπ(2θ + α(2nθ;s + x0))| = min
|x|≤2ℓ′

| sinπ(2θ + α(2nθ;s + x))|.

Then for large ℓ′ (depending on ε) we have

• if ℓ and x0 + nθ;s are on different sides of nθ;s, that is (ℓ− nθ;s)x0 < 0,
then

(9) |ϕθ;s(ℓ)| ≤ e−(L−ε)|ℓ−nθ;s||ϕθ;s(nθ;s)|.
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• if (ℓ− nθ;s)x0 ≥ 0 and | sinπ(2θ + α(2nθ;s + x0))| ≥ e−η|ℓ−nθ;s| for
some η ∈ (0, L− ε), then

(10) |ϕθ;s(ℓ)| ≤ e−(L−ε−η)|ℓ−nθ;s||ϕθ;s(nθ;s)|.

Proof. Theorem 2.1 is obtained using the arguments from [16]. We include
a proof in the appendix. □

Theorem 2.1 implies the following corollary immediately.

Corollary 2.2. Let λ > 1, α Diophantine, θ ∈ R, ℓ ∈ Z, and ℓ′ = |ℓ− nθ;s|.
Let x0 ∈ [−2ℓ′, 2ℓ′] such that

(11) | sinπ(2θ + α(2nθ;s + x0))| = min
|x|≤2ℓ′

| sinπ(2θ + α(2nθ;s + x))|.

Suppose for some η ∈ (0, L− ε)

(12) min
|x|≤2ℓ′

| sinπ(2θ + α(2nθ;s + x))| > e−η|ℓ−nθ;s|.

Then we have

(13) |ϕθ;s(ℓ)| ≤ e−(L−η−ε)|ℓ−nθ;s||ϕθ;s(nθ;s)|.

3. The lower bound

In this part we will prove the lower bound in Theorem 1.1: γ− ≥ L. That is
we will fix ℓ ∈ Z and bound

(14)

∫ 1

0

∑

s

|ϕθ;s(0)ϕθ;s(ℓ)|dθ =
∑

n∈Z

∫ 1

0

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ

from above. By orthogonality, we have for any s,

(15)
∑

n

|ϕθ;s(n)|
2 = 1,

and for any θ ∈ R

(16)
∑

s

|ϕθ;s(n)|
2 = 1.

By symmetry, we can clearly assume that ℓ ≥ 0. We note that in order to
prove the lower bound in Theorem 1.1, it suffices to show
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Theorem 3.1. Let λ > 1, α Diophantine, and 0 < Γ < L. Then for ℓ ≥ 0
large enough, we have

(17)
∑

n∈Z

∫ 1

0

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ ≤ e−Γℓ.

For n ∈ Z and 0 < η < L, we define the sets

(18) Aη;n = {θ : min
|n′|≤10|n|

| sinπ(2θ + α(2n+ n′))| ≤ e−η|n|},

and

(19) Bη;n;ℓ = {θ : min
|n′|≤10|n−ℓ|

| sinπ(2θ + α(2n+ n′))| ≤ e−η|n−ℓ|}

We clearly have that |Aη,n| ≤ (20|n|+ 1)e−η|n| and |Bη;n;ℓ| ≤ (20|n− ℓ|+
1)e−η|n−ℓ|.

By Theorem 2.1 and Corollary 2.2, we can obtain the following Lemma.

Lemma 3.2. For any η ∈ (0, L− ε), the following estimates hold,

(i) For θ /∈ Aη;n and nθ;s = n, we have

(20) |ϕθ;s(0)| ≤ e−(L−η−ε)|n||ϕθ;s(n)|,

for large |n|.

(ii) For θ /∈ Bη;n;ℓ and nθ;s = n, we have

(21) |ϕθ;s(ℓ)| ≤ e−(L−η−ε)|n−ℓ||ϕθ;s(n)|,

for large |n− ℓ|.

Proof of Theorem 3.1. Let δ0 be a small positive constant. We write

∑

n∈Z

∫ 1

0

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ =

+∞
∑

(1−δ0)ℓ

+

δ0ℓ
∑

−∞

+

(1−δ0)ℓ
∑

n=δ0ℓ

= I + II + III.

We estimate I first. In this case, fix nθ;s = n ≥ (1− δ0)ℓ. By (i) of
Lemma 3.2 and (16), we can conclude that for any n ≥ (1− δ0)ℓ and
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θ /∈ Aη;n,

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)| ≤
∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(n)|

≤ e−(L−η−ε)n
∑

nθ;s=n

|ϕθ;s(n)|
2

≤ e−(L−η−ε)n.

Therefore, we have that for t = eηne−(L−ε)n and η ∈ (0, L− 2ε),

(22)







θ ∈ T :
∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)| > t







⊆ Aη;n.

Let t1 = e−εn, t2 = e−(L−2ε)n. Define η(t) for t2 ≤ t ≤ 1 implicitly by t =
eη(t)n · e−(L−ε)n. Then for t2 ≤ t ≤ 1, η(t) ≥ ε, and we have

(23) |Aη(t);n| ≤ (20n+ 1)e−(L−ε)n/t.

Since
∑

nθ;s=n |ϕθ;s(0)ϕθ;s(ℓ)| ≤ 1, for any Borel Ω ∈ T, we have
(24)
∫

Ω

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ =

∫

[0,1]

∣

∣

∣

∣

∣

∣







θ ∈ Ω :
∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)| > t







∣

∣

∣

∣

∣

∣

dt.

Thus we have
∫ 1

0

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ =

∫ t2

0
+

∫ t1

t2

+

∫ 1

t1

= i+ ii+ iii.(25)

Then

(26) i ≤ t2 ≤ e−(L−2ε)n.

From (24), (22) and (23), one has for large n,

ii ≤

∫ t1

t2

|Aη(t);n|dt(27)

≤

∫ t1

t2

(20|n|+ 1)e−(lnλ−ε)n/tdt

≤ e−(L−2ε)n.
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Noticing that |Aη(t1);n| ≤ (20|n|+ 1)e−(lnλ−2ε)n, one has

iii ≤ (1− t1)|Aη(t1);n| ≤ e−(L−3ε)n.(28)

Thus, for n ≥ (1− δ0)ℓ,

(29)

∫ 1

0

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ ≤ e−(L−3ε)n.

Then, we have that

(30) I =

∞
∑

n=(1−δ0)ℓ

∫ 1

0

∑

nθ;s=n

|ϕθ;s(0)ψθ;s(ℓ)|dθ ≤ e−(L−4ε)(1−δ0)ℓ.

Similarly,

(31) II ≤ e−(L−4ε)(1−δ0)ℓ.

Now we are in a position to estimate III. For θ ∈ [0, 1] \Aδ0;n ∪Bδ0;n;ℓ, by
Lemma 3.2 and (16), one has

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)| ≤ e−(L−δ0−ε)ℓ
∑

nθ;s=n

|ϕθ;s(n)|
2

≤ e−(L−δ0−ε)ℓ.

It leads to
(32)

∑

δ0ℓ≤n≤(1−δ0)ℓ

∫

[0,1]\(Aδ0;n∪Bδ0;n;ℓ)

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ ≤ e−(L−δ0−2ε)ℓ.

For θ ∈ Aδ0;n ∪Bδ0;n;ℓ, let x0(θ) ∈ [−10ℓ, 10ℓ] be such that

(33) | sinπ(2θ + αx0)| = min
|x|≤10ℓ

| sinπ(2θ + αx)|.

Notice that x0 is unique by the fact that α satisfies Diophantine condition.
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Let

Ω1 = {θ ∈ Aδ0;n ∪Bδ0;n;ℓ|x0(θ) < n},

and

Ω2 = {θ ∈ Aδ0;n ∪Bδ0;n;ℓ|x0(θ) ≥ n}.

By Theorem 2.1 and the fact that δ0ℓ ≤ n ≤ (1− δ0)ℓ, for any θ ∈ Ω1,

|ϕθ;s(ℓ)| ≤ e−(L−ε)|ℓ−n||ϕθ;s(n)|,

and for any θ ∈ Ω2,

|ϕθ;s(0)| ≤ e−(L−ε)|n||ϕθ;s(n)|.

For θ ∈ Ω1 \Aη;n with δ0 < η < lnL− ε, by Lemma 3.2, we have that

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)| ≤ e−(L−ε)|n−ℓ|e−(L−η−ε)|n|
∑

nθ;s=n

|ϕθ;s(n)|
2(34)

≤ e−(L−ε)|n−ℓ|e−(L−η−ε)|n|

≤ e−(L−ε)ℓeη|n|.

A similar bound holds for θ ∈ Ω2 \Bη;n;ℓ. That is, for θ ∈ Ω2 \Bη;n;ℓ and
δ0 < η < L− ε,

(35)
∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)| ≤ e−(L−ε)ℓeη|n|.

By (34), (35), (24) and (23), we then have (25) with
∫ 1
0 replaced by

∫

Ω1∪Ω2

and also (26), (27), (28). Thus we also have

∫

Ω1∪Ω2

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ ≤ e−(L−ε)ℓ.

It leads to

(36)
∑

δ0ℓ≤n≤(1−δ0)ℓ

∫

Ω1∪Ω2

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ ≤ e−(L−2ε)ℓ.

By (32) and (36), we get the bound of II,

II ≤ e−(L−δ0−3ε)ℓ.
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Putting the bounds of I, II and III together, we have

∑

n∈Z

∫ 1

0

∑

nθ;s=n

|ϕθ;s(0)ϕθ;s(ℓ)|dθ ≤ e−(L−δ0−6ε)ℓ.

Letting δ0, ε→ 0, we obtain Theorem 3.1. □

4. The upper bound

In this part we will prove the upper bound: γ+ ≤ L.

Theorem 4.1. For any Γ satisfying L < Γ ≤ 2L, we have for n large enough

(37) ln

∫ 1

0

∑

s

|ϕθ;s(0)ϕθ;s(n)|dθ ≥ −Γ|n|.

Fix L < Γ ≤ 2L and large n. Define sets

(38) Θ1 = {θ ∈ [0, 1] : e−2Γ|n| ≤ | sinπ(2θ + nα)| ≤ e−Γ|n|}

and

Θ2 = {θ ∈ [0, 1] : there exists some |k| ≥ 1000|n|(39)

such that | sinπ(2θ + kα)| ≤ e−
L

100
|k|}.

Then Θ = Θ1\Θ2 has measure satisfying |Θ| ≥ 1
100e

−Γ|n|.

Lemma 4.2. Let α be Diophantine with constants κ, τ > 0. Then for any
θ ∈ Θ and for any m > C(κ, τ)|n|,

(40) min
|x|≤m

| sinπ(2θ + xα)| ≥ e−
L

100
|m|.

Proof. Let x0 be such that the minimum in (40) is attained at x = x0. We
split our analysis into three cases depending on the value of x0.

Case I. |x0| ≥ 1000|n|. Then the Lemma holds because of θ /∈ Θ2.
Case II. |x0| ≤ 1000|n| and x0 ̸= n. The Lemma holds because of θ ∈ Θ1

and DC frequencies.
Case III. x0 = n. The Lemma holds because of θ ∈ Θ1 (using | sinπ(2θ +

nα)| ≥ e−2Γ|n|). □
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It clearly suffices to show that for the eigenfunctions ϕs of H = Hλ,α,θ

(we ignore the dependence on θ) we have

(41)
∑

s

|ϕs(0)ϕs(n)| ≥
1

2

as long as |n| is large enough, uniformly in θ ∈ Θ. The first step is

Proposition 4.3. For |n| large enough and θ ∈ Θ, we have

(42)
∑

|m|≤C⋆|n|

∑

ns=m

|ϕs(0)|
2 ≥

1

2
,

where C⋆ = C(κ, τ).

Proof. Without loss of generality, assume n ≥ 0. Supposem ≤ −C⋆n orm ≥
C⋆n.

Using Corollary 2.2 with nθ;s = m, ℓ = 0, by (40), we have

|ϕs(0)| ≤ |ϕs(m)|e−
L

2
|m|.

Thus

∑

|m|≥C⋆n

∑

ns=m

|ϕs(0)|
2 ≤

∑

|m|≥C⋆n

∑

ns=m

|ϕs(m)|2e−L|m|

=
∑

|m|≥C⋆n

e−L|m|
∑

ns=m

|ϕs(m)|2

≤
∑

|m|≥C⋆n

e−L|m|

≤
1

2
.

Combining with (16), the result follows. □

The following lemma is similar to a statement appearing in [16] with some
modifications. We present a proof in the Appendix.
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Lemma 4.4. Suppose

(43) | sinπ(2θ + nα)| ≤ e−Γ|n|

with L < Γ ≤ 2L. Suppose ϕ is an ℓ2 solution of Hλ,α,θϕ = Eϕ. Then

(44) |ϕ(n)− ϕ(0)| ≤ e−
1

2
(Γ−L−ε)|n|||ϕ||ℓ∞(Z).

Proof of Theorem 4.1. For large n, by Proposition 4.3 and Lemma 4.4, one
has for θ ∈ Θ,

∑

s

|ϕs(0)ϕs(n)| ≥
∑

|m|≤C⋆|n|

∑

ns=m

|ϕs(0)ϕs(n)|

≥
∑

|m|≤C⋆|n|

∑

ns=m

|ϕs(0)|(|ϕs(0)| − e−
1

2
(Γ−L−ε)|n|||ϕs||ℓ∞(Z)

≥
∑

|m|≤C⋆|n|

∑

ns=m

|ϕs(0)|
2

− e−
1

2
(Γ−L−ε)|n|

∑

|m|≤C⋆|n|

∑

ns=m

|ϕs(0)|





∑

|k|≤C⋆|n|

|ϕs(k)|
2





1

2

≥
1

2
− 2e−

1

2
(Γ−L−ε)|n|

∑

|m|≤C⋆|n|

∑

ns=m

∑

|k|≤C⋆|n|

|ϕs(k)|
2

≥
1

4
.

Then

∫ 1

0

∑

s

|ϕs(0)ϕs(n)|dθ ≥

∫

Θ

∑

s

|ϕs(0)ϕs(n)|dθ

≥
e−Γ|n|

400
.

This implies Theorem 4.1. □

Appendix A. Proof of Theorem 2.1

By shifting the operator by nθ;s units we can assume nθ;s = 0. Without loss
of generality, we assume ℓ > nθ;s. Then in order to prove Theorem 2.1, it
suffices to prove the following theorem.



✐

✐

“8-Jitomirskaya” — 2020/7/20 — 22:20 — page 801 — #13
✐

✐

✐

✐

✐

✐

Exact dynamical decay rate for the almost Mathieu operator 801

Theorem A.1. Let λ > 1, α Diophantine, nθ;s = 0, ϕs(0) = 1, ℓ ∈ Z+. Let
x0 ∈ [−2ℓ, 2ℓ] be such that

(A.1) | sinπ(2θ + αx0)| = min
|x|≤2ℓ

| sinπ(2θ + αx)|.

Then the following statements hold for large ℓ:
If x0 ∈ [−2ℓ, 0], then

(A.2) |ϕs(ℓ)| ≤ e−(L−ε)ℓ.

If for η ∈ (0, L− ε)

(A.3) min
|x|≤2ℓ

| sinπ(2θ + αx)| > e−ηℓ,

and x0 ∈ [0, 2ℓ], then

(A.4) |ϕs(ℓ)| ≤ e−(L−η−ε)ℓ.

Suppose Hλ,α,θφ = Eφ. Let Uφ(y) =

(

φ(y)
φ(y − 1)

)

. It isa standard fact

(e.g. (37) in [16]) that for large |k1 − k2|,

(A.5) Ce−(L+ε)|k1−k2|||Uφ(k2)|| ≤ ||Uφ(k1)|| ≤ Ce(L+ε)|k1−k2|||Uφ(k2)||.

Lemma A.2. [16, Lemma 3.4] Let rφy = max|σ|≤10γ |φ(y + σk)|. Suppose
k0 ∈ [−2Ck, 2Ck] is such that

| sinπ(2θ + αk0)| = min
|x|≤2Ck

| sinπ(2θ + αx)|,

where C ≥ 1 is a constant. Let γ, ε be small positive constants. Let y1 =
0, y2 = k0, y3 ∈ [−2Ck, 2Ck].Assume y lies in [yi, yj ] (i.e., y ∈ [yi, yj ])with
|yi − yj | ≥ k and ys /∈ [yi, yj ], s ̸= i, j. Suppose |yi|, |yj | ≤ Ck and |y − yi| ≥
10γk, |y − yj | ≥ 10γk. Then for large enough k,

rφy ≤ max{rφyi
exp{−(L− ε)(|y − yi| − 3γk)},(A.6)

rφyj
exp{−(L− ε)(|y − yj | − 3γk)}}.
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Lemma A.3. [16, Lemma 3.7] Fix 0 < t < L. Suppose

(A.7) | sinπ(2θ + αk)| = e−t|k|.

Then for large |k|

(A.8) ||Uφ(k)|| ≤ max{||Uφ(0)||, ||Uφ(2k)||}e−(L−t−ε)|k|.

Proof of Theorem A.1. We start with the proof of Case I. Let φ = ϕ,
γ = ε, k = ℓ, C = 1, k0 = x0 < 0 and y3 = 2ℓ in Lemma A.2. By
Lemma A.2, one has ℓ ∈ [y1, y3] and y2 < y1, so

(A.9) rϕℓ ≤ e−(L−Cε)ℓrϕ0 + e−(L−Cε)ℓrϕ2ℓ ≤ e−(L−Cε)ℓ,

since |ϕ(n)| ≤ 1 for all n ∈ Z. By (A.5) and (A.9), we have

|ϕ(ℓ)| ≤ e−(L−Cε)ℓ.

It finishes the proof of Case I.
Now we turn to Case II. Let t be such that tx0 = ηℓ. Let φ = ϕ, γ =

ε, k = ℓ, C = 1, k0 = x0 > 0 and y3 = 2ℓ in Lemma A.2. By Lemma A.2
and (A.5), one has (as in the proof of Case I), one has

(A.10) |ϕ(ℓ)| ≤ e−(L−ε)ℓ + e−(L−ε)|ℓ−x0|||Uϕ(x0)||.

Suppose x0 ≥ ( ηL + ε)ℓ. In this case, by the definition of t, one has 0 <
t < L. Let k = x0 and φ = ϕ in Lemma A.3, one has

(A.11) ||Uϕ(x0)|| ≤ max{||Uϕ(0)||, ||Uϕ(2x0)||}e
−(L−t−ε)x0 ≤ e−(L−t−ε)x0 .

In this case, (A.4) follows from (A.10) and (A.11).
Suppose 0 ≤ x0 ≤ ( ηL + ε)ℓ. In this case, (A.4) follows from (A.10) di-

rectly since ||Uϕ(x0)|| ≤ 2. □

Appendix B. Proof of Lemma 4.4

Proof. Without loss of generality, we assume n > 0. Set A = ||ϕ||ℓ∞(Z). We

let ϕ̂(k) = ϕ(n− k), V (k) = 2λ cos 2π(θ + kα) and V̂ (k) = 2λ cos 2π(θ +
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(n− k)α). Then by the assumption (43), one has for all k ∈ Z,

(B.12) |V (k)− V̂ (k)| ≤ Ce−Γn.

We also have

(B.13) ϕ(k + 1) + ϕ(k − 1) + V (k)ϕ(k) = Eϕ(k)

and

(B.14) ϕ̂(k + 1) + ϕ̂(k − 1) + V̂ (k)ϕ̃(k) = Eϕ̂(k).

Let W (n) =W (f, g) = f(n+ 1)g(n)− f(n)g(n+ 1) be the Wronskian. Let

Û(k) =

(

ϕ̂(k)

ϕ̂(k − 1)

)

,

and

U(k) =

(

ϕ(k)
ϕ(k − 1)

)

.

By a standard calculation using (B.12), (B.13), (B.14) and palindromic
arguments as in [18] 2, we have,

|W (ϕ, ϕ̂)(k)−W (ϕ, ϕ̂)(k − 1)| ≤ |V (k)− V̂ (k)||ϕ(k)ϕ̂(k)|(B.15)

≤ Ce−Ln|ϕ(k)ϕ̂(k)|

≤ CA2e−Γn.

In Lemma A.2, let k0 = n and y3 = 1000n, then by (A.6) one has

(B.16) |U(m− 1)|, |U(m)| ≤ e−ΓnA,

where m = 500n.
By (B.15) and (B.16), we have

(B.17) |W (ϕ, ϕ̂)(k)| ≤ A2e−(Γ−ε)n,

for |k| ≤ 500n.
Now we split n into cases, depending on whether it is odd or even.

2Palindromic argument of [18] then yields ||U(n2 )|| ≤ e−(Γ−ε)n
2 if n is even and

analogous statement if n is odd. Here we want to gain a factor of A2.
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Case 1. n is even. Let m = n
2 , then

U(m) =

(

ϕ(m)
ϕ(m− 1)

)

; Û(m) =

(

ϕ(m)
ϕ(m+ 1)

)

.

Applying (B.17) with k = m− 1, we have

|ϕ(m)||ϕ(m+ 1)− ϕ(m− 1)| ≤ A2e−(Γ−ε)n.

This implies

(B.18) |ϕ(m)| ≤ Ae−
1

2
(Γ−ε)n,

or

(B.19) |ϕ(m+ 1)− ϕ(m− 1)| ≤ Ae−
1

2
(Γ−ε)n.

If (B.18) holds, by (B.13), we also have

(B.20) |ϕ(m+ 1) + ϕ(m− 1)| ≤ Ae−
1

2
(Γ−ε)n.

Putting (B.18) and (B.20) together, we get

(B.21) ||U(m) + Û(m)|| ≤ Ae−
1

2
(Γ−ε)n.

If (B.19) holds, we have

(B.22) ||U(m)− Û(m)|| ≤ Ae−
1

2
(Γ−ε)n.

Thus in case 1 there exists ι ∈ {−1, 1} such that

(B.23) ||U(m) + ιÛ(m)|| ≤ Ae−
1

2
(Γ−ε)n.

In Lemma A.2, let k0 = n, y1 = 0 and y3 = m, then by (A.5) one has,

(B.24) ||Û(m)|| ≤ Ae−(L−ε)m.

Let T and T̂ be the transfer matrices associated with potentials V and
V̂ , taking U(m), Û(m) to U(0), Û(0) correspondingly. By (B.12), the usual
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uniform upper semi-continuity and telescoping, one has

||T ||, ||T̂ || ≤ e(L+ε)m.

and

||T − T̂ || ≤ e(L−2Γ+ε)m.

Then by (B.23), we have

||U(0) + ιÛ(0)|| ≤ ||T ||||U(m) + ιÛ(m)||+ ||T − T̂ ||||Û(m)||

≤ Ae(L+ε)me−
1

2
(L−ε)n +Ae(L−2Γ+ε)me−m(L−ε).

≤ Ae−
1

2
(Γ−L−ε)n.

This completes the proof for even n due to the definition of U(0) and Û(0).
Case 2. n is odd. Let m̃ = N−1

2 , then

U(m̃+ 1) =

(

ϕ(m̃+ 1)
ϕ(m̃)

)

; Û(m̃+ 1) =

(

ϕ(m̃)
ϕ(m̃+ 1)

)

.

Combining with (B.17), we have

|ϕ(m̃) + ϕ(m̃+ 1)||ϕ(m̃)− ϕ(m̃+ 1)| ≤ A2e−(Γ−ε)n.

This implies

|ϕ(m̃) + ϕ(m̃+ 1)| ≤ Ae−
1

2
(Γ−ε)n,

or

|ϕ(m̃+ 1)− ϕ(m̃)| ≤ Ae−
1

2
(Γ−ε)n.

Thus in case 2, there also exists ι ∈ {−1, 1} such that

||U(m̃+ 1) + ιÛ(m̃+ 1)|| ≤ Ae−
1

2
(Γ−ε)n.

The rest of the proof is the same as in case 1. □
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